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1 Introduction

During the last few years, there has been a renewed interest in non-relativistic gravity due

to its possible role in holography where gravity is used as a tool to probe the dark corners

of quantum field theories1 or in effective field theory where gravitational fields are used as

geometrical background response functions [3, 4].

It turns out that, in contrast to general relativity, there are many different versions of

non-relativistic gravity theories. They are all invariant under reparametrizations but dif-

fer in the fact that they are invariant under distinct extensions of the Galilei symmetries.

The simplest example is the so-called Galilei gravity theory which is invariant under the

un-extended Galilei symmetries [5]. Instead, Newtonian gravity and its frame-independent

1For a discussion of non-relativistic gravity in the bulk, see [1]; for an application of non-relativistic

gravity at the boundary, see [2].

– 1 –



J
H
E
P
0
8
(
2
0
1
9
)
0
4
8

reformulation, called Newton-Cartan (NC) gravity, is invariant under the symmetries cor-

responding to a central extension of the Galilei algebra, called the Bargmann algebra. In

three dimensions there even exists a non-relativistic gravity theory that is based on a Galilei

algebra with two central extensions [6–8] while recently, in four dimensions, an interesting

example of a non-relativistic gravity theory based upon an even larger extension of the

Bargmann algebra containing non-central generators has been encountered [9, 10].

It is well known that the generator of time translations of the Galilei algebra plays

a different role than the generators of space translations. This is related to the fact that

absolute time plays a special role in Newtonian gravity. However, it turns out that this

type of Galilei algebra is only suitable when coupling non-relativistic gravity to particles.

Instead, when coupling to extended objects with p spatial extensions, i.e. p-branes, one

needs to foliate spacetime in a different way, according to the number of longitudinal and

transverse directions (directions parallel to the p-brane’s worldvolume and the rest). This

leads to a different kind of Galilei algebra where, for a given spacetime of dimension D, the

translation generators of the Galilei algebra are given by the following set of generators

(HA, Pa) , A = 0, 1, · · · , p; a = p+ 1, · · · , D − 1 , (1.1)

which correspond to translations along longitudinal and transverse directions, respectively.

We will denote these different kinds of Galilei algebra as (D, p) Galilei algebras. The related

non-relativistic gravity theories will be called (D, p) Galilei gravity.2 Like in the particle

case, there are further non-relativistic gravity theories that are based upon extensions of

the (D, p) Galilei algebras. A recent example is string NC gravity [11] that is based upon

a p = 1 (string) version of the Bargmann algebra [12].3

It is a relatively simple matter to construct an action for (D, p) Galilei gravity. One

simply takes an appropriate non-relativistic limit of the first-order Einstein-Hilbert action,

thereby generalizing the case of Galilei gravity discussed in [5].4 It is much harder to

construct an action for NC gravity that is based on the Bargmann algebra. Taking the

non-relativistic limit of general relativity without obtaining fatal divergencies can only be

done at the level of the equations of motion. Similarly, performing a null-reduction of

five-dimensional general relativity does not lead to an action for 4-dimensional NC gravity

but only to its equations of motion [15]. Despite these difficulties, several actions for non-

relativistic gravity, based on extensions of the Galilei algebra, have been constructed in the

recent literature. One example we already mentioned is the three-dimensional action of [6–

8], which is based upon a three-dimensional Galilei algebra with two central extensions.

More recent examples are the 4D non-relativistic gravity action of [9, 10], the 4D extended

string Newton-Cartan gravity action of [16] and the 3D action of [17].5

2From now on it is understood that, whenever the value of p is not specified, we mean the particle case,

i.e. p = 0.
3The action for a non-relativistic Polyakov string in such a string NC background has been recently

constructed [13] thereby generalizing the action of [14].
4In this work we will only consider first-order actions with independent spin connection fields. We will

comment about second-order formulations in the conclusions.
5In this paper the word ‘extended’ will be used to denote certain extended (super)-gravity theories, as

in the mathematical Lie algebra extensions sense.
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The purpose of this paper is to show that all algebras underlying the above actions

can be obtained via the Lie algebra expansion of the relativistic Poincaré algebra. The

Lie algebra expansion method was first used in [18] and later studied from a more general

perspective and applied to 3D Chern Simons supergravity and the M-theory superalgebra

in [19, 20].6 The Lie algebra expansion method is a general method that in the present

case allows one to obtain from the relativistic Poincaré algebra a number of extensions of

the non-relativistic (D, p) Galilei algebra containing extra generators some of which can

be central extensions. The first algebra in the expansion is always the un-extended Galilei

algebra which has the additional feature that it can be obtained as a Inönü-Wigner con-

traction of the Poincaré algebra. The other algebras are obtained as consistent truncations

of the full expansion.

This method can also be used to obtain actions for the non-relativistic gravity theories

associated to the finite extended-Galilei algebras obtained as truncations. In most cases,

but, unfortunately, not always, it produces an invariant action. In particular, it gives an

invariant action for the (D, p) Galilei algebras, for any D and p. These actions can be

obtained by taking a non-relativistic limit of the Einstein-Hilbert action that mimics the

corresponding Inönü-Wigner contraction of the Poincaré algebra [5]. Recently, by applying

the Lie algebra expansion directly at the level of the action, it has been observed that in

three dimensions the first algebra that occurs in the expansion beyond the Galilei algebra,

also allows an action [27, 28]. In fact, it precisely leads to the action of [7, 8]. Even the

supersymmetric action of [7] was derived in this way.

In this paper we are going to explain how the Lie algebra expansion procedure works,

applying it to a few important examples. In particular, we will derive a rule that tells, for

a given truncation and given values of D and p, how many orders one needs to go in the

expansion beyond the lowest-order (Galilei algebra) for an action to exist. For instance, in

D = 4 we will find that in the string case the first algebra beyond the string Galilei algebra

leads to the action of [16] but that, in the particle case, one must take the second algebra

in the expansion, which is precisely the algebra of [9, 10].

The organization of this paper is as follows. In section 2 we will give a formal de-

scription of the Lie algebra expansion procedure. Next, in section 3, we will give explicit

expressions for the Lie algebra expansion of the Poincaré algebra for general D and p. In

section 4, we will discuss a few subtleties that occur when constructing an invariant action.

In particular, we will discuss the role of the so-called P -symmetries and we will give a rule

that states for which truncations and which values of D and p an invariant action exist. In

the next section, we will give five examples of actions for non-relativistic gravity thereby

re-producing several results given in the literature. Finally, in the conclusions, we will

discuss a relation between the Lie algebra expansion and taking non-relativistic limits. We

will also mention how the Lie algebra expansion procedure can be applied to a variety of

6See also [21] for a generalization that uses semigroups and [22] for other applications of the method.

The expansion method may also lead to Maxwell (super-)algebras [23, 24] and even non-relativistic Maxwell

algebras [25]. For an even more general expansion method, based of free Lie algebras, see [26]. This leads

to even bigger finite-dimensional algebras which can be truncated to the ones that follow from a Lie algebra

expansion.
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new situations. Finally, we have delegated the full proof of the rule that indicates when

an invariant action exists to appendix A while in appendix B we give a few more details

about the third example in the main text.

2 Lie algebra expansions

The Lie algebra expansion is a method that, starting from a given Lie algebra, leads to

new Lie algebras. These algebras are, in general, of higher dimension than the original one.

In this section we give a general description of the method.

Quite generally, the Lie algebra expansion of an algebra is obtained by formally ex-

panding the Maurer-Cartan one-forms of the dual version of the algebra in a power series

of a parameter λ, each coefficient being a new one-form. One next substitutes this ex-

pansion into the Maurer-Cartan equations of the algebra and identifies equal powers of λ.

This results into an infinite set of Maurer-Cartan equations that can later be truncated

consistently to obtain a number of finite-dimensional Lie algebras.

To be specific, we describe the method in the case that is relevant to us, that is, when

the original algebra g can be split, as a vector space, into the direct sum g = V0 ⊕ V1 of

two subspaces V0 and V1 with

[V0, V0] ⊂ V0 , [V0, V1] ⊂ V1 , [V1, V1] ⊂ V0 . (2.1)

This means that V0 and V1 form a symmetric pair.7 Let Xi, i = 1 . . . dimg, be a set of

generators of the starting Lie algebra g whose commutation rules read

[Xi, Xj ] = Cij
kXk . (2.2)

Let Xi = {Xi0 , Xi1} with Xi0 ∈ V0, Xi1 ∈ V1, i0 = 1 . . . dimV0, i1 = 1 . . . dimV1. Then, the

condition (2.1) implies that

Ci0j0
k1 = 0 , Ci0j1

k0 = 0 , Ci1j1
k1 = 0 . (2.3)

We now consider the dual formulation in terms of the Maurer-Cartan one-forms ωi =

{ωi0 , ωi1}. The commutators (2.2) are equivalent to the Maurer-Cartan equations

dωk = −1

2
Cij

kωi ∧ ωj . (2.4)

The Jacobi identity in this formulation corresponds to dd ≡ 0. It is now consistent to

expand the Maurer-Cartan one-forms as follows:

ωi0 =

∞∑

α0=0, α0 even

(α0)

ω i0λα0 , (2.5a)

ω i1 =
∞∑

α1=1, α1 odd

(α1)

ω i1λα1 , (2.5b)

7For a discussion of other cases, see [19].
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where we have introduced new indices (α0) and (α1) on top of the Maurer-Cartan one-

forms to indicate the order of the corresponding terms in the expansion. By inserting these

expansions into the Maurer-Cartan equations (2.4) and identifying equal powers of λ, the

following infinite set of Maurer-Cartan equations is obtained:

d
(γs)
ω ks = −1

2
Cip,αp jq ,βq

ks,γs
(αp)

ω ip ∧ (βq)

ω jq , (2.6)

where s, p, q = 0, 1 and

Cip,αp jq ,βq
ks,γs =

{
Cip jq

ks , γs = αp + βq;

0 , otherwise.
(2.7)

These equations are dual to an infinite set of commutators that satisfy the Jacobi identity.

To obtain finite-dimensional Lie algebras, we substitute the following finite expansions,

for given integers (N0, N1),

ωi0 =

N0∑

α0=0, α0 even

(α0)

ω i0λα0 , (2.8a)

ωi1 =

N1∑

α1=1, α1 odd

(α1)

ω i1λα1 , (2.8b)

in such a way that the result is a consistent set of Maurer-Cartan equations. This is true

if and only if one of the following conditions is satisfied [19]:

N0 = N1 + 1 or N1 = N0 + 1 . (2.9)

We will denote the algebras corresponding to these two conditions as g(N0, N1) =

g(N + 1, N) and g(N0, N1) = g(N,N + 1), respectively. Note that in the first case N has

to be odd, while in the second it has to be even

We may also consider the gauge fields
(αs)

A is and curvatures
(αs)

F is for the new Lie algebras.

They are related by

(γs)

F ks = d
(γs)

A ks +
1

2
Cip,αp jq ,βq

ks,γs
(αp)

A ip ∧
(βq)

A jq (2.10)

with γs = αp + βq. The gauge fields transform as

δ
(γs)

A ks = d
(γs)
a is − Cip,αp jq ,βqks,γs

(αp)

a ip
(βq)

A jq , (2.11)

where
(αs)
a is is the parameter of the gauge transformation corresponding to

(αs)

A is . Alterna-

tively, these equations may be obtained by applying the expansion method to the gauge

curvatures and variations of the original algebra

F k = dAk +
1

2
Cij

kAi ∧Aj , (2.12a)

δAk = dak − CijkaiAj , (2.12b)
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where the gauge fields, curvatures and gauge parameters are expanded as in (2.5) or (2.8)

by simply replacing the symbol ω by A, F or a. The Maurer-Cartan equations of the

expanded algebras are then recovered by simply setting the curvatures equal to zero.

Summarizing, by using the method of Lie algebra expansions one can derive from

a given Lie algebra a number of extended algebras with corresponding gauge fields and

curvatures. Given a Lie algebra g with corresponding gauge fields Ai and curvatures F i

for g, one just has to follow these steps:

1. Find a symmetric splitting g = V0 ⊕ V1, i.e., a splitting with the structure given in

eq. (2.1).

2. Expand the gauge fields and curvatures corresponding to the generators in V0 (resp.

V1) in odd (resp. even) powers of a parameter λ.

3. Set the curvatures equal to zero and obtain an infinite set of Maurer-Cartan equations

that can be truncated consistently into the finite algebras g(N,N+1) and g(N+1, N).

Finally, we stress that in the procedure defined above we always expand in terms of a

parameter λ in the dual formulation using Maurer-Cartan forms. Although this expansion

gives rise to new and expanded algebras, we never directly expand the Lie algebra itself.

For a discussion of expansions directly at the level of the Lie algebras using semigroups,

see, for instance, [21].

3 The Lie algebra expansion of the Poincaré algebra

In this section we apply the Lie algebra expansion method to the specific case of the

Poincaré algebra with the aim of constructing actions for non-relativistic gravity in the

next section. Our starting point is the D-dimensional Poincaré algebra with the following

commutation relations:

[PÂ, PB̂] = 0 , (3.1a)

[MÂB̂, PĈ ] = 2ηĈ[B̂PÂ] , (3.1b)

[MÂB̂,MĈD̂] = 4η[Â[ĈMD̂]B̂] , (3.1c)

where PÂ and MÂB̂ are the generators of spacetime translations and Lorentz transforma-

tions, respectively. The hatted indices run over Â = 0, . . . , D − 1 and we have chosen the

Minkowski metric to have mostly plus signature. As we have discussed in the introduction,

for a p-brane, it is natural to decompose the indices as

Â = {A, a} , A = 0, 1, · · · , p; a = p+ 1, · · · , D − 1 . (3.2)

This induces the following decomposition of the generators:

MÂB̂ → {JAB, GAa, Jab} , (3.3a)

PÂ → {HA, Pa} . (3.3b)

– 6 –
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The non-vanishing commutation relations of these generators are given by

[JAB, HC ] = 2ηC[BHA] , (3.4a)

[Jab, Pc] = 2ηc[bPa] , (3.4b)

[JAB, JCD] = 4η[A[CJD]B] , (3.4c)

[Jab, Jcd] = 4η[a[cJd]b] , (3.4d)

[GAa, Pb] = δabHA , (3.4e)

[GAa, HB] = −ηABPa , (3.4f)

[JAB, GCd] = 2ηC[BGA]d , (3.4g)

[Jab, GAc] = −2δc[b|GA|a] , (3.4h)

[GAa, GBb] = −ηABJab − δabJAB . (3.4i)

For each generator, we introduce a 1-form gauge field as follows:

JAB → ΩAB , (3.5a)

Jab → Ωab , (3.5b)

GAb → ΩAb , (3.5c)

Pa → Ea , (3.5d)

HA → τA . (3.5e)

The curvatures for these gauge fields are given by

RAB(J) = dΩAB − ΩAC ∧ ΩB
C − ΩAa ∧ ΩB

a , (3.6a)

Rab(J) = dΩab − Ωac ∧ Ωb
c − ΩAa ∧ Ω b

A , (3.6b)

RAa(G) = dΩAa + ΩAB ∧ Ω a
B + Ωab ∧ ΩA

b , (3.6c)

Ra(P ) = dEa + Ωab ∧ Eb − ΩAa ∧ τA , (3.6d)

RA(H) = dτA + ΩAB ∧ τB + ΩAa ∧ Ea . (3.6e)

We now consider the splitting of the Poincaré algebra g = V0 ⊕ V1 that will induce a

Lie algebra expansion where the lowest order algebra is given by the (D, p) Galilei algebra.

This splitting is defined by taking the following choice for V0 and V1:

V0 = {HA, JAB, Jab} , V1 = {Pa, GAb} . (3.7)

We recognize that V0 and V1 form a symmetric pair satisfying eq. (2.1). Following the Lie

algebra expansion method, we expand the gauge fields as follows:

τA =

N0∑

k=0, k even

λk
(k)
τA =

(0)
τA + λ2

(2)
τA + . . . , (3.8a)

ΩAB =

N0∑

k=0, k even

λk
(k)

ΩAB =
(0)

ΩAB + λ2
(2)

ΩAB + . . . , (3.8b)

– 7 –
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Ωab =

N0∑

k=0, k even

λk
(k)

Ωab =
(0)

Ωab + λ2
(2)

Ωab + . . . , (3.8c)

ΩAb =

N1∑

k=1, k odd

λk
(k)

ΩAb = λ
(1)

ΩAb + . . . , (3.8d)

Ea =

N1∑

k=1, k odd

λk
(k)

Ea = λ
(1)

Ea + . . . . (3.8e)

According to the general method, the infinite expansion in eqs. (3.8) can be consistently

truncated by taking one of the two conditions N0 = N1±1. The truncation of the algebras

induces similar truncations of the expansions of the curvatures and transformation rules for

the finite-dimensional algebras. For instance, the curvatures corresponding to the finite-

dimensional algebra g(1, 2) are given by8

(0)

RAB(J) = d
(0)

ΩAB −
(0)

ΩAC ∧
(0)

ΩB
C , (3.10a)

(2)

RAB(J) = d
(2)

ΩAB −
(2)

ΩAC ∧
(0)

ΩB
C −

(0)

ΩAC ∧
(2)

ΩB
C −

(1)

ΩAa ∧
(1)

ΩB
a , (3.10b)

(0)

Rab(J) = d
(0)

Ωab −
(0)

Ωac ∧
(0)

Ωb
c , (3.10c)

(2)

Rab(J) = d
(2)

Ωab −
(2)

Ωac ∧
(0)

Ωb
c −

(0)

Ωac ∧
(2)

Ωb
c −

(1)

ΩAa ∧
(1)

Ω b
A , (3.10d)

(0)

RA(H) = d
(0)
τA +

(0)

ΩAB ∧ (0)
τB , (3.10e)

(2)

RA(H) = d
(2)
τA +

(2)

ΩAB ∧ (0)
τB +

(0)

ΩAB ∧ (2)
τB +

(1)

ΩAa ∧
(1)

Ea , (3.10f)
(1)

RAa(G) = d
(1)

ΩAa +
(0)

ΩAB ∧
(1)

Ω a
B +

(0)

Ωab ∧
(1)

ΩA
b , (3.10g)

(1)

Ra(P ) = d
(1)

Ea +
(0)

Ωab ∧
(1)

Eb −
(1)

ΩAa ∧ (0)
τA . (3.10h)

This concludes our general discussion of the expansion and consistent finite-dimensio-

nal truncations of the Poincaré algebra and the associated gauge fields and curvatures using

the method explained before. It gives an infinite number of finite-dimensional algebras and

associated gauge fields and curvatures, but a dynamical principle (such as the extremization

of an action) needs to be formulated in order to construct physical non-relativistic theories

of gravity with them. If we use an action principle, the action will have to be invariant

under the symmetries that we want the physical theory to inherit.

The method of Lie algebra expansions gives a simple recipe to construct invariant

actions that we are going to review in the next section and that we are going to apply to

the present case. For some of the subalgebras generated by this method, though, it does

not give an invariant action.

8Note that in the expression of the curvatures (using the notation of [19])

F ks,αs = dAks,αs +
1

2
Cip,βp jq ,γq

ks,αsAip,βp ∧Ajq ,βq (3.9)

the structure constants are zero when αs > max{N0, N1}.

– 8 –
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4 Actions

4.1 The expanded action

We may construct actions as follows. Let B be an invariant D-form defined on the algebra

g generated by the gauge fields Ai and curvatures F i corresponding to g. We assume that

these gauge fields and curvatures are realized on a spacetime manifoldM, i.e., Ai = Aiµdx
µ

and F i = F iµνdx
µ ∧ dxν . We may now use B to define an action

I[A] =

∫

M
B , (4.1)

that is manifestly invariant under the gauge transformations of some subalgebra and the

diffeomorphisms of M.9

We now substitute F i and Ai into the action (4.1) by their infinite expansions, which

results into the following expansion of B and the action I[A]:

I[A](λ) =
∞∑

k=0

(k)

Iλk =
∞∑

k=0

(∫

M

(k)

B

)
λk . (4.2)

If the original action is invariant under the gauge transformation for a certain gauge

parameter, say ai0 ,

δAi = δii0da
i0 − Ci0 j iai0Aj , (4.3)

then, by expanding the l.h.s. of the equation δI = 0, we see that all the terms
(k)

I are invari-

ant under the transformations with gauge parameters
(α)
a i0 that appear in its expansion,

provided we keep the expansion infinite.

Consider now the term
(k)

I appearing at a certain order k in the expansion of the action.

This action term will contain only a finite number of fields. However, due to the truncation

of the expanded gauge algebra, it will not be necessarily invariant. In particular, the action
(k)

I will only be invariant provided that the gauge algebra expansion is the smallest truncated

expansion that contains all the fields appearing in
(k)

I. A further truncation to a smaller

expansion corresponding to smaller finite-dimensional algebra may result into an action

that is not gauge invariant under the variations of the parameter
(α)
a i0 . Below, in the case of

the Poincaré algebra, we will derive a rule that states for which algebras in the Lie algebra

expansion this method provides an invariant action.

Summarizing, the method of Lie algebra expansions can be used to construct invariant

actions corresponding to finite-dimensional algebras that are extensions of the original Lie

algebra g by the following steps. Given a Lie algebra g and an action invariant under

some subalgebra defined as I =
∫
M B where B is the exterior product of gauge fields and

curvatures Ai, F i for g,

9We have here the Poincare algebra in mind where the action is only manifestly invariant under the

Lorentz transformations and the diffeomorphisms but not, in a manifest way, under the so-called P-

transformations of the algebra. The invariance of the action under these P-transformations is realized

via its relation with the manifest diffemorphism invariance, see the discussion in section 4.2.1.

– 9 –
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1. Insert the infinite expansion of Ai and F i into the original action
∫
M B and obtain

an infinite set of terms
(k)

I.

2. In order for
(k)

I to define an invariant action, select the truncated gauge algebra to

be such that it is the smallest algebra whose fields give rise to all terms in
(k)

I that

occurred in the infinite expansion.

4.2 Einstein-Hilbert action

We now apply the general procedure explained in the previous subsection to the Poincaré

algebra and the first-order Einstein-Hilbert action, which, as it is well known, is only in-

variant under general coordinate transformations and the Lorentz transformations of the

Poincaré algebra but not under the P -transformations that are generated by the PÂ gen-

erators of the same Poincaré algebra. These transformations require a separate discussion.

4.2.1 P -transformations

To explain our point it is sufficient to consider the 4D case. The 4D Einstein-Hilbert (EH)

action in first-order formulation is given by

SEH =

∫
d4xEEµ

ÂE
ν
B̂ Rµν

ÂB̂(M) , (4.4)

with the curvature given by

RÂB̂(M) = dΩÂB̂ − ΩÂĈ ∧ ΩB̂
Ĉ

(4.5)

and where EµÂ is the inverse Vierbein and E = detEµ
Â.

This action is invariant under general coordinate transformations, with parameter ξµ,

and under the Lorentz transformations of the Poincaré algebra with parameters ΛÂB̂:

δEµ
Â = ξµ∂µEµ

Â + ∂µξ
λEλ

Â + ΛÂB̂Eµ
B̂ , (4.6a)

δΩµ
ÂB̂ = ξλ∂λΩµ

ÂB̂ + ∂µξ
λΩλ

ÂB̂ + ∂µΛÂB̂ + 2ΛĈ[ÂΩµ
B̂]
Ĉ . (4.6b)

The action (4.4) is, however, not invariant under the P -transformations, with param-

eters ηÂ, of the Poincaré algebra:

δEµ
Â = ∂µη

Â − Ωµ
Â
B̂η

B̂ . (4.7)

Instead, the action transforms into a term proportional to the equation of motion of the

spin connection Rµν
Â(P ) = 0 with

RÂ(P ) = dEÂ + ΩÂB̂ ∧ EB̂ . (4.8)

Such a variation can always be cancelled by a modification of the P -transformation rule

of the spin connection that consists in the addition of curvature terms that do not follow

from the original Poincaré algebra.
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In order to find those terms and the modified P -transformation rules we start by

observing that the first-order action (4.4) is also invariant under the following so-called

‘trivial’ symmetry with parameter σÂ:10

δEµ
Â = Rµν

Â(P )σν , (4.9a)

δΩµ
ÂB̂ = 2Rµ

[Â(M)σB̂] + Eµ
[ÂRĈ

B̂](M)σĈ − 1

2
Eµ

[ÂR(M)σB̂] , (4.9b)

with Rµ
Â(M) = EνB̂Rµν

ÂB̂(M), R(M) = EµÂRµ
Â(M) and σν ≡ σB̂EνB̂.

It turns out that the P -transformation of the Vierbein with parameter ηÂ in eq. (4.7)

can be written as the sum of a general coordinate transformation, a Lorentz transformation

and a trivial symmetry of the kind introduced above with parameters

ξµ = ηµ , ΛÂB̂ = ηλΩλ
ÂB̂ , σÂ = ηÂ , (4.10)

with ηµ ≡ ηB̂EµB̂.

Therefore, we should reinterpret a P -transformation not as a new symmetry of the

action (4.4), but as a linear combination of three other symmetries of the action: a general

coordinate transformation, a Lorentz transformation and a trivial symmetry. Since the

same linear combination must be realized on the spin connection, we conclude that the

P -transformation of the Vierbein and spin connection that leave the action invariant are

given by

δηEµ
Â = Dµ(Ω)ηÂ , (4.11a)

δηΩµ
ÂB̂ = ηλRλµ

ÂB̂(M) + 2Rµ
[Â(M)ηB̂] + Eµ

[ÂRĈ
B̂](M)ηĈ − 1

2
Eµ

[ÂR(M)ηB̂] . (4.11b)

Summarizing, when considering the first-order Einstein-Hilbert action (4.4) and its Lie

algebra expansion, see below, we should not consider the general coordinate transformations

and P -transformations as two independent symmetries.11 Both have their advantages. On

the one hand, it is much easier to expand the general coordinate transformations but,

on the other hand, the P -transformations are more directly related to the underlying

algebra. In the following we will consider the general coordinate transformations in the Lie

algebra expansion but we stress that after the Lie algebra expansion the expanded general

coordinate transformations remains related, up to trivial symmetries, to the expanded P -

transformations. In the case of the simple 3D extended Bargmann gravity model, see the

end of section 5.2, we will explicitly show as an illustration of the general case, how these

two symmetries indeed are related.

10Trivial symmetries, also called ‘equation of motion’ symmetries, have the distinguishing feature that

all terms in the transformation rules are proportional to the equations of motion. This implies that trivial

symmetries correspond to vanishing Noether charges.
11Observe that, if they were independent and both of them were realized in the action together with the

Lorentz transformations, the theory would have no propagating degrees of freedom left.
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4.2.2 Conditions for gauge invariance of the action

When discussing the Lie algebra expansion and invariant actions, it is convenient to use

an alternative expression for the EH action (4.4) given by

SEH =
1

4

∫
d4x εµνρσεÂB̂ĈD̂Eµ

ÂEν
B̂Rρσ

ĈD̂(M) . (4.12)

that has the distinguishing feature that it does not contain inverse Vierbeine. This ex-

pression can easily be derived from the more conventional eq. (4.4) by using the standard

formula for the Vierbein determinant E:

E ≡ detEµ
Â =

1

4!
εµνρσεÂB̂ĈD̂ Eµ

ÂEν
B̂Eρ

ĈEσ
D̂ . (4.13)

We now proceed to discuss invariant actions and, in particular, to address the issue

that not every term in the expansion of the D-dimensional EH Lagrangian density

B = εÂ0...ÂD−1
RÂ0Â1(M) ∧ EÂ2 ∧ . . . ∧ EÂD−1 , (4.14)

leads to an invariant action. To make our point, we consider the case (D, p) = (4, 0) and

only the terms in the expansion that are proportional to Rab(J). The terms of lowest order

in the expansion obtained in this way are of order 1 and read

(1)

B = −2εabc
(0)

Rab(J) ∧
(1)

Ec ∧ (0)
τ . (4.15)

This term defines the lowest-order Galilei action corresponding to the algebra g(0, 1).

In the un-truncated expansion the next order terms involving Rab(J) occur at order

λn with n = 3. They can be obtained from the lowest-order term (4.15) by either replacing

one of the V0 fields by a next-order one, i.e.,
(0)

Ωµ
ab →

(2)

Ωµ
ab or

(0)
τµ →

(2)
τµ, or by replacing

the V1 field by a next order one, i.e.,
(1)

Eµ
a →

(3)

Eµ
a. In the un-truncated expansion there

are no more terms contributing to
(3)

B. In other words, there are no other replacements in
(1)

B, involving higher-order expansion terms, that would also contribute to
(3)

B.

All the above replacements lead to terms that occur in the un-truncated expansion and,

furthermore, all these terms are needed to obtain an invariant action at order 3. However,

not all terms will survive a specific truncation specified by (N0, N1). For instance, the

truncation (N0, N1) = (2, 1) leading to the first algebra beyond the Galilei algebra, does

not contain the
(3)

Eµ
a field. This implies that, although the

(3)

B term corresponding to the

g(2, 1) algebra will contain all fields of that algebra, the corresponding action will not be

invariant due to the missing term involving the V1 field
(3)

Eµ
a. It is only if one goes to

the next-order algebra g(2, 3) that the term in
(3)

B containing the V1 field
(3)

Eµ
a is included.

Correspondingly, the
(3)

B action corresponding to this bigger algebra will contain all fields

that would also have occurred in the un-truncated expansion. It therefore defines an

invariant action.

The above argument can be refined for arbitrary values of (D, p;N0, N1). In appendix A

we derive a general invariance condition that states, for given values of (D, p;N0, N1), for
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which n the Lagrangian densities
(n)

B corresponding to the algebra g(N0, N1) define an

invariant action. Depending on the values of p we find that these invariance conditions

read as follows:

p = 0

{
D = 3 n 6 N0

D 6= 3 n 6 N1 +D − 4
(4.16a)

1 6 p 6 D − 3

{
D = p+ 3 n 6 N0

D 6= p+ 3 n 6 N1 +D − p− 4
(4.16b)

p = D − 2 n 6 N1 (4.16c)

p = D − 1 n 6 N0 . (4.16d)

From these conditions, we may also derive that, for given (D, p), the smallest algebra

consistent with the invariance of the Lagrangian density
(n)

B is given by

D > p+ 3 g(n−D + p+ 3, n−D + p+ 4) (4.17a)

D = p+ 3 g(n, n− 1) (4.17b)

D = p+ 2 g(n− 1, n) (4.17c)

D = p+ 1 g(n, n− 1) . (4.17d)

In the case with n = 0 it is understood that the algebra g(0,−1) corresponds to V0.

Note also that in the expansion of B, the value of n in all terms
(n)

B is even (resp. odd) when

D − p− 1 is even (resp. odd).

We are now in a position that allows us to perform the Lie algebra expansion of

the first-order Einstein-Hilbert Lagrangian (4.14). In terms of the gauge fields given in

eqs. (3.5a)–(3.5e) and the curvatures defined by (3.6) this Lagrangian density is given by

B = εA0A1...Apap+1...aD−1

[(
D − 2

p− 1

)
RA0A1(J) ∧ Eap+1 ∧ Eap+2

+

(
D − 2

p+ 1

)
Rap+1ap+2(J) ∧ τA0 ∧ τA1

+2

(
D − 2

p

)
RA0ap+1(G) ∧ Eap+2 ∧ τA1

]
∧ τA2 ∧ . . . ∧ τAp ∧ Eap+3 ∧ . . . ∧ EaD−1 .

(4.18)

Following the general procedure, considering the decomposition (3.7), as an example we

expand this Lagrangian density order by order in λ considering the algebra g(2, 1). For

general values of D and p the lowest-order term in the expansion is given by

(D−p−3)

B = εA0A1...Apap+1...aD−1

(
D − 2

p+ 1

)
(0)

Rap+1ap+2(J) ∧ (0)
τA0 ∧ . . . ∧ (0)

τAp ∧
(1)

Eap+3 ∧ . . . ∧
(1)

EaD−1 .

(4.19a)
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Using the short-hand notation

(k)

Ea1...ak =
(1)

Ea1 ∧ . . . ∧
(1)

Eak , (4.20a)
(2k)
τ A1...An =

(2)
τA1 ∧ . . . . ∧ (2)

τAk ∧ (0)
τAk+1 ∧ . . . ∧ (0)

τAn , (4.20b)

we can write the term of order D − p− 3 + 2k as follows:

(D−p−3+2k)

B =

{(
D−2

p−1

)[(
p−1

k−1

)
(0)

RA0A1(J)∧(2k−2)
τ A2...Ap

+

(
p−1

k−2

)
(2)

RA0A1(J)∧(2k−4)
τ A2...Ap

]
∧
(D−p−1)

Eap+1...aD−1

+

(
D−2

p+1

)[(
p+1

k

)
(0)

Rap+1ap+2(J)∧(2k)τ A0...Ap

+

(
p+1

k−1

)
(2)

Rap+1ap+2(J)∧(2k−2)
τ A0...Ap

]
∧
(D−p−3)

Eap+3...aD−1

+2(−1)p
(
D−2

p

)(
p

k−1

)
(1)

RA0ap+1(G)∧(2k−2)
τ A1...Ap∧

(D−p−2)

Eap+2...aD−1

}
εA0...Apap+1...aD−1

.

(4.21)

Using the invariance conditions (4.16) it is now straightforward to find out, in the

general case, for which order n the action term
(n)

B, for a given value of (D, p;N0, N1),

defines an action that is invariant under the expanded Lorentz transformations and general

coordinate transformations. In the next section we give five examples thereby reproducing

several results in the literature.

5 Examples

In this section we present five examples of invariant actions that satisfy the invariance

conditions (4.16), see also table 1.

Example 1: (D, p;N0, N1) = (4, 0; 0, 1). This example leads to the 4D Galilei gravity

action which was extensively discussed in [5]. The same action can be obtained by

taking a particular limit of the Einstein-Hilbert action [5].

Example 2: (D, p;N0, N1) = (3, 0; 2, 1). This example reproduces the action of extended

Bargmann gravity constructed in [6–8].

Example 3: (D, p;N0, N1) = (3, 0; 4, 3). This example reproduces the extended Newto-

nian gravity algebra and the corresponding action constructed in [17].

Example 4: (D, p;N0, N1) = (4, 0; 2, 3). This is the example alluded to above where

the first algebra g(2, 1) beyond the Galilei algebra cannot be used to construct an

invariant action. Instead, in order to obtain an invariant action one has to proceed to

the next order and bigger algebra g(2, 3). This is the same algebra that occurs in [9,

10]. We will compare the resulting action with the one of [9, 10] in the conclusions.
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Algebra (D,p) = (3,0) (D,p) = (4,0) (D,p) = (4,1)

g(0, 1)
(0)

B
(1)

B
(0)

B

g(2, 1)
(2)

B
(1)

B
(2)

B

g(2, 3)
(2)

B
(3)

B
(2)

B

g(4, 3)
(4)

B
(3)

B
(4)

B

Table 1. In the table we list, for different values of (D, p;N0, N1) the highest order term
(n)

B that

is invariant under the algebra g(N0, N1) appearing in the first column. The first line corresponds

to Galilei gravity that always occurs as the lowest-order term in the Lie algebra expansion. In

this section we are going to discuss the five cases (D, p;N0, N1) = (3, 0; 2, 1), (4, 0; 0, 1), (4, 0; 2, 3),

(4, 1; 2, 1) and (3, 0; 4, 3).

Example 5: (D, p;N0, N1) = (4, 1; 2, 1). This example reproduces the algebra and action

of extended string Newton-Cartan gravity constructed in [16].

5.1 4D Galilei gravity

In this example we perform a Lie algebra expansion with a truncation to the lowest-order

Galilei algebra g(0, 1):12

τµ =
(0)
τµ (5.1a)

Ωµ
ab =

(0)

Ωµ
ab (5.1b)

Eµ
A = λ

(1)

Eµ
A , (5.1c)

Ωµ
0a = λ

(1)

Ωµ
a . (5.1d)

This leads to the following curvatures:

(0)

Rab(J) = d
(0)

Ωab −
(0)

Ωac ∧
(0)

Ωb
c , (5.2a)

(0)

R0(H) = d
(0)
τ , (5.2b)

(1)

Ra(G) = d
(1)

Ωa +
(0)

Ωab ∧
(1)

Ωb , (5.2c)
(1)

Ra(P ) = d
(1)

Ea +
(0)

Ωab ∧
(1)

Eb −
(1)

Ωa ∧ (0)
τ . (5.2d)

Substituting the expansion (5.1) into the Einstein-Hilbert action (4.12), and taking

the first-order term in the expansion, leads to the 4D Galilei action

SGal =

∫
d4x εµνρσεabc

(1)

Eµ
a (0)
τν

(0)

Rρσ
bc(J) . (5.3)

12Note that this lowest-order truncation leads in any dimension to a Galilei gravity theory.
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Note that the action does not contain the boost connection. This action is invariant

under local spatial rotations, Galilean boosts, general coordinate transformations and an

accidental local scale symmetry [5]. Note that in this case the expansion of the general

coordinate transformations only leads to general coordinate transformation but no further

symmetries.

Using the identity

(3)

E = det (
(0)
τµ,

(1)

Eµ
a) =

1

3!
εµνρσεabc

(0)
τµ

(1)

Eν
a
(1)

Eρ
b
(1)

Eσ
c (5.4)

this Galilei action can be rewritten in the alternative form13

SGal =
1

3!

∫
d4x

(3)

E
(−1)

Eµ a
(−1)

Eν b
(0)

Rµν
ab(J) . (5.5)

where we have expanded the inverse Vierbein as

τµ =
(0)
τ µ , (5.6a)

Eµa = λ−1
(−1)

Eµ a . (5.6b)

The equations of motion corresponding to the Galilei action, written in the form (5.3)

or (5.5), are given by [5]14

(−1)

Eµ a
(−1)

Eν b∂[µ
(0)
τν] = 0 , (5.7a)

τµ
(−1)

Eν a∂[µ
(0)
τν] =

1

2

(−1)

Rab
b(P ) , (5.7b)

(−2)

Rab
c(P ) = −δc[a

(−2)

Rb]d
d(P ) , (5.7c)

(−1)

Rµb
ab(J) = 0 . (5.7d)

A notable feature of the Galilei action is that there is no second-order formulation where

all spin connections become dependent [5]. One is left with an independent spin connection

component that acts as a Lagrange multiplier leading the geometrical constraint that the

geometry has twistless torsion, see eq. (5.7a).

5.2 3D extended Bargmann gravity

In this subsection we will show that the second example, i.e. (D, p;N0, N1) = (3, 0; 2, 1),

leads to the action of 3D Extended Bargmann gravity constructed in [6–8].

We write the 3-dimensional indices as Â = {0, a}, with a = 1, 2, and decompose the

generators as follows:

JÂB̂ → {J,Ga} , (5.8a)

PÂ → {Pa, H} , (5.8b)

13See eq. (4.24) of [5].
14Note that the last equation has only 12 instead of 16 components as one naively would expect. The

reason for this is that the 4D Galilei action is not only invariant under the 3 local Galilean boosts but also

under the accidental local scale symmetry mentioned above.
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where we have defined Ga = J0a, H = P0, and J = J12 = 1
2ε
abJab. The non-vanishing

commutation relations between these generators read

[Ga, Pb] = δabH , (5.9a)

[Ga, H] = Pa , (5.9b)

[J, Pa] = −ε ba Pb , (5.9c)

[J,Ga] = −ε ba Gb , (5.9d)

[Ga, Gb] = −εabJ . (5.9e)

We next introduce the following 1-form gauge fields associated to the generators

J → Ω , (5.10a)

H → τ , (5.10b)

Pa → Ea , (5.10c)

Ga → Ωa . (5.10d)

The corresponding curvatures are (omitting form indices)

R(J) = dΩ− εabΩa ∧ Ωb , (5.11a)

R(H) = dτ + δabΩ
a ∧ Eb , (5.11b)

Ra(P ) = dEa + Ωa ∧ τ − εabΩ ∧ Eb , (5.11c)

Ra(G) = dΩa − εabΩ ∧ Ωb . (5.11d)

We now expand the Lie algebra with respect to the decomposition g = V0 ⊕ V1 with

V0 = {J,H}, and V1 = {Pa, Ga} . (5.12)

Imposing the consistent truncation (N0, N1) = (2, 1), the expansions of the gauge fields

are given by

Ω =
(0)

Ω + λ2
(2)

Ω , (5.13a)

τ =
(0)
τ + λ2

(2)
τ , (5.13b)

Ea = λ
(1)

Ea , (5.13c)

Ωa = λ
(1)

Ωa . (5.13d)

The corresponding curvature 2-forms are given by:

(0)

R(J) = d
(0)

Ω , (5.14a)
(0)

R(H) = d
(0)
τ , (5.14b)

(2)

R(J) = d
(2)

Ω− εab
(1)

Ωa ∧
(1)

Ωb , (5.14c)
(2)

R(H) = d
(2)
τ + δab

(1)

Ωa ∧
(1)

Eb , (5.14d)
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(1)

Ra(G) = d
(1)

Ωa − εab
(0)

Ω ∧
(1)

Ωb , (5.14e)
(1)

Ra(P ) = d
(1)

Ea +
(1)

Ωa ∧ (0)
τ − εab

(0)

Ω ∧
(1)

Eb . (5.14f)

In order to construct an action, we consider the 3D Einstein-Hilbert Lagrangian density

given by

B = εÂB̂ĈR
ÂB̂(J) ∧ EĈ = 2R(J) ∧ τ + 2εabR

a(G) ∧ Eb . (5.15)

Expanding order by order we obtain for the lowest-order term

(0)

B =
(0)

R(J) ∧ (0)
τ . (5.16)

This is precisely the action of 3D Galilei gravity, see eq. (4.44) of [5]. The underlying

algebra g(0, 1) corresponding to this truncation is the Galilei algebra which is the Inönü-

Wigner contraction of the Poincaré algebra with respect to the subalgebra V0 defined in

eq. (5.12). This is the 3D analogue of the first example.

Next, we consider the second-order term

(2)

B = 2
(0)

R(J) ∧ (2)
τ + 2

(2)

R(J) ∧ (0)
τ + 2εab

(1)

Ra(G) ∧
(1)

Eb . (5.17)

Relabeling the gauge fields as

(0)

Ω = Ω , (5.18a)
(2)

Ω = s , (5.18b)
(0)
τ = τ , (5.18c)
(2)
τ = m, (5.18d)

(1)

Ωa = Ωa , (5.18e)
(1)

Ea = Ea , (5.18f)

this term reads
(2)

B = 2R(J) ∧m+ 2R(S) ∧ τ + 2εabR
a(G) ∧ Eb , (5.19)

which is precisely the Lagrangian of 3D extended Bargmann gravity [6–8].

The corresponding algebra g(2, 1) that occurs in the Lie algebra expansion is given by

[
(1)

Ga,
(1)

Pb] = δab
(2)

H , (5.20a)

[
(1)

Ga,
(0)

H] =
(1)

Pa , (5.20b)

[
(0)

J,
(1)

Pa] = −εab
(1)

P a , (5.20c)

[
(0)

J,
(1)

Ga] = −εab
(1)

Ga , (5.20d)

[
(1)

Ga,
(1)

Gb] = −εab
(2)

J . (5.20e)
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Identifying
(2)

J = S and
(2)

H = Z and using for the lowest order terms the labels of the

initial field, the non-zero commutators of the algebra read

[Ga, Pb] = δabZ , (5.21a)

[Ga, H] = Pa , (5.21b)

[J, Pa] = −εabP a , (5.21c)

[J,Ga] = −εabGa , (5.21d)

[Ga, Gb] = −εabS , (5.21e)

which is the extended Bargmann algebra of [6–8]. One may verify that the transformation

rules obtained by our procedure coincide with the ones of [6–8]. We observe that the

gauge field s corresponding to the generator S does not occur in the action (5.19) although

it nevertheless defines a symmetry of the action acting on the other fields. A similar

phenomenon occurs in example 3.

Note that in this example the expansion of the general coordinate transformations leads

to further symmetries but these are related, up to trivial symmetries, to the expanded P -

transformations. For instance, expanding

ξµ =
(0)

ξµ + λ2
(2)

ξµ (5.22)

one finds that the gauge field
(2)
τµ, up to a trivial symmetry of the expanded action, trans-

forms as δ
(2)
τµ = ∂µ

((2)
ξλ

(0)
τλ) which is precisely an expanded P transformation with

(2)
η 0 =

(2)

ξλ
(0)
τλ.

5.3 3D extended Newtonian gravity

In this subsection we study the case (D, p;N0, N1) = (3, 0; 4, 3). We show that this corre-

sponds to the algebra given in [17] and we reproduce the corresponding action.

We consider the same setting as in subsection 5.2 with the same subspace decom-

position of the algebra, but now we truncate the expansion of the gauge fields at order

(N0, N1) = (4, 3). Explicitly, we have

Ω =
(0)

Ω + λ2
(2)

Ω + λ4
(4)

Ω , (5.23a)

τ =
(0)
τ + λ2

(2)
τ + λ4

(4)
τ , (5.23b)

Ea = λ
(1)

Ea + λ3
(3)

Ea , (5.23c)

Ωa = λ
(1)

Ωa + λ3
(3)

Ωa . (5.23d)

The corresponding curvature 2-forms are given by:

(0)

R(J) = d
(0)

Ω , (5.24a)
(0)

R(H) = d
(0)
τ , (5.24b)

(2)

R(J) = d
(2)

Ω− εab
(1)

Ωa ∧
(1)

Ωb , (5.24c)
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(2)

R(H) = d
(2)
τ + δab

(1)

Ωa ∧
(1)

Eb , (5.24d)
(4)

R(J) = d
(4)

Ω− 2εab
(1)

Ωa ∧
(3)

Ωb , (5.24e)
(4)

R(H) = d
(2)
τ + δab

(1)

Ωa ∧
(3)

Eb + δab
(3)

Ωa ∧
(1)

Eb , (5.24f)
(1)

Ra(G) = d
(1)

Ωa − εab
(0)

Ω ∧
(1)

Ωb , (5.24g)
(1)

Ra(P ) = d
(1)

Ea +
(1)

Ωa ∧ (0)
τ − εab

(0)

Ω ∧
(1)

Eb , (5.24h)
(3)

Ra(G) = d
(3)

Ωa − εab
(0)

Ω ∧
(3)

Ωb − εab
(2)

Ω ∧
(1)

Ωb , (5.24i)
(3)

Ra(P ) = d
(3)

Ea +
(3)

Ωa ∧ (0)
τ +

(1)

Ωa ∧ (2)
τ − εab

(0)

Ω ∧
(3)

Eb − εab
(2)

Ω ∧
(1)

Eb . (5.24j)

We consider the Einstein-Hilbert action eq. (5.15) and consider the expansion defined

above, but now we focus on the fourth-order term
(4)

B which for the truncation we consider

defines an invariant action. We obtain
(4)

B = εab

[
(1)

Ra(G) ∧
(3)

Eb +
(3)

Ra(G) ∧
(1)

Eb +
(0)

Rab(J) ∧ (4)
τ +

(2)

Rab(J) ∧ (2)
τ +

(4)

Rab(J) ∧ (0)
τ

]
. (5.25)

Relabeling the gauge fields as

(0)

Ω = ω , (5.26a)
(2)

Ω = s , (5.26b)
(4)

Ω = z , (5.26c)
(0)
τ = τ , (5.26d)
(2)
τ = m, (5.26e)
(4)
τ = −y , (5.26f)

(1)

Ωa = ωa , (5.26g)
(3)

Ωa = ba , (5.26h)
(1)

Ea = εabeb , (5.26i)
(3)

Ea = εabtb, (5.26j)

the action above takes the form
(4)

B = R(S) ∧m+R(Z) ∧ τ −R(J) ∧ y −Ra(G) ∧ ta −Ra(B) ∧ ea, (5.27)

where we have used the notation R(J) = εabR
ab(J) and the same for the curvatures asso-

ciated with S and Z. This action corresponds to the action appearing in [17].

Let us take a closer look to the algebra g(4, 3). The non-zero commutators of the

algebra g(4, 3) are given explicitly by

[
(0)

Jab,
(1)

Gd] = 2ηd[b
(1)

Ga] (5.28a)

[
(0)

Jab,
(3)

Gd] = 2ηd[b
(3)

Ga] (5.28b)

– 20 –



J
H
E
P
0
8
(
2
0
1
9
)
0
4
8

[
(2)

Jab,
(1)

Gd] = 2ηd[b
(3)

Ga] (5.28c)

[
(1)

Ga,
(1)

Gb] =
(2)

Jab (5.28d)

[
(1)

Ga,
(3)

Gb] =
(4)

Jab (5.28e)

[
(0)

Jab,
(1)

Pd] = 2ηd[b
(1)

Pa] (5.28f)

[
(0)

Jab,
(3)

Pd] = 2ηd[b
(3)

Pa] (5.28g)

[
(2)

Jab,
(1)

Pd] = 2ηd[b
(3)

Pa] (5.28h)

[
(1)

Ga,
(0)

H] =
(1)

Pa (5.28i)

[
(1)

Ga,
(2)

H] =
(3)

Pa (5.28j)

[
(3)

Ga,
(0)

H] =
(3)

Pa (5.28k)

[
(1)

Ga,
(1)

Pb] = ηab
(2)

H (5.28l)

[
(1)

Ga,
(3)

Pb] = ηab
(4)

H (5.28m)

[
(3)

Ga,
(1)

Pb] = ηab
(4)

H. (5.28n)

With the identifications

(0)

Jab = εabJ, (5.29a)
(2)

Jab = εabS, (5.29b)
(4)

Jab = εabZ, (5.29c)
(0)

H = H, (5.29d)
(2)

H = M, (5.29e)
(4)

H = −Y, (5.29f)
(1)

Pa = εabP
b, (5.29g)

(3)

Pa = εabT
b, (5.29h)

(1)

Ga = Ga, (5.29i)
(3)

Ga = Ba, (5.29j)

the algebra above reproduces exactly the algebra of [17]:

[J,Ga] = −εabGb, (5.30a)

[J,Ba] = −εabBb, (5.30b)

[S,Ga] = −εabBb, (5.30c)

[Ga, Gb] = εabS, (5.30d)
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[Ga, Bb] = εabZ, (5.30e)

[J, Pa] = −εabP b, (5.30f)

[J, Ta] = −εabT b, (5.30g)

[S, Pa] = −εabT b, (5.30h)

[Ga, H] = εabP
b, (5.30i)

[Ga,M ] = εabT
b, (5.30j)

[Ba, H] = εabT
b, (5.30k)

[Ga, Pb] = εabM, (5.30l)

[Ga, Tb] = −εabY, (5.30m)

[Ba, Pb] = −εabY. (5.30n)

5.4 Beyond 4D Galilei gravity

In this subsection we consider the example (D, p;N0, N1) = (4, 0; 2, 3). Since the indices

A,B,C . . . only take the value 0, we will suppress them. The decomposition of the gener-

ators in this case read

JÂB̂ → {Jab, Ga} , (5.31a)

PÂ → {H,Pa} , (5.31b)

with a = 1, 2, 3. The non-vanishing commutators between these generators are given by

[Ga, Pb] = δabH , (5.32a)

[Ga, H] = Pa , (5.32b)

[Jab, Pc] = δbcPa − δacPb , (5.32c)

[Jab, Gc] = δbcGa − δacGb , (5.32d)

[Jab, Jcd] = 4δ[a[cJd]b] , (5.32e)

[Ga, Gb] = Jab . (5.32f)

We associate the following gauge fields to these curvatures:

Jab → Ωab , (5.33a)

Pa → Ea , (5.33b)

Ga → Ωa , (5.33c)

H → τ . (5.33d)

The corresponding curvatures are defined by

Rab(J) = dΩab − Ωac ∧ Ωb
c + Ωa ∧ Ωb , (5.34a)

Ra(G) = dΩa + Ωab ∧ Ωb , (5.34b)

Ra(P ) = dEa + Ωab ∧ Eb + Ωa ∧ τ , (5.34c)

RA(H) = dτ + Ωa ∧ Ea . (5.34d)
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We now consider a Lie algebra expansion according to the decomposition g = V0 ⊕
V1 with

V0 = {Jab, H} , and V1 = {Ga, Pa} , (5.35)

Following table 1, we impose the truncation (N0, N1) = (2, 3) in order to construct the

first action that goes beyond the lowest-order Galilei gravity action discussed in the first

example. This particular truncation induces the following expansion

Ωab =
(0)

Ωab + λ2
(2)

Ωab , (5.36a)

τ =
(0)
τ + λ2

(2)
τ , (5.36b)

Ωa = λ
(1)

Ωa + λ3
(3)

Ωa , (5.36c)

Ea = λ
(1)

Ea + λ3
(3)

Ea , (5.36d)

We now substitute this expansion into the first-order Einstein-Hilbert Lagrangian den-

sity 4-form

B = εÂB̂ĈD̂R
ÂB̂ ∧ EĈ ∧ ED̂ = 2εabc

(
Ra(G) ∧ Eb ∧ Ec −Rab(J) ∧ Ec ∧ τ

)
, (5.37)

and we find at lowest order

(1)

B = −2εabc
(0)

Rab(J) ∧
(1)

Ec ∧ (0)
τ . (5.38)

As expected, this corresponds precisely to the action (5.3) of 4D Galilei gravity dis-

cussed in the first example.

It is only when we consider the truncation (N0, N1) = (2, 3), but not the stronger

truncation (N0, N1) = (2, 1). that the next order term
(3)

B also leads to an invariant action:

(3)

B = 2εabc
(1)

Ra(G) ∧
(1)

Eb ∧
(1)

Ec − 2εabc
(2)

Rab(J) ∧
(1)

Ec ∧ (0)
τ

−2εabc
(0)

Rab(J) ∧
(1)

Ec ∧ (2)
τ − 2εabc

(0)

Rab(J) ∧
(3)

Ec ∧ (0)
τ . (5.39)

This is the first action in the Lie algebra expansion that goes beyond 4D Galilei gravity.

Note that, although this action does not depend on
(3)

Ωa, it is invariant under the gauge

transformations of parameter
(3)

λa (see eq. (B.3)). This is similar to the situation described

in section 5.1.

The definition of the different curvatures and the transformation rules of the gauge

fields and curvatures follow from the Lie algebra expansion. For the convenience of the

reader, we have given the explicit expressions in appendix B.

The algebra g(2, 3) underlying the action (5.39) is given by

[
(1)

Ga,
(1)

Pb] = δab
(2)

H (5.40a)

[
(1)

Ga,
(0)

H] =
(1)

Pa (5.40b)

[
(3)

Ga,
(0)

H] =
(3)

Pa (5.40c)
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[
(1)

Ga,
(2)

H] =
(3)

Pa (5.40d)

[
(0)

Jab,
(1)

Pc] = δbc
(1)

Pa − δac
(1)

Pb (5.40e)

[
(0)

Jab,
(3)

Pc] = δbc
(3)

Pa − δac
(3)

Pb (5.40f)

[
(2)

Jab,
(1)

Pc] = δbc
(3)

Pa − δac
(3)

Pb (5.40g)

[
(0)

Jab,
(1)

Gc] = δbc
(1)

Ga − δac
(1)

Gb (5.40h)

[
(0)

Jab,
(3)

Pc] = δbc
(3)

Ga − δac
(3)

Gb (5.40i)

[
(2)

Jab,
(1)

Gc] = δbc
(3)

Ga − δac
(3)

Gb (5.40j)

[
(0)

Jab,
(0)

Jcd] = 4δ[a[c
(0)

Jd]b] (5.40k)

[
(0)

Jab,
(2)

Jcd] = 4δ[a[c
(2)

Jd]b] (5.40l)

[
(1)

Ga,
(1)

Gb] =
(2)

Jab . (5.40m)

Upon making the identifications

N =
(2)

H , (5.41a)

Sab =
(2)

Jab , (5.41b)

Ta =
(3)

Pa , (5.41c)

Ba =
(3)

Ga , (5.41d)

and assigning the lowest-order terms the same labels as the original generators, this is pre-

cisely the algebra appearing in [9, 10]. Note that we are using here a first-order formulation

of the action as opposed to the second-order formulation used in [9, 10]. We will discuss

and compare the two actions in the Conclusions.

5.5 4D extended string Newton-Cartan gravity

The last example we consider corresponds to the case (D, p;N0, N1) = (4, 1; 2, 1). It will

lead to an extension of the String Newton-Cartan Gravity theory that underlies nonrela-

tivistic string theory. In this case we decompose the generators of the Poincaré algebra as

follows:

JÂB̂ → {M,GAa, J} , (5.42a)

PÂ → {HA, Pa} , (5.42b)

where A = {0, 1} and a = {2, 3}.15 The non-vanishing commutation relations in terms of

these generators are given by

[M,HA] = −ε BA HB , (5.43a)

[J, Pa] = −ε ba Pb , (5.43b)

15We use the conventions ε23 = +1, ε01 = +1 for εab and εAB . Furthermore, we have defined J = J23 =
1
2
εabJ

ab and M = J01 = 1
2
εABJ

AB .
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[HA, Gba] = ηABPa , (5.43c)

[M,GAa] = −ε BA GBa , (5.43d)

[J,GAa] = −ε ba GAb , (5.43e)

[GAa, Pb] = δabHA , (5.43f)

[GAa, GBb] = −ηABεabJ + ηabεABM . (5.43g)

The corresponding gauge fields are renamed as follows:

J → Ω , (5.44a)

M → Σ , (5.44b)

GAb → ΩAb , (5.44c)

Pa → Ea , (5.44d)

HA → τA . (5.44e)

The expanded curvatures of these gauge fields are defined by

R(J) = dΩ− ηABεabΩAa ∧ ΩBb , (5.45a)

R(M) = dΣ + ηabεABΩAa ∧ ΩBb , (5.45b)

RA(H) = dτA − εABΣ ∧ τB + δabΩ
Aa ∧ Eb , (5.45c)

Ra(P ) = dEa − εabΩ ∧ Eb − ηABΩAa ∧ τB , (5.45d)

RAa(G) = dΩAa − εabΩ ∧ ΩA
b + εABΩ ∧ Ω a

B . (5.45e)

We now consider the Lie algebra expansion with respect to the following decomposition

g = V0 ⊕ V1 with

V0 = {J,M,HA}, and V1 = {Pa, GAa} , (5.46)

The truncation (N0, N1) = (2, 1) induces the finite expansions

Ω =
(0)

Ω + λ2
(2)

Ω , (5.47a)

Σ =
(0)

Σ + λ2
(2)

Σ , (5.47b)

τA =
(0)
τA + λ2

(2)
τA , (5.47c)

ΩAb = λ
(1)

ΩAb , (5.47d)

Ea = λ
(1)

Ea . (5.47e)

The curvatures of these gauge fields are given by

(0)

R(J) = d
(0)

Ω , (5.48a)
(2)

R(J) = d
(2)

Ω− ηABεab
(1)

ΩAa ∧
(1)

ΩBb , (5.48b)
(0)

R(M) = d
(0)

Σ , (5.48c)
(2)

R(M) = d
(2)

Σ + ηabεAB
(1)

ΩAa ∧
(1)

ΩBb , (5.48d)
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(0)

RA(H) = d
(0)
τA − εAB

(0)

Σ ∧ (0)
τB , (5.48e)

(2)

RA(H) = d
(2)
τA − εAB

(2)

Σ ∧ (0)
τB − εAB

(0)

Σ ∧ (2)
τB + δab

(1)

ΩAa ∧
(1)

Eb , (5.48f)
(1)

Ra(P ) = d
(1)

Ea − εab
(0)

Ω ∧
(1)

Eb − ηAB
(1)

ΩAa ∧ (0)
τB , (5.48g)

(1)

RAa(G) = d
(1)

ΩAa − εab
(0)

Ω ∧
(1)

ΩA
b + εAB

(0)

Ω ∧
(1)

Ω a
B . (5.48h)

Substituting the above expansions into the first-order Einstein-Hilbert Lagrangian den-

sity 4-form

B = εÂB̂ĈD̂R
ÂB̂ ∧ EĈ ∧ ED̂

= 2εcdR(M) ∧ Ec ∧ Ed + 2εCDR(J) ∧ τC ∧ τD − 4εABεabR
Aa(G) ∧ τB ∧ Eb . (5.49)

we find that the lowest-order term in the expansion

(0)

B = 2εAB
(0)

R(J) ∧ (0)
τA ∧ (0)

τB . (5.50)

is, as expected, the action of 4D string Galilei gravity whose underlying algebra is the

string Galilei algebra discussed in the introduction.

The next order term leading to an invariant action is given by

(2)

B = 2εab
(0)

R(M) ∧
(1)

Ea ∧
(1)

Eb + 2εAB

[
(2)

R(J) ∧ (0)
τA + 2

(0)

R(J) ∧ (2)
τA
]
∧ (0)
τB

− 4εABεab
(1)

RAa(G) ∧ (0)
τB ∧

(1)

Eb . (5.51)

Renaming the fields that appear at second order as

(2)
τA = mA , (5.52a)
(2)

Σ = n , (5.52b)
(2)

Ω = s , (5.52c)

and using for the lowest-order components the label of the original fields we obtain the

following expression for
(2)

B:16

(2)

B = 2εabR(M) ∧ Ea ∧ Eb + 2εABR(s) ∧ τA ∧ τB

+ 4εABR(J) ∧mA ∧ τB − 4εABεabR
Aa(G) ∧ τB ∧ Eb , (5.53)

which is precisely the Lagrangian density corresponding to the action of extended string

Newton-Cartan theory constructed in [16].

16This action has extra accidental symmetries [29] leading to the enlarged algebra given in [30].
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6 Discussion

In this work we have shown that the procedure of Lie algebra expansions provides a sys-

tematic method for constructing Lie algebras and actions for non-relativistic gravity. All

examples we have given are characterized by 4 numbers (D, p;N0, N1) where (D, p) refers

to the fact that the corresponding non-relativistic gravity theory naturally couples to a

p-brane moving in D target space dimensions and (N0, N1), with N0 = N1 ± 1, defines the

truncation of the Lie algebra expansion.

We find that, in all cases, the lowest order term in the expansion, (D, p;N0, N1) =

(D, p; 0, 1), leads to the (D, p) Galilei algebra, i.e., a D-dimensional Galilei algebra with

p + 1 longitudinal translation generators, with a corresponding action for Galilei gravity.

These Galilei gravity theories have been studied in [5]. They are a bit special in the sense

that not all gauge fields corresponding to the generators of the Galilei algebra occur in the

action.17 The next-order algebra, (D, p;N0, N1) = (D, p; 2, 1), does not necessarily allow

for an invariant action for arbitrary values of D and p. We have given three examples

(examples 1, 2 and 5 in section 5) where an invariant action did exist, and one example

(example 4 in section 5) where, for the purpose of constructing an invariant action, one

needs to go to one order higher, i.e., one needs to consider the truncation (N0, N1) = (2, 3).

We have furthermore studied an example (example 3 in section 5) with a truncation at

order (N0, N1) = (4, 3).

It is a general feature of the Lie algebra expansion that the lowest-order (D, p) Galilei

algebra can be obtained as a Inönü-Wigner contraction of the Poincaré algebra. Similarly,

the action for the (D, p) Galilei gravity can be obtained as a c→∞ limit of the first-order

Einstein-Hilbert action [5].18 It is intriguing that the actions in two of the examples we

have given, i.e., 3D extended Bargmann gravity and 4D extended string Newton-Cartan

gravity, can also be obtained as the non-relativistic limit of the first order Einstein-Hilbert

Lagrangian even though they correspond to a next-order term in the Lie algebra expansion.

However, in order to define a regular limit, one needs to add an extra term to the Einstein-

Hilbert action that contains two vectors in the case of 3D extended Bargmann gravity [7]

and a vector plus 2-form gauge field in the case of 4D extended string Newton-Cartan

gravity [16]. These two cases can be generalized to a p-brane moving inD = p+3 dimensions

in which case one has to add an extra term to the Einstein-Hilbert term involving a vector

and a (p + 1)-form gauge field [16]. The corresponding extended p-brane Newton-Cartan

algebras that can be used in the Lie algebra expansion have been given in [16].19

The purpose of the extra term is to cancel a divergence that arises from the lowest-order

term in the Lie-algebra expansion which for this class of models is proportional to

εabC1···CP+1
Rab(J) ∧ τC1 ∧ · · · ∧ τCP+1 . (6.1)

17In the 3D case, this corresponds to the fact that, unlike the Poincaré algebra, the Galilei algebra has

no invariant non-degenerate bilinear form.
18The expansion of the Vierbein in terms of our parameter λ is the same as the usual expansion in

terms of the parameter c−1, see, e.g., [31, 32], provided we multiply this Vierbein, before expanding, with

a factor c.
19The common feature of all these p-branes is that they have a two-dimensional transverse space allowing

anyonic extended objects like anyonic particles in three spacetime dimensions.
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What makes this term special is that, for D = p + 3, both [ab] and [C1 . . . CP+1] are

singlets under the longitudinal and transverse Lorentz rotations. This makes it possible

to cancel the divergence that follows from this term by adding the following term to the

Einstein-Hilbert action [16]:

εµ1···µp+3
(
∂µ1Âµ2

)
B̂µ3···µp+3 . (6.2)

It remains to be seen whether and how the third and fourth example can also be

obtained as a special limit of General Relativity. The algebra underlying the fourth example

is precisely the algebra occurring in [9, 10],20 suggesting that, perhaps, the action we

constructed and the one of [9, 10] are the same.21 As it is the case here, in [9, 10] an

expansion of both the diffeomorphisms and the Lorentz gauge parameters is used, so it

would be interesting to work out the connection (if any) with the expansions considered

here. Note that we are working here with a first-order formulation, whereas the action

of [9, 10] is presented in a second-order formulation. The fact that in such a second-

order formulation the spin-connection fields are dependent makes the connection to the

underlying algebra less straightforward. Another difference is that the geometry of [9, 10]

has twistless torsion whereas a priori we do not have such a restriction. However, it is

known from examples 1 and 5 that going to a second-order formulation after the expansion

one cannot always solve for all the spin connection fields. The spin connection fields that

cannot be solved for act as Lagrange multipliers imposing geometric constraints. For

instance, in the case of 4D Galilei gravity, the independent spin connection imposes the

constraint that the geometry has twistless torsion (see eq. (5.7a) above or eq. (4.28) of [5]).

Perhaps, a similar thing happens in the fourth example in which case the corresponding

spin connection could play the same role as the Lagrange multiplier that is added by hand

in [9, 10]. This remains to be investigated.

It is not clear how to couple the non-relativistic gravity theories constructed in this

work to a particle (examples 1–4) or a string (example 5) preserving all the symmetries.

The Galilei algebra lacks the central charge symmetry that is needed to construct a mas-

sive particle action invariant under Galilean boosts22 while the other algebras have extra

symmetries whose physical interpretation is not clear and which make them non-trivial

to realize on matter.23 In the absence of such matter couplings we prefer to reserve the

name Newton-Cartan gravity for the Bargmann algebra only and to call the non-relativistic

gravity theories that are based on the larger algebras that occur in the Lie algebra expan-

sion ‘extended Newton-Cartan gravity’. Sticking to this definition, it remains to be seen

whether an action for Newton-Cartan gravity can be constructed. The same issues arise in

20In the second reference of [9, 10] it is noted that the same algebra can be obtained following [34] in

which Lie algebra expansions from a somewhat different perspective are discussed.
21Both the action of [9, 10] and the action we constructed can be formulated in any dimension D > 3.

In our case, it requires that we take n = D − 1.
22To obtain a massive particle action invariant under Galilean boosts one needs to couple the particle to

the central charge gauge field via a Wess-Zumino term.
23For some efforts in this direction in the case of the 3D extended Bargmann algebra, see [33]. For a

recent proposal in the context of example 4, see the second reference in [9, 10].
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the string case where the 4D string NC background that couples to the Polyakov string has

less symmetries than the 4D extended string NC gravity that occurs in the last example.

An attractive feature of the Lie algebra expansion method is that it is a quite general

construction procedure and can be applied to a variety of new situations. One natural case

to consider is actions for (conformal extensions of) Carroll gravity corresponding to taking

ultra-relativistic limits. We expect that in this case the lowest order term in the expansion

of the Einstein-Hilbert action will correspond to the Carroll gravity action of [5, 35].24 One

can also apply the Lie algebra expansion method to extensions of the Poincaré algebra such

as the 3D higher-spin algebras considered in [36]. The same method can also be used to

construct new examples of supersymmetric extensions of non-relativistic gravity theories

beyond the known example of the supersymmetric extension of 3D extended Bargmann

gravity [7, 27, 28]. We hope to come back soon to these interesting issues.
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A Deriving invariance conditions of the action of the (D, p;N0, N1) al-

gebra

In this appendix we give a derivation of the invariance conditions (4.16) that have to be

satisfied for the action of a (D, p;N0, N1) non-relativistic gravity theory to be Lorentz in-

variant.25 We prove these condition to be sufficient but we do not explicitly prove that

they are necessary. We remind the reader that (D, p) refers to the fact that the corre-

sponding non-relativistic gravity theory naturally couples to a p-brane moving in D target

space dimensions and (N0, N1) with N0 = N1 ± 1 defines the truncation of the Lie algebra

expansion.

24The actions of [35] and [5] look rather different using different variables. Since they are both based

upon the same Carroll symmetries, we expect them to coincide up to redefinitions.
25We do not consider the P -transformations generated by the PÂ generators of the Poincaré algebra

since, as explained in the main text, they are represented by the general coordinate transformations that

are manifestly realized.
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Since the starting action is invariant under Lorentz transformations, in an infinite

expansion each term order by order will be invariant under all the generators that arise

in the infinite expansion of the Lorentz ones.26 However, if we perform a truncation to

the orders g(N0, N1), some of the terms at a given order may not appear, thereby spoiling

the invariance of the action. We will now discuss the conditions under which this does not

happen and the invariance is not broken.

Given the algebra decomposition g = V0 ⊕ V1, gauge fields associated with genera-

tors belonging to the two different subspaces have a different expansion. In particular,

the expansion of the fields associated with generators from V1 starts at order one in the

expansion parameter. This means that any given term in the action gives a contribution

to the full expanded action starting from a minimum order in the expansion parameter,

that we call nmin, corresponding to the number of fields associated with generators from

V1 that it contains. Starting from nmin the higher order contributions of the same term are

obtained by going up in the order of one or more of the fields appearing in it. However,

this procedure is limited by the truncation that defines an upper bound for the maximum

order in the expansion of the single fields. Focussing in the expansion of the action on the

term
(n)

B of given order n, we would like to define when the truncation at order g(N0, N1)

prevents it to contain all the possible terms appearing in the untruncated expansion. A

term in the expansion at order
(n)

B does not appear if the gap between the minimum order of

the expansion, nmin, and
(n)

B cannot be filled by a single field. This is because starting with

any term of the action, with minimum order nmin, we can always obtain a contribution

at order n by going up in the order of the expansion of a single field, keeping the others

at their minimum. This argument fixes the minimum order of the expansion of each field

such that at order n there are no missing terms.

In order to make this argument more clear let us consider an example. If we have a

Lagrangian density B given by the product of two fields, a and b, B = ab then considering

the full generic expansion (a =
∑∞

k=0

(k)
a and b =

∑∞
k=0

(k)

b ) at order n, we get the following

expression
(n)

B =

n∑

k=0

(n−k)
a

(k)

b . (A.1)

After the truncation, the expansion of both fields a and b contains terms to a maximum

order, say na and nb respectively, then the term above should be written as

(n)

B =

min{nb, n}∑

k=max{0, n−na}

(n−k)
a

(k)

b . (A.2)

Thus, if

n 6 min{nb, na}, (A.3)

then eq. (A.1) will contain all the terms appearing in eq. (A.2). This argument can be

straightforwardly generalized to a Lagrangian term containing more fields, as in our case.

26These include Lorentz transformations in the longitudinal directions, spatial rotations in the transverse

directions plus Galilean boosts.
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Term Min Order Max Order Existence Only V0 Terms Only V1 Terms

B1 D − p− 1 (D − p− 1)N1 + pN0 1 6 p 6 D − 1 D = p+ 1 —

B2 D − p− 3 (D − p− 3)N1 + (p+ 2)N0 0 6 p 6 D − 3 D = p+ 3 —

B3 D − p− 1 (D − p− 1)N1 + pN0 0 6 p 6 D − 2 — p = 0

Table 2. This table indicates the minimum and maximum order of each term, the existence

conditions, that are also depicted in figure 1, and the conditions under which each term contains

only fields coming from one of the subspaces.

In our case, the condition discussed above can be translated into the following

n 6 N0 + nmin , n 6 N1 − 1 + nmin, (A.4)

where the −1 in the second takes into account the fact that the minimum order for V1 is

1. Therefore, in order to preserve the invariance of the action, we must require

n 6 min{N0, N1 − 1}+ nmin . (A.5)

However, this condition applies to a general term containing both fields from V0 and V1.

As we are going to discuss there could be certain values of D and p for which a term in the

Lagrangian contains only fields of one of the subspaces. For those cases eq. (A.5) is too

strong. Instead, only one of the conditions given in eqs. (A.4) should be satisfied.

To derive the invariance conditions, it is convenient to decompose the expanded La-

grangian eq. (4.18) into three terms:

B1 =

(
D − 2

p− 1

)
RA0A1(J) ∧ τA2 ∧ . . . ∧ τAp ∧ Eap+1 ∧ . . . ∧ EaD−1 , (A.6a)

B2 =

(
D − 2

p+ 1

)
Rap+1ap+2(J) ∧ τA0 ∧ . . . ∧ τAp ∧ Eap+3 ∧ . . . ∧ EaD−1 , (A.6b)

B3 = +2(−1)p
(
D − 2

p

)
RA0ap+1(G) ∧ τA1 ∧ . . . ∧ τAp ∧ Eap+2 ∧ . . . ∧ EaD−1 . (A.6c)

See table 2 and figure 1 for more information. Note that although formally B2 is defined

for p = −1, its expansion is not well defined since for p = −1 Rap+1ap+2 would have been

in V0 but there is no V0. For this reason we do not consider the case p = −1.

In order to find the invariance conditions we must evaluate eq. (A.5) for each term in

the different existence regions, taking into account the special values of D and p for which

the terms we are considering contain only fields from one of the subspaces V0 or V1.

For instance, if we take p = 0 we see from table 2 that only the terms B2 and B3 exist

and that B3 has only contributions from V1. Thus, the invariance conditions read

n 6 N1 +D − 2. (A.7a)

For B2 instead we should distinguish the following two cases:
{
D = 3 n 6 N0 ,

D 6= 3 n 6 min{N0, N1 − 1}+D − 3 .
(A.7b)
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0 1 2 D-3 D-2p
B2

B1

B3

D-1

Figure 1: Existence conditions of the terms B1, B2 and B3 in the action that could be read from tab. (1).

For B2 instead we should distinguish two cases,

{
D = 3 n � min{N0, N1 + 1}
D �= 3 n � min{N0, N1 − 1}+D − 3

(40b)

Putting together these two conditions we deduce that for p = 1 the invariance of
(n)

B under Lorentz
is preserved if

{
D = 3 n � min{N0, N1 + 1}
D �= 3 n � min{N0, N1 − 1}+D − 3

(40c)

Studying the different conditions for different p values we deduce the invariance conditions

p = 1

{
D = 3 n � min{N0, N1 + 1}
D �= 3 n � min{N0, N1 − 1}+D − 3

(41a)

2 � p � D − 2

{
D = p+ 2 n � min{N0,min{N0, N1 − 1}+ 2}
D �= p+ 2 n � min{N0, N1 − 1}+D − p− 2

(41b)

p = D − 1 n � min{N0, N1 − 1}+ 1 (41c)

p = D n � N0 (41d)

We note that the case p = 0 is not realized. Furthermore for the two allowed cases N1 ± 1 = N0

the conditions above, due also to min{N0, N1 − 1} = min{N1 ± 1, N1 − 1} = N1 − 1, simplify to

p = 1

{
D = 3 n � N0

D �= 3 n � N1 +D − 4
(42a)

2 � p � D − 2

{
D = p+ 2 n � N0

D �= p+ 2 n � N1 +D − p− 3
(42b)

p = D − 1 n � N1 (42c)

p = D n � N0 (42d)

As an example in the cases D = 5 N0 = 2 we show the conditions in tab. (2) for the two possible
algebras g(2, 1) and g(2, 3) and the different values of p.

8

Figure 1. Existence conditions of the terms B1, B2 and B3 in the action that could be read from

table 2.

Putting together these two conditions we deduce that for p = 0 the term
(n)

B is invariant

provided that eq. (A.7b) is satisfied.

Studying in a similar way the different invariance conditions for different values of p,

we deduce the following conditions:

p = 0

{
D = 3 n 6 N0 ,

D 6= 3 n 6 min{N0, N1 − 1}+D − 3 ,
(A.8a)

1 6 p 6 D − 3

{
D = p+ 3 n 6 min{N0,min{N0, N1 − 1}+ 2} ,
D 6= p+ 3 n 6 min{N0, N1 − 1}+D − p− 3 ,

(A.8b)

p = D − 2 n 6 min{N0, N1 − 1}+ 1 , (A.8c)

p = D − 1 n 6 N0 . (A.8d)

We note that the case p = −1 is not realized. For the two allowed cases N1 ± 1 = N0

the conditions above can be simplified, using the identity

min{N0, N1 − 1} = min{N1 ± 1, N1 − 1} = N1 − 1 , (A.9)

as follows:

p = 0

{
D = 3 n 6 N0

D 6= 3 n 6 N1 +D − 4
(A.10a)

1 6 p 6 D − 3

{
D = p+ 3 n 6 N0

D 6= p+ 3 n 6 N1 +D − p− 4
(A.10b)

p = D − 2 n 6 N1 (A.10c)

p = D − 1 n 6 N0 . (A.10d)

As an example, we give in table 3 the solution of the invariance conditions for D = 5

and different values of p corresponding to the truncated algebras g(2, 1) and g(2, 3).
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Algebra (D=5) p = 0 p = 1 p = 2 p = 3 p = 4

g(2, 1) n 6 2 n 6 1 n 6 2 n 6 1 n 6 2

g(2, 3) n 6 4 n 6 3 n 6 2 n 6 3 n 6 2

Table 3. Invariance conditions for the expanded terms
(n)

B under the algebras g(2, 1) and g(2, 3).

B Transformation rules and curvatures of example 4

For the convenience of the reader, we give in this appendix the definition of the curvatures

and the transformation rules of the gauge fields plus curvatures that occur in example 4,

i.e. the case (D, p;N0, N1) = (4, 0; 2, 3), discussed in the main text.

The transformation rules for the fields corresponding to the generators of the g(2, 3)

algebra are given by

δ
(1)

Ea = d
(1)
ε a −

(1)

λa
(0)
τ +

(0)

λ
(1)

Ωa −
(0)

λab
(1)

Eb +
(1)
εb

(0)

Ωab , (B.1a)

δ
(3)

Ea = d
(3)
ε a −

(3)

λa
(0)
τ +

(0)

λ
(3)

Ωa −
(1)

λa
(2)
τ +

(2)

λ
(1)

Ωa −
(0)

λab
(3)

Eb +
(3)
εb

(0)

Ωab −
(2)

λab
(1)

Eb +
(1)
εb

(2)

Ωab , (B.1b)

δ
(1)

Ωa = d
(1)

λa −
(0)

λab
(0)

Ωb +
(1)

λb
(0)

Ωab , (B.1c)

δ
(3)

Ωa = d
(1)

λa −
(0)

λab
(0)

Ωb +
(1)

λb
(0)

Ωab −
(2)

λab
(1)

Ωb +
(1)

λb
(2)

Ωab , (B.1d)

δ
(0)

Ωab = d
(0)

λab +
(0)

λad
(0)

Ωb
d −

(0)

λbd
(0)

Ωa
d , (B.1e)

δ
(2)

Ωab = d
(2)

λab +
(0)

λad
(2)

Ωb
d −

(0)

λbd
(2)

Ωa
d +

(2)

λad
(0)

Ωb
d −

(2)

λbd
(0)

Ωa
d − 2

(1)

λ[a
(1)

Ωb] , (B.1f)

δ
(0)
τ = d

(0)

λ , (B.1g)

δ
(2)
τ = d

(2)

λ−
(1)

λa
(1)

Ea +
(1)
ε a

(1)

Ωa . (B.1h)

The curvatures that transform covariantly under these gauge transformations are given by

(0)

Rab(J) = d
(0)

Ωab −
(0)

Ωac ∧
(0)

Ωb
c , (B.2a)

(2)

Rab(J) = d
(2)

Ωab −
(0)

Ωac ∧
(2)

Ωb
c

(2)

Ωac ∧
(2)

Ωb
c −

(1)

Ωa ∧
(1)

Ωb , (B.2b)
(1)

Ra(G) = d
(1)

Ωa + +
(0)

Ωab ∧
(1)

Ωa , (B.2c)
(3)

Ra(G) = d
(3)

Ωa + +
(0)

Ωab ∧
(3)

Ωa +
(2)

Ωab ∧
(1)

Ωa , (B.2d)
(1)

Ra(P ) = d
(1)

Ea +
(0)

Ωab ∧
(1)

Eb −
(1)

Ωa ∧ (0)
τ , (B.2e)

(3)

Ra(P ) = d
(3)

Ea +
(0)

Ωab ∧
(3)

Eb +
(2)

Ωab ∧
(1)

Eb −
(3)

Ωa ∧ (0)
τ −

(1)

Ωa ∧ (2)
τ , (B.2f)

(0)

R(H) = d
(0)
τ , (B.2g)

(2)

R(H) = d
(2)
τ +

(1)

Ωa ∧
(1)

Ea . (B.2h)
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These curvatures transform as follows under the gauge transformations (B.1) of the gauge

fields:

δ
(1)

Ra(P ) = −
(1)

λa
(0)

R(H) +
(0)

λ
(1)

Ra(G)−
(0)

λab
(1)

Rb(P ) +
(1)
εb

(0)

Rab(J) , (B.3a)

δ
(3)

Ra(P ) = −
(3)

λa
(0)

R(H) +
(0)

λ
(3)

Ra(G)−
(1)

λa
(2)

R(H) +
(2)

λ
(1)

Ra(G)−
(0)

λab
(3)

Rb(P ) +
(3)
εb

(0)

Rab(J)

−
(2)

λab
(1)

Rb(P ) +
(1)
εb

(2)

Rab(J) , (B.3b)

δ
(1)

Ra(G) = −
(0)

λab
(1)

Rb(G) +
(1)

λb
(0)

Rab(J) , (B.3c)

δ
(3)

Ra(G) = −
(0)

λab
(3)

Rb(G) +
(3)

λb
(0)

Rab(J)−
(2)

λab
(1)

Rb(G) +
(1)

λb
(2)

Rab(J) , (B.3d)

δ
(0)

Rab(J) =
(0)

λad
(0)

Rbd(J)−
(0)

λbd
(0)

Rad(J) , (B.3e)

δ
(2)

Rab(J) =
(0)

λad
(2)

Rbd(J)−
(0)

λbd
(2)

Rad(J) +
(2)

λad
(0)

Rbd(J)−
(2)

λbd
(0)

Rad(J)− 2
(1)

λ[a
(1)

Rb](G) , (B.3f)

δ
(0)

R(H) = 0 , (B.3g)

δ
(2)

R(H) = −
(1)

λa
(1)

Ra(P ) +
(1)
ε a

(1)

Ra(G) . (B.3h)
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