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Abstract
We study three solvable two-dimensional systems perturbed by a point interaction centered at the
origin. The unperturbed systems are the isotropic harmonic oscillator, a square pyramidal
potential and a combination thereof. We study the spectrum of the perturbed systems. We show
that, while most eigenvalues are not affected by the point perturbation, a few of them are strongly
perturbed. We show that for some values of one parameter, these perturbed eigenvalues may take
lower values than the immediately lower eigenvalue, so that level crossings occur. These level
crossings are studied in some detail.

Keywords: point interaction, solvable models, level crossing, confining potentials

(Some figures may appear in colour only in the online journal)

1. Introduction

This is a new study of quantum solvable potentials with a point
interaction. In the present paper, we shall focus our attention on
two-dimensional systems as a continuation of the analysis of
one-dimensional systems with point interactions. There is a
large number of articles in the scientific literature dealing with
point potentials (also called contact potentials and also occa-
sionally singular potentials) in quantum mechanics [1, 2]. The
advantage of one-dimensional models with point perturbations
is clear as they are useful for the study of a variety of qualitative
properties [3–13]. They have been used to model several kinds
of extra thin structures [14, 15], to mimic point defects in

materials, or to study heterostructures [16, 17]. In any case,
point potentials may serve as solvable or quasi solvable models
that approximate results for very short range potentials. Con-
versely, point potentials may be sometimes written as limits of
very short range potentials [1, 18, 19]. Point potentials play an
interesting role as impurities in quantum field theory models (as
one may see in [20–23]) and in a recent reinterpretation of the
Casimir effect [24], and may also have unexpected relations
with other fields like group theory [25].

Point potentials have been also widely investigated in three
dimensions [24, 26], where renormalisation is required [1, 2].
Some authors have also considered contact potentials supported
by two-dimensional manifolds such as spheres [27], although in
the present work we deal with contact potentials supported at the
origin only [1, 2]. The analysis of two-dimensional point
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potentials may have an interest in the study of impurities or
quantum dots in quantum systems of the form of thin layers such
as the graphene. Point potentials show differences depending on
the dimension of the ambient space. Differences between phy-
sical results concerning very short range interactions in terms of
the dimension of the ambient space have been studied in terms
of spectral properties [28] or the relations between the energy
shifts and the scattering lengths [29]. These differences depend
on the physical system under consideration [30]. We wish to
remind the reader that a remarkable spectral difference arises
between the three-dimensional case and its two-dimensional
counterpart in the absence of a confining potential when the free
Hamiltonian is simply given by the negative Laplacian: while in
the first case the unique negative eigenvalue exists only if the
point perturbation is attractive, in the latter case it exists even if
the point perturbation is repulsive [1].

In the present study, we often want to obtain data con-
cerning bound states or resonances for which Green functions
may be very useful. Now, point interactions quite often produce
infinities affecting these Green functions, which are generally
removable with the proper use of regularisation techniques [31],
which in addition guarantee the self-adjointness of the total
Hamiltonian. These regularisation techniques may also be
necessary for one-dimensional systems [3, 4, 6, 8, 32].

In the present paper, we are considering a two-dimensional
Dirac delta interaction supported at the origin in two different
situations. In the former, the Dirac delta decorates an isotropic
two-dimensional harmonic oscillator, so that the total Hamil-
tonian is
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2= - +( ) is the one-dimensional harmonic
oscillator Hamiltonian and x yx ,= ( ). Here, the solution of the
eigenvalue problem for the harmonic oscillator is well known,
including asymptotic properties [33, 5, 34–37]. When switching
on the delta perturbation, we observe that the energy values
remain unaltered with two exceptions: the ground state and the
s-wave for some eigenvalues characterised by two even indices.
Those eigenvalues have a strong dependence on the parameter α
and, except for the ground state, cross the precedent lower
eigenvalue, implying the presence of energy crossings. The
levels of the one-dimensional harmonic oscillator with a
potential of the type x xad b d- + ¢( ) ( ) were considered in [9].

In the second case, we consider a square pyramidal
potential for the unperturbed Hamiltonian, so that the total
Hamiltonian takes the form
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where h xc
x0

1

2

d

d

2

2= - +( ∣ ∣) is the one-dimensional conic
Hamiltonian. This is an obvious generalisation to two

dimensions of the one-dimensional conic potential with a
delta of the form x x xd d2 2 1a d- + - -∣ ∣ ( ), studied in
[32, 38]. Knowledge of this one-dimensional case makes the
study of the two-dimensional problem under our considera-
tion rather easy. Now, the properties of the eigenvalues for Hα

are somehow similar to the previous case, although under
different circumstances that will be discussed in this article.
The presence of level crossings is also observed.

Both situations require normalisation in order to have a
rigorously defined Green function and, as a consequence, a
self-adjoint total Hamiltonian Ho

a or H p
a . We have made use

of the simple cut-off regularisation procedure, which is suf-
ficient here for our purposes.

A third possibility is a mixed model in which one
coordinate behaves as an oscillator and the other as a conic
potential. The total Hamiltonian for this situation is
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The superscript M stands for ‘mixed’ and the role of the
variables x and y may be interchanged, without any relevant
modification.

One may also consider some other types of two-dimen-
sional unperturbed Hamiltonians H V0 = -D + , where V is
one of the following potentials:

V x y V x y a b
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The first potential in (1.4) may look like the straightforward
generalisation of the conic potential V x= ∣ ∣. However, the
solution of the eigenvalue problem for this Hamiltonian does
not seem easy even after the choice of polar coordinates. The
third example has been considered in [39, 40]. In any case,
their study is left for further work.

We are organising the present article as follows: in
section 2, we study the two-dimensional isotropic harmonic
oscillator with a delta. In section 3, we make an analogous
analysis for the two-dimensional pyramidal potential. We
discuss the mixed case in section 4. We close this article with
some concluding remarks plus a brief appendix with several
mathematical results related with the convergence of some
series relevant for our discussion.

2. Two-dimensional harmonic oscillator plus a
contact potential

The objective of the present section is the study of the spectral
properties of the isotropic two-dimensional harmonic oscil-
lator (1.1). Previous experiences with one and three dimen-
sions [9, 33], show that the use of the Green function gives an
excellent method for the determination of the eigenvalues
associated to these types of Hamiltonians. As is well known,
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the Green function associated to some self-adjoint operator H
is the kernel of the resolvent operator, H E 1- -( ) associated
to H and will be denoted as H E x y,1- -( ) ( ) along the
present manuscript. Since our configuration space is two-
dimensional, both variables x y,( ) in our Green functions are
two-dimensional. When H has a purely discrete spectrum, the
Green function for H is given by
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where H Ex xnn ny y=( ) ( ) and the sum extends to all possible
bound states of H. Properties of the integral operator defined
by the kernel (2.1) will be analysed in the mathematical
appendix at the end of this paper.

We begin our discussion with the consideration of some
properties of the Green function G x y,0 ( ) for the operator H o

0
as defined in (1.1) (For a discussion on the Green function for
the harmonic oscillator in any dimension, see [41]). As H o

0 is
the isotropic two-dimensional harmonic oscillator, the energy
levels are given by E n n 1n n, 1 21 2 = + +( ) (for convenience,
we have chosen from the very beginning units such
that 1w = ). We denote the corresponding eigenfunctions
as x xxn n n n, 1 21 2 1 2

y f f=( ) ( ) ( ), where znf ( ) are the one-
dimensional normalised Hermite functions. Then, we have
our first result:
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L2 2( ) for any E in the resolvent set H o
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Proof. As a consequence of the first resolvent identity, see
[42] page 198, we need only prove the statement for any
E 0< . The square of the L2-norm of the function
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where the last identity is a consequence that xn n,1 2y ( ), n n,1 2 =
0, 1, 2, ... is an orthonormal basis in L2 2( ). After xn n,1 2y =( )

x xn n1 21 2
f f( ) ( ) and taking into account that Hermite functions
of odd index are odd functions, so that they vanish at zero, the
last expression in (2.2) is equal to
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where the first inequality in the first line of (2.3) comes after
E 0< and the first identity in the second line has been shown
in [34]. This proves our assertion.

A general result shows that G x y,( ) is in L2 2( ) as a
function of x for almost all y 2Î and the same as a function
of y for almost all x 2Î , see [43] page 102. Here, we have
proved that the origin in 2 is among the points at which
G Lx 0,o 2 2Î( ) ( ). The same holds with respect to G 0 y,o( ).

Another general result [34] shows that for any real
0a ¹ , the resolvent of Ho

a is given by the following
expression
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where Ho
a has been defined in (1.1).

In the denominator in (2.4), we have to use the value of
the Green function for the free Hamiltonian at the point
0 0, 4Î( ) , H E 0 0,o

0
1- -( ) ( ), which is formally given by
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Although H E x 0,o
0

1- -( ) ( ) is a square integrable function, its
value at the origin is not finite, as the series in (2.5) does not
converge in general. This means that we need a renormali-
sation procedure in order to obtain the resolvent for a self-
adjoint determination for Ho

a . To this end, let us replace
H E 0 0,o

0
1- -( ) ( ) by means of the following limit:
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This is the so called cut-off renormalisation. After this pro-
cedure, we finally obtain
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Note that (2.7) is a truncated version of H 0 0,o
0

1-( ) ( ),
replacing the sum up to infinite by the sum up to N. Observe
that H Eo 1-a

-( ) is the sum of the resolvent of the free
Hamiltonian H o

0 plus a rank one operator and, therefore, it is a
perfectly defined bounded operator. We still need to show that
this is the resolvent of a self-adjoint operator. This proof is
essentially identical to the proof for the three-dimensional
case given in [33] or even for the case of a negative three-
dimensional Laplacian perturbed by a Dirac delta given in [1]
and, therefore, we omit it. The conclusion can be summarised
as follows:

Theorem 2.2. The bounded operator H Eo 1-a
-( ) is the

resolvent of the self-adjoint Hamiltonian, which is usually
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given by the heuristic expression H Ho
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Moreover, the family of Hamiltonians Ho
a is an analytic

family with respect to α in the sense of Kato [1].

Before going further, we wish to stress that H Ho o
0 0¹a=

and H Ho o
0=a=¥ as we may easily deduce from (2.8).

An important remark concerning the eigenvalue multi-
plicity: As is well known, the multiplicity of the eigenvalue
E n m 1n m, = + + of H o

0 is precisely n m 1+ + . If either m
or n are odd, then, Em n, is an eigenvalue of Ho

a with identical
degeneracy n m 1+ + , as the perturbation does not affect to
the eigenspace of En m, . Furthermore, although E n2n m2 ,2 = +
m2 1+ for n m, 1> is still in the spectrum of Ho

a , it has
multiplicity n m2 2+ due to the emergence of a new eigen-
value. Its eigenvector was in the eigenspace of H o

0 with
eigenvalue E n m2 ,2 .

The eigenvalues of Ho
a are the zeroes of the denominator

in (2.8). The ground state energy and the new eigenvalues of
the operator Ho

a are given by the solutions on E of the
equation:
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It is interesting to write an integral expression for the series on
the right hand side of (2.10) valid for E 1< . To begin with
and due to (2.1), we can easily show that the right hand side
in (2.10) is just equal to H E H0 0 0 0, ,o o
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where the identity between the second and the third line in (2.11)
is due to the Lebesgue convergence theorem (see [33]). The sum
of the expression between brackets in the last integral in (2.11)
was obtained in [34]. It is the value of H E 0 0,o
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with e tx = - . We need the condition E 1< in order to guar-
antee the convergence of the integral in (2.12). We wish to
transform this expression into a more workable one. We start
with a simple manipulation in the last integral in (2.12), so that

1

2
2

d

1
2

d

1

1

2
lim 2

d

1
2

d

1
.

2.13

E

E

0

1

2 0

1

2

0 0

1

2 1 0

1

2 1

ò ò

ò ò

a
p

x x
x

x
x

p
x x

x
x
x

=
-

-
-

=
-

-
-e e e

-



-

- -
+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )

Using the properties of the Gamma function, we may write
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Next, we use in (2.14) some well-known relations, namely:
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where the prime denotes the derivative of the Gamma function
in its argument. One well-known relation is

x x
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where γ is the Euler–Mascheroni constant, 0.577 216g » . If
we use (2.17) in the last expression in (2.16), we readily
obtain that

E
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n n
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1 2 1 2 2

4
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which is essentially our final formula. By setting 1b a≔ , this
can be also written as

E
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In particular, for any E given by a positive even number, the
total energy of an antisymmetric state, the series on the right
hand side becomes a simple telescoping series so that it is rather
straightforward to find the location of the points where level
crossings occur. For the lowest antisymmetric level with E 2=
we find 1b p= - , whereas for the upper one E 4= we have

2
3

4
b p= - . The plot of the lowest eigenvalues as functions of
the extension parameter α is shown on the left hand side of
figure 1. Alternatively, the right hand side of figure 1 depicts the
perturbed eigenvalues as functions of the parameter representing
the strength of the point interaction (β).

The striking difference between the above graphs and
either their three-dimensional analogues in [44, 45] or those
of the one-dimensional harmonic (respectively conic) oscil-
lator perturbed by the d d¢ñá ¢∣ ∣-interaction investigated in [3]
(respectively [32, 38]) is that the level crossings do not occur
at the same point and, furthermore, are located along the
negative semi-axis. Hence, it is reasonable to conjecture that
the difference may arise because of the logarithmic diver-
gences which are a peculiar feature of two-dimensional
quantum mechanics.

3. The square pyramidal potential with a contact
perturbation

One of the possible generalisations of the one-dimensional
conic potential to higher dimensions is the square pyramidal
potential. If we restrict ourselves to two dimensions and make
a choice of units to simplify the form of the Hamiltonian, we
have the expression (1.2) for the two-dimensional pyramidal
Hamiltonian H p

0 .

H x y h I I h

h
x

x

1

2

1

2
,

1

2

d

d
. 3.1

p c c

c

0 0 0
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2
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-D + + = Ä + Ä

= - +
⎡
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⎤
⎦⎥

≔ ( ∣ ∣ ∣ ∣) [ ]

∣ ∣ ( )

As a consequence of theorem VIII.3, its corollary and
example 1 in [42], the operator H p

0 is essentially self-adjoint,
i.e. it has a unique self-adjoint extension, on D h D hc c

0 0Ä( ) ( ),
where D h c

0( ) is the domain on which h c
0 is self-adjoint. Note

that H p
0 is an obvious generalisation of h c

0 . The spectral
properties of this one-dimensional conic Hamiltonian deco-
rated with a point impurity have been studied in [32], see also
[38, 47]. Thus, we may use the results in [32, 38] concerning
eigenvalues and eigenfunctions of the one-dimensional conic
oscillator in order to write the resolvent of the operator H p

0 as
in (3.1) to conclude that

H E
E E E

, 3.2p

n m

n m n m

n m
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1

1 1
åå

y y y y
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Ä ñá Ä
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-

=

¥

=

¥
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where the eigenvalues En are the solutions of the following
transcendental equations

Ai E n
Ai E n

2 0, 1, 2, ,
2 0, 1, 2, ,

3.3n

n

2 1

2

¢ - = = ¼
- = = ¼

-⎧⎨⎩
( )
( )

( )

where Ai x( ) represents the Airy function and the prime gives
the derivative of the Airy function with respect to its
argument. The corresponding normalised eigenfunctions are

Figure 1. Plots of the three lowest eigenvalues from (2.19) created by the point perturbation: on the left as functions of the extension
parameter α, on the right as functions of the strength parameter β (the horizontal lines are those of the unperturbed oscillator which, with the
exclusion of E 10 = , are still in the spectrum).
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given by

x
Ai x E

E Ai E
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x
x Ai x E

Ai E
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where xsgn( ) denotes the sign function. Properties of the
integral operator defined by (3.2) will be analysed in the
appendix at the end of the paper.

Now, we need to give an expression for the resolvent of
the Hamiltonian H p

a . This is just given by replacing H o
0 by H p

0
in (2.4). With this idea in mind, we can prove the analogues
of theorems 2.1 and 2.2 in this case. The first result is the
following:

Theorem 3.1. The function H E x 0,p
0

1- -( ) ( ) belongs to
L2 2( ) for any E in the resolvent set H p

0r ( ).

Proof. As a consequence of the first resolvent identity [42],
we need only prove the statement for any E 0< . The square
of the L2-norm of the function H E x 0,p

0
1- -( ) ( ) can be

expressed as follows:

H E

E E E

E E
H

x 0

x 0

,

0 0

0 0
, .

3.5

p

n m

m n

n m

n m

m n

n m

p

0
1

2
2

1 1

2 1
2

2 1
2

2 1 2 1
2

1 1

2 1
2

2 1
2

2 1 2 1
2 0

1
2
2

å å

å å

y y

y y

-

=
+ -

+
=

-

=

¥

=

¥
- -

- -

=

¥

=

¥
- -

- -

-

 

 

( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )

The series in the second row of (3.5) converges. This is due to
the fact that the sequence E n2 1

1
-

- behaves like n
2
3- as n  ¥,

as proved in corollary 3.6 in [46]. See also [32, 38]. It
follows that
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This completes the proof.

Our next objective is the construction of a self-adjoint
determination for the operator H p

0 as in (3.1) decorated with a
Dirac delta perturbation supported at the origin. We shall
achieve it by constructing the resolvent operator associated to
this self-adjoint operator, which, in addition, will give the
behaviour of the eigenvalues of the perturbed Hamiltonian.
As in the previous case and for similar reasons, we advocate a
cut-off renormalisation with
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Here, the integer N denotes the ultraviolet energy cut-off.
After similar operations as done in the previous section, we
obtain for E 0< the following expression for the resolvent
H Ep 1-a

-( ) :
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This expression can be rewritten as
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or, more explicitly,

3.10

H E

H E H Ex 0 0 y, ,
.

p

p p

E
n m E E E E E E E

0
1

0
1

0
1

16 1 1
1

m m n m n n2 1 2 1 2 1 2 1 2 1 2 1
a

-

+
- ñá -

- å å

-

- -

=
¥

=
¥

+ + -- - - - - -

( )

( )
∣( ) ( ) ( ) ( )∣

( )( )

Due to the behaviour of E nn2 1
1 2 3»-

- - for large values
of n, as previously discussed, the double series in the
denominator of (3.10) is convergent. In fact
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Obviously, the operator in (3.10) is bounded since it is
the sum of a bounded operator, the resolvent H Ep

0
1- -( ) plus

a rank one operator. We still have to prove that this is indeed
the resolvent of a self-adjoint operator. This proof is
essentially the proof given in [33] in the study of the
three-dimensional isotropic oscillator perturbed by a Dirac
distribution, or in [1] in the discussion of the negative three-
dimensional Laplacian perturbed by a Dirac delta, so that we
omit it.

Then, we have accomplished our purpose with a result
that may be stated formally in the form of a theorem as
follows:

Theorem 3.2. The bounded operator H Ep 1-a
-( ) , defined by

the expression (3.10) is the resolvent of the self-adjoint
Hamiltonian, which is usually given by the heuristic
expression H Hp p

0 m d d= - ñáa a ∣ ∣ with
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Moreover, H p
a regarded as a function of α is an analytic

family in the sense of Kato.

Again, let us remark that H Hp p
0 0¹a= since H Hp p

0=a=¥ ,
exactly as happened in the previous case.

As the two-dimensional pyramidal Hamiltonian H p
0 does

not have the same symmetry properties of the two-dimen-
sional harmonic oscillator, we should expect that the prop-
erties of its eigenvalues are different in both cases. For
the pyramidal case, the multiplicity of the eigenvalue
E E En m n m, = + of H p

0 is equal to two if n m¹ or one if the
two indices coincide. In fact, each eigenvalue of the pyr-
amidal H p

0 with at least one even index, labelling an anti-
symmetric bound state of h c

0 , stays in the discrete spectrum of
H p
a with the same multiplicity, since the singular perturbation

does not affect the corresponding subspace. On the contrary,
the eigenvalues E E En n n n2 1,2 1 2 1 2 1= ++ + + + disappear from
the spectrum, except when a = ¥. Each eigenvalue
E E E n m,n m n m2 1,2 1 2 1 2 1= + ¹+ + + + of the pyramidal H p

0 is
still in the discrete spectrum of H p

a , although its multiplicity is
lowered to one due to the emergence of a new eigenvalue.

The eigenvalues of H p
a are the zeroes of the denominator

in (3.10). In this pyramidal case, the new ground state energy
and the new eigenvalues of the operator H p

a are given by the

solutions of the equation:
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In order to perform this summation, let us first write the
expression under the sums as
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Then, (3.12) can be written as a sum of two terms We may
use the results obtained in [32] so as to obtain the following
expression for the second term in (3.13):
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Then, using the explicit expression of the Green function of
the operator h c

0 given in [32] and [47], the right hand side of
(3.14) may be rewritten as a single summation involving a
fraction having the Airy function in the numerator and its
derivative in the denominator:

E
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A similar manipulation may be performed in the first term of the
second row in (3.13), so that (3.12) takes the following form:

E

Ai E

Ai E

Ai E E

Ai E E

1

4

2

2

2

2
,

3.16
n n

n

n

n

n1 2 1

2 1

2 1

2 1

2 1
åa =

¢
-

-
¢ -=

¥

-

-

-

-

-

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( ( ))
( ( ))

( )

or equivalently,

In opposition to the situation arising in the two-dimensional
harmonic oscillator with a delta perturbation studied in the
previous section, it does not seem possible to transform the

Figure 2. Plot of the three lowest eigenvalues (3.17) created by the
point perturbation as functions of the extension parameter α (the
horizontal lines show the eigenvalues of the unperturbed two-
dimensional operator with the pyramidal confinement).
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series in (3.17) into an expression involving ordinary or
special functions. This makes the study of this system more
challenging, even in the investigation of the bound states.
However, a lot of information can still be extracted from
(3.17). First of all, it is possible to show that the sequence
under summation in (3.17) behaves at infinity like n 5 3- .
Once we have established this asymptotic behaviour, we
make use of Mathematica in this study. Then, we may
truncate the series after the first two thousand terms in order
to obtain a relatively accurate description of the eigenvalues
of H p

a as functions of the extension parameter. This is shown
in figure 2, where we show the behaviour of the three lowest
energy values after the perturbation. this spectral structure is
more complex than that of the perturbed two-dimensional
isotropic harmonic oscillator due to the unequal spacing
between each pair of adjacent energy eigenvalues of the
unperturbed Hamiltonian H p

0 .
As can be seen, a level crossing takes place to the left of
0a = between the second eigenenergy created by the point

perturbation and the doubly degenerate eigenvalue E E1 2+ =
E E 1.678 452 1+ » , which is obviously unaffected by the
perturbation. The eigenvalue E E E E 2.133 491 3 3 1+ = + » ,
depicted as the upper horizontal asymptote of the second
eigenenergy created by the point perturbation, stays in the
discrete spectrum even though it is no longer degenerate.

The third eigenenergy that emerged after the point per-
turbation shows three crossings with the unperturbed eigen-
values of H p

0 . While those with E2 2.338 112 » and
E E E E 2.553 371 4 4 1+ = + » occur to the left of 0a = ,
the one with E E E E2 3 3 2+ = + takes place instead for a
positive value of the extension parameter. Finally, the
eigenvalue E E E E 2.919 451 5 5 1+ = + » , corresponding to
the upper horizontal asymptote of the third eigenenergy cre-
ated by the point perturbation, stays in the discrete spectrum
even though it is no longer degenerate.

Alternatively, in total analogy with the previous section,
figure 3 depicts the three lowest perturbed eigenvalues of
H p

1 b, with 1b a= , as functions of the parameter repre-
senting the strength of the two-dimensional point interaction
centred at the origin, as well as the right half of the fourth one.

4. A mixed model: harmonic oscillator in one
coordinate and conic in the other

Finally, we reproduce the same discussion with the mixed
Hamiltonian (1.3). Our resuls are similar to those obtained in
sections 2 and 3. Proofs do not differ much from those needed
in previous sections.

Theorem 4.1. The function H E x 0,M
0

1- -( ) ( ) belongs to
L2 2( ) for any E in the resolvent set H M

0r ( ).

Proof. As in the previous cases, we just need to prove
this result for E 0< . Mimicking previous discussions, we

have that
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After (3.6), we know that the last series in (4.1) converges.
The proof for the convergence of the other series is quite
similar to that given in (2.3). In fact
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Our result is now proved.

We construct the resolvent following the recipe given in
(2.4). In our case
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Following the regularisation procedure, (4.3) is to be
replaced by
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in the expression for the resolvent of Hm
a where
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This gives the following expression for the desired resolvent:
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In analogy with previous results drawn under similar
circumstances, we obtain the following conclusion:

Theorem 4.2. The bounded operator H EM 1-a
-( ) is the

resolvent of the self-adjoint Hamiltonian, which is usually
given by the heuristic expression H HM M

0 m d d= - ñáa a ∣ ∣ with

n E

0 0

2
, .

4.7

n m

n m

m0 1

2
2

2 1
2

1

2 2 1

1

å åm
f y

a a=
+ +

+ Îa
=

¥

=

¥
-

-

-⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

( ) ( )

( )
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Moreover, the family of Hamiltonians H M
a is an analytic

family with respect to α in the sense of Kato [1].

The eigenvalues of H M
a are the real zeroes of the

denominator in (4.6). This yields

E
n E n E E

n E E

n E

n E E

n E

0 0

2 2

0 0

2

0 0

2

0
0

2

0

2
.

4.8

n m

n m

m m

n m

n m

m

n m

n m

m

n
n

m

m

m

m

m

m

0 1

2
2

2 1
2

1

2 2 1
1

2 2 1

0 1

2
2

2 1
2

1

2 2 1

0 1

2
2

2 1
2

1

2 2 1

0
2
2

1

2 1
2

1

2 2 1

1

2 1
2

1

2 2 1

å å

å å

å å

å å

å

a
f y

f y

f y

f
y

y

=
+ + + + -

=
+ + -

-
+ +

=
+ + -

-
+ +

=

¥

=

¥
-

- -

=

¥

=

¥
-

-

=

¥

=

¥
-

-

=

¥

=

¥
-

-

=

¥
-

-

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

( )( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

Observe the expression between brackets in the last line in
(4.8). It can be written in terms of the resolvent of the conic
free Hamiltonian h c

0 as defined in (3.1) calculated at the
origin, see also (3.14). Then, (4.8) is equal to

h n E

h n

0 2
1

2
0, 0

2
1

2
0, 0 . 4.9

n
n

c

c

0
2
2

0

1

0

1

å f + + -

- + +

=

¥ -

-

⎜ ⎟

⎜ ⎟

⎡
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( )

( ) ( )

As mentioned in section 3, the explicit expression for the
resolvent of h c

0 has been calculated in [32] and [47] and this
result has already been used in (3.15). This shows that (4.9) is

equal to

Ai n E

Ai n E

Ai n

Ai n

n

n

Ai n E

Ai n E

Ai n

Ai n

0
2 2 1 2

2 2 1 2

2 2 1 2

2 2 1 2

1 2 1

2

2 2 1 2

2 2 1 2

2 2 1 2

2 2 1 2
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4.10

n
n

n
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+
+
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=
-

-
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+
+
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=

¥

=

¥
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⎤
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⎡
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⎤
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( ) ( ( ))
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( ( ))
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( )!!
!
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( ( ))

( ( ))
( ( ))
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The expression between brackets in (4.10) behaves as n 1- for
n large, so that the series in (4.10) converges since the other
factor behaves like n 1 2- . As in the cases previously studied,
we may represent graphically the dependence on either the
parameter α or β of the lowest energy levels using Mathe-
matica. Then, the lowest energy levels are displayed in
figure 4. As can be seen, the introduction of the conic con-
finement in one coordinate leads to the emergence of addi-
tional level crossings for the same perturbed eigenvalue to the
right of the origin, that is to say when the perturbation
becomes attractive.

5. Concluding remarks

Two-dimensional quantum systems have an interest of their
own. In this paper, we have studied three solvable two-
dimensional quantum systems, the harmonic oscillator, the
pyramidal potential and a combination thereof, all decorated
with a contact perturbation in the form of a Dirac delta. In these
cases, we have been able to show the behaviour of the energy for
the lowest perturbed bound states in comparison with the energy
of the same bound states before switching on the perturbation.

For the two-dimensional isotropic harmonic oscillator, if
the energy levels of the unperturbed Hamiltonian H o

0 En m, , n

Figure 3. Left: Plot of the three lowest eigenvalues (3.17) created by the point perturbation as functions of the strength parameter 1b a= .
Right: plot of the two next upper eigenvalues (3.17) created by the point perturbation as functions of the strength parameter 1b a= . In both
figures, the horizontal lines show the eigenvalues of the unperturbed 2D operator with the pyramidal confinement.
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or m or both are odd, then, these are also energy levels for the
perturbed Hamiltonian Ho

a with the same multiplicity. How-
ever, if both indices are even, E n m2 ,2 is still an eigenvalue of
Ho
a although its multiplicity is reduced by one unit. Then, a

new eigenvalue arises, corresponding the s-wave of E n m2 ,2 ,
having a strong dependence on the parameter α as shown in
figure 1. This eigenvalue is smaller than the eigenvalue for the
free Hamiltonian with the same indices n and m and
approaches this value as a  ¥. For n m 0= = , the
eigenvalue of H o

0 , E 10,0 = , is no longer an eigenvalue of Ho
a

and is replaced by a value of the energy which varies
monotonically from 1, at a = ¥ to zero, at 0a = taking
negative values rapidly decreasing for 0a < . When the
values of these two indices are even, say n2 and m2 , the new
eigenvalue for Ho

a has an energy equal to E n2n m2 ,2 = +
m2 1+ for a = ¥, then decreases monotonically up to
n m2 2 1+ - as a  -¥. Obviously, it must cross the
eigenvalue n m2 2+ of H o

0 at a certain value of α, an effect
we call energy level crossing. This situation is depicted in
figure 1 for n 0= , m 2= , so that the total energy is 3. We
see that the eigenvalue of Ho

a crosses the value E 2= and
tends asymptotically to E 1= . These level crossings happen
for any pair of even indices n2 and m2 and do not occur at the
same value of α.

For the pyramidal potential decorated with a delta at the
origin, we obtain other results. Now, each energy level En m,

with at least one even index is not affected by the perturbation
thus preserving its multiplicity. However, the eigenvalues of
the form E E En n n n2 1,2 1 2 1 2 1= ++ + + + are no longer in the
spectrum of H p

a , except for the obvious limit case a = ¥.
For n m¹ , the eigenvalue E E En m n m2 1,2 1 2 1 2 1= ++ + + + of
the unperturbed pyramidal Hamiltonian H p

0 is still an eigen-
value of H p

a , although with multiplicity lowered by one due to
emergence of a new eigenvalue which strongly depends on α.
As in the harmonic oscillator case previously studied, this
new eigenvalue is lower than E n m2 1,2 1+ + and the ground state
behaves exactly as in this case, where E1,1 is not an eigenvalue
of H p

a except for a = ¥. For others E n m2 1,2 1+ + , n m¹ , there
are level crossings with lower energy values corresponding to
H p

0 . These crossings are multiple and take place at different

values of α with sharp contrast with the results obtained for
the one-dimensional conic potential, of which the pyramidal
potential represents a possible generalisation in the two-
dimensional case. Differently from the case of the perturbed
two-dimensional harmonic oscillator, level crossings for

0b > , i.e. when the perturbation becomes attractive, begin
appearing for the same perturbed eigenvalue.

We have also investigated a mixed model, with the
harmonic confinement in one coordinate and the conic con-
finement in the other. We have studied the behaviour of the
lowest eigenvalues observing the the emergence of additional
level crossings for the same perturbed eigenvalue to the right
of 0b = , that is to say when the perturbation becomes
attractive.

Comparison between one-, two- and three-dimensional
problems show substantial differences in the treatment of
similar problems in all three cases and one obtains very dif-
ferent results [28]. These peculiarities emerging in two-
dimensional problems are interesting due to their possible
applications to two-dimensional realistic systems such as
graphene and a variety of thin films.

As possible extensions of this work we contemplate two
situations. One is a generalisation of the pyramidal potential
taking V x y x y, = +a b( ) ∣ ∣ ∣ ∣ , α and β being real numbers.
The other would correspond to a potential of the type
V r ra= -( ) with r x y2 2= + studied in [39, 40].
Another direction is to use as perturbations extended singular
distributions of r ad -( ) and r ad¢ -( ) type. Work in this
direction is in progress.
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Appendix. Some mathematical results

Let us briefly comment some mathematical results concerning
the free Hamiltonians of both cases object of our study. We
begin with some definitions [48].

Let B be a bounded operator on an infinite dimensional
separable Hilbert space. Its singular values are the eigenva-
lues of the positive self-adjoint operator B B B∣ ∣ ≔ † , where
B† is the adjoint operator of B.

Let s s s... ... 0n1 2     be the singular values of B,
then B belongs to the Schatten class of index p if and only if
for some p 1,Î ¥[ ), we have that the following expression
converges

B s . 6.1p
n

n
p

p

1

1


å

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣∣ ∣∣ ≔ ( )

Operators in the Schatten class of index p form a vector
space over the complex numbers and B p∣∣ ∣∣ is a norm on this
space.

The operator B belongs to the Schatten class of index p if
and only if B p∣ ∣ is trace class. Then, B Btrp

p p=∣∣ ∣∣ (∣ ∣ ).
After this brief introduction, let us give our results. First,

we consider the Hamiltonian for the isotropic two-dimen-
sional harmonic oscillator H x yo

0
1

2
2 2= -D + +( ).

Theorem 6.1. The resolvent of the operator H o
0 is a compact

operator on L2 2( ) belonging to the Schatten class of index
2 + , 0 > .

Proof. As a consequence of the first resolvent identity, it is
sufficient to prove the statement only for any E 0< . Hence,
for any E 0< :

n n E

n n

n

1

1

1

1 1

1

1
.

n n

n n

n

, 0 1 2
2

, 0 1 2

1 2

0
1 2

2

1 2

1 2









å

å

å

+ + -

+ +

=
+
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=

¥

+

=

¥ +

=

¥

+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )

( )( )

( )

A similar result can be obtained when we instead have the free
pyramidal Hamiltonian given by H x yp

0
1

2
= -D + +( ∣ ∣ ∣ ∣).

Theorem 6.2. The resolvent of the operator H p
0 is a compact

operator on L2 2( ) belonging to the Schatten class of index
3 + , 0 > .

Proof. As a consequence of the first resolvent identity, we
need only prove the statement for any E < 0. Hence, for any

E 0< :

E E E E E

E E E

1 1

1 1
,

6.2
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( ) ( ) ( )

where we have used corollary 3.6 in [46], see also, [32, 38].

Similarly, in the case of the mixed model we have:

Theorem 6.3. The resolvent of the operator H m
0 is a compact

operator on L2 2( ) belonging to the Schatten class of index
3 + , 0 > .

Proof. As a consequence of the first resolvent identity, we
need only prove the statement for any E<0. Hence, for any
E 0< :

n E E

n E

n E

n E
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1
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where we have used corollary 3.6 in [46], see also, [32, 38].
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