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ABSTRACT
We implement a SU(1, 1) covariant integral quantization of functions on the unit disk. The latter can be viewed as the phase space for
the motion of a “massive” test particle on (1+1)-anti-de Sitter space-time, and the relevant unitary irreducible representations of SU(1, 1)
corresponding to the quantum version of such motions are found in the discrete series and its lower limit. Our quantization method depends
on the choice of a weight function on the phase space in such a way that different weight functions yield different quantizations. For instance,
the Perelomov coherent states quantization is derived from a particular choice. Semi-classical portraits or lower symbols of main physically
relevant operators are determined, and the statistical meaning of the weight function is discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5128066

I. INTRODUCTION
The group SU(1, 1), which is the two-fold covering of SO0(2, 1), can be interpreted as the kinematical group for the (1 + 1)-anti-de-Sitter

space-time. The unit disk D in the complex plane can be viewed as the phase space for the motion of an elementary system in this space-
time1–4 [for the realistic (1 + 3)-anti-de-Sitter space-time with its kinematical group SO0(2, 3) and the relevant phase space SO0(2, 3)/SO(2)
× SO(3), see Ref. 5 and references therein]. Therefore, it is appealing to carry out a comprehensive program of quantization of functions (or
distributions) on the unit disk by using all resources of covariant integral quantization as it is defined, for instance, in Refs. 6–9 (and references
therein). This program also includes the semi-classical return to the original phase space through the construction of the so-called lower10

or covariant11,12 symbols. The latter has a true probabilistic interpretation when the integral quantization is based on normalized positive
operator valued measures (POVM) the latter acronym being used for normalized POVM as well.

Of course, due to the basic nature of the model, one can find in the literature different quantization methods which have been or could
be applied to the unit disk. Besides the seminal Berezin’s contributions,11,12 where the quantization of the unit disk is carried out through
the notions of covariant and contravariant symbols built from SU(1, 1) coherent states in the Perelomov sense,13 there is the well-known
Kirillov–Kostant–Souriau orbit method; see, for instance, Ref. 14 for a comprehensive review, and its parent, the geometric quantization.15,16

Deformation quantization17 is another popular method which has been applied to the unit disk in Ref. 18, where a non-commutative C∗-
algebra from the algebra of the continuous function on the closed unit disk is obtained. For a general review of various quantization methods,
see, for instance, Ref. 19.

To some extent, the approach followed in the present work pertains to the Berezin–Toeplitz quantization for Kähler manifolds,20–22

the unit disk being one of the simplest models. In a nutshell, the Berezin–Toeplitz quantization of a symplectic manifold M with Kähler
structure maps functions on M to operators in the Hilbert space of square-integrable holomorphic sections of an appropriate complex line
bundle. Denoting by Π the orthogonal projection operator from the space of all square-integrable sections to the holomorphic subspace, for
any bounded measurable function f , one constructs the Toeplitz operator A f with symbol f , acting on the space of holomorphic sections,
as A f ϕ = Π( f ϕ). That is, A f ϕ consists of multiplication by f followed by projection back into the holomorphic subspace. This quantization
map may be thought of as a generalization of anti-Wick-ordered quantization. The specificity and the novelty of our contribution are to
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be considered at various levels. First, we consider manifolds which are symmetric spaces derived from Cartan decomposition G = PK of
arbitrary semi-simple Lie groups, and we introduce a family of quantization projectors Π derived from weight functions defined on the
Cartan subalgebra A ⊂ P. Then, we apply the derived G-covariant integral quantization to the elementary case G = SU(1, 1), for which the
considered manifold is precisely Kählerian. While the Berezin approach11,12 to this example corresponds to a specific choice of the weight
function, our article contains a set of original results due to the arbitrariness of the weight function. Moreover, the SU(1, 1) example displays
a rich set of properties which can be generalized to many Lie groups.

The organization of the paper is as follows. Sections II and III are a reminder of a known material about SU(1, 1) as it can be found in a
classical treatise in group representation theory like Ref. 23 or in the more recent Ref. 7. In Sec. II, we describe the geometry of the unit disk,
viewed, respectively, as a Kälherian manifold in Subsection II A, as a left coset of SU(1, 1) in Subsection II B, with group action in the usual way,
and, in Subsection II C, as the phase space for the motion of a test particle in (1 + 1)-anti-de Sitter space-time, with the identification of the
three basic observables with SU(1, 1) generators. In Subsection II D, we complete these geometric and algebraic aspects with the description
of the (1 + 1)-AdS space-time, which can be identified with a left coset of SU(1, 1). Section III is devoted to some representations of SU(1, 1)
relevant to our purposes. In Subsection III A, we give a concise description of the discrete series (in a wide sense) of representations of
SU(1, 1) as acting on Fock–Bargmann Hilbert spaces of holomorphic functions in the unit disk, and in Subsection III C, of their generators
as first-order differential operators on these functions. In Sec. IV, we give a self-contained description of the framework of covariant integral
quantization when it is associated with a unitary irreducible representation (UIR) of a Lie group in Subsection IV A, and with a square-
integrable UIR in Subsection IV B. (For more details and examples, see, for instance, Ref. 8 and references therein.) Then, in Subsection IV C,
we implement this method with the restriction to the coset issued from the Cartan decomposition of the group and with the introduction of
a weight function defined on a certain submanifold of the Cartan symmetric space. We also involve in the construction a parity operator as
the representative in the UIR carrier Hilbert space of the Cartan involution. Together with the fact that different admissible weight functions
lead to different quantizations, these features constitute an original aspect of the present work. In Sec. V, we apply the above formalism to
the group SU(1, 1), its discrete series, and the unit disk corresponding to the Cartan symmetric space, and we examine the outcomes when a
particular family of weights is considered. In Subsection V C, we recover results obtained by other authors for specific weights of this family.
We then proceed in Sec. VI with the quantization of functions on the AdS phase space (i.e., classical observables) and study the dependence of
their respective quantized versions on the choice of the weight function, noticing that for the most basic ones, there is no or trivial dependence.
Section VII is devoted to the lower symbols of operators issued from our covariant integral quantization. This amounts to give semi-classical
portraits, in general, more regular, of the original function, together with a probabilistic interpretation when the weight function is suitably
selected. In Sec. VIII, we conclude by commenting some aspects of our work amenable to further interesting developments. In the Appendix,
some useful integral formulas involving Jacobi polynomials are given.

Most of our approaches should be justified on a mathematical level with regard to involved functions. Nevertheless, many of our results
are given with implicit assumptions on their validity for the sake of simplicity. Throughout the text we use for convenience the shortened
notation f (z) in place of f (z, z̄) for z ∈ C, at the difference of Berezin in Refs. 11 and 12.

II. GEOMETRY OF THE UNIT DISK AND ITS SYMMETRY
A. The unit disk as a Kählerian manifold

The unit disk
D

def= {z ∈ C , ∣z∣ < 1}

is one of the four two-dimensional Kählerian manifolds,13,24 the other ones being, respectively, the complex plane C, the sphere S2, or
equivalently the projective complex line CP1, and the torus C/Z2 ∼ S1 × S1. It is equipped of the (Poincaré) metric,

ds2 = dz dz̄
(1 − ∣z∣2)2 .

The corresponding surface element is given by the two-form,

Ω = i
2

dz ∧ dz̄
(1 − ∣z∣2)2 =

d(Rz) d(Iz)
(1 − ∣z∣2)2 ≡

d2z
(1 − ∣z∣2)2 ≡ μ(d2z). (1)

These quantities are both issued from a Kählerian potential K D ,

K D (z, z̄)def=π−1(1 − ∣z∣2)−2,

ds2 = 1
2

∂2

∂z ∂z
ln K D (z, z̄) dz dz̄, (2)

μ(d2z) = i
4

∂2

∂z ∂z
ln K D (z, z̄) dz ∧ dz̄.
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B. The unit disk as a coset of SU(1, 1)
Let us start by recalling the essential definitions and notations for the simple Lie group SU(1, 1) and its Lie algebra,

SU(1, 1) = {g = (α β
β̄ ᾱ) α, β ∈ C , det g = ∣α∣2 − ∣β∣2 = 1}.

The three basis elements of the Lie algebra su(1, 1) are chosen as

N0 =
1
2
( i 0

0 −i) =
iσ3

2
, N1 =

1
2
(0 1

1 0) =
σ1

2
, N2 =

1
2
( 0 i
−i 0) = −

σ2

2
, (3)

with the commutation relations

[N0, N1] = N2 , [N0, N2] = −N1 , [N1, N2] = −N0. (4)

The Cartan factorization of SU(1, 1) is associated with the (Cartan) involution

iph : g ↦ (g†)−1.

The maximal compact subgroup H =U(1) is determined by iph(g) = g, whereas the condition iph(g) = g−1 selects the subset P of Hermitian
matrices in SU(1, 1). The factorization SU(1, 1) = PH reads explicitly

SU(1, 1) ∋ g = (α β
β̄ ᾱ) = p(z) h(θ),

with

p(z) = ( δ δz
δz̄ δ ) , z = βᾱ−1 , δ = ∣α∣ = (1 − ∣z∣2)−1/2, (5)

and

h(θ) = (eiθ/2 0
0 e−iθ/2) , θ = 2 arg α , 0 ≤ θ < 4π.

The bundle section D ∈ z ↦ p(z) ∈ P gives the unit disk D a symmetric space realization identified as the coset space SU(1, 1)/H. Note that

p2 = gg† (p(z))−1 = p(−z). (6)

The Haar measure (see, for instance, Ref. 23) on the unimodular group SU(1, 1) corresponding to the above Cartan factorization reads

dhaar(g) = 1
8π2

d2z
(1 − ∣z∣2)2 dθ.

It is normalized for the angular parts.
The Cartan factorization allows us to make SU(1, 1) act on D through a left action on the set of matrices p(z),

g : p(z)↦ p(z′) with g p(z) = p(z′) h′ , (7)

where z′ ≡ g.z is given by the map

D ∋ z ↦ z′ = (α z + β) (β̄ z + ᾱ)−1 ∈D , (8)

⇔ z = (ᾱ z′ − β) (−β̄ z′ + α)−1 = g−1 ⋅ z′, (9)

and h′ is the following element in U(1),

J. Math. Phys. 61, 022101 (2020); doi: 10.1063/1.5128066 61, 022101-3

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

h′ =
⎛
⎜⎜⎜
⎝

βz̄ + α
∣βz̄ + α∣ 0

0
β̄z + ᾱ
∣β̄z + ᾱ∣

⎞
⎟⎟⎟
⎠

.

Note the formula used to derive the above relations,
δ(g ⋅ z) = δ(z) ∣β̄z + ᾱ∣−1,

and also the action of U(1) on the disk,
h(θ) p(z) h(−θ) = p(h(θ) ⋅ z) = p(eiθ z).

Hence, the unit disk D is invariant under the transformations (8) of the homographic or Möbius type. Note that SU(1, 1) leaves invariant the
boundary S1 ≃ U(1) of D under the transformation (8).

The invariance of D under (8) also holds for the metric quantities (2),

K D (z, z̄) = π−1(1 − ∣z∣2)−2 = π−1(1 − ∣z′∣2)−2,

ds2 = dz dz
(1 − ∣z∣2)2 =

dz′ dz′

(1 − ∣z′∣2)2 ,

μ(d2z) = d(Rz) d(Iz)
(1 − ∣z∣2)2 =

d(Rz′) d(Iz′)
(1 − ∣z′∣2)2 .

C. The unit disk as an AdS phase space
Since the unit disk is Kählerian, it is symplectic and so can be given a phase space structure and related interpretation. First, the form (1)

determines the Poisson bracket
{ f , g} = 1

2i
(1 − ∣z∣2)2 (∂ f

∂z
∂g
∂z
− ∂ f

∂z
∂g
∂z
).

Now, there are 3 basic observables generating the SU(1, 1) symmetry on this classical level,

D ∋ z ↦ k0(z) = 1 + ∣z∣2
1 − ∣z∣2 , k1(z) = 1

i
z − z̄

1 − ∣z∣2 , k2(z) = z + z̄
1 − ∣z∣2 . (10)

They are not independent since
k2

0 − k2
1 − k2

2 = 1, (11)

i.e., the 3-vector (k0, k1, k2) points to the upper sheet H + of the two-sheeted hyperboloid in R3 which is described by (11), and whose
stereographic projection through (10) is the open unit disk. This projection reads

H + ∋ (k0, k1, k2)↦ z = k2 + ik1

1 + k0
≡
√

k0 − 1
k0 + 1

ei arg z .

They obey the Poisson commutation rules

{k0, k1} = k2 , {k0, k2} = −k1 , {k1, k2} = −k0,

which are consistent with (4). As is expected, the two combinations

k+ = k2 − ik1 =
2z̄

1 − ∣z∣2 , k− = k2 + ik1 =
2z

1 − ∣z∣2 ,

are to play an important role as well.

Under the action of g = (α β
β̄ ᾱ) ∈ SU(1, 1), functions k0 and k± transform as

k′0(z) = k0(g−1 ⋅ z) = (∣α∣2 + ∣β∣2) k0(z) − 2R(αβk+(z)),
k′+(z) = k+(g−1 ⋅ z) = −2αβ̄ k0(z) + α2 k+(z) + β̄2 k−(z), (12)

k′−(z) = k−(g−1 ⋅ z) = −2ᾱβ k0(z) + ᾱ2 k−(z) + β2 k+(z) = k+(g−1 ⋅ z).
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Equivalently, in matrix notation,

(k′− k′0
k′0 k′+

) = g−1(k− k0
k0 k+

)(g−1)t
. (13)

This transform can be viewed as the (co-adjoint action) of SU(1, 1) on the co-adjoint orbit identified with (11). Introducing the left action of
SU(1, 1) on functions f (z) as

(U(g) f )(z) ∶= f (g−1 ⋅ z), (14)

we write the above transformations in terms of matrix elements as

(U(g)ka)(z) =∑
b
[U(g)]bakb(z) , a = 0, 1, 2 or a = 0,±. (15)

The following particularization of these formulas to g = p(−z′) will be useful for Sec. VII:

k0(p(z′) ⋅ z) = k0(z′) k0(z) + R(k−(z′) k+(z)),
k+(p(z′) ⋅ z) = k+(z′) k0(z) + (1 − ∣z′∣2)(k+(z) + z′2 k−(z)), (16)

k−(p(z′) ⋅ z) = k+(p(z′) ⋅ z).

D. AdS space-time as a left coset of SU(1, 1)

g = h(θ) s(u) l(v) , θ ∈ [0, 2π), u, v ∈ R. (17)

Whereas the first factor

h(θ) = ϵ(eiθ/2 0
0 e−iθ/2) , ϵ = ±I2,

belongs to U(1), the maximal compact subgroup, with ϵ belonging to the center of SU(1, 1) isomorphic to Z2, and the others are of non-
compact hyperbolic type,

s(u) =
⎛
⎜⎜⎜
⎝

cosh
u
2

sinh
u
2

sinh
u
2

cosh
u
2

⎞
⎟⎟⎟
⎠

, l(v) =
⎛
⎜⎜⎜
⎝

cosh
v

2
i sinh

v

2

−i sinh
v

2
cosh

v

2

⎞
⎟⎟⎟
⎠

, u, v ∈ R,

and belong to subgroups isomorphic to R. Their respective generators Na, a = 0, 1, 2, are precisely those introduced in (3),

h(θ) = ϵeθ N0 , s(u) = eu N1 , l(v) = ev N2 .

The factorization (17) is associated with the group involution

ij : g ↦ gt ,

where the superscript t denotes transposition. Indeed,

ht = h , st = s , lt = l−1.

Now, by considering

j(θ, u) = h(θ) s(u) =
⎛
⎜⎜⎜
⎝

eiθ/2 cosh
u
2

eiθ/2 sinh
u
2

e−iθ/2 sinh
u
2

e−iθ/2 cosh
u
2

⎞
⎟⎟⎟
⎠

,

we have
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jjt = ggt = ( α2 + β2 2R(αβ)
2R(αβ) α2 + β2) = (

eiθ cosh u sinh u
sinh u e−iθ cosh u

).

The parameters (θ, u) form a system of global coordinates for the (1 + 1)-anti-de Sitter space-time visualized as the one-sheeted hyperboloid
ηabyayb = κ−2 in R3 with metric (ηab) = diag(+, +,−), a, b = 2, 0, 1, and with curvature κ,

y2 = κ−1 cosh u cos θ,
y0 = κ−1 cosh u sin θ,
y1 = κ−1 sinh u,

or expressed in terms of the element of SU(1, 1),

jjt = (κy+ κy1

κy1 κy−
) ≡ Γ(y),

such that
y± = y2 ± iy0 , κ−2 det Γ(y) = ηabyayb = κ−2.

The factorization g = jl, which means on the group level SU(1, 1) = AdS × Lorentz, allows us to view the AdS space-time as the left coset
SU(1, 1)/L, with L = {l(v) , v ∈ R} ∼ SO0(1, 1) being the orthochronous Lorentz subgroup. SU(1, 1) acts on the set of matrices Γ(y), and this
action is induced from its left action on the set of matrices j,

g : j↦ j′ , gj = j′l′ ⇔ Γ(y′) = j′j′t = gjjtgt = gΓ(y)gt .

In this interpretation, SU(1, 1) acts as the double covering of the actual AdS group SO0(2, 1) = SU(1, 1)/Z2, and we see that N0 generates
the “translations in time” corresponding to U(1), N1 generates the “translations in space” corresponding to the subgroup SO0(1, 1), and N2
generates the Lorentz transformations corresponding to the other SO0(1, 1) = L.

It is instructive to describe how the three basic observables ka, a = 0, 1, 2 (or k0, k±), transform under the action of three subgroups with
respective generators Na, a = 0, 1, 2,

h(θ) :{k0 ↦ k0,
k± ↦ e±iθk±,

s(u) :
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k0 ↦ cosh u k0 − sinh u k2,
k1 ↦ k1,
k2 ↦ − sinh u k0 + cosh u k2,

l(v) :
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k0 ↦ cosh v k0 − sinh v k1,
k1 ↦ − sinh v k0 + cosh u k1,
k2 ↦ k2.

III. SU(1, 1) REPRESENTATION(S)
A. SU(1, 1) unitary irreducible representation(s) (discrete series)

For a given η > 1/2, consider the Fock–Bargmann Hilbert space FB η of all analytic functions f (z) on D that are square integrable with
respect to the scalar product,

⟨ f 1∣ f 2⟩ =
2η − 1

2π ∫
D

f 1(z) f 2(z) (1 − ∣z∣2)2η−2 d2z. (18)

An orthonormal basis is made of powers of z suitably normalized,

en(z) ≡
√

(2η)n

n!
zn with n ∈ N, (19)

where (2η)n ∶= Γ(2η + n)/Γ(2η) is the Pochhammer symbol. For η = 1, 3/2, 2, 5/2, . . ., one defines the UIR g = (α β
β̄ ᾱ)↦ Uη(g) of SU(1, 1) on

FBη by
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FBη ∋ f (z)↦ (Uη(g) f )(z) = (−β̄ z + α)−2η f ( ᾱz − β
−β̄z + α

). (20)

In particular, for g = p(z′), we have

(Uη(p(z′)) f )(z) = (1 − ∣z′∣2)η (1 − z z̄′)−2η f ( z − z′

1 − z z̄′
).

This countable set of representations constitutes the “almost complete” holomorphic discrete series of representations of SU(1, 1).23 “Almost
complete” because the lowest one, η = 1/2, requires a special treatment due to the non-existence of the inner product (18) in this case. Had
we considered the continuous set η ∈ [1/2, +∞), we would have been led to involve the universal covering of SU(1, 1).

The matrix elements of the operator Uη(g) with respect to the orthonormal basis (19) are given in terms of hypergeometric
polynomials by25

Uη
nn′ (g) = ⟨en∣Uη(g)∣en′⟩ = (

n>! Γ(2η + n>)
n<! Γ(2η + n<)

)
1/2

α−2η−n> αn<

× (γ(β, β))n>−n<

(n> − n<)! 2F1(−n< , n> + 2η ; n> − n< + 1 ;
∣β∣2
∣α∣2 ),

where

γ(β, β̄) = { −β n> = n′

β̄ n> = n , n>
<

= { max
min (n, n′) ≥ 0.

Taking into account the well-known relation between the hypergeometric functions and the Jacobi26 polynomials,

P(μ,ν)
n (x) = (n + μ

n ) 2F1(−n , n + μ + ν + 1 ; μ + 1 ;
1 − x

2
),

and the parametrization (5), this expression is alternatively given in terms of Jacobi polynomials as

Uη
nn′ (g) = (n<! Γ(2η + n>)

n>! Γ(2η + n<)
)

1/2

α−2η−n> αn<

×(γ(β, β))n>−n< P(n>−n< , 2η−1)
n< (1 − 2∣z∣2) , z = βᾱ−1.

(21)

Note the diagonal elements,

Uη
nn(g) = α−2η−n ᾱn

2F1(−n , n + 2η ; 1 ;
∣β∣2
∣α∣2 ) = α−2η ( ᾱ

α
)

n
P(0 , 2η−1)

n (1 − 2∣z∣2).

For the elements g = h(θ) in U(1), we have
Uη

nn′ (h(θ)) = δnn′ e−i(η+n)θ,

whereas for the elements g = p(z) in P,

Uη
nn′ (p(z)) = (n>! Γ(2η + n>)

n<! Γ(2η + n<)
)

1/2

(1 − ∣z∣2)η ∣z∣n>−n<

(n> − n<)!
ei(n′−n)ϕ×

× (sgn(n − n′))n−n′
2F1(−n<, n> + 2η ; n> − n< + 1 ; ∣z∣2) (22)

= (n<! Γ(2η + n>)
n>! Γ(2η + n<)

)
1/2

(1 − ∣z∣2)η ∣z∣n>−n< ei(n′−n)ϕ×

× (sgn(n − n′))n−n′ P(n>−n< , 2η−1)
n< (1 − 2∣z∣2), (23)

with z = ∣z∣eiϕ. If n = n′,
Uη

nn(p(z)) = (1 − ∣z∣2)η
2F1(−n , n + 2η ; 1 ; ∣z∣2) = (1 − ∣z∣2)η

P(0 , 2η−1)
n (1 − 2∣z∣2). (24)
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B. Orthogonality relations and trace formulas
Since the functions (21) are matrix elements of operators Uη in the discrete series for η > 1/2, one of their fundamental properties is

displayed by their orthogonality relations,

∫
SU(1,1)

dhaar(g) Uη
mm′ (g) Uη

nn′ (g) = dη δmnδm′n′ , (25)

where dη = 2π/(2η − 1) is the (formal) dimension of the representation Uη.
From the extension of the generating function of Jacobi polynomials,26

∞

∑
n=0

P(μ , ν)
n (x) tn = 2μ+ν

R
(1 − t + R)−μ (1 + t + R)−ν , ∣t∣ < 1 , R = (1 − 2tx + t2)1/2, (26)

to its “forbidden” limit ∣t∣ = 1, we infer the trace of the operator Uη(g) for a general g = (α β
β̄ ᾱ) ∈ SU(1, 1),

tr (Uη(g)) = 1
2
((Rα)2 − 1)−1/2 [(Rα)2 + ((Rα)2 − 1)1/2]

1−2η
,

and its restriction to p(z),

tr (Uη(p(z))) = 1
2∣z∣ (1 − ∣z∣2)η(1 + ∣z∣)1−2η. (27)

These expressions are singular for α = 1 and z = 0, respectively, since these values correspond to the identity operator.
Another trace formula will play an important role in the sequel. It involves the parity operator defined by

P ∶=
∞

∑
n=0

(−1)n∣en⟩⟨en∣, (28)

tr (P Uη(g)) = 1
2
((1 − Iα)2)−1/2 [(Iα)2 + ((1 − Iα)2)1/2]

1−2η
,

and its restriction to p(z),

tr (P Uη(p(z))) = 1
2

. (29)

For z = 0, this gives a trace formula for the parity operator

tr P =
∞

∑
k=0

(−1)k = 1
2

,

which can be legitimated by adopting the Abel summation of divergent series.
Finally, the following formula (related to the existence of the so-called inversion in Cartan symmetric domains) will be used in this paper,

P Uη(p(z)) P = Uη(p(−z)). (30)

C. Corresponding representation of the Lie algebra su (1, 1)
The respective self-adjoint representatives of N0, N1, and N2, defined in (3), under the UIR (20), defined generically asi ∂ Uη(g(t))/∂t∣t=0,

are the following differential operators on the Fock–Bargmann space FB η:

N0 ↦ K0 = z
d
dz

+ η,

N1 ↦ K1 = −
i
2

(1 − z2)
d
dz

+ iηz, (31)

N2 ↦ K2 =
1
2

(1 + z2)
d
dz

+ ηz.

They obey the commutation rules,
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[K0, K1] = i K2 , [K0, K2] = −i K1 , [K1, K2] = −i K0.

The elements of the orthonormal basis (19) are eigenvectors of the compact generator K0 with equally spaced eigenvalues,

K0 ∣en⟩ = (η + n) ∣en⟩.

The particular element ∣e0⟩ of the basis is a lowest weight state or “vacuum” for the representations Uη. Indeed, introducing the two operators
with their commutation relation,

K± = ∓i (K1 ± iK2) = K2 ∓ iK1 , [K+, K−] = −2K0. (32)

As differential operators, they read as K+ = z2d/dz + 2ηz, K− = d/dz. Adjoint of each other, they are raising and lowering operators,
respectively,

K+ ∣en⟩ =
√

(n + 1)(2η + n) ∣en+1⟩,

K− ∣en⟩ =
√

n (2η + n − 1) ∣en−1⟩,

and we check K−∣e0⟩ = 0. States ∣en⟩ are themselves obtained by successive ladder actions on the lowest state as follows:

∣en⟩ =
√

Γ(2η)
Γ(2η + n) n!

(K+)n ∣e0⟩.

The Casimir operator is defined as

C
def= K2

1 + K2
2 − K2

0 =
K+K− + K−K+

2
− K2

0 .

This operator is fixed at the value C = −η(η − 1) Id on the space FBη that carries the UIR Uη.
Finally, we note that, in agreement with the covariance properties (12) of their respective classical counterparts, we have

Uη(g) K0 Uη(g−1) = (∣α∣2 + ∣β∣2)K0 − αβK+ − ᾱβ̄K−,

Uη(g) K+ Uη(g−1) = −2αβ̄ K0 + α2 K+ + β̄2 K−,

Uη(g) K− Uη(g−1) = −2ᾱβ K0 + ᾱ2 K− + β2 K+.

Equivalently, with the notations of (15),

Uη(g) Ka Uη(g−1) =∑
b
[U(g)]baKb(z) , a = 0, 1, 2 or a = 0,±.

Like for the Weyl–Heisenberg group, a unitary “displacement” operator is built from the generators K±. It corresponds to map D ∋ z ↦ ξ ∈ C
determined by

Uη(p(z)) = eξ K+−ξ K− ≡ Dη(ξ) , ξ = tanh−1∣z∣ ei arg z ,

which gives k0(z) = cosh 2∣ξ∣ for the observable introduced in (10).

IV. COVARIANT INTEGRAL QUANTIZATIONS: GENERAL
A. Covariant integral quantization with UIR of a group

Here, we give a self-contained presentation of the method (for more details and applications, see Refs. 6–9). Let G be a locally compact
Lie group with left Haar measure dhaar(g), and let g ↦ U(g) be a UIR of G in a Hilbert space H . Let M be a bounded operator on H and let
us introduce the family

{M(g) ∶= U(g) M U†(g) , g ∈ G}

of the “displaced” version of M under the action of U(g)’s. Suppose that the operator,

R ∶= ∫
G

M(g) dhaar(g),

is defined in a weak sense. From the left invariance of dhaar(g), the operator R commutes with all operators U(g), g ∈ G, and so, from Schur’s
Lemma, we have the “resolution” of the unity up to a constant,

R = cMI,
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with
cM = ∫

G
tr(ρ0 M(g)) dhaar(g).

Here, the unit trace positive operator ρ0 is chosen, if manageable, in order to make the integral convergent. Of course, it is possible that no such
finite constant exists for the given M, and at worst, it could not exist for any M (which is not the case for square integrable representations).
Now, if cM is finite and positive, the true resolution of the identity follows:

∫
G

M(g) dν(g) = I , dν(g) ∶= dhaar(g)/cM. (33)

B. Covariant integral quantization: With square integrable UIR
Let us consider a UIR U for which M is an “admissible” operator, which means that

cM = ∫
G

dhaar(g) tr(ρ0M(g))

is finite for a certain ρ0, or more specifically, for square-integrable UIR U for which M = ρ is an admissible density operator,

c(ρ) = ∫
G

dhaar(g) ∥ρU(g)∥2
HS <∞,

where ∥A∥HS = tr(AA†) is the Hilbert–Schmidt norm. Then, the resolution of the identity is guaranteed with the family,

M(g) = U(g)MU†(g).

This allows the covariant integral quantization of complex-valued functions on the group

f ↦ A f = ∫
G

M(g) f (g) dν(g) , dν(g) = dhaar(g)
cM

or
dhaar(g)

c(ρ)
.

Covariance means that
U(g)A f U†(g) = AUreg(g) f ,

where
(Ureg(g) f )(g′) ∶= f (g−1g′)

is the regular representation if f ∈ L2(G, dhaar(g)). Moreover, we get a generalization of the Berezin or heat kernel transform on G (see, for
instance, Ref. 27),

f (g)↦ f̌ (g) ∶= ∫
G

tr(ρ(g) ρ(g′)) f (g′) dν(g′),

where the function f̌ is the lower or covariant symbol of the operator A f .

C. Covariant integral quantization through Cartan and Iwasawa decomposition: The general case
1. Cartan and Iwasawa decompositions: A reminder

Let G be a connected semi-simple Lie group and K its maximal compact subgroup. Then, the homogeneous coset space,

G/K = {ḡ , g ∈ G} , ḡ = {gk , k ∈ K},

is symmetric (i.e., it is a smooth manifold whose group of symmetries contains an inversion symmetry about every point; for more details, see
Ref. 28), diffeomorphic to an Euclidean space, and the Cartan decomposition,

G = P K ⇔ ∀g ∈ G∃ p ∈ P , k ∈ K,

such that g = pk = kp′ , p′ = k−1 pk,
(34)

holds. The subset P is in one-to-one correspondence with the left coset G/K. The decomposition (34) exponentiates the Lie algebra
decomposition g = p + k , such that
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[k , k] ⊂ k , [k , p] ⊂ p , [p , p] ⊂ k.

The decomposition (34) derives from the Cartan involution ϑ defined on the group level by

ϑ(p) = p−1 ∀ p ∈ P , ϑ(k) = k ∀ k ∈ K, (35)

and on the Lie algebra level (g = p + k) by
ϑ(p) = −p , ϑ(k) = k.

A derived decomposition involves the abelian subgroup A = exp a, where a is a (Cartan) maximal abelian subalgebra in p,

G = KAK.

When restricted to P, it can be refined as
P = ⋃

k∈K
Ad k ⋅ A. (36)

Geometrically, the image of the subgroup A in G/K is a totally geodesic submanifold.
We also need to consider the Iwasawa decomposition of the group G which reads as

G = NAK, (37)

where N is the subgroup generated by the nilpotent Lie algebra n given as the sum of the positive roots of a.
Since G is unimodular, the Haar measure is left and right invariant. From the theory of homogeneous spaces, it can be factorized as

dhaar(g) = dμG/K (ḡ) dhaar(k),

in such a way that

∫
G

f (g) dhaar(g) = ∫
G/K

dμG/K (ḡ)∫
K

dhaar(k) f (gk).

This has to be compared with the integration on the group resulting from its Iwasawa decomposition (37),

∫
G

f (g) dhaar(g) = ∫
N
∫

A
∫

K
f (nak) dhaar(n) dhaar(a) dhaar(k).

There results
dμG/K (ḡ) = dhaar(n) dhaar(a) for g = nak, n ∈ N, a ∈ A, k ∈ K.

Due to the one-to-one correspondence between P and G/K, we will write as well

dμG/K (ḡ) ≡ dμP(p).

The action g : ḡ0 ↦ g ⋅ ḡ0 = gg0 of G on G/K is equivalently carried out through the left action on P, g : p↦ p′ defined by gp = p′k′. Hence,
the subgroup K is the stabilizer of a point in P.

Based on the Iwasawa decomposition, let us denote by w = (ν, α) a set of coordinates for the manifold G/K or, equivalently, for P, on
which the left action of G on P is described as

g : p↦ p′⇔ p′(w) ∶= p(g.w).

This formula generalizes (7).

2. Integral quantization of Cartan symmetric space
Let g ↦ U(g) be a UIR of G. Suppose that we can generalize (28) by defining on the representation Hilbert space H of U a bounded

self-adjoint operator P obeying P2 = I and
P U(p) P = U(p−1), P U(k) P = U(k),

for any p ∈ P and k ∈ K. Clearly, this “parity” operator can be viewed as the representative of the Cartan involution ϑ (35), and its spectrum is
{±1}. Furthermore, we suppose that its trace can be defined as finite, and not zero, as it has been done for (28). Let a↦ w(a) be a function on
A which is left and right K-invariant (it can be complex-valued). Suppose that this function allows us to define
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Mw ∶= 1
tr(P)∫P∼G/K

dμP(p) w(a(p)) U(p) P (38)

as a bounded operator (in a weak sense). Here, a(p) is defined from the Cartan factorization (36). The latter means that for any p ∈ P, there
exist k ∈ K and a ∈ A ⊂ P such that p = ka(p)k−1. With the above assumptions, let us prove that (29) holds as well here, i.e., tr(U(p)P) does not
depend on p,

tr(U(p)P) = tr(P).

By using the decomposition p = kak−1 from (36), we have

tr(U(p)P) = tr(U(kak−1)P) = tr(U(k)U(a)U(k−1)P) = tr(U(k)U(a)PU(k−1)) = tr(U(a)P).

Now, for any element a in the abelian Cartan subalgebra A, there exists a′ ∈ A such that a′2 = a−1. Hence, we have

tr(U(a)P) = tr(U(a′)U(a)PU(a′−1)) = tr(U(a′)U(a)U(a′)P) = tr(P).

Choosing the weight w such that

∫
P

dμP(p) w(a(p)) = 1,

there results that Mw is a unit trace operator, i.e., tr Mw = 1.
Introducing its displaced version under the action of U,

Mw (g) = U(g) Mw U†(g),

and supposing that the Haar measure on K is normalized, one derives from (33) the resolution of the identity

∫
P

dμP(p)
Cw Mw (p) = I , Cw = ∫

P
dμP(p) tr (ρ0 Mw(p)), (39)

where the density operator ρ0 has been suitably chosen.
Effectively, starting from (33) and from the integral representation of Mw,

I = ∫
G

dhaar(g)
Cw Mw(g)

= ∫
P

dμP(p)
Cw ∫

K
dhaar(k)∫

P
dμP(p′) w(a(p′)) U(pk) U(p′) U†(pk)

= ∫
P

dμP(p)
Cw ∫

K
dhaar(k)∫

P
dμP(p′) w(a(p′)) U(p) U(kp′k−1) U†(p)

= ∫
P

dμP(p)
Cw ∫

K
dhaar(k)∫

P
dμP(k−1p′k) w(a(k−1p′k)) U(p) U(p′) U†(p)

= ∫
P

dμP(p)
Cw ∫

P
dμP(p′) w(a(p′)) U(p) U(p′) U†(p)

= ∫
P

dμP(p)
Cw Mw(p).

The integral quantization of functions (or distributions) results from (39),

f (p)↦ A f = ∫
P

dμP(p)
Cw f (p) Mw(p).

V. SU(1, 1) QUANTIZER OPERATOR FROM WEIGHT ON THE UNIT DISK
A. Construction from weight

The above material is now implemented in the SU(1, 1) case. Let us pick an η > 1/2 and choose a function [0, 1] ∋ u ≡ ∣z∣2 ↦ w (u) such
that the operator,

Mw ;η = 2∫
D

d2z
(1 − ∣z∣2)2 w (∣z∣2) Uη(p(z)) P, (40)
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is bounded and traceclass with unit trace,
tr Mw;η = 1.

Here, the parity operator P was defined in (28) and it was been introduced in the general construction (38) by convenience, as its importance
will appear soon.

Supposing that we can invert infinite sum and integral, this condition together with (29) imply the following normalization of the weight
function w,

∫
D

d2z
(1 − ∣z∣2)2 w (∣z∣2) = 1. (41)

Thus, if w is non-negative, it can be viewed as a probability distribution on the unit disk equipped with its SU(1, 1) invariant measure d2z
(1−∣z∣2)2 .

From (Uη(p(z)))† = Uη(p(−z)) and the invariance of the measure and w under the change z ↦ −z, one infers that Mw;η is symmetric and so
self-adjoint. Due to the isotropy of the weight function, Mw ;η is diagonal in the basis {en}, with matrix elements deduced from (24) after the
change ∣z∣↦ v = 1 − 2∣z∣2,

Mw;η
nn′ = δnn′ (−1)n 22−η π∫

1

−1
dv w(1 − v

2
) (1 + v)η−2 P(0,2η−1)

n (v). (42)

B. Resolution of the identity
The unitarily transported versions

Mw;η(p(z)) = Uη(p(z) Mw;η Uη(p(−z))

of this operator are also bounded self-adjoint and are expected to resolve the unity with respect to a measure on D proportional to
d2z/(1 − ∣z∣2)2,

I = 1
Cw ∫D

d2z
(1 − ∣z∣2)2 Mw;η(p(z)). (43)

One then computes Cw with the simplest ρ0 = ∣e0⟩⟨e0∣,

Cw = ∫
D

d2z
(1 − ∣z∣2)2 ⟨e0∣Mw;η(p(z))∣e0⟩ =∑

n
Mw;η

nn ∫
D

d2z
(1 − ∣z∣2)2 Uη

0n(p(z)) Uη
0n(p(z))

=∑
n

Mw;η
nn

Γ(2η + n)
n! Γ(2η) ∫D

d2z (1 − ∣z∣2)2η−2 ∣z∣2n

=∑
n

Mw;η
nn

Γ(2η + n)
n! Γ(2η) ∫

2π

0
∫

1

0
r2n+1(1 − r2)2η−2 dθ dr

=∑
n

Mw;η
nn

Γ(2η + n)
n! Γ(2η)

2π∫
1

0
xn (1 − x)2η−2 dx

= π
2η − 1∑n

Mw;η
nn =

π
2η − 1

,

where we have used the expression (22) for Uη
0n(p(z)), performed the variable changes z = reiθ (such that dz2 = r dr dθ) and next r2 = x, taken

in consideration the integral representation of the beta function,

β(a, b) = ∫
1

0
xa−1(1 − x)b−1 dx = Γ(a) Γ(b)

Γ(a + b)
,

and applied the unit trace of Mw;η. Therefore, the resolution of the identity holds with the measure

I = 2η − 1
π ∫

D

d2z
(1 − ∣z∣2)2 Mw;η(p(z)).

C. Particular weight functions
Let us consider the particular family of positive weight functions,

ws(u) ∶= s − 1
π

(1 − u)s , s > 1, (44)
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which satisfy (41). Using (A2), we have for the matrix elements of Mws ;η,

Mws ;η
nn′ = (−1)n δnn′ 2(s − 1)

Γ(η + s − 1)Γ(s − η)
Γ(η + s + n)Γ(s − η − n)

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

δnn′ 2(s − 1)
Γ(η + s − 1)Γ(η − s + n + 1)

Γ(η + s + n)Γ(η − s + 1)
for s ≠ η + 1,

δnn′ δn0 for s = η + 1.
(45)

From these expressions, we see that the operator Mws ;η is a density operator if 1 < s ≤ η + 1. Positiveness is lost for s > η + 1. It is a finite rank
= p operator for all s = η + p, p = 1, 2, . . .. The limit case s = η + 1 in (45) corresponds to Perelomov SU(1, 1) coherent states13 (with z̄ instead
of z),

Mwη+1 ;η = ∣e0⟩⟨e0∣ , Mwη+1 ;η(p(z̄)) = ∣z; η⟩⟨z; η∣, (46)

with

∣z; η⟩ = (1 − ∣z∣2)η
∞

∑
n=0

√
(2η)n

n!
zn∣en⟩ = Uη(p(z)) ∣e0⟩.

See also Chap. 8 in Ref. 29 for more details and specific properties.
It is interesting to determine the weight function wem ;η yielding the projector ∣em⟩⟨em∣ through (40). By using the orthogonality relations

satisfied by the Jacobi polynomials, we find

∣em⟩⟨em∣ = 2∫
D

d2z
(1 − ∣z∣2)2 wem ;η(∣z∣2) Uη(p(z)) P,

wem ;η(∣z∣2) = (−1)m η + m
π

(1 − ∣z∣2)η+1 P(0,2η−1)
m (1 − 2∣z∣2).

(47)

Clearly, at the exception of m = 0, the weights wem ;η are not non-negative.
It is naturally possible to extend the range of values of s below the limit 1 at the price to violate integrability and positivity of the weight

function. As a matter of fact, there exists a remarkable value of s, namely, s = 1/2, for which the suitably renormalized weight function

w(u) = 2η − 1
4π

(1 − u)1/2

yields the identity operator,

I =Mw1/2 ;η = 2η − 1
2π ∫

D

d2z
(1 − ∣z∣2)3/2

Uη(p(z)) P.

From the above, we obtain the integral representation of unit trace twice the parity operator,

2P = 2η − 1
π ∫

D

d2z
(1 − ∣z∣2)3/2

Uη(p(z)). (48)

As an interesting consequence of (48) combined with the resolution of the identity (43) and

Uη(p(z))PUη(p(−z)) = Uη(p(z))2)P = Uη(p( 2z
1 + ∣z∣2 ))P,

we obtain

I = 2
2η − 1

π ∫
D

d2z
(1 − ∣z∣2)2 Uη(p( 2z

1 + ∣z∣2 ))P.

There results the (non-trivial) integral formula given in (A) for hypergeometric polynomials.

Remark. An open question is to establish an inverse formula allowing to rebuild the weight w from some trace formula as it exists for
the Weyl–Heisenberg or the affine case (see, for instance, Refs. 31 and 32). More precisely, given w, the problem is to determine an operator
I such that the following reconstruction formula holds:

w(∣z∣2) = tr (Mw;η Uη(p(−z)I).
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VI. WEIGHTED SU(1, 1) INTEGRAL QUANTIZATIONS FOR THE UNIT DISK
We now start from the framework of Sec. V and establish general formulas for the quantization issued from a weight function w(u)

yielding the operator Mw;η in (40),

f ↦ Aw;η
f =

2η − 1
π ∫

D

d2z
(1 − ∣z∣2)2 f (z) Mw;η(p(z)). (49)

Since the operator Aw;η
f acts on the Fock–Bargmann Hilbert space, the most straightforward way to characterize it is to compute its matrix

elements with respect to the orthonormal basis (19). We know from (42) that the operator Mw;η is diagonal. Hence, the general form of those
matrix elements reads as

(Aw;η
f )nn′

= 2η − 1
π ∫

D

d2z
(1 − ∣z∣2)2 f (z) Mw;η(p(z))nn′

= 2η − 1
π ∑

k
Mw;η

kk ∫
D

d2z
(1 − ∣z∣2)2 f (z) Uη

nk(p(z)) Uη
n′k(p(z))

∶= 2η − 1
π ∑

k
Mw;η

kk I
η
k,n,n′ ( f ).

(50)

The integral in the lhs has the explicit form derived from (22),

I
η
k,n,n′ ( f ) = ∫

D

d2z
(1 − ∣z∣2)2 f (z) Uη

nk(p(z)) Uη
n′k(p(z))

= (n<! Γ(2η + n>)
n>! Γ(2η + n<)

)
1/2

(n′<! Γ(2η + n′>)
n′>! Γ(2η + n′<)

)
1/2

(sgn(n − k))n−k (sgn(n′ − k))n′−k,

× ∫
D

d2z f (z)(1 − ∣z∣2)2η−2 ∣z∣n>−n<+n′>−n′< ei(n′−n)ϕ

× P(n>−n< , 2η−1)
n< (1 − 2∣z∣2) P(n′>−n′< , 2η−1)

n′<
(1 − 2∣z∣2),

with

n>
<

= { max
min (n, k) , n′>

<

= { max
min (n′, k).

In the isotropic case f (z) = l(∣z∣2), this integral simplifies to

I
η
k,n,n′ ( f ) = πδnn′ 21−2η+n<−n> n<! Γ(2η + n>)

n>! Γ(2η + n<)

× ∫
+1

−1
dv l(1 − v

2
) (1 − v)n>−n< (1 + v)2η−2 (P(n>−n< , 2η−1)

n< (v))
2
,

where we have used the variable v = 1 − 2∣z∣2. Actually, it is sufficient to consider the case n ≤ k, for which

I
η
k,n,n′ ( f ) = πδnn′ 21−2η+n−k n! Γ(2η + k)

k! Γ(2η + n)

× ∫
+1

−1
dv l(1 − v

2
) (1 − v)k−n (1 + v)2η−2 (P(k−n , 2η−1)

n (v))
2
,

the case k < n keeping the same form thanks to the formula for Jacobi polynomials,26

P(−a , β)
n (x) = Γ(n + β + 1) (n − a)!

Γ(n + β + 1 − a) n!
(x − 1

2
) P(a , β)

n−a (x) for a ∈ N. (51)

Of course, for f = 1 = l, we should recover the identity in (50), which implies the following value for the integral I
η
k,n,n′ (1) (which can be

found in Ref. 30),

I
η
k,n,n′ (1) = πδnn′ 21−2η+n−k n! Γ(2η + k)

k! Γ(2η + n)∫
+1

−1
dv (1 − v)k−n (1 + v)2η−2 (P(k−n , 2η−1)

n (v))
2

= π
2η − 1

.
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Another useful particular case is f (∣z∣2) = (1 − ∣z∣2)−1 = 2/(1 + v). Then,

I
η
k,n,n′(

1
1 − ∣z∣2 ) = πδnn′ 22−2η+n−k n! Γ(2η + k)

k! Γ(2η + n)∫
+1

−1
dv (1 − v)k−n (1 + v)2η−3 (P(k−n , 2η−1)

n (v))
2

= δnn′
π

2η − 1
1

2η (η − 1)
[(k + η)(η + n) + η(η − 1)].

(52)

This formula is derived from Eq. (A1).
By construction, the quantization map (49) is covariant with respect to the unitary action Uη of SU(1, 1),

Uη(g0) Aw;η
f Uη†(g0) = Aw;η

U(g0) f , (53)

where we recall that (U(g) f )(z) = f (g−1 ⋅ z). Moreover, due to the self-adjointness of Mw;η(p(z)), we have the relation

(Aw;η
f )† = Aw;η

f
. (54)

The following important statement results from the covariance (53) and self-adjointness property (54).

Proposition VI.1 Suppose that w and η > 1/2 are such that the series

S w;η ∶=
∞

∑
k=0

k Mw;η
kk (55)

converges in a certain sense. Then, the quantization (49) maps the basic observables ka, a = 0, 1, 2 (resp. a = 0,±), defined in (10) , to the self-
adjoint generators (31) up to a constant factor γw;η,

Aw;η
ka
= γw;η Ka , a = 0, 1, 2 , resp. a = 0,±,

with

γw;η =
1

η − 1
[1 +

S w;η

η
]. (56)

Proof. We have from (49),

Aka =
2η − 1

π ∫
D

d2z
(1 − ∣z∣2)2 ka(z) Mw;η(p(z)).

From the covariance (53) and from (15),

Uη(g) Aw;η
ka

Uη†(g) = Aw;η
U(g)ka

=∑
b
[U(g)]ba Aw;η

kb
, ∀ g ∈ SU(1, 1). (57)

This means that the operators Aw;η
ka

transform under the action of Uη(g) exactly like the operators Ka. Thus, there exists a constant γw;η

depending on η and w such that
Aw;η

ka
= γw;ηKa.

The constant is calculated by picking a = 0 and considering the lowest matrix elements via (52),

γw;η(K0)00 = γw;η η = (Aw;η
k0
)

00
= 2η − 1

π ∑
k

Mw;η
kk I

η
k,0,0(k0)

= 2
2η − 1

π ∑
k

Mw;η
kk I

η
k,0,0(

1
(1 − ∣z∣2 ) − 1

= 1
η − 1

[η + S w;η],

(58)

we finally get (56).
Once it is proved for Aw;η

k0
, it is also proved for Aw;η

k±
by using (57) with specific elements g’s mapping K0 to K±. □
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For instance, if we choose w = ws given by (44) with s = η + 1 (Perelomov coherent states case), formula (45) gives S wη+1 ;η = 0 and so

γwη+1 ;η =
1

η − 1
.

We note that with the particular value η = 2, the quantization of basic observables is exact. In the case of coherent states built from ∣em⟩ and
giving rise to (47), the constant γw;η is given by

γwem ;η =
η + m

η(η − 1)
.

Another interesting case related to w = ws concerns the already mentioned limit value s = 1/2 for which S w1/2 ;η = 2∑∞k=0k (−1)k = −1/2 (in
Abel sense). Then,

γw1/2 ;η =
2η − 1

2η(η − 1)
,

and there is no real value of η for which the quantization of the basic observables is exact.
Finally, the interesting functions to be quantized have the general form f (z) = h(∣z∣2)za, a ∈ N, where h is real-valued. Note that the

quantization of the conjugate is straightforward, due to the relation (54). However, in view of the technicality of the calculations, we will not
pursue in this way.

VII. QUANTUM PHASE SPACE PORTRAITS
Let us consider a weight function w(∣z∣2) yielding the symmetric unit trace operator Mw;η through Eq. (40). The lower symbol or quantum

phase space portrait of an operator A in H is the function,

Ǎ(z) ∶= tr (A Uη(p(z)) Mw;η (Uη(p(z))†) = tr (A Mw;η(p(z))).

Let us now consider a function f (z) and its quantum version Aw1 ;η
f built from a first weight function w1(∣z∣2), used for the “analysis.” Its lower

symbol associated with a second weight function w2(∣z∣2), used for the “reconstruction” (terms borrowed from signal analysis terminology)
reads as the map

f (z)↦f̌ (z) ≡ Ǎw12 ;η
f (z)

= 2η − 1
π ∫

D

d2z′

(1 − ∣z′∣2)2 f (z′) tr (Mw1 ;η(p(−z)p(z′)) Mw2 ;η).
(59)

Now, we have the SU(1, 1) composition formula,

p(−z)p(z′) = p(t) h(θ) , with t = p(−z) ⋅ z′ , h(θ) ∈ H.

Since Uη(h(θ)) is diagonal, it commutes with Mw;η, and we obtain after the change of variable z′ ↦ t,

f̌ (z) = 2η − 1
π ∫

D

d2t
(1 − ∣t∣2)2 f (p(z) ⋅ t) tr (Mw1 ;η(p(t)) Mw2 ;η). (60)

Clearly, since for f = 1 the rhs is equal to 1, the map

t ↦ tr (Mw1 ;η(p(t)) Mw2 ;η) = tr (Uη(p(t))Mw1 ;η [Mw2 ;ηUη(p(t))]†)

is a probability distribution on the unit disk D with respect to the measure 2η−1
π

d2t
(1−∣t∣2)2 if Mw1 ;η and Mw2 ;η are nonnegative, i.e., are density

operator.
Let us just prove that the lower symbols of the three generators K0, K±, are proportional to their classical counterpart,

Ǎw12 ;η
ki

(z) = 𝜘w12 ;ηki(z) , i = 0, 1, 2. (61)

This proof is similar to the one of Proposition VI.1. Let us apply the regular representation of SU(1, 1) on both sides of Eq. (60),
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f̌ (g−1 ⋅ z) = 2η − 1
π ∫

D

d2t
(1 − ∣t∣2)2 f (p(g−1 ⋅ z) ⋅ t) tr (Mw1 ;η(p(t)) Mw2 ;η).

We now apply (7),

p(g−1 ⋅ z) ⋅ t = (g−1 p(z) h) ⋅ t = g−1 ⋅ (p(z) ⋅ (h ⋅ t)) , with h ∈ U(1).

After changing h . t ↦ t and using the invariance or the measure and of the trace, we get

f̌ (g−1 ⋅ z) = 2η − 1
π ∫

D

d2t
(1 − ∣t∣2)2 f (g−1 ⋅ (p(z) ⋅ t)) tr (Mw1 ;η(p(t)) Mw2 ;η).

Hence, by particularizing to f = ka, a = 0,±, we check by linearity that their corresponding k̂a transform exactly in the same way as in (12),
under the regular representation of SU(1, 1). This proves the proportionality relation (61). The constant is computed by using a similar trick
to (58). Of course, these formulas are valid only if η and the weights w1, w2 are such that the integral (60) converges for each one of the
considered cases. As an elementary example, let us choose w1(u) = w2(u) = (η/π)(1 − u)η+1, which corresponds to the Perelomov case (46).
Using the transformations (16), we find for (60),

f̌ a(z) = 2η − 1
π ∫

D

d2t
(1 − ∣t∣2)2 ka((p(z) ⋅ t) ∣⟨t; η∣0; η⟩∣2

= 2η1 − 1
π ∫

D
d2t (1 − ∣t∣2)2η−2 ka((p(z) ⋅ t)

= ka(z) [2η − 1
π ∫

D
d2t (1 − ∣t∣2)2η−2 k0(t)]

= 2η
η − 1

ka(z).

Note that this proportionality coefficient cannot be put equal to 1 for the allowed range η > 1. An interesting problem is to choose η = 2, w1(u)
= (η/π)(1 − u)η+1 = 2π(1 − u)3 which corresponds to a Perelomov case and which yields the exact quantization for the three basic observables,
and to build the reconstruction operator Mw2 ;η which yields exactly f̌ a(z) = ka(z).

VIII. CONCLUSION
Given a semi-simple group G, we have generalized the covariant integral quantization of functions defined on the coset G/K by intro-

ducing a weight function combined with the parity operator associated with the Cartan involution. According to the choice of such weight
functions, we obtain different quantizations. We have implemented this procedure in the case of the group SU(1, 1). Given an irreducible
unitary representation Uη, η > 1 in the discrete series of SU(1, 1), we have presented a family of covariant integral quantizations of functions
on the open unit disk. A physical interpretation is to consider SU(1, 1) as the kinematical group of the 1 + 1 AdS space-time and the unit disk
as the phase space for the motion of a “massive” Wigner elementary system in AdS. In this example, each quantization is determined by an
isotropic weight function on the disk or equivalently by a unit trace operator viewed as an “Uη-Fourier transform” of this weight. Perelomov
coherent states quantizations are particular cases. Reversal of these quantizations under the form of semi-classical portraits of quantized ver-
sions of a classical object has been defined as local averaging of the latter, involving a second weight function. In this regard, a non-trivial
question to be considered is to determine a pair (w1,w2) of weight functions for which the reversal is exact in the Wigner–Weyl sense, i.e., the
following holds:

f (z)↦ f̌ (z) ≡ Ǎw12 ;η
f (z) = f (z),

with the notations of (59). To a certain extent, this problem could be viewed as a generalization to SU(1, 1) of similar approaches concerning
the Weyl–Heisenberg group, the affine group, and more general groups, and their related Weyl operators and Wigner functions defined in a
wide sense; see, for instance, Refs. 31–36 and reference therein. Finally, appealing generalizations of the presented material can be considered
for the higher-dimensional anti-de Sitter groups, particularly SO(2, 3),5 since some of these groups might have physically relevant discrete
series.
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APPENDIX: USEFUL INTEGRALS WITH JACOBI POLYNOMIALS AND OTHERS

Orthogonality

∫
+1

−1
dv (1 − v)α (1 + v)β P(α , β)

m (v) P(α , β)
n (v)

= δmn
2α+β+1

α + β + 2n + 1
Γ(α + n + 1) Γ(β + n + 1)

n! Γ(α + β + n + 1)
, α > −1 , β > −1.

Others
From Gradshteyn–Ryzhik 7.391 in Ref. 30,

∫
+1

−1
dv (1 − v)α (1 + v)β−1 (P(α , β)

n (v))
2
= 2α+β

β
Γ(α + n + 1) Γ(β + n + 1)

n! Γ(α + β + n + 1)
, α > −1 , β > 0.

A new one

∫
+1

−1
dv (1 − v)α (1 + v)β−2 (P(α , β)

n (v))
2

= 2α+β−1

β(β + 1)(β − 1)
(Γ(α + n + 1)! Γ(β + n + 1)

n! Γ(α + β + n + 1)
[(β + 1)(α + β) + 2(α + β + n + 1)n],

(A1)

for α > −1 and β > 1.
A third formula more

∫
1

−1
dx(1 − x)ρ (1 + x)σ P(μ,ν)

n (x)

= 2ρ+σ+1 Γ(ρ + 1) Γ(σ + 1) Γ(n + 1 + μ)
n! Γ(ρ + σ + 2) Γ(μ + 1) 3F2(−n, μ + ν + n + 1, ρ + 1; μ + 1, ρ + σ + 2; 1),

(A2)

with Re ρ > −1, Re σ > −1.
A new integral for hypergeometric polynomials

2 (2η − 1)∫
1

0
du (1 − u)2η−2 (1 + u)−2η

2F1(−n, n + 2η; 1;
4u

(1 + u)2 ) = (−1)n.

Two integral forms for beta function

β(x, y) = Γ(x) Γ(y)
Γ(x + y)

= ∫
1

0
dt tx−1 (1 − t)y−1

= 21−x−y∫
1

−1
dt (1 − t)x−1 (1 + t)y−1.
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