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aIMUVA, Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de
Valladolid, Spain
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Abstract

The Klein-Gordon equation on an infinite two dimensional strip is consid-
ered. Numerical computation is reduced to a finite domain by using the
Hagstrom-Warburton (H-W) absorbing boundary conditions (ABCs) with
free parameters in the formulation of the auxiliary variables. The spatial
discretization is achieved by using fourth order finite differences and the time
integration is made by means of an efficient and easy to implement fourth
order exponential splitting scheme which was used in [5] considering the fixed
Padé parameters in the formulation of the ABCs. Here, we generalize the
splitting time technique to other choices of the parameters. To check the
time integrator we consider, on one hand, four types of fixed parameters, the
Newmann’s parameters, the Chebyshev’s parameters, the Padé’s parameters
and optimal parameters proposed in [13] and, on the other hand, an adaptive
scheme for the dynamic control of the order of absorption and the parame-
ters. We study the efficiency of the splitting scheme by comparing with the
fourth-order four-stage Runge-Kutta method.
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1. Introduction

We consider dispersive waves propagating in the infinite two dimensional
strip (−∞,∞) × [a, b]. The south and north boundaries of the strip are
denoted by ΓS and ΓN . Inside the strip, we consider the Klein-Gordon equa-
tion,

∂2t u− c2∇2u+ s2u = f, (1)

where c = c(x, y) is the given wave speed, s = s(x, y) is the medium disper-
sion coefficient, and f(x, y, t) is a given source.

On the south and north boundaries we impose periodic boundary condi-
tions,

u(x, yS, t) = u(x, yN , t), ∂yu(x, yS, t) = ∂yu(x, yN , t). (2)

Finally, we consider the initial conditions,

u(x, y, 0) = u0(x, y), ∂tu(x, y, 0) = v0(x, y), (3)

which satisfy the boundary conditions on ΓS and ΓN , and vanish outside a
compact region Ω0 ⊂ (−∞,∞)× [a, b].

In order to obtain a numerical approximation of these problems, it is
necessary to reduce the computation to a finite domain. For this, the infinite
strip is truncated by introducing the west artificial boundary ΓW , located at
x = xW , a ≤ y ≤ b, and the east artificial boundary ΓE at x = xE , a ≤ y ≤ b.
We denote by Ω the computational domain bounded by ΓN ∪ ΓW ∪ ΓS ∪ ΓE .
The domain Ω must be chosen such that Ω0 ⊂ Ω.

Now, we define suitable artificial boundary conditions on the artificial
boundaries ΓW and ΓE by using ABCs, which are designed to produce small
reflections inside the computational domain and to have local character.
There are many works on this subject, see the works [6, 7, 10, 13, 14, 15, 16,
17] and the review papers [9, 11, 12, 25].

As an alternative, it can be first considered a space discretization of the
problem and then to obtain ABCs for the discrete problem. We have worked
in this sense for example in [2, 3, 4].
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Here, we have chosen the Hagstrom-Warburton high-order ABCs [16, 17],
a modified version of the Higdon ABCs [18, 19]. We remark that these ABCs
can be used only when, outside Ω0, the speed c and the dispersion coefficient
are constant and the source f vanishes. Within Ω0, this hypothesis is not
necessary; however, for the sake of simplicity, we only consider examples
which satisfy this assumption in the whole strip (−∞,∞)× [a, b].

The H-W ABCs use auxiliary variables to avoid high derivatives in their
formulation in such a way that arbitrary order of absorption P can be
achieved by introducing P auxiliary variables φj, j = 1, . . . , P , satisfying
the recursive relations

(a0∂t + c∂x)u = a0∂tφ1,
(aj∂t + c∂x)φj = (aj∂t − c∂x)φj+1, j = 1, . . . , P,
φP+1 = 0,

(4)

in the vicinity of ΓE. The parameters aj mean cosines of incidence angles and
it is natural to take 0 < aj ≤ 1. The choice aj = 1 is associated with normal
incidence. If a plane wave with incident angle θ reaches ΓE and one of the
aj coincides with cos(θ), the ABC is then exact and non spurious reflection
is generated [13]. The problem is that, in practical applications, usually the
angles of incidence are not known a priori. In [5], we built a splitting time
integrator considering aj = 1 for all j. In this article, we generalize this
technique in order to use other choices of the parameters aj , including the
optimal and adaptive cases.

From the assumption that the initial conditions have compact support
away from ΓW and ΓE, we have,

φj(y, 0) = 0, ∂tφj(y, 0) = 0 on ΓW ,ΓE.

We choose a0 = 1. In [15], it is established that the H-W ABCs of order
P given by (4) may be rewritten as

(∂t + c∂x)u = ∂tφ1,

l11∂
2
t φ1 + l12∂

2
t φ2 = c2(m10∂

2
yφ0 +m11∂

2
yφ1 +m12∂

2
yφ2)

−s2(m10φ0 +m11φ1 +m12φ2),

ljj−1∂
2
t φj−1 + ljj∂

2
t φj + ljj+1∂

2
t φj+1 = c2(mjj−1∂

2
yφj−1 +mjj∂

2
yφj +mjj+1∂

2
yφj+1)

−s2(mjj−1φj−1 +mjjφj +mjj+1φj+1),
j = 2, . . . , P,

u = φ0, φP+1 = 0,

(5)
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where

l11 = (1 + a1)
2,

l12 = 1− a21,
m10 = 2a1,
m11 = 1,
m12 = 1,

and, for j = 2, . . . , P,

ljj−1 = aj(1− a2j−1),
ljj = aj(1 + a2j−1) + aj−1(1 + a2j ),
ljj+1 = aj−1(1− a2j ), ,
mjj−1 = aj ,
mjj = aj−1 + aj ,
mjj−1 = aj−1.

(6)

We write L = [lij]
P
i,j=1, which is a tridiagonal strictly diagonally dominant

matrix. Therefore, the Gaussian elimination can be used without pivoting
to solve a linear system of equations with coefficient matrix L and it is
numerically stable.

On the boundary ΓW , the first equation in (5) has to be replaced by
(∂t − c∂x)u = ∂tφ1, but all other conditions are the same.

The space discretization is reached by means of fourth order finite dif-
ferences. For the time discretization, we propose a fourth order exponential
splitting method which improves the computational efficiency of the time
integration. We show the improvement by comparing the splitting scheme
with the standard fourth-order four-stage Runge-Kutta method used in [17].
Useful overviews of splitting methods can be found in the review papers
[8, 22].

The paper is organized as follows. Section 2 is devoted to show the fea-
sibility of the time and space discretization when it is applied to the simple
case of finite domain with periodic boundary conditions. In Section 3, the
ABCs are added in the one dimensional case, and the full discretization is
modified in a suitable way. A similar full discretization for the two dimen-
sional case, also with ABCs, is studied in Section 4. Numerical experiments
for the latter two dimensional case are presented in Section 5.
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2. Two dimensional Klein-Gordon equation with periodic bound-
ary conditions.

We consider the problem with periodic boundary conditions,

u(a, y, t) = u(b, y, t), y ∈ [c, d], (7)

∂xu(a, y, t) = ∂xu(b, y, t), y ∈ [c, d], (8)

u(x, c, t) = u(x, d, t), x ∈ [a, b], (9)

∂yu(x, c, t) = ∂yu(x, d, t), x ∈ [a, b]. (10)

The initial conditions, u0(x, y) and v0(x, y), satisfy periodic boundary con-
ditions in [a, b]× [c, d].

2.1. Spatial discretization

We take the same size step in both directions x and y, that is, for a value

of N , h =
b− a
N

andM =
d− c
h

. Let xj = a+(j−1)h, j = 1, . . . , N+1, and

yl = c+ (l− 1)h, l = 1, . . . ,M +1, be the nodes of the spatial discretization.
This produces a uniform grid in the computational domain with M +1 rows
and N + 1 columns. We denote ujl(t) = u(xj, yl, t).

Second order spatial derivatives in the direction x and in the direction y
are approximated by fourth order central finite differences

∂xx ujl ≈
1

h2
(− 1

12
uj−2,l +

4

3
uj−1,l −

5

2
ujl +

4

3
uj+1,l −

1

12
uj+2,l),

∂yy ujl ≈
1

h2
(− 1

12
uj,l−2 +

4

3
uj,l−1 −

5

2
ujl +

4

3
uj,l+1 −

1

12
uj,l+2),

or, equivalently, in stencil form,

1

12h2




0 0 0 0 0
0 0 0 0 0
−1 16 −30 16 −1
0 0 0 0 0
0 0 0 0 0



,

1

12h2




0 0 −1 0 0
0 0 16 0 0
0 0 −30 0 0
0 0 16 0 0
0 0 −1 0 0



,

respectively.
We consider uj the approximations to the unknowns (u(xj , y1), . . . , u(xj, yM+1))

T ,
for fixed xj , and we denote uh = [uT

1 , . . . ,u
T
N+1]

T . Then, the spatial semidis-
crete problem is

d2uh

dt2
= Auh, (11)
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where A =
c2

12h2
B − s2I, with

B =




B1 B2 B3 B3 B2

B2 B1 B2 B3 B3

B3 B2 B1 B2 B3

. . .
. . .

. . .
. . .

. . .

B3 B2 B1 B2 B3

B3 B3 B2 B1 B2

B2 B3 B3 B2 B1




. (12)

Notice that B is a circulant block matrix

B = circ(B1, B2, B3, 0, . . . , 0, B3, B2),

whose blocks are, in turn, circulant matrices of dimension (M+1)× (M+1).

B = circ(B1, B2, B3, 0, . . . , 0, B3, B2),

B1 = circ(−60, 16,−1, 0, . . . , 0,−1, 16),
B2 = circ(16, 0, . . . , 0),

B3 = circ(−1, 0, . . . , 0).
Lemma 1. The eigenvalues of matrix B in (12), satisfy

σ(B) ⊂ [−128, 0]. (13)

Proof. We consider the following polynomials associated to the blocks of
matrix B

h1(z) = −60 + 16z − z2 − zM−1 + 16zM ,

h2(z) = 16,

h3(z) = −1,
hN (z) = −1,

hN+1(z) = 16.

Then, the eigenvalues of matrix B are (see [20, 21])

λl,k = ε̃0l h1(ω̃k) + ε̃lh2(ω̃k) + ε̃2l h3(ω̃k) + ε̃N−1
l hN(ω̃k) + ε̃Nl hN+1(ω̃k),
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for l = 1, . . . , N + 1, k = 1, . . . ,M + 1, where

ωM+1 = exp(
2πi

M + 1
), ω̃k = (ωM+1)

k,

εN+1 = exp(
2πi

N + 1
), ε̃l = (εN+1)

l.

That is,

λl,k = −60 + 16 exp(
2πik

M + 1
)− exp(

2πik

M + 1
2)− exp(

2πik

M + 1
(M − 1)) + 16 exp(

2πik

M + 1
M)

+16 exp(
2πil

N + 1
)− exp(

2πil

N + 1
2)− exp(

2πil

N + 1
(N − 1)) + 16 exp(

2πil

N + 1
N)

= −60 + 32 cos(
2πk

M + 1
)− 2 cos(

2πk

M + 1
2) + 32 cos(

2πl

N + 1
)− 2 cos(

2πl

N + 1
2).

Now, by using that cos(2z) = 2 cos2(z)− 1,

λl,k = −56 + 32 cos(
2πk

M + 1
)− 4 cos2(

2πk

M + 1
) + 32 cos(

2πl

N + 1
)− 4 cos2(

2πl

N + 1
).

We deduce that λl,k ∈ D = {f(x, y) : (x, y) ∈ [−1, 1]× [−1, 1]}, where

f(x, y) = −56 + 32x+ 32y − 4x2 − 4y2.

We are going to prove that D ⊂ [−128, 0]. For that, we calculate the
absolute extrema of the continuous function f(x, y) on the compact domain
[−1, 1]× [−1, 1].

Firstly, we look for the possible extrema of f(x, y) in (−1, 1) × (−1, 1),
which have to satisfy

∂f

∂x
(x, y) = 32− 8x = 0, (14)

∂f

∂y
(x, y) = 32− 8y = 0, (15)

but the unique solution of (14) and (15) is the point (4, 4), which does not
belong to (−1, 1)× (−1, 1).

Now, we study the function f(x, y) on the boundary. The possible ex-
trema of f(x, y) in {x ∈ (−1, 1), y = −1}, are the critic points of the Lagrange
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auxiliary function F (x, y) = f(x, y) + λ(y + 1), which have to satisfy

∂F

∂x
(x, y) = 32− 8x = 0, (16)

∂F

∂y
(x, y) = 32− 8y + λ = 0, (17)

y = −1. (18)

Equation (16) does not have any solution in (−1, 1). A similar study can be
done when {x ∈ (−1, 1), y = 1}, {y ∈ (−1, 1), x = −1} and {y ∈ (−1, 1), x =
1}. Therefore, the extrema of f(x, y) in [−1, 1] × [−1, 1] are achieved in
some of the points (−1,−1), (−1, 1), (1,−1), (1, 1). As f(−1,−1) = −128,
f(−1, 1) = −64, f(1,−1) = −64, f(1, 1) = 0, the absolute minimum of
f(x, y) in [−1, 1] × [−1, 1] is −128 and the absolute maximum is 0. We
conclude (13).

Proposition 2. The matrix

A =
c2

12h2
B − s2I

is symmetric negative definite and

σ(A) ⊂ [−128c
2

12h2
− s2,−s2]. (19)

Proof. As the matrix B in (12) is symmetric, this is also true for the matrix
A. Moreover, (19) is a direct consequence of Lemma 1.

Now, the discrete energy

Eh(t) =
h2

2

(
vT
hvh − uT

hAuh

)
, (20)

where vh = [
d

dt
uT
1 , . . . ,

d

dt
uT
N+1]

T , is conserved because
dEh

dt
(t) = 0 and we

deduce that the semidiscrete problem (11) is well posed.

2.2. Time integration

We rewrite the problem (11) as a first order ordinary differential system,

d

dt

[
uh

vh

]
=

[
0 I
A 0

] [
uh

vh

]
, (21)
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where vh = [
d

dt
uT
1 , . . . ,

d

dt
uT
N+1]

T .

We want to discretize in time the problem (21). For this, we now define a
time numerical scheme which will be used to advance a time step size k > 0.

We begin by splitting
[

0 I
A 0

]
=

[
0 I
0 0

]
+

[
0 0
A 0

]
:=M1 +M2. (22)

Since M1 and M2 are nilpotent matrices with degree 2 (that is, M2
i = 0,

for i = 1, 2), we can obtain the exact flows of the problems

d

dt

[
u
v

]
=Mi

[
u
v

]
, i = 1, 2,

which are given by,

Ψ
[1]
k : exp(kM1)

[
u
v

]
=

[
u+ kv

v

]
,

Ψ
[2]
k : exp(kM2)

[
u
v

]
=

[
u

v + kAu

]
.

Now, we combine these intermediate flows to obtain a numerical approxi-
mation of the solution of (21). First, we consider the second order Strang
scheme splitting

S [2]
k = Ψ

[1]
k/2 ◦Ψ

[2]
k ◦Ψ

[1]
k/2, (23)

and, in turn, we combine S [2]
k to obtain the fourth order scheme [24, 26],

S [4]
k = S [2]

αk ◦ S
[2]
βk ◦ S

[2]
αk, (24)

where α = (2− 21/3)−1 and β = 1− 2α.
We remark that it is possible to save some computational cost in (24) by

join together the last step in the composition of S [2]
αk and the first one in S [2]

βk

and, similarly, the last one in the composition of S [2]
βk and the first one in S [2]

αk.
That is,

S [4]
k = ψ

[1]
αk/2 ◦ ψ

[2]
αk ◦ ψ

[1]
αk/2 ◦ ψ

[1]
βk/2 ◦ ψ

[2]
βk ◦ ψ

[1]
βk/2 ◦ ψ

[1]
αk/2 ◦ ψ

[2]
αk ◦ ψ

[1]
αk/2,

= ψ
[1]
αk/2 ◦ ψ

[2]
αk ◦ ψ

[1]
(α+β)k/2 ◦ ψ

[2]
βk ◦ ψ

[1]
(α+β)k/2 ◦ ψ

[2]
αk ◦ ψ

[1]
αk/2. (25)
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In a similar way, if many steps are performed without output, only three
evaluations of ψ[1] and ψ[2] are required per time step.

In this way, we have obtained a full discretization whose order of con-
sistency is four in space and time. Moreover, the time integration method
S [4]
k is explicit and easily implementable. However, it is not unconditionally

stable and the stability must be studied. As it is shown in [23], the stability
interval of the splitting scheme (24) is [0, ω∗], where

ω∗ =

√
−1 +√1 + 1152γ

48γ
, γ =

6 + 5 · 21/3 + 4 · 22/3
36

.

A necessary condition for stability is that [1],

k(−λ)1/2 ∈ [0, ω∗],

for all λ ∈ σ(A) .
From Proposition 2, we deduce the stability condition

ck

h

√
128

12
+
s2h2

c2
< ω∗ ≈ 0.9711.

If we suppose that sh is small enough, we obtain the simpler stability condi-
tion

ck

h
<

√
12ω∗
√
128

≈ 0.2973. (26)

3. One dimensional Klein-Gordon equation with H-W ABCs

To make it easier, we start considering the full discretization of the one
dimensional Klein-Gordon equation with H-W ABCs. We will translate the
method to the two-dimensional case in the following section.

10



The problem in one dimension reduces to

∂tu(xW , t) = c∂xu(xW , t) + ∂tφ
W
1 , (27)

∂2t u(x, t) = c2∂2xu(x, t)− s2u(x, t), xW < x < xE ,(28)

∂tu(xE, t) = −c∂xu(xE, t) + ∂tφ
E
1 , (29)

l11
d2

dt2
φW
1 + l12

d2

dt2
φW
2 = −s2(m10φ

W
0 +m11φ

W
1 +m12φ

W
2 ), (30)

ljj−1
d2

dt2
φW
j−1 + ljj

d2

dt2
φW
j + ljj+1

d2

dt2
φW
j+1 = −s2(mjj−1φ

W
j−1 +mjjφ

W
j +mjj+1φ

W
j+1),(31)

j = 2, . . . , P, (32)

l11
d2

dt2
φE
1 + l12

d2

dt2
φE
2 = −s2(m10φ

E
0 +m11φ

E
1 +m12φ

E
2 ), (33)

ljj−1
d2

dt2
φE
j−1 + ljj

d2

dt2
φE
j + ljj+1

d2

dt2
φE
j+1 = −s2(mjj−1φ

E
j−1 +mjjφ

E
j +mjj+1φ

E
j+1),(34)

j = 2, . . . , P, (35)

u(xW , t) = φW
0 , φW

P+1 = 0, u(xE , t) = φE
0 , φE

P+1 = 0, (36)

with the initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x),

φW
j (0) = 0, φE

j (0) = 0, ∂tφ
W
j (0) = 0, ∂tφ

W
j (0) = 0.

3.1. Spatial discretization

Let N be a positive integer number and let h =
xE − xW

N
be the size step

of the spatial grid. Then, xj = xW + (j − 1)h, j = 1, . . . , N + 1, are the
nodes of the spatial discretization, and uj(t) ≈ u(xj , t) are the semidiscrete
approximations of the solution of (28).

Fourth order central finite differences are used to approximate spatial
derivatives in (28) from u3 to uN−1 and fourth order one-sided finite differ-
ences are used for u2 and uN . Finally, for u1 and uN+1, fourth order one-sided
finite differences are used to approximate spatial derivatives in (27) and (29).
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In this way, we obtain a semidiscrete ordinary differential problem given by,

d

dt
u1 =

c

h

(
−25
12
u1 + 4u2 − 3u3 +

4

3
u4 −

1

4
u5

)
+
d

dt
φW
1 ,

d2

dt2
u2 =

c2

h2

(
11

12
u1 −

5

3
u2 +

1

2
u3 +

1

3
u4 −

1

12
u5

)
− s2u2,

d2

dt2
uj =

c2

h2

(
− 1

12
uj−2 +

4

3
uj−1 −

5

2
uj +

4

3
uj+1 −

1

12
uj+2

)
− s2uj, j = 3, . . . , N − 1,

d2

dt2
uN =

c2

h2

(
− 1

12
uN−3 +

1

3
uN−2 +

1

2
uN−1 −

5

3
uN +

11

12
uN+1

)
− s2uN ,

d

dt
uN+1 =

c

h

(
−1
4
uN−3 +

4

3
uN−2 − 3uN−1 + 4uN −

25

12
uN+1

)
+
d

dt
φE
1 ,

along with the ordinary differential equations (30)-(34) for the auxiliary vari-
ables.

3.2. Time integration

First, we rewrite the semidiscrete problem of Subsection 3.1 as the first
order ordinary differential system

d

dt




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



=M




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



=

[
M11 M12

M21 0

]




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



, (37)

where u = [u1, . . . , uN+1]
T , u′ = [

d

dt
u2, . . . ,

d

dt
uN ]

T , φφφW = [φW
1 , . . . , φ

W
P ]T ,

φφφE = [φE
1 , . . . , φ

E
P ]

T , (φφφW )′ = [
d

dt
φW
1 , . . . ,

d

dt
φW
P ], (φφφE)′ = [

d

dt
φE
1 , . . . ,

d

dt
φE
P ]

T

and M a square matrix of dimension 2N + 4P , based on the submatrices

M11 =




c
h
A1 0 0
0 0 0
0 0 0


 ,M12 =



A2 A3 A4

0 IP 0
0 0 IP


 ,M21 =




A5 0 0
−s2A6 −s2A7 0
−s2A8 0 −s2A7


 ,
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where the (N + 1)× (N + 1) matrix A1 given by

A1 =




−25
12

4 −3 4

3
−1
4

0

−1
4

4

3
−3 4 −25

12




has nonzero elements only in the first and last rows; the (N + 1)× (N − 1)
matrix A2 is given by

A2 =




0
IN−1

0


 ,

where 0 denotes a row vector of N − 1 zeros and IN−1 is the identity matrix
of dimension N−1; the (N+1)×P matrix A3 has the value 1 in the position
(1, 1) and the remaining elements are zero; the (N + 1) × P matrix A4 has
the value 1 in the position (N + 1, 1) and the remaining elements are zero;
the matrix A5 is given by

A5 =
c2

h2
Mx − s2AT

2 ,

where the (N − 1)× (N + 1) matrix Mx is

Mx =




11

12
−5
3

1

2

1

3
− 1

12

− 1

12

4

3
−5
2

4

3
− 1

12
. . .

. . .
. . .

. . .
. . .

− 1

12

4

3
−5
2

4

3
− 1

12

− 1

12

1

3

1

2
−5
3

11

12




;

A6 = L−1Ã6, where Ã6 is the P × (N + 1) matrix with all elements zero
except the position (1, 1) which is equal to 2a1; A7 = L−1Ã7, where Ã7 is a

13



P × P given by

Ã7 =




1 1

a2 a1 + a2 a1
. . .

. . .
. . .

aj aj−1 + aj aj−1

. . .
. . .

aP aP−1 + aP




,

and, finally, A8 = L−1Ã8, where Ã8 is the P×(N+1) matrix with all elements
zero except the position (1, N + 1) which is equal to 2a1.

With the same idea of obtaining intermediate problems with simple ex-
ponential matrices that we have carried in Subsection 2.2, we now propose a
similar splitting. The step 1 is

d

dt




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



=M1




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



=

[
M11 M12

0 0

]




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



.

As distinct of the case in Subsection 2.2, the matrix M1 is not nilpotent,
but it is very similar to the one in Subsection 2.2 because it has changed only
in few elements related to the boundary nodes and the auxiliary functions.
In fact, in Subsection 3.2 of [5] we have proved that

exp(kM1) =




IN+1 + ηkA1 0 0
0 IP 0
0 0 IP

Bk
h
c
ηkA3

h
c
ηkA4

0 kIP 0
0 0 kIP

0 IN−1+2P


 ,

where Bk = kA2+
h

c

(
−12
25

)(
ηk − k

c

h

)
B, being ηk = −

12

25
(−1+exp(−25

12
c
k

h
))

and

B =




4 −3 4

3
−1
4

0

−1
4

4

3
−3 4


 .
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Therefore, flow ψ
[1]
k (its non constant part) is

ψ
[1]
k :

u(t + k) = u(t) + ηkA1u(t) +Bku
′(t) + h

c
ηkA3(φφφ

W )′(t) + h
c
ηkA4(φφφ

E)′(t),
φφφW (t+ k) = φφφW (t) + k(φφφW )′(t),
φφφE(t+ k) = φφφE(t) + k(φφφE)′(t).

The step 2 corresponds to

d

dt




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



=M2




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



=

[
0 0
M21 0

]




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



.

In this case, M2 is again a nilpotent matrix of degree 2 and we have

exp(k

[
0 0
M21 0

]
) =

[
IN+1+2P 0
kM21 IN−1+2P

]
.

Hence, the flow ψ
[2]
k means

ψ
[2]
k :

u′(t+ k) = u′(t) + kA5u(t),
(φφφW )′(t+ k) = (φφφW )′(t) + k(−s2)A6u(t) + k(−s2)A7φφφ

W (t),
(φφφE)′(t+ k) = (φφφE)′(t) + k(−s2)A8u(t) + k(−s2)A7φφφ

E(t).

The flow ψ
[2]
k can be rewritten as

ψ
[2]
k :

u′(t+ k) = u′(t) + kA5u(t),

LρW = −s2(Ã6u(t) + Ã7φφφ
W (t)),

(φφφW )′(t+ k) = (φφφW )′(t) + kρW ,

LρE = −s2(Ã8u(t) + Ã7φφφ
E(t)),

(φφφE)′(t+ k) = (φφφE)′(t) + kρE .

Then, two systems with the tridiagonal matrix L of size P × P have to be
solved in step 2.

Once we have chosen the steps and we have solved exactly each step, there
is still missing combining these solutions to obtain a high order approximation
of the solution of (37). As in Subsection 2.2, we first consider the second order
Strang splitting (23) and we obtain a fourth order numerical scheme by using
the composition (24).
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4. Two dimensional Klein-Gordon equation with H-W ABCs

We approach here the two dimensional case, taking advantage of the re-
sults obtained for the one dimensional case considered in the previous section.

4.1. Spatial discretization

For the sake of simplicity, we consider the same size step in both directions

x and y, that is, for a value of N , h =
xE − xW

N
and M =

b− a
h

. Let

xj = xW +(j−1)h, j = 1, . . . , N +1, and yl = a+(l−1)h, l = 1, . . . ,M +1,
be the nodes of the spatial discretization. This produces a uniform grid in
the computational domain with M + 1 rows and N + 1 columns. We denote
ujl(t) = u(xj, yl, t). In this way, there is a matrix of unknowns. On the other
hand, we consider φrl = φr(yl), r = 1, . . . , P , and l = 1, . . . ,M + 1, on west
and east boundaries.

As in the one dimensional case, second order spatial derivatives in the
direction x, ∂2x ujl, from j = 3 to N − 1, are approximated by fourth order
central finite differences and, for j = 2 and N , by fourth order one-sided
finite differences. First order spatial derivatives ∂x u1l and ∂x uN+1,l are ap-
proximated by fourth order one-sided finite differences.

Spatial derivatives in the direction y are approximated by fourth order
central finite differences. Near the south and north boundaries, periodic
boundary conditions are considered.

4.2. Time integration

Let it be uj the column j, φφφW
j and φφφE

j the column vectors corresponding to
the auxiliary variable j on west and east boundary respectively. We consider

u = [uT
1 , . . . ,u

T
N+1]

T , u′ = [
d

dt
uT
2 , . . . ,

d

dt
uT
N ]

T , φφφW = [(φφφW
1 )T , . . . , (φφφWP )T ]T ,

φφφE = [(φφφE
1 )

T , . . . , (φφφE
P )

T ]T , (φφφW )′ = [
d

dt
(φφφW

1 )T , . . . ,
d

dt
(φφφWP )T ]T and finally

(φφφE)′ = [
d

dt
(φφφE

1 )
T , . . . ,

d

dt
(φφφE

P )
T ]T .

Rewriting the problem of Subsection 4.1 as a first order ordinary differ-
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ential system

d

dt




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



=M




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



=

[
M11 M12

M21 0

]




u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′



, (38)

andM a square matrix of dimension (2N + 4P )(M + 1), with submatrices

M11 =




c
h
A1 0 0
0 0 0
0 0 0


 ,M12 =



A2 A3 A4

0 IP (M+1) 0
0 0 IP (M+1)


 ,M21 =



A5 0 0
A6 A7 0
A8 0 A7


 ,

where, by denoting ⊗ to the Kronecker product of matrices, A1 = A1⊗IM+1,

A2 = A2⊗IM+1, A3 = A3⊗IM+1, A4 = A4⊗IM+1 and A5 =
c2

h2
Mx⊗IM+1+

AT
2 ⊗ A9, A6 = A6 ⊗A9, A7 = A7 ⊗A9, A8 = A8 ⊗ A9,

A9 =
c2

h2
My − s2IM+1,

My =




−5
2

4

3
− 1

12
− 1

12

4

3
4

3
−5
2

4

3
− 1

12
− 1

12

− 1

12

4

3
−5
2

4

3
− 1

12
. . .

. . .
. . .

. . .
. . .

− 1

12

4

3
−5
2

4

3
− 1

12

− 1

12
− 1

12

4

3
−5
2

4

3
4

3
− 1

12
− 1

12

4

3
−5
2




.

In order to obtain an explicit method with intermediate problems with
simple exponentials, we consider an exponential splitting method based in
two steps similar to the one dimensional case in Section 3.
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ψ
[1]
k :

u(t + k) = u(t) + ηkA1u(t) + Bku′(t) + h
c
ηkA3(φφφ

W )′(t) + h
c
ηkA4(φφφ

E)′(t),
φφφW (t+ k) = φφφW (t) + k(φφφW )′(t),
φφφE(t+ k) = φφφE(t) + k(φφφE)′(t),

ψ
[2]
k :

u′(t+ k) = u′(t) + kA5u(t),
(φφφW )′(t+ k) = (φφφW )′(t) + kA6u(t) + kA7φφφ

W (t),
(φφφE)′(t+ k) = (φφφE)′(t) + kA8u(t) + kA7φφφ

E(t),

(39)

where Bk = Bk ⊗ IM+1. We remark that the formulas (39) are very similar
to the ones displayed in the one dimensional case.

Now, taking into account that

L−1Ã⊗A9 = (L−1 ⊗ IM+1)(Ã⊗ A9), and (L−1 ⊗ IM+1) = (L⊗ IM+1)
−1,

the flow of step 2 can be rewritten as

ψ
[2]
k :

u′(t+ k) = u′(t) + kA5u(t),

(L⊗ IM+1)ρ
W = (Ã6 ⊗ A9)u(t) + (Ã7 ⊗ A9)φφφ

W (t),
(φφφW )′(t+ k) = (φφφW )′(t) + kρW ,

(L⊗ IM+1)ρ
E = (Ã8 ⊗ A9)u(t) + (Ã7 ⊗ A9)φφφ

E(t),
(φφφE)′(t+ k) = (φφφE)′(t) + kρE .

(40)

Then, two systems with dimension matrix P (M +1)×P (M +1) have to be
solved in step 2. However, L⊗ IM+1 is a block diagonal matrix and L is the
unique diagonal block. Therefore, it suffices to solve 2(M +1) linear systems
with the same coefficient matrix L.

Finally, we combine the previous steps to obtain a fourth order in time
splitting method by using the same formulas (23), (24) and (25) used for the
periodic case in Section 2.

4.3. Analysis of the efficiency of the algorithm

In this analysis, we only take into account the matrix vector products in
the algorithm described in Subsection 4.2. Step 1 requires (N+2P+19)(M+
1) products, that is NM + 2PM +O(N) +O(M) +O(P ) products.
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Regarding step 2, A5u, 10(N − 1)(M + 1) products are needed. As for
(Ã6⊗A9)u(t)+(Ã7⊗A9) and (Ã8⊗A9)u(t)+(Ã7⊗A9)φφφ

E(t), (6P−2)5(M+1)
products are necessary.

The factorization of matrix L as a product of a lower matrix and an upper
matrix is done once at the beginning. Then, in step 2 we only consider the
products required to do the forward substitution and backward substitution
to solve the systems. One system needs (P−1)(M+1)+(1+2(P−1))(M+1)
products, consequently to solve two systems 2(3P − 2)(M + 1) products are
necessary. Altogether, step 2 requires 10NM+36PM+O(N)+O(M)+O(P )
products.

When we combine steps 1 and 2 using the second order Strang splitting
(23) and (24) to obtain fourth order in time, using the formula (25), we
repeat four times step 1 and three times the step 2. Therefore, we need
34NM + 116PM +O(N) +O(M) +O(P ) products for every step in time.

If many steps are performed without output, only three evaluation of ψ[1]

and ψ[2] are required per time step and then only 33NM+114PM+O(N)+
O(M) +O(P ) products for every step in time are necessary.

Now, we study the efficiency of the splitting scheme by comparing with
the fourth-order four-stage Runge-Kutta method. For the Runge-Kutta the
computational cost of the product of one stage requires 11NM + 38PM +
O(N) + O(M) + O(P ) products, but in this case it is necessary do it four
times for each step, that is 44NM+152PM+O(N)+O(M)+O(P ) products.

Basically, the computational cost relation between the Runge-Kutta me-
thod and the splitting scheme is four to three.

5. Numerical experiments

We consider the problem described in Section 4 with initial conditions

u0(x, y) =





(1 + 10
√
x2 + y2)(

√
x2 + y2 − 0.2)2

(0.2)2
, −0.2 < x, y < 0.2,

0, otherwise,

and v0(x, y) = 0, with compact support contained in the computational
domain [−1/4, 1/4]× [−1/4, 1/4]. The function in u0 is chosen so that u0 ∈
C1([−1/4, 1/4]× [−1/4, 1/4]). In the following experiments we set c = 1 and
s = 1. In this way, the solution reaches the boundary in a relative short
time t0 = 0.05 and the ABCs are soon involved. In order to check the full
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discretization introduced in Section 4, it is enough to consider final time
T = 1.

To test the proposed discretization, we have used five types of choices for
the parameters aj, j = 1, . . . , P , considered in [13]: Newmann’s parameters

aj = exp(−j/P ); Chebyshev’s parameters aj = 1
2
(1 + cos (2j−1)π

2P
); Padé’s

parameters aj = 1; optimal parameters for order P = 5,

a1 = 0.91, a2 = 0.41, a3 = 0.12, a4 = 0.029, a5 = 0.0038, (41)

taken from Table 1 of [13], obtained by a Genetic Algorithm based on the
minimization of

IP [a1, . . . , aP ] =

∫ π/2

0

P∏

j=1

(
aj − cos θ

aj + cos θ

)2

;

and, finally, an adaptive scheme to select the parameters.
The first issue is if the suggested discretization in Section 4 requires an

admissible size of the time step. The periodic case studied in Section 2
can be used as reference. In that case, the ratio between the stability limit
time step kl and the space step h is 0.2973. We have examined the stability
condition for the five types of choices of the parameters aj , j = 1, . . . , P , here
considered. We have computed numerically the stability limit time step kl
for several values of P and N . In all cases the stability ratio kl/h has turned
out to be 0.4831, which is even better than the obtained for the periodic case.
Therefore this allows to use the proposed discretization in Section 4.

The discrete energy (20) remains constant for the solution of the problem
with periodic boundary conditions introduced in Section 2. Now, we test
the discrete energy (20) for the numerical solution of the problem described
in Section 4. Figure 1 displays Eh(t) for Padé’s coefficients for P = 10,
N = 200 and k = 10−4. It can be seen that, while the solution keeps inside
the computational domain the discrete energy remains constant. But, when
the solution reaches the boundary and the ABCs are working, the discrete
energy diminishes.

Next, we focus on the absorption error. In order to achieve a time inte-
gration error negligible we take k = 1/80000 = 1.25 × 10−5. The reflections
committed by the ABCs are measured comparing the numerical solution uh

on the computational domain [−1/4, 1/4] × [−1/4, 1/4] with the numerical
solution uh,ref on a longer domain [−1/4−5/2, 1/4+5/2]×[−1/4, 1/4] for the
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Figure 1: Eh for Padé’s coefficients for P = 10, N = 200 and k = 10−4.

same step size h. In the time interval [0, 1], there are no reflections of uh,ref

on the computational domain. We denote by Emax the maximum of the
absolute value of the difference between uh and uh,ref on the computational
domain.

Since the solution reaches the boundary at t0 = 0.05, for t < t0, the last
step in the composition of S [2]

αk for one step and the first one in S [2]
αk for the

next step are joined together (ψ
[1]
αk/2 ◦ ψ

[1]
αk/2 = ψ

[1]
αk), only three times of step

1 are needed.
Figures 2, 3 and 4 show, respectively, the values of Emax obtained using

the splitting scheme with the Newmann’s, Chebyshev’s and Padé’s coeffi-
cients for P = 10 and N = 200. It can be observed that the error of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 100.0020 .0040.0060 .0080.010 .012

Figure 2: Emax for Newmann’s coefficients for P = 10 and N = 200.
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Figure 3: Emax for Chebyshev’s coefficients for P = 10 and N = 200.
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Figure 4: Emax for Padé’s coefficients for P = 10 and N = 200.

absorption obtained with the Padé’s parameters is smaller than the error
of absorption with Chebyshev’s parameters. In turn, the error of absorption
with Chebyshev’s parameters is smaller than the error of absorption with the
Newmann’s ones. This agrees with the experiments displayed in [13], where,
for P = 10 and short times, Padé’s parameters produce the best results,
following by Chebyshev’s parameters and finally by Newmann’s parameters.

Figure 5 displays Emax using the splitting scheme with the optimal co-
efficients (41) for N = 200. The use of optimal coefficients (41) with P = 5
does not maintain small error of absorption along the time.

Then, we consider an adaptive scheme for the dynamic control of the
order P and the parameters aj similar to the one in [13]:
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Figure 5: Emax for optimal coefficients for P = 5 and N = 200.

1. Determine δ, the minimum distance between the artificial boundary
and the source region (in this case δ = 0.05). Define t0 = δ/c. Choose
a refining tolerance ǫ.

2. Initialize the order P = 2 and set a1 = a2 = 1.

3. For t ≤ t0, do not alter the initial parameters.

4. For t > t0, if ‖φP‖ > ǫ‖u‖B, add a new auxiliary function, i.e., P ←
P + 1, with aP+1 = 0.25/(c(t+ 0.2)).

Figure 6: Emax for N = 200, ǫ = 10−3.

Figure 6 shows Emax using the adaptive scheme for N = 200 and ǫ =
10−3 and Figure 7 for N = 200 and ǫ = 10−4. It seems that the adaptive
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Figure 7: Emax for N = 200, ǫ = 10−4.

algorithm keeps the error of absorption along the time increasing the number
of auxiliary variables with the corresponding coefficients aj .

Finally, we study the efficiency of the splitting scheme by comparing with
the fourth-order four-stage Runge-Kutta method. We have ran both algo-
rithms with Chebyshev’s parameters in the formulation of the ABCs, for
N = 100, 200 and 400, for several values of P and k = 10−4, and we have
measured the computational cost in terms of CPU time. The own structure
of the splitting method carries to consider six vectors of unknowns: u, u′,
φφφW , φφφE , (φφφW )′ and (φφφE)′. However, the natural way to implement the Runge-
Kutta method is considering all the variables in a single vector, this supposes
to work with a larger matrix. Even if the number of the operations is the
same, the CPU time is longer because it is more expensive to locate the ele-
ments of the matrix. Nevertheless, it is possible to perform the Runge-Kutta
method with the same six vectors of unknowns as the splitting method. In
this way, both methods work with matrices with the same dimension. Figure
8 displays Emax at t = 1 versus CPU time for the exponential splitting
method and the Runge-Kutta method, for N = 200, k = 10−4 using Cheby-
shev’s parameters with P = 10 and P = 40. It can be observed that, for the
same level of accuracy the splitting scheme is cheaper than the Runge-Kutta
method. Table 1 shows the CPU ratio r for the Runge-Kutta method and
the splitting method with the same partition of the variables. It can be seen,
either in Figure 8 or in Table 1, that the relative behavior of both methods is
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Figure 8: Emax at t = 1 versus CPU time, for N = 200, k = 10−4, using Chebyshev’s
parameters with P = 10 and P = 40.

N\P 10 20 40
100 1.4888 1.4699 1.4465
200 1.5005 1.4779 1.4482
400 1.4309 1.4815 1.4893

Table 1: CPU ratio for the Runge-Kutta method and the splitting method.

more or less 1.4, near of the expected 1.3, from the analysis of the products
required, done in Section 4.3. The splitting method is advantageous over
the Runge-Kutta method, especially when N increases and the needed CPU
time do too.

As conclusion, the splitting time integrator proposed can be implemented
for different choices of the parameters aj and, moreover, it is computationally
more efficient than the fourth order Runge-Kutta method.
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