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Abstract

We have defined a pair of families of coherent states using creation and annihilation op-
erators relating the Gamow states, vector states for non-relativistic quantum resonances.
We have used an explicit one dimensional model, for which these operators may be ex-
plicitly written: the one dimensional Pöschl-Teller Hamiltonian. We have shown that this
model may serve as an example for the pseudo-boson formalism.

1 Introduction

Since the discovering of quantum coherent states as states with minimal dispersion, a lot of
work has been done in this direction as they are extremely useful in quantum optics. Among
the immense amount of literature on the subject let us mention [1, 2, 3, 4, 5]. The definition
of coherent states as eigenvectors of an annihilation operator for all complex eigenvalues was
given for instance in [5].

One may wonder whether coherent states may be constructed with Gamow states, which
are state vectors for quantum unstable states [6, 7]. The purpose of this note is to show that
this is possible, at least in concrete models, for which Gamow states are related by creation-
annihilation operators. An explicit construction has been given in [17] for the infinite set of
resonances that appear in the one dimensional Pöschl-Teller model. After this construction,
the consideration of coherent states becomes straightforward.

The one dimensional Pöschl-Teller potential has been considered in numerous publications.
Let us mention only that this type of potentials have been used for a manageable approximation
of other potentials. See, for instance [8].

As is well know, quantum resonances appear as pairs of poles of the analytic continuation
of the S-matrix [10, 11]. If the S-matrix is given in the momentum representation, each pair
of poles symmetrically distributed with respect to the imaginary axis in the third and fourth
quadrant of the complex plane, represent the same resonance. Under certain conditions [17],
the one-dimensional Pöschl-Teller potential has an infinite number of these pairs of poles.

If we go to the energy representation, each pair of resonance poles are located in the analytic
continuation through the positive real axis of the S-matrix [10, 11] and are complex conjugate
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of each other. The real part corresponds to the resonance energy and the imaginary part is
related with the inverse of the mean life. Then, the Gamow states are eigenstates of the total
Hamiltonian with complex eigenvalues that coincide with the resonance poles in the energy
representation. Since the Hamiltonian is self-adjoint, these Gamow states are not vectors on
the Hilbert space on which the Hamiltonian acts, so that we need to extend the Hamiltonian
to a larger space in the context of the rigged Hilbert space formalism [12, 13, 14]. Poles of the
S matrix corresponding to a given pair and their corresponding Gamow states are related via
the time reversal operator [15].

In order to construct the coherent states, we go back to the momentum representation and
take the series of Gamow states corresponding to the poles in the third and forth quadrant
independently. Each one of these series define a family of coherent states which may be treated
independently of the other. Coherent states are given by series which weakly converges under
a topology given by the rigged Hilbert space.

We have also shown that the two families of Gamow states behave as pseudo-bosons in
the sense given by Bagarello in [19]. We have constructed respective topologies on the spaces
spanned by both families of Gamow states and shown that the corresponding ladder operators
are continuous under these topologies.

Concerning recent literature on coherent states, we would like to mention the book of
Combescure and Didier [20], or a book with contributions on the subject [21].

Then, we construct the coherent states in Section 2 and give the link with the pseudo-boson
formalism in Section 3. We have added two Appendices. In the former, we define the spaces on
which Gamow vectors act. In the second one, we have shown that our coherent Gamow states
satisfy two equivalent resolutions of the identity.

2 Resonances and their Gamow functions

Let us consider a one dimensional Hamiltonian with an hyperbolic Pöschl-Teller potential,
which has the following form:

H = − ~2

2m

d2

dx2
− ~2

2m

α2 λ(λ− 1)

cosh2 αx
, (1)

where α is a fixed constant that we shall fix as α = 1 and λ a parameter. The properties of H
depend of the value taken by λ, which could be complex. In fact, if one chooses λ = 1/2 + i`
with ` > 0, the potential is a real repulsive barrier. This Hamiltonian is self adjoint1.

Writing k2 := 2mE/~2, the Schrödinger equation for (1) takes the following form:

1In fact, H0 = − ~2

2m
d2

dx2 is self adjoint when we choose its domain the Sobolev space of square integrable
absolutely continuous functions, f(x), on the real line with first absolutely continuous derivative and square
integrable second derivative: ∫ ∞

−∞
{|f(x)|2 + |f ′′(x)|2} dx <∞ .

Since the hyperbolic Pöschl-Teller potential is bounded, the Kato Rellich theorem [22] guarantees the self-
adjointness of the total Hamiltonian.
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U ′′(x) +

[
k2 +

λ(λ− 1)

cosh2 x

]
U(x) = 0 . (2)

Equation (2) has been solved in [17]. Its general solution is given by

U(x) = A(1 + tanh x)ik/2(1− tanhx)−ik/2
2F1

(
λ, 1− λ; ik + 1;

1 + tanhx

2

)

+B 2ik (1 + tanh x)−ik/2(1− tanhx)−ik/2
2F1

(
λ− ik, 1− λ− ik; 1− ik;

1 + tanhx

2

)
, (3)

where A and B are arbitrary constants and 2F1() is the second kind Kummer function, solution
of the hypergeometric differential equation. In order to obtain scattering data, we have to
obtain the asymptotic forms of (3). Thus for x 7−→ −∞, this asymptotic form is simple:

U−(x) = Aeikx +B e−ikx . (4)

On the other hand, for x 7−→ x, the situation is more complicated although it has still the
form

U+ = A′ eikx +B′ e−ikx , (5)

whereA′ andB′ have been obtained in [17] in terms ofA andB and Gamma functions depending
on k and λ. The S-matrix is defined by its components {Sij} as(

B

A′

)
=

(
S11 S12

S21 S22

)(
A

B′

)
. (6)

Related with the S-matrix is the transfer matrix T ≡ {Tij}(
A′

B′

)
=

(
T11 T12

T21 T22

)(
A

B

)
. (7)

The relation between the S-matrix and the transfer matrix T is given by

S =
1

T22

( −T21 1

T11 T22 − T21 T12 T12

)
(8)

Resonances are characterized by the solutions on k of the so called purely outgoing boundary
conditions, which select the outgoing asymptotic wave function and ignores the incoming wave
function. This choice implies that A = B′ = 0 and A′ 6= 0 6= B. Since B′ = T21A + T22B,
purely outgoing boundary conditions imply that T22(k) = 0 and this gives the poles of the
analytic continuation on k of the S-matrix. The transmission coefficient is
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T =
1

|T22|2
, (9)

and therefore, the poles of the transmission coefficient coincide with the poles of the S-matrix.
The choice λ = 1/2 + i` with ` > 0 gives the following expression for the transmission

coefficient:

T (k) =
sinh2(πk)

cosh2(πk) + sinh2(π`)
. (10)

Observe that the transmission coefficient is a function of k (the same is true for the reflection
coefficient) and that ` in (10) is just a constant parameter.

There are two infinite series of poles for the analytic continuation of T in terms of k, which
are given by

k1(n) = `− i
(
n+

1

2

)
, k2(n) = −`− i

(
n+

1

2

)
, n = 0, 1, 2, . . . . (11)

These poles are located on the lower half plane of the k-complex plane symmetrically located
with respect to the imaginary axis. They are resonance poles and each resonance is given by
one pair of symmetrically located poles. In the energy representation, they correspond to pairs
of conjugate poles for the analytic continuation of S(k) through the positive semi-axis (second
sheet in the language of Riemann surfaces). These are

zR(n) =
~2

2m
k1(n)2 = ER − i

Γ

2
, z∗R(n) =

~2

2m
k2(n)2 = ER + i

Γ

2
(12)

with

ER =
~2

2m
(`2 − γ2

n) , Γ =
~2

2m
4`γn > 0 , γn = n+

1

2
. (13)

The Gamow states are vector states for the purely exponential decaying part of a resonance.
They have been defined as eigenvectors ϕD of the total Hamiltonian H = H0+V with eigenvalue
zR, so that HϕD = zRϕ

D. Then, their time evolution is a purely decaying exponential. Taking
into account (12), from HϕD = zRϕ

D, one formally gets

e−itH ϕD = e−itER e−tΓ/2 ϕD , (14)

expression which decays exponentially for t > 0. Since resonance poles appear in pairs, for each
resonance there is a second Gamow vector, ϕG, which is an eigenvector of the Hamiltonian with
eigenvector z∗R, so that

e−itH ϕG = e−itER etΓ/2 ϕG , (15)

so that ϕG decays exponentially for t 7−→ −∞. Vectors ϕD and ϕG are time reversal of each
other and represent exactly the same resonance.
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One may argue that the Hamiltonian being a self-adjoint operator, it may not have complex
eigenvalues. This is true in a Hilbert space. However, it is well known that Gamow functions,
or wave functions representing Gamow vectors, are exponentially growing functions of the
coordinates and, therefore, cannot be square integrable. The solution is well known, which is
to extend the Hilbert space to a rigged Hilbert space, where the extension of H, e−itH and
Gamow states are well defined and relations such as (14) and (15) are well defined. See [12, 14].

Let us assume that ϕD
n is the Gamow vector corresponding to the (n+ 1)-th resonance pole

k1(n), n = 0, 1, 2, . . . which are located in the forth quadrant of the k-complex plane. We may
construct ladder operators such that

B−n ϕ
D
n = ϕD

n−1 , B+
n ϕ

D
n−1 = ϕD

n . (16)

These operators were determined in [17] and have the form

B−n = − coshx ∂x + (i`+ n+
1

2
) sinhx , (17)

B+
n = coshx ∂x + (i`+ n+

1

2
) sinh x . (18)

Resonances in the series k2(n) are located in the third quadrant of the complex k-plane. For
these resonance poles, there exist creation and annihilation operators C+

n and C−n such that

C−n ϕ
G
n = ϕG

n−1 , C+
n ϕ

G
n−1 = ϕG

n . (19)

These are,

C−n = − coshx ∂x + (−i`+ n+
1

2
) sinhx , (20)

C+
n = coshx ∂x + (−i`+ n+

1

2
) sinh x . (21)

The construction of the Gamow functions follows the standard procedure. We first obtain
the Gamow functions corresponding to the value n = 0 as

B−0 ϕ
D
0 = 0 , C−0 ϕ

G
0 = 0 , (22)

which gives simple differential equations giving the explicit form of ϕD
0 (x) and ϕG

0 (x). This are
save for an arbitrary multiplicative constant:

ϕD
0 (x) = (cosh x)i`+1/2 , ϕG

0 (x) = (cosh x)−i`+1/2 . (23)

Then, using the operators B+
n and C+

n , we may construct all the Gamow functions of the
series ϕD

n (x) and ϕG
n (x). They have the form,

ϕD
n (x) = Pn(sinhx)ϕD

0 (x) , ϕG
n (x) = Qn(sinhx)ϕG

0 (x) , (24)

5



where Pn(sinhx) and Qn(sinhx) are polynomials of degree n on sinhx. The proof of this
statement is obvious. We may also show that

H ϕD
n (x) =

~2

2m
[k1(n)]2 ϕD

n (x) , H ϕG
n (x) =

~2

2m
[k2(n)]2 ϕG

n (x) , (25)

which shows that ϕD
n (x) and ϕG

n (x), n = 0, 1, 2, . . . are the Gamow functions corresponding to
the resonance poles k1(n) and k2(n), respectively.

Following the procedure given in [17], the operators B±n and C±n defined in (17-18) and 20-
21) yield to index-free operators defined on the linear spaces spanned by the functions ϕD

n (x)
and ϕG

n (x), respectively, as

B−ϕD
n :=

√
nB−n ϕ

D
n , B+ϕD

n :=
√
n+ 1B+

n ϕ
D
n , C−ϕG

n :=
√
nC−n ϕ

G
n , C+ϕG

n :=
√
n+ 1C+

n ϕ
G
n .

(26)
We may introduce the coefficients

√
n and

√
n+ 1, since no normalization are required for

the Gamow functions, as they grow exponentially at the infinity. On the other hand, these
coefficients will be important for the weak convergence of the series defining the coherent
states.

We may construct two distinct series of coherent states using one sequence of resonance
poles or the other. Therefore, we have two collections of coherent states, defined by means of
the equations

B−|zD〉 = z |zD〉 , C−|zG〉 = z |zG〉 , ∀ z ∈ C . (27)

The construction is straightforward, we write

|zD〉 =
∞∑
n=0

cn ϕ
D
n , (28)

and use (27)

B− |zD〉 =
∞∑
n=1

cn
√
nϕD

n−1 = z
∞∑
n=0

cn ϕ
D
n . (29)

Then,

cn =
c0√
n!
zn . (30)

We may choose c0 = 1. This gives the explicit form for |zD〉 for any z ∈ C. The same
procedure gives |zG〉. This derivation is trivial, although we need to show that the series
defining |zD〉 and |zG〉 weakly converge on some space of test functions. Let us consider the
spaces Φ± defined as in [14]. The action of the functional |ϕD

n 〉 ∈ Φ×+ on any φ+ ∈ Φ+, 〈φ+|ϕD
n 〉,

is the value of the corresponding Hardy function (see [14]) on the lower half plane of the complex
plane at the point ~2

2m
k1(n)2.
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If φ+(z) is a Hardy function on the lower half plane, it behaves as |φ+(z)| ≈ |z|−1/2 for large
values of |z| [18]. The modulus of the resonance poles goes to infinite as n 7−→ ∞. This implies
that the limit

lim
n→∞

|φ+(zR(n))| = 0 , (31)

so that the sequence |φ+(zR(n))| is bounded for all values of n by a positive constant K.
Then, if we apply |zD〉 to a test vector φ+ ∈ Φ+, it gives:

〈φ+|zD〉 =
∞∑
n=0

1√
n!
〈φ+|ϕD

n 〉 , (32)

so that,

|〈φ+|zD〉| =
∞∑
n=0

1√
n!
|〈φ+|ϕD〉| ≤

∞∑
n=0

K√
n!
<∞ . (33)

Therefore, |zD〉 is well defined for any z ∈ C as the series (28) weakly converges. Same is
true with |zG〉.

In Appendix 2, we show that these coherent Gamow states satisfy two equivalent resolutions
of the identity.

3 Gamow states as Pseudo-Bosons

Let us consider the set of decaying Gamow vectors {ϕD
n }∞n=0, in brief {ϕD

n }, and let DD the
complex linear space generated by {ϕD

n }. For any ψ ∈ DD, it is clear that

B−B+ψ −B+B− ψ = ψ ⇐⇒ [B−, B+] = 1 . (34)

The set of growing Gamow vectors {ϕG
n } spans the complex linear space DG. The idea is

to consider DG as the dual space of DD. This is done by defining for all n,m = 0, 1, 2, . . . the
duality relation

〈ϕD
n |ϕG

m〉 = δn,m , (35)

and extend it by bilinearity to all DD and all DG. Note that C− is the formal adjoint of B+

and C+ is the formal adjoint of B−, so that for any ψ ∈ DD and any φ ∈ DG, we have

〈B−ψ|φ〉 = 〈ψ|C+φ〉 , 〈B+ψ|φ〉 = 〈ψ|C−φ〉 . (36)

This is a slight generalization of the formalism for pseudo-bosons introduced by Bagarello
[19]. In fact, if we identify a ≡ B−, b ≡ B+, ϕ0 ≡ ϕD

0 , Ψ0 ≡ ϕG
0 , so that a† ≡ C+, b† ≡ C−, we

have the following expressions: The vectors

ϕn :=
1√
n!
bn ϕ0 , Ψn :=

1√
n!
a†

n
Ψ0 , (37)
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generate DD and DG, respectively, as they are nothing else that ϕD
n and ϕG

n , respectively. In
addition, one obviously has

bϕn =
√
n+ 1ϕn+1 , n ≥ 0 ; aϕ0 = 0 ; aϕn =

√
nϕn−1 , n ≥ 1 , (38)

and

a†Ψn =
√
n+ 1 Ψn+1 , n ≥ 0 ; b†Ψ0 = 0 ; b†Ψn =

√
nΨn−1 , n ≥ 1 . (39)

This shows the analogy of our formalism with that in [19]. Nevertheless, there are some
minor differences that should not affect the essential idea. First of all, ϕD

n and ϕG
n do not

belong to the same Hilbert space. In fact, there is no Hilbert space here, as the wave functions
for ϕD

n and ϕG
n are not normalizable. It is certain that we may introduce by hand a scalar

product. However, this is not very natural, although we always may define a “regularized”
scalar product, for instance using Zeldovich regularization [23]. It seems more natural to
introduce in the linear space spanned by ϕD

n and ϕG
n a Krein pseudometrics, such that along

(35), one has 〈ϕD
n |ϕD

m〉 = 〈ϕG
n |ϕG

m〉 for all values of m and n [24, 25], see also [26]. In any case,
the pair (zD〉, |zG〉), z ∈ C may be looked as bi-coherent states in the sense of [19].

From the mathematical point of view, it would be interesting to endow the spaces DD and
DG with respective locally convex topologies such that the operators b = B+ and a = B− are
continuous on DD and a† = C+ and b† = C− are continuous on DG. Let us focus our discussion
on the space DD. The construction on DG is completely analogous.

So far, we have assumed that DD is the space of linear combinations of decaying Gamow
vectors. Let us extend it to the space of vectors ϕ =

∑∞
n=0 an ϕn with

||ϕ||2p :=
∞∑
n=0

(n+ 1)2p |an|2 <∞ , p = 0, 1, 2, . . . , (40)

and endow this extended DD, that we still call it DD for simplicity, with the locally convex
topology spanned by the norms || − ||p, p = 0, 1, 2, . . . .

A linear operator A on DD is continuous if and only if for any p = 0, 1, 2, . . . , there exists
a positive number Cp and a finite family of norms {|| − ||pi}, which may be different for each
value of p, such that for any ϕ ∈ DD one has [27]

||Aϕ||p ≤ Cp{||ϕ||p1 + · · ·+ ||ϕ||pk} . (41)

Then, to prove the continuity of b = B+ on DD, we write for any p = 0, 1, 2, . . . :

||bϕ||2p =
∞∑
n=0

(n+ 1)2p+1 |an|2 ≤
∞∑
n=0

(n+ 1)2p+2 |an|2 = ||ϕ||2p+1 . (42)

Also, the continuity of a = B− is easily proven (note that n+ 2 ≤ 2(n+ 1)):
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||aϕ||2p =
∞∑
n=1

n (n+ 1)2p |an−1|2 =
∞∑
n=0

(n+ 1)(n+ 2)2p |an|2

≤ 22p

∞∑
n=0

(n+ 1)2 (n+ 1)2p |an|2 ≤ 22p||ϕ||2p+1 . (43)

The continuity on DD of all elements of the algebra spanned by b = B+ and a = B− is
obvious. Same treatment is valid for C± on an analogous locally convex extension of DG. It is
noteworthy that these topological versions of DD and DG are homeomorphic to the Schwartz
space S, see [27], and therefore, these spaces are isomorphic to S.

A further comment: The commutation relations [B−, B+] = 1 = [C+, C−] show that B± and
C± separately behave like the creation and annihilation operators of the harmonic oscillator.
At this point, we should mention that there are up to three types of hyperbolic Pöshl-Teller
potentials, depending on the values of the parameter λ in (1). For values of λ in the ranges
λ > 0 and 1/2 ≤ λ < 1, one may construct ladder operators connecting bound and antibound
states in such a way that these operators satisfy the commutation relations of the generators
of the Lie algebra su(2) [17]. This is not the case here, where we have chosen λ = i`+ 1/2, the
only Pöschl-Teller potential that shows scattering resonances.
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4 Appendix 1. The spaces Φ±.

The idea of the construction of the spaces Φ± goes as follows: The Hamiltonian H in (1) is
self-adjoint as an unbounded operator on L2(R), with simple absolutely continuous spectrum
given by R+ ≡ [0,∞). According to the spectral theorem [27], there exists a unitary operator
U : L2(R) 7−→ L2(R+) such that UHU−1 is the multiplication operator on L2(R+).

A Hardy function, f(z), on the lower half plane is a complex analytic function on C− :=
{z ∈ C ; Im z < 0}, where C is the field of complex numbers, such that

sup
y>0

∫ ∞
−∞
|f(x− iy)|2 dx <∞ . (44)

As a consequence, the boundary values of f(z) exists for z = x real and the resulting
function is defined a.e. and is square integrable:∫ ∞

−∞
|f(x)|2 dx <∞ . (45)
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Hardy functions on the lower half plane form a closed subspace of L2(R) that we denote
as H2

−. Similarly, we may define Hardy functions on the upper half plane. These functions
form a closed subspace of L2(R) that we denote as H2

−. This is an immediate consequence of
the Paley-Wiener theorem [28], which states that the spaces of Hardy functions are Fourier
transforms of square integrable functions on a half line. If F represents the Fourier transform,
the Paley Wiener theorem establish that

H2
± ≡ F [L2(R∓)] (46)

with R− ≡ (−∞, 0]. In consequence,

L2(R) = H2
+ ⊕H2

− , (47)

where ⊕ denotes orthogonal direct sum.
Another important property is that Hardy functions are uniquely determined by their

boundary values on the positive semi-axis R+. Then, if we denote by H2
±|R+ the spaces of

restrictions of Hardy functions on the positive semi-axis, a result by van Winter [29] shows that
H2
±|R+ are dense in L2(R+) with the topology derived from the norm in L2(R+).

By S we denote the Schwartz space, which is the linear space of all complex functions, f(x),
on the line R such that: i.) Any f(x) ∈ S admits derivatives of all orders and at all points; ii)
Any f(x) ∈ S as well as all its derivatives go to zero at the infinity faster than the inverse of
any polynomial. The Schwartz space S is usually endowed with a topology given by an infinite
countable set of norms, which may be defined in various equivalent ways [27]. For example,
this family of norms

||f ||m,n := sup
x∈R

∣∣∣∣xm dn

dxn
f(x)

∣∣∣∣ , (48)

gives the mentioned topology, which is metrizable, complete (so that S is a Fréchet space) and
nuclear.

Let us consider the spaces S ∩ H2
± with the topology inherited from the Schwartz space

S, and, then, the space [S ∩ H2
±]R+ of its restrictions to the positive semi-axis. Since Hardy

functions are fully determined by their boundary values on R+, we may consider the canonical
injection S ∩H2

± 7−→ [S ∩H2
±]R+ that assigns each function in S ∩H2

± to its restriction to R+.
The space [S ∩ H2

±]R+ is dense in L2(R+) with the norm topology of the latter [13, 14]. On
[S ∩H2

±]R+ , we have the metrizable topology transported by this canonical injection.
Now we define,

Φ∓ := U−1[S ∩H2
±]R+ , (49)

where U is the unitary mapping defined at the beginning of the present Appendix. Then, let
us transport the topology from S ∩H2

± to Φ∓ by U−1.
A mapping F∓ from Φ∓ to the field of complex numbers C is said to be antilinear if for any

pair of vectors ϕ∓ and ψ∓ and any pair of complex numbers α and β, we have that

〈αϕ∓ + βψ∓|F∓〉 = α∗〈ϕ∓|F∓〉+ β∗〈ψ∓|F∓〉 , (50)
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where 〈ψ∓|F∓〉 represents the action of the functional F∓ on the vector ψ∓, respectively and
the star denotes complex conjugation. Let us consider the vector spaces, Φ×∓, spanned by
the continuous antilinear functionals on Φ±. These spaces are usually endowed with the weak
topology induced by the dual pair (Φ±,Φ

×
±), [30]. Then, we obtain a couple of triplets or rigged

Hilbert spaces [31], which are

Φ± ⊂ L2(R) ⊂ Φ×± . (51)

After the above discussion, we see that to any vector φ± ∈ Φ±, it corresponds a Hardy
function φ∓(z) uniquely determined. Then, the Gamow vectors ϕD

n ∈ Φ×+ and ϕG
n ∈ Φ×− are

defined by their action on each φ+ ∈ Φ+ and φ− ∈ Φ−, respectively, as [13, 14]

〈φ+|ϕD
n 〉 := φ∗+(zR(n)) , 〈φ−|ϕG

n 〉 := φ∗−(z∗R(n)) . (52)

Note that both spaces Φ± are included in both anti-duals Φ×±. Therefore, there exists four
canonical injections, which are all continuous. In the next Appendix, we are considering only
two, the canonical injections I± : Φ± 7−→ Φ×∓. Observe the change of signs.

Some additional properties of Gamow vectors could be found in the literature, particularly
in [13, 14] and references quoted therein.

4.1 Appendix 2. Resolutions of the identity

These coherent states satisfy a couple of resolutions of the identity in a sense to be clarified
here. A spectral decomposition of the Hamiltonian in terms of the Gamow vectors has the form
[32]

H =
∑
n

zR(n) |ϕD
n 〉〈ψG

n |+ background . (53)

The background term gives the deviations of the exponential decay law for very small (Zeno
effect) and very large (Khalfin effect) values of time, which are very difficult to be observed
[33, 34]. It seems reasonable to neglect this term when we study most of effects produced by
quantum resonances, outside these ranges of time. Once we have drop out the background
term, the meaningful part of the spectral decomposition of the Hamiltonian is given by the
sum in (53). This is a linear continuous mapping from Φ− into Φ×+ as defined in Appendix
I. Correspondingly, a decomposition of the identity is also a continuous mapping (in fact the
canonical injection) from Φ− into Φ×+ given by

I− =
∞∑
n=0

|ϕD
n 〉〈ψG

n | . (54)

Next, let us consider ∫
C
|zD〉〈zG| 1

π
e−|z|

2

dz , (55)
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with dz = dx dy, z = x + iy. Since |zD〉 ∈ Φ×+ and |zG〉 ∈ Φ×−, (55) makes sense if we take
arbitrary ϕ+ ∈ Φ+ and ψ− ∈ Φ− and write∫

C
〈ϕ+|zD〉〈zG|ψ−〉 1

π
e−|z|

2

dz . (56)

Let us calculate the brackets in (56) using (52) and (30):

〈ϕ+|zD〉 =
∞∑
n=0

zn√
n!
〈ϕ+|ϕG

n 〉 =
∞∑
n=0

zn√
n!
ϕ+(zR(n)) , (57)

and

〈zG|ψ−〉 =
∞∑

m=0

(z∗)m√
m!
〈ϕG

n |ψ−〉 =
∞∑

m=0

(z∗)m√
m!

ψ−(zR(m))∗ . (58)

Due to the fact that Hardy functions behave at the infinity as |z|−1/2, it results that
|〈ϕ+|zD〉〈zG|ψ−〉| is bounded by e2|z|, which is integrable with respect to the measure e−|z|

2
dz

on the complex plane. Therefore, we may use the Lebesgue theorem in (56), which gives

∫
C
〈ϕ+|zD〉〈zG|ψ−〉 1

π
e−|z|

2

dz =
∞∑

n,m=0

1√
n!
√
m!
〈ϕ+|ϕG

n 〉〈ϕG
n |ψ−〉

1

π

∫
C
zn (z∗)m e−|z|

2

dz

=
∞∑

n,m=0

1√
n!
√
m!
〈ϕ+|ϕG

n 〉〈ϕG
n |ψ−〉n! δn,m =

∞∑
n=0

〈ϕ+|ϕG
n 〉〈ϕG

n |ψ−〉 . (59)

Then, if we omit the arbitrary ϕ− and ψ−, we finally obtain that∫
C
|zD〉〈zG| 1

π
e−|z|

2

dz =
∞∑
n=0

|ϕD
n 〉〈ψG

n | = I− , (60)

where the I− is the canonical injection from Φ− into Φ×+. We have proven a sort of resolution
of the identity using our Gamow coherent states. Analogously,∫

C
|zG〉〈zD| 1

π
e−|z|

2

dz =
∞∑
n=0

|ϕG
n 〉〈ψD

n | = I+ . (61)

Thus, we have indeed two resolutions of the identity, which look like formal adjoint of each
other.
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