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Abstract Model-based approaches to cluster analysis and mixture modeling of-
ten involve maximizing classification and mixture likelihoods. Without appropriate
constrains on the scatter matrices of the components, these maximizations result
in ill-posed problems. Moreover, without constrains, non-interesting or “spurious”
clusters are often detected by the EM and CEM algorithms traditionally used for
the maximization of the likelihood criteria. Considering an upper bound on the
maximal ratio between the determinants of the scatter matrices seems to be a
sensible way to overcome these problems by affine equivariant constraints. Unfor-
tunately, problems still arise without also controlling the elements of the “shape”
matrices. A new methodology is proposed that allows both control of the scat-
ter matrices determinants and also the shape matrices elements. Some theoretical
justification is given. A fast algorithm is proposed for this doubly constrained
maximization. The methodology is also extended to robust model-based cluster-
ing problems.
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1 Introduction

Given a sample of observations {x1, ..., xn} in Rp, a widely used method in un-
supervised learning is to assume multivariate normal components and to adopt
a maximum likelihood approach for clustering purposes. With this idea in mind,
well-known classification and mixture likelihood approaches can be followed.

In this work, we use φ(·;µ,Σ) to denote the probability density function of a
p-variate normal distribution with mean µ and covariance matrix Σ.

In the classification likelihood approach we search for a partition {H1, ..., Hk}
of the indices {1, · · · , n}, centres µ1, · · · , µk in Rp, symmetric positive semidefinite
p×p scatter matrices Σ1, · · · , Σk and positive weights π1, · · · , πk with

∑k
j=1 πj =

1, which maximize
k∑
j=1

∑
i∈Hj

log (πjφ(xi;µj , Σj)) . (1)

On the other hand, in the mixture likelihood approach, we seek the maximiza-
tion of

n∑
i=1

log

 k∑
j=1

πjφ(xi;µj , Σj)

 , (2)

with similar notation and conditions on the parameters as above. In this second
approach, a partition into k groups can be also obtained, from the fitted mixture
model, by assigning each observation to the cluster-component with the highest
posterior probability.

Unfortunately, it is well-known that the maximization of “log-likelihoods” like
(1) and (2) without constraints on the Σj matrices is a mathematically ill-posed
problem (Kiefer and Wolfowitz 1956; Day 1969). To see this unboundedness issue,
we can just take µ1 = x1, π1 > 0 and |Σ1| → 0 making (2) to diverge to infinity
or (1) also to diverge with H1 = {1}.

This lack of boundedness can be solved by just focusing on local maxima of
the likelihood target functions. However, many local maxima are often found and
it is difficult to know which are the most interesting ones. See McLachlan and
Peel (2000) for a detailed discussion of this issue. In fact, non-interesting local
maxima denoted as “spurious” solutions, which consist of a few, almost collinear,
observations, are often detected by the Classification EM algorithm (CEM), tra-
ditionally applied when maximizing (1), and by the EM algorithm, traditionally
applied when maximizing (2). A recent review of approaches for dealing with this
lack of boundedness and for reducing the detection of spurious solutions can be
found in Garćıa-Escudero et al. (2018).

Affine equivariance is an interesting property which is often required by a clus-
tering method. The property means that the clustering results remain unchanged
after applying affine transformations of the input variables. For instance, this is
the case when changing variable measurement scales. n that direction, the work by
Biernacki and Lourme (2014) nicely explains how scale changes can affect differ-
ent model-based clustering approaches and their visualization. It is important to
note that affine equivariance is not always the most convenient property in specific
clustering applications, as Hennig and Liao (2013) show in a social stratification
problem.
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At first sight, the use of constraints on the relative sizes of the determinant of
the Σj matrices may be seen as a simple and useful way to overcome these de-
generacy issues and to apply affine equivariant constraints. These constraints were
already suggested by McLachlan and Peel (2000) (Section 3.9.1) and lie behind
the EVV (equal volume, variable shape and orientation) parametrization within
the well-known Gaussian parsimonious models family (Celeux and Govaert 1992;
Banfield and Raftery 1993). In Section 2, we will see how only constraints on the
determinants do not fully avoid the detection of degenerate (spurious) solutions.
We will also see how additional constraints on the elements of the “shape” matri-
ces are useful to minimize these degeneracy issues. Moreover, different clustering
approaches can be defined depending on the strength of these two, determinant
and shape, types of constraints. Regarding affine equivariance, we are virtually
affine equivariant if only very mild constraints on the shape elements are posed.

At a first sight, the doubly constrained likelihood maximization seems to be a
difficult task. In Section 3, we will show that just a minor modification of the tra-
ditional CEM and EM algorithms is needed. In fact, that modification is based on
the same “optimal truncation” procedure applied for eigenvalue ratio constraints
described in Fritz et al. (2013). A justification of the proposed algorithm will be
given in Section 3.3.

A robust extension of the methodology, which improves the performance if a
certain fraction of contaminating observations appears in our data set, will be
introduced in Section 4. Robustness follows from applying a trimming approach.
A simulation study will be given in Section 5 and a real data application in Section
6. Some conclusions and further research lines are outlined in Section 7.

2 Determinant-and-shape constraints

It is known that if one or more |Σj |, but not all, tend to 0 then (1) and (2) can go
to +∞. This fact creates a lack of boundedness problem when maximizing these
target functions. Therefore, we could consider the maximization of (1) and (2) but
under

Determinant constraints: we force

maxj=1,...,k |Σj |
minj=1,...,k |Σj |

≤ c1, (3)

for a given fixed constant c1 ≥ 1.

Notice that (3) implies that if any of the determinants |Σj | goes to 0 then all the
other determinants also have to go to 0 and this solution is not interesting (because,
in that case, the log-likelihoods (1) and (2) go to −∞). It is also trivial to see that
this type of constraints results in an affine equivariant clustering procedure.

The particular case c1 = 1 forces all the determinants of the scatter matrices to
be equal, i.e. |Σ1| = ... = |Σk|. This case corresponds to the approach in McLachlan
and Peel (2000) and to the EVV (equal volume, variable shape and orientation)
parametrization within the Gaussian parsimonious family. When considering 1 <
c1 < ∞, we relax the exact “equal determinant” assumption without leaving
determinants completely free.
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However, even when all the |Σj | determinants are kept away from 0, degeneracy
troubles still arise, because some eigenvalues of the Σj matrices may still go to 0.
To illustrate this, let us consider the well-known decomposition for the Σj scatter
matrices as

Σj = λjΩjΓjΩ
′
j ,

where Ωj is an orthogonal matrix of eigenvectors, Γj is a diagonal matrix with
|Γj | = 1 and with elements {γj1, ..., γjp} in its diagonal (proportional to the eigen-
values of the Σj matrix) and |Σj | = λpj . These Γj matrices are commonly known
as “shape” matrices, because they determine the “shape” of the fitted cluster
components. To see that degeneracy issues may still happen, even with controlled
determinant sizes, let us fix p = 2 and take µ1 = x1, π1 > 0, λ1 = 1, γ11 = C
and γ12 = 1/C. The remaining Σj matrices, j = 2, ..., k, are arbitrarily chosen but
satisfying |Σ2| = · · · = |Σk| = 1. Note that the smallest eigenvalue of Σ1 converges
to 0 when C ↑ ∞ and, then, one of the fitted components can be made arbitrarily
close to a degenerate normal component.

To overcome the above explained source for degeneracy, we may consider,
besides (3), an additional type of constraint which controls the elements of the
“shape” matrices as:

Shape constraints: consider the following k constraints:

maxl=1,...,p γjl
minl=1,...,p γjl

≤ c2, for j = 1, ..., k, (4)

where c2 ≥ 1.

Notice that (4) imposes k independent sets of constraints, one for each shape
matrix, and nothing relates the shape matrix elements of one component to the
other components.

The combination of different c1 and c2 values, with 1 ≤ c1 <∞ and 1 ≤ c2 <
∞, entails different clustering approaches throughout their associated constrained
maximizations.

If we consider a very large c2 value (e.g., c2 = 1010) and a small/moderate
value for c1 we are virtually affine equivariant. That choice would constitute just
mild constraints on the scatter matrices “condition numbers” (ratios between the
largest and smallest eigenvalues). As will be seen in the simulation study, this
type of constraint is a kind of convenient “computational precision” protection
especially when dimension increases.

2.1 Illustrative example

As a first simple illustrative example, we show the result of applying the proposed
methodology in the classification likelihood case with k = 2, c1 = 1 and c2 =
1010. The data set in Figure 1,(a) is drawn from two spherical bivariate normal
components with the same scatter (and, consequently, |Σ1|/|Σ2| = 1). An affine
transformation is applied to this data set which notably affects the measurement
scales. The new transformed data set in Figure 1,(b) can be seen as randomly
drawn from two non-spherical normal bivariate distributions where the Σ1 and
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Fig. 1 Results of applying the proposed methodology with c1 = 1 and c2 = 1010. (a) Original
data set (b) The same data set after applying an affine transformation.

Σ2 still satisfy |Σ1|/|Σ2| = 1. The result of applying the same determinant-and-
shape constrained approach, with the same c1 and c2 values, is shown in Figure
1,(b).

Different constrained clustering problems can be defined depending on the c1
and c2 values. For instance, we are ideally searching for spherical clusters when
c2 = 1. In fact, intermediate models between the EII (equal volume and spherical)
and the VII (variable volume and spherical) Gaussian parsimonious parameteriza-
tions are handled with 1 < c1 <∞ and c2 = 1. Notice that the target function for
the VII model (c1 =∞) is unbounded (defining a mathematically ill-posed prob-
lem again). On the other hand, the c1 = c2 = 1 case often yields a very constrained
parametrization, which assumes spherical and equally scattered components.

Figure 2 shows the result of the proposed approach, in the classification like-
lihood case, with k = 2 and c2 = 1 when applied to a data set made of two
spherical components but with clearly different scatters. Figure 2,(a) uses c1 = 1
while c1 = 1010 is used in (b). The dashed lines show the two circles including 95%
of the probability mass and the solid lines represent the estimated circles through
the model-based clustering approach. We are able to estimate more correctly the
true clusters, so obtaining better cluster assignments with the more flexible model
fitted in Figure 2,(b).

Figure 3 shows a summary of the type of cluster structures we are ideally
searching for different combinations of the c1 and c2 values. The ellipses show
equidensity contours of the fitted normal components.

2.2 Related approaches

The use of “ratio-type” constraints as in (3) and (4) goes back to the seminal
paper of Hathaway (1985). In this direction, the ratio between the largest and the
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(b)

Fig. 2 A data set made of two circular components with different scatters (dashed lines show
the contours including 95% of the probability mass). (a) Clustering results with c1 = c2 = 1
(b) Clustering results with c1 = 1010 and c2 = 1. The solid lines represent the same estimated
circles. Note that the solid lines in (b) completely overlap the dashed lines.

smallest of the k× p eigenvalues of the Σj matrices was forced to be smaller than
a given fixed constant c∗ ≥ 1 (Ingrassia and Rocci 2007; Garćıa-Escudero et al.
2008, 2011, 2014b, 2015). This means that the maximization of (1) and (2) is done
under the (more simple) constraint:

max
jl

λl(Σj)/min
jl

λl(Σj) ≤ c∗, (5)

where {λl(Σj)}pl=1 are the set of eigenvalues of the Σj matrix, j = 1, ..., k.
With this eigenvalue-ratio approach, we need a very high c∗ value to be close

to affine equivariance. Unfortunately, such a high c∗ value does not always suc-
cessfully prevent us from incurring into spurious solutions. Furthermore, the new
determinant-and-shape constraints (based on c1 > 1 and c2 = 1) allow us to deal
with spherical “heteroscedastic” cases, such as that in Figure 2 or in the top-right
panel of Figure 3, whereas the eigenvalue ratio constraint with c∗ = 1 can only
handle the spherical “homoscedastic” case as in the top-left panel of Figure 3.

An interesting and closely related approach was given in Browne et al. (2013)
where different constrained modifications of the Gaussian parsimonious models
were proposed. These modifications include lower and upper bounds on the Σj
matrices in such a way that all the λl(Σj) eigenvalues, j = 1, ..., k and l = 1, ..., p,
are bounded to be within a fixed interval [a, b]. The eigenvalue truncation proce-
dure in Ingrassia and Rocci (2007) is applied to impose that constraint in the asso-
ciated CEM and EM algorithms. The constraints in Browne et al. (2013) certainly
serve to prevent likelihood maximization degeneracies. However, the correct choice
of the truncation interval [a, b], because of the use of scatter matrices eigenvalues,
strongly depends on the measurement scales of the input variables. Considering a
separate treatment for the components “size” and “shape” parameters, together
with working with “ratio-type” constraints, makes more flexible the specification
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(a) c1 = 1 and  c2 = 1 (b) c1 > 1 and  c2 = 1

(c) c1 = 1 and  c2 > 1 (d) c1 > 1 and  c2 > 1

Fig. 3 Schematic plot showing the type of cluster components detected for different combi-
nations of c1 and c2.

of the type of components that the user of the clustering procedure is particularly
interested in.

An affine equivariant procedure for Gaussian mixture modeling has also been
recently introduced in Rocci et al. (2018) by shrinking the Σj scatter matrices
towards a pre-specified target matrix Ψ . Seo and Kim (2012) try to avoid singular
and spurious solutions by taking out the k observations with the highest contri-
butions to (2) through the k-deleted likelihood approach which also results in an
affine equivariant procedure. These two procedures are clearly useful but they can-
not provide the differentiated type of control on the “shapes” and “sizes” given
by the proposed doubly-constrained methodology.

2.3 Theoretical results

Given an underlying theoretical probability model P , a population version of the
doubly constrained likelihood maximizations can be defined. In this section, we
present existence results for both, the theoretical and the sample, problems to-
gether with consistency results for the sample solutions towards the population
values.
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Given θ = (π1, · · · , πk, µ1, · · · , µk, Σ1, · · · , Σk) (as defined in Section 1), let us
introduce the functions

Dj(x; θ) = πjϕ(x;µj , Σj),

D(x; θ) = max{D1(x; θ), ..., Dk(x; θ)},

and the sets

Θc∗ = {θ : Σ1, ..., Σk satisfy constraint (5) for constant c∗}

and

Θc1,c2 = {θ : Σ1, ..., Σk satisfy constraints (3) and (4) for constants c1 and c2}.

The following Theorem 1 states the existence result under finite second order
moment conditions.

Theorem 1 If P is not concentrated at k points and EP ‖ · ‖ <∞

(a) then there exists some θ ∈ Θc1,c2 such that the maximum of

EP

log

[ k∑
j=1

Dj(·; θ)
] (6)

when θ is forced to be in Θc1,c2 is achived.
(b) then there exists θ ∈ Θc1,c2 such that the maximum of

EP

 k∑
j=1

zj(·; θ) logDj(·; θ)

 , (7)

with zj(x; θ) = I{x : D(x; θ) = Dj(x; θ)}, when θ is forced to be in Θc1,c2 is
achieved.

If we have {x1, ..., xn} being the realization of a random sample of size n
from distribution P , i.e. when replacing P by the empirical distribution Pn =∑n
i=1 δ{xi}, then we recover the sample maximizations (1) and (2) under con-

straints (3) and (4) exactly as proposed in Section 2. Therefore, Theorem 1 also
guarantees the existence of the solution of these two empirical problems associated
to the given sample {x1, ..., xn}.

We use the notation θ0 for any constrained maximizer of the theoretical prob-
lem for the underlying distribution P and let θn = (πn1 , · · · , πnk , µn1 , · · · , µnk , Σn1 ,
· · · , Σnk ) be the sequence of empirical solutions for the sequence of empirical sam-
ple distributions {Pn}∞n=1 from P . The following result states consistency under
similar assumptions as in Theorem 1 if the maximizer of the theoretical problem
is assumed to be unique.

Theorem 2 Let us assume that P is not concentrated at k points, that EP ‖·‖ <∞
and that θ0 ∈ Θc1,c2 is the unique constrained maximizer of (6), resp. (7), for P . If
{θn}∞n=1 is a sequence of empirical maximizers of (1), resp. (2), when θn ∈ Θc1,c2
then θn → θ0 almost surely.
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The proofs of Theorem 1 and Theorem 2 follow the same lines as the proofs
of Proposition 1 and Proposition 2 in Garćıa-Escudero et al. (2015) once we prove
that, for every c1 and c2, there always exists c∗ (depending on c1 and c2) such that
Θc1,c2 ⊂ Θc∗ . The fact that Θc1,c2 ⊂ Θc∗ allows us to control the scatter matrices
in the proofs exactly as was done there.

Lemma 1 For any pair of (c1, c2) ∈ [1,∞)× [1,∞) values, we have that Θc1,c2 ⊂
Θc∗ when c∗ = c22c

1/p
1 .

Proof: If θ ∈ Θc1,c2 then

λl(Σj)

λl′(Σj′)
≤ c2|Σj |1/p

1/c2|Σj′ |1/p
≤ c22c

1/p
1 ,

for every j, j′ ∈ {1, ..., k} and l, l′ ∈ {1, ..., p}.
To prove these inequalities, we take into account that

1

cp2
|Σj | ≤ (λl(Σj))

p ≤ cp2|Σj |

if constraint (4) holds and that |Σj |/|Σj′ | ≤ c1 if constraint (3) holds. 2

Existence results in the population case can be proven only under the determi-
nant constraints (3) if P is assumed absolutely continuous. However, the existence
of the sample solution for a given sample {x1, ..., xn} is not guaranteed, but it
can be proven that sample solutions approximating the population one can be
obtained when n tends to ∞.

3 An algorithm for determinants-and-shape constraints

3.1 “Optimal truncation”

In this subsection, we review the “optimal truncation” procedure introduced in
Fritz et al. (2013) that was the keystone in the algorithms for implementing the
eigenvalues ratio constraints in the robust model-based clustering approaches in
Garćıa-Escudero et al. (2008) and Garćıa-Escudero et al. (2014a) and also for
their (classical) non-robust counterparts in Garćıa-Escudero et al. (2011). This
“optimal truncation” procedure is also going to play a very important role on how
constraints (3) and (4) are imposed in the new doubly constrained algorithms.

Given a non-negative value d and a fixed constraining constant c, we consider
its m-truncated value as

dm =


d if d ∈ [m, cm]
m if d < m
cm if d > cm

.

Given {nj}Jj=1 ∈ NJ and {dj1, ..., djL}Jj=1 ∈ [0,∞)J×L, let us define the “optimal
truncation” operator

opt.truncc
(
{nj}Jj=1; {dj1, ..., djL}Jj=1

)
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returning {d∗j1, ..., d∗jL}Jj=1 ∈ [0,∞)J×L with d∗jl = d
mopt

jl for mopt being the opti-
mal threshold value obtained as

mopt = arg min
m

J∑
j=1

nj

L∑
l=1

(
log
(
dmjl
)

+
djl
dmjl

)
. (8)

Note that if one of the input values is equal to 0 then the output is a sequence
with J × L values all being equal to 0.

Obtaining the optimal threshold value only requires the maximization of a real
valued function. Proposition 3.2 in Fritz et al. (2013) shows that mopt can be
efficiently obtained by doing only 2 · J · L + 1 evaluations of the function in (8).
The procedure can be fully vectorized, i.e., it can be obtained without loops.

3.2 Description of the algorithm

In this section, we modify the traditional CEM and EM algorithms to incorporate,
in an optimal way, the determinant-and-shape constraints. The two algorithms
follow similar steps and are presented in a unified fashion.

Let us denote the parameters at step s by θ(s) = (π
(s)
1 , · · · , π(s)

k , µ
(s)
1 , · · · , µ(s)

k ,

Σ
(s)
1 , · · · , Σ(s)

k ) and Dj(x; θ(s)) = π
(s)
j φ(x;µ

(s)
j , Σ

(s)
j ) for j = 1, ..., k.

1. Initialization: The procedure is initialized nstart times by randomly selecting
different initial θ0 = (π0

1 , · · · , π0
k, µ

0
1, · · · , µ0

k, Σ
0
1 , · · · , Σ0

k) sets of parameters. A
simple strategy for the initialization is to randomly select k×(p+1) observations
and use them, after splitting them into k groups, to compute k initial µ0

j centers

and k initial scatter matrices Σ0
j . The procedure described in Step 2.2 has to be

applied if the initial Σ0
j scatter matrices do not satisfy the required constraints.

2. Iterative steps: The following steps are executed until convergence (i.e., when
‖vec(θ(s+1))−vec(θ(s))‖/‖vec(θ(s))‖ < ε for a fixed ε) or until a fixed maximum
number of iterations iter.max is reached.

2.1. Computing observation weights: From θ(s), observation weights τj(xi; θ
(s)),

i = 1, ..., n and j = 1, ..., k, are computed as

τj(xi; θ
(s)) =

{
1 if Dj(xi; θ

(s)) = max{D1(xi; θ
(s)), ..., Dk(xi; θ

(s))}
0 if not

,

in the CEM algorithm. The Hj sets are defined by

H
(s)
j = {i : τj(xi; θ

(s)) = 1}.

On the other hand, for the EM algorithm, observation weights are computed
as

τj(xi; θ
(s)) =

Dj(xi; θ
(s))∑k

j=1Dj(xi; θ
(s))

.

2.2. Updating parameters: From these τj(xi; θ
(s)) weights, we define

n
(s+1)
j =

n∑
i=1

τj(xi; θ
(s)),
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and the component weights are updated as

π
(s+1)
j = n

(s+1)
j /n.

Centres are updated as

µ
(s+1)
j =

1

n
(s+1)
j

n∑
i=1

τj(xi; θ
(s))xi.

Updating the scatter estimates is not so easy.
We start from the weighted sample covariance matrices

Sj =
1

n
(s+1)
j

n∑
i=1

τj(xi; θ
(s))(xi − µ(s+1)

j )(xi − µ(s+1)
j )′,

j = 1, ..., k, and their associated decompositions

Sj = djRjDjR
′
j , (9)

whereRj is the orthogonal matrix of eigenvectors of Sj ,Dj = diag(dj1, ..., djp)
with |Dj | = 1 and dj = |Sj |.
We solve k “optimal truncation” problems with J = 1 and L = p

opt.truncc2
(
{1}; {dj1, ..., djp}

)
, for j = 1, ..., k,

so obtaining k sets of values {d∗j1, ..., d∗jp}kj=1. We use them to get D∗j ma-
trices defined as D∗j = diag(d∗j1, ..., d

∗
jp).

We also compute

vj = dj

∑p
l=1(d∗jl)

−1djl

p

and obtain {d∗j}j=1,...,k through the application of one additional optimal
truncation problem with J = k and L = 1 being the result of

opt.trunc
c
1/p
1

({
n
(s+1)
j

}k
j=1

; {v1, ..., vk}
)
.

We finally update Σ
(s+1)
j = d∗jRjD

∗
jR
′
j .

Note that the “optimal truncation” operator has been applied k + 1 times
with different J and L values.

3. Evaluate the target function: After applying this iterative process, the like-
lihood target functions (1) or (2), depending on the adopted approach, are
computed. The parameters yielding the highest value of this target function
are returned as the algorithm’s output.

Note that the proposed algorithm requires several random initializations. Due
to the unboundedness of the target functions (1) and (2), considering “wisely-
chosen” initializations has been proposed for CEM and EM algorithms in order to
prevent them from being trapped into degenerate or spuriuous solutions. Consid-
ering several initializations, together with a careful monitoring of their evolutions
in the iterative process, was proposed in Biernacki and Chretien (2003). Baudry
and Celeux (2015) also analyzed the EM algorithm initialization problem and
proposed useful initializing strategies. Instead, we have defined a mathematically
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well-defined constrained maximization problem (see Section 2.3) and our plan is
just to explore the constrained parametric space, as much as possible, so trying to
truly maximize our target likelihood functions but under the required constraints.
This exploration is done by considering several random initializations in the Step
1 of the proposed algorithm, and immediately applying the required constraints.

3.3 Justification of the algorithm

The proposed algorithm follows the main lines of classical CEM and EM algo-
rithms. Given θ(s) at stage s, optimal weights are obtained by using posterior
probabilities in the EM version but converted into 0-1 in the CEM case. In the
M-step, parameters θ(s+1) are updated by performing a constrained maximization,
on the πj , µj and Σj parameters, of the “completed” (log-)likelihood

n∑
i=1

k∑
j=1

τj(xi; θ
(s)) log

(
πjφ(xi;µj , Σj)

)
. (10)

The alternation of E- and M-steps monotonically increases the associated like-
lihood functions by ending in a local constrained maximum. Searching from several
random starting parameters should serve to detect the global constrained maxi-
mum.

In the constrained maximization of (10), if nj =
∑n
i=1 τj(xi; θ

(s)) then it is

easy to see that the best choice of πj is π
(s+1)
j = nj/n. It is also straightforward

to see that the best choice for µj is given by

µ
(s+1)
j =

1

nj

n∑
i=1

τj(xi; θ
(s))xi.

Standard arguments in Multivariate Analysis show that, after plugging those

optimal π
(s+1)
j and µ

(s+1)
j values into (10), the optimal unconstrained Σ

(s+1)
j

matrices are obtained through maximization over the Σj matrices of

−
k∑
j=1

nj
2

(
log |Σj |+ trace(Σ−1

j Sj)
)
, (11)

where

Sj =
1

nj

n∑
i=1

τj(xi; θ
(s))(xi − µ(s+1)

j )(xi − µ(s+1)
j )′. (12)

With this idea in mind, we start from the decompositions of the Sj matrices
as in (9) where Rj is again the orthogonal matrix of eigenvectors of Sj and Dj
is a diagonal matrix with |Dj | = 1. This means that the diagonal elements of
Dj , denoted as {dj1, ..., djp}, have to satisfy

∏p
l=1 djl = 1 and that |Sj | = dpj .

Analogously, let us consider similar decompositions of the Σj matrices as

Σj = λjΩjΓjΩ
′
j ,

with exactly the same notation and properties as in Section 2.
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As happens in the unconstrained case, we can easily see that the optimal Ωj
matrices are given by the Rj matrices. Note that rotation matrices do not affect
the fulfillment of the required constraints. Consequently, the cyclic property of the
“trace” operator allows us to reduce (11) to

−
k∑
j=1

nj
2

(
log λpj + λ−1

j dj

p∑
l=1

djl
γjl

)
. (13)

The maximization of (13) over the λj values and the γjl values has to be done
under the constraints:

λpj
λpj′
≤ c1,

γjl
γjl′
≤ c2 and

p∏
l=1

γjl = 1 for every j, j′, l and l′.

We are first going to see that the best γjl values can be optimally determined
independently of the λj values. In order to see that, let us note that if {b∗l }

p
l=1

minimizes
p∑
l=1

(
log bl +

el
bl

)
on {bl}pl=1 under the constraints bl/bl′ ≤ c for l 6= l′, then the values

a∗l =
b∗l

p
√∏p

l=1 b
∗
l

, l = 1, ..., p,

serve to minimize
p∑
l=1

el
al
,

on {al}pl=1 under the constraints al/al′ ≤ c, for l 6= l′, and the additional constraint∏p
l=1 al = 1.

Therefore, assuming that the λj values were fixed, we can trivially see that

{γjl}l=1,...,p
j=1,...,k can be optimally determined as {d∗jl}

l=1,...,p
j=1,...,k where each set of

{d∗jl}l=1,...,p values is obtained by applying

opt.truncc2
(
{1}; {dj1, ..., djp}

)
for j = 1, ..., k.

As this holds for any possible λj values, the optimal Γj matrix is then R∗j =
diag(d∗j1, ..., d

∗
jp).

Once that the optimal Γj and Ωj matrices are determined, we have to obtain
the optimal λj values. If

vj = dj

∑p
l=1(d∗jl)

−1djl

p
,

then simple calculus shows that the function (13) can be rewritten as

p×

− k∑
j=1

nj
2

(
log λj +

vj
λj

) .
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The constraint in (3) imposes dpj/d
p
j′ ≤ c1 or, analogously, dj/dj′ ≤ c

1/p
1 .

Therefore, we can apply again the “opt.trunc” transformation to obtain optimal
{d∗j}j=1,...,p values resulting from

opt.trunc
c
1/p
1

(
{nj}kj=1; {v1, ..., vk}

)
.

After all these steps, the scatter matrices are optimally updated as

Σ
(s+1)
j = d∗jRjD

∗
jR
′
j .

Direct expressions for all the terms involved are ready available because an efficient
method for carrying out the “opt.trunc” transformation is at hand (Fritz et al.
2013).

4 Extension to robust clustering

We propose extending this methodology by allowing for a fixed proportion α of
trimmed observations. As in Garćıa-Escudero et al. (2008), we can search for opti-
mal parameters and an optimal partition {H0, H1, ..., Hk} of the indices {1, · · · , n}
with #H0 = dnαe maximizing the classification trimmed likelihood

k∑
j=1

∑
i∈Hj

log
(
πjφ(xi;µj , Σj)

)
. (14)

Analogously, as proposed in Neykov et al. (2007) and Garćıa-Escudero et al.
(2014a)), we can can also maximize the trimmed mixture likelihood

∑
i∈{1,2,...,n}\H0

log

 k∑
j=1

πjφ(xi;µj , Σj)

 , (15)

where H0 ⊂ {1, · · · , n} with #H0 = dnαe again. A closely related approach is the
use of the “improper” maximum likelihood (Coretto and Hennig 2016).

The same reasoning as in Section 2 shows that both target functions (14) and
(15), without constraints, are unbounded. Therefore trimming alone is not able to
entail robustness. Consequently, trimming has to be combined with appropriate
scatter matrix constrains yielding a combined strategy for achieving robustness in
model-based clustering.

Therefore, we introduce new robust model-based clustering approaches by
maximizing the trimmed likelihood functions (14) and (15) but, again, under
determinant-and-shape constraints given by (3) and (4).

Of course, the constrained maximization involved is a difficult problem but
trimmed versions of the previous CEM and EM algorithms can be applied. The
same arguments as in Garćıa-Escudero et al. (2008) and (Fritz et al. 2013) show
that adding a “trimming step” to Step 2.1 in Section 3.2 is enough. That “trimming
step” is often referred to as “concentration step” (Rousseeuw and Van Driessen
1999) in the high-breakdown point robustness literature.

To apply the “trimming step”, let us compute

D(xi; θ
(s)) = max{D1(xi; θ

(s)), ..., Dk(xi; θ
(s))},
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for the robustified CEM algorithm, and

D(xi; θ
(s)) =

k∑
j=1

Dj(xi; θ
(s))

for the robustified EM algorithm. We sort all these values as

D(x(1); θ
(s)) ≤ ... ≤ D(x(n); θ

(s)),

and set τj(xi; θ
(s)) = 0, for every j = 1, ..., k, for all the i indexes such that

D(xi; θ
(s)) ≤ D(x(dnαe); θ

(s)).

It is straightforward to see that this is the optimal way of setting weights if a
proportion dnαe of observations are allowed to be discarded (clearly those with
the smallest contribution to the likelihood).

Figure 4 shows the result of applying the proposed trimming-based robustifed
methodology, in the CEM case, with k = 2, c1 = 1010, c2 = 1 and α = 0.1.
The α = 0.1 trimming level allows us to discard a 10% proportion of uniformly
distributed background noise that was added to a data set similar to that in Figure
1. Figure 4 shows that the clustering results are the same before and after applying
the affine transformation.
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Fig. 4 Results of applying the proposed robustification with α = 0.1, c1 = 1010 and c2 = 1.
(a) Original data set including 10% of background noise (b) The same data set after applying
an affine transformation. Trimmed observations are represented by using “◦” symbols in (a)
and (b).

Existence and consistency results, similar to those in Theorem 1 and Theorem
2, can be proven for the trimmed setup just by replacing the second moment order
condition EP ‖ ·‖ <∞ by considering a strictly positive trimming level α > 0. The
consistency result also needs P to be absolutely continuous in the boundary of the
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set including the nontrimmed mass of P . Only the proofs in Garćıa-Escudero et al.
(2008) and Garćıa-Escudero et al. (2014b) have to be mimicked after taking into
account Lemma 1. Avoiding moment conditions is interesting from the robustness
point of view because, in this way, the existence and consistency results can be
extended to the case of heavy-tailed underlying P distributions.

Moreover, the fact thatΘc1,c2 ⊂ Θc∗ for c∗ = c22c
1/p
1 also allows direct extension

to the Breakdown Point results in Section 3 of Dotto et al. (2018) to this new
doubly constrained framework.

Theorem 3 A breakdown point result similar to that in Theorem 4 in Dotto et al.
(2018) also holds for determinant-and-shape constraints.

The proof of this result easily follows from the same argument in the proof of
Theorem 4 in Dotto et al. (2018).

An affine equivariant procedure in robust clustering was introduced in Gallegos
and Ritter (2005) by assuming Σ1 = ... = Σk in the so-called “trimmed deter-
minant criterion”, robustifiying Friedman and Rubin (1967)’s procedure. Another
attempt to achieve robustness in clustering throughout modified “concentration
steps” was provided in Gallegos (2002). The components’ sample covariance ma-
trices Sj are transformed to have the same unitary determinant (i.e. replacing Sj
by Sj/|Sj |1/p) in the concentration step. This strategy is closely related to that of
imposing constraint (3) with c1 = 1. This type of common matrix standardization
was previously suggested in Maronna and Jacovkis (1974) in the untrimmed case.

Another suggestion for robust affine equivariant clustering was introduced in
Gallegos and Ritter (2009) (see also Ritter (2014)). The approach is simply based
on running trimmed versions of the CEM and EM algorithms from many different
random initializations without constraints. Afterward, all the many local minima
detected are later inspected by promoting a trade-off between “good fit” (i.e.,
high values of (14) or (15)) and “scale balance”. The “scale balance” is measured
through the so-called HDBT ratio defined as the largest c such that cΣj � Σl
for every l 6= j, where “�” stands for the Löwner ordering for matrices. The
HDBT ratio remains unchanged under affine transformation but a “constructive”
algorithm, for a fixed c value, is not yet available. It is also interesting to note
that, in this case, the c = 1 case does not reduce to the homoscedastic spherical
case.

5 Simulation study

To illustrate the performance of the new type of constraints, we have conducted
a simulation study. Simulated data sets are obtained starting from a “basic” two
cluster structure. Data sets are made of n observations generated as a mixture
of two p-variate normal components and with an average overlap of 0.01 and a
maximum eigenvalue ratio for the scatter matrices of 1.1. This means that, initially,
we are considering almost spherical clusters. The generation of these data sets is
done through the MixSim method of Maitra and Melnykov (2010), as extended by
Riani et al. (2015) and incorporated into the FSDA Matlab toolbox (Riani et al.
2012). The overlap is defined as a sum of pairwise misclassification probabilities.
See more details in Riani et al. (2015).
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We compare the performance of the proposed approach with respect to the
more simple use of eigenvalues ratio constraints in (5). Figure 5 shows the Adjusted
Rand Index (ARI) (Hubert and Arabie 1985) when applying “eigenvalues” and
determinant-and-shape constraints and the classification likelihood approach in
the same 100 randomly generated data sets from the basic (almost spherical)
model with n = 50 and p = 2 denoted as X50,2. The boxplots in the left panel
of Figure 5 show the ARI values for different values of c∗ when using eigenvalue
ratio constraints. On the other hand, the panel on the right of this figure shows
the same ARI boxplots but when applying the determinant-and-shape constraints
when c1 = 1 is kept fixed and c2 varies. A large number of random intializations
has been considered for each simulated data set. For a better comparison, the
same number and exactly the same set of initializing values are considered for
both types of constraints. To speed up the calculations the techniques of parallel
processing have been adopted.

We observe very good performance, i.e. ARI values close to 1, when c∗ ' 1 due
to the added stability provided by the constraints. However, because of the small
number of observations (n = 50), it also happens that sometimes the procedure
ends up detecting almost degenerate “spurious” solutions for large c∗ values. We
can see that determinant-and-shape constraints uniformly provide more accurate
cluster partitions regardless of the c2 value when c1 = 1.

A
R

I i
nd

ex

A
R

I i
nd

ex

Fig. 5 n = 50, p = 2 prior to the affine transformation: The boxplots in the left panel shows
ARI values when using eigenvalues ratio constraints for different values of the constraining
constant c∗. The panel on the right shows the same ARI boxplots but when applying the
determinant-and-shape constraints when c1 = 1 and c2 varies.

Starting from these basic data sets, we apply affine random transformation to
them. To be more precise, all basic data matrices X50,2 (n = 50 and p = 2) are
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post-multiplied by matrices

A1 =

(
1 0
0 S

)
,

where S is randomly generated from the uniform distribution U(1, 101). This trans-
formation serves to stretch the data set. Afterwards, we also consider a random
rotation by post-multiplying X50,2 ·A1 by the matrix

A2 =

(
cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

)
,

where Θ is distributed as U(0, 2π). The left panel of Figure 6 shows the results
of applying eigenvalue ratio constraints for different c∗ values for 100 different
randomly generated X50,2 · A1 · A2 data sets. The plot on the right shows the
results of the application of determinant-and-shape constraints when c1 = 1 and
c2 varies. Again, the same random initializations are considered for both type of
constraints.
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Fig. 6 n = 50, p = 2 after affine transformation: Left panel shows ARI boxplots when using
eigenvalues ratio constraints for different values of the constraining constant c∗. Right panel
shows the same ARI boxplots but when applying the determinant-and-shape constraints when
c1 = 1 and c2 varies.

As expected, small c∗ and c2 values do not cope with the more elongated data
structure and they are logically problematic with not very high ARI values. How-
ever, better ARI values are obtained in both cases when c∗ and c2 are greater than
100 (recall how the random A1 matrices are obtained). However, it is important to
note that, when applying eigenvalue ratio constraints, the large c∗ values needed
in order to deal with these more elongated structures also increase the chances
that the algorithm gets trapped in spurious solutions. We can see several small
ARI values in the left panel of Figure 6 when considering large c∗ values for the
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eigenvalue ratio constraint. These so small ARI values are not seen when consid-
ering the proposed determinant-and-shape constraints with c1 = 1 and very large
c2 values.

To reinforce previous claims, the left panels of Figure 7 show some spurious
components detected in the simulation study, “before and after” rotation, when
using the eigenvalues-ratio constraint when c∗ = 106. For the same data sets, the
right panels of Figure 7 show how the detection of spurious components is avoided
when we use the proposed methodology with c1 = 1 and c2 = 106.

It can be argued that increasing the sample size n reduces the chances of the
EM algorithm becoming trapped in local spurious maxima. This is true, but the
wrong detection of spurious solutions also arises, even with very high sample sizes,
when the dimension p increases.

Figure 8 repeats the same study, but now with a higher sample size n = 1000
and a higher dimension p = 10 (almost spherical clusters and a controlled 0.01
average overlap). We can see that the ARI values are close to 1 for most of the
100 generated X1000,10 data sets. However, a few spurious solutions can still be
wrongly found with the eigenvalues constraints while fewer spurious solutions are
found with the determinant-and-shape constraints.

We also consider the same affine transformation determined by matrices A1 and
A2 on the first two dimensions of the basic data sets X1000,10 while the remaining
8 coordinates are left unchanged. Figure 9 shows the results of the comparative
study where no great differences can be noticed but still determinant-and-shape
constraints seem to provide a slightly higher protection against spurious solutions.

Although not reported here, similar results have been obtained with other
average overlaps in the two components.

6 Real data set example

The well-known “Swiss Bank Notes” data set in Flury and Riedwyl (1988) includes
p = 6 measurements on 100 supposedly genuine and 100 counterfeit old Swiss 1000-
franc bank notes. These measures quantify the size of the notes and the relative
position of certain features within them. The data set is available, for instance, in
the mclust and tclust contributed R packages.

We apply the eigenvalue and determinant-and-shape constraints with k = 2
trying to recover the two cluster structure (genuine and forged notes). However,
the existence of 15 anomalous notes within the set of forged ones is also well-known
(Flury and Riedwyl 1988) perhaps due to the presence of more than one forger.
These are the notes numbered 111, 116, 138, 148, 160, 161, 162, 167, 168, 171,
180, 182, 187, 192 and 194 (in the mclust and tclust versions of this data set).
Moreover, it is also known that note 70 is anomalous; it is assumed genuine but
its measurements suggest a possible wrong assignment. Therefore α = 0.08 can be
considered as a sensible choice for the trimming level.

Figure 10,(a) shows the ARI results when applying eigenvalue and determinant-
and-shape constraints for different values of the constraining parameters. The ARI
values are obtained as if the set of these 16 notes were considered as a further differ-
ent group (so having “genuine”, “forged” and “anomalous” groups). The trimmed
versions of the eigenvalue and determinant-and-shape constraints with k = 2 and
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(b) After rotation
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Fig. 7 Scatter plots for 4 different data sets included in the simulation study (“before and
after” rotation) when n = 50 and p = 2. The results of applying the eigenvalue-ratio constraint
with c∗ = 106 are shown in the left panels and those resulting from the application of the
determinant-and-shape constraint with c1 = 1 and c2 = 106 in the right panels.

α = 0.08 are applied with a three “groups” partition (trimmed observations con-
sidered as a third group). The eigenvalue constraints are applied for different values
of c∗ and determinant-and-shape constraints with c1 = 1 and different c2 values.
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Fig. 8 n = 1000, p = 10 prior to the affine transformation: Left panel shows ARI boxplots
when using eigenvalue ratio constraints for different values of the constraining constant c∗.
Right panel shows the same ARI boxplots but when applying the determinant-and-shape
constraints when c1 = 1 and c2 varies.
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Fig. 9 n = 1000, p = 10 after affine transformation: The boxplots in the left panel show
ARI values when using eigenvalue ratio constraints for different values of the constraining
constant c∗. The panel on the right shows the same ARI boxplots but when applying the
determinant-and-shape constraints when c1 = 1 and c2 varies.

We can see in Figure 10,(a) that the results are similar, with ARI values close
to 1 in both cases, regardless of the type of constrains applied. Both approaches
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recover the two main groups (genuine and forged bills) and detect the third set of
notes.

In order to illustrate the possible troubles arising due to the lack of affine
equivariance of the eigenvalues constraints, the same ARI monitoring procedure is
applied to this data set but with the values of the fourth variable (distance of inner
frame to the lower border) multiplied by a factor of 10000. Figure 10,(b) shows,
how this change of scale in the fourth variable, is problematic for the eigenvalue
constraints; high ARI values are found only when a very large c∗ value is chosen.
Note that the use of very large c∗ values can also result in the detection of spurious
clusters.

(a) (b)
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Fig. 10 Swiss bank notes data set: ARI values when varying the constraining constants for
eigenvalue (solid line) and determinant-and-shape constraints (dashed line) with k = 2 and
α = 0.08. 16 outlying bills are considered as the “true” outliers. The original data set is
considered in (a) and a modified data set is considered in (b) where the fourth variable is
multiplied by 10000.

Figure 11 illustrates the results obtained by imposing the eigenvalue constraints
in the modified data set when the fourth variable was again multiplied by 10000.

If we apply a robust procedure to the set of supposedly genuine notes, we find
that notes 1 and 40 can be also declared as outliers. Figure 12 shows a pairs-plot
of the “genuine” notes where notes numbered 1, 40 and 70 are denoted by symbols
“A”, “B” and “C”, respectively. Similarly to “C”, we can see that “A” and “B”
may also be considered as outlying ones in some coordinates and, thus, the number
of outlying observations could be increased to 18.

Therefore, we repeat the process of monitoring the ARI when moving the
constraining constants for both types, the eigenvalue and determinant-and-shape,
of constraints when k = 2 and α = 0.09. The results are shown in Figure 13.
We see that the results are very stable for the determinant-and-shape constraints
regardless of the c2 value and this stability remains even after transforming one
of the coordinates in panel (b).
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Fig. 11 Scatter plot of the fourth against the sixth variable and clustering results for eigen-
value constraints with c∗ = {1, 2, ..., 128}, k = 2 and α = 0.08 for the “modified” data set.
Notice the measurement scale for the fourth variable.
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Fig. 12 Pairs plot for the “genuine” notes with notes numbered 1, 40 and 70 denoted by
symbols “A”, “B” and “C”, respectively.

7 Conclusions and further directions

A doubly constrained approach has been presented for model-based clustering.
Apart from the application of determinant constraints some further constraints
on the shape matrix elements are also considered. Two constraining constants,
c1 and c2, serve to control their strength. If the constant controlling the shape
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Fig. 13 Swiss bank notes data set: ARI values when varying the constraining constants for
eigenvalues (solid line) and determinant-and-shape constraints (dashed line) with k = 2 and
α = 0.09. A set with 18 outlying notes is considered as “true” outliers. The original data set
in (a) and the transformed set in (b).

matrix elements is chosen very large (for instance c2 = 1010) then the proposed
methodology is almost affine equivariant, but certain protection against numerical
issues is still provided with finite c2 values. Existence and consistency results
are presented for finite c1 and c2 values. We find almost spherical clusters, but
with different scatters, when c2 tends to 1. An extension to robust model-based
clustering, adopting this double constraints, is introduced which incorporates a
trimming step.

The lack of boundedness of the likelihood target function and the wrong detec-
tion of spurious local maxima are many times overridden by choosing appropriate
initializing strategies for the CEM and EM algorithms (see, e.g., Biernacki and
Lourme 2014, and the references therein). This idea provides good results in many
cases. However, it is important to note that we are not maximizing any explicit tar-
get function anymore. Moreover, its practical performance becomes clearly depen-
dent on the initialization procedure. For instance, we could face difficulties if the
initializing procedure is not robust and the same could happen with the equivari-
ance. On the other hand, the methodology presented in this work provides a “con-
structive” way of performing a mathematically well-defined constrained likelihood
maximization with good robustness properties and a feasible and fast algorithm
is available for its implementation. The routine which imposes the determinant-
and shape constraints described in this paper has been implemented in function
restrdeter of the FSDA toolbox (Riani et al. 2012) which is freely downloadable
from the Mathworks file exchange platform.

The proposed methodology is very flexible because it can cope with very dif-
ferent types of data thanks to the flexibility that the tuning parameters entail.
Although often the choices of the tuning parameters are motivated by the final
clustering purposes, certain guidance about how to choose all of them is some-
times required. In that direction, for instance, the adaptation of modified BIC and
ICL approaches to highlight sensible c1 and c2 values in the spirit of Cerioli et al.
(2018) may be an interesting research line. In this way, some preliminary studies
seem to show that sensible c1 and c2 values can be chosen as ĉ1 and ĉ2 resulting
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from the minimization:

(ĉ1, ĉ2) = arg min
c1,c2
{−2CLc1,c2k + vc1,c2k logn} , (16)

where CLc1,c2k is the maximum value achieved in the constrained maximization of
(1) for fixed c1 and c2 values, and where vc1,c2k is a penalty term defined as:

vc1,c2k = kp+ k − 1 + k
p(p− 1)

2︸ ︷︷ ︸
rotation par.

+ (k − 1)

(
1− 1

c
1/p
1

)
+ 1︸ ︷︷ ︸

determinant par.

+ k(p− 1)

(
1− 1

c2

)
︸ ︷︷ ︸

shape par.

.

Notice that larger values of c1 or c2 values yield more unrestricted Σj scatter
matrices, such that more complex models are allowed to be fitted. The added
penalty term serves to penalize a model complexity higher than needed. The pre-
vious proposal for vc1,c2k takes into account the number of free parameters in the
Ωj matrices (“rotation pars.”). By following an analogous philosophy as in Ceri-
oli et al. (2018), the number of free parameters for the λj values (“determinant
pars.”) and for the elements of Γj (“shape pars.”) are also recovered as limit cases
corresponding to situations when c1 or c2 take values equal to 1 or go to ∞. A
more deeply investigation of this proposal is an ongoing research work. If Lc1,c2k

denotes the maximum value achieved in the constrained maximization of (2) then
Lc1,c2k can be used instead of CLc1,c2k in (16) when considering a mixture likelihood
approach instead of the classification likelihood one.

It is also interesting to monitor the solutions obtained when moving c1 and c2
in a controlled manner. The solutions are often very stable to the different choices
of c1 and c2 and not too many “essentially different solutions” are found once that
pathological solutions associated to very large c1 and c2 values are excluded. In
general, our proposal is just to consider a moderate c1 value, and to set a large c2
value if equivariance is a desired property or to set c2 close to 1 if detecting almost
spherical components is required. Examining the stability of the solutions, when
moving c1 and c2, may be also useful to choose parameters as done in Riani et al.
(2019). Additionally, graphical tools, as those in Garćıa-Escudero et al. (2011), can
be also considered for determining k and α. All these proposals deserve further
investigations.

Finally, the proposed methodology is not limited to normal mixtures, and other
mixtures where a scatter matrix Σ is included in the definition of the k component-
specific multivariate distributions, may benefit from its use. Some examples are
mixtures of t distributions (Peel and McLachlan 2000; Andrews et al. 2018), con-
taminated normal distributions (Punzo and McNicholas 2016; Punzo et al. 2018),
power exponential distributions (Zhang and Liang 2010; Dang et al. 2015), and
leptokurtic-normal distributions (Bagnato et al. 2017).
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