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Abstract
The Moll–Arias de Reyna integral

∫ ∞

0

dx

(x2 + 1)3/2
1√

ϕ(x) + √
ϕ(x)

where ϕ(x) = 1 + 4

3

(
x

x2 + 1

)2

is generalized and several values are given.
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1 Introduction

We define

f (a, b) =
∫ ∞

0

dx

(x2 + 1)a
1√

ϕ(x) + √
ϕ(x)

(1.1)

where

ϕ(x) = 1 + 4b−2u2, u = x

x2 + 1
. (1.2)
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The value f (3/2,
√
3) = π

2
√
6
appeared as entry 3.248.5 in [5] and was shown to be

incorrect by Moll et al. [1]. Unable to find the correct evaluation, the editors decided
to take this entry out of later editions of the table [6]. The exact value

f (3/2,
√
3) =

√
3 − 1

2
�

(π

2
, 3 − √

3, 3−1/2
)

− 6−1/2F
(
sin−1

√
2 − √

3, 3−1/2
)

(1.3)

was recently provided in a mathematical tour de force by Arias de Reyna [2]. The aim
of the present note is to provide further values of (1.1) and to suggest that the incorrect
value in [5] is not merely a misprint within the scope of the parametrization (1.2).

2 Calculation

Factor
√

ϕ(x) from the denominator of the integrand of (1.1), multiply the numerator
and denominator by

√√
ϕ(x) − 1, change the integration variable to u (note that the

range of x must be divided into [0, 1] ∪ [1,∞]) and set s = 2u to obtain

f (a, b)

= 2−ab
∫ 1

0

ds

s
√
1 − s2

{
[1 +

√
1 − s2]a−1 + [1 −

√
1 − s2]a−1

}√
1 − b√

b2 + s2

(2.1)

Since both quadratic surds can be rationalized by the elliptic substitution s = cn(κ, x)
for a suitable modulus, f (a, b) should be expressible in terms of elliptic integrals
for integer and half-integer values of a, even in the trigonometric case κ = 0. For
example, it is clear that

f (2, b) = 1

2
f (1, b) (2.2)

and with the substitution t = b/
√
b2 + s2

f (1, b) = k
∫ 1

κ

dt

(t + 1)
√

(1 − t)(t2 − k2)
, k = b√

b2 + 1
. (2.3)

which is a complete elliptic integral of the third kind which can be manipulated into
standard form [4]

f (1, b) = κ√
k + 1

�
(π

2
, α2, κ

)
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with

α2 =
√
b2 + 1 + b

2
√
b2 + 1

, κ =
√
b2 + 1 − b. (2.4)

For a = 3, 4, 5, . . . , f (a, b), with x = s2, can be seen to be a multiple of f (1, b)
plus an integral of the form

∫ 1

0

P(x)√
1 − x

√
1 − b√

b2 + x
dx, (2.5)

where P is a polynomial. Such an integral can be transformed into a sum of elliptic
integrals by the substitutions x → 1 − x2, x → √

b2 + 1 sin t . For example,

f (3, b) = 1

2
f (1, b) − b2

4k

∫ 1

k

√
x(x − k)

1 − x2
dx . (2.6)

For a = 3/2 (2.4) yields

f (3/2, b) = b

4

∫ π/2

0
[csc(t/2) + sec(t/2)]

√
1 − b√

b2 + sin2 t
dt . (2.7)

This can be further simplified by the substitutions sin t = b sin u, sin u = x,√
1 + x2 = 1/y to

f (3/2,
√
3) = 3√

8

∑
±

∫ 1

√
3/2

dy√
y(1 + y)(4y2 − 3)(y ± √

4y2 − 3)
(2.8)

which may be reduced further to

f (2/3,
√
3) = 31/4

2

∫ 1/
√
3

0

dx

X3/2
√
4 − 3X2

√
X − 2x + √

X + 2x√
X + 2/

√
3

(2.9)

with X = √
x2 + 1 and which offers an alternative approach to (1.3).

3 Discussion

Very recently a preprint by Blaschke [3] has appeared pointing out that if the nested
square root in (1.1) is replaced by the three halves power the value π/2

√
6 is obtained.

Thus the error in [5] is indeed merely a misprint. Nevertheless, we examine the possi-
bility of reproducing this value by a specific choice of (a, b) in (1.1). To keep things
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simple, take b = i , so that b
√
s2 + b2 = (1 − s2)−1/2 thus eliminating one of the

surds in (1.1). Then one has

f (a, i) = 2−a
∫ 1

0

ds

s
√
1 − s2

{
[1 +

√
1 − s2]a−1 + [1 −

√
1 − s2]a−1

}

×
√

1√
1 − s2

− 1

= 21−a
∫ 1

0

[
(1 + x2)a−2

√
1 − x2

+ (1 − x2)a−1/2

√
1 + x2

]
dx

= 2−aπ

[
2F1(1/2, 2 − a; 1;−1) + �(1 − a)√

π�(a − 1/2)

]
.

On solving f (a, i) = π/2
√
6 numerically one finds the two values

f (0.701935 . . . , i) = f (11.8052 . . . , i) = π

2
√
6
.
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