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Abstract

In this paper we show how the method of Lie algebra expansions may be used to obtain, in a simple 
way, both the extended Bargmann Lie superalgebra and the Chern-Simons action associated to it in three 
dimensions, starting from D = 3, N = 2 superPoincaré and its corresponding Chern-Simons supergravity.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In recent years, the supersymmetric version of Newtonian Gravity, i.e. Newtonian supergrav-
ity, has received some attention in the context of a non-relativistic version of the AdS/CFT 
correspondence (see, for instance, [1,2]). However, certain problems need to be solved, and 
progress is still being made.

The natural way to address the problem requires using a Galilean superalgebra as a starting 
point, plus a gauging procedure that, in the bosonic case, should recover Newtonian gravity. 
In [3] this was done in D = 3, 4 and in the absence of fermions by starting from the centrally 
extended Galilei algebra or Bargmann algebra, and imposing certain conditions on the curvatures 
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associated to its gauging. These conditions allowed the authors to obtain Newtonian gravity 
in the Newton-Cartan (NC) formalism [4], which formulates Newtonian gravity in a way that 
resembles general relativity. Subsequently, the supersymmetric case was studied [5,6] in D = 3
for a superalgebra that contains two fermionic generators and such that the bosonic part is the 
Bargmann algebra. In this way, the D = 3 NC supergravity was obtained.

The solution to the problem mentioned above, however, has some limitations: spatial geome-
try is fixed to be flat, and there is no satisfactory action principle associated to it. An action was 
obtained in [7] that overcomes these difficulties, which was called the extended Bargmann super-
gravity action. In contrast with the NC supergravity case, the bosonic part of the supersymmetry 
algebra is a further extension of the Bargmann algebra, and the action itself is a Chern-Simons 
(CS) action, as it is also the case of D = 3 Poincaré supergravity [8]. In fact, it was shown in [7]
that both the Galilei action and algebra may be obtained from the Poincaré ones as a limit that, 
although it looks like a contraction, it is not so since it does not preserve the dimension of the 
algebra.

In this paper, we point out that the Galilean superalgebra and the CS action mentioned above 
may be found alternatively by using the method of Lie algebra expansions, which has its origin 
in the work of [9] and was formulated and studied in general in [10,11] (see also [12,13] for 
other applications and [14] for a generalization involving semigroups1). In addition to the other 
three ways of obtaining new algebras from given ones, namely contractions and deformations 
(both preserving the dimension of the original Lie algebra) and extensions (which require two 
algebras), the method of expansions provides a way to obtain in general larger Lie algebras 
from a given one (see [11]). Presumably, all algebras obtained by the expansion method may be 
obtained by a combination of extensions and contractions, but from the computational point of 
view expansions are more interesting, as some calculations simplify considerably.

More precisely, we show here that, starting from D = 3, N = 2 Poincaré supergravity and a 
CS action associated to it, the method of expansions applied to the algebra leads to the extended 
Bargmann superalgebra of [7]. Further, when the superPoincaré action is expanded, the result is 
also the action of [7]. As it will become apparent, the calculations involved are very simple.

The plan of the paper is the following. In Sec. 2 we will briefly review the method of Lie 
algebra expansions [10,11] in the particular case of interest to us. In section 3 it will be applied 
to the D = 3 Poincaré gravity to obtain a bosonic Galilean CS action. Section 4 is devoted to 
the expansions of the D = 3, N = 2 superPoincaré based CS model that leads to the algebra and 
action obtained in [7]. In the conclusions, we will comment on the possible future applications 
of the method in the context of Galilean gravity and supergravity.

2. Lie Algebra expansions

In a nutshell, Lie algebra expansions consists of three steps. Given a Lie (super)algebra G,

1. Write a formal series expansion in λ of the Maurer-Cartan (MC) one-forms associated with 
the Lie algebra,

2. Insert the expansions into the MC equations of G and identify equal powers of λ to obtain a 
consistent infinite set of MC equations, and

1 For D = 3 constructions based on the Nappi-Witten and the AdS-Lorentz algebras see [15] and [16], and [17] for 
D = 5 starting from a CS gravity.
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3. Cut the infinite expansions in a consistent way so that a finite Lie algebra, the expanded 
algebra, is obtained in terms of its MC equations.

We give the details of the construction in the case of interest in this paper, namely when G has 
a symmetric coset structure. Let G = V0 ⊕ V1, where V1 is a symmetric coset,

[V0,V0] ⊂ V0 , [V0,V1] ⊂ V1 , [V1,V1] ⊂ V0 . (2.1)

Let ωip , be the MC forms valued on the spaces Vp, p = 0, 1 and ip = 1, . . . , dimVp . Let us write 
the MC equations of G in the form

dωks = −1

2
c
ks

ipjq
ωip ∧ ωjq (p, q, s = 0,1) . (2.2)

Condition (2.1) implies that the structure constants of the algebra satisfy

c
k1
i0j0

= 0 , c
k0
i0j1

= 0 , c
k1
i1j1

= 0 . (2.3)

Then, it is consistent to expand the MC forms of V0 in terms of even powers of λ and those of 
V1 in terms of odd powers of λ as

ωi0 =
∞∑

α0=0, α0 even

λα0ωi0,α0

ωi1 =
∞∑

α1=1, α1 odd

λα1ωi1,α1 . (2.4)

When these expansions are inserted in the MC equations (2.2), and the equal powers of λ in both 
sides are identified, we obtain a consistent infinite number of MC one-forms and equations. To 
obtain finite Lie algebras, the expansions must be cut in a consistent way, so that they correspond 
to the MC equations of a Lie (super)algebra. It can be shown that this is achieved when

ωi0 =
N0∑

α0=0, α0 even

λα0ωi0,α0

ωi1 =
N1∑

α1=1, α1 odd

λα1ωi1,α1 , (2.5)

provided that the N0 and N1 integers satisfy one of the two conditions below

N0 = N1 + 1

N0 = N1 − 1 , (2.6)

(see [10] for the proof). This leads to a series of finite-dimensional superalgebras, which are 
denoted by G(N0, N1), with structure constants given by

C
ks,αs

ip,βp jq ,γq
=

{
0 if βp + γq �= αs

c
ks

ipjq
if βp + γq = αs

. (2.7)

From the MC equations we may obtain the gauge curvatures of the same Lie algebra by notic-
ing that the latter may be viewed as an equation that expresses the failure of the MC equations. 
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So if 0 = dθ +θ ∧θ are the MC equations, then the curvatures are given by F = dA +A ∧A, and 
by taking F = 0 we recover the MC equations.2 Then, making the replacement ωis,αs → Ais,αs , 
the MC forms and MC equations are replaced by gauge one-forms and by the equations defining 
of the curvatures,

Fks,αs = dAks,αs + 1

2
C

ks,αs

ip,βp jq ,γq
Aip,βp ∧ Ajq,γq , (2.8)

so that the MC equations may be recovered by setting Fks,αs = 0. The Bianchi identities and 
gauge variations (of infinitesimal parameters ϕis,αs ) are given by

dF ks,αs = C
ks,αs

ip,βp jq ,γq
F ip,βp ∧ Ajq,γq ,

δAks,αs = dϕks,αs − C
ks,αs

ip,βp jq ,γq
ϕip,βpAjq,γq . (2.9)

It is crucial for our construction to note that, alternatively, these equations may be obtained by 
substituting, in the equations that would correspond to the original G, that is (cf. (2.2))

Fks = dAks + 1

2
c
ks

ip jq
Aip ∧ Ajq ,

δAks = dϕks − C
ks

ip jq
ϕip ∧ Ajq , (2.10)

the expansions of Aks , Fks and ϕks with exactly the same structure as the of ωks in (2.5) and then 
identifying equal powers of λ (see [10]).

2.1. Expanded CS actions

We can use the expansions of the gauge one-forms and curvature two-forms to obtain, in some 
cases, new actions from a given one. As an example, we consider now the important case of the 
CS actions.

Let G be a Lie superalgebra, and let kI1,...Il
be the coordinates of a symmetric invariant l-tensor 

of G. Then, the 2l-form

H = kI1,...Il
F I1 ∧ · · · ∧ FIl (2.11)

is closed and invariant under gauge transformations. Since the gauge FDAs (given by the defini-
tion of the curvatures plus the Bianchi identities) are contractible, this defines a (2l − 1)-form B
(the CS form, see e.g. [18]), such that dB = H , and if B is integrated over a (2l −1)-dimensional 
manifold M2l−1, a CS model is obtained through the action

I [A] =
∫

M2l−1

B(A) , (2.12)

where M2l−1 is the (2l − 1)-dimensional spacetime.
New CS actions for the expanded algebras may be obtained by inserting the expansions of AI

and FI in the CS action for G,

I [A,λ] =
∫

M2l−1

B(A,λ) =
∫

M2l−1

∞∑
N=0

λNBN(A) =
∞∑

N=0

λNIN [A] . (2.13)

2 To avoid complicating the notation, in this paper we will use the same symbols to denote the MC one-forms and the 
corresponding gauge one-form fields.
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The same expansion, when applied to (2.11), leads to

H(F,λ) =
∞∑

N=0

λNHN , HN = dBN(A) . (2.14)

This means that the actions given by

IN =
∫

M2l−1

BN(A) (2.15)

define CS models that have been obtained by expanding of the original G-based one. The corre-
sponding Lie algebra is the smallest one that contains all the fields appearing in IN . Not keeping 
all the fields may result in a lack of gauge invariance of the actions, which is otherwise guaran-
teed if the expansion is kept infinite. Then, in practice, the power of λ in the expansion of the 
action selects the corresponding finite expanded algebra. In general, the expanded actions and 
algebras ‘remember’ the structure of the original ones (see Eq. (2.7)) a fact that simplifies the 
calculations.

One computational advantage of expansions is the fact that the equation of motion for Aks,αs

in IN , which may be represented by E(Aks,αs ) = 0, satisfies

E(Aks,αs ) = E(Aks )|N−αs , (2.16)

where E(Aks )|N−αs is the coefficient of λN−αs in the expansion of E(Aks ).

3. Galilei expansion of arbitrary D Poincaré and D = 3 gravity

Before going to the supersymmetric case, we consider in this section the bosonic expanded 
algebras and action to illustrate the method. Although the subject of this paper is D = 3, we 
will keep D arbitrary for the expansion of the gauge fields and curvatures, and fix D = 3 when 
constructing the action (gravity in D > 3 is not CS; see, however, the Outlook).

3.1. Poincaré algebra and space-time splitting

Our starting algebra G will be the Poincaré algebra in arbitrary dimensions, which in a certain 
basis can be described by the MC equations

dẽA = −ω̃A
B ∧ ẽB

dω̃AB = −ω̃A
C ∧ ω̃CB , (3.17)

where A, B, C = 0, . . . , D − 1. We will use a ‘mostly plus’ (1, D − 1) signature for the 
Minkowski metric ηAB . In order to perform an expansion leading to an extension of the Galilei 
algebra, we split the Poincaré algebra generators as follows:

ẽA → (ẽa, ẽ0 = φ̃) ,

ω̃AB → (ω̃ab, ω̃a
0 = ω̃a) , (3.18)

where a = 1, . . . , D − 1. In terms of these one-forms, the MC equations read
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dẽa = −ω̃a
b ∧ ẽb − ω̃a ∧ φ̃

dφ̃ = −ω̃a ∧ ẽa

dω̃ab = −ω̃a
c ∧ ω̃cb − ω̃a ∧ ω̃b

dω̃a = −ω̃a
b ∧ ω̃b . (3.19)

As mentioned earlier, the gauge curvatures can be viewed as the two-forms that express the 
failure of the MC equations; then, the MC one-forms become the gauge one-form fields (again, 
denoted by the same symbols). The gauge curvatures of the Poincaré algebra are the two-forms 
T̃ A, R̃AB given by

T̃ A = dẽA + ω̃A
B ∧ ẽB (3.20)

R̃AB = dω̃AB + ω̃A
C ∧ ω̃CB . (3.21)

By using the space-time splitting for the curvatures,

T̃ A → (T̃ a, T̃ 0 = �̃) ,

R̃AB → (R̃ab, R̃a
0 = R̃a) , (3.22)

the gauge curvatures T̃ a , �̃, R̃ab and R̃a are given in terms of the gauge fields by

T̃ a = dẽa + ω̃a
b ∧ ẽb + ω̃a ∧ φ̃

�̃ = dφ̃ − ω̃a ∧ ẽa

R̃ab = dω̃ab + ω̃a
c ∧ ω̃cb + ω̃a ∧ ω̃b

R̃a = dω̃a + ω̃a
b ∧ ω̃b . (3.23)

It is seen that the MC equations (3.17) and (3.19) are recovered when the curvatures are set to 
zero in (3.20) and (3.23).

3.2. Expansion of the algebra and the D = 3 action

If we choose V ∗
0 as the vector space generated by ω̃ab, φ̃, and V ∗

1 as the one generated by 
ẽa, ω̃a , we have precisely the structure (2.1). Thus, we may perform the following consistent 
expansion in terms of a parameter λ:

ẽa = λea + ∑∞
k=1 λ2k+1ẽa

(2k+1) , T̃ a = λT a + ∑∞
k=1 λ2k+1T̃ a

(2k+1)

φ̃ = φ + λ2ϕ + ∑∞
k=2 λ2kφ̃(2k) , �̃ = � + λ2
 + ∑∞

k=2 λ2k�̃(2k)

ω̃ab = ωab + λ2�ab + ∑∞
k=2 λ2kω̃ab

(2k)
, R̃ab = Rab + λ2Lab + ∑∞

k=2 λ2kR̃ab
(2k)

ω̃a = λωa + ∑∞
k=1 λ2k+1ω̃a

(2k+1) , R̃a = λRa + ∑∞
k=1 λ2k+1R̃a

(2k+1)

. (3.24)

The expansion is infinite, but it may be cut in a consistent manner (see eq. (2.6)). As argued 
before, we will consider the finite algebra that contains all the fields that appear in a suitable 
term of the expanded action. More explicitly, let us start from the four-form H̃ given by

H̃ = εABCR̃AB ∧ T̃ C, (3.25)

with A, B, C = 0, 1, 2. This form is closed, dH̃ = 0, so there exists a three-form B̃ such that 
dB̃ = H̃ . The integral over three-dimensional spacetime gives an action that describes general 
relativity in three dimensions and in the absence of matter. We will however use H̃ , because it 
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is much simpler to derive the field equations from it, and also exhibits the CS character of the 
action. Let us now rewrite H̃ using the space-time splitting (3.18) and (3.22):

H̃ = 2εabR̃
a ∧ T̃ b + εabR̃

ab ∧ �̃ , (3.26)

where εab is the Levy-Civita symbol in 2 dimensions, ε0ab = εab .
Let us now replace the fields in (3.26) by their expansions (3.24). This leads to an expansion 

of H̃ ,

H̃ =
∞∑

k=0

λkH̃ |k , (3.27)

where the terms H̃ |k depend on the fields of the expansion and, since they are closed, define 
actions on these fields. The gauge algebra corresponding to a particular term H̃ |k will be the 
consistent truncation of the infinite expansion that has the gauge fields corresponding to the 
curvatures that it contains.

The lowest order term in λ of the expansion of the first term of (3.26) is λ2εabR
a ∧ T b . We 

need to keep this term if the resulting action has to be related with gravity, because we need 
T a = 0 and the contribution for the ωa equation of this term will be of this sort. This means 
that our model corresponds to the term H̃ |2 in (3.27). We now have to find out which curvatures 
appear in the 4-form H̃ of (3.26). By selecting the λ2 in the expansion of H̃ , we obtain the four 
form H given by

H = H̃ |2 = 2εa1a2R
a1 ∧ T a2 + εa1a2L

a1a2 ∧ � + εa1a2R
a1a2 ∧ 
 , (3.28)

which means that the gauge curvatures for this model are

T a = dea + ωa
b ∧ eb + ωa ∧ φ

� = dφ


 = dϕ + ωa ∧ ea

Rab = dωab + ωa
c ∧ ωcb

Lab = d�ab + ωa
c ∧ �cb + �a

c ∧ ωcb + ωa ∧ ωb

Ra = dωa + ωa
b ∧ ωb , (3.29)

expressions that are valid for any D. For D = 3, Rab reduces to dωab and the second and third 
terms in the expression of Lab cancel each other. The corresponding Lie algebra (remember that 
the MC equations may be recovered by setting the curvatures to zero) is precisely the extension 
of the Bargmann algebra studied by Bergshoeff et al. in [7]. If we set the curvatures equal to zero, 
the MC forms ea are dual to the generators of space translations, φ is dual to the generator of 
the time translations, ωa correspond to the Galilean boosts, and ωab to the rotations, while ϕ and 
�ab are dual to commuting extension generators that determine, respectively, the Bargmann and 
the extended Bargmann algebra. Note that (3.28) is closed and only depends on the curvatures. 
Hence H is invariant under the gauge transformations of the algebra corresponding to (3.29), and 
therefore defines a CS action, which coincides with the bosonic sector of the one obtained in [7].

3.2.1. On the physical dimensions of λ
We now comment on the issue of the physical dimensions of the expansion parameter λ. Al-

though the expansion in terms of powers of the parameter λ is formal, the gauge fields ultimately 
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involved have physical dimensions. This is achieved in general by assigning a suitable dimen-
sion to the parameter λ. In [10], D = 3 Poincaré supergravity was obtained by expanding a CS 
action based on a simple superalgebra. The generators of a simple algebra are dimensionless, 
and those of the superPoincaré algebra have to be dimensionful if they are to be associated with 
Poincaré supergravity, so λ has to have dimensions. In our case, the starting Poincaré fields do 
have dimensions, but these are different from the dimensions of the fields in the expansion (3.29).

Let us start with the fields in the Poincaré action. We may choose [ẽA] = T , while ωAB has to 
be dimensionless. Since the metric is given in terms of the dreibein by

gμν = eA
μeAν , (3.30)

where eA = eA
μdxμ (eA

μ are the coordinates of eA in the basis dxμ). If we take [x0] = T , [xa] =
L, then g00 is dimensionless and [gij ] = T 2L−2. This is compatible with the flat spacetime 
expression⎛⎝ −1 0 0

0 1
c2 0

0 0 1
c2

⎞⎠ . (3.31)

Now, consider the algebra obtained by setting the curvatures equal to zero in (3.29). Since ωa

correspond to the Galilean boosts, it makes sense to set [ωa] = LT −1. Also, we would like to 
have [e] = L−1T as they are dual to the space translations. From (3.24) we deduce that [λ] =
L−1T , that is, the inverse of a velocity. This argument, of course, is valid in every dimension 
D. This means that it is consistent, although not necessary in this context, to assume that the 
parameter λ is equal to c−1. For a construction that does include a c−1 expansion, see [19].

4. From N = 2 superPoincaré to the extended superGalilei in D = 3

We now start from the superPoincaré algebra in D = 3, which in terms of its MC forms is 
given by

dẽA = −ω̃A
B ∧ ẽB − iψ̃γ A ∧ ψ̃

dω̃AB = −ω̃A
C ∧ ω̃CB

dψ̃ = −1

4
γ ABω̃AB ∧ ψ̃ , (4.32)

where A, B, C = 0, 1, 2 and we are using the (− ++) metric (we use the convention that complex 
conjugation reorders the product of Grassmann-odd symbols).

When the fermion one-forms ψ̃ are complex, the algebra is that of N = 2 superPoincaré, and 
it is N = 1 when they are Majorana spinors. We are interested in obtaining a superGalilei algebra 
by expanding superPoincaré, with anticommutators of the type {Q, Q} ∝ H , where Q is a so(2)

spinor supersymmetry generator and H generates the time translations. Looking at the most 
general expansion it turns out that this requires starting from N = 2 superPoincaré. Additionally, 
this fact may be justified by noticing that we will need to split the original so(1, 2) spinor into 
two so(2) spinors as suggested by the results of [5], but a real so(1, 2) spinor has two real 
components, so the so(2) spinors must have one real component each. But this would correspond 
to Majorana-Weyl spinors, which do not exist in D = 2 with signature (++) (although they do 
exist when the signature is (−+)). So we are forced to consider the case N = 2. In what follows 
our spinors will be complex, with no reality condition assumed.
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Let us now perform the space-time splitting including the fermions. First, we take γ A real for 
convenience; for instance,

γ 0 = iσ 2 , γ 1 = σ 1 , γ 2 = σ 3 . (4.33)

We then define the following one-forms:

ẽA → (ẽa, ẽ0 = φ̃) ,

ω̃AB → (ω̃ab, ω̃a
0 = ω̃a)

ψ̃ = P+ξ̃+ + P−ξ̃−
(
ψ̃ = ξ̃+P+ + ξ̃−P−

)
, (4.34)

where P± = 1
2 (1 ± iγ0), and ξ̃± are real, as can be seen from

ξ̃± = Re ψ̃ ± γ 0Im ψ̃ . (4.35)

In terms of these forms, the MC equations (4.32) read

dẽa = −ω̃a
b ∧ ẽb − ω̃a ∧ φ̃ − iξ̃+γ a ∧ ξ̃−

dφ̃ = −ω̃a ∧ ẽa + i

2
ξ̃ t+ ∧ ξ̃+ + i

2
ξ̃ t− ∧ ξ̃−

dω̃ab = −ω̃a
c ∧ ω̃cb − ω̃a ∧ ω̃b

dω̃a = −ω̃a
b ∧ ω̃b

dξ̃± = −1

4
ωabγ

ab ∧ ξ̃± − 1

2
γ aω̃aγ

0 ∧ ξ̃∓ . (4.36)

As before, the MC one-forms become the gauge one-forms (denoted by the same letters), and the 
gauge curvatures of the Poincaré algebra are the two-forms T̃ A, R̃AB , ρ̃ given by

T̃ A = dẽA + ω̃A
B ∧ ẽB + iψ̃γ A ∧ ψ̃

R̃AB = dω̃AB + ω̃A
C ∧ ω̃CB

ρ̃ = dψ̃ + 1

4
ω̃ABγ AB ∧ ψ̃ . (4.37)

By using the space-time splitting for the curvatures,

T̃ A → (T̃ a, T̃ 0 = �̃) ,

R̃AB → (R̃ab, R̃a
0 = R̃a) ,

ρ̃ = P+�̃+ + P−�̃− , (4.38)

the gauge curvatures T̃ a , �̃, R̃ab , R̃a and �̃± are given in terms of the gauge fields by

T̃ a = dẽa + ω̃a
b ∧ ẽb + ω̃a ∧ φ̃ + iξ̃+γ a ∧ ξ̃−

�̃ = dφ̃ + ω̃a ∧ ẽa − i

2
ξ̃ t+ ∧ ξ̃+ − i

2
ξ̃ t− ∧ ξ̃−

R̃ab = dω̃ab + ω̃a
c ∧ ω̃cb + ω̃a ∧ ω̃b

R̃a = dω̃a + ω̃a
b ∧ ω̃b

�̃± = dξ̃± + 1
ωabγ

ab ∧ ξ̃± + 1
γ aω̃aγ

0 ∧ ξ̃∓ . (4.39)

4 2



10 J.A. de Azcárraga et al. / Nuclear Physics B 946 (2019) 114706
We now expand the gauge one-forms and curvature two-forms contained in the gauge algebra 
(4.39). To do this, we notice that if we make the choice V ∗

0 = {ω̃ab, φ̃, ξ̃+} and V ∗
1 = {ẽa, ω̃a, ξ̃−}, 

then the superalgebra has the structure (2.1). So we may write

ẽa = λea + ∑∞
k=1 λ2k+1ẽa

(2k+1) , T̃ a = λT a + ∑∞
k=1 λ2k+1T̃ a

(2k+1)

φ̃ = φ + λ2ϕ + ∑∞
k=2 λ2kφ̃(2k) , �̃ = � + λ2
 + ∑∞

k=2 λ2k�̃(2k)

ω̃ab = ωab + λ2�ab + ∑∞
k=2 λ2kω̃ab

(2k) , R̃ab = Rab + λ2Lab + ∑∞
k=2 λ2kR̃ab

(2k)

ω̃a = λωa + ∑∞
k=1 λ2k+1ω̃a

(2k+1) , R̃a = Ra + ∑∞
k=1 λ2k+1R̃a

(2k+1)

ξ̃+ = ψ + λ2ξ + ∑∞
k=2 λ2kξ̃+(2k) , �̃+ = ρ + λ2� + ∑∞

k=2 λ2k�̃+(2k)

ξ̃− = λπ + ∑∞
k=1 λ2k+1ξ̃−(2k+1) , �̃− = λ� + ∑∞

k=1 λ2k+1�̃−(2k)

. (4.40)

Since we need to select the λ2 term in the expansion of the N = 2, D = 3 supergravity action, 
we shall consistently cut the expansion at the power λ2. The resulting gauge algebra is given by

T a = dea + ωa
b ∧ eb + ωa ∧ φ + iψ̄γ a ∧ π

� = dφ − i

2
ψt ∧ ψ


 = dϕ + ωa ∧ ea − iψt ∧ ξ − i

2
πt ∧ π

Rab = dωab + ωa
c ∧ ωcb

Lab = d�ab + ωa
c ∧ �cb + �a

c ∧ ωcb + ωa ∧ ωb

Ra = dωa + ωa
b ∧ ωb

ρ = dψ + 1

4
ωabγ

ab ∧ ψ

� = dξ + 1

4
ωabγ

ab ∧ ξ + 1

4
�abγ

ab ∧ ψ + 1

2
γ aωaγ

0 ∧ π

� = dπ + 1

4
ωabγ

ab ∧ π + 1

2
γ aωaγ

0 ∧ ψ . (4.41)

Again, the MC equations of the algebra are recovered setting all curvatures equal to zero. The 
bosonic subalgebra is precisely the extended bosonic Bargmann algebra of (3.29). Eqs, (4.41)
contain also three real so(2) odd spinor gauge one-forms ψ , ξ and π and three fermionic curva-
tures ρ, � and �.

4.1. Dual version of the algebra

Let us find the (anti)commutators of the generators dual to the MC forms of the algebra 
obtained from (4.41), when the curvatures vanish. Since in our D = 3 case a = 1, 2, in order to 
make contact with [5] we write ωab = εabω, �ab = εabq so the MC equations read

dea = −εa
bω ∧ eb − ωa ∧ φ − iψ̄γ a ∧ π

dφ = − i

2
ψt ∧ ψ

dϕ = −ωa ∧ ea + iψt ∧ ξ + i
πt ∧ π
2
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dω = 0

dq = −1

2
εabω

a ∧ ωb

dωa = −εa
bω ∧ ωb

dψ = −1

2
ωγ 0 ∧ ψ

dξ = −1

2
ωγ 0 ∧ ξ − 1

2
qγ 0 ∧ ψ − 1

2
γ aωaγ

0 ∧ π

dπ = 1

2
ωγ 0 ∧ π + 1

2
γ aωaγ

0 ∧ ψ . (4.42)

Now we call the generators dual to ea , φ, ϕ, ω, q , ωa , ψ , ξ y π , Pa , H , M , J , S, Ga , Q+, 
U and Q− respectively. A convenient way of finding the commutators is using of the canonical 
one-form

θ = eaPa + φH + ϕM + ωJ + qS + ωaGa + ψαQ+
α + ξαUα + παQ+

α . (4.43)

In terms of θ the MC equations dθ = −θ ∧ θ lead immediately to the superalgebra commuta-
tors simply by inserting θ = ωIXI . In this way, the following non-zero (anti)-commutators are 
obtained:

[Ga,H ] = Pa , [Ga,Pb] = δabM , [Ga,Gb] = εabS ,{
Q+

α ,Q+
β

}
= iδαβH ,

{
Q+

α ,Q−
β

}
= −i(γ 0γ a)αβPa ,

{Q−
α ,Q−

β } = −iδαβM ,
{
Q+

α ,Uβ

} = −iδαβM ,[
S,Q+

α

] = 1

2
(γ 0)βαUβ ,

[
Ga,Q

+
α

] = 1

2
(γ 0γ a)βαQ−

β ,[
Ga,Q

−
α

] = 1

2
(γ 0γ a)βαUβ ,

[J,Pa] = −εabP
b , [J,Ga] = −εabG

b ,[
J,Q±

α

] = 1

2
(γ 0)βαQ±

β , [J,Uα] = 1

2
(γ 0)βαUβ . (4.44)

The last two lines exhibit the semidirect structure of the algebra, J being the generator of the 
two-dimensional rotations. The first line is the extended Bargmann algebra (omitting rotations), 
where S is the generator of the central extension; the second and third lines contain the anticom-
mutators of the fermionic generators and the fourth and the fifth one give the commutators of 
bosonic and fermionic generators, excluding the rotations. Apart from minor redefinitions, these 
commutators coincide with those of [7].

4.2. Expansion of the action

The next step is to expand the action, or equivalently H̃ , of D = 3, N = 2 supergravity and 
select the coefficient of the λ2 term. To this end, we need to start with the action of D=3 Poincaré 
supergravity. It is given by

H̃ = εABCR̃AB ∧ T̃C − 4iρ̃ ∧ ρ̃ , (4.45)

where ρ̃ is the Dirac adjoint of ρ̃. In order to check that the four-form H̃ , which depends only on 
the curvatures is closed and thus defines a CS action, we have used that, with the choice (4.33)
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of gamma matrices, γ 0γ 1γ 2 = iσ 2σ 1σ 3 = I3. Thus, if we define ε012 = 1, then γ ABC = εABC . 
This in turn gives

γ AB = εABCγC . (4.46)

When calculating the exterior differential of H̃ , we have used the expression of the differentials 
of the curvatures R̃AB , T̃C and ρ̃,

dR̃AB = R̃AC ∧ ω̃C
A − ω̃AC ∧ R̃C

A , (DR̃AB = 0)

dT̃ A = R̃A
B ∧ ẽB − ω̃A

B ∧ T̃ B + iρ̃γ A ∧ ψ̃ − iψ̃γ A ∧ ρ̃ ,

(DT̃ A = R̃A
B ∧ eB + iρ̃γ A ∧ ψ̃ − iψ̃γ A ∧ ρ̃)

dρ̃ = 1

4
R̃ABγ AB ∧ ψ̃ − 1

4
ω̃ABγ AB ∧ ρ̃ ,

(Dρ̃ = 1

4
R̃ABγ AB ∧ ψ̃ , Dρ̃ = 1

4
ψ̃ ∧ R̃ABγ AB) , (4.47)

where D is the Lorentz covariant exterior differential. Using Eqs. (4.47) and the gamma matrix 
identity (4.46), the differential of H̃ in (4.45) is seen to vanish.

We have to rewrite (4.45) in terms of the spacetime splitting (4.38) to perform the expansion. 
The result is (we write ε0ab = εab)

H̃ = 2εabR̃
a ∧ T̃ b + εabR̃

ab ∧ �̃ − 2i�̃+ ∧ �̃+ − 2i�̃− ∧ �̃− . (4.48)

We now expand the gauge one-forms and curvature two-forms as in (4.40) and insert the expan-
sion into (4.48). Then, we select the λ2 term, which is given by

H = H̃ |2 = 2εabR
a ∧ T b + εabR

ab ∧ 
 + εabL
ab ∧ �

−4iρ̄ ∧ � − 2i�̃ ∧ � . (4.49)

The equations of the action I = ∫
M3 B , where dB = H and M3 denotes the two-dimensional 

space and time, are given by the vanishing of all the curvatures included in (4.49), and, since H
is gauge invariant under the gauge transformations that correspond to the gauge algebra (4.41), 
then I will be invariant too, up to topological effects. The action (4.49) obtained coincides with 
that of [7].

5. Outlook

In this paper we have shown how to obtain the Galilean (super)gravity action in D = 3 by 
using the Lie (super)algebras expansion method. Although this method may give less physical 
insight than the procedures based on limits, it has the advantage of being systematic and involving 
simpler calculations.

We have applied here our method to the D = 3 case, but in principle it could be applied 
to higher dimensions, provided the starting action is one that can be expressed as the integral 
over spacetime of a differential form constructed from the fields and curvatures of a certain 
Lie (super)algebra. Since for D > 4 the starting (super)gravity action will no longer be gauge 
invariant, a question to be answered is to what extent the actions obtained by expansion are 
invariant under some symmetries of the expanded algebra.
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The expansion method has recently been used in [20] to derive general actions for any D
and p-brane,3 thus recovering some known examples of actions existing in the literature, and 
providing a way of reproducing others, such as Carrol gravity [22,23]. This indicates that our 
method, at least in the bosonic case, can be applied when D > 3. So it is natural to think that 
maybe this is also possible in the supersymmetric case. One potential problem is the fact that, in 
general, Poincaré supergravity with N = 2 is required as the starting point. In D = 4, for instance, 
the first order supergravity action contains not only the gauge fields of a centrally extended N = 2
superPoincaré algebra, but also some auxiliary zero-forms that are needed to write in first order 
form the kinetic term of the gauge field associated with the central extension generator (see [24]). 
So this problem may presumably be overcome by applying the expansion method to general free 
differential algebras, the gauge algebra being just an example.

Another difficulty is the local supersymmetry of the actions obtained by expansion. In [20], it 
was shown that the actions do possess local symmetries corresponding to the generators of their 
algebras, but the argument given there will not be applicable in the case of supersymmetry. Also, 
it is well known that in the case of Poincaré supergravity the supersymmetry variations realize the 
supersymmetry algebra up to field equations. It is not clear whether this is going to be the case 
when applying the expansion procedure. One possible approach is to take as the starting point 
the action with auxiliary fields that ensure the closure of the supersymmetry algebra off-shell but, 
also here, the auxiliary fields do not correspond to gauge fields of a Lie algebra, so they should 
be treated as zero forms of a free differential algebra.
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