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Abstract

We analyze the effect of non-constant discounting on economic growth and

social welfare in an endogenous growth model with pollution externalities. For

time-consistent agents, the existence of a balanced growth equilibrium is charac-

terized and compared with the equilibrium under standard exponential discount-

ing. A decaying instantaneous discount rate leads to slower growth in a centralized

economy, while its effect for a competitive economy is ambiguous. Interestingly,

when comparing the planned and the competitive equilibria, the assumption of

non-constant discounting may imply greater social welfare under the market equi-

librium. This counterintuitive result requires two conditions. First, pollution
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externalities should lead the central planner to slow down growth to below the

growth rate in the market economy. Secondly, individuals’ degree of impatience

should decrease sharply with the time distance from the present. Contrarily, when

the centralized economy welfare dominates the market economy, introducing policy

instruments is less effective than under constant discounting.

JEL Classification: D91, O44, C61.

Keywords: Non-constant discounting, endogenous growth, Social welfare, sustain-

ability, environmental policies, time-consistent solutions.

1 Introduction

The optimal decisions of economic agents when confronted with intertemporal problems

depend fundamentally on the way these agents discount the future. Ever since Samuel-

son (1937), the standard assumption in intertemporal decision making in economics is

to discount at a constant rate, the so-called exponential discounting.1 A recent branch

of the literature moves away from this assumption, considering individuals with a de-

creasing impatience more appropriate. This idea is highlighted in Laibson (1997) who

pointed out that individuals are highly impatient about consumption in the near future

but much more patient when confronted with decisions in the distant future.

As already pointed out by Ramsey (1928) and later by Strotz (1956), Pollak (1968)

and Goldman (1980), with non-constant discounting, preferences change with time and

therefore decisions taken at the present time will not necessarily be optimal if recomputed

later on. This represents a problem of time inconsistency. If “näıve” individuals do not

recognize this inconsistency they will continuously recompute their dynamic optimization

problems, and their optimal decisions are time inconsistent. In contrast, if they recognize

the inconsistency two situations are possible. In certain occasions the present generation

has the power to commit the behavior of future generations and is certain that its optimal

decisions will be maintained over time. If no such commitment device exists individuals

behave sophisticatedly. The present generation must choose its optimal course of action

over time taking into account the possibility of future disobedience. In other words,

it must add the behavior of future generations as a constraint in its decision making

problem. The representative individual in the present generation regards his infinitely

1Later, Strotz (1956) proved that exponential discounting is the only discount function which guar-

antees time consistency.
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many future selves as separate individuals against whom he is playing a game. The Nash

equilibria of this intergenerational game give rise to time-consistent optimal decisions.

With non-constant time preferences, when commitment is not feasible, the solution

to the game played by a sophisticated central planner against his future selves needs

not be Pareto-improving when compared with the Nash equilibrium of the game played

by individuals in a decentralized or market solution. This result has been highlighted

in the literature of Neoclassical growth by Krusell et al. (2002), based on the idea that

the planner acknowledges his effect on the returns to savings, while these returns are

considered constant by price-taker consumers. Thus, the rate of return is decreasing

for the planner and constant for competitive agents. In consequence, the latter saves

more and the competitive economy grows faster (towards the steady state). Therefore,

the decentralized economy ends up providing greater social welfare.2 While this result

is obtained considering quasi-geometric discounting, Hiraguchi (2014) proves that it

remains valid for a general non-constant discounting function.3

Our main finding shows that a faster growth and a Pareto improving market solution

can also arise in an endogenous growth model with environmental externalities. To that

aim, following the seminal paper by Smulders and Gradus (1996), the environmental

quality is associated with two externalities: it increases utility as well as the productivity

of the direct factors of production. Agents are consumption-driven individuals and also

give entrance to the amenities stemming from the environmental quality. Pollution

is a by-product of production which negatively affects productivity and which can be

reduced by abatement. In this endogenous growth model, a balanced path equilibrium is

feasible if the optimal consumption and abatement per unit of capital remain constant.

In the framework of an intergenerational game, this corresponds to a current individual

who correctly anticipates the future behavior of all his future selves, restricted to the

assumption of consumption and abatement strategies linear in the capital stock. That

is, constant expected propensities to consume and to abate out of capital (which, in this

model, defines wealth). Likewise, future generations also play this same game against

their future selves, which generates an infinite sequence of identical optimal consumption

and abatement strategies. Under stationarity, optimal and anticipated decisions coincide

and hence expectations are fulfilled giving rise to an equilibrium, which will be accepted

2Along the same line, this result of group inefficiency can be also obtained in the case of asymmetric

players (with different discount rates), as shown in Maŕın-Solano (2015) and Castañer et al. (2016).
3However, more recently, Hiraguchi (2016) proves that the competitive economy never outperforms

the centralized economy in a two-sector endogenous growth.
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by all future cohorts. Thus, considering agents who discount the future at non-constant

rates, we analyze Markov-perfect Nash equilibria in linear and stationary strategies,

called a stationary perfect equilibrium.

To compare the social welfare under the central planner and the market economy,

we define a central planner as a representative consumer who shares the same time

preferences with his cohort and internalizes the two externalities caused by pollution. If

the externality from the producers’ denial of the effect of their own generated pollution

on production is relatively small in comparison with the negative externality of pollution

on utility, then the central planner would welcome a deceleration in economic growth

to slow down pollution. This is not taken into consideration in the market economy

which, in consequence, might grow faster than the centralized economy. Whether a

faster growth implies a higher social welfare in the market economy crucially depends

on how the agents discount the future.

When considering individuals whose impatience decreases with the time distance

from the present, a fast growing market economy provides higher welfare than a planned

economy if the individuals’ level of impatience decreases sharply. The intuition is that

assuming an identical overall level of impatience, the faster the decay in the instantaneous

discount rate, the greater the weight given to the distant future with respect to the near

future. Thus, for strongly long-run oriented individuals, if the market economy grows

faster, social welfare is also higher. A higher valuation of the distant future makes more

rewarding economic growth and hence more attractive the market economy in social

welfare terms. The result is proved for log-utility, but we cannot prove it for a more

general isoelastic utility. In that case, a similar result is obtained in a parallel research

for a simpler model with no abatement and where pollution only affects utility but not

production (see Cabo et al. 2019).

Conversely, when the central planner’s solution welfare dominates the decentralized

market economy it is appropriate to levy taxes on production and pollution, or to grant

a subsidy on abatement activities to bring the market toward the central planner’s

equilibrium. We compare the effectiveness of these policies under constant and non-

constant discounting. When individuals discount at a non-constant rate the policies

are equally effective under log-utility, but less effective for an isoelastic utility with

an elasticity of intertemporal substitution lower one. Thus, lower efficiency is proven

starting from an initial situation of a pure free market economy.

Additionally, we study how the assumption of non-constant discounting modifies
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the balanced path equilibrium under exponential discounting analyzed in Smulders and

Gradus (1996), both in the centralized and the market economies. For a log-utility,

a current marginal increment in the capital stock will have a constant effect on all

future utilities along a balanced growth path. Under the identical overall impatience

assumption the value of all these ongoing effects is the same under constant and non-

constant discounting, and so the economy grows at the same rate under both specifi-

cations. However, in the case of an isoelastic utility with an elasticity of intertemporal

substitution below one, a current marginal increment in capital has decreasing ongoing

effects. Because it is in the short run where these marginal effects are stronger and

non-constant-discounting individuals value less the short run, then these agents under-

value the accumulated effect of current changes in capital on all ongoing utilities, with

respect to constant-discounting individuals. For this reason, a decreasing rate of time

preference implies slower growth and higher propensity to consume. Moreover, in the

central planner’s solution it also leads to higher investments in abatement.

The paper is organized as follows. Section 2 presents a short review of the literature.

Section 3 summarizes the main ingredients of the well-established model of pollution

abatement and endogenous growth by Smulders and Gradus (1996) and characterizes

the Markov-perfect Nash equilibrium of the intergenerational game played by the central

planner under non-constant discounting. The results are contrasted with the standard

assumption of constant discounting. The decentralized economy and the appropriate en-

vironmental policies are presented in Section 4. Section 5 analyzes the conditions under

which the market economy welfare dominates the central planner’s solution, and provides

an example for a specific family of discount functions. In contrast, when the centralized

solution welfare dominates the market economy, the effectiveness of taxes/subsidy is

also compared for constant and non-constant discounting. Finally, Section 6 concludes.

Most proofs are presented in the Appendix.

2 Literature revision

An important strand of the literature supports the appropriateness of time-varying dis-

count rates based on theoretical and empirical grounds (see, Frederick et al. (2002)

and DellaVigna (2009) for a survey). However, this opinion is not unanimous, with

some criticisms mostly supported by empirical evidence (see, for example, Andersen et

al. (2014)). Besides, there exists an additional debate on whether individuals do or do
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not recognize the inconsistency of current decisions when recomputed by future selves.

There is no clear consensus in the literature on which type of agent more truthfully re-

sembles real individuals. Some authors (like Caliendo and Aadland (2007), Findley and

Caliendo (2014) or Farzin and Wedner (2014)) support the hypothesis that individuals

are indeed unaware of their future impatience. In contrast, we align ourselves with oth-

ers (like Barro (1999), Karp (2007), or Karp and Tsur (2011)) assuming sophisticated

consumers, whose optimal consumption paths are time consistent.

The literature on economic growth and non-constant discounting was initiated by

Barro (1999). For a Neoclassical growth model he shows that non-constant (quasi-

hyperbolic) discounting is observationally equivalent to exponential discounting when

a log-utility function and sophisticated agents are considered. This equivalence is not

necessarily true, as proved first in Farzin and Wedner (2014) when the elasticity of

intertemporal substitution differs from one (assuming näıve consumers), and secondly,

in Cabo et. al (2016), when a non-constant discount function other than the quasi-

hyperbolic is considered (assuming sophisticated consumers). Similarly, for Ak-type

endogenous growth models, Strulik (2015) proves that hyperbolic and exponential dis-

counting are observationally equivalent for log-utility and näıve consumers. Moreover

he proves strong equivalence, which was defined as having the same growth rate under

the assumption of an identical overall impatience. However, as proved in Cabo et. al

(2015), isoelastic, although not logarithmic, utility preserves observational equivalence

but not strong equivalence, regardless of whether individuals are naive or sophisticated.

This literature, which highlights the importance of the elasticity of intertemporal sub-

stitution, does not focus on welfare comparisons. Indeed, observational equivalence does

not preclude differences in welfare, as already commented by Krusell et al. (2002) or

Hiraguchi (2014) for a Neoclassical growth model.

The literature on environmental economics and natural resource management has

already shown an interest in the rationale for the use of non-constant discounting. Groom

et al. (2005) revise the different reasons that justify the use of declining discount rates,

and the main criticisms of this assumption for environmental problems, in particular

for global warming. The pros and cons of hyperbolic discounting are also reviewed in

Hepburn et al. (2010), which highlights the time inconsistency problem for a model

of natural resource management. A seminal work studying non-constant discounting

in an endogenous growth model with a renewable natural resource is presented in Li

and Lofgren (2000), which analyzes the sustainability of economic growth based on the
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Chichilnisky criterion (Chichilnisky 1996). For the particular case of global warming,

the effect of hyperbolic discounting on the optimal policies has been analyzed from

various perspectives. The time consistent equilibria are characterized for a discrete time

formulation in Karp (2005) and Fuji and Karp (2008), and for continuous time in Karp

and Tsur (2011). More recently, Gerlagh and Liski (2017) revisit the implications of

non-constant discounting for climate policies. Our analysis is a contribution to the

literature on environmental economics and non-constant discounting by considering an

endogenous growth model in which the quality of the environment affects productivity

and consumers’ utility.

3 A central planner with non-constant discounting

This paper revisits the endogenous growth model with pollution abatement presented in

Smulders and Gradus (1996). The economy produces a final output, Y , using capital, K,

understood as a broad measure of physical and human capital, knowledge and technology.

Productivity of capital is negatively affected by net pollution, P , which is the result of

two opposing forces. On the one hand, pollution is a by-product of the economic activity,

and hence it shows a positive relation with the capital stock. On the other hand, the

economy can carry out abatement activities, A, to reduce pollution. Smulders and

Gradus (1996) consider the following Cobb-Douglas production and pollution functions.

Y (P,K) = BP−αKβ, P (A,K) = A−γKλ, α, β, γ, λ > 0. (1)

Households utility, U(C,P ), is an isoelastic utility function which depends positively on

consumption and negatively on pollution, that is,

U(C,P ) =


(
CP−φ

)1−1/σ − 1

1− 1/σ
if σ 6= 1,

lnC − φ lnP if σ = 1.

(2)

Parameter σ ∈ (0, 1] is the constant elasticity of intertemporal substitution and φ >

0 can be interpreted as a measure of the environmental concern. The elasticity of

intratemporal substitution between consumption and pollution equals one. Assuming

constant population normalized to one, all variables are in per capita terms.

A balanced growth path is characterized by a constant output per unit of capital
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and constant propensities to consume and to abate out of wealth.4 Hence, the ratios

ψC = C/K and ψA = A/K remain constant. From (1), writing the output as a function

of capital, it follows that a balanced growth path is feasible if the following conditions

are satisfied:

β + α(γ − λ) = 1, (3)

λ ≤ γ. (4)

Then, the output per unit of capital, y = Y/K, can be defined as a function of the

propensity to abate:

y(ψA) = BψαγA . (5)

3.1 The central planner’s solution

Smulders and Gradus (1996) study this model under exponential discounting. In con-

trast, in the present paper, this stylized model is analyzed assuming that individuals

discount the future at a decreasing rate: their degree of impatience decreases with the

time distance from the present. As Krusell et al. (2002) acknowledge, when succes-

sive cohorts disagree it is difficult to determine a suitable notion for central planner.

However, we assume (as in Krusell et al. (2002) and Hiraguchi (2014)) that the central

planner’s preferences are the same as those of the current self.

Following the literature on sophisticated equilibria (Phelps and Pollak 1968, Leininger

1986 and Sorger 2004) we consider that at any time t, the current central planner, or

t-agent, plays a game with his future selves. At this time he chooses the instantaneous

consumption and abatement taking into account that these decisions will affect all his

future selves and assuming that all these future selves play the same linear strategies

Ct(τ) = ψCKt(τ) and At(τ) = ψAKt(τ), τ ≥ t, with ψC and ψA constant. Thus, at each

time t the central planner maximizes the lifetime utility of the representative consumer

(t-agent), subject to the dynamic evolution of the capital stock from this instant on.

By stationarity, in equilibrium all future selves use the same strategy, which coincides

with the optimal strategy of the t-agent, rendering the solution time consistent. Under

condition (3) and linear strategies, this equilibrium is a balanced growth path.

4Because labor is ignored, individuals’ wealth is exclusively defined by their assets, which in aggregate

terms are equal to the capital stock.
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The optimization problem faced by this sophisticated planner reads:

max
Ct,At

∫ ∞
t

U (Ct(τ), Pt(τ)) θ(τ − t) dτ, (6)

s.t.: K̇t(τ) = BP−αt (τ)Kβ
t (τ)− Ct(τ)− At(τ), Kt(t) = Kt, (7)

Ct(τ) = ψCKt(τ), At(τ) = ψAKt(τ), τ ≥ t. (8)

where the utility function is given by (2) and Pt(τ) = A−γt (τ)Kλ
t (τ). In this problem t

represents current date, and j = τ − t the time distance from the present. Note that by

(8), choosing Ct and At is equivalent to determine ψC and ψA.

Time preference is measured by the discount function θ(j) ≥ 0, which is not a

function of current time, but of the time distance from the present, j. The discount

function satisfies θ(j) > 0, θ̇(j) < 0, ∀j ≥ 0 and θ(0) = 1. The instantaneous discount

rate ρ(j) + −θ̇(j)/θ(j) is not a constant, but decreases with the time distance from

the present: ρ(j) > 0, ρ̇(j) < 0,∀j ≥ 0. Finally, limt→+∞ ρ(j) can be strictly positive

(quasi-hyperbolic discounting) or null (hyperbolic discounting). The improper integral∫∞
0
θ(j)dj can be interpreted as a measure of the overall impatience. Along the paper,

we assume that this integral is convergent.

Following Karp (2007), the optimality of a stationary solution of problem (6)-(8)

must satisfy the following Bellman equation,5∫ ∞
t

U (C∗t (τ), P ∗t (τ)) θ(τ − t) ρ(τ − t) dτ =

max
Ct,At
{U(Ct, P (At, Kt)) +W ′(Kt)[Y (P (At, Kt), Kt)− Ct − At]} , (9)

where C∗t (τ) = ψ∗CK
∗
t (τ) is the consumption and P ∗t (τ) = P ∗(ψ∗AK

∗
t (τ), K∗t (τ)) the pol-

lution along the optimal path for the t-agent, and W (Kt) =
∫∞
t
U (C∗t (τ), P ∗t (τ)) θ(τ −

t) dτ, denotes the value function. Subscript t relates to the t-agent, who solves the max-

imization problem starting at current time t. In the RHS of (9) the argument for these

variables is this current time t. For the ease of presentation we omit this argument when

no confusion can arise.

First-order conditions for optimality establish that

U ′Ct = W ′(Kt), (10)

U ′PtP
′
At

= W ′(Kt)
(
1− Y ′PtP

′
At

)
. (11)

5A method to find a time-consistent solution with non-constant discounting is proposed in Karp

(2007) for an infinite time horizon and in Maŕın-Solano and Navas (2009) for a finite time problem.
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And hence: U ′PtP
′
At

= U ′Ct(1− Y
′
Pt
P ′At), which can be rewritten as

At =
ψAφγ

ψA − αγy(ψA)
Ct ⇔ ψC = ψA

1− αγBψαγ−1
A

φγ
, (12)

establishing a positive relation between the propensity to consume and to abate, provided

that 1 > αγ, which is assumed henceforth. Note that abatement can not exceed output,

which from (5) implies an upper bound for ψA. Moreover, abatement and consumption

must be simultaneously positive, which from (12) defines a lower bound for ψA. From

these two constraints it follows:

ψA ∈
(

(αγB)
1

1−αγ , B
1

1−αγ

]
. (13)

Moreover, as the following proposition proves, the optimality of a balanced growth

path requires satisfying a modified Ramsey rule. This rule is obtained under the as-

sumption that the elasticity of intertemporal substitution, σ, is lower than or equal to

one. This assumption of an income effect stronger than or equal to the substitution

effect is often referred to as the empirically relevant case.

Proposition 1 For σ ≤ 1, the growth rate of the central planner’s economy along a

balanced path equilibrium for problem (6)-(8) must satisfy the modified Ramsey rule:

g +
Ċ

C
=
βy(ψA)− ψA

λ
γ
−∆(g, η)

1 + η
, (14)

with

η =
1− σ
σ

[1 + φ(γ − λ)] ≥ 0 (15)

and

∆(g, η) =

∫ ∞
0

ρ(j)ω(j) dj, with ω(j) =
θ(j)e−ηgj∫∞

0
θ(i)e−ηgidi

∈ (0, 1). (16)

Proof. See the Appendix

Note that for σ = 1, then η = 0 and ∆(g, 0) =
∫∞

0
ρ(j)ω0(j) dj = ρ̂, with ω0(j) =

θ(j)/
∫∞

0
θ(i)di ∈ (0, 1). Then, (14) particularizes as:6

g1 = βy(ψA)− ψA

λ

γ
− ρ̂ (17)

with ρ̂ =
[∫∞

0
θ(j) dj

]−1
.

6Here and henceforth, the particular case σ = 1 is highlighted with a superscript.
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Remark 2 Note that if g > 0, the expression of ∆(g, η) is well defined under the fol-

lowing alternative assumptions: a) for σ < 1 (η > 0); b) for σ = 1 (η = 0), and a

convergent improper integral
∫∞

0
jθ(j)dj; c) for σ > 1 (η < 0) and limt→+∞ ρ(j) > −ηg.

This latter condition translates into an upper bound for the elasticity of intertemporal

substitution above one, as it also occurs in economic growth problems under constant

discounting. However, the latter case is outside the scope of this paper.

3.2 Comparing constant and non-constant discounting

In what follows, and in order to compare non-constant discounting with the standard

results with exponential discounting, we need to guarantee that the dissimilarities are

not due to different degrees of impatience (see, for example, Strulik 2015 and Cabo et

al. 2015). Therefore, both discounting methods have to be controlled to show identical

overall impatience. That is:∫ ∞
0

e−ρ̂j dj =

∫ ∞
0

θ(j) dj, ⇐⇒ ρ̂ =

[∫ ∞
0

θ(j) dj

]−1

. (18)

It is worth noting that under non-constant discounting the short run is less valued and

the long run more valued than under exponential discounting (see Figure 1). This is

due to the fact that the instantaneous discount rate is initially large and decreases with

the time distance from the present, together with the assumption of identical overall

impatience.

Insert Figure 1 about here

In the standard case of constant discounting, that is, ρ(j) ≡ ρ̂, the integral ∆(g, η)

boils down to ρ̂. Therefore, the growth rate along the balanced path in expressions (14)

or (17) reduces to the Ramsey rule found in Smulders and Gradus (1996):7

gρ̂ =
βy(ψA)− ψA

λ
γ
− ρ̂

1 + η
, g1

ρ̂ = βy(ψA)− ψA

λ

γ
− ρ̂, (19)

where subscript ρ̂ refers to the standard exponential discounting. The role played by the

constant temporal discount rate in (19) is played by ∆(g, η) in the case of non-constant

discounting, (14). Therefore, the latter is henceforth denoted as the effective rate of

time preference.

7These authors present the Ramsey rule as a function of the abatement-spending ratio, while we

present them as function of the propensity to abate. Nonetheless, both expressions are identical.
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While the Ramsey rule with constant discounting explicitly defines the growth rate

as a function of the propensity to abate, the equivalent modified Ramsey rule in the case

with non-constant discounting in (14) implicitly defines the growth rate of the economy.

The implicit relationship is proven in Proposition 14 in the Appendix.

The social rate of return of the economy can be written as the same function of the

propensity to abate, regardless of whether the future is discounted at a constant or at a

decreasing rate:

r(ψA) = βy(ψA)− ψA

λ

γ
. (20)

The accumulated flow of discounted utility along a balanced path can be written as,∫ ∞
t

U (Ct(τ), Pt(τ)) θ(τ − t) dτ =
σ

(1− σ)ρ̂
− σ

(
ψCψ

φγ
A

)1− 1
σ

1− σ
K−ηt Ω(g, η) if σ < 1,

(1 + φ(γ − λ))
[
ln(Kt) + gJ̄0

]
ρ̂

+
ln
(
ψCψ

φγ
A

)
ρ̂

if σ = 1,

(21)

where

Ω(g, η) =

∫ ∞
0

θ(j)e−ηgjdj, J̄0 =

∫ ∞
0

jθ(j)dj. (22)

For the case of constant discounting expression (21) remains valid with

Ωρ̂(g, η) =

∫ ∞
0

e−(ηg+ρ̂)jdj =
1

ηg + ρ̂
≤ 1

ρ̂
. (23)

Ω(g, η) and Ωρ̂(g, η) collect the total effect of a marginal increment in current capital

on all future utility, as the aggregated sum of the discounted value of ongoing future

marginal effects on utility. If the income and the substitution effects are identical (under

log-utility η = 0), or there is no growth (g = 0), current marginal effects remain constant

at all future times. Therefore, the global effect would be exclusively determined by the

overall level of impatience, Ω(g, 0) = Ω(0, η) = Ωρ̂(g, 0) = Ωρ̂(0, η) = 1/ρ̂. However,

if σ < 1, the marginal effect of current increments in capital on future utility along a

balanced path, e−ηgj, decreases with the time distance from the present. Moreover, due

to the assumption of an identical overall level of impatience, individuals who discount

the future at a non-constant discount rate give less value to the short run (where the

marginal effect is stronger) and more value to the long run (where it is weaker) than

standard individuals with constant discounting (see Figure 1). These two facts lead to

the following result:

12



Corollary 3 Assuming an elasticity of intertemporal substitution lower than one in a

growing economy, a central planner who discounts the future at a non-constant rate

underestimates the effect of current savings on ongoing utility. This underestimation

disappears if the growth rate of the economy tends to zero or the elasticity of intertemporal

substitution tends to one:

Ω(g, η) < Ωρ̂(g, η), g, η > 0, and lim
σ→1−

Ω(g, η) = lim
g→0+

Ω(g, η) =
1

ρ̂
. (24)

It is now possible to give an interpretation of the effective rate of time preference,

∆(g, η), defined in (16) as a weighted mean of the decaying instantaneous discount rates,

ρ(j), with weights ω(j) satisfying
∫∞

0
ω(j)dj = 1. The weight ω(j) represents the value

that a marginal rise in current capital will have on the utility j instants from now on

(in relative terms to the accumulated effect on ongoing utility at all future times). The

next proposition compares the effective discount rate under constant and non-constant

discounting. It distinguishes between the extreme cases σ = 1 or g = 0, and the general

case with σ < 1 and g > 0.

Proposition 4

If σ < 1 and g > 0 then ∆(g, η) > ρ̂, (25)

If σ = 1 or g = 0 then ∆(g, 0) = ∆(0, η) = ρ̂. (26)

In the extreme cases of σ = 1 or g = 0, there is no decay in the marginal effect of

current capital on future utility,8 and taking into account the assumption of identical

overall impatience, the effective discount rate coincides with the constant discount rate

ρ̂. In consequence, in these two extreme cases the propensity to consume out of wealth

coincides under constant and non-constant discounting.

In the general case of σ < 1 and a positive growth rate, current effects of present

decisions on future utility decrease with the time distance from the present. Therefore,

the marginal effect of current savings on future consumption is under-valued with respect

to the case of exponential discounting, implying a higher propensity to consume out of

wealth.9 Consequently, as stated in the following proposition and Figure 2,the modified

Ramsey rule under non-constant discounting lies below the Ramsey curve with constant

8The weights ω(j) only depend on the discount function θ(j)/
∫∞
0
θ(j)dj.

9From (61) and Lemma 13 it follows that the propensity to consume out of wealth increases with the

growth rate of the economy, driven by a stronger income than substitution effect. And this increment

is more intense the higher η is, i.e. the lower below one σ is.
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discounting. That is, a lower willingness to grow for any propensity to abate. This is

equivalent to having an effective discount rate greater than ρ̂ in (14), which is “as if”

the central planner discounted the future at a higher but constant rate, ∆(g, η) > ρ̂.

Moreover, the modified Ramsey rule displays an inverted U-shape as a function of the

propensity to abate.

Proposition 5 When σ < 1 and g > 0, the modified Ramsey curve with non-constant

discounting in (14) is an inverted U-shaped curve in ψA. This curve lies below and is

less steep than the Ramsey curve under exponential discounting.

For σ = 1, the Ramsey curves under constant and non-constant discounting coincide.

Proof. See the Appendix

These results are displayed in Figure 2. The standard Ramsey curve in the case of

constant discounting is displayed by the inverted U-shaped dashed blue curve. The mod-

ified Ramsey rule under non-constant discounting, in solid red, lies below and although

still inverse U-shaped, it shows gentler increments and decrements with ψA.

To fully characterize the equilibrium growth rate, equation (7) should also be taken

into account. Replacing (12) into (7) the growth rate of the capital stock can be written

as

g = y(ψA)− ψC − ψA =

(
1 +

α

φ

)
y(ψA)− 1 + φγ

φγ
ψA. (27)

This curve (dashed-dotted black curve in Figure 2) represents the balanced budget or

the feasible set of balanced paths in the terminology of Smulders and Gradus (1996).

The equilibrium is displayed by the red dot, (ψ∗A, g
∗), in Figure 2. Likewise, the figure

also plots the equilibrium under constant discounting, (ψ∗
Aρ̂, g

∗
ρ̂), as the cross between

the budget constraint in (27) and the Ramsey rule in (19). These equilibria can lie in

the upward- or the downward-sloping part of the Ramsey curves. In either case, the

assumption of non-constant discounting implies a balanced growth path characterized

by a lower growth rate and a greater propensity to abate. This result is established in

next proposition.

Proposition 6 For σ < 1, under the assumption of identical overall impatience in (18),

if the future is discounted at a decreasing rate, the central planner’s optimal growth

rate would be lower and the propensity to abate and consume higher than if constant

discounting applies:

g∗ < g∗ρ̂, ψ∗A > ψ∗Aρ̂, ψ∗C > ψ∗Cρ̂. (28)

For σ = 1 the two equilibria coincide, g1∗ = g1∗
ρ̂ , ψ1∗

A = ψ1∗
Aρ̂ and ψ1∗

C = ψ1∗
Cρ̂.
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Insert Figure 2 about here

Proof. See the Appendix

Remark 7 Following the notation in Strulik (2015), we have proved that if σ < 1 the

models with constant and non-constant discounting are observationally equivalent in the

sense that under both discounting methods along the balanced path the growth rate of

the economy is constant, and abatement, consumption, capital and output grow at the

same constant rate, while pollution decreases at a constant rate. However, the models

are not strongly equivalent because they lead to different economic growth rates, despite

the assumption of identical overall impatience.

4 The market economy

This section presents the market or decentralized economy considering that time pref-

erences are identical to those previously explained for the central planner. Recall that

the central planner has been interpreted as a representative agent who internalizes the

two externalities caused by pollution. Consumption decisions are taken by dynamic

consumers whose time preferences decrease with the time distance from the present.

Abatement is chosen by static maximizing firms. Once the decentralized equilibrium is

characterized, we compare the growth rate and the social welfare with those associated

with the central planner’s solution. When appropriate, we also analyze the effect of the

environmental policies put into practice by a benevolent government and compare them

against the case of exponential discounting.

We consider an economy populated by a large number of identical firms of measure

one. Firm i uses only capital as input.10 Production activities (measured by the capital

involved) of firm i generates pollution, Pi, which can be reduced by the abatement

activities carried out by this firm Ai:

Pi = A−γi Kλ
i .

10Alternatively, we could also include labor as an input. Endogenous growth could be attained

assuming learning by doing and knowledge spillovers as, for example, explained in Barro and Sala-i-

Martin (2004). To have a better insight on the results of the model, we analyze a simpler version without

labor, hence ignoring the knowledge externality and focusing only on the two externalities caused by

pollution (on production and utility).
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Following Smulders and Gradus (1996), the aggregate pollution generated by all firms,

P =
∫ 1

0
Pidi negatively affects each firm’s productivity. However, each particular firm

only internalizes part of its own pollution. Therefore, firm’s i production is not exclu-

sively a function of the capital input, but also of global pollution, and in particular its

own pollution which is partially internalized:

Yi = BKβ
i P
−α̃
i P−(α−α̃).

Elasticity α̃ < α measures to what extent firm i internalizes the effects of its own

pollution on production. In this decentralized setting, Smulders and Gradus (1996)

introduce taxes in production and pollution, and subsidies to abatement in order to

bring the decentralized equilibrium towards the central planner’s solution. Thus, firm’s

profit can be written as

(1− TY)Yi − rKi − (1− TA)Ai − TPPi,

where r is the rental price to capital, TA is an abatement subsidy rate, TP is a pollution

tax rate and TY is a value-added tax rate. Under perfect competition, each firm chooses

the abatement level as well as the amount of capital in order to maximize its profits.

The first-order conditions for optimality are11

ψ̃A =

[
B

(1− TY)α̃γ + γT̂P

1− TA

] 1
1−αγ

, (29)

r̃(ψA) = [(1− TY) (β − α̃λ)− λT̂P]yi(ψA), (30)

where T̂P = TPPi/Yi. Note that the behavior of firms is independent of consumers’

discounting. Therefore, the value of ψA, as a function of taxes and parameters, is the

same as in the case of constant discounting.

In a pure market economy with TY = TP = TA = 0, the propensity to abate is

lower than in a centralized solution. This is straightforward from (29), which defines a

market propensity to abate, (α̃γB)1/(1−αγ), lower than the minimum feasible propensity

to abate in the centralized economy, (αγB)1/(1−αγ) in (13). As pointed out by Smulders

and Gradus (1996), in the decentralized scenario producers disregard to some extent the

effect of abatement on production as well as the effect of pollution on consumers’ utility.

The gap in the propensities to abate can be narrowed by the subsidies to abatement or

the tax on pollution, but it is contrarily widened with the tax on production.

11A tilde refers to a result in the market economy as opposed to the central planner’s solution.
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Since all firms are identical, they take the same decisions and, being of measure one,

K =
∫ 1

0
Kidi = Ki and A =

∫ 1

0
Aidi = Ai. Consequently, P = Pi = A−γKλ, and the

aggregate production function reads Y (t) =
∫ 1

0
Yi(t)di = BKβP−α, as given in (1).

The economy is populated by a large number of identical consumers of measure one.

The representative n-th consumer, n ∈ [0, 1] at each t, plays a game against his future

selves similar to the one described for the central planner. Because abatement is settled

by firms, consumers only choose consumption assuming that the future selves will follow

a stationary linear consumption strategy:

max
cnt

∫ ∞
t

U (cnt(τ), Pt(τ)) θ(τ − t) dτ, (31)

s.t.: k̇nt(τ) = rknt(τ)− cnt(τ), knt(t) = knt, (32)

cnt(τ) = ψCknt(τ), τ ≥ t. (33)

where knt(τ) denotes the accumulated capital for the n-th consumer, and r denotes

the market interest rate. Note that with no labor, consumers wealth is exclusively

determined by the capital stock they own and lend to firms.

For a given value of ψA the rate of return in (30) remains constant (like the marginal

productivity of capital) provided that T̂P is also constant. This occurs when the tax on

pollution increases at the same speed as the ratio pollution per unit of output decreases.

In consequence, under this assumption, for a fixed value of ψA, the solution to the

intergenerational game (31)-(33) would define a balanced growth path.

For these sophisticated (time-consistent) consumers, the optimal growth rate of con-

sumption along a balanced path equilibrium is governed by a modified Ramsey rule,

similar to that obtained for the central planner’s scenario.

Proposition 8 For σ ≤ 1, the growth rate of a market economy along a balanced path

equilibrium for problem (31)-(33) must satisfy the modified Ramsey rule:

g̃ =
r −∆(g̃, η)

1 + η
, (34)

where η and ∆(g, η) are given by (15) and (16).

Proof. See the Appendix

Correspondingly, for σ = 1, the modified Ramsey rule particularizes as:

g̃1 = r − ρ̂. (35)
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Provided that all firms behave identically, the rate of return is given by (30), and

the modified Ramsey rule in the decentralized economy reads

g̃ =
r̃(ψA)−∆(g̃, η)

1 + η
, g̃1 = r̃(ψA)− ρ̂. (36)

Correspondingly, the standard Ramsey curves under constant discounting would be

g̃ρ̂ =
r̃(ψA)− ρ̂

1 + η
, g̃1

ρ̂ = r̃(ψA)− ρ̂. (37)

Note that from (30) an increase in abatement monotonously raises the market rate

of return r̃′(ψA) > 0, but it also has an effect on ∆(g̃, η). Therefore, the marginal effect

of a greater propensity to abate on the growth rate implicitly defined by the modified

Ramsey rule in (36) is positive, but softer than the corresponding effect in the case of

constant discounting. This is shown by applying the implicit function theorem to the

expressions in (36), taking into account Lemma 13 and the standard Ramsey curves in

(37) under exponential discounting:

0 <
dg̃

dψA

=
1

1 + η J̄
Ω(g,η)

r̃′(ψA) <
dg̃ρ̂
dψA

=
1

1 + η
r̃′(ψA). (38)

The upward sloping curves g̃ and g̃ρ̂ are depicted as the dotted red and blue lines in

Figures 3 and 4. Nonetheless, the propensity to abate in the market economy is known

and given by ψ̃A in (29). Therefore, the equilibrium growth rate is fully characterized

by substituting ψA by ψ̃A in (36) and (37).

Note too that in a pure market economy, the propensity to abate, ψ̃A, in (29) partic-

ularizes to (Bα̃γ)1/(1−αγ). Provided that the firm does not internalize the whole effect of

its own pollution on production, α̃ < α, and that the propensity to abate in the central-

ized scenario must exceed (Bαγ)1/(1−αγ), then from (29) it follows that the propensity

to abate in the pure market economy is lower than the central planner’s ψ̃A < ψA. In

contrast, the growth rate of the market economy can be above or below the growth rate

in the centralized economy.

5 Comparing social welfare in the centralized and

the market economies

Under non-constant discounting, a sophisticated central planner can be interpreted, as

already mentioned, as a representative consumer who internalizes the external effects
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associated with pollution. He takes consumption and abatement decisions to maximize

discounted welfare and at the same time, due to the lack of commitment, he must

also induce his future selves to behave in his best interest. Consumers in a market

economy play a similar intergenerational game with their future selves. As this section

will show, contrary to the case of exponential discounting, when individuals present a

decreasing degree of impatience the central planner’s solution does not necessarily lead

to higher social welfare. This result is in line with Krusell et al. (2002), although the

underlying mechanism is different. In the Neoclassical growth model proposed in Krusell

et al. (2002), the central planner acknowledges that he affects the returns to savings,

while the price-taker individuals in a decentralized setting perceive these returns as

constant. Thus, a central planner approaching the steady-state equilibrium from below

has a decreasing marginal propensity to save, while it is constant for the competitive

agent. In consequence, the latter saves more and the competitive economy grows faster,

allowing for a higher welfare. In contrast, this section presents a similar result, but for an

endogenous growth model and based on different grounds. In particular, two conditions

are needed: a strong externality of pollution on utility, which induces the central planner

to slow down growth, and a strong decay in the instantaneous discount rate, that is,

strongly long-run oriented agents.

When comparing the growth rates in the market and the centralized economies, we

can also distinguish the two possible situations commented on by Smulders and Gradus

(1996). If the representative firm internalizes a small part of the effect of its emissions

on production, (i.e. α̃ and hence ψ̃A are small), then the central planner’s solution

characterized by ψ∗A > ψ̃A will almost certainly lead to a faster growth, as displayed by

equilibria E and Ẽ in Figure 3. In contrast, if the firm internalizes a large part of its

externality on production and, at the same time, pollution has a strong impact on utility,

(i.e. large φ), then the market equilibrium would be characterized by high abatement

efforts and fast growth, while the centralized solution, in which the strong externality

on utility is internalized, would be associated with a slower growth. This situation is

shown in Figure 4.

Insert Figures 3 and 4 about here

If we restrict our analysis to the particular case with log-utility (σ = 1), the growth

rate of the economy is independent of whether individuals discount the future at a

constant rate, ρ̂, or at a decreasing rate (as long as the same overall impatience is
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assumed). These rates in the centralized and the market economy read:

g1∗
ρ̂ = g1∗ = r(ψ1∗

A )− ρ̂ = βy(ψ1∗
A )− ψ1∗

A

λ

γ
− ρ̂ with ψ1∗

A = ψ1∗
Aρ̂ > (α̃γB)

1
1−αγ ,(39)

g̃1∗
ρ̂ = g̃1∗ = r̃(ψ̃A)− ρ̂ = (β − α̃λ)y(ψ̃A)− ρ̂ with ψ̃A = ψ̃Aρ̂ = (α̃γB)

1
1−αγ . (40)

In these circumstances, the following proposition proves that although the growth rate

is identical, individuals with non-constant discounting experience higher welfare than

standard agents under exponential discounting. This result immediately follows if the

growth rate is positive, given that the discounting method values the long run more

strongly than exponential discounting, as clearly shown in Figure 1.

Proposition 9 Assuming log-utility (σ = 1) and g1∗, g̃1∗ > 0, the consumer welfare

is higher in the case of non-constant discounting than under the standard exponential

discounting, both for the centrally planned and for the market economy. That is,12

W 1(Kt) = W 1
ρ̂ (Kt) +

g1∗ [1 + φ(γ − λ)]

ρ̂

(
J̄0 −

1

ρ̂

)
> W 1

ρ̂ (Kt), (41)

W̃ 1(Kt) = W̃ 1
ρ̂ (Kt) +

g̃1∗ [1 + φ(γ − λ)]

ρ̂

(
J̄0 −

1

ρ̂

)
> W̃ 1

ρ̂ (Kt), (42)

with J̄0 = ρ̂
∫∞

0
jθ(j)dj > 1/ρ̂.

Proof. See the Appendix

Under log-utility, despite an identical growth rate as well as the same overall impa-

tience, agents who discount the future at a decreasing rate assign a higher weight to

the long run. In consequence, with positive growth they attain higher welfare. The gap

J̄0−1/ρ̂ in (41) and (42) measures how different from exponential discounting consumers’

time preferences are. Under constant discounting J̄0−1/ρ̂ = 0, and the gap widens with

the speed of decay of the instantaneous discount rates with the time distance from the

present.

If economic growth in the central planner’s solution is faster than or equally rapid

as in the market economy (g1∗ ≥ g̃1∗ as in Figure 3) then, since the central planner’s

solution is Pareto optimal under constant discounting, equations (41) and (42) imply

that the central planner’s solution is also Pareto optimal under non-constant discounting:

W 1(Kt)− W̃ 1(Kt) ≥ W 1
ρ̂ (Kt)− W̃ 1

ρ̂ (Kt) ≥ 0.

12Because all consumers are identical, knt = kt =
∫ 1

0
ktdn = Kt. Thus, in short notation, W̃ 1(knt,Kt)

and W̃ 1
ρ̂ (knt,Kt) are simply denoted as W̃ 1(Kt) and W̃ 1

ρ̂ (Kt).
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However, if the market economy grows faster (g̃1∗ > g1∗ as in Figure 4), next proposition

shows that, contrary to the case of exponential discounting, if individuals discount the

future at a non-constant rate they could, under certain condition, derive higher welfare

in the market equilibrium than in the central-planner solution.

Proposition 10 Assuming log-utility (σ = 1), if the growth rate in the market economy

is higher than the growth rate in the central-planner solution, g̃1∗ > g1∗, then W̃ 1(Kt) >

W 1(Kt) if and only if

J̄0 >
1

ρ̂
− ρ̂

W 1
ρ̂ (Kt)− W̃ 1

ρ̂ (Kt)

(g1∗ − g̃1∗)(1 + φ(γ − λ))
. (43)

Proof. The proof is straightforward from the expressions of W̃ 1(Kt) and W 1(Kt) in

(41) and (42).

Under log-utility, g1∗ = g1∗
ρ̂ and g̃1∗ = g̃1∗

ρ̂ and, in consequence, the RHS in condition

(43) is invariant to considering constant or non-constant discounting.13 In contrast, the

LHS of this inequation, J̄0, which can be interpreted as the mean of the probability

distribution ω0(j) = θ(j)/
∫∞

0
θ(i)di = ρ̂θ(j), can take a value as large as is needed by

considering a sufficiently fast decay in the instantaneous discount rate is. Thus, there

always exists a sufficiently fast speed of decay in the instantaneous discount rate above

which condition (43) is satisfied.

Proposition 10 states that the balanced path equilibrium associated with a decen-

tralized economy can provide a higher social welfare than the central planner’s solution

under two conditions. It is first necessary that competitive agents save more and grow

faster than the central planner. As already pointed out by Smulders and Gradus (1996)

this is not based on the way individuals discount the future, but on the relative size of

the pollution externalities. If the pollution externality on utility is relatively large, with

respect to the pollution externality on production, the central planner would prefer a

slower growth rate along the balanced path. Secondly, individuals’ instantaneous dis-

count rate should decrease sharply with the time distance from the present (condition

(43)), implying that they value the future more strongly, and hence, can attain a higher

social welfare in a decentralized economy which grows indefinitely at a faster rate.

13Indeed, the gap W 1
ρ̂ (Kt) − W̃ 1

ρ̂ (Kt) is not even dependent on the actual stock of capital, Kt, as

shown in the proof of Proposition 9 in the Appendix.
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Example 11 To illustrate the previous result we assume a hybrid exponential-hyperbolic

discounting as in Tsoukis et al. (2017), that is,

θ(j) = (1 + δj)−ϕ/δe−ρj, (44)

where ρ > 0, 0 < ϕ < 1, δ > 0 and ϕ/δ < 1. The instantaneous discount rate

ρ(j) = ρ + ϕ/(1 + δj) decreases with j. Note that if ϕ tends to 0, then the discount

function converges to exponential discounting. Applying the properties of the Laplace

transformation to (44) as in Dyke (2014), the value of J̄0 follows:

J̄0 =
1− ϕ/δ

ρ
+

1

δ

(
ρ̂

ρ
− 1

)
.

The simulations have been carried out considering the following benchmark parameters’

values: ρ̂ = .05, β = .9, λ = .8, γ = 1, α = .5, B = .55, α̃ = 0.4, φ = 2. For

these parameters, as long as the overall impatience remains equal to .05, it holds that

g̃1∗ > g1∗. Our simulations illustrate the conditions under which this inequality also

implies a Pareto improving market solution. That is, which values of the triplet (ρ, ϕ, δ)

fulfill condition (43). Note that for any pair ρ and ϕ, the value of δ is determined by

the assumption of identical overall level of impatience (18). Following the reasoning in

Tsoukis et al. (2017) this assumption can be written as:

ρ̂ =
e−ρ/δδϕ/δρ1−ϕ/δ

Γ(1− ϕ/δ, ρ/δ)
,

where Γ(a, b) =
∫∞
b
xa−1e−xdx is the incomplete Gamma function.14

In Figures 5-8 the shaded areas display the regions within the plane ρ-ϕ at which con-

dition (43) is satisfied, which guarantees a higher social welfare under the decentralized

solution. From (44) it follows that the lower is ρ the less important is the exponential

part in the definition of the discount function. Likewise a higher ϕ corresponds to a

wider range of variation for the instantaneous discount rate ρ(j). Both a lower ρ or a

larger ϕ implies a discount function more distant from exponential discounting, meaning

a strong decay in the instantaneous discount rate in the near future. The shadow area in

Figures 5-8 shows that the market leads to higher social welfare provided that either ρ is

small or ϕ is large, i.e. if the discount is sufficiently different from constant discounting.

For the parameters values above, in the particular case with ρ = 1.2× 10−3 and ϕ = 0.9

(for which δ = 1.39 under the assumption of identical overall impatience), the first row

14We have corrected for a mistake in the expression proposed by Tsoukis et al. (2017), changing the

standard Gamma function by an incomplete Gamma function.
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in Table 1 shows that the market economy grows faster and provides a higher social wel-

fare than the centralized economy, W 1 − W̃ 1 < 0. This is in contrast with the case of

exponential discounting, with the standard result of a Pareto superior planner solution,

W 1
ρ̂ − W̃ 1

ρ̂ > 0.

Next, we carry out a sensitivity analysis to analyze the role of the two externalities.

An increment in α̃ represents a reduction in the environmental externality on production,

α− α̃. Correspondingly an increment in φ represents a higher environmental externality

on utility, or equivalently more environmentally concerned consumers. As shown in the

second and third rows in Table 1, the higher the externality on utility with respect to

the externality on production, the faster the growth in the market with respect to the

centralized solution. As the gap between these growth rates widens, also the social wel-

fare surplus in the market economy under non-constant discounting widens. Moreover,

Figures 5 and 6 show that the area consistent with a Pareto improving market solution

also expands as the externality on utility increases with respect to the externality on

production.

Finally, we analyze how our result is affected by the effectiveness of abatement, γ,

and the effect of capital on pollution, λ. Note that, under (3) we control the experiment

to guarantee the existence of a balanced path equilibrium, hence a reduction in λ or an

increment in γ comes together with a reduction in the output elasticity of production,

α. That is, since abatement is proportional to capital, the less pronounced the effect of

growth on pollution the stronger must be the effect of pollution on output. As shown in

the last two rows of Table 1, both lower pollution consequences of capital or higher effec-

tiveness of abatement induce a market social welfare well above the centralized solution

when agents discount the future at non-constant rates. Note that this is true even though

in the first case the gap in growth rates shrinks, while in the second it expands. Again,

Figures 7 and 8 show that the region at which welfare in the market is higher than in

the centralized economy becomes wider with either a lower λ or a higher γ.

Insert Table 1 about here

Insert Figures 5 and 6 about here Insert Figures 7 and 8 about here

The counterintuitive result that the competitive economy can provide a higher social

welfare than the central planer solution is obtained for the particular case of a log-utility.

The hypothesis of an elasticity of intertemporal substitution equal to one is made for

simplicity. For the more general case of σ < 1, the analysis is more cumbersome. A
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condition similar to (43) can be found. Whether this condition can or cannot be satisfied

remains to be solved both analytically or numerically. At most it can be conjectured

that the main result presented in Proposition 10 also holds for σ sufficiently close to one.

In fact, in a parallel research, for a simpler model with only an externality in utility,

it has been possible to analytically prove a similar result for σ different from one (see,

Cabo et al. 2019).

As stated in Proposition 10, for a log-utility, if the externality on utility is large

in relative terms to the production externality, and if discounting highly differs from

exponential discounting, then the market economy is welfare enhancing. In consequence,

policy measures are inappropriate.

For the general case of an isoelastic utility with σ < 1, it might be pertinent to

move the market equilibrium towards the planner’s solution. As stated by Smulders

and Gradus (1996), this gap can be closed by using either a single pollution tax, T̂P,

or a combination of an income tax, TY, together with an abatement subsidy, TA. The

immediate question that arises is whether these policies are more or less effective under

non-constant than under constant discounting. As Figures 3 and 4 show, the gap between

the centralized and the decentralized growth rates is not the same if individuals discount

at a constant rate or their discount rate decreases with the time distance from the

present. Thus, to analyze effectiveness, the next proposition computes and compares

the elasticity of this gap for non-constant and for constant discounting to changes in

either a tax or the subsidy.

Proposition 12 For σ < 1 the elasticity of the gap between the growth rates under a

central planner and the market economy with no taxes (NT), with respect to increments

in any of the taxes/subsidy is lower under non-constant discounting than in the standard

case of exponential discounting, that is,∣∣∣∣d(g∗ − g̃NT∗)
dT

T

g∗ − g̃NT∗

∣∣∣∣ <
∣∣∣∣∣d(g∗ρ̂ − g̃NT∗ρ̂ )

dT

T

g∗ρ̂ − g̃NT∗ρ̂

∣∣∣∣∣ , with T ∈ {TA, TY, T̂P},

with g̃NT∗ and g̃NT∗ρ̂ the equilibrium growth rates of the market economy when TY = T̂P =

TA = 0, under non-constant and constant discounting respectively.

In the particular case of σ = 1 the elasticity is the same in the two scenarios.

Proof. See the Appendix

In the case of an iso-elastic utility with σ < 1, this proposition states that the

imposition of taxes/subsidy is less effective in narrowing the absolute gap in growth rates
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when individuals discount at a non-constant rate. More properly, this lower effectiveness

refers to a marginal rise starting from an initial situation of no taxes/subsidy in the

market economy. Nevertheless, this does not imply a lower effectiveness when raising

the tax/subsidy from an already positive level. By contrast, in the particular case σ = 1,

when the central planner solution is welfare enhancing, the policy measures are equally

effective with constant and non-constant discounting.

6 Conclusions

This paper introduces non-constant discounting within the framework of the model of

pollution abatement and endogenous growth presented by Smulders and Gradus (1996).

In this model pollution is a by-product of production and can be abated. It is associated

with two externalities, negatively affecting both the utility of consumers and the marginal

productivity of capital. Within this context, the optimal consumption and abatement

decision, when taken by dynamic individuals, will be dependent on whether their rate of

time preference remains constant or decreases with the time distance from the present.

Under the standard assumption of exponential discounting decisions taken at a given

point in time will continue to be optimal if recomputed at any later time. The time

consistency of the solution implies that the central planner’s solution coincides with the

social optimum. Therefore, under the hypothesis of constant discounting and regardless

of whether the market economy is characterized by lower/higher growth, bringing the

market equilibrium towards the central-planner equilibrium is welfare enhancing. It may

be, then, appropriate to impose taxes or subsidies to move the decentralized economy

towards the social optimum. This is not necessarily the case if individuals discount the

future at a decreasing rate.

When dealing with non-constant discounting, we have made two important assump-

tions. First, we neglect the possibility of commitment, and consider that individuals are

time-consistent sophisticated agents. They know that their future selves will not stick

to current planned decisions, and to prevent this time inconsistency, they play a game

against their future selves restricted to the assumption that all future cohorts will play

the same linear strategies. Under stationarity the Markov perfect strategies played by

future selves coincide with the anticipated decisions and hence constitute an equilibrium.

This sophisticated behavior is followed by competitive agents in the decentralized solu-

tion, and also by the central planner. Given the lack of commitment, the central planner
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can be interpreted as a representative consumer who internalizes the two externalities

caused by pollution, and takes consumption and abatement decisions as the solution to

the intergenerational game.

Second, the analysis is controlled to have an identical overall level of impatience.

This assumption guarantees that the comparison of the results under constant and non-

constant discounting depends only on the way individuals discount the future, and not

on different degrees of impatience. From this assumption it immediately follows that

the individuals with a decreasing rate of impatience value relatively softly the short

run and relatively strongly the long run, compared to standard agents with constant

discounting. With positive growth and an elasticity of intertemporal substitution lower

than one, current increments in consumption provoke increments in current and ulterior

utility, although the marginal effect weakens with the time distance from the present. In

contrast, the marginal effect on ongoing utility is constant under exponential discounting.

Therefore, individuals with non-constant discounting undervalue the effect of current

savings on ongoing utility, and hence invest less. This leads to our first result: under

the empirically relevant hypothesis of an elasticity of intertemporal substitution lower

than one, the fact that the households discount the future at a decreasing rate leads

to a balanced growth path characterized by a lower growth rate and higher abatement

efforts. In contrast, with log-utility the equilibrium remains unchanged regardless of

whether we consider time-declining or constant discounting.

Our main result lies in the comparison of social welfares in the centralized and the

decentralized economy under non-constant discounting. Having no commitment power,

the planner’s solution stemming from the game between subsequent generations does

not necessarily reach the social optimum. More importantly, we prove that the social

welfare in the market economy surpasses the central planner’s solution when certain

conditions are met. This is consistent with the symmetric result in Krusell et al. (2002)

for a Neoclassical growth model, although the underlying reasoning diverges. A central

planner who internalizes the two externalities caused by pollution might be inclined to

reduce the growth rate of the economy. As already stated by Smulders and Gradus (1996)

for the case with constant discounting, this can occur when the externality of pollution

on utility is relatively strong with respect to the externality on production. A faster

growth is welcomed by those individuals who discount the future at a non-constant rate,

and value the short run softer and the long run stronger than the standard individuals

with constant discounting. Thus, for log-utility, and if the market economy grows faster
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than the centralized economy, we prove that this faster growth leads to a higher social

welfare if the individuals’ degree of impatience decays rapidly with the time distance

from the present, and hence, the value assigned by current individuals to the distant

future is very high. The result is valid for a general discount function satisfying a

continuous decay in the instantaneous discount rate. A numerical example is presented

for a specific discount function to illustrate this result. This example highlights that

the more individuals’ preferences separate from constant discounting (either due to a

faster or a deeper decay in the instantaneous discount rate) the more easily this result

emerges.

For an economic growth model with environmental externalities, two main policy

implications arise when indivivuals discount at a decreasing rate. In the case of a log-

utility, internalizing the externalities caused by pollution might not be welfare improving.

Therefore, taxes or subsidies to approach the central planner solution would not be

appropriate. On the other hand, if the elasticity of intertemporal substitution is lower

than one, and if the decentralized market economy does not welfare dominate the central

planner, then being appropriate to impose taxes on pollution or grant subsidies on

abatement, these policies are less effective than under constant discounting. This has

been proven when the policies are introduced starting from an initial situation of no

intervention.
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A Appendix

Proof of Proposition 1.

Isoelastic utility with σ < 1

For linear strategies, given the utility function and the dynamics of the capital stock we

conjecture a value function of the form:

W (Kt) = W0 +W1K
−η
t , (45)

with W0,W1 and η unknowns to be determined. From (12) and (45), the first-order

condition (10) reads{
Ct(τ)

[
Kt(τ)λ (ψAKt(τ))−γ

]−φ}1− 1
σ

= −Ct(τ)ηW1Kt(τ)−η−1. (46)

For consumption to be proportional to capital, the value of η must be as defined in (15).

Constant W0 can be derived from the definition of the value function, conjecture (45)

and the overall impatience in (18):

W0 =
σ

(1− σ)ρ̂
. (47)

Likewise, constant W1 can be obtained from (46):

W1 = −ψ
− 1
σ

C ψ
− 1−σ

σ
φγ

A

η
. (48)

where the relation between ψC and ψA is given in (12).

From the optimality conditions and the conjectured value function, the RHS of the

Bellman equation in (9) along the balanced path can be rewritten as

σ

1− σ
− ηW1

(
g − σ

1− σ
ψC

)
K−ηt . (49)

On the other hand, from the definition of ρ(j) it is immediately obvious that
∫∞
t
ρ(τ −

t)θ(τ − t)ds = 1, and, therefore, the LHS of the Bellman equation can be written as

σ

1− σ
+
σψCηW1

1− σ

∫ ∞
t

Kt(τ)−ηθ(τ − t)ρ(τ − t) dτ. (50)

Along a balanced growth path, the capital stock at the running time τ , for the t-agent

is Kt(τ) = Kte
g(τ−t). Therefore, equating expressions (49) and (50) it follows:

− σψC

1− σ

∫ ∞
t

e−ηg(τ−t)θ(τ − t)ρ(τ − t) dτ = g − σψC

1− σ
. (51)
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The assumption σ < 1 implies η > 0 and, hence, it guarantees the convergence of this

integral when the growth rate of the economy is a positive constant. Integrating by

parts one gets∫ ∞
t

e−ηg(τ−t)θ(τ − t)ρ(τ − t) dτ = 1− ηg
∫ ∞
t

e−gη(τ−t)θ(τ − t) dτ. (52)

And from (51) and (52) it follows:∫∞
t
e−gη(τ−t)θ(τ − t)ρ(τ − t) dτ∫∞
t
e−gη(τ−t)θ(τ − t) dτ

=

(
σψC

1− σ
− g
)
η.

The ratio of integrals in the LHS defines the effective rate of time preference, ∆(g, η),

in (16). Then,

∆(g, η) =

(
σψC

1− σ
− g
)
η. (53)

By adding and subtracting g = y(ψA)−ψC−ψA in the RHS, and taking into account the

constant returns to scale hypothesis in (3) together with the consumption-abatement

ratio in (12) and the expression for η in (15), equation (53) can be rewritten as

∆(g, η) = βy(ψA)− λ

γ
ψA − (1 + η)g,

which leads to the Ramsey equation in (14).

Logarithmic utility: σ = 1

The value function along a balanced growth path can be expressed as

W 1(Kt) =

∫ ∞
t

ln
[
CtP

−φ
t eg

1[1+φ(γ−λ)](τ−t)
]
θ(τ − t)dτ =

ln
[
CtP

−φ
t

] ∫ ∞
t

θ(τ − t)dτ + g1 [1 + φ(γ − λ)]

∫ ∞
t

(τ − t)θ(τ − t)dτ =

[1 + φ(γ − λ)]

ρ̂
lnKt +

1

ρ̂
ln
(
ψCψ

γφ
A

)
+
g1J̄0 [1 + φ(γ − λ)]

ρ̂
, (54)

with J̄0 = ρ̂
∫∞

0
jθ(j). Then, the value function is defined as

W 1(Kt) = W 1
0 +W 1

1 lnKt, (55)

with

W 1
0 =

g1 [1 + φ(γ − λ)] J̄0 + ln
(
ψCψ

γφ
A

)
ρ̂

, W 1
1 =

1 + φ(γ − λ)

ρ̂
. (56)
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On the other hand, the first-order condition (10) reads

1

Ct
=
W 1

1

Kt

. (57)

Then, from (7), (12), (56) and (57), the growth rate of the economy can be written

as

g1 = y(ψA)− ψA −
ρ̂

1 + φ(γ − λ)
= βy(ψA)− ψA

λ

γ
− ρ̂.

Lemma 13 If σ < 1 and g > 0, when the future is discounted at a non-constant rate,

Ω(g, η) in (22) satisfies

dΩ

dg
= −ηJ̄Ω(g, η) < 0,

dΩ

dη
= −gJ̄Ω(g, η) ≤ 0 (< 0 if g > 0), (58)

with J̄ =

∫ ∞
0

jω(j) dj ∈ (0,∞), ω(j) =
θ(j)e−ηgj

Ω(g, η)
∈ (0, 1).

Proposition 14 Under condition σ < 1 and ρ̂ < r

(
arg min

ψA

r(ψA)

)
, the modified Ram-

sey rule (14) implicitly defines a positive growth rate, g, as a function of the propensity

to abate ψA.

Proof.

Integrating by parts in (16), one gets expression (60), ∆(g, η) = 1/Ω(g, η)−ηg. Replacing

this expression into equation (14) and rearranging terms we get

g +
1

Ω(g, η)
= r(ψA). (59)

Since, from (58) dΩ(g, η)/dg < 0, the LHS in (59) can be regarded as a monotonous-

ly increasing function of g. Moreover, limg→0 Ω(g, η) = 1/ρ̂ and limg→+∞Ω(g, η) = 0.

Then, the LHS runs from ρ̂ towards∞ as g goes from zero to∞. Moreover, for any ψA ∈(
(Bαγ)

1
1−αγ , B

1
1−αγ

]
, r(ψA) > 0, and hence, under condition ρ̂ < r

(
arg min

ψA

r(ψA)

)
,

there always exists a unique g > 0 satisfying equation (59).

Proof of Proposition 4.

Integrating by parts in the expression in (16) makes it possible to re-write the effective

rate of time preference as the inverse of the present value of the effect of a marginal

increment in current utility on all future utilities, diminished by the speed of decay of

the marginal effect of current changes on future utility:

∆(g, η) =
1

Ω(g, η)
− ηg. (60)
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Results ∆(g, η) > ρ̂ and ∆(g, 0) = ∆(0, η) = ρ̂ follow from (23), (24) and (60).

The relationship between the propensity to consume out of wealth, ψC, and the

growth rate can be obtained by plugging (12) in (21) and comparing it against (48) or

(56). And similar analysis in the case of exponential discounting.

ψC =
1

[1 + φ(γ − λ)]Ω(g, η)
, ψCρ̂ =

1

[1 + φ(γ − λ)]Ωρ̂(g, η)
. (61)

For a given value of g, it straightforwardly follows from (24) and (61) that ψC > ψCρ̂ for

σ < 1 and ψC = ψCρ̂ = ρ̂/([1 + φ(γ − λ)]) for σ = 1 or g = 0.

Lemma 15 Cov(j, ρ(j)) =
Ω(g, η)− J̄

Ω(g, η)
< 0 and therefore, Ω(g, η) < J̄ .

Proof.

Cov(j, ρ(j)) =

∫ ∞
0

ρ(j)ω(j)[j − J̄ ] dj =

∫ J̄

0

ρ(j)ω(j)[j − J̄ ] dj +

∫ ∞
J̄

ρ(j)ω(j)[j − J̄ ] dj

< ρ(J̄)

∫ J̄

0

ω(j)[j− J̄ ] dj+ρ(J̄)

∫ ∞
J̄

ω(j)[j−J̄ ] dj=ρ(J̄)

∫ ∞
0

ω(j)[j−J̄ ] dj = 0.

Moreover, since ρ(j) = −θ̇(j)/θ(j), then

Cov(j, ρ(j)) =
−1

Ω(g, η)

∫ ∞
0

θ̇(j)(j−J̄)e−ηgjdj =
−1

Ω(g, η)

{∫ ∞
0

jθ̇(j)e−ηgjdj − J̄
∫ ∞

0

θ̇(j)e−ηgjdj

}
.

Integrating by parts, after some calculus it follows that

0 > Cov(j, ρ(j)) =
Ω(g, η)− J̄

Ω(g, η)
.

Proof of Proposition 5.

Writing the modified Ramsey equation as

g(ψA) = r(ψA)− 1

Ω(g, η)
,

and differentiating implicitly wrt ψA, taking into account (58) and (19) one gets

g′(ψA) =
r′(ψA)

1 + η J̄
Ω(g,η)

, g′ρ̂(ψA) =
r′(ψA)

1 + η
. (62)

Because η > 0 and, from Lemma 15 Ω(g, η) < J̄ , then the effect of ψA on the growth rate

in the case of non-constant discounting is softer than under exponential discounting:

|g′(ψA)| < |g′ρ̂(ψA) | for all ψA ≥ 0.
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From (20) the marginal effect of ψA on the social rate of return reads

r′(ψA) = αγβBψαγ−1
A − λ

γ
.

Therefore, for ψA < ψ̂A = (αβγ2B/λ)1/(1−αγ), r′(ψA) > 0; and for ψA > ψ̂A, r′(ψA) < 0.

Then, from (62) the propensity to abate ψ̂A maximizes the modified Ramsey rule both

under constant and non-constant discounting.

Taking into account that Ω(g, η) < Ωρ̂(g, η), then,

gρ̂(ψA) =
r(ψA)− ρ̂

1 + η
= r(ψA)− 1

Ωρ̂(g, η)
> r(ψA)− 1

Ω(g, η)
= g(ψA),

which proves that the modified Ramsey curve under non-constant discounting lies below

the standard Ramsey curve under exponential discounting.

Proof of Proposition 6.

According to Proposition 5, the modified Ramsey curve with non-constant discounting is

located below the standard Ramsey curve under exponential discounting. Furthermore,

the downward sloping budget constraint (27) is independent of time preferences. Then,

at the crossing point, non-constant discounting implies a lower growth rate and a higher

propensity to abate (see Figure 2). The positive relation between ψA and ψC established

in (12) guarantees also a higher propensity to consume.

Proof of Proposition 8.

Isoelastic utility with σ < 1

The Bellman equation for the optimization problem (31)-(32) of the n-th consumer’s

belonging to the t-cohort reads∫ ∞
t

U (c∗nt(τ), Pt(Kt(τ))) θ(τ − t) ρ(τ − t) dτ =

max
cnt

{
U(cnt, Pt(Kt)) + W̃ ′

knt(knt, Kt)[rknt − cnt] + W̃ ′
Kt(knt, Kt)K̇t

}
, (63)

where c∗nt(τ) denotes the optimal consumption planned by the t-cohort of the n-th con-

sumer for the elapsed time τ > t. The pollution stock Pt(Kt(τ)) depends on the abate-

ment carried out by all firms15 and the total capital stock accumulated by all the mem-

bers of the t-cohort from t and up to the elapsed time τ , Kt(τ). For ease of notation,

pollution for the t-cohort is written as a function of the elapsed time τ :

Pt(τ) = Pt(Kt(τ)) = ψ−γA Kt(τ)−(γ−λ). (64)

15Note that At(τ) can be written as ψAKt(τ). Since ψ̃A is constant from the optimality condition in

(29) then, abatement and capital will be proportional in equilibrium.
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From (9) it follows that the value function of the n-th consumer, W̃ (knt, Kt), depends on

the capital stock he owns at time t, knt, whose dynamics is determined by this agent’s

consumption decisions, and also on the global capital stock at this time t, Kt. While

this global capital stock affects the consumer’s welfare through its effect on the pollution

stock, the n-th consumer does not internalize the effect of his capital stock on the global

stock, and hence on the ongoing pollution. Therefore his consumption decision does not

affect the dynamics of the global capital stock, and the first-order optimality condition

for the problem above reads

U ′cnt(cnt, Pt(Kt)) = W̃ ′
knt(knt, Kt).

Equivalently, at any ulterior time τ , the maximizer of the RHS of equation (63) reads

c∗nt(τ) = Pt(τ)(1−σ)φ(W̃ ′
knt(τ))−σ,

where, for simplicity, W̃ ′
knt

(τ) denotes W̃ ′
knt

(knt(τ), Kt(τ)).

Plugging this optimal consumption into (2), the utility at the optimal trajectory

reads

U(c∗nt(τ), Pt(τ)) =
σ

1− σ
[1− Pt(τ)(1−σ)φ(W̃ ′

knt(τ))1−σ].

Plugging these last two expressions into (63) and taking into account
∫∞
t
ρ(τ − t)θ(τ −

t)ds = 1, the Bellman equation can be rewritten as

−
∫ ∞
t

σ

1−σ
Pt(τ)(1−σ)φ(W̃ ′

knt(τ))1−σθ(τ − t) ρ(τ − t) dτ = (65)

− σ

1− σ
Pt(t)

(1−σ)φ(W̃ ′
knt(t))

1−σ + W̃ ′
knt(t)

[
rknt−Pt(t)(1−σ)φ(W̃ ′

knt(t))
−σ
]
+W̃ ′

Kt(t)K̇t.

Taking into account in (65) that knt, Kt and cnt(t) grow at the same constant rate along

the balanced path, we conjecture a value function of the form

W̃ (knt(τ), Kt(τ)) = W̃0 + W̃1k
η1
ntK

η2
t . (66)

This conjecture is in the same spirit as Krusell et al. (2002), who consider a logarithmic

utility in a discrete setting. Plugging this conjecture into (65), parameters η1 and η2

satisfy

η1 = −1− σ
σ

, η2 = −1− σ
σ

φ(γ − λ), η1 + η2 = −η. (67)

Provided that all consumers are identical, the n-th and the global capital stock grow

at the same constant rate, g̃, along the balanced path. Then, the individual and the

global capital stocks at the running time τ for the t-cohort can be written as knt(τ) =
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knte
g̃(τ−t) and Kt(τ) = Kte

g̃(τ−t), respectively. Along the balanced path output, capital

and abatement grow at the same rate and, hence, ψA and r remain constant. Then, the

LHS of (65) can be written

ΘK
(1−σ)[η2−φ(γ−λ)]
t kη1nt

∫ ∞
t

e−g̃η(τ−t)θ(τ − t)ρ(τ − t)dτ, (68)

where

Θ = − σ

1− σ
ψ
−(1−σ)γφ
A (η1W̃1)1−σ.

Expression (68) can be equivalently written as∫ ∞
t

ρ(τ − t) θ(τ − t)e−g̃η(τ−t)∫∞
t
θ(τ − t)e−g̃η(τ−t)dτ

dτ

∫ ∞
t

− σ

1− σ
Pt(τ)(1−σ)φ(W̃ ′

knt(τ))1−σθ(τ − t) dτ,

and from (16) and the definition of the value function, the LHS reads

∆(g̃, η)(W̃ (knt, Kt)− W̃0) ≡ ∆(g̃, η)W̃1k
η1
ntK

η2
t . (69)

Similarly, along the balanced path the RHS of the Bellman equation can be rewritten

as

− 1

1− σ

(
η1W̃1

)1−σ
ψ
−(1−σ)γφ
A kη1ntK

η2
t + W̃1k

η1
ntK

η2
t {η1r + g̃η2} . (70)

Given expressions (69) and (70), we check whether the conjectured value function

satisfies the Bellman equation, and compute constants W̃0, W̃1. Constant W̃1 is given by

W̃1 =
1

η1

(
1

[∆(g̃, η) + g̃η]ψ
(1−σ)γφ
A

) 1
σ

. (71)

Following the same reasoning as in the proof of Proposition 1, W̃0 = W0, given in

(47):

W̃0 =
σ

(1− σ)ρ̂
.

Finally, to compute the modified Ramsey rule, we take derivatives with respect to

knt in the RHS of (65) and in (69), and obtain

∆(g̃, η)W̃ ′
knt(knt, Kt) = W̃ ′′

kntknt(knt, Kt)k̇nt + W̃ ′
knt(knt, Kt)r + W̃ ′′

Ktknt(knt, Kt)K̇t

Substituting in this expression k̇nt and K̇t by g̃knt and g̃Kt, taking into account (66)

and the last equation in (67), the modified Ramsey rule (34) follows.

Logarithmic utility: σ = 1
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The value function along a balanced growth path can be expressed as

W̃ 1(knt, Kt) =

∫ ∞
t

ln
[
cntP

−φ
t eg̃

1[1+φ(γ−λ)](τ−t)
]
θ(τ − t)dτ =

ln
[
cntP

−φ
t

] ∫ ∞
t

θ(τ − t)dτ + g̃1 [1 + φ(γ − λ)]

∫ ∞
t

(τ − t)θ(τ − t)dτ =

1

ρ̂
ln
[
ψCψ

φγ
A

]
+

1

ρ̂
ln knt +

φ(γ − λ)

ρ̂
lnKt +

g̃1J̄0 [1 + φ(γ − λ)]

ρ̂
.

Therefore, the value function is defined as

W̃ 1(knt, Kt) = W̃ 1
0 + η̃1 ln knt + η̃2 lnKt = W̃ 1

0 + ln
[
kη̃1ntK

η̃2
t

]
, (72)

with

W̃ 1
0 =

g̃1 [1 + φ(γ − λ)] J̄0 + ln
[
ψCψ

φγ
A

]
ρ̂

, η̃1 =
1

ρ̂
, η̃2 =

φ(γ − λ)

ρ̂
.

On the other hand, the LHS of the Bellman equation can be written as∫ ∞
t

[
ln cnt(τ)P−φt (τ)

]
θ(τ − t) ρ(τ − t) dτ = ρ̂W̃ 1(knt, Kt) + g̃1 [1 + φ(γ − λ)]

{
1

ρ̂
− J̄0

}
.

Plugging this into (63), the Bellman equation can be rewritten as

ρ̂W̃ 1(knt, Kt)+g̃
1 [1 + φ(γ − λ)]

{
1

ρ̂
− J̄0

}
= ln cnt−φ lnPt+(W̃ 1

knt)
′(t) [rknt−cnt]+(W̃ 1

Kt)
′(t)K̇t.

And differentiating with respect knt, one gets

ρ̂(W̃ 1
knt)

′(knt, Kt) = (W̃ 1
kntknt)

′′(knt, Kt)k̇nt + (W̃ 1
knt)

′(knt, Kt)r + (W̃ 1
Ktknt)

′′(knt, Kt)K̇t.

(73)

Taking into account (72), equation (73) leads to

ρ̂ = − k̇nt
knt

+ r,

and substituting in this expression k̇nt by g̃1knt expression (35) follows.

Proof of Proposition 9.

In the central-planner balanced path equilibrium, when σ = 1, g1∗ = g1∗
ρ̂ , ψ1∗

A = ψ1∗
Aρ̂ and

the associated consumer welfare is

W 1(Kt) = ln
(
c∗tP

−φ
t

)∫ ∞
t

θ(τ − t)dτ + g1∗ [1 + φ(γ − λ)]

∫ ∞
t

(τ − t)θ(u− t)dτ =

ln
(
c∗tP

−φ
t

)
ρ̂

+
g1∗ [1 + φ(γ − λ)] J̄0

ρ̂
= W 1

ρ̂ (Kt) +
g1∗ [1 + φ(γ − λ)]

ρ̂

(
J̄0 −

1

ρ̂

)
.
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Likewise, in the market economy, g̃1∗ = g̃1∗
ρ̂ , ψ̃A = ψ̃Aρ̂ = (α̃γB)

1
1−αγ , and then, following

the same reasoning

W̃ 1(Kt) = W̃ 1
ρ̂ (Kt) +

g̃1∗ [1 + φ(γ − λ)]

ρ̂

(
J̄0 −

1

ρ̂

)
.

From Lemma 15 it is known that Ω(g, η) < J̄ , and particularizing for σ = 1, Ω(g, 0) < J̄0.

Given that Ω(g, 0) = 1/ρ̂, the last term in the expression above is positive.

Proof of Proposition 12.

The modified Ramsey rule under a central-planner or a market economy can be written

as

g(ψA) = r(ψA)− 1

Ω(g, η)
, g̃(ψA) = r̃(ψA)− 1

Ω(g, η)
.

By linearizing g(ψA) at ψA = ψ̃NT∗
A ≡ (α̃γB)

1
1−αγ , where superscript NT denotes the

market economy with no taxes or subsidy, one gets16

g(ψA) ' g(ψ̃NT∗
A ) +

r′(ψ̃NT∗
A )

1 + η J̄
Ω(g,η)

(ψA − ψ̃NT∗
A ). (74)

Moreover, taking into account (20) and (30) it follows that g(ψ̃NT∗
A ) = g̃(ψ̃NT∗

A ). In

consequence, evaluating (74) at ψ∗A, the gap in the growth rates under the centralized

and the market economy without taxes can be approximated as

g∗ − g̃NT∗ = g(ψ∗A)− g̃(ψ̃NT∗
A ) ' r′(ψ̃NT∗

A )

1 + η J̄
Ω(g,η)

(ψ∗A − ψ̃NT∗
A ).

Applying identical reasoning for the case of constant discounting, the gap between the

growth rates reads

g∗ρ̂ − g̃NT∗ρ̂ = gρ̂(ψ
∗
Aρ̂)− g̃ρ̂(ψ̃NT∗

A ) ' r′(ψ̃NT∗
A )

1 + η
(ψ∗Aρ̂ − ψ̃NT∗

A ).

Recall that under constant or non-constant discounting ψ̃NT∗
A = (α̃γB/λ)1/(1−αγ).

The total effect of taxes on the market growth rate is

dg̃

dT
=

∂g̃

∂ψA

dψA

dT
+
∂g̃

∂T
=

∂r̃
∂ψA

dψA

dT
+ ∂r̃

∂T

1 + η J̄
Ω(g,η)

=
Ψ

1 + η J̄
Ω(g,η)

,

dg̃ρ̂
dT

=
∂g̃ρ̂
∂ψA

dψA

dT
+
∂g̃ρ̂
∂T

=

∂r̃
∂ψA

dψA

dT
+ ∂r̃

∂T

1 + η
=

Ψ

1 + η
.

16Note that the Ramsey curve is inverse U-shaped and (αγB)1/(1−αγ) is lower than ψ̂A =

(αβγ2B/λ)1/(1−αγ) (where the Ramsey curve reaches its maximum). Hence, the linear approxima-

tion is inaccurate for values of ψA > ψ̂A.

39



Lemma 15 states that J̄ > Ω(g, η), then for σ < 1 it follows that∣∣∣∣d(g∗ − g̃NT∗)
dT

T

g∗ − g̃NT∗

∣∣∣∣ <
∣∣∣∣∣d(g∗ρ̂ − g̃NT∗ρ̂ )

dT

T

g∗ρ̂ − g̃NT∗ρ̂

∣∣∣∣∣
which is equivalent to

Ψ

ψ∗A − ψ̃NT∗
A

<
Ψ

ψ∗
Aρ̂ − ψ̃NT∗

A

⇔ ψ∗Aρ̂ < ψ∗A,

which is true from Proposition 6.
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Legends

Figure 1: Constant/non-constant discount functions & instantaneous discount rates.

Figure 2: Equilibria under constant & non-constant discounting.

Figure 3: α− α̃ large w.r.t. φ.

Figure 4: φ large w.r.t. α− α̃.

Figure 5: W̃ 1(Kt) > W 1(Kt) for different α̃.

Figure 6: W̃ 1(Kt) > W 1(Kt) for different φ.

Figure 7: W̃ 1(Kt) > W 1(Kt) for different λ.

Figure 8: W̃ 1(Kt) > W 1(Kt) for different γ.

α g1∗ − g̃1∗ W 1
ρ̂ − W̃ 1

ρ̂

W 1 − W̃ 1

ρ = 1.2× 10−3, ϕ = 0.9, δ = 1.39

Benchmark 0.5 −0.0069 44.5 −14

α̃→ 0.41 0.5 −0.0076 42.1 −22.9

φ→ 3 0.5 −0.0151 72.9 −74

λ→ 0.78 0.45 −0.0062 32.9 −21.1

γ → 1.01 0.48 −0.007 39 −21.5

Table 1: Comparing centralized and market economies
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