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1 Introduction

During the last few years, there has been a renewed interest in non-relativistic gravity due
to its possible role in holography where gravity is used as a tool to probe the dark corners

L or in effective field theory where gravitational fields are used as

of quantum field theories
geometrical background response functions [3, 4].

It turns out that, in contrast to general relativity, there are many different versions of
non-relativistic gravity theories. They are all invariant under reparametrizations but dif-
fer in the fact that they are invariant under distinct extensions of the Galilei symmetries.
The simplest example is the so-called Galilei gravity theory which is invariant under the

un-extended Galilei symmetries [5]. Instead, Newtonian gravity and its frame-independent

'For a discussion of non-relativistic gravity in the bulk, see [1]; for an application of non-relativistic
gravity at the boundary, see [2].



reformulation, called Newton-Cartan (NC) gravity, is invariant under the symmetries cor-
responding to a central extension of the Galilei algebra, called the Bargmann algebra. In
three dimensions there even exists a non-relativistic gravity theory that is based on a Galilei
algebra with two central extensions [6-8] while recently, in four dimensions, an interesting
example of a non-relativistic gravity theory based upon an even larger extension of the
Bargmann algebra containing non-central generators has been encountered [9, 10].

It is well known that the generator of time translations of the Galilei algebra plays
a different role than the generators of space translations. This is related to the fact that
absolute time plays a special role in Newtonian gravity. However, it turns out that this
type of Galilei algebra is only suitable when coupling non-relativistic gravity to particles.
Instead, when coupling to extended objects with p spatial extensions, i.e. p-branes, one
needs to foliate spacetime in a different way, according to the number of longitudinal and
transverse directions (directions parallel to the p-brane’s worldvolume and the rest). This
leads to a different kind of Galilei algebra where, for a given spacetime of dimension D, the
translation generators of the Galilei algebra are given by the following set of generators

(HA7PG)7 A:07177p7 a:p+17"'7D_17 (11)

which correspond to translations along longitudinal and transverse directions, respectively.
We will denote these different kinds of Galilei algebra as (D, p) Galilei algebras. The related
non-relativistic gravity theories will be called (D,p) Galilei gravity.? Like in the particle
case, there are further non-relativistic gravity theories that are based upon extensions of
the (D, p) Galilei algebras. A recent example is string NC gravity [11] that is based upon
a p =1 (string) version of the Bargmann algebra [12].3

It is a relatively simple matter to construct an action for (D, p) Galilei gravity. One
simply takes an appropriate non-relativistic limit of the first-order Einstein-Hilbert action,
thereby generalizing the case of Galilei gravity discussed in [5].* It is much harder to
construct an action for NC gravity that is based on the Bargmann algebra. Taking the
non-relativistic limit of general relativity without obtaining fatal divergencies can only be
done at the level of the equations of motion. Similarly, performing a null-reduction of
five-dimensional general relativity does not lead to an action for 4-dimensional NC gravity
but only to its equations of motion [15]. Despite these difficulties, several actions for non-
relativistic gravity, based on extensions of the Galilei algebra, have been constructed in the
recent literature. One example we already mentioned is the three-dimensional action of [6—
8], which is based upon a three-dimensional Galilei algebra with two central extensions.
More recent examples are the 4D non-relativistic gravity action of [9, 10], the 4D extended
string Newton-Cartan gravity action of [16] and the 3D action of [17].7

2From now on it is understood that, whenever the value of p is not specified, we mean the particle case,
ie.p=0.

3The action for a non-relativistic Polyakov string in such a string NC background has been recently
constructed [13] thereby generalizing the action of [14].

“In this work we will only consider first-order actions with independent spin connection fields. We will
comment about second-order formulations in the conclusions.

5In this paper the word ‘extended’ will be used to denote certain extended (super)-gravity theories, as
in the mathematical Lie algebra extensions sense.



The purpose of this paper is to show that all algebras underlying the above actions
can be obtained via the Lie algebra expansion of the relativistic Poincaré algebra. The
Lie algebra expansion method was first used in [18] and later studied from a more general
perspective and applied to 3D Chern Simons supergravity and the M-theory superalgebra
in [19, 20].5 The Lie algebra expansion method is a general method that in the present
case allows one to obtain from the relativistic Poincaré algebra a number of extensions of
the non-relativistic (D, p) Galilei algebra containing extra generators some of which can
be central extensions. The first algebra in the expansion is always the un-extended Galilei
algebra which has the additional feature that it can be obtained as a Inénti-Wigner con-
traction of the Poincaré algebra. The other algebras are obtained as consistent truncations
of the full expansion.

This method can also be used to obtain actions for the non-relativistic gravity theories
associated to the finite extended-Galilei algebras obtained as truncations. In most cases,
but, unfortunately, not always, it produces an invariant action. In particular, it gives an
invariant action for the (D,p) Galilei algebras, for any D and p. These actions can be
obtained by taking a non-relativistic limit of the Einstein-Hilbert action that mimics the
corresponding Inénii-Wigner contraction of the Poincaré algebra [5]. Recently, by applying
the Lie algebra expansion directly at the level of the action, it has been observed that in
three dimensions the first algebra that occurs in the expansion beyond the Galilei algebra,
also allows an action [27, 28]. In fact, it precisely leads to the action of [7, 8]. Even the
supersymmetric action of [7] was derived in this way.

In this paper we are going to explain how the Lie algebra expansion procedure works,
applying it to a few important examples. In particular, we will derive a rule that tells, for
a given truncation and given values of D and p, how many orders one needs to go in the
expansion beyond the lowest-order (Galilei algebra) for an action to exist. For instance, in
D = 4 we will find that in the string case the first algebra beyond the string Galilei algebra
leads to the action of [16] but that, in the particle case, one must take the second algebra
in the expansion, which is precisely the algebra of [9, 10].

The organization of this paper is as follows. In section 2 we will give a formal de-
scription of the Lie algebra expansion procedure. Next, in section 3, we will give explicit
expressions for the Lie algebra expansion of the Poincaré algebra for general D and p. In
section 4, we will discuss a few subtleties that occur when constructing an invariant action.
In particular, we will discuss the role of the so-called P-symmetries and we will give a rule
that states for which truncations and which values of D and p an invariant action exist. In
the next section, we will give five examples of actions for non-relativistic gravity thereby
re-producing several results given in the literature. Finally, in the conclusions, we will
discuss a relation between the Lie algebra expansion and taking non-relativistic limits. We
will also mention how the Lie algebra expansion procedure can be applied to a variety of

6See also [21] for a generalization that uses semigroups and [22] for other applications of the method.
The expansion method may also lead to Maxwell (super-)algebras [23, 24] and even non-relativistic Maxwell
algebras [25]. For an even more general expansion method, based of free Lie algebras, see [26]. This leads
to even bigger finite-dimensional algebras which can be truncated to the ones that follow from a Lie algebra
expansion.



new situations. Finally, we have delegated the full proof of the rule that indicates when
an invariant action exists to appendix A while in appendix B we give a few more details
about the third example in the main text.

2 Lie algebra expansions

The Lie algebra expansion is a method that, starting from a given Lie algebra, leads to
new Lie algebras. These algebras are, in general, of higher dimension than the original one.
In this section we give a general description of the method.

Quite generally, the Lie algebra expansion of an algebra is obtained by formally ex-
panding the Maurer-Cartan one-forms of the dual version of the algebra in a power series
of a parameter \, each coefficient being a new one-form. One next substitutes this ex-
pansion into the Maurer-Cartan equations of the algebra and identifies equal powers of .
This results into an infinite set of Maurer-Cartan equations that can later be truncated
consistently to obtain a number of finite-dimensional Lie algebras.

To be specific, we describe the method in the case that is relevant to us, that is, when
the original algebra g can be split, as a vector space, into the direct sum g = Vo & Vj of
two subspaces V) and V7 with

Vo,Vol C Vo, [Vo,VilcVi, [WVi,Vi]C V. (2.1)

This means that V and V; form a symmetric pair.” Let X;, i = 1...dimg, be a set of
generators of the starting Lie algebra g whose commutation rules read

[Xi, X;] = Cij* Xe . (2.2)

Let X; = {X,,, Xi, } with X;, € Vb, X;, € V1,99 =1...dimVp, 43 = 1...dimV;. Then, the
condition (2.1) implies that

CinOkl = 0? Ciojl kO = 07 Ciljl kl = 0 . (23)

We now consider the dual formulation in terms of the Maurer-Cartan one-forms w® =
{w¥, wi}. The commutators (2.2) are equivalent to the Maurer-Cartan equations

1 , ,
dw® = —iCZ-jka Aw . (2.4)

The Jacobi identity in this formulation corresponds to dd = 0. It is now consistent to
expand the Maurer-Cartan one-forms as follows:

(o]
wo= 3 (Wi, (2.5a)

ap=0,ap even

wi= Y Wi, (2.5b)

a1=1,a; odd

"For a discussion of other cases, see [19)].



where we have introduced new indices (ap) and (o) on top of the Maurer-Cartan one-
forms to indicate the order of the corresponding terms in the expansion. By inserting these
expansions into the Maurer-Cartan equations (2.4) and identifying equal powers of A, the
following infinite set of Maurer-Cartan equations is obtained:

(vs) 1 (8 )
d Zc) ks — _icipaaquvﬁqk&ws lp N w 5 (26)
where s,p,q = 0,1 and
C ) ksyvs plg S p EA 2.7
p,Qp Jq,Bq { 0 , otherwise. ( )

These equations are dual to an infinite set of commutators that satisfy the Jacobi identity.
To obtain finite-dimensional Lie algebras, we substitute the following finite expansions,
for given integers (Ny, N1),

No

o= Y Wiy, (2.8a)
ap=0, ag even
Ny
wi= Y Wi (2.8b)

a1=1,a; odd
in such a way that the result is a consistent set of Maurer-Cartan equations. This is true
if and only if one of the following conditions is satisfied [19]:

N0:N1—|-1 or N1:N0—|—1. (29)

We will denote the algebras corresponding to these two conditions as g(Ng, N1) =
g(N +1,N) and g(No, N1) = g(N, N + 1), respectively. Note that in the first case N has
to be odd, while in the second it has to be even

(axs), (as),
We may also consider the gauge fields A *s and curvatures F' *s for the new Lie algebras.
They are related by

(s) 1 (1) ko8P B,
F " =dA "™ + szap]qﬁq VAN AT (2.10)

with v5 = a; + B4. The gauge fields transform as
(vs) .
5A R = 4G = G g o g R WA (2.11)

Qas); . . . (avs),
where @i is the parameter of the gauge transformation corresponding to A *s. Alterna-
tively, these equations may be obtained by applying the expansion method to the gauge
curvatures and variations of the original algebra

1 . .
F—dAF + 50@-’% ANAT (2.12a)

5AF = da* — CiFat AT (2.12D)



where the gauge fields, curvatures and gauge parameters are expanded as in (2.5) or (2.8)
by simply replacing the symbol w by A, F' or a. The Maurer-Cartan equations of the
expanded algebras are then recovered by simply setting the curvatures equal to zero.

Summarizing, by using the method of Lie algebra expansions one can derive from
a given Lie algebra a number of extended algebras with corresponding gauge fields and
curvatures. Given a Lie algebra g with corresponding gauge fields A* and curvatures F"
for g, one just has to follow these steps:

1. Find a symmetric splitting g = Vy @ V1, i.e., a splitting with the structure given in
eq. (2.1).

2. Expand the gauge fields and curvatures corresponding to the generators in Vj (resp.
V1) in odd (resp. even) powers of a parameter A.

3. Set the curvatures equal to zero and obtain an infinite set of Maurer-Cartan equations
that can be truncated consistently into the finite algebras g(/N, N+1) and g(N+1, N).

Finally, we stress that in the procedure defined above we always expand in terms of a
parameter A in the dual formulation using Maurer-Cartan forms. Although this expansion
gives rise to new and expanded algebras, we never directly expand the Lie algebra itself.
For a discussion of expansions directly at the level of the Lie algebras using semigroups,
see, for instance, [21].

3 The Lie algebra expansion of the Poincaré algebra

In this section we apply the Lie algebra expansion method to the specific case of the
Poincaré algebra with the aim of constructing actions for non-relativistic gravity in the
next section. Our starting point is the D-dimensional Poincaré algebra with the following
commutation relations:

(M, Pel = 2ne5P 4, (3.1Db)
[MABv MC'[)] = 477[A[GM[)]1§] ) (3.1c)

where P; and M ;5 are the generators of spacetime translations and Lorentz transforma-
tions, respectively. The hatted indices run over A= 0,...,D — 1 and we have chosen the
Minkowski metric to have mostly plus signature. As we have discussed in the introduction,
for a p-brane, it is natural to decompose the indices as

A={Aua}, A=0,1,---,p; a=p+1,---,D—1. (3.2)
This induces the following decomposition of the generators:

MAB — {JAB7GA(17Jab}7 (33&)
Py — {Ha, Fa}. (3.3b)



The non-vanishing commutation relations of these generators are given by

[Jap, Hcl = 2nc BHA] : (3.4a)
[Jab, Pe) = 20 P (3.4b)
[Ja, Jep] = 477[A[CJD} B> (3.4c)
[Jab, Jed] = AnjageJapy) - (3.4d)
(G aa, Py] = dapHa, (3.4¢)
(G aa, Hp] = —napPu, (3.4f)
[Jap: Geal = 2n08G Al » (3.4g)
[Jab, Gac) = =200 G A (3.4h)
(G aa: G| = —naBJab — davJaB - (3.4i)

For each generator, we introduce a 1-form gauge field as follows:

Jap — QAP (3.5a)
T — Q% (3.5b)
Gap — Q4 (3.5¢)
P, — E°, (3.5d)
Hp— 4. (3.5¢)

The curvatures for these gauge fields are given by

RAB(J) = dAB — QAY A QB —QAe p QB (3.6a)
R®(J) =d® —Q* AQl, — QA AQ L, (3.6b)
RAYG) = dA + Q4B A Qp® + Q% A QA (3.6¢)
RYP) =dE*+ Q® AN Ey — QA A7y, (3.6d)
RAH) =dr* + 0P Arp + QA N E, (3.6€)

We now consider the splitting of the Poincaré algebra g = Vp @ Vi that will induce a
Lie algebra expansion where the lowest order algebra is given by the (D, p) Galilei algebra.
This splitting is defined by taking the following choice for Vy and Vi:

Vo = {HA,JAB,Jab}; Vi = {PaaGAb}' (3'7)

We recognize that Vy and V; form a symmetric pair satisfying eq. (2.1). Following the Lie
algebra expansion method, we expand the gauge fields as follows:

No

A= Z ARG A 2@ , (3.8a)
k=0, k even
No *) © @)
O = N A=ty (3.8b)
k=0, k even



(®) (0 @)
Qab _ Z )\k Qab _ Qab + )\2 Qab +..., (38C)
k=0, k even
Ny
(k)
0Ab = Z NeQAb = A L (3.8d)
k=1, k odd
Ny
(k) ey,
E= > XNE* =XE“4.... (3.8¢)
k=1, k odd

According to the general method, the infinite expansion in egs. (3.8) can be consistently
truncated by taking one of the two conditions Ny = Ny £ 1. The truncation of the algebras
induces similar truncations of the expansions of the curvatures and transformation rules for
the finite-dimensional algebras. For instance, the curvatures corresponding to the finite-
dimensional algebra g(1,2) are given by®

© ©) 9 (0

(
RAB(J) = dQAB — 0A¢ A QB (3.10a)
(2) (2) (2) (0) (0) (2) (1) (1)
RAB(J) = dQAB — QA9 N QB — QA9 A QP — QA A QB (3.10b)
(O)ab (O)ab (Oczc (O)b
R®(J) = dQ® — QA QP (3.10¢)
(2) (2) (2) (0) (0) (2) (1) (1)
R®(J) =dQ® — QA QP — QAQ0, — QAN Q ), (3.10d)
0) (0)
RAH) = dT + Q48 A%y, (3.10¢)
(2) (2) (0) (1) (1)
RAH) =d + Q4B ATy + QAB AT + Q4 A I, (3.10f)
(1) (1) (0) (1) (0) (1)
RAYG) = dA + Q4B A Qp% + Q% A QA (3.10g)
€] W @, W W, (g
RY(P) = dE* 4+ Q¥ A By, — QA A7y (3.10h)

This concludes our general discussion of the expansion and consistent finite-dimensio-
nal truncations of the Poincaré algebra and the associated gauge fields and curvatures using
the method explained before. It gives an infinite number of finite-dimensional algebras and
associated gauge fields and curvatures, but a dynamical principle (such as the extremization
of an action) needs to be formulated in order to construct physical non-relativistic theories
of gravity with them. If we use an action principle, the action will have to be invariant
under the symmetries that we want the physical theory to inherit.

The method of Lie algebra expansions gives a simple recipe to construct invariant
actions that we are going to review in the next section and that we are going to apply to
the present case. For some of the subalgebras generated by this method, though, it does
not give an invariant action.

8Note that in the expression of the curvatures (using the notation of [19])
1 . .
ks,as ks,as ks,as pip, ,
FFos — dA +5Ci By dene AT Br p AdaPa (3.9)

the structure constants are zero when «s > max{No, N1 }.



4 Actions

4.1 The expanded action

We may construct actions as follows. Let B be an invariant D-form defined on the algebra
g generated by the gauge fields A’ and curvatures F? corresponding to g. We assume that
these gauge fields and curvatures are realized on a spacetime manifold M, i.e., A" = A° pdx?
and F' = Fiu,,da:“ A dz¥. We may now use B to define an action

I[A] = /M B, (4.1)

that is manifestly invariant under the gauge transformations of some subalgebra and the
diffeomorphisms of M.?

We now substitute F* and A’ into the action (4.1) by their infinite expansions, which
results into the following expansion of B and the action I[A]:

o0

2 (k) ()
IIAN) =) IXF = B Ak, (4.2)
23 (/.7)

If the original action is invariant under the gauge transformation for a certain gauge
parameter, say aio,

SA" = §"5,da’ — Cyy j'a™ AT (4.3)

(k)
then, by expanding the 1.h.s. of the equation d1 = 0, we see that all the terms I are invari-
ant under the transformations with gauge parameters @ i that appear in its expansion,

provided we keep the expansion infinite.
(k)
Consider now the term I appearing at a certain order k in the expansion of the action.

This action term will contain only a finite number of fields. However, due to the truncation
of the expanded gauge algebra, it will not be necessarily invariant. In particular, the action
(.Pwill only be invariant provided that the gauge algebra expansion is the smallest truncated
expansion that contains all the fields appearing in ; . A further truncation to a smaller
expansion corresponding to smaller finite-dimensional algebra may result into an action
that is not gauge invariant under the variations of the parameter Qo Below, in the case of
the Poincaré algebra, we will derive a rule that states for which algebras in the Lie algebra
expansion this method provides an invariant action.

Summarizing, the method of Lie algebra expansions can be used to construct invariant
actions corresponding to finite-dimensional algebras that are extensions of the original Lie
algebra g by the following steps. Given a Lie algebra g and an action invariant under
some subalgebra defined as I = [;, B where B is the exterior product of gauge fields and
curvatures A*, F? for g,

9We have here the Poincare algebra in mind where the action is only manifestly invariant under the
Lorentz transformations and the diffeomorphisms but not, in a manifest way, under the so-called P-
transformations of the algebra. The invariance of the action under these P-transformations is realized
via its relation with the manifest diffemorphism invariance, see the discussion in section 4.2.1.



1. Insert the infinite expansion of A* and F* into the original action [ B and obtain

(k)
an infinite set of terms I.

(k)
2. In order for I to define an invariant action, select the truncated gauge algebra to
k

be such that it is the smallest algebra whose fields give rise to all terms in I that
occurred in the infinite expansion.

4.2 Einstein-Hilbert action

We now apply the general procedure explained in the previous subsection to the Poincaré
algebra and the first-order Einstein-Hilbert action, which, as it is well known, is only in-
variant under general coordinate transformations and the Lorentz transformations of the
Poincaré algebra but not under the P-transformations that are generated by the P; gen-
erators of the same Poincaré algebra. These transformations require a separate discussion.

4.2.1 P-transformations

To explain our point it is sufficient to consider the 4D case. The 4D Einstein-Hilbert (EH)
action in first-order formulation is given by

S = / d'z EE* ;E” 5 R, B (M), (4.4)
with the curvature given by
(4.5)

and where E* ; is the inverse Vierbein and E = det E#A.
This action is invariant under general coordinate transformations, with parameter &+,
and under the Lorentz transformations of the Poincaré algebra with parameters A45:

5EMA = §u8uEuA + 8#§)‘E)\A + AABE#B , (4.6a)
6P = £0,0,4 + 9,8 WP + 9,418 + 240, Pl (4:6b)

The action (4.4) is, however, not invariant under the P-transformations, with param-
eters 7}, of the Poincaré algebra:

A A A __B
OB, =0un” — Q" g0~ . (4.7)
Instead, the action tyansforms into a term proportional to the equation of motion of the
spin connection R, (P) = 0 with

RA(P) =dE* + Q4P AN E,,. (4.8)

Such a variation can always be cancelled by a modification of the P-transformation rule
of the spin connection that consists in the addition of curvature terms that do not follow
from the original Poincaré algebra.

~10 -



In order to find those terms and the modified P-transformation rules we start by
observing that the first-order action (4.4) is also invariant under the following so-called

‘trivial’ symmetry with parameter gA10

SEA = R,A(P)o” (4.92)

52,42 = 2R, A ()™ + E,AR PN (M) o - %EH[AR(M )ol, (4.9b)

with R,A(M) = EY 4R, AB(M), R(M) = E* {R,A(M) and 0” = oBE” .
It turns out that the P-transformation of the Vierbein with parameter 77A in eq. (4.7)

can be written as the sum of a general coordinate transformation, a Lorentz transformation
and a trivial symmetry of the kind introduced above with parameters

gr=nt, AP =P o =nh, (4.10)

with n# = nBE“B,.

Therefore, we should reinterpret a P-transformation not as a new symmetry of the
action (4.4), but as a linear combination of three other symmetries of the action: a general
coordinate transformation, a Lorentz transformation and a trivial symmetry. Since the
same linear combination must be realized on the spin connection, we conclude that the
P-transformation of the Vierbein and spin connection that leave the action invariant are
given by

5B, = Dy ()nt, (4.11a)

~ A ~ ~ ~ ~ ~ ~ 1 ~
0y =1 Ry, AP (M) + 2R, M)+ B RGP (M — S EBMR(M)RT . (4.110)

Summarizing, when considering the first-order Einstein-Hilbert action (4.4) and its Lie
algebra expansion, see below, we should not consider the general coordinate transformations
and P-transformations as two independent symmetries.!! Both have their advantages. On
the one hand, it is much easier to expand the general coordinate transformations but,
on the other hand, the P-transformations are more directly related to the underlying
algebra. In the following we will consider the general coordinate transformations in the Lie
algebra expansion but we stress that after the Lie algebra expansion the expanded general
coordinate transformations remains related, up to trivial symmetries, to the expanded P-
transformations. In the case of the simple 3D extended Bargmann gravity model, see the
end of section 5.2, we will explicitly show as an illustration of the general case, how these
two symmetries indeed are related.

0Trivial symmetries, also called ‘equation of motion’ symmetries, have the distinguishing feature that
all terms in the transformation rules are proportional to the equations of motion. This implies that trivial
symmetries correspond to vanishing Noether charges.

1 Observe that, if they were independent and both of them were realized in the action together with the
Lorentz transformations, the theory would have no propagating degrees of freedom left.

- 11 -



4.2.2 Conditions for gauge invariance of the action

When discussing the Lie algebra expansion and invariant actions, it is convenient to use
an alternative expression for the EH action (4.4) given by

1 . A
SEH = Z /d4$ EI'WPUEA AC’DE AE,,BRPG-CD(M) . (412)

that has the distinguishing feature that it does not contain inverse Vierbeine. This ex-
pression can easily be derived from the more conventional eq. (4.4) by using the standard
formula for the Vierbein determinant E:

~ 1 ~
B =det B, = e eip0p B B E, OB, (4.13)

We now proceed to discuss invariant actions and, in particular, to address the issue
that not every term in the expansion of the D-dimensional EH Lagrangian density

B= RMA (MY A EA2 AL A EAD (4.14)

€Ao..Ap_4

leads to an invariant action. To make our point, we consider the case (D,p) = (4,0) and
only the terms in the expansion that are proportional to R*(.J). The terms of lowest order
in the expansion obtained in this way are of order 1 and read

(0) (1) (0)

B- —2€apR(J) N EC AT (4.15)

This term defines the lowest-order Galilei action corresponding to the algebra g(0,1).
In the un-truncated expansion the next order terms involving R%(J) occur at order

A" with n = 3. They can be obtained from the lowest-order term (4.15) by either replacing
one of the V} fields by a next-order one, i.e., (502)“ ab _, (522) b or (7(% — (7'2“ or by replacing
the Vi field by a next order one, i.e., (El)ﬂ ¢ - (1437)# @ In the un-truncated expansion there
are no more terms contributing to (é). In other words, there are no other replacements in
(113) , involving higher-order expansion terms, that would also contribute to (é)_

All the above replacements lead to terms that occur in the un-truncated expansion and,
furthermore, all these terms are needed to obtain an invariant action at order 3. However,
not all terms will survive a specific truncation specified by (N, N1). For instance, the
truncation (Np, Nl) (2,1) leading to the first algebra beyond the Galilei algebra, does

not contain the E @ field. This implies that, although the B term corresponding to the
9(2,1) algebra will contain all fields of that algebra, the corresponding action will not be

(3)
invariant due to the missing term involving the Vi field E, ®. It is only if one goes to

3) 3)
the next-order algebra g( 3) that the term in B containing the V; field E,, ¢ is included.

Correspondingly, the B action corresponding to this bigger algebra will contain all fields
that would also have occurred in the un-truncated expansion. It therefore defines an
invariant action.

The above argument can be refined for arbitrary values of (D, p; No, N1). In appendix A
we derive a general invariance condition that states, for given values of (D, p; Ny, Ny), for
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(n)
which n the Lagrangian densities B corresponding to the algebra g(Np, N1) define an
invariant action. Depending on the values of p we find that these invariance conditions
read as follows:

p=0 4.16a
D+#3 n<N +D-4

D=p+3 n<Ny

1<p<D-3 (4.16b)
D#p+3 n<Ni+D—-p—4

p=D—-2 n <Ny (4.16¢)

p=D—1 n<Ny. (4.16d)

From these conditions, we may also derive that, for given (D, p), the smallest algebra

(n)
consistent with the invariance of the Lagrangian density B is given by

D>p+3 gln—D+p+3,n—D+p+4) (4.17a)
D=p+3 g(n,n —1) (4.17b)
D=p+2 g(n—1,n) (4.17¢)
D=p+1 g(n,n—1). (4.17d)

In the case with n = 0 it is understood that the algebra g(0, —1) corresponds to Vj.
Note also that in the expansion of B, the value of n in all terms é is even (resp. odd) when
D — p—1is even (resp. odd).

We are now in a position that allows us to perform the Lie algebra expansion of
the first-order Einstein-Hilbert Lagrangian (4.14). In terms of the gauge fields given in
egs. (3.5a)—(3.5e) and the curvatures defined by (3.6) this Lagrangian density is given by

D -2
B = €AgAy ... Apapyi...ap—1 [(p B 1)RA0A1(J) A E%r+1 A For+2

+ <DJ: 12 > Rr+190+2(J) A 740 A 741
b

+2 <D B 2) RA0W+1(GQ) A B%+2 A rAl] ATA2 N AT N B A LA EODL
p
(4.18)
Following the general procedure, considering the decomposition (3.7), as an example we

expand this Lagrangian density order by order in A considering the algebra g(2,1). For
general values of D and p the lowest-order term in the expansion is given by

(D—p—3)

D -2
B = €a0A,.. Apapi1..ap_s

(1) (1)
o >R“p+1%+2(J) A0 N AP p Barks L BOD
p

(4.19a)
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Using the short-hand notation

(k)

Forae — o Bk (4.200)
CArAn P n AP APk AP (4.20b)

we can write the term of order D — p — 3 + 2k as follows:

(D—p—3+2k) D—2 p—l (O)A A (2k=2) A, A
B — 0A1L 2..-Ap
() KH)R i

k—2
< 1) [(p—I—l) Rap+1ap+2(J)/\(?rk> Ao...Ap
pt+
( >éap+1ap+2(J) <2k 2) Aop.. Ap :|(/€_Epz;§_)+3...a[)_1
k—
(1) _ (D—p—2)
< > < >RA0(ZP+1 (G)/\(zl?T 2)A1...Ap/\ Eap+2-..aD—1 } 6AO-~~Apap+l--~aD—l i

(4.21)

Using the invariance conditions (4.16) it is now straightforward to find out, in the
(n)
general case, for which order n the action term B, for a given value of (D, p; Ny, N1),

defines an action that is invariant under the expanded Lorentz transformations and general
coordinate transformations. In the next section we give five examples thereby reproducing
several results in the literature.

5 Examples

In this section we present five examples of invariant actions that satisfy the invariance
conditions (4.16), see also table 1.

Example 1: (D,p; No, N1) = (4,0;0,1). This example leads to the 4D Galilei gravity
action which was extensively discussed in [5]. The same action can be obtained by
taking a particular limit of the Einstein-Hilbert action [5].

Example 2: (D, p; Ny, N1) = (3,0;2,1). This example reproduces the action of extended
Bargmann gravity constructed in [6-8].

Example 3: (D, p; No, N1) = (3,0;4,3). This example reproduces the extended Newto-
nian gravity algebra and the corresponding action constructed in [17].

Example 4: (D, p; Ng, N1) = (4,0;2,3). This is the example alluded to above where
the first algebra g(2,1) beyond the Galilei algebra cannot be used to construct an
invariant action. Instead, in order to obtain an invariant action one has to proceed to
the next order and bigger algebra g(2,3). This is the same algebra that occurs in [9,
10]. We will compare the resulting action with the one of [9, 10] in the conclusions.

— 14 —



Algebra | (D,p) = (3,0) | (D,p) = (4,0) | (D,p) = (4,1)

(0) (1) (0)
g(0,1) B B

(2) (1) (2)
a(2,1) B B B

(2) (3) (2)
a(2,3) B B B

(4) (3) (4)
9(4,3) B B B

Table 1. In the table we list, for different values of (D, p; Ng, N1) the highest order term (é) that
is invariant under the algebra g(Ng, N1) appearing in the first column. The first line corresponds
to Galilei gravity that always occurs as the lowest-order term in the Lie algebra expansion. In
this section we are going to discuss the five cases (D, p; No, N1) = (3,0;2,1), (4,0;0,1), (4,0;2,3),
(4,1;2,1) and (3,0;4, 3).

Example 5: (D, p; Ng, N1) = (4,1;2,1). This example reproduces the algebra and action
of extended string Newton-Cartan gravity constructed in [16].

5.1 4D Galilei gravity

In this example we perform a Lie algebra expansion with a truncation to the lowest-order
Galilei algebra g(0,1):2

Ty = (70'L (5.1a)
0, Q ab (5.1b)
AEM A (5.1c)

Oa @ a
0 2\, (5.1d)

This leads to the following curvatures:

(0) (0) (0)
R“b(J) dQ® — Qe A QP (5.2a)
(0
(H) =d7, (5.2b)
(0) (1)
(G) — dO 4 Qb A Qp, (5.2¢)
@@ W W ©
RO(P) = dE® 4+ Q% A By — 09 A (5.2d)

Substituting the expansion (5.1) into the Einstein-Hilbert action (4.12), and taking
the first-order term in the expansion, leads to the 4D Galilei action

(1) (0)
SGal = /d4:c P e, (7Q)V Rys be( ). (5.3)

12Note that this lowest-order truncation leads in any dimension to a Galilei gravity theory.
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Note that the action does not contain the boost connection. This action is invariant
under local spatial rotations, Galilean boosts, general coordinate transformations and an
accidental local scale symmetry [5]. Note that in this case the expansion of the general
coordinate transformations only leads to general coordinate transformation but no further
symmetries.

Using the identity

®3) &) 1 ©W M,

E = det ( TM, E," = §€Wmﬁabc B, “E, Ey © (5.4)
this Galilei action can be rewritten in the alternative form!?
4 (3) 1) (= 1) (0)
Sea = & / o By R (7). (5.5)

where we have expanded the inverse Vierbein as

(0)
™ =7,

(5.6a)
(=1)
Bty =X1EM,. (5.6b)

The equations of motion corresponding to the Galilei action, written in the form (5.3)

r (5.5), are given by [5]'4

(=1) (=1 (0)

E“a EY ba[ T = 0, (5.7&)
(0) 1D b
T“E a0y = 5 Ry °(P), (5.7b)
=2) L2y
Rap (P) = = [aRb}d (P)’ (57C)
(=1)
Ry ™(J) = 0. (5.7d)

A notable feature of the Galilei action is that there is no second-order formulation where
all spin connections become dependent [5]. One is left with an independent spin connection
component that acts as a Lagrange multiplier leading the geometrical constraint that the
geometry has twistless torsion, see eq. (5.7a).

5.2 3D extended Bargmann gravity

In this subsection we will show that the second example, i.e. (D,p; No, N1) = (3,0;2,1),
leads to the action of 3D Extended Bargmann gravity constructed in [6-8].

We write the 3-dimensional indices as A = {0,a}, with a = 1,2, and decompose the
generators as follows:

Jip — {J,Ga}, (5.82)
P; — {P,, H}, (5.8b)

3Gee eq. (4.24) of [5].

Note that the last equation has only 12 instead of 16 components as one naively would expect. The
reason for this is that the 4D Galilei action is not only invariant under the 3 local Galilean boosts but also
under the accidental local scale symmetry mentioned above.

~16 —



where we have defined G, = Joo, H = Py, and J = Jio = %e“bJab. The non-vanishing

commutation relations between these generators read

(G, Py) = 0ap H ,
[Ga, H| = Py,
[J,Py) = =€ Py,
[J,Ga] = —€,'Gy
[Ga, Gy = —€ap .

We next introduce the following 1-form gauge fields associated to the generators

J—=Q,
H— T,
P, — E*,
G, — Q.

The corresponding curvatures are (omitting form indices)

R(J) = dQ — e A QP
R(H) = dr + 640" N E
RYP)=dE*+ QAT — 4 QNE",
RYG) = dQ* — % QN Q°.

We now expand the Lie algebra with respect to the decomposition g = Vy & V1 with

Vo={J,H}, and Vj = {P,,G,}.

(5.12)

Imposing the consistent truncation (Ny, N1) = (2, 1), the expansions of the gauge fields

are given by

(0) 2)
Q=0+ )Q,
r=7+ 227

(1)
E% = \E®

(1)
Q% =2Q°.

The corresponding curvature 2-forms are given by:

© ©
R(J) =dQ,

©

R(H) = d7,

@) ) SO BNCIA
R(J) = dQ — e Q2" A QP
(2) (1) (1)b
R(H) = d7+ 6,59 A E,
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(1) o) @

(1)

RYG) = dQ* — % QA Q°, (5.14e)
W W W © )
RY(P)=dE*+Q*ANT — €, Q NE". (5.14f)

In order to construct an action, we consider the 3D Einstein-Hilbert Lagrangian density
given by

B = ;3R (J) ANEC = 2R(J) AT + 26, R*(G) N E”. (5.15)

Expanding order by order we obtain for the lowest-order term

(0) (0) (0)
T.

B=R(J)A (5.16)

This is precisely the action of 3D Galilei gravity, see eq. (4.44) of [5]. The underlying
algebra g(0,1) corresponding to this truncation is the Galilei algebra which is the Inénii-
Wigner contraction of the Poincaré algebra with respect to the subalgebra V| defined in
eq. (5.12). This is the 3D analogue of the first example.

Next, we consider the second-order term

(2) (0) 2) (2) (0) (1) (1)b
B =2R(J) AP+ 2R(J) AP+ 2eap R (G) A E. (5.17)

Relabeling the gauge fields as

(0)

Q=Q, (5.18a)
(2)
Q=s, (5.18b)
P=r, (5.18¢)
P=m, (5.18d)
(1)
Q*=Q°, (5.18¢)
(1)
E*=E*, (5.18f)
this term reads ©
B =2R(J) Am+2R(S) AT + 26 RY(G) AN E”, (5.19)

which is precisely the Lagrangian of 3D extended Bargmann gravity [6-8].
The corresponding algebra g(2, 1) that occurs in the Lie algebra expansion is given by

1 @ (2)

(Ga, B = dapH (5.20a)
(1) (0) (1)
Go, H] = Py, (5.20b)
(0) (1) (1)
[J7 Pa] = _eabPav (5 20C)
(0) (1) (1)
[J, Ga] = —€upG” s (520(1)
1 @) (2)
[Ga, Gy = —€apd . (5.20e)
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(2) (2)
Identifying J = S and H = Z and using for the lowest order terms the labels of the
initial field, the non-zero commutators of the algebra read

(G, Po] = 02, (5.21a)
[Ga, H] = Py, (5.21b)
[J, Pu] = —€apP” (5.21¢)
[J,Ga] = —€anG*, (5.21d)
[Ga, Gp) = —€apS (5.21e)

which is the extended Bargmann algebra of [6-8]. One may verify that the transformation
rules obtained by our procedure coincide with the ones of [6-8]. We observe that the
gauge field s corresponding to the generator S does not occur in the action (5.19) although
it nevertheless defines a symmetry of the action acting on the other fields. A similar
phenomenon occurs in example 3.

Note that in this example the expansion of the general coordinate transformations leads
to further symmetries but these are related, up to trivial symmetries, to the expanded P-
transformations. For instance, expanding

(0) 2(2)
¢h = gty N2 (5.22)

one finds that the gauge field %L, up to a trivial symmetry of the expanded action, trans-

(2 (2
forms as (5‘% =0, (53‘(70%\) which is precisely an expanded P transformation with (7%)0 = 5&%

5.3 3D extended Newtonian gravity

In this subsection we study the case (D, p; Ny, N1) = (3,0;4,3). We show that this corre-
sponds to the algebra given in [17] and we reproduce the corresponding action.
We consider the same setting as in subsection 5.2 with the same subspace decom-

position of the algebra, but now we truncate the expansion of the gauge fields at order
(No, N1) = (4, 3). Explicitly, we have

(0) 2(2) 4(4)
Q=00+ X0+ )Q, (5.23a)
=T+ 274217 (5.23b)
(1) 3)
E* = \E" + \3E“, (5.23¢)
(1) (3)
Q% = AQ* + X307, (5.23d)
The corresponding curvature 2-forms are given by:
(0) (0)
R(J) =dQ2, (5.24a)
0) (0)
R(H)=dT, (5.24Db)
(2) (2) (1) (1)b
R(J) =dQ — epQ2° NQ7, (5.24c¢)
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(2) (1) 1)

R(H) = d7+ 6,49 A B, (5.24d)
4 (4) €Y )
R(J) = dY — 2e,02* N Q7 , (5.24e)
4) (2) SUMENCIA G, Ly
R(H) = dT+6abQ NE” + 600" N E”, (5.24f)
€Y [CONENEY) b
RY(G) = an — QN7 (5.24g)
(1) (1) (1) (0) (1)
RY(P) =dE* + Q“ NP — e QN EY (5.24h)
(3) © 3)y @ )
RY(@G) —dQ“—e AN — 3 QAQ0, (5.24i)
®) 3) @) © @) @ ) ‘
RY(P )—dEa—i-Q“/\ —I-Qa/\T—G OUAEY — €4 QA B (5.24j)

We consider the Einstein-Hilbert action eq. (5.15) and consider the expansion defined
4

above, but now we focus on the fourth-order term B which for the truncation we consider
defines an invariant action. We obtain
) &) EINNG) W, © W @ @ ©

B = gy |RYG) A E* + RY(G) A E® + R*®(J) AT+ R™(J) A7+ R®(J) A (5.25)
Relabeling the gauge fields as
(0)
ND=w, (5.26a)
(2)
QN =s, (5.26D)
(4)
Q=z, (5.26¢)
P=r, (5.26d)
P =m, (5.26¢)
P=—y, (5.26£)
(1)
0% = w®, (5.26g)
(3)
Q% =b*, (5.26h)
W X '
E* = Ve, (5.261)
@) X .
E* = *ty, (5.26j)
the action above takes the form
(4)
B=R(S)Am+ R(Z)ANT—R(J) ANy — R*(G) ANty — R*(B) N eg, (5.27)

where we have used the notation R(J) = €, R%(J) and the same for the curvatures asso-
ciated with S and Z. This action corresponds to the action appearing in [17].

Let us take a closer look to the algebra g(4,3). The non-zero commutators of the
algebra g(4, 3) are given explicitly by

© 1)
[Jab, Ga] = 2napGy) (5.28a)

0) (3) (3)
[Jab, Ga] = 2napGy (5.28Db)

—90 —



With the identifications

@ 3)
[Jab, Ga] = 204G )
SORCO N e
[Gaa Gb] = Jab
n @ @
(Ga, Gp] = Jap
© D)
[Jab, Pa] = 24Py
© ® ®)
[Jab, Pa] = 2045 Py
@ ®)
[Jabs Pal = 2045 P
m © W

[Gay H] =P,
1) (2 (3)
[Gw H] =P,
(3) (0 (3)
[Ga, H| = P,
1 @ (2)
[Gw Pb] = 77abI{
1 3 (4)
[Gm Pb] = 77ab-[_—,
3) @ (4)
[Gay Pb] = 77ab-Er-
(0)
Jap = eabja
(2)
Jab = €apS,
(4)
Jab = €2,
(0)
H=H,
(2)
H = M,
(4)
H=—Y,
(1) b
Py = e P,
(3) b
Py = €17,
(1)
Ga = Gav
(3)
Ga = Baa
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[Ga, By] = €anZ, (5.30e)
[J, P] = —eqy P’ (5.30f)
[J, T, = —€asT?, (5.30g)
[S,P,] = —eapT?, (5.30h)

[Ga, H] = €an P, (5.301)

[Ga, M] = e T, (5.30§)

[Ba, H] = eayT", (5.30k)

(G, Po] = €M, (5.301)

[Ga, Th) = —earY, (5.30m)

[Ba, Py = —€aY- (5.30mn)

5.4 Beyond 4D Galilei gravity

In this subsection we consider the example (D, p; No, N1) = (4,0;2,3). Since the indices

A, B,C ... only take the value 0, we will suppress them. The decomposition of the gener-
ators in this case read

‘]AB — {Jab, Ga} , (5.31&)

P; —{H, P}, (5.31b)

with a = 1,2,3. The non-vanishing commutators between these generators are given by

[Ga, By = 5abH (5.32a)
[Ga, H] = (5.32D)
[Jab, Pe] = 5bc — bacPy (5.32¢)
[Jabs Ge] = 06eGa — 0acG (5.32d)
[Jabs Jed] = 45[ach]b]7 (5.32¢)
[Ga, Gy = (5.32f)

We associate the following gauge fields to these curvatures:

Jap — Q% (5.33a)

P, — E°, (5.33b)

Gy — 07, (5.33c)

H-—r. (5.33d)

The corresponding curvatures are defined by

R®(J) =dQ® —Q*AQ°. + Q2 A Q0 (5.34a)

RY(G) = dQ* + Q% A Qy, (5.34b)

RYP)=dE*+ QP NEy+ QA T, (5.34c)

RAH)=dr + Q* NE,. (5.34d)
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We now consider a Lie algebra expansion according to the decomposition g = Vi @
Vi with
Vo={Jw,H}, and Vi ={G,, P.}, (5.35)

Following table 1, we impose the truncation (Ng, N1) = (2, 3) in order to construct the
first action that goes beyond the lowest-order Galilei gravity action discussed in the first
example. This particular truncation induces the following expansion

(2)

Qb Q“b +A2Q% (5.36a)
=7+ 227, (5.36b)
(1) 3(3)
Q% = A0 4+ \°Q° (5.36¢)
(¢D) 3(5)
= AE“+ N E?, (5.36d)
We now substitute this expansion into the first-order Einstein-Hilbert Lagrangian den-
sity 4-form
B = cipepR 8 A EC A EP = 264, (Ra(G) A EY A EC — R®(J) A EC A T) . (5.37)

and we find at lowest order

© W (0

(1)
B = —2€44cR*(J) A E° A (5.38)

As expected, this corresponds precisely to the action (5.3) of 4D Galilei gravity dis-
cussed in the first example.
It is only when we consider the truncation (No, N1) = (2,3), but not the stronger
(3)
truncation (N, N1) = (2,1). that the next order term B also leads to an invariant action:
(3) (1) (1),

(1)
B = 2eabcRa(G) AEY A BE — 2ep RU(T) A ECAY

(0) (3) (0)

—2eabcR“b(J) AEe AR 2eape RO(J) NEC AT (5.39)

This is the first action in the Lie algebra expanswn that goes beyond 4D Galilei gravity.
Note that, although this actlon does not depend on Q“, it is invariant under the gauge

transformations of parameter )\“ (see eq. (B.3)). This is similar to the situation described
in section 5.1.

The definition of the different curvatures and the transformation rules of the gauge
fields and curvatures follow from the Lie algebra expansion. For the convenience of the
reader, we have given the explicit expressions in appendix B.

The algebra g(2,3) underlying the action (5.39) is given by

(1 @ (2)

(Ga, Po] = dapH (5.40a)
(1) (0 (1)
[Ga, H] = Py (5.40D)
3) (0 (3)
[Ga, H] = P, (5.40c)
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(1 (2 (3)
[GCU H] - Pa (540(1

o @ (1) (1)
[Jaba Pc] = 5bcPa - 6ach (5406
(

0) (3 (3) (3)
[Jaba Pc] = 5bcPa - 6ach

(2) @) (3) (3)
[Jaba Pc] = 6bcPa - 6ach

(
0) (@) (1 (1)
[']aba Gc] = 5cha - 5ach ( .

0 3 (3) (3)

=

[Jaba Pc] = 5cha - 5ach (5.40i
@ @ ®) ®)

[Jaba Gc] = 5cha - 5ach (5.40j
©  © ©

[Jabs Jed] = 40[ajcTap) (5.40k
© @ )

[Jabs Jed] = 40[qjcapp) (5.401
CORNC I

[Ga, Gb] = Jap - (5.40m

Upon making the identifications
(2)

N=H, (5.41a)
(2)

Sap = Jap (5.41b)
(3)

T,=P,, (5.41c)
(3)

By =G, (5.41d)

and assigning the lowest-order terms the same labels as the original generators, this is pre-
cisely the algebra appearing in [9, 10]. Note that we are using here a first-order formulation
of the action as opposed to the second-order formulation used in [9, 10]. We will discuss
and compare the two actions in the Conclusions.

5.5 4D extended string Newton-Cartan gravity
The last example we consider corresponds to the case (D, p; No, N1) = (4,1;2,1). It will

lead to an extension of the String Newton-Cartan Gravity theory that underlies nonrela-
tivistic string theory. In this case we decompose the generators of the Poincaré algebra as
follows:

Jip =AM, Gaa, I}, (5.42a)

P; — {Hy, Pu}, (5.42Db)

where A = {0,1} and a = {2,3}.!° The non-vanishing commutation relations in terms of
these generators are given by

[M,H,] = —ePHg, (5.43a)

[J,P)] = —¢}tPy, (5.43b)

15We use the conventions ez3 = +1,€01 = +1 for €4, and eap. Furthermore, we have defined J = J? =
tearJ and M = JO' = LeapJ?P.
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[H 4, Gba) = napFu, (5.43¢c)
[M,G 0] = =€ Gpa, (5.43d)
[J,Gaadl = =€, Gap, (5.43¢)
(G aa, Bo] = bapHa (5.43f)
(G aa, Gpb] = —napeav] + NaveapM . (5.43g)

The corresponding gauge fields are renamed as follows:

J—Q, (5.44a)
M =3, (5.44b)
Gap — QA (5.44c)
Py — E, (5.44d)
Hy— 4. (5.44e)

The expanded curvatures of these gauge fields are defined by
R(J) = dQ — napeap® A QB8 (5.45a)
R(M) = d% 4 naeapQ?® A QB (5.45b)
RAH) = dr?* — eapS A T8 + 6,404 A B, (5.45¢)
RY(P) = dE® — e®Q A Ey — napQie A 7P, (5.45d)
RAY(@G) = dQ4* — QA Q4 + APA N QS (5.45¢)

We now consider the Lie algebra expansion with respect to the following decomposition
g= VW@ V; with
Vo={J,M,H,}, and Vi ={P,,Gaa}, (5.46)
The truncation (Ng, N1) = (2,1) induces the finite expansions

(2)

Q=04 Q, (5.47a)
(0) 2 (2)
Y=Y+ (5.47Db)
A =GA )2 ? : (5.47¢)
(1)
QA =\ Q4 (5.47d)
1)
E*=\XE*. (5.47e)
The curvatures of these gauge fields are given by
(0) (0)
R(J) =dQ2, (5.48a)
(2) (2) (I)Aa (I)Bb
R(J) =dQ) —napexptt AQ (548b)
0) (0)
R(M) =d¥, (5.48c¢)
(2) (2) (1)Aa (1)Bb
R(M) =dX + Napeaplt AQTY (548d)
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RAYH) = d7" — eapS AP, (5.48¢)
jlQz)A(H )=d7 - eanS AT~ eaps DB 1 6,04 N B, (5.48f)
RI(P) = dE" — O A By — naptrAe U8 (5.48¢)
RA9(G) = d9AT — ) A OA 4+ APO A Q8 (5.48h)

Substituting the above expansions into the first-order Einstein-Hilbert Lagrangian den-
sity 4-form
AB C D
B = EABC‘ﬁR ANEYANFE
= 2e.qR(IM) N E° N EY 4+ 2ecpR(J) ATC A TP — deqpeay RAYG) ANTB A EY . (5.49)

we find that the lowest-order term in the expansion

(0) (0)
B =2eapR(J) ANTANTE. (5.50)

is, as expected, the action of 4D string Galilei gravity whose underlying algebra is the
string Galilei algebra discussed in the introduction.

The next order term leading to an invariant action is given by

(2) (0) (1) (1) (2) (0)
B =2 R(M)NE*NE” + 2eap |R(J) ATA + 2R(J) ANFA| AFB

(1) (1)
— deapeay R(G) NTENED. (5.51)

Renaming the fields that appear at second order as

A = A, (5.52a)
(2)
S=n, (5.52b)
(2)
Q=s, (5.52c)

and using for the lowest-order components the label of the original fields we obtain the
(2)
following expression for B:'6

(2)

B = 2e, R(IM) A E* N E® 4+ 2e o5 R(s) A4 A 7B
+4exR(J) AmAATE — deqpey RAY(G) ATP N ED, (5.53)

which is precisely the Lagrangian density corresponding to the action of extended string
Newton-Cartan theory constructed in [16].

'5This action has extra accidental symmetries [29] leading to the enlarged algebra given in [30].
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6 Discussion

In this work we have shown that the procedure of Lie algebra expansions provides a sys-
tematic method for constructing Lie algebras and actions for non-relativistic gravity. All
examples we have given are characterized by 4 numbers (D, p; Ny, N1) where (D, p) refers
to the fact that the corresponding non-relativistic gravity theory naturally couples to a
p-brane moving in D target space dimensions and (Ny, N1), with Ng = Nj £ 1, defines the
truncation of the Lie algebra expansion.

We find that, in all cases, the lowest order term in the expansion, (D,p; Ny, N1) =
(D, p;0,1), leads to the (D,p) Galilei algebra, i.e., a D-dimensional Galilei algebra with
p + 1 longitudinal translation generators, with a corresponding action for Galilei gravity.
These Galilei gravity theories have been studied in [5]. They are a bit special in the sense
that not all gauge fields corresponding to the generators of the Galilei algebra occur in the
action.!” The next-order algebra, (D, p; Ng, N1) = (D, p;2,1), does not necessarily allow
for an invariant action for arbitrary values of D and p. We have given three examples
(examples 1, 2 and 5 in section 5) where an invariant action did exist, and one example
(example 4 in section 5) where, for the purpose of constructing an invariant action, one
needs to go to one order higher, i.e., one needs to consider the truncation (Ny, N1) = (2, 3).
We have furthermore studied an example (example 3 in section 5) with a truncation at
order (No, N1) = (4,3).

It is a general feature of the Lie algebra expansion that the lowest-order (D, p) Galilei
algebra can be obtained as a Inonii-Wigner contraction of the Poincaré algebra. Similarly,
the action for the (D, p) Galilei gravity can be obtained as a ¢ — oo limit of the first-order
Einstein-Hilbert action [5].'® It is intriguing that the actions in two of the examples we
have given, i.e., 3D extended Bargmann gravity and 4D extended string Newton-Cartan
gravity, can also be obtained as the non-relativistic limit of the first order Einstein-Hilbert
Lagrangian even though they correspond to a next-order term in the Lie algebra expansion.
However, in order to define a regular limit, one needs to add an extra term to the Einstein-
Hilbert action that contains two vectors in the case of 3D extended Bargmann gravity [7]
and a vector plus 2-form gauge field in the case of 4D extended string Newton-Cartan
gravity [16]. These two cases can be generalized to a p-brane moving in D = p+3 dimensions
in which case one has to add an extra term to the Einstein-Hilbert term involving a vector
and a (p + 1)-form gauge field [16]. The corresponding extended p-brane Newton-Cartan
algebras that can be used in the Lie algebra expansion have been given in [16].1°

The purpose of the extra term is to cancel a divergence that arises from the lowest-order
term in the Lie-algebra expansion which for this class of models is proportional to

Eabcl.,.CPHRab(J) ATOUN AP (6.1)

"Tn the 3D case, this corresponds to the fact that, unlike the Poincaré algebra, the Galilei algebra has
no invariant non-degenerate bilinear form.

8The expansion of the Vierbein in terms of our parameter A is the same as the usual expansion in
terms of the parameter ¢!, see, e.g., [31, 32], provided we multiply this Vierbein, before expanding, with
a factor c.

19The common feature of all these p-branes is that they have a two-dimensional transverse space allowing
anyonic extended objects like anyonic particles in three spacetime dimensions.
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What makes this term special is that, for D = p + 3, both [ab] and [C; ...Cp4q] are
singlets under the longitudinal and transverse Lorentz rotations. This makes it possible
to cancel the divergence that follows from this term by adding the following term to the
Einstein-Hilbert action [16]:

el ees (8N1AN2)BH3"'Hp+3 : (6.2)

It remains to be seen whether and how the third and fourth example can also be
obtained as a special limit of General Relativity. The algebra underlying the fourth example
is precisely the algebra occurring in [9, 10],%0 suggesting that, perhaps, the action we

constructed and the one of [9, 10] are the same.?!

As it is the case here, in [9, 10] an
expansion of both the diffeomorphisms and the Lorentz gauge parameters is used, so it
would be interesting to work out the connection (if any) with the expansions considered
here. Note that we are working here with a first-order formulation, whereas the action
of [9, 10] is presented in a second-order formulation. The fact that in such a second-
order formulation the spin-connection fields are dependent makes the connection to the
underlying algebra less straightforward. Another difference is that the geometry of [9, 10]
has twistless torsion whereas a priori we do not have such a restriction. However, it is
known from examples 1 and 5 that going to a second-order formulation after the expansion
one cannot always solve for all the spin connection fields. The spin connection fields that
cannot be solved for act as Lagrange multipliers imposing geometric constraints. For
instance, in the case of 4D Galilei gravity, the independent spin connection imposes the
constraint that the geometry has twistless torsion (see eq. (5.7a) above or eq. (4.28) of [5]).
Perhaps, a similar thing happens in the fourth example in which case the corresponding
spin connection could play the same role as the Lagrange multiplier that is added by hand
in [9, 10]. This remains to be investigated.

It is not clear how to couple the non-relativistic gravity theories constructed in this
work to a particle (examples 1-4) or a string (example 5) preserving all the symmetries.
The Galilei algebra lacks the central charge symmetry that is needed to construct a mas-
sive particle action invariant under Galilean boosts?? while the other algebras have extra
symmetries whose physical interpretation is not clear and which make them non-trivial
to realize on matter.?? In the absence of such matter couplings we prefer to reserve the
name Newton-Cartan gravity for the Bargmann algebra only and to call the non-relativistic
gravity theories that are based on the larger algebras that occur in the Lie algebra expan-
sion ‘extended Newton-Cartan gravity’. Sticking to this definition, it remains to be seen
whether an action for Newton-Cartan gravity can be constructed. The same issues arise in

2°Tn the second reference of [9, 10] it is noted that the same algebra can be obtained following [34] in
which Lie algebra expansions from a somewhat different perspective are discussed.

#1Both the action of [9, 10] and the action we constructed can be formulated in any dimension D > 3.
In our case, it requires that we take n = D — 1.

22To obtain a massive particle action invariant under Galilean boosts one needs to couple the particle to
the central charge gauge field via a Wess-Zumino term.

Z3For some efforts in this direction in the case of the 3D extended Bargmann algebra, see [33]. For a
recent proposal in the context of example 4, see the second reference in [9, 10].

~ 98 —



the string case where the 4D string NC background that couples to the Polyakov string has
less symmetries than the 4D extended string NC gravity that occurs in the last example.

An attractive feature of the Lie algebra expansion method is that it is a quite general
construction procedure and can be applied to a variety of new situations. One natural case
to consider is actions for (conformal extensions of) Carroll gravity corresponding to taking
ultra-relativistic limits. We expect that in this case the lowest order term in the expansion
of the Einstein-Hilbert action will correspond to the Carroll gravity action of [5, 35].24 One
can also apply the Lie algebra expansion method to extensions of the Poincaré algebra such
as the 3D higher-spin algebras considered in [36]. The same method can also be used to
construct new examples of supersymmetric extensions of non-relativistic gravity theories
beyond the known example of the supersymmetric extension of 3D extended Bargmann
gravity [7, 27, 28]. We hope to come back soon to these interesting issues.
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A Deriving invariance conditions of the action of the (D, p; Ng, N;) al-
gebra

In this appendix we give a derivation of the invariance conditions (4.16) that have to be
satisfied for the action of a (D, p; Ng, N1) non-relativistic gravity theory to be Lorentz in-

variant.2°

We prove these condition to be sufficient but we do not explicitly prove that
they are necessary. We remind the reader that (D,p) refers to the fact that the corre-
sponding non-relativistic gravity theory naturally couples to a p-brane moving in D target
space dimensions and (N, N1) with Ny = Ny + 1 defines the truncation of the Lie algebra

expansion.

24The actions of [35] and [5] look rather different using different variables. Since they are both based
upon the same Carroll symmetries, we expect them to coincide up to redefinitions.

?We do not consider the P-transformations generated by the P; generators of the Poincaré algebra
since, as explained in the main text, they are represented by the general coordinate transformations that
are manifestly realized.
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Since the starting action is invariant under Lorentz transformations, in an infinite
expansion each term order by order will be invariant under all the generators that arise
in the infinite expansion of the Lorentz ones.? However, if we perform a truncation to
the orders g(No, N1), some of the terms at a given order may not appear, thereby spoiling
the invariance of the action. We will now discuss the conditions under which this does not
happen and the invariance is not broken.

Given the algebra decomposition g = Vy @ Vi, gauge fields associated with genera-
tors belonging to the two different subspaces have a different expansion. In particular,
the expansion of the fields associated with generators from Vj starts at order one in the
expansion parameter. This means that any given term in the action gives a contribution
to the full expanded action starting from a minimum order in the expansion parameter,
that we call nyin, corresponding to the number of fields associated with generators from
V1 that it contains. Starting from ny;, the higher order contributions of the same term are
obtained by going up in the order of one or more of the fields appearing in it. However,
this procedure is limited by the truncation that defines an upper bound for the maximum

order in the expansion of the single fields. Focussing in the expansion of the action on the
(n)
term B of given order n, we would like to define when the truncation at order g(Ny, Ni)

prevents it to contain all the possible terms appearing in the untruncated expansion. A

(n)
term in the expansion at order B does not appear if the gap between the minimum order of

the expansion, nyi,, and (g cannot be filled by a single field. This is because starting with
any term of the action, with minimum order n.;,, we can always obtain a contribution
at order n by going up in the order of the expansion of a single field, keeping the others
at their minimum. This argument fixes the minimum order of the expansion of each field
such that at order n there are no missing terms.

In order to make this argument more clear let us consider an example. If we have a

Lagrangian density B given by the product of two fields, a and b, B = ab then considering

(k)

(k)
the full generic expansion (a =Y 72, aand b= >, b ) at order n, we get the following

expression

M) e (k) )
B=Y Ta b (A1)
k=0

After the truncation, the expansion of both fields a and b contains terms to a maximum
order, say n, and n; respectively, then the term above should be written as

(n) min{ng, n}

e (B)

k=max{0, n—nq}
Thus, if
n < min{ny, ny}, (A.3)

then eq. (A.1) will contain all the terms appearing in eq. (A.2). This argument can be
straightforwardly generalized to a Lagrangian term containing more fields, as in our case.

26These include Lorentz transformations in the longitudinal directions, spatial rotations in the transverse
directions plus Galilean boosts.

— 30 —



Term | Min Order Max Order Existence Only V¢ Terms | Only V; Terms
B D—-p-1 (D—p—1)N1 +pNy 1<pgD-1 D=p+1 —
By D—-p—-3 |(D—p—3)Ni+(p+2)No | 0<p<D-3 D=p+3 —
B D-p-1 (D—p—1)N1+pNy 0<p<D-2 — p=0

Table 2. This table indicates the minimum and maximum order of each term, the existence
conditions, that are also depicted in figure 1, and the conditions under which each term contains
only fields coming from one of the subspaces.

In our case, the condition discussed above can be translated into the following
n < No + Nin n < Ny — 1+ nyin, (A4)

where the —1 in the second takes into account the fact that the minimum order for Vj is
1. Therefore, in order to preserve the invariance of the action, we must require

n < min{ Ny, N1 — 1} + nin - (A.5)

However, this condition applies to a general term containing both fields from Vy and Vj.
As we are going to discuss there could be certain values of D and p for which a term in the
Lagrangian contains only fields of one of the subspaces. For those cases eq. (A.5) is too
strong. Instead, only one of the conditions given in eqgs. (A.4) should be satisfied.

To derive the invariance conditions, it is convenient to decompose the expanded La-
grangian eq. (4.18) into three terms:

D—2
B = ( 1)RAO*“l(J) ATA2 N AT A BWHL AN BOPL (A.6a)
p_
D_2 A A -
By = Rop 19002 (J) A 740 A A T4 A EWHS AL A EOD- (A.6b)
? p+1 ’

D—2
Bs = +2(—1)p< )RAO%+1(G) ATAUN ONTA A BWR AN B (AL6e)
p

See table 2 and figure 1 for more information. Note that although formally Bs is defined
for p = —1, its expansion is not well defined since for p = —1 R%+1%+2 would have been
in V4 but there is no Vj. For this reason we do not consider the case p = —1.

In order to find the invariance conditions we must evaluate eq. (A.5) for each term in
the different existence regions, taking into account the special values of D and p for which
the terms we are considering contain only fields from one of the subspaces Vj or V7.

For instance, if we take p = 0 we see from table 2 that only the terms By and Bj exist
and that Bj has only contributions from Vj. Thus, the invariance conditions read

n< N+ D-—2. (A.7a)

For By instead we should distinguish the following two cases:

D #3 n<min{Ny,N; —1}+D —3.
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0 1 2 D-3 D-2 D-1

B

Bs

B

Figure 1. Existence conditions of the terms By, By and Bjs in the action that could be read from
table 2.

Putting together these two conditions we deduce that for p = 0 the term (g is invariant
provided that eq. (A.7b) is satisfied.

Studying in a similar way the different invariance conditions for different values of p,
we deduce the following conditions:

0 D=3 n< Ny, (A.8a)
b= D#3 n<min{No, Ny —1} + D —3, '

_ < mi . _
1 <p<D-—3 D=p+3 n\m?n{No,mln{No,Nl 1} + 2}, (A.8b)
D#p+3 n<min{Ny,N; —1}+D—-p—3,
p=D—2 n <min{Ny, Ny — 1} +1, (A.8¢)
p=D—-1 n< No. (A.8d)

We note that the case p = —1 is not realized. For the two allowed cases N1 +1 = Ny
the conditions above can be simplified, using the identity

min{No,N1—l}zmin{lelzl,Nl—l}:Nl—l, (Ag)
as follows:
=3 n< Ny
D#3 n<Ni+D-4
D = p—i—3 7’L N(]
1<p<D-3 (A.10b)
D#p+3 n<NM+D—-p—14
p=D—2 n <N (A.10c)
p=D-1 ngNO (A.10d)

As an example, we give in table 3 the solution of the invariance conditions for D =5
and different values of p corresponding to the truncated algebras g(2,1) and g(2, 3).
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Algebra (D=5) |p=0 |p=1|p=2|p=3 | p=4
9(2,1) n<2|n<l | n<2|ngl | ng?2
9(2,3) n<d | n<3|n<2|n<3 | ng?2

(m)
Table 3. Invariance conditions for the expanded terms B under the algebras g(2,1) and g(2, 3).

B Transformation rules and curvatures of example 4

For the convenience of the reader, we give in this appendix the definition of the curvatures
and the transformation rules of the gauge fields plus curvatures that occur in example 4,
i.e. the case (D, p; No, N1) = (4,0;2,3), discussed in the main text.

The transformation rules for the fields corresponding to the generators of the g(2,3)
algebra are given by

W W) OO © D) 5O

SET = déa — N7 L AQ — \PE, + a0 (B.1a)
(3) (3) (0)(3) (1) (2)(1) 0) . (3) (0) (2) () (2)
SE® = de® — NP+ AQ% — NP1 A" — APE, +50% — AP E, +640%,  (B.1b)
(1) (1) (0) ,(0) (1) (0)
60 = dX* — AP0y 4+ X090 (B.1c)
(3) (1) (0) b(O) (1) (0) b (2) b(l) (1) (2) b
5O = dX — APQy + A, QP — NPQ, + X\, Q% (B.1d)
(0) (0) (0) (0) (0), (0)
60 = d\® 4 \edqb, — \bdQe, (B.1e)
St — 3, Qo b o, ol SNl -
(0)
7 =d\, (B.1g)
(2) (2) (111(1) (1%1(1)
0T =d\N— \"E, +€Q,. (B.1h)

The curvatures that transform covariantly under these gauge transformations are given by

) b (0) b (0) (O)b
R¥®(J) =dQ® —Q* AQ°,, (B.2a)
(2) b (2) b (0) (Q)b (2) (2)b (1) (1>b
R®(J) =dQ» — QU ANQ QN —Q"NQ°, (B.2b)
. W ©
RY(G) = dQ" + +Q AN QY (B.2¢)
3) (3) ©., @ @
RY(G) = dQ* + +Q" A Q4+ QP A Q2 (B.2d)
) W @ W W
RY(P)=dE*+ Q" NE, — QA T, (B.2e)
©) @ @@ @) g D (g
RYP)=dE*+ QP NEy+ QP NEy — QAT — QYA T, (B.2f)
(0) (0)
R(H)=dT, (B.2g)
(2) (2) (1) (1)
RH)=dT+Q"NE,. (B.2h)
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These curvatures transform as follows under the gauge transformations (B.1) of the gauge
fields:

& 1) (© )X b 1 ©
SRO(P) = —N"R(H) + AR*(G) — N Ry (P) + G R (), (B.3a)

) —
(3) (3) (0) (0)(3) (1) (2) (2)(1) (0) b(3) 3) ()
SRO(P) = —N'R(H) + AR*(G) — NR(H) + AR*(G) — A Ry(P) +5 Rob(.])

@ ) e

— \PRy(P) + e, R¥(.J), (B.3b)
(1) (0) b(l) (1) (0) b
SRY(G) = —APRy(G) + \R™(J) (B.3c)
(3) (0) b(3) (3) (0) b (2) b(l) (1) (2) b
SRY(G) = —APRy(G) + MR™®(J) — N Ry(G) + M R™(J), (B.3d)
b Vad D Dbd e
SR™(J) = Mo 7 (J) = XR, (), (B.3e)
(2) (2) (2), .(0) (1) (1)
SR®(J) = Nod b () — b o (J) + 4+ e g () = XRY () — 20 RY(G),  (B.3f)
(0)
OR(H) =0, (B.3g)
(2) (1) (1) (1) (1)
SR(H) = —\"Ry(P) + € Ry (G) . (B.3h)
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