

UNIVERSIDAD DE VALLADOLID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE
TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

GRADO EN INGENIERÍA DE TECNOLOGÍAS ESPECÍFICAS DE
TELECOMUNICACIÓN

Front-end implementation for an
automatized car parking

Autor:

D. Adrián Mazaira Hernández

Tutor:
Dr. D. Juan Carlos Aguado Manzano

D. Daniel Castaño Navarro

VALLADOLID, JULIO 2020

TRABAJO FIN DE GRADO

TÍTULO: Front-end implementation for an automatized

car parking

AUTOR: D. Adrián Mazaira Hernández
TUTOR: Dr. D. Juan Carlos Aguado Manzano

D. Daniel Castaño Navarro
DEPARTAMENTO: Teoría de la Señal y Comunicaciones e

Ingeniería Telemática

TRIBUNAL

PRESIDENTE: Dr. D. Ignacio de Miguel Jiménez
VOCAL: Dr. D. Ramón Durán Barroso
SECRETARIO: Dr. D. Juan Carlos Aguado Manzano
SUPLENTE: Dr. Dª Noemí Merayo Álvarez
SUPLENTE: Dr. D. Juan Blas Prieto

FECHA:
CALIFICACIÓN:

ABSTRACT

Cities are undergoing a change in mobility due to factors such as climate change, high
urban air pollution, the economic crisis, high population density in urban centres, or the
COVID-19 crisis. Some of the proposals that seek to provide a solution to this new
mobility paradigm are car sharing platforms or electric vehicles. This Final Degree
Project combines these two concepts together with the autonomous vehicle, presenting
an app for an electric vehicle carsharing service based on autonomous parking. This
application has been developed in Flutter, Google's framework for creating multi-platform
applications, so that the app can be released in the two most important mobile operating
systems of the moment, Android, and iOS. In addition, the style guides of Material design
have been followed as well as the design trends of other similar car sharing services
apps. The app allows users to access the car sharing service, allowing users to find the
nearest parking lot and obtain a vehicle from it, and also serves as a tool for service
administrators, so that it allows them to maintain, develop and improve the system more
easily.

Keywords:

carsharing, app, Flutter, mobility, autonomous car, connected car.

RESUMEN

Las ciudades están sufriendo un cambio en la movilidad debido a factores como el
cambio climático, la elevada contaminación del aire de las ciudades, la crisis económica,
la alta densidad de población en núcleos urbanos, o la crisis del COVID-19. Algunas de
las propuestas que buscan aportar una solución a este nuevo paradigma de movilidad
son las plataformas de carsharing o los vehículos eléctricos. Este Trabajo de Fin de
Grado aúna estos dos conceptos junto con el de vehículo autónomo, presentando una
app para un servicio de carsharing de vehículos eléctricos basado en aparcamiento
autónomo. Esta aplicación ha sido desarrollada en Flutter, el framework de Google para
crear aplicaciones multiplataforma, de forma que la aplicación pueda ser lanzada para
los dos sistemas operativos móviles más importantes del momento, Android e iOS.
Además, se han seguido las guías de estilo de Material Design asi como las tendencias
de otras aplicaciones similares de servicios de carsharing. La app permite, por una parte
acceder a los usuarios al servicio de carsharing, permitiendo a los usuarios encontrar el
parking más cercano y obtener un vehículo de este, y por otra parte, sirve como
herramienta para los administradores del servicio, de forma que permite mantener,
desarrollar y mejorar el sistema de manera más fácil.

Palabras clave:

carsharing, app, Flutter, movilidad, vehículo autónomo, vehículo conectado.

ACKNOWLEDGMENT

I would like to thank all the TwizyLine team for all the effort and passion they all have put
into this project. From our tutor Juan Carlos who has always encouraged and helped us
to develop the project and has taught us even from the Word comments, to our coaches
from Renault, Daniel and Jairo, for the support and advice, and to my partners Ignacio,
Mario and Samuel for the countless hours we have spent developing something that
goes further than just a Final Degree Project. Thanks also to my life partner Lucía for
always pushing me forward, and thanks to my family for all the support and education
they have provided me.

Table of contents
1. INTRODUCTION ..15

1.1 Motivation ..15

1.2 Objectives ...20

1.3 Steps and methods ...21

1.4 Available resources...21

1.5 Structure of the memory ..22

2. STATE OF THE ART ..25

2.1 Introduction..25

2.2 The expansion of apps ..26

2.3 Android vs iOS ..28

2.4 App Development...30

2.4.1 Native Apps ..30

2.4.2 Web Apps ...30

2.4.3 Generated Apps ..32

2.4.4 Hybrid Apps ..32

2.5 Style guidelines ...36

2.6 Flutter ...37

2.6.1 What is Flutter? ..37

2.6.2 Dart ...38

2.6.3 Flutter architecture and features ...39

2.6.4 Widgets: Key concept in Flutter ..40

2.6.5 Why Flutter? ...41

2.7 Current mobility apps comparison ...42

2.7.1 Carsharing Paris apps..42

2.7.2 Public transport Paris apps ...45

2.7.3 Conclusion ..46

3. IMPLEMENTATION ...49

3.1 Criteria for the App design ...49

3.2 First steps. Connecting to the MQTT broker. ..49

3.3 main() ...53

3.4 Login page ..56

3.5 Logon page ...58

3.6 Twizy Map page ..59

3.7 Internationalization ..67

3.8 Admin app resources ..68

3.8.1 Error log ..70

3.8.2 Map ..72

3.8.3 Management ..73

3.8.4 Commands..77

3.9 Dropdown menu ..87

4. USE CASES. TEST AND INTEGRATION ..89

4.1 Use case 1. User gets a car from a parking. ..89

4.2 Use case 2. Admin fixes an error. ...97

5. CONCLUSIONS AND FUTURE LINES ..103

6. AWARDS RECEIVED AND MERITS ...105

References ...107

ANNEX 1 ...119

ANNEX 2 ...121

Table of figures
FIG. 1 PARIS RESPIRE MAP [19] ... 17
FIG. 2 NUMBER OF CARSHARING VEHICLES IN SELECTED EUROPEAN CITIES IN 2016 [22] 17
FIG. 3 LOGOTYPE AND SYMBOL OF TWIZYLINE ... 18
FIG. 4 TWIZYLINE PARKING 3D REPRESENTATION ... 18
FIG. 5 RENAULT TWIZY .. 19
FIG. 6 DESKTOP VS MOBILE VS TABLET SHARE WORLDWIDE JAN 2015 – MAY 2020 [31] 25
FIG. 7 NUMBER OF APPS AVAILABLE IN LEADING APP STORES AS OF 1ST QUARTER 2020 [42] 27
FIG. 8 NUMBER OF MOBILE APP DOWNLOADS WORLDWIDE FROM 2016 TO 2019(IN BILLIONS) [43] 27
FIG. 9 MOST POPULAR APPLE APP STORE CATEGORIES IN NOVEMBER 2019, BY SHARE OF AVAILABLE

APPS @STATISTA [44] .. 28
FIG. 10 GLOBAL MOBILE OS MARKET SHARE IN SALES TO END USERS FROM 1ST QUARTER 2009 TO 2ND

QUARTER 2018 [48] ... 29
FIG. 11 MOBILE OPERATING SYSTEM MARKET SHARE EUROPE JAN 2015 - APR 2020 [49] 29
FIG. 12 MOBILE & TABLET VENDOR MARKET SHARE NORTH AMERICA JAN 2015 - APR 2020 [50]........... 30
FIG. 13 CAPABILITIES VS. REACH OF NATIVE APPS, WEB APP, AND PROGRESSIVE WEB APPS. [58] 31
FIG. 14 RESPONSIVE WEB DESIGN EXAMPLE ... 32
FIG. 15 ACCES TO DEVICE CAPABILITES VS PLATFORM AFFINITY IN NATIVE, HYBRID AND MOBILE WEB

APPS [73] ... 33
FIG. 16 CROSS-PLATFORM MOBILE FRAMEWORKS USED BY SOFTWARE DEVELOPERS WORLDWIDE AS OF

2019 [77] ... 33
FIG. 17 GOOGLE TRENDS CROSS PLATFORM FRAMEWORKS COMPARISON LAST 3 YEARS [78] 34
FIG. 18 STACK OVERFLOW TRENDS CROSS PLATFORM FRAMEWORKS COMPARISON SINCE 2008 [79] ... 34
FIG. 19 COMPARISON – REACT NATIVE VS. IONIC VS. FLUTTER VS. PHONEGAP [85] 35
FIG. 20 FLUTTER RENDERING SCHEMA [88] .. 35
FIG. 21 REACT NATIVE RENDERING SCHEMA [88] ... 36
FIG. 22 PHONE GAP RENDERING SCHEMA [88] ... 36
FIG. 23 GITHUB STATS: CHANGE IN PROGRAMMING LANGUAGE USE, 2018-2019 38
FIG. 24 DART FLEXIBLE COMPILER TECHNOLOGY [111] ... 38
FIG. 25 FLUTTER SYSTEM OVERVIEW [119] ... 40
FIG. 26 FLUTTER IS DECLARATIVE [120] ... 40
FIG. 27 ZITY SPLASH SCREEN ... 42
FIG. 28 ZITY LOADING MAP ... 42
FIG. 29 ZITY MARKER DISPLAY .. 42
FIG. 30 ZITY MENU.. 42
FIG. 31 UBEEQO SCREENSHOTS [129] ... 43
FIG. 32 F2M SPLASH SCREEN .. 44
FIG. 33 F2M MAP PAGE .. 44
FIG. 34 F2M MENU DISPLAY ... 44
FIG. 35 F2M PROVIDERS LIST .. 44
FIG. 36 RATP MAP PAGE ... 45
FIG. 37 RATP MAIN PAGE .. 45
FIG. 38 RATP SPLASH SCREEN ... 45
FIG. 39 RATP MARKER DISPLAY ... 45
FIG. 40 NSP MENU DISPLAY .. 46
FIG. 41 NSP MAP PAGE ... 46
FIG. 42 NSP MAIN PAGE .. 46
FIG. 43 NSP SPLASH SCREEN ... 46
FIG. 44 NO RESPONSE ERROR ALERT ... 53
FIG. 45 TOP WIDGETS DIAGRAM ... 56
FIG. 46 LOGIN SCREEN VIEW ... 56

https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123752
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123753
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123754
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123755
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123757
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123758
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123759
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123760
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123761
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123762
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123763
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123764
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123765
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123766
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123767
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123768
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123771

FIG. 47 LOGIN SCREEN VIEW 2 .. 56
FIG. 48 LOGIN SCREEN VIEW 3 .. 56
FIG. 49 LOGIN SCREEN VIEW 4 .. 56
FIG. 50 REGISTERING FORM .. 58
FIG. 51 ASKING FOR PERMISSIONS.. 60
FIG. 52 LOADING MAP .. 60
FIG. 53 FINDING TWIZYLINE STATIONS VIEW .. 60
FIG. 54 MAP AND MARKERS VIEW .. 61
FIG. 55 MARKER TAPPED VIEW ... 62
FIG. 56 REQUESTING TWIZY .. 62
FIG. 57 TWIZY ASSIGNED .. 63
FIG. 58 COULDN'T GET A TWIZY .. 64
FIG. 59 GOOGLE MAPS DIRECTIONS .. 64
FIG. 60 NO PARKING SITES FOUND ERROR .. 65
FIG. 61 TYPICAL MARKER IN MAPS APPS ... 65
FIG. 62 TWIZYLINE CUSTOM MARKER ... 65
FIG. 63 LOGIN SCREEN IN SPANISH ... 67
FIG. 64 LOGON FORM IN SPANISH .. 67
FIG. 65 MAP VIEW IN SPANISH ... 67
FIG. 66 ASSIGNED TWIZY VIEW IN SPANISH .. 67
FIG. 67 VALIDATION ERROR MESSAGE IN SPANISH ... 68
FIG. 68 SERVER CONNECTION ERROR IN SPANISH ... 68
FIG. 69 LOADING MESSAGE IN SPANISH.. 68
FIG. 70 TWIZY ASSIGNMENT ERROR IN SPANISH ... 68
FIG. 71 ERROR LOG VIEW .. 70
FIG. 72 VEHICLE ERROR... 71
FIG. 75 ERROR LOG SCREEN WITH ERRORS ... 71
FIG. 73 PARKING ERROR ... 71
FIG. 74 SCROLLABLE ERROR .. 71
FIG. 76 TWIZY MARKER ... 72
FIG. 77 ADMIN MAP TWIZY LOCATION ... 72
FIG. 78 MANAGEMENT SCREEN FIRST VIEW ... 73
FIG. 79 MANAGEMENT SCREEN NON-EXISTENT ID.. 73
FIG. 80 MANAGEMENT SCREEN PARKING REPRESENTATION .. 74
FIG. 81 PARKING STATUS .. 74
FIG. 82 MANAGEMENT SCREEN VEHICLE LOG ... 77
FIG. 83 COMMANDS SCREEN FIRST VIEW ... 77
FIG. 84 COMMANDS SCREEN ID INTRODUCED .. 78
FIG. 85 COMMANDS SCREEN CONNECT RECEIVED .. 79
FIG. 86 COMMANDS SCREEN CONNECT MISSED ... 80
FIG. 87 COMMANDS SCREEN VEHICLE CONNECTED .. 80
FIG. 88 COMMANDS SCREEN STANDBY MODE.. 81
FIG. 89 COMMANDS SCREEN CONTINUE MODE ... 82
FIG. 90 COMMANDS SCREEN PAUSE MODE .. 82
FIG. 91 GOTO COMMAND FIELDS ... 84
FIG. 92 GOTO COMMAND: FIELD HINT TEXT KEYBOARD ... 84
FIG. 93 GOTO COMMAND: FIELD HINT NUMERIC KEYBOARD ... 84
FIG. 94 GOTO COMMAND: FIELDS VALIDATION .. 85
FIG. 95 GOTO COMMAND: INSTRUCTIONS ... 85
FIG. 96 COMMANDS SCREEN ERROR AND RESTART .. 86
FIG. 97 DROPDOWN MENU .. 87
FIG. 100 USE CASE 1 MESSAGE EXCHANGE DIAGRAM ... 90
FIG. 98 LOGIN SCREEN PROCESSING ... 90

https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123772
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123773
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123774
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123776
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123777
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123788
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123789
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123790
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123791
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123792
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123793
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123794
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123795
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123797
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123799
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123800
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123817
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123818
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123824

FIG. 99 LOGIN SCREEN VIEW ... 90
FIG. 101 LS BOTH FIELDS EMPTY ... 91
FIG. 102 LS LOGIN FIELD EMPTY .. 91
FIG. 103 LS PASSWORD FIELD EMPTY ... 91
FIG. 104 LS INVALID CREDENTIALS .. 91
FIG. 105 ALERT DIALOG NO RESPONSE FROM SERVER .. 91
FIG. 106 ASKING FOR PERMISSIONS .. 92
FIG. 107 LOADING MAP .. 92
FIG. 108 FINDING TWIZYLINE STATIONS LAYER ... 93
FIG. 109 NO PARKING LOCATION RECEIVED .. 94
FIG. 110 MAP VIEW WITH MARKERS... 94
FIG. 111 MARKER PRESSED VIEW .. 95
FIG. 112 WAITING FOR SERVER RESPONSE TO TWIZY REQUEST .. 95
FIG. 113 TWIZY ASSIGNED SCREEN ... 96
FIG. 114 ERROR GETTING A TWIZY .. 96
FIG. 115 USE CASE 2 MESSAGE EXCHANGE DIAGRAM ... 97
FIG. 116 ERRORS FROM THE DATABASE.. 98
FIG. 117 ERROR INFORMATION DISPLAYED .. 99
FIG. 118 REAL TIME ERROR RECEIVED ... 99
FIG. 119 ADMIN FLAGS THE ERROR AS FIXED .. 100
FIG. 120 SNACKBAR INFORMS THE ERROR HAS BEEN FIXED.. 100

https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123825
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123826
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123827
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123828
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123829
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123831
https://teluvaes.sharepoint.com/sites/GCO-TFGyTFM9-TFG-TwizyContest/Shared%20Documents/TFG%20-%20Twizy%20Contest/TFG%20-%20Adrian/Front-end%20implementation%20for%20an%20automatized%20car%20parking.docx#_Toc45123832

Chapter 1 - INTRODUCTION

15

1. INTRODUCTION
1.1 Motivation

The world is facing a period of far-reaching changes and tough challenges. The number of
current issues that must be solved is growing, starting with the climate change, going through
high population urban problems and ending with the economic crisis. Urban mobility is central
to these problems, accounting for example for 40% of all CO2 emissions of road transport and
up to 70% of other pollutants from transport [1]. In this context, Renault and Segula have
launched the Twizy Contest initiative, a competition addressed to students around the world. In
words of S. Schmidtlin and V. Fournier: “The mobility of tomorrow is undergoing fundamental
change. People, goods, urban services, and mobility objects will be transformed! To better
anticipate these evolutions, Renault is taking the initiative to create an experimental challenge
in creativity: Twizy Contest. (…) We hope that this initiative will see emerge promising ideas (…)”
[2].

This project arises as a solution for the challenge proposed by the Twizy Contest 2020, a
sustainable mobility solution on the Paris 2024 Olympic Games. The proposed solution should
be innovative, frugal and durable, preferably using Twizy as part of it. The organization only gives
these few indications to develop the project, so more context should be given to understand the
real scope of the project.

As stated above, this challenge comes from the fact that from the past few years, a change in
mobility is happening. There are some reasons that explain the change trigger, which should be
considered to develop the project. In the following lines there is a detailed description for some
of these changes:

• Climate change consciousness. People is getting more environmental awareness. In
2018 the Pew Research Center’s Spring 2018 Global Attitudes Survey published that 67%
of people interviewed in 26 different countries considered global warming the most
serious problem the planet was facing. This consciousness has suffered a significative
increase since 2013 [3]. Movements like Greta Thunberg’s “Fridays for Future” put again
the environment debate on the focus, after the continuous failures of Kyoto protocol
[4], Paris Agreements [5] or Climate meets [6].

• Urban pollution. Cities’ air quality has become a big trouble for the biggest Europe cities
like Madrid or Paris, but it is also becoming a more common problem for smaller cities
like Valladolid. According to the World Health Organization (WHO) there are 4.2 million
deaths every year as a result of exposure to ambient (outdoor) air pollution, and 91% of
the world’s population lives in places where air quality exceeds WHO guideline limits
[7]. Cities often suffer from “high pollution episodes”. When this happens, traffic has to
be hardly restricted. In addition, Europe fines those cities that exceed the European
Union air quality limits.

• Cities traffic restrictions. This pollution problems, in addition to the traffic jams and
parking troubles derived from the massive personal vehicle use, led the city halls to
implement traffic restrictions. Those restrictions force citizens to either buy less
pollutant vehicles (not affordable for everyone) or either adopt more ecologically
responsible mobility models. Those can be public transport, carsharing platforms, bikes,
or scooters.

Front-end implementation for an automatized car parking

• The Electric Vehicle Rises. These changes have driven to the growth of the electric
vehicle. This kind of vehicle has some advantages. They are quiet, nicer to drive (the par
response is cleaner than in combustion cars), and their mechanics are simpler. But
above all, they do not emit polluting gases. This has led city halls to potentiate those
vehicles. City halls have undertaken some incentives such as free parking in pay parking
zones, or access to areas restricted to polluting vehicles.

• Economic crisis. The global crisis started in 2008, harming family’s economy. This crisis
brought out the so-called collaborative economy. This new economy encouraged the
access to shared goods and services without the traditional need of owning them. In
automotive, this led to a change in the minds of drivers, who now consider the costs of
renting their vehicles instead of owning them. The crisis was also a breeding ground for
carpooling platforms like BlaBlaCar or Amovens [8]. The global rising on fuel prices also
encouraged people to find more economic means of transport.

• COVID-19, which has strongly hit Europe and the entire world. This pandemic will for
sure change mobility and sharing platforms. The public transport, and overall the metro
has been one of the most outbreak points. This could lead some public transport users
move to carsharing services, either for fear or public transport capacity restrictions.
Sharing companies will also have to change, to avoid future contagions, shared vehicles
will need to implement disinfection measures.

Paris, the scenario where the challenge of the contest unfolds, also faces these challenges, and
the city hall has invested a lot in reducing traffic and pollution. In 2015 Paris topped the world
lists for air pollution [9], after which several measures have been taken.

To solve this problem, first of all, the city hall increased the net of bike paths [10], which is a
reinforcement of the Paris bike sharing program, Velib, operational since 2007 [11]. No doubt,
this has contributed to designating Paris as the 8th most bike-friendly city in the world in 2019,
according to Copenhagenize Index [12], clearly improving its previous place, the 17th by 2015.

Secondly, Paris has increased its green zones and pedestrian sidewalks. Some parts of the city
center have been pedestrianized. One of the most notorious projects was pedestrianizing the
lower quays of the river Seine [13].

Finally, Anne Hidalgo (current mayor) has declared an “anti-cars war”. From 2016 most
contaminant vehicles cannot drive through Paris center. To identify these vehicles, which
includes diesel vehicles before 2006 and gasoline vehicles before 1997, a classification system
called Crit’Air has been implemented [14]. Drivers must put on their cars a different sticker
depending on how much their car pollutes. The major wants to ban diesel vehicles in Paris by
2020 [15], whereas France goal is to ban the sales of petrol and diesel cars by 2040 [16]. These
bans on pollutant vehicles are joined by non-pollutant vehicles bonifications, like free parking,
access to the Low Emission Zone [17] or more than 800 public charging stations according to
chargemap.com [18].

Also, in 2016 a car free policy called “Paris respire” started to work. Paris respire frees from cars
some parts of the city at certain times of the week. For instance, the Champs Elysées are car free
on the first Sunday of every month [19].

Paris is an evidence that the mobility model is changing. By 2016 Paris homes owning one or
more cars were about 35.2% [20]. Harris interactive survey on European cities on August 2019
reveals us some keys. About 54% of Parisians admit they use their car less than once a week.

Chapter 1 - INTRODUCTION

17

Half of car owners said to be ready to get rid of their cars. Public transport is highly valued by
Parisians, and they also value taxis, bikes, or scooters to get rid of their cars. 79% of Parisians
have a positive opinion of car sharing, 74% think that car sharing could help improve travel in
their city and 78% would like to have more car sharing services in their own neighborhood [21].

Fig. 1 Paris Respire map [19]

Fig. 2 Number of carsharing vehicles in selected European cities in 2016 [22]

Front-end implementation for an automatized car parking

All these features that characterized Paris as a city where the mobility change is happening are
part of the solution that we propose for the Twizy Contest. As mention above, the contest asks
for a mobility solution for Olympic Games in Paris, and our proposal is the TwizyLine project.
TwizyLine arises from three main ideas: Autonomous driving, electric cars, and carsharing
platforms, which are central to what Paris currently represent. TwizyLine works as a carsharing
platform based on autonomous parking for electric cars. Giving and efficient and technology
leading solution to mobility in cities.

TwizyLine key is its autonomous parking shown in Fig. 4. Users leave the vehicle in the leaving
zone. Then they get out the vehicle and abandon the infrastructure trough turnstiles. Once the
leaving zone is free of people, a server assigns the vehicle a spot regarding its battery level. Once
the vehicle knows its destiny it will use the parking items to guide itself. Those items are
magnetic bands for line tracking guidance, and RFID tags for decision making at the bifurcations
of the line. The vehicle implements all the necessary modifications to drive itself, follow the line,
read the RFID tags plus proximity sensor to avoid collisions. The vehicle informs the server of
every step it takes inside the parking, but when it is outside, it is still connected to it and
periodically sends its location, battery level, or error log. For users to get access to the carsharing
service there is an app where they can find the closest TwizyLine parking and request a vehicle.

Fig. 3 Logotype and symbol of TwizyLine

Fig. 4 TwizyLine parking 3D representation

Chapter 1 - INTRODUCTION

19

Fig. 5 Renault Twizy

TwizyLine fits in with the recent approach of Paris authorities to the posed challenges, besides,
looking at our project as a carsharing service, it has some advantages against other equivalent
services:

• Regarding climate change, urban pollution, and cities traffic restrictions TwizyLine takes
advantage of the Renault Twizy (Fig. 5). Renault Twizy is a full electric vehicle. This
means it does not emit pollutant emissions and it is not affected by traffic restrictions
to pollutant vehicles. It is a small vehicle, perfect for urban displacements, and this
features also makes TwizyLine parking lots able to host more vehicles in less space.
Additionally, users do not access the parking, so the spots have no space to let people
get in or out the Twizy. And there is no need for bigger spots for disabled people either
as they would get in or out the car at the leaving zone or pick up zone respectively as
any other user.

• Regarding the context, Paris and its Olympic Games, as Fig. 2 shows, by 2016 Paris was
the European city with the higher number of carsharing vehicles. Carsharing future in
Paris looks promising. About 20% of Parisians already use a carsharing service [23]. And
TwizyLine could be a perfect solution for big events. Moreover, if we talk about Olympic
Games, an event that brought 11551 athletes and 1.17 million tourists to Rio during
their games in 2016 [24, 25]

• Regarding economic crisis and COVID-19. TwizyLine is based on parking zones, enclosed
places where only the Twizys can enter (this is also a plus for legal restrictions to
autonomous vehicles). It would not be too hard to install nebulizers at the parking
entrance. So once the users are out of the vehicle and it has entered the parking it gets
disinfected. Once the vehicle gets inside the parking pedestrians cannot access to them,

Front-end implementation for an automatized car parking

so Twizys would not be contaminated. Also, the Renault Twizy because of its reduced
size and its absence of windows makes it easier to be disinfected. The 2008 crisis
brought out the collaborative economy, and the after-COVID19 crisis is expected to be
even worse. So, these sharing platforms would likely increase.

TwizyLine team is formed by Ignacio Royuela, Samuel Pilar, and myself, the three of us are
engineering students and Mario Martin, journalism student. It is supervised by Juan Carlos
Aguado, teacher at University of Valladolid, Daniel Castaño, and Jairo Gurdiel, coaches from
Renault.

To achieve the objectives of such a complex project, TwizyLine has been divided into five
different parts, four of which have been developed in the final degree project reports of the
members of the team. These five parts are:

• Front-end implementation for TwizyLine service: It is described in this report and it
consists of a hybrid smartphone app. This application allows users to access the
service. At the same time, it provides the service administrators with a powerful tool
to manage and keep control of the system.

• The control and communications modules installed on a Renault Twizy. Which
consists of two Humming Boards configured to control the Twizy and communicate
with the server described in [26] These modules connections include GPS, GPRS,
CAN, RFID, Magnetic and Proximity sensors. This information can be found at the
reference [27].

• The back-end implementation, which consists on a server developed using python
and MySQL, implemented on a Raspberry Pi 3. This server hosts the MQTT broker
and manages the communication with the app and the vehicles and between them.
It is also in charge of guiding the vehicles through the parking and manage their
battery status or faults. This information can be found at reference [26]

• The market research and communication strategy, as well as some law analysis and
brand image can be found at reference [28].

• Vehicle modifications and systems integration. Once every previous part is done, we
will have to physically adapt the vehicle, installing the necessary elements and
putting all together to work. Plus, all the testing and validation. This will be reflected
in reference [29].

As seen in this division, TwizyLine project covers a wide range of innovative technologies. From
autonomous vehicle to connected vehicle, Vehicle To Infrastructure (V2I) or hybrid smartphone
apps.

Every member of the team works to win Twizy Contest 2020 in the short term. But TwizyLine
project aims much further. TwizyLine aims to be a revolution in carsharing and help to solve the
problems of the XXI century cities. We have defined some objectives to get to this goal. In the
next section the specific objectives for this Final Degree Project are detailed.

1.2 Objectives
The main objective of TwizyLine is to provide a clean and effective mean of transport for the
cities. This will be accomplished with our autonomous parking based carsharing system. As
specified in section 1.1, this final degree project focuses on developing a Front-End for the
system. As a result, the main objective of this work is to provide users access to the service,
allowing them to locate the nearest TwizyLine stations and get a vehicle from them.

Chapter 1 - INTRODUCTION

21

Other secondary objectives are:

• To provide the service operators a valuable tool to manage the system.
• To provide a hybrid application, available for the two main operative systems, Android

and IOs.
• To create a simple and easy to use application for both, users and administrators.
• To create a communication via between service providers and users. On the one hand

via the app stores reviews, and on the other hand via the website accessible through
the app.

1.3 Steps and methods
The steps followed to carry out this project were mainly the next ones:

Analysis and study stage: Market research to know the main carsharing services apps and their
characteristics. The different options to build the app were also studied.

Defining the project structure stage: After the study stage, the project was defined considering
the information collected earlier. This stage included:

• Establishing the app functionalities and dividing the app into different screens for each
functionality.

• Establishing the separation between users and admins.
• Designing the app structure and every screen layout.
• Deciding the language to work with, using different criteria like: budget, expected

performance, kind of app, layout complexity, time or language experience.
• Defining the protocols and message format to communicate with server.
• Establishing the difference between appearance code and functionality code and

creating the project files.

Developing process stage: This process was made ensuring best functionality, appealing design,
and the best user experience. This stage included:

• Connecting the app to the server and creating the functions to exchange the
information.

• Building every screen of the app following the design of the previous stage.

Validating app stage: the app functionalities were validated, implementing error handling and
aesthetic modifications to fill the deficiencies found in validation.

Integration and testing stage: As part of a bigger project, this application had to be integrated
with the rest of it. The integration and the testing of the whole project included:

• Group integration to ensure perfect understanding between app, server, and vehicle.
• Tests on both physical and virtual devices.
• Releasing to beta tester group for external testing.
• Fixing errors and any founding deficiencies.

1.4 Available resources
The code was developed using both IDEs Android Studio and Visual Studio Code. All the progress
was tracked using GitHub repository. Also, a Raspberry Pi 3 model B+ has been used as a server.

The testing was carried out on different devices shown in Table 1

Front-end implementation for an automatized car parking

Google Pixel 2 (Android Virtual Device) OS*: Android 8.0
Screen size: 5”
Aspect ratio: 16:9
Resolution: 1080x1920: 420dpi**

BQ Aquaris A4.5 (physical device) OS: Android 7.0
Screen size: 4.5”
Aspect ratio: 16:9
Resolution: 540x960: 240dpi

BQ Aquaris E5 4G (physical device) OS: Android 6.0.1
Screen size: 5”
Aspect ratio: 16:9
Resolution: 1280x720: 440dpi

Huawei P8 Lite 2017 (physical device) OS: Android 8.0
Screen size: 5.2 “
Aspect ratio: 16:9
Resolution: 1920x1080: 424dpi

Xiaomi Mi A3 (physical device) OS: Android 10.0 – Android One
Screen size: 6.088” with waterdrop notch
Aspect ratio: 19.5:5
Resolution: 1560 x 720: 282dpi

Huawei P smart 2018 (physical device) OS: Android 9.0
Screen size: 5.7”
Aspect ratio: 18:9
Resolution: 2160x1080: 427 dpi

Table 1 Devices used during the testing process

*OS: Operative System

**dpi: Density on Pixels per Inch

1.5 Structure of the memory
This document is a technical report about the development of an app for the TwizyLine
carsharing service. The document is divided in five chapters: Introduction, State of the Art,
Implementation, Use cases and Conclusions.

The document starts with the introduction chapter which aims to give the reader the context of
the project and the motivations that drove the members of the team to create a carsharing
platform based on an autonomous parking.

The document continues with the state of the art whose objective is to provide an overview
about the current available technologies to build mobile applications. The advantages and
disadvantages of each technology together with a market research that shows the trends in
mobility apps, explain the reasons to choose Flutter framework and the design decisions taken.

The third chapter presents a description of the app designed layouts and the implemented
functionalities. It is also given a detailed explanation of the operations of the app.

In the fourth chapter, it is addressed the test and integration process. Several use cases are
defined and tested together with the rest of parts developed in the whole TwizyLine project to
check that everything is working as intended.

Finally, some conclusions and future lines are presented.

Chapter 1 - INTRODUCTION

23

Front-end implementation for an automatized car parking

Chapter 2 - STATE OF THE ART

25

2. STATE OF THE ART
2.1 Introduction

In chapter 1 it is introduced the change in mobility that is happening. This change includes
carpooling, carsharing, bike sharing, motorbike sharing, or even electric scooter sharing services.
But this change cannot be understood without the epicenter of our current lives: The
smartphone offers us the possibility of accessing those services at any time anywhere. Most of
the tasks that used to be done using a computer are now accessible through our smartphones.
Fig. 6 shows this trend, from 2016 there are more mobile users that desktop users across the
world. In Spain, for instance, since 2006 there are more phone lines than habitants [30].
Nowadays smartphones have become an essential device, but the smartphone expansion
cannot be understood without the expansion of the apps.

Fig. 6 Desktop vs Mobile vs Tablet Share Worldwide Jan 2015 – May 2020 [31]

Carsharing services need from these apps, their users must be able to find their vehicles or
parking lots, access the vehicles, book, or lock cars, and let the service know when they are done
with the vehicle. The smartphone is the tool that offers them all these functions in one single
device. ZITY [32], Ubeeqo (formerly called Bluemove in Spain) [33], SHARENOW (formerly called
Car2Go) [34], Free2Move [35], or getaround (formerly called drivy) [36] are examples of
carsharing services in Paris with their own app. Some of these apps are analyzed in section 2.7.

This chapter presents the importance of apps and the development of those. First, it is explained
the expansion of apps and how the market has changed. The market is also analyzed to discover
the current trends that drove to take the decision of how to build the app described in this work.
It is made a classification and comparison of different kind of apps and different ways to build
them. After, it is detailed some aspects of Flutter, the chosen framework to build the app, and
it is explained the reasons of this decision. And finally, it is presented a research about similar
apps and how those apps inspired this work.

Front-end implementation for an automatized car parking

2.2 The expansion of apps
The exponential growth of smartphones and wide band connections went along with the
expansion of apps. There are more than 3.9 million apps published in the main markets as shown
in Fig. 7. Moreover, the use of apps keeps increasing, as it can deduced form Fig. 8, which shows
the app downloads from 2016 to 2020. These apps have a huge number of different uses, as it
is shows Fig. 9, which speaks of the many different uses we give to our smartphones. Indeed,
there are apps for a wide variety of applications, from games to work.

Even further, mobile apps have replaced websites. According to Flurry 2014 report [37], mobile
users spent 86% of the time on apps, and 14% on web browses. There are some keys that explain
this apps zenith [38] [39] [40] [41]:

• Speed: Mobile apps are usually faster than websites. One of the reasons is that websites
need to fetch the data from the server, but apps store their data locally. Another reason
is the different performance speed between JavaScript (websites) and app frameworks.

• Personalization: Apps can let users define their preferences. And they also offer content
based on their users’ interests, location, or usage behaviour.

• Online and offline: The apps ability to work offline is the biggest different between apps
and websites.

• Notifications: There are two types of notifications: In-app notifications; which are
displayed only while the user is using the app, and Push notifications; these notifications
can be shown at any time regardless of what the user is doing on its device. Push
notifications are a powerful tool that has to be used carefully to avoid deteriorating the
user experience.

• Device features: Mobile apps can easier access to device features like GPS, camera, NFC,
etc. Even browsers can also access some of these features, apps can access to a wider
range, and websites are constrained by the browser features.

• Design and user experience: While websites rely on the browser features apps are not
constrained by browser elements like the address bar. Apps can also implement more
advanced gestures like tap, swipe, drag, hold… Improving the user experience.

• Brand Presence: Apps increase users brand loyalty and help to influence users’
perception just by being present in the user’s device. The app icon acts as mini
advertisement for the brand, even when the user is not actively using the app.

Further in this document it is detailed the current differences between websites and apps as
well as the different kinds of apps. It is also compared the advantages and disadvantages of each
one and how they influenced on the decision of how to build the app. Even though our app
needs internet connection to work, considering the features here explained and others that are
explained further it was decided to build an app. This decision would allow to take advance of
all the apps features, and a website would be developed too. The app, which needs to be
installed would be necessary to get access to the service, and the website would be used to
share information about the service available for anyone. Information like how does the system
work or how to start using it. The website would mainly be used to get new user to the service.
The app would use the website too, launching the website to give the users this kind of
information inside the app if necessary. This way it would not be necessary to duplicate the
information in both the app and the website.

Chapter 2 - STATE OF THE ART

27

Fig. 7 Number of apps available in leading app stores as of 1st quarter 2020 [42]

Fig. 8 Number of mobile app downloads worldwide from 2016 to 2019(in billions) [43]

Front-end implementation for an automatized car parking

Fig. 9 Most popular Apple App Store categories in November 2019, by share of available apps @Statista [44]

2.3 Android vs iOS
When programming a new app in a smartphone, there are certain aspects of the target
smartphone that must be considered. These aspects include size of the screen, resolution,
connection capabilities [45], but perhaps one of the most important is the operative system of
the mobile [46]. However, the market has changed significantly regarding phones operative
systems (OS). Symbian OS was the first modern smartphone operative system. In 2009, Symbian
had half of the market share, and nowadays we could consider it to be disappeared, as it is
shown in Fig. 10.

In Fig. 10, we can observe how Android is now the main worldwide smartphone OS, while iOS is
almost its only competitor. Although this rivalry is not symmetric in the entire world. As we can
see in Fig. 11 and Fig. 12, while Android has around 70% of the market share, in North America

Chapter 2 - STATE OF THE ART

29

the rivalry is closer, about 50% each (In North America Apple sells more than 50% of market
smartphones and tablets) [47].

This data shows that Android and iOS are the two main OS, and how their rivalry differs
depending on location. This information plus the Twizy Contest context are crucial to decide
which kind of app to build. Twizy contest put up the challenge in the Olympic Games of Paris
2024, an international event with visitors from all over the globe. The next point will define the
different kinds of apps an its features. The context given in this point will help to understand the
decision taken.

Fig. 10 Global mobile OS market share in sales to end users from 1st quarter 2009 to 2nd quarter 2018 [48]

Fig. 11 Mobile Operating System Market Share Europe Jan 2015 - Apr 2020 [49]

Front-end implementation for an automatized car parking

Fig. 12 Mobile & Tablet Vendor Market Share North America Jan 2015 - Apr 2020 [50]

2.4 App Development
Regarding app development, there are some key questions to be answered: The target OS
(solved in the previous section), the available budget, the expected performance, or the kind of
application. This section will address those questions and how the answers drove to the decision
of how to build the app.

It can be found four different kind of apps: Native Apps, Web Apps, Generated Apps and Hybrid
Apps [51], [52], [53]. They are all explained below.

2.4.1 Native Apps
Native Apps are developed in a classic programming language, as for example Java/kotlin for
Android and Objetive-C/Swift for iOS. Native apps offer the best performance, appearance, and
safety [51]. Therefore, they are highly recommended for games and financial apps. Nevertheless,
they are also the most expensive option as the code is only useful for the platform for which is
developed. This means to make a native app for Android and iOS it is necessary to make two
different apps [54].

2.4.2 Web Apps
Web Apps are a trend from the past few years [55]. They can be divided at the same time into
two different options, Web Apps and Responsive design webs [56].

Web Apps are run inside a web browser tab. They do not require any installation but need
internet connection. The app is allocated in the cloud and users access to it. This has the
advantage that any update in the software will arrive to all users at the same time. There is no
need to download a new version of the app like it happens with Native apps. This can be useful
when finding security bugs, for example [56]. They are written in web languages (HTML, CSS,
JavaScript) which are wide known. It makes these apps easier and faster to develop. The
disadvantages are that the performance is lower than the native apps, and they cannot access
to all the device functionalities or local storage [57].

Chapter 2 - STATE OF THE ART

31

Progressive web apps (PWA) are a sub kind of web apps [58]. There is not a clear definition of
what a PWA is. But there are 3 features any PWA must have [59]:

• Secure contexts (HTTPS)
• One or more Service Workers
• A manifest file

PWA are designed to be installable, capable and reliable. They try to offer the best of web apps
and native apps (see Fig. 13). And they are responsive to fit any mobile device, tablet, or desktop.
This apps can be accessed through the web browser, but they can be installed too. This way the
app will be treated as a native app by the OS. It can have a launcher icon on the desktop (not
just a shortcut) an even can appear in the applications menu list. This also lets the app run in its
own window instead of a browser tab. There is no need of URL bar or browser interface. This
changes the user perception of the app as it looks the same way a native app looks like. It enables
more customization, like loading page or the desktop icon. Having a launcher icon on the
desktop also increases the user’s loyalty to the site. In addition, they can be installed from the
browser without the need of an app store. [60] [61]

PWA apps are faster than common web apps, their performance is closer to native apps.
Additionally, they are connectivity independent. This is because the service worker manages
asset catching and can serve a cached version when the connection is bad or non-existent. And
this can also increase the performance working offline even when the connection is good. [62]

They are also re-engageable. Accessing the re-engagement user interface (UI) of the OS like Push
Notifications. This apps can access more hardware features of the device [63].

They should also be discoverable for search engines, safe and linkable. And like common web
apps they have the advantage of being always up to date as the updates take place in the server
instead on every user app version. [64]

These apps have been there for a while, but they were way slower than native apps [63]. This is
changing with the new browser technologies. The current major browsers are now compatible
with this technology [64], [65].

PWA are an option for developers to be considered in the immediate future as they are getting
more and more popular [66]. Twitter is a good example of a PWA [67]

Fig. 13 Capabilities vs. reach of native apps, web app, and progressive web apps. [58]

Front-end implementation for an automatized car parking

Responsive webs are common webs configured and designed to fit different screen sizes and
resolutions. The content comprises, expands, or reorganizes itself to be visible on any device
and improve the user experience [68]. These are simple because they are just a website and can
be viewed on any device with a web browser and internet connection. Fig. 14 shows a clarifying
example of a responsive web design [69].

Fig. 14 Responsive web design example

2.4.3 Generated Apps
Generated Apps are developed using specific tools. Each of these tools provides its own
techniques, languages, and libraries. This means it is necessary to learn the tool language and
get used to the IDE to develop this kind of apps. These tools allow to generate the developed
code in different platforms. They claim that the generated apps are native. But this kind of apps
are called fake native apps because they do not satisfy all the native apps features, like the best
performance or appearance. Either they cannot access all the device hardware capacities [51].
Some of these tools are Xamarin, GeneXus, or PencilCase.

2.4.4 Hybrid Apps
Hybrid Apps try to put together the best from native and web apps [70]. As shown in Fig. 15
Hybrid apps have the access to device capabilities advantages of native apps, and the platform

Chapter 2 - STATE OF THE ART

33

affinity advantages of web apps. Hybrid apps can access all the device capacities, some of them
natively and some of them using plugins [71]. This kind of Apps is cross platform. This means
that with a single code it is possible to release the application on different platforms [72].

Fig. 15 Acces to device capabilites vs Platform affinity in Native, Hybrid and Mobile Web apps [73]

Programming hybrid apps needs some specific frameworks. Nowadays, there are many in the
market, as it can be seen in Fig. 16, but PhoneGap, Ionic, React Native and Flutter are four of the
most popular frameworks for programming hybrid apps development as shown in Fig. 16 (Unity
is focused on game development, even though it can be used to build non-games applications
too [74] and Adobe PhoneGap is an open-source distribution of Apache Cordoba, which is also
open source, plus additional features and tools [75]). React Native is the most popular
framework as we can see in Fig. 16. Although Flutter is gaining popularity as we can check in Fig.
17 and Fig. 18. Even though all of them build hybrid apps there are big differences between
them. The programing language they use or the way they render the layouts will define their
apps performance and appearance [76].

Fig. 16 Cross-platform mobile frameworks used by software developers worldwide as of 2019 [77]

Front-end implementation for an automatized car parking

Fig. 17 Google Trends Cross Platform frameworks comparison last 3 years [78]

Fig. 18 Stack Overflow Trends Cross Platform frameworks comparison since 2008 [79]

As we can see in Fig. 19, Ionic and PhoneGap (both based on Apache Cordova [80]) apps are
written using common web languages, therefore their layouts are more similar to websites [81],
[82]. Thus, these apps are executed inside a WebView, as shown in Fig. 22. A WebView is a
browser bundled inside the framework (native or hybrid), used to display web content inside an
app [83]. On the other hand, Flutter and React Native apps are written using JavaScript and Dart
respectively. The biggest difference between these two frameworks is the way they render
layouts, which can be seen in Fig. 20 and Fig. 21. While React Native renders native components,
linking their components to native components, Flutter renders its own components called

Chapter 2 - STATE OF THE ART

35

widgets, without needing to create bridges to link those widgets to native code [84]. In
conclusion, Flutter and React Native offer a better and closer to native performance and look
and feel, than Ionic and PhoneGap. The use of web technologies in Ionic and PhoneGap
decreases the performance against Flutter or React Native Apps as those use their own render
engines [85], and makes the User Interface (UI) closer to Web Apps than to native apps.
Additionally, React Native and Flutter can be used into existing native apps [86], [87]. Flutter has
a bit of advantage against React Native regarding the performance, as Flutter does not need to
link components to native code [84].

Fig. 19 Comparison – React Native vs. Ionic vs. Flutter vs. PhoneGap [85]

Fig. 20 Flutter rendering schema [88]

Front-end implementation for an automatized car parking

Fig. 21 React Native rendering schema [88]

Fig. 22 Phone Gap rendering schema [88]

The app described in this project has been developed using Flutter. This means it is a hybrid app.
The reasons for this decision are explained in 2.6.5. Once it is decided what kind of app to
develop and the framework to do so, one of the facts left to specify is the design. Next section
will explain the style guidelines followed.

2.5 Style guidelines
Regarding app development, is a good idea to follow some guidelines to ensure a cohesive
product design and user experience. It is worth it to note that the development team members
can change over the time as well as trends or features. Style guidelines are the tools that
guarantee that the user interface design will remain coherent and user experience will not
degrade over the time [89].

The frameworks that use web programing languages can use web design guidelines like W3C
standards [90]. Apple has its own human interface guidelines, described in [91]. And Google has
Material Design, their style guidelines for Android [92] and Flutter. Material comes bundled with
Flutter [93]. There is a Material library that implements widgets that follow Material design
principles. To use those widgets the app has to be “a Material App”. This means the root widget
is MaterialApp [94]. The other bundled design with Flutter is Cupertino [95]. Cupertino widgets
are iOS style. Developers can choose between those native designs, or exclusively use the
standard widgets library, or mix widgets from both libraries [96], or customize existing widgets
or build their own set of customs widgets, or even make platform aware widgets [97]. The app
described in this document follows material guidelines, but also uses a lot of customized
widgets. Some of the style decisions, like the theme color or some brand logos disposition in

Chapter 2 - STATE OF THE ART

37

certain layouts are explained in the Final Degree Project by Mario Martín [28]. Below in this
section there are explained some Material Design keys.

In the own words of Google: “Material is an adaptable system of guidelines, components, and
tools that supports the best practices of user interface design. Backed by open-source code,
Material streamlines collaboration between designers and developers, and helps teams quickly
build beautiful products” [98]. So, it is a group of guidelines defined by Google in 2014 for
Android design, but they also apply to the web and other platforms. It permits a high
customization, balancing form and function. It is adaptable, not only to mobile devices but
multiplatform too. For instance, one of the Material recommendations is the use of rounded
corners for rectangle shapes [99].

In this design colors, shades, surfaces, edges, and depth take the main role. It focuses not only
on where to place those objects but when (movement). The movement is a hallmark of material.
Animations gain importance, which consider speed and direction. It tries to give a picture of
order and hierarchy. And it is inspired by the physical world, trying to follow its laws of light,
movement, and space [100], [101].

2.6 Flutter
Flutter has been the chosen framework to develop the app. This section will detail some of the
flutter aspects and the reasons of this decision.

2.6.1 What is Flutter?
Google defines Flutter in this way: “Flutter is Google’s UI toolkit for building beautiful, natively
compiled applications for mobile, web, and desktop from a single codebase” [102].

Flutter was presented by Google in 2017. Its first stable version was Flutter 1.0, released on
December the 4th of 2018 [103]. And its use has increased since then, as we saw in Fig. 17 and
Fig. 18. Moreover, in 2019 Dart, which is the flutter’s programming language, was the language
that increased the most, as it is shown in the Fig. 23. In the own words of GitHub: “With Flutter
in our trending repositories, it’s not surprising that Dart gained contributors this year.” [104].

Flutter is free and open source [105]. This makes flutter bigger, creating a big community and
making easier to find documentation. An important part of flutter is plugins, most of them are
created by the community of developers [106]. As we have seen in previous sections, Flutter
SDK is a hybrid app development tool. Flutter apps offer a good performance and native look
and feel.

Front-end implementation for an automatized car parking

Fig. 23 GitHub stats: Change in programming language use, 2018-2019

2.6.2 Dart
Flutter’s programming language is Dart. Dart is an object-oriented language created by Google.
The Dart project was founded by Lars Bak and Kasper Lund and unveiled in 2011. Its first stable
version, Dart 1.0 was released in 2013. Since then, Dart 2.0, released in August 2018, introduced
important changes in the language. At the beginning the project was oriented to web apps.
Google even pretended to add a Dart VM to Google Chrome web browser, although this idea
was dropped in 2015 [107].

Nowadays the only browser implementing a Dart VM is Dartium, a special build of Chromium
[108]. But dart applications can be run on any modern browser as it can be compiled to
JavaScript [109].

Flutter choses Dart to help developers to quickly build quality apps for multiple platforms, as it
is stated in its website: “Dart is a client-optimized language for fast apps on any platform” [110].
Dart code can be compiled to ARM and x64 for mobile, desktop and server apps, and optimized
JavaScript for the web [111].

Fig. 24 Dart flexible compiler technology [111]

Chapter 2 - STATE OF THE ART

39

Dart enables one of Flutter’s most interesting features, Hot Reload, which allows to inject
updated source code into the executing Dart Virtual Machine. This can rebuild the UI in less than
a second, reducing the developing time and improving the developer experience [112].

Dart is easy to learn as it is similar to languages like Java, Swift or JavaScript. It has a C-style
syntax. Dart is optimized for building user interfaces, and it is an object-oriented, class-based,
garbage collected (automatic memory management) and single threaded language [112].

Despite of being a single thread language, Dart supports futures, streams, background work, …,
and anything one could need to build a modern, asynchronous (and reactive in the case of
Flutter) app. All the dart code runs in an Isolate. An Isolate is a little space in the machine with
its own private part of memory running a single thread running an event loop. Any flutter app
runs at least the main Isolate. This can be enough for most simple apps. But when processing
becomes more demanding, there is the possibility of creating a new isolate to run this function
while leaving the main thread free to render the widget tree. These two Isolates are isolated,
even though one of them is the parent of the other. They do not share memory and they can
only work together passing messages to each other. This might seem more difficult than
programming languages like C++ or Java where there is memory sharing, but this memory
isolation has some advantages. For example, there is no need to block the memory as any thread
can only access its own memory [113].

The event loop is what makes dart asynchronous code possible. Every time an event occurs, like
a screen tap, or I/O event from the disk, it is added to the events queue. The event loop just
processes one by one at every completed loop. Flutter in focus video about the Event Loop
explains: “All of the high-level APIs and language features that Dart has for asynchronous
programming — futures, streams, async and await — they’re all built on and around this simple
loop.” [114]

In the app version described in this work all the code runs in the main Isolate.

2.6.3 Flutter architecture and features
Flutter architecture is layered as we can see in Fig. 25. Each layer is built upon its previous layer.
The lowest layer is the embedder. It takes care of platform-specific tasks like surface settings,
thread settings or plugins. This layer is minimal, so the platform simply provides a canvas and
the rest of the rendering-related logic occurs inside Flutter, this makes a good cross-platform
consistency [115].

Regarding Flutter Engine, Flutter GitHub repository describes it as: “The Flutter Engine is a
portable runtime for hosting Flutter applications. It implements Flutter's core libraries, including
animation and graphics, file and network I/O, accessibility support, plugin architecture, and a
Dart runtime and compile toolchain“ [116]. The Engine is implemented in C/C++. It uses Skia
Graphics Library, a 2D graphics library already used before in Chrome, Android, or Mozilla
Firefox. The use of its own rendering engine gives a higher performance in rendering and
animations. Flutter aims to provide from 60 frames per second (fps) performance to 120 fps on
devices capable of it. The Engine also includes Text and Dart, which encompasses Dart Runtime
and Garbage Collection as well as Just in Time (JIT) support for debug mode, and native “arm”
compiling by Ahead of Time (AOT) support for release and profile modes [115], [117].

The framework is the top layer and thus the most used. It comprises the widgets, animation, or
gestures. We can see how the framework is written in Dart. At the top is where is placed the
code written by the developer. The developer will not be limited by (Original Equipment

https://flutter.dev/

Front-end implementation for an automatized car parking

Manufacturer) OEM widget sets. Flutter widgets come from Material (see Material Design
section) and Cupertino (iOS look) libraries, although developers can build their own widgets
composing others [118].

Fig. 25 Flutter system overview [119]

One of the main advantages of Flutter is its architecture and definition allow a higher
productivity of the developers. Flutter claims to increase productivity due to [117]:

• Only one codebase is enough to develop to both Android and iOS
• Hot Reload and test units accelerate the developing
• Do more with less code. Flutter takes a declarative approach. This means that flutter

builds its user interface to reflect the state of the app. Fig. 26.
• Also flutter architecture is designed to get the most with the least code. The

framework’s upper layers are used more often than the lowers.

Fig. 26 Flutter is declarative [120]

2.6.4 Widgets: Key concept in Flutter
Widgets are the key concept of Flutter, which is in charge of defining most of the program
structure. Widgets are Dart classes that expand a Flutter Class [121] and they are flutter basic
user interface elements [94]. Although widgets are the elements that build UI, not all widgets
are visible. Widgets can define from structural elements (like a button or a menu) to Style
elements (like a font color) to Design aspects (like padding). Even layout models are widgets in
Flutter [119].

Flutter UIs are built composing multiple widgets. This is an innovative way to create layouts and
possibilities are unlimited [122]. Each widget is wrapped inside a parent widget and inherits
some of its properties [123].

Chapter 2 - STATE OF THE ART

41

When the application starts, the main function calls the runApp() method, which takes the first
widget and makes it the root of the widget tree. The widget tree is formed by all the widgets
that form the app. A second level is the Element tree, which is formed by a representation of
the widgets displayed at the moment. There is a third lower level tree. The RenderObjects tree.
When Flutter builds the UI it looks at the RenderObject tree. Widgets configures, Element
manages and RenderObjects paints [124].

These separation in three levels allows flutter to optimize the performance reusing the parts of
the tree that does not change instead of rebuilding the entire tree every time something changes
[125].

Widgets are immutable. But UIs are never immutable. They are constantly changing. As said
before, Flutter is declarative; only one code path defines what the UI should look like for any
given state. This is because Flutter separates between its widgets and their state. Widgets
describe the configuration for an element, and elements are mutable representations of a
Widget in a particular location in the tree.

In Flutter any widget is either a subclass of Stateful Widget or Stateless Widget. Any widget has
a build method and stores some properties. And any widget is immutable. But we will see now
how stateless and stateful widgets differently manage this [126].

Stateless widgets store their properties on final variables [94]. They are only built once.

Stateful widgets create State objects that store their state. While Widget objects are temporary,
State objects are persistent between calls to build() method. The values that contain the state
can change. When this happens the state object calls setState() method, and the framework
redraws the widget [127].

This separation between the appearance and the state allows other widgets to treat stateless
or stateful widgets the same way. A parent widget does not have to worry about losing its child
widget state, the framework does the hard job of finding and reusing existing state objects when
appropriate. Flutter lets the developers describe the current UI state and leaves the state
transitioning to the framework [119].

2.6.5 Why Flutter?

Twizy Contest 2020 asked for a mobility solution for the Paris Olympic Games 2024. Olympic
Games are an international event, where people from all over the world would go to Paris. This
means multiple devices, brands, and OS. Moreover, our budget and time for our project was
limited. That is why it was decided to develop a multiplatform app. So, only one code would
have to be developed for both platforms, reducing time and cost while not sacrificing
performance or user experience. Flutter is backed up by Google, this brings the necessary
confidence in knowing that it will not be abandoned and it will likely increase.

Now that the available technologies have been introduced and the taken decision has been
explained it will be done a research and analysis of mobility apps to decide the design of our
own.

Front-end implementation for an automatized car parking

2.7 Current mobility apps comparison
Before starting coding, it was carried out in-depth market research to analyze the current trends
in mobility apps. This analysis is important when it comes to designing some of the app layouts
and deciding the app structure. This section will analyze some carsharing and public transport
apps that operate in Paris. After this analysis conclusions will be extracted and it will be
explained how these conclusions inspired our app design.

2.7.1 Carsharing Paris apps

 ZITY

ZITY is a carsharing company owned by Ferrovial (Spanish) and Renault (French). They work in
Madrid since December 2017 with 725 cars, and they have recently started working in Paris
(March 2020) with around 500 vehicles. ZITY fleet is formed only by Renault ZOE 100% electric
vehicles [23, 32, 128].

In Fig. 27 we can see how ZITY bets for a custom brand splash screen (The splash screen is the
static screen or animation that is displayed to the user while the app loads its internal elements.
This screen usually displays the brand logo). The loading screen (Fig. 28) shows a loading bar
and transparency that lets see a map. The main screen is a map that shows markers wherever
there is a vehicle of the fleet. A nice feature of this app is that displays a green zone where the
carsharing service operates. When a marker is tapped it displays a widget that shows
information about the car battery, range, and license plate (Fig. 29). And it gives the option to
book the car or rent it. There is also a details button that provides more information about the
car and the service fare. The tapped marker also shows its location and can launch google map
to get directions to it. The top bar contains an icon button that can display the menu where we
can navigate to some other views, like settings or our trips log (Fig. 30). The colors of this app
are mainly green and blue.

To use ZITY it is necessary to download the app (available on Android and iOS) and register. In
order to register it is needed a valid email and phone number as well as a selfie and scanning
the user’s driving license. Registration is free. The app requires location permissions and it
supports multiple languages (English, Spanish and French checked). The app has more than
100.000 downloads in the Play Store, a rate of four stars over five and more than 5.000 reviews.

Fig. 27 ZITY splash screen Fig. 28 ZITY loading map Fig. 29 ZITY marker display Fig. 30 ZITY menu

Chapter 2 - STATE OF THE ART

43

To get inside the vehicle the users use the app. The app will then inform the user about the
current damages that the car has and will request to inform if any other damage not reported is
perceived. The vehicle inside has instructions and phone charge wires. Users can drive around
with the vehicle and even park it somewhere and leave it locked for a short period paying a
different rate. Once the user is done with the vehicle, they can park it anywhere and release the
car with the app, then the cost accumulated will be displayed.

These vehicles are electric but do not include chargers. A company team finds low battery
vehicles and charges them.

Ubeeqo

Ubeeqo is another carsharing platform operating in Paris. But they also operate in London,
Hamburg, Milan, Madrid, Barcelona, Copenhagen, and Switzerland. They have a wide variety of
vehicles. This service works a bit different than other carsharing platforms. Each vehicle has a
designed parking spot, and users have to park it there again once they are done with it [129].

Fig. 31 Ubeeqo screenshots [129]

Ubeeqo main page (Fig. 31) is also a map. Markers pop up wherever there is a car of their fleet.
Once one of those markers are tapped, we can see the vehicle info and the service fee. There is
also a searching bar and a button to display the menu.

Ubeqoo app (available on Android and iOS) main color is blue. To use Ubeeqo it is necessary to
register, but it is no needed to download the app. The service can be used through the website
too. In order to register it is needed a valid email and phone number as well scanning the users
driving license and upload a selfie holding the driving license. Registration is free. The app
requires location permissions and it supports multiple languages (English and Spanish checked).
The app has more than 100.000 downloads in the Play Store, a rate of four stars over five and
more than 1.500 reviews

To get inside the vehicle users can use the app or a contactless card. Ubeeqo recommends
having a contactless card as some vehicles can be parked in underground parking slots where
there can be signal problems with the phone. This contactless card can be Ubeeqo own
contactless card or credit contactless card or even some public transport contactless card. Once
inside the vehicle the user will also have to inform if any non-reported damage is perceived. To
see the reported damages there are some paper documentation inside the vehicle glove box.
Here it can also be found a terminal that the user will use to inform of the damages, get
instructions and get the car keys. There is also a fuel card as fuel is included in the service rate.

Front-end implementation for an automatized car parking

Once the user is done with the vehicle, they must return it in the same parking where it was
picked up. If electric, the vehicle has to be plugged in when returned. The vehicle release process
is done by means of the glove box terminal not the app.

Ubeeqo offers different rates and options for short distance and long distance carsharing as well
as the option to book a vehicle.

Free2Move

Free2Move is the PSA Group carsharing platform. Free2Move shows vehicles from different
carsharing services, or even some bike or scooter sharing services. They operate in more than
33 cities of Europe and USA, including Madrid, Lisbon, Paris, Berlin, or London. In Paris, this
service has some advantages, like free parking on paid parking areas [130].

*F2M: Free 2” Move

The app screenshots show a very simple splash screen, as it shows only their brand logo (Fig.
32). The main view is also a map (Fig. 33). From it we can see the operating zone of the platform,
display the menu, configure filters or alerts, or check the available providers list. There is also a
searching bar.

The bar displays different markers for each service. When the user taps any of these markers a
widget shows up displaying the vehicle name, image, range, location, and license plate. And the
service name and fees. And it gives the option to reserve it.

This app (available on Android and iOS) uses colors black, blue, and pink, like their brand logo. It
requires location permissions and it supports multiple languages (English and Spanish checked).
The app has more than 500.000 downloads in the Play Store, a rate of three stars over five and
more than 3.000 reviews

As this platform offers a wide variety of services, the app has multiple options. Some of the
French providers are (Fig. 35) Car2Go, moov’in Paris, travelcar, ubeeqo, Peugeot rent, citrone
rent&smile, ds rent (carsharing) coup (motor scooters), velib, donkey (bikes) VOI, or tier (electric
scooters)

Fig. 32 F2M Splash screen Fig. 33 F2M Map page Fig. 34 F2M Menu display Fig. 35 F2M Providers list

Chapter 2 - STATE OF THE ART

45

2.7.2 Public transport Paris apps
There are several apps about the public transport in Paris. I have analyzed the official apps from
the RATP operator: Next Stop Paris and RATP apps (both available on Android and iOS).

RATP

RATP app provides combined information about all the public transport in Paris. From the Metro
to the Bus or even some private companies like scooters renting.

In these pictures we can see RATP splash screen is quite simple, as it shows only their brand logo
(Fig. 38). RATP bets for a busier main page (Fig. 37) rather than just the map view. This main
page displays some information about COVID-19 (in the screenshots from the Play Store this
space seems empty, letting see the map more clearly) as well as some icon shortcuts to save
home or work location. The map is still the background of this main page (Fig. 36). The main
page can drive you to either the map or either a slide from bottom widget with some advices or
other information. We could also display the menu, check schedules or the transport map for
each mean of transport. Once in the map, there is a bottom bar that let us choose what kind of
markers we want to be displayed. Once we tap on any of those markers, we can see the
schedules of that station or get directions to it (Fig. 39). There is also a search bar to find stations.

RATP main colors are green and blue. This app requires location permissions too and it supports
multiple languages (English and French checked). The app has more than 5.000.000 downloads
in the Play Store, a rate of two stars over five and more than 68.000 reviews.

Fig. 39 RATP marker display Fig. 38 RATP splash screen Fig. 37 RATP main page Fig. 36 RATP map page

Front-end implementation for an automatized car parking

Next Stop Paris

*NSP: Next Stop Paris

This app is more focused on tourists. It gives information about places of interest, metro, and
bus. It is supported by RAPT, the same as the RAPT app, so the app is quite similar to the previous
one.

In the screenshots we can see how its splash screen is more sophisticated (Fig. 43). The main
page (Fig. 42) is very similar, with the map (Fig. 41), a search bar, and some tourist info. There is
a common bottom bar across the views that let us navigate through the three pages: the main
view, the get tickets view and the menu display (Fig. 40).

Next Stop Paris main colors are green and blue too. It requires location permissions and it
supports multiple languages (English and Spanish checked). The app has more than 1.000.000
downloads in the Play Store, a rate of more than four stars over five and more than 14.000
reviews.

2.7.3 Conclusion
The carried-out market research shows some common characteristics in the design of carsharing
apps that must be considered for our own:

• Simple splash screen displaying the brand logo.
• Company colors are used as the theme colors for the app, remarking the brand image.
• Simple screen layouts, leaning towards images and icons over text. The main screen is

always a map, whose markers display the information about the vehicle. Actions must
request the minimum possible touches, avoiding unnecessary deployable submenus.

• Other common features are: vehicle reservation and identification of vehicle damages
before use.

• Easy and quick start. Download, register and start enjoying. Registering process usually
requires personal identification data as well as uploading the driving license.

• Multiple language support.
• Available on both Android and iOS.

Fig. 40 NSP menu display Fig. 43 NSP splash screen Fig. 42 NSP main page Fig. 41 NSP map page

Chapter 2 - STATE OF THE ART

47

The reader might have noted that these apps have a large number of downloads and reviews in
the market store, this provides a valuable feedback channel for the service providers, not only
about the app but about the service itself.

Our app has similarities with this apps, it supports multiple languages, require location
permissions and uses the map view as the main page. The market research showed the mobility
apps trends to follow and the app has been built accordingly. Even though there is still a long
developing process to be done to improve the app and add functionalities. The next chapter
details how the app has been built, its design and its functionalities.

Front-end implementation for an automatized car parking

Chapter 3 - IMPLEMENTATION

49

3. IMPLEMENTATION
In the previous chapter, the main current technologies to program apps, as well as the main
characteristics of the current carsharing apps were studied. In this chapter all this information
is used together to design and app for our service. Thus, this chapter describes the app
development procedure. It explains from the background functions that connect the app to the
server, to every screen layout. The app structure is detailed as well as how the flutter widget
tree works. First the user side is introduced and later the admin side functions are described. It
is also explained cross functionalities like internationalization, the app bar dropdown menu or
the permissions request.

3.1 Criteria for the App design
As it was showed in 2.5 this app follows some style guidelines, and as explained in 2.7 there are
some trends in the mobility apps that should also be followed. Therefore, TwizyLine App should
offer users an intuitive interface to register, log in, and access to the service. It will be written in
Flutter, which allows to release the app in the two current main operative systems, Android and
iOS.

The user experience should be clear and easy. Therefore, the app should show a login page the
first time it is installed on the user’s device, giving users two options: Log in with an existent user
or register in the platform. Once the user would have completed one of those steps, the app
should request the user for location permissions. And only once those permissions are given
(otherwise the app should not work) it would get the user current position.

There is needed a main screen to give users an easy way to find the closest parking and request
a vehicle. This screen should be a map which would display markers wherever there is a
TwizyLine station. When the user taps on any of those markers, a pill would show up, providing
the user information about the parking name, the available cars in it, and the free spots. From
this pill the user could request a vehicle just tapping on the pill. The app should then inform the
user about its assigned Twizy and provide them with a method to access the pick-up zone, for
example a QR code. A nice functionality to add would be a way to get directions to the desired
parking, as most users would come from other cities or countries and will likely need to be
oriented.

About the admin side, it is important to provide them with useful functionalities and an easy
user experience in order to improve the failure response and reduce the time that it takes
admins to find and solve any trouble with the system. Thus, the appearance here is not so
important. The admin functionalities include: Error log page, where the administrator could see
any warning or error emitted by any car and solve it or discard it. Commands page, where the
administrator could send to a vehicle specific commands, or receive responses from it, without
passing through the server. Management page, where the administrator could check any
parking situation or any vehicle log. And Map, similar to the common user page, but with the
added functionality of showing the fleet vehicles position.

3.2 First steps. Connecting to the MQTT broker.
All the information between the back-end and the front-end (our app) of TwizyLine project is
transmitted by using MQTT protocol. This is a machine-to-machine and IoT protocol based on a
publisher/subscriber paradigm. The decision to use MQTT as the technology to connect the
front-end and back-end is explained and can be fully read in the Final Degree Thesis report of

Front-end implementation for an automatized car parking

the TwizyLine member Samuel Pilar [26]. The messages that the app exchanges with the server
and the vehicles can be found in ANNEX 1. In ANNEX 2 it can be found the errors that can be
handled through MQTT messages.

To connect the app and the server, it was necessary to install a plugin, define the topics and
messages to be used, code the necessary functions to handle the communication and set several
streams to pass the data through the app. All of this work is done in the mqtt.dart file.

When started working on this app the first challenge was connecting the phone with the server
using MQTT. In order to get this job done the best option is to use an appropriate plug-in for
flutter. Flutter plugins can be found at [106], in which can be found the information about the
plugin, the changelog, use examples, installing instructions, version log and scoring. There is a
huge number of plugins for diverse utilities. Some of them are uploaded by the flutter team, but
most of them are uploaded by the community of developers that joins Flutter. Some of those
developers are verified publishers. My app only uses verified publishers’ plugins. Thus, it was
decided to use mqtt_client plugin for flutter [131]. This plugin was, at the time when the develop
of the app started, the only certified plugin that offered an MQTT client. It also offers a nice
example on its documentation that was used as a base for the function that connects the app
with the MQTT broker [132]. Another option, released on June 16th of 2020, is
universal_mqtt_client plugin [133].

To install a plugin in flutter you just need to add some lines to the pubspec.yaml file and execute
the command Pub get. These plugins can be updated, or you could check if they are outdated
using some commands.

After that, the mqtt.dart file must be configured. This file does not contain any widget or class,
as it does not create anything “displayable”. The file contains instances of the MQTT plugin
classes, which need the broker IP direction, to leave the client identifier on blank and to use the
default port (1883).

MQTT is an IoT protocol that works with topics. The broker publishes topics and users subscribe
to them, getting the data shared on those topics and being able to send their own data through
them. My partner Samuel Pilar gives a more detailed explanation to MQTT in [26]. The app
currently subscribes to 9 different topics divided into common user topics and admin user topics.
Starting with the common user topics:

• “Log”: This topic is only used during the login or logon process. Once the user has logged
into the system the app unsubscribes from this topic. All users subscribe to this topic.

• “App”: This topic keeps subscribed during the entire lifecycle of the app. The client
subscribes to it once he/she is logged. It is used to get the periodic information the
server sends, updating the parking state; free spots and available Twizys. All users
subscribe to this topic. Users do not send anything through this topic.

• “username/app”: This is a custom topic for every user. It is their personal channel to
communicate with the server. In this topic the server puts the information and the client
reads it. It is used to check if the user has admin permissions or not, to get the parking
areas location at the start, and to get the QR code for the turnstile and the information
about the assigned Twizy when requested.

• “username/server”: This topic is the same as the “username/app”. But the user writes
data on it and the server reads from it.

Chapter 3 - IMPLEMENTATION

51

The topics that are exclusively for user admins are the next ones:

• “admin”: This topic would be the equivalent to the “app” topic but for admins. All
admins subscribe to it and get the periodic error report from it. Admins do not send
anything through this topic.

• “username/admin”: This is a custom topic for every admin. In this topic the server puts
the information and the client reads it. It is used to get the error report from the server
on the start, to get the parking state to represent it, or the car log to draw its table.

• “username/admin_server”: This topic is the same as the “username/admin” but here
the client writes, and the server reads. It is used to request the necessary information
to represent a parking, to request a car log, or the error report from a car. And also, to
inform the server that an error has been fixed.

• “+/location”: MQTT allows to create sub topics inside topics, this way you can subscribe
to the topic vehicle1 that will presumably transport information about the entire
vehicle, or you can subscribe to the topic vehicle1/tires, that will presumably transport
information just about the tires state. The + means all topics, so with +/location the
client subscribes to any topic that contains a subtopic called location. The app needs in
this case the topic vehicleId, which is unique for every Twizy of the fleet. Each of those
have a subtopic called location that periodically sends the position of the Twizy. This
topic is subscribed when the admin accesses their map page, so they can see all the
Twizy’s real time location.

• “+/info”: Similar to the previous topic. This topic contains the responses Twizy sends
when it receives a command. This topic is subscribed when the admin accesses the
commands page.

Dart allows to use streams to handle communications. Dart streams are a sequence of
asynchronous events. As mention in the previous chapter during the analysis of Dart language,
Dart is a single-threaded language, so streams work like if they were running on the background
but they are actually running on the same thread. This means that it is not a good idea to make
an event iterable the next way:

while(1) {
 if(somethingHappens){
 return 0;
 }
}

as the thread will just keep forever in the while(1) loop, as it will not let other functions work
because somethingHappens will never happen.

The right way to handle the streams is to use stream controllers, which were defined in
mqtt.dart file the next way:

StreamController<ReceivedMessages> controller =
 StreamController<ReceivedMessages>.broadcast();
Stream stream = controller.stream.asBroadcastStream();

Front-end implementation for an automatized car parking

There are two kinds of streams in dart: single subscription or broadcast streams. Single
subscription streams can only be listened by one function. These streams can be problematic if
the widget containing the function rebuilds or if they are not properly closed before listening to
them again. So just for simplicity all the streams are broadcast in our app.

Once the necessary elements to handle the connection have been introduced it will be explained
the functions that connect with the server and use those elements. To establish the connection
with the broker it has been coded the mqttStart function. This function has a return type
Future<int>. Dart futures represent a computation that does not complete immediately. Normal
functions return a value when complete, but future functions return futures, these objects will
contain at some point the result value, but, while not, the thread can continue working (or not
if we use the await call) and the future will tell when it is ready.

The mqttStart function is called from the login page (this is the first page displayed to the users
when they open the app). This function starts the communication with the MQTT broker and
manages the authentication process as it sends the broker the user credentials and returns a
different value depending on whether the broker accepts the user credentials or not. The
mqttStart function gets the user and password that the user enters in the login page as
parameters. The first thing this function does is defining the connect message with parameters
like the keep alive period, the client identifier or if authentication is necessary or not.

The username is the only client identifier, no other parameter is used. This username obviously
must be unique. This is checked when the user registers on the platform, if the new user tries to
register with a username that already exists, the app will request them to use a different one.
The authentication is activated on the broker, and users must be registered in a certain way.
There is a file the server checks where all the users username and password are saved. This file
encrypts the passwords to ensure security. The server adds the user credentials to this file when
they register.

Once the connect message is defined, the mqttStart function tries to connect with the MQTT
broker. If there is no internet connection or the MQTT broker is down, the user gets an alert
message explaining the failure.

Once the connection is established the app can receive or publish messages. The MQTT client
has a change notifier object which is listened to get notifications of published updates to each
subscribed topic. Every time a message is received on any of the subscribed topics, the function
decides where each message goes. Depending on the topic in which the message was received
each message is placed into its corresponding stream. This change notifier keeps listening the
whole time.

During the use of the app, there are some requests to the server. Every request has associated
a timer, so if there is no response from the server a message is displayed to the user. This
message is shown as an alert dialog like the one shown in Fig. 44. This alert dialog has rounded
corners, as Material design guidelines recommend (see section 2.5).

Chapter 3 - IMPLEMENTATION

53

Fig. 44 No response error alert

The main reasons that can cause a lack of response are: A problem with the user’s internet
connection or the server being down for some reason.

3.3 main()
main () function is the app base and it starts the app. This function is the first executed and it
manages the checkout of existing user credentials, the device orientation settings, the
internationalization settings, and sets the root widget to MaterialApp and also sets the first
screen to be displayed to the user depending on whether the Smartphone has the credentials
saved from previous sessions or not.The main() function first call is to:

WidgetsFlutterBinding.ensureInitialized();

This ensures the service binding is working before it is accessed. This is necessary because the
first thing the app does is checking it has stored the user credentials. If so, those credentials are
used to automatically log in and the map page is loaded, but if not, the login page is displayed.

To store and load the user credentials it is used the plugin shared_preferences developed by
flutter.dev. This plugin provides a persistent store for simple data. It was chosen because it is a
certified plugin and moreover it is developed by the flutter team. It is also recommended in the
flutter documentation found in [134]. However, this package stores the data in plain text, which
is not recommended for password storing. Thus, obviously a future line of the project is to
modify this and safely store the user data using encryption. It has already been studied the way
to do this. The flutter_keychain package uses KeyChain (iOS) and KeyStore (Android) for secure
storing. Package documentation can be found at [135]. This package should be soon
implemented in the app.

Front-end implementation for an automatized car parking

As mentioned before if there are no stored user credentials the login page is displayed, but if
there are stored credentials a procedure is carried out before displaying the map page. The
function in charge of checking and getting the credentials is loadUserCredentials(). This function
is defined in the auxiliar.dart file. Once the credentials are gotten it is checked if the user has
admin permissions or not. After that, all the necessary topics are subscribed, which, as
mentioned in the previous section, are not the same for common users and admins. Personal
topics like username/app are defined at this point, as these topics contain the username on its
name. Finally, this function informs the server that a new user is going to be logged, sending the
user credentials. This has to be done because the server and the broker are not the same. The
broker is aware of the new user logged as it is necessary to authenticate into the MQTT broker
to be able to send or receive messages, but the server is not aware because the server and the
MQTT broker are different programs. The server uses the MQTT broker the same way the app
does. The only difference between the app and the server is that, at the moment, the server and
the broker run in the same machine, but this could change.

The main function also sets the orientation:

await SystemChrome.setPreferredOrientations([
 DeviceOrientation.portraitUp,
]);

By default, the app changes the layout as the device orientation changes. Setting the orientation
to “portrait Up” prevents the app from turning the layout, thus it will always display the app
with the vertical layout regardless of the device orientation.

Finally, it starts the app by calling:

runApp(MyApp());

The MyApp class builds the root widget of the app. This widget returns a MaterialApp widget.
This widget is necessary to use some Material widgets. Then this widget defines the localization
delegates. Those are necessary to internationalize the app. Our app currently supports English
and Spanish for the user interaction (admin pages are only available in English). Language is
automatically switched depending on the phone’s settings language. This is possible because of
flutter_localizations package. This package and how to internationalize an app are explained in
the flutter docs: [136].

The MaterialApp widget contains the next lines where it defines the localization delegate and
the supported languages as explained before.

localizationsDelegates: [
 const TwizyLocalizationsDelegate(),
 GlobalMaterialLocalizations.delegate,
 GlobalWidgetsLocalizations.delegate,
],
supportedLocales: [
 const Locale('en'), // English
 const Locale('es'), // Spanish
],

Chapter 3 - IMPLEMENTATION

55

And there is another dart file localizations.dart that contains the class TwizyLocalizations. This
class defines the strings translations and the getters to use them.

class TwizyLocalizations {
 TwizyLocalizations(this.locale);

 final Locale locale;

 static TwizyLocalizations of(BuildContext context) {
 return Localizations.of<TwizyLocalizations>(context, TwizyLocalizations);
 }

 static Map<String, Map<String, String>> _localizedValues = {
 'en': {
 'title': 'Hello World',
 },
 'es': {
 'title': 'Hola Mundo',
 },
 };

 String get title {
 return _localizedValues[locale.languageCode]['title'];
 }

Whenever it is desired to use an internationalized string, it has to be done the way:

TwizyLocalizations.of(context).title

This string will automatically show “Hello world” or “Hola mundo” depending on the phone set
language.

The root widget defines the app title, the theme, and the home screen. In our case the default
home will vary depending on whether there are found user credentials or not, or if the user has
admin permissions or not.

The theme primary color chosen has been a light green. The green color is commonly associated
with ecology. More aesthetical details can be found in the Final Degree Thesis report of the
TwizyLine member Mario Martin [28].

In Fig. 45 it can be seen a simplification of the app widget tree. It can be observed that
MaterialApp is the root widget of the app. The top widgets of every screen are painted red.
AdminIndexedStack widget can show four different screens, each screen top widget is painted
purple. The ErrorLog screen is the first displayed when an admin logs in.

Front-end implementation for an automatized car parking

Fig. 45 top Widgets diagram

At this point the nonvisual files of the app have been explained. Now the app screens will be
described as well as the functions they have. The screens can be divided into three segments:
Common screens, user screen and admin screens. They will be explained in this order.

3.4 Login page
The login page is the first screen displayed to the user when they open the app. It manages the
login process and can redirect the user to the logon form too. This screen also implements form
validation for the username and password fields.

The login screen, showed in Fig. 46 is displayed to the user the first time the app is opened. This
screen displays TwizyLine logo, Paris 2024 logo, Renault logo, and Twizy Contest Logo. The
buttons are rounded, following material guidelines, to give a better appearance. Aesthetic is
important here, as this is the first screen users would see. That is why the brands logos are
placed here too. This screen is not scrollable, but it is designed to fit any device.

Fig. 46 Login screen view Fig. 47 Login screen view 2 Fig. 48 Login screen view 3 Fig. 49 Login screen view 4

Chapter 3 - IMPLEMENTATION

57

There are two form fields, the username and the password field, and two buttons, Log in and
Log on. Log in button sends the server the request to log in. The app first checks if the form fields
are filled or not. Also, the fields length is limited.

If the users try to submit and they have not filled the fields an error is shown. This can be seen
in Fig. 47. Also, in this picture, it can be seen that the password input is obscured. When the
login button is pressed a SnackBar (a SnackBar is a message displayed from the bottom of the
screen inside a colored container. They are used to give the user some short information) shows
up saying “Processing data” and the buttons are disabled so they cannot be pressed. To show
that those buttons are disabled the color changes to transparent. This can be seen in Fig. 48. If
username and/or password are wrong a message is displayed. This can be seen in Fig. 49.

After the user presses the log in button the app sends the username and the password through
MQTT to the server. This is a double step authentication, as the first step is authenticating to
the MQTT broker, if this authentication did not work the app would not even be able to send
those credentials to the server.

Once the credentials are sent, the server checks if the user has admin permissions or not. Then,
the app needs to wait for the server response, but as mentioned before, Dart is single threaded.
There is no clear way to wait for a response. Futures allow to wait for a function to be complete
without freezing the main thread. Although when listening to a stream inside a function, once
the stream receives a message it is considered listened, and the function completes. It was
necessary to keep that function running while waiting for the expected message. To do this, it
was decided to use a while loop, but it was necessary to keep the main thread running, otherwise
the message would never be received. And only once the desired message is received, the
function can return a value. It was also added a timer so if no message is received the function
returns a value anyways. Here is the code:

int ifAdmin = await checkIfAdmin();
Future<int> checkIfAdmin() async {
 bool timeout = false;
 int admin = -1;
 Timer timer = Timer(Duration(seconds: 10), () {
 timeout = true;
 // here I can't use return
 });

 StreamSubscription<ReceivedMessages> streamLoginSubscription =
 streamUser.listen((value) {
 List<String> message = value.payload.split('/');
 if (message[0] == 'ADMIN') {
 timer.cancel();
 admin = int.parse(message[1]);
 timeout = true;
 // here I can't use return
 }
 });

 while (!timeout) {
 await asyncSleep(100);
 }
 await streamLoginSubscription.cancel();
 return admin;
}

Front-end implementation for an automatized car parking

The desired message is either ADMIN/0 or ADMIN/1. This function will return 1 or 0 and then
the app will process this value and decide what to do. If the timer expires then it returns -1. And
the app will process the error.

The asyncSleep function stops the current function but does not block the thread. This is thanks
to futures. This method allows to keep listening the stream and return when the desired
message is received. Here is its definition:

Future<void> asyncSleep(int milliseconds) =>
 Future<void>.delayed(Duration(
 milliseconds: milliseconds,
));

When the user successfully logs in, the user credentials are saved. Once these credentials are
saved the login page is not displayed anymore unless the user logs out. The credentials load is
explained in main(). The function in charge of saving the credentials is saveUserCredentials().
This function uses the shared_preferences package like loadUserCredentials. It also
unsubscribes the app from the “log” topic and defines the personal topic names.

At the top right it can be seen an info button. This button should redirect to our website where
information about TwizyLine service could be found. This is still a future line though. The other
button is the log on button. This button redirects to the log on form.

3.5 Logon page
The logon screen, shown in Fig. 50, displays a form so the user can register into the service. It
asks the user for its name and surname, employment, username, email, and password. It can be
used to register a new user to the service. The fields implement form validation and length
limitation.

Fig. 50 Registering Form

Chapter 3 - IMPLEMENTATION

59

This is a scrollable screen to make the user able to fill all the fields. The fields borders are
rounded as well as the button.

The employment is asked through a dropdown list. The options are athlete, journalist, staff, or
visitor. This information could be used to give different priorities to users when requesting a
vehicle for example.

When the submit button is pressed, the app checks that all fields are filled. The username must
be unique, and the email field checks if it contains an ‘@’ character. The password is required to
be introduced twice and the app makes sure the two fields have the same information. Also, all
the fields have length limitation.

When users fill one of the fields, the keyboard “OK” button sends the user to the next field. This
provides a more fluent experience.

To check that the username is available the app connects to the server using a generic user
(obviously this user does not have admin permissions for security reasons), then it sends the
user information. If this information is valid, the app gets a confirm message from the server. It
logs out from the generic account and automatically logs in as the new user. The server side of
this procedure is explained in the Final Degree Thesis report of the TwizyLine member Samuel
Pilar [26].

When the app sends the log on parameters (name surname, employment…), it has to wait for
the server response. This scenario is very close to the one explained in the previous section, so
this function is very similar to the checkIfAdmin() function. The received message will be either
“Confirm” or “Deny”. If the message is “Deny” it will be followed by an error code that will help
to explain the user why those values are not valid to register. For instance, if the username is
already in use.

Admin users cannot register though the app. This special kind of users have to be given
permissions directly on the server.

One of the future lines of the project is to request users to scan their driving license to ensure
users can drive the vehicles of the fleet.

Login and logon pages are the two screens common for both users and admins. Even though
admins cannot register through the logon page they can access to it. The map page is the only
page available for users (In addition to the login and logon pages) , and it is explained in the next
section.

3.6 Twizy Map page
This is the main screen of the app on the user side. This screen is displayed to the user once they
are logged. Moreover, when the user has already logged in at least once, this screen is the first
displayed when the app starts.

The first time the user opens the app, it requests location permissions, as it is shown in Fig. 51
While the map is loaded, it is displayed a gif “drawing” TwizyLine’s slogan as shown in Fig. 52.
Once the map is built, the app sends the server a request to get the parking positions so it can
place their markers. While the app gets the response, it is displayed a loading icon, as it is shown
in Fig. 53.

Front-end implementation for an automatized car parking

Fig. 53 Finding TwizyLine Stations view

Once the server sends the first parking information, the user can see and interact with the map.
This map widget shown in Fig. 54 is part of the google_maps_flutter plugin package. It is a fully
functional map view, similar to the Google Maps App but with some restrictions. For instance,
this map cannot display routes or show commerce information touching over them. But it is
possible to navigate through it scrolling with the fingers, zoom in or out either with gestures or
with the buttons located at the right bottom of the screen, and it centers the map view on users

Fig. 52 Loading Map Fig. 51 Asking for permissions

Chapter 3 - IMPLEMENTATION

61

location when the right top button is pressed. The map firstly loads centered on the user location
as well. The markers are customized, displaying TwizyLine’s logo.

Fig. 54 Map and Markers view

The app takes the right marker size depending on the device resolution. There are different
resolutions for the same image, each of them saved in a different folder: assets/1.0x , assets2.0x,
assets3.0x, etc. The app gets the device Pixel Ratio, rounds it, and uses the closest image. This
allows to see the markers almost with the same size on different resolution screens. This is
explained in [137], and the code that implements this selection is shown below:

 //First get the device pixel ratio
 double dpi = MediaQuery.of(context).devicePixelRatio;
 // With this ratio the marker image is properly scaled
 twizilineIcon = await BitmapDescriptor.fromAssetImage(
 ImageConfiguration(devicePixelRatio: dpi),
 'assets/twizyline_marker.png');

When the users tap on any of the markers, the screen centers on that marker, and it displays a
pill with the parking name, the free spots and the available Twizys in it (see Fig. 55).

The pill also displays the Renault icon and a Twizy icon. To request a Twizy from a selected
parking area, users must tap the pill. The app will then display a loading icon while the petition
is processed (see Fig. 56).

Front-end implementation for an automatized car parking

Fig. 55 Marker tapped view

Fig. 56 Requesting Twizy

Chapter 3 - IMPLEMENTATION

63

If the request is successfully processed, then the server will assign a Twizy to the user and will
generate a QR code to pass through the turnstile. The app will show the user its assigned Twizy
ID (this number will be painted on the car) and the QR code (see Fig. 57). You might have noted
that the “TWIZY OUT” message found in ANNEX 1 does not contain information about the QR
code. This functionality is still being built, so in the future the server will generate the unique QR
code for each Twizy assignment and send it to the user. As for now the app always displays a
certain QR code to show how it would look like.

Fig. 57 Twizy assigned

If for some reason the server cannot give the user a Twizy or there is any trouble with the
communication, the app will inform the user (see Fig. 58).

Tapping on a marker, also produces the “Get directions” button to show up. If tapped, this
button opens Google Maps on Android or Maps on iOS and gives the user directions to get to
the selected parking area (see Fig. 59).

These are the actions that a normal user can perform in the map screen. These actions come
with a set of actions from the application itself, that are going to be describe in following lines.
Starting from the beginning, when the map is built, the app sends a message to the server
requesting the list of parking sites, their status and location. There is a timer to wait for this
response. Once the timer expires, the app unsubscribes from the topic where this list is sent. If
no parking information has been received the app shows an alert error (see Fig. 60).

Front-end implementation for an automatized car parking

Fig. 58 Couldn't get a Twizy

Fig. 59 Google Maps directions

Chapter 3 - IMPLEMENTATION

65

Fig. 60 No parking sites found error

But if at least one parking information is received, it will be displayed on the map. When the
timer expires, the app will unsubscribe from the topic anyways, but no error will be displayed.

The map widget is part of the google_maps_flutter package. The map has a list of markers that
can be displayed. A marker is an item displayed on the map, which nowadays is sort of
standardized for the most of the app maps as it is shown in Fig. 61. However, in our app, a
custom marker has been designed as it is shown in Fig. 62. This custom marker reinforces the
corporative image.

Fig. 61 Typical Marker in maps apps

Fig. 62 TwizyLine custom Marker

Front-end implementation for an automatized car parking

Marker class keeps the marker Id, position, and the behaviour on tap action. There is a function
listening to the stream where this information is sent. When this information arrives, the parking
id and location are added to a list of markers, the _markers list. Other information received, like
the available Twizys or free spots, is stored in a list of PinInformation objects, the
TwizyLineStations List. PinInformation is a class created for the app to hold the parking
information. Each Marker object is linked to its PinInformation object.

streamUserSubscription = streamUser.listen((value) {
 List<String> message;
 message = value.payload.split("/");
 if (message[0] == 'NEW-PARK') {
 final index = twizylineStations.length;
 setState(() {
 twizylineStations.add(
 PinInformation(
 parkingID: message[1],
 locationName: message[2],
 location:
 LatLng(double.parse(message[3]), double.parse(message[4])),
 availableTwizy: int.parse(message[5]),
 freeSpots: int.parse(message[6]),
 pinPath: 'assets/twizy_icon.png',
 avatarPath: 'assets/renault_icon.png',
 labelColor: Colors.green,
 index: twizylineStations.length,
),
);
 _markers.add(
 Marker(
 markerId: MarkerId(message[1]),
 position:
 LatLng(double.parse(message[3]), double.parse(message[4])),
 // If set to true it doesn't show the two buttons at the bottom
 // right of the screen that redirect to Google Maps App, but it
 // wouldn't center the map on the marker on tap either. The
 // routing button has been reimplemented as it is overlapped by
 // infoPill but the center map function hasn't been reimplemented
 // so will keep it false for now.
 consumeTapEvents: false,
 onTap: () {
 setState(() {
 currentlySelectedPin = twizylineStations[index];
 pinPillPosition = 0;
 _routeButtonVisible = true;
 });
 },
 icon: twizilineIcon),
);
 _noMarkersYet = false;
 });
 }
});

The PinInformation object has an index parameter. This parameter is used to find the object in
the TwizyLineStations list. As the index parameter is final (every variable assigned inside a
stream.listen is final. Its value is stored and not its memory direction), every Marker object

Chapter 3 - IMPLEMENTATION

67

stores a different index value on its onTap method. This is the way markers and their info pill are
linked.

The same function also listens to another stream where the parking sites information is
refreshed. The server sends a periodic message with each parking id, available Twizys and free
spots. The app then checks its list of PinInformation objects and for every parking id updates its
status. The code that performs this refresh action is shown below:

 streamAppSubscription = streamApp.listen((value) {
 List<String> message = value.payload.split('/');
 if (message[0] == 'INFO-PARK') {
 setState(() {
 for (PinInformation pin in twizylineStations) {
 if (message[1] == pin.parkingID) {
 pin.availableTwizy = int.parse(message[2]);
 pin.freeSpots = int.parse(message[3]);
 }
 }
 });
// print('INFO PARKING ACTUALIZADA');
 }
 });

This makes the information displayed on the app reliable. As this periodic message is send every
few seconds.

When the user requests a Twizy tapping the pill, the app sends a message to the server. This
message contains the id from the parking where the Twizy is being requested. The server
answers with the Twizy Id and the QR code.

3.7 Internationalization
As I mentioned before, the users interface is internationalized. Login, Logon and Map screens
can display all their text in both English and Spanish. As well as alerts and errors. The
internationalization is shown in figures from Fig. 63 to Fig. 70.

Fig. 63 Login screen in
Spanish

Fig. 64 Logon form in
Spanish

Fig. 65 Map view in
Spanish

Fig. 66 Assigned Twizy
view in Spanish

Front-end implementation for an automatized car parking

3.8 Admin app resources
At this point we have seen the app as a mechanism to get access to TwizyLine service. But, the
app is a valuable tool for admins too. This would improve the service quality, making TwizyLine
easier to maintain, manage and improve. There are four different tools for admins:

• The map screen: a common user map screen plus all the fleet vehicles real time position.
• The error log screen: a list of active errors that can be fixed or dismissed
• The manage screen: a table to see the state of a determined parking area or a certain

vehicle log.
• The commands screen: an interface to directly send and receive commands from a

Twizy.

These tools are also useful for developers to test the system.

The 4 screens are part of an IndexedStack Widget. This widget preserves the state of all its
children. It only displays one of its children at a time. It uses an index parameter to choose which
child is displayed, as it can be seen in the following lines of code:

IndexedStack(
 index: _index,
 children: <Widget>[
 adminTwizyMap(),
 adminErrorLog(),
 adminManagement(),
 adminCommands(),
],
),

Preserving the state in Flutter is very important and sometimes is not trivial. Most of the app
state is managed by the framework, like textures. But other aspects have to be managed by the
developer. The state of a stateful widget contains all the values that can change. Those are all
the data needed in order to rebuild the UI at any moment. For instance, the error log state
contains the information about how many errors there are, and all the info displayed on every

Fig. 67 Validation error
message in Spanish

Fig. 68 Server connection
error in Spanish

Fig. 69 Loading message
in Spanish

Fig. 70 Twizy assignment
error in Spanish

Chapter 3 - IMPLEMENTATION

69

card. If this state was not preserved, every time this screen is accessed it would be empty, and
we would have to request to the server the list of errors every time. Server requests usually take
time, and that worsens the user experience. Preserving the state allows to always have this
information available. It also allows, for instance, displaying a new error card when it is
broadcasted by the server. Even if it was received while we were on a different screen.

The state managed by the developer can be divided in two conceptual types. Ephemeral state
and app state.

The ephemeral state barely needs to be accessed by other parts of the widget tree. It is
contained inside a single widget. To manage this state, we will only need a Stateful widget. The
state variables can be modified using the setState() method. This method makes the framework
schedule a build for this State object. Examples of ephemeral state are the current selected tab
in a Bottom navigation bar or the current page in a PageView.

When the state has to be shared across different parts of the app and kept between user
sessions then it is app state. There are several ways to manage the state in Flutter, like Redux,
BLoC/Rx, Inherited model or Scoped model. A list of state management options can be found in
the reference [138]The simplest approach is probably the provider package. This package was
at first implemented on this app, but then some troubles managing the context appeared and
so it was used directly the IndexedStack widget to manage all the state information, which
solved all the problems found. Those problems were related to the fact that with the provider
package it becomes easier to lift the state of some objects, but it is not so simple to lift the state
of the context itself, so a new context is generated by the framework every time the user goes
out the screen and back in, this makes impossible some tasks like displaying SnackBars. This is
because the SnackBar depends on the context currently displayed, but the order to display the
SnackBar is sent when the user taps a button that is displayed by the error dialog that is
displayed when the user taps on one of the error cards. Because the cards are created when the
error is generated, but the SnackBar has to be displayed when the user taps the button, if the
user had gone out and back in the scree between those two events, the context would have
changed as it is not lifted by the provider package, therefore the context would not match and
the SnackBar could not be displayed [139] [140].

Front-end implementation for an automatized car parking

Fig. 71 Error Log view

To switch between the four screens, it was decided to use the upper bar. This bar displays four
different icons, each one drives to one of the four admin screens. This can be seen in Fig. 71.
The map icon drives to the Map page. The list icon drives to the error log page, this page is the
first displayed when an admin logs in. The traffic light icon drives to the management page. And
the car icon drives to the commands page.

Every time an icon from the bar is pressed, not only does the index parameter change, but it
also pauses and resumes the different streams used in the screens. So only the necessary
streams are active on each screen. Also, when the widget is disposed (this means that the widget
will not be displayed anymore and it is removed from the tree), the app cancels all the streams.
This is important in order to lighten up the work the app has to do, but also to reduce the size
of the app. If streams are not canceled, the information they keep could remain, making the app
take up more space on disk.

The four screens of the admin mode are described in the next sections.

3.8.1 Error log
This page is displayed first once the admin logs in. When the admin logs in the app sends the
server a request for the errors list. The server has a mailbox with the current errors, and it sends
it to the app as a response to this request. If the server finds any other error, it will broadcast it
to all the active admins, and the app will automatically display the new error. Every error is
displayed in its own card. The cards alternate colors to improve visibility as shown in Fig. 75.
Initially, the card only shows the error title, and once it is pressed, it displays more information.
When there are no errors to fix, it shows a message “No errors yet” as shown in Fig. 71. The
errors that can be received are shown in ANNEX 2.

Chapter 3 - IMPLEMENTATION

71

Fig. 75 Error Log screen with errors

Figures Fig. 72, Fig. 73, and Fig. 74 show how the information about errors is displayed. An alert
dialog shows up with the error title, the vehicle or parking id, the date when the error happened

Fig. 72 Vehicle error Fig. 73 Parking error Fig. 74 Scrollable error

Front-end implementation for an automatized car parking

and some more useful info for the admin. The app automatically detects if the error is from a
vehicle (Fig. 74a) or from a parking (Fig. 74b) depending on the id. The alert dialog is scrollable,
so long messages can be seen too, as it is shown in Fig. 74c. The alert dialog has 3 buttons. The
cancel button behaves just like tapping outside the alert dialog, it just hides the alert dialog. The
discard button deletes the error card from the screen, but the server still keeps the error, so
next time the admin opens the app this error will show up on the list again. The fixed button
also deletes the error card from the list, but it sends a message to the server too. This message
informs the server that the error has been fixed, so it can delete it from the mailbox. Then the
server will store in the database the error fixed and the admin who solved it.
As IndexedStack keeps the state, the list will keep its elements while the admin does not close
the app.

3.8.2 Map
The admin map is the same as the common user map. The only difference is that admin map
displays the fleet vehicles position on real time. The vehicles markers show the vehicle ID when
tapped. That kind of markers are shown in Fig. 76.

Fig. 76 Twizy Marker

Fig. 77 Admin Map Twizy location

Chapter 3 - IMPLEMENTATION

73

3.8.3 Management
Management screen can display a table to see a parking status or a vehicle log. The Fig. 78 shows
a search button where the admin can insert the desired ID. While no ID is introduced the search
field frame looks red and the screen says: “No ID selected”. If the ID is out of the valid range or
it is not assigned to any known vehicle or parking, the app will inform the user as shown in Fig.
79.

Fig. 78 Management screen first view

Fig. 79 Management screen non-existent ID

If the ID matches a parking ID, then the app sends a message to the server requesting the info
about the desired parking. The app displays the received information through a table, which is
organized so that it represents the parking. So, it has as many cells as parking spots. The app
displays on red the spots where there is a Twizy, and it shows the ID of the vehicle filling the
spot. If the spot is empty the cell appears on grey. The table also shows where the entrance and
exit are regarding the grid of the parking slots. This gives the admin a clear image of the parking
disposition and status. Fig. 80 shows the screen that the app would display representing the
parking with ID 63002, and Fig. 81 shows a simulation of how this parking would look like in the
real world, proving that the app actually represents the parking status.

Front-end implementation for an automatized car parking

Fig. 80 Management screen parking representation

Fig. 81 Parking status

This widget is not scrollable, but it resizes the table to fit the screen (this would change if
parkings grow making it impossible to display the whole parking without scrolling). In the
following code the app measures the available screen and adapts the table to it. To do so, the
app gets from the server the necessary data to represent the parking, and calculates the
available space for every cell. This code also checks if a cell is empty or not to paint it on the
right color and fill it with the corresponding vehicle ID or the “ENTRY” or “EXIT” message when
it has to.

void getParkingRepresentation() async {
 int i, j, k;
 String spotStatus;
 MaterialColor color;
 List<TableRow> rows = new List();
 List<DataRow> dataRows = new List();
 final keyContext = stickyKey.currentContext;
 double height = 0;
 // This makes sure the orientation is landscape and the keyContext is not
 // null so the height can be properly measured
 try{
 while (MediaQuery.of(context).orientation != Orientation.landscape ||
 keyContext == null) {
 await asyncSleep(100);
 }
 } catch(e){

Chapter 3 - IMPLEMENTATION

75

 print("getParkingRepresentation wasn't loaded");
 }
 final box = keyContext.findRenderObject() as RenderBox;
 height = box.size.height;
 rows.clear();
 streamParkingManagementSubscription = streamAdmin.listen((value) {
 rows.clear();
 List<String> message = value.payload.split('/');
 //PARKING ID
 if (id != null && int.parse(id) >= 63000) {
 if (message[0] == "PARK") {
 var matrix = new List.generate(int.parse(message[1]),
 (_) => new List<Container>(int.parse(message[2])));
 for (i = 0; i < int.parse(message[1]); i++) {
 for (j = 0; j < int.parse(message[2]); j++) {
 spotStatus = "empty";
 color = Colors.grey;
 for (k = 3; k < message.length; k++) {
 List<String> spotInfo = message[k].split(';');
 if (i == int.parse(spotInfo[0]) - 1 &&
 j == int.parse(spotInfo[1]) - 1) {
 spotStatus = spotInfo[2];
 color = Colors.red;
 }
 }
 // Draws ENTRY on the first cell
 if (i == 0 && j == 0) {
 matrix[i][j] = Container(
 height: height / double.parse(message[1]) -
 5 / double.parse(message[1]),
 color: color,
 child: Column(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: [
 Text(spotStatus),
 Text(
 "ENTRY",
 style: TextStyle(
 color: Colors.white, backgroundColor:
Colors.green),
),
],
),
);
 // Draws EXIT on the first row's last cell
 } else if (i == 0 && j == int.parse(message[2]) - 1) {
 matrix[i][j] = Container(
 height: height / double.parse(message[1]) -
 5 / double.parse(message[1]),
 color: color,
 child: Column(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: [
 Text(spotStatus),
 Text(
 "EXIT",
 style: TextStyle(
 color: Colors.white, backgroundColor:
Colors.green),

Front-end implementation for an automatized car parking

),
],
),
);
 } else {
 matrix[i][j] = Container(
 height: height / double.parse(message[1]) -
 5 / double.parse(message[1]),
 color: color,
 child: Center(
 child: Text(spotStatus),
),
);
 }
 }
 rows.insert(0, new TableRow(children: matrix[i]));
 }
 setState(() {
 nonexistentID = false;
 rows = rows;
 table = Table(
 border: TableBorder.all(),
 children: rows.length != 0
 ? rows
 : [
 TableRow(
 children: [
 CircularProgressIndicator(),
 Center(
 child: Text("Introduce parking or vehicle ID"),
)
],
)
],
);
 });
 } else if (message[0] == "PARK-ERR") {
 setState(() {
 nonexistentID = true;
 });
 }

On the other hand, if the ID matches a vehicle ID, the app will display a table with the historic
log of the vehicle. The table lists the times the vehicle has entered a parking. Every row shows
the enter date, the parking ID, the exit date, and the user assigned to the Twizy. If the vehicle is
still inside a parking, the exit and user columns will display “None”.

Chapter 3 - IMPLEMENTATION

77

Fig. 82 Management screen vehicle log

Once the table is displayed either the parking or vehicle message request is resent periodically.
This updates the table making the representation reliable.

3.8.4 Commands
The commands screen is designed to improve the system development and help on diagnosis
and repairs. The screen shows a search button where the admin must enter the vehicle ID, 8
buttons that are used to send commands to the vehicle, and a window at the bottom where
received messages are displayed. The errors that can be seen in this window can be found in
ANNEX 2. While the admin does not enter any ID, the buttons are disabled and the bottom field
displays a message “SELECT VEHICLE ID”. Also, the ID field shows the frame on red.

Fig. 83 Commands screen first view

Once the ID Is introduced the search field frame changes to green, the buttons are enabled, and
the bottom field looks empty. There is a button for every command the car can receive. The

Front-end implementation for an automatized car parking

information about the commands and messages that use the Twizy can be found at the Final
Degree Thesis report of the TwizyLine member Ignacio Royuela [27]. To give a brief explanation,
there are 8 buttons. CONNECTED, STANDBY, AM-ON, AM-OFF, CONTINUE, PAUSE, GOTO y
RESTART. The CONNECTED button is used to connect the vehicle to the app if the server is down
or the car is being repaired, the STANDBY, AM-ON and AM-OFF buttons are used to choose the
vehicle operation mode. If the vehicle is in autonomous mode (AM-ON) some commands can be
sent to it. Those commands are given through the buttons CONTINUE (which makes the vehicle
start moving), PAUSE (which makes the vehicle stop moving), or GOTO (which can define a route
to follow). The RESTART button is used to restart the vehicle and it must be pressed when the
vehicle has an error. The messages that the app and the vehicle exchange can be found at ANNEX
1.

All the buttons work the same way. They light in a chosen color when the proper message is
received. All the messages received are shown at the bottom of the screen. This reinforces the
ability of the admin to know what is happening at every moment, as there is a straight relation
between the button that lights and the last message received. So, for example, when an admin
presses the PAUSE button, it will not light until the message OK from the car is received.

Fig. 84 Commands screen ID introduced

Two situations may arise when operating the vehicles. In the first situation, the car is already
turned on and it has logged into the server, at this point the app starts receiving messages from
the vehicle and can send any command to the vehicle. In the second situation, the car is off and
therefore it is not connected to the server. In this case, when the car is turned on, the admin
can handle the connection procedure just in case the server is not available at that time. The
procedure is the next one: When the vehicle turns on it starts sending a “connect” message. This
message is sent periodically until someone answers it. The app receives the connect message

Chapter 3 - IMPLEMENTATION

79

and shows it at the bottom of the screen. At the same time, the button CONNECTED lights in
yellow as shown in Fig. 85, and the admin has five seconds to tap on it.

Fig. 85 Commands screen Connect received

If the admin does not hit CONNECTED on time, the button lights red until the message is received
again as shown in Fig. 86. During the time that the button lights red if the admin presses
connected it will not work. When a new “connect” message is received the button lights yellow
again and the admin has again five seconds to tap on the CONNECTED button.

Once the admin taps on the CONNECTED button, the app sends an answer to the car and it
considers to be connected, stopping sending the connect message. Moreover, the button
CONNECTED will light in green for 5 seconds. After that, the vehicle starts by default in am-off
mode, this is, it is not in autonomous mode.

Front-end implementation for an automatized car parking

Fig. 86 Commands screen Connect missed

Fig. 87 Commands screen Vehicle connected

Chapter 3 - IMPLEMENTATION

81

The vehicle can be either in “AM OFF” (manual) or “AM ON” (autonomous) or “STANDBY” mode
(This mode is activated when the vehicle stops inside a parking. This could happen because it
found an end of row RFID tag or it detected a vehicle in front of it). These modes are self-
excluding, and only one can be selected at the same time. When one of them is selected the
respective button lights in blue color, and the other 2 do not light.

Fig. 88 Commands screen Standby mode

Once the vehicle is on “AM ON” mode it can be either on “CONTINUE” or “PAUSE” mode. The
default is “CONTINUE” mode. CONTINUE and PAUSE modes are self excluding too, and their
respective buttons light in orange button. When the vehicle is in the CONTINUE mode, it is
moving in autonomous mode. If the vehicle is in the PAUSE mode it is in the autonomous mode
too, but it is stopped (for instance because it found a vehicle in front or an obstacle). The pause
mode is the previous step to the STANDBY mode. When a vehicle enters a row where there are
more Twizys, it follows the line until it finds a Twizy, and then it stops and informs the server,
after a timeout expires the vehicle switches from AM-ON mode to STANDBY mode.

Front-end implementation for an automatized car parking

Fig. 89 Commands screen Continue mode

Fig. 90 Commands screen Pause mode

Chapter 3 - IMPLEMENTATION

83

The GOTO command can be used to give the car a route. It provides the admin four text fields
(see Fig. 91). This command format is: “GOTO (initialSpeed [km/h]) (defaultFork [L or R]) [T(RFID)
[(newSpeed [km/h])]...] [V(RFID) (newSpeed [km/h])...] S(RFID)”, as it is explained more detailly
in the Final Degree Thesis report of the TwizyLine member Ignacio Royuela in [27]. There are
mandatory fields to specify the INITIAL SPEED, the DEFAULT FORK and the End of Row RFID tag
identifier. The INITIAL SPEED is the speed the vehicle starts the route with, and if not changed
this speed remains constant until the car stops. The DEFAULT FORK indicates if the vehicle must
turn left or right by default in bifurcations. The End of Row RFID is used to tell the vehicle when
to stop. In this field the admin only needs to enter the RFID tag, and the app will place the ‘S’
before the RFID tag ID by itself. Once the vehicle reads this RFID tag it will stop. Just with these
three options a route can be given to the vehicle.

There is another optional field used to give more complex routes to the vehicle. The OPTIONAL
DECISION RFID field has a more complex format. Every order gives instructions to the vehicle to
do when finding the specified RFID tag identifier. If the order set the vehicle to turn to the
opposite direction to that established in DEFAULT FORK, it is indicated by a ‘T’ followed by the
RFID tag ID after which the turn must be done, with no space between. If the order also changes
the speed plus the direction, it is indicated by the speed in Km/h after the RFID tag identifier,
separated by one space. If the order just changes the speed of the vehicle after a determined
RFID tag identifier is found, it is indicated by a ‘V’ followed by the RFID tag identifier with no
space between, and the speed to take after the tag, specified in Km/h, separated by one space.
Different orders can be concatenated using one space as separator between each one.

Every field shows a hint text once tapped, helping to understand how every field should be filled.
The fields also have a maximum length (but the decision RFID field) and are validated by the app
after the send button is pressed Fig. 94. This validation includes checking the mandatory fields
are filled, the defaultFork field is either L or R but no other character, the initial speed is not over
25 km/h, or the end of row RFID field only contains numeric characters. This validation is
followed by a proper keyboard display (text keyboard when alphanumeric characters are
accepted, as it is shown in Fig. 92, and numeric keyboard when only numbers are accepted, as
it is shown in Fig. 93).

The info button next to the send button displays a dialog with instructions for the admin to
understand how the GOTO command works (see Fig. 95).

Front-end implementation for an automatized car parking

Fig. 91 GOTO command fields

Fig. 92 GOTO command: field hint text keyboard Fig. 93 GOTO command: field hint numeric
keyboard

Chapter 3 - IMPLEMENTATION

85

Fig. 94 GOTO command: fields validation

Fig. 95 GOTO command: instructions

Front-end implementation for an automatized car parking

During all the operation with the buttons that has been described above, whenever an error is
received it is displayed on red at the bottom window. Also, the RESTART button starts flashing
red. This is because errors need the car to be restarted to be fixed.

Fig. 96 Commands screen Error and Restart

The commands functionality is the only communication between the app and the car that does
not pass through the server. Like any communication in TwizyLine, it works by using MQTT. So,
it necessarily goes through the MQTT broker. But the broker and the server are not the same
program, and they could even be working on different machines. The fact that this functionality
does not need the server to work means it could be used to move the vehicles inside a parking
even if the server is fallen. The app and the vehicle itself implement safety mechanisms to make
sure the tool is safe to use.

Chapter 3 - IMPLEMENTATION

87

3.9 Dropdown menu
At the top left of the screen there is a three points icon at the app bar. This icon is visible either
on the admin view or the users view. This button deploys a dropdown menu as shown in Fig. 97.
This menu displays the option to log out, together with contact and about options.

Fig. 97 Dropdown menu

The log out button deletes the saved credentials and sends the user to the login page. The
contact and about us buttons should redirect to our website where more info would be given.
Our website is still a future line tough. The website can be directly displayed on the app using a
WebView. The decision to use a website instead of creating a new page in the app is to reduce
costs and time. The website would be available as well for people that do not have the app
installed. The information about the service should be available to anyone to attract further
users to use the service. So, we could develop a responsive website once, available for everyone.
The website would host information relative to how the system works, frequently asked
questions, contact information or TwizyLine brand info. Displaying this website in the app is
more efficient than creating the content twice and maintaining both.

Front-end implementation for an automatized car parking

Chapter 4 - USE CASES. TEST AND INTEGRATION

89

4. USE CASES. TEST AND INTEGRATION
As it was explained in chapter 1, this Final Degree Project is part of a bigger one, which is mainly
described in the Final Degree Projects of Samuel Pilar [26] and Ignacio Royuela [27]. A great part
of the three projects were developed during the pandemic COVID-19, which means that they
were mainly developed in an isolated way. As a consequence, the test and integration phase,
which is crucial in most of the team projects, was essential in this one. This chapter presents the
use cases considered to test and integrate the different parts of the project, and in this report,
the focus is mainly on the results of the app. The results for the other parts of the project are
included in the respective thesis of the other members of the team.

Consequently, this chapter describes the interaction between the user and the app as well as
the interaction between the app and the back end. It is analyzed not only the success cases but
also the error cases, showing how the app can give a reasonable response to any failure.

In order to run the tests, a data base with several cars, users, admins and the rest of elements
necessary to run them was created. This data base includes several parking areas in the city of
Valladolid and there were given a specific configuration of cars. The detailed information about
the initial conditions of the test can be read in the Final Degree Thesis report of the TwizyLine
member Samuel Pilar [26]

The use cases included in this chapter are, in the first case, the procedure by which a user logs
into the app, finds the nearest car park and requests a vehicle from it. And secondly the
procedure by which an administrator can, in addition to viewing errors recorded in the server
database, receive errors in real time and flags them as resolved.

4.1 Use case 1. User gets a car from a parking.
The first use case is the procedure that allows a user to get a vehicle from a parking. The initial
conditions of the test are the next ones: the user has already been registered in the system but
is still not logged in, and the app does not have its credentials stored. Moreover, the user has its
smartphone language set to English, and has no administrator permissions. Regarding the app,
the app has not location permission in the smartphone. The test must check that the user can
sign in, find the desired parking area and request a vehicle. The message exchange diagram can
is shown in Fig. 100.

As mentioned before the user is not logged in. The user is registered in the system, but the app
does not have its credentials stored. This could happen if the user just got a new phone, if they
just logged out, or if they cleaned the app stored data through the phone settings. Thus, the first
screen displayed is the login page. Once in this screen (see ¡Error! No se encuentra el origen de
la referencia.) the user just has to enter its credentials (username and password) and press the
login button. When the login button is pressed, a SnackBar shows up saying “Processing data”
and the buttons turn to transparent background and grey content and they are invalidated, so
if the user tries to press them it will not produce any action. The buttons remain invalid until the
server answers. The results of all this process are shown in Fig. 98. and Fig. 99.

Front-end implementation for an automatized car parking

Fig. 100 Use case 1 message exchange diagram

If the user presses the button and none of the fields are filled, the app displays a warning, as
well as if one of the fields is empty or if the credentials are not valid. All these situations were
tested and the results can be seen in Fig. 101, Fig. 102, Fig. 103, and . Fig. 104.

If there is no response from the server, a timer expires and an alert dialog is displayed informing
that there was no response and suggesting the user to check their internet connection or try
again later. To perform this test, the connection was drop down and the result can be seen in
Fig. 105.

Fig. 99 Login screen view Fig. 98 Login screen processing

Chapter 4 - USE CASES. TEST AND INTEGRATION

91

*LS: Login Screen

Fig. 105 alert dialog no response from server

The app connects with the MQTT broker, which has a file with the usernames and passwords
stored. These passwords are encrypted. The broker checks this file and returns 0 if valid or 1 if
not valid. If the response is 0, the app subscribes to the topic “log” and sends the server the
message “LOGIN/user/password” (In our scenario: “LOGIN/twizy/1234” as shown in Fig. 100)
through the topic “log”. This topic is only used during the login or logon process, and once the
user is logged in, the app unsubscribes from this topic. This redundancy is for a double security,
because both the server and the broker check that the user is valid.

Once the user is logged in, the app unsubscribes from the “log” topic and subscribes to the topics
“username/app” (twizy/app because that is the username entered in ¡Error! No se encuentra el
origen de la referencia.) and “app”. The “app” topic is a general topic for broadcast messages,
and the “Twizy/app” topic is unique for every user (every user has a unique username). Topics
where explained in section 3.2, and more information about MQTT in this project can be found

Fig. 101 LS both fields
empty

Fig. 102 LS login field
empty

Fig. 103 LS password field
empty

Fig. 104 LS invalid
credentials

Front-end implementation for an automatized car parking

in the Final Degree Project by Samuel Pilar [26]). This topic is used by the server to send
messages to the app, and the app publishes its messages to the server using the topic
“twizy/server”. The “Twizy/app” topic receives a message from the server with the format
“ADMIN/(0 or 1)”. This is because when the server receives the LOGIN message it also checks if
the user has administrator permissions or not. If the user has administrator permissions, the
server answers with “ADMIN/1” and if not, it answers with “ADMIN/0”. Because our user does
not have admin permissions the received message was ADMIN/0 as shown in Fig. 100. The app
waits for the server response. Once the response is received, the app stores the user credentials,
so the next time the user opens the app there is no need to load the login page and the map
view is shown directly. As explained previously, if there is no response from the server, the app
shows an alert dialog To perform this test the server was shut down and it was checked that the
app displayed the alert dialog shown in Fig. 105.

At this point of our scenario the user has successfully logged in, and the app has subscribed to
the “app” and “Twizy/app” topics. The app is about to load the map view, but the app
permissions are unknown. Thus, the app asks the user for location permissions, as shown in Fig.
106a. While the permissions are accepted and the map is loaded it was checked the app displays
an animation “drawing “ TwizyLine slogan: “Drawing the future” as shown in Fig. 106b. As well
it was checked that if the user does not accept the location permissions, the alert dialog
requesting them is displayed again, as the app cannot work properly without those permissions.

The next part of the test involves getting the parking areas information from the server. Once
the map view is built it is displayed to the user, but there is a translucid grey layer over it that
displays the message “Finding TwizyLine stations…” and a circular progress indicator as shown
in Fig. 108. This layer is displayed while the app gets the parking locations from the server. When
the map page is loaded the app sends to the server a message “REQUEST-PARKS” using the topic
“twizy/server” as shown in Fig. 100. Once the server receives this message it answers with a
message “NEW-PARK/id_parking/name_park/latitude/longitude/available Twizys/free spots”
for each parking area that it has stored in the database as shown in Fig. 100. Each of those
parking lots is stored in a list, and a marker is displayed on the map. In our case, the data base
contained information of three parking areas, as it can be seen in the Final Degree Project by

Fig. 106 Asking for permissions Fig. 107 Loading Map

Chapter 4 - USE CASES. TEST AND INTEGRATION

93

Samuel Pilar in [26]. If no parking location is received, a timer expires, and the app displays the
alert dialog shown in Fig. 109 .

Because the server periodically updates the parking information status, during the test, after
getting a vehicle from one of the parking lots, three “INFO-
PARK/id_parking/availableYwizys/freeSpots” messages are received (one per each parking
stored in the server database) as shown in Fig. 100, and the information pill updates its
information.

Once the parking locations are received, the list of parking lots is created, and the markers are
displayed on the map. With the test database, the result obtained is shown in Fig. 110.

When the user touches one of the markers from the map the app displays the screen shown in
Fig. 111. When the user clicks on the pill, the app sends a “PICK-UP/id_parking” message to the
server as shown in Fig. 114. This message contains the parking id from the parking that is
represented by the pressed marker. While the app waits for the response from the server to this
message, it is displayed the screen shown in Fig. 112. The server then answers with the message
“TWIZY-OUT /id_vehicle” as shown in Fig. 100. Then the app displays the screen shown in Fig.
113. This screen displays the ID of the assigned Twizy. If there is no response from the server a
timer expires, or if there are not available Twizys in the parking or the server cannot assign a
Twizy to the user for some reason, an alert dialog is displayed. All these situations were tested
and Fig. 114 was displayed.

Fig. 108 Finding TwizyLine stations layer

Front-end implementation for an automatized car parking

Fig. 109 No parking location received

Fig. 110 Map view with markers

Chapter 4 - USE CASES. TEST AND INTEGRATION

95

Fig. 111 Marker pressed view

Fig. 112 waiting for server response to Twizy request

Front-end implementation for an automatized car parking

Fig. 113 Twizy assigned screen

Fig. 114 Error getting a Twizy

Chapter 4 - USE CASES. TEST AND INTEGRATION

97

4.2 Use case 2. Admin fixes an error.
The second use case is the procedure that allows an admin to fix an error of a vehicle. The
initial conditions of the test are the next ones: the user has already been registered in the
system, the user just logged in, and the app has the user credentials stored. Moreover, the
user has administrator permissions, thus the user is an admin. The admin username is
“lucia”. Regarding the app, the app has location permission in the smartphone. The test
must check that the admin can see the error information, receive errors in real time and fix
them. The message exchange diagram is shown in Fig. 115 Use case 2 message exchange
diagram.

Fig. 115 Use case 2 message exchange diagram

The first screen displayed to an admin when they log in is the error log screen shown in Fig.
116. While this screen is being built the app sends the server the request to
get the errors stored in the database. This request format is “ERR-FIX/id_fix”, and this
message is sent through the MQTT topic lucia/admin_server as shown in Fig. 115 Use case
2 message exchange diagram. In response to this request the server answers with a message
“ERR/id_fix/[id_vehicle OR id_parking]/fail/explanation/error_date/more_info” per each
error stored in the database. This error is sent through the lucia/admin topic, which is a
personal topic for each user. The id_fix of the error is a unique and auto incremental
identifier of the error in the database. This identifier is used to flag the error as fixed. The
other fields are used to provide information to the admin. At this point the admin can see
two errors in its error log screen (see Fig. 116) and can also see more information about
them pressing their card. The information displayed is shown in Fig. 117 . In our test an error
in the vehicle with ID 10 was generated, this produced the message“ERR/3/10/Error/ The
CON_STATUS frame is not being received. Is the CON-MOD on? Is the CAN-Bus connection
of both modules correct?/ 01-07-2020 23:45/None?” to be sent through the topic “admin”
as show in Fig. 115. This is a broadcast topic subscribed by all the active app admin users,
therefore every admin that has the app opened updates its error log screen with this new

Front-end implementation for an automatized car parking

error. The server stores the error in the database as well, so those admins that do not have
the app active at the moment the error occurs, will receive the message from the database
when they open the app again.

Now the admin can see 3 errors in its error log screen as shown in Fig. 118. Then the admin
fixes the error (For instance, reconnecting a wire that had been disconnected) Now that the
error is fixed the admin proceeds to flag the error as fixed using the alert dialog in the error
log screen as shown in …. When pressing the button, the message “ERR/3” is sent through
the “lucia/admin_server” topic, a SnackBar is displayed (see Fig. 120), the server deletes this
error from its database, and sends the vehicle a RESTART message.

Fig. 116 Errors from the database

Chapter 4 - USE CASES. TEST AND INTEGRATION

99

Fig. 117 Error information displayed

Fig. 118 Real time error received

Front-end implementation for an automatized car parking

Fig. 119 Admin flags the error as fixed

Fig. 120 SnackBar informs the error has been fixed

Chapter 4 - USE CASES. TEST AND INTEGRATION

101

Front-end implementation for an automatized car parking

Chapter 5 - CONCLUSIONS AND FUTURE LINES

103

5. CONCLUSIONS AND FUTURE LINES
This app cannot be understood without the context of TwizyLine project. I hope this app can be
a visual support for the project, reflecting the effort and passion that my partners and I are
putting in this project. This application opens the door to TwizyLine to be a carsharing service.
Developing in a framework like flutter has definitely been a challenge. And using MQTT, a
protocol for IOT to connect the app and the server has not been easy either. But I hope those
decisions demonstrate to be good. Flutter allows us to develop just one app for the two main
smartphone OS worldwide. And MQTT permitted developing just one server for both cars and
users.

Summarizing, the specific objectives this project has reached are:

• Developing an app that can be released on the current two main smartphone OS with
just one code.

• Designing an easy, beautiful, and clear UI for users, allowing them to access to the
TwizyLine carsharing service in multiple languages.

• Providing the service administrators with a useful tool to develop, improve and manage
TwizyLine.

• Integrating the app into the rest of TwizyLine systems and testing everything works
properly.

There is obviously a lot of work to be done. Some of the future lines of the app are:

• Cyphering MQTT communications through TLS. This would improve the security as the
messages would not be sent on plain text.

• Safely storing the credentials that the app saves when login in.
• Implementing a splash screen at the start of the app. This would improve the app

appearance and remark the TwizyLine brand. Also improving the loading map animation
as for now it is a gift embedded in the screen, but it should be a canvas animation.

• Implementing notifications. Those would be useful for example to inform the user that
the Twizy they just returned safely arrived to its parking spot or to inform administrators
that a new error has emerged

• Implementing a search bar in the map screen to find parking stations by their name.
• Switching the order the vehicle log table is displayed in the management screen for

admins and limiting the logs displayed to 25.
• Adding scroll ability to the parking representation in the management screen for the

parking lots that are too big to be represented in the device screen size.
• Requesting users to scan their driving license. The required license could vary depending

on the Twizy model (45 Km/h max or 80 Km/h max) and the local regulation.
• Highlighting the closest parking station when the map is built.
• Limiting to users the possibility to request a Twizy only when they are close to a parking.

Using geolocation or QR scanning close to the parking.
• Improving the Error log window so an error card disappears if another admin fixes it.

(Requires server modifications)
• Implementing Isolates to light the work of the main thread.

Front-end implementation for an automatized car parking

• Implementing services, so the app does not lose connection to the server when it is on
the background, and implementing reconnection if the connection is lost and properly
informing the user if the connection could not be retrieved.

• Improving error handling. For instance, differentiate between server errors and user
connection errors, or using the INFO-PARK message when a parking breaks down to
inform the user by changing the colour of the parking marker and displaying a warning
message when the marker is pressed (requires server modifications).

• Developing TwizyLine website to provide support to this app and help TwizyLine to grow.
• Testing the app on an iOS device.
• Adding other languages translation to make the app appropriate for a multicultural

event as Olympic Games are.
• Some other aspects must be discussed on the context of the service more than the

system. Like the option to book a Twizy.

An app is always changing and improving. And there is a long way to walk.

Chapter 6 - AWARDS RECEIVED AND MERITS

105

6. AWARDS RECEIVED AND MERITS
TwizyLine project is our proposal for Twizy contest 2020, organized by Renault in collaboration
with its partner Segula. TwizyLine has been awarded in the national phase and will represent
Spain in the international final.

TwizyLine project has as well been awarded as winner of one of the PROMETEO awards.
PROMETEO program supports projects from Valladolid University students with the aim to get
a market-oriented prototype.

As part of the obligations of PROMETEO awards, TwizyLine project has been presented in a
patent application.

Front-end implementation for an automatized car parking

107

References

[1] "ec.europa.eu Urban mobility," 24 June 2020. [Online]. Available:
https://ec.europa.eu/transport/themes/urban/urban_mobility_en. [Accessed 24 June
2020].

[2] "twizycontest.com," [Online]. Available: https://www.twizycontest.com/. [Accessed 24
June 2020].

[3] J. P. a. C. Huang, "Climate Change Still Seen as the Top Global Threat, but Cyberattacks a
Rising Concern," 2019.

[4] C. Napoli, "Understanding Kyoto's Failure," Jhons Hopkins Univerity Press, 2021.

[5] S. Leahy, "www.nationalgeographic.com, Most countries aren't hitting 2030 climate
goals, and everyone will pay the price," November 2019. [Online]. Available:
https://www.nationalgeographic.com/science/2019/11/nations-miss-paris-targets-
climate-driven-weather-events-cost-billions/. [Accessed 16 June 2020].

[6] A. Morton, "www.theguardian.com UN climate talks: Australia accused of 'cheating' and
thwarting global deal," 15 December 2019. [Online]. Available:
https://www.theguardian.com/environment/2019/dec/16/un-climate-talks-australia-
accused-of-cheating-and-thwarting-global-deal. [Accessed 16 June 2020].

[7] "World Health Organization: Air Pollution," [Online]. Available:
https://www.who.int/health-topics/air-pollution#. [Accessed 1 June 2020].

[8] N. M. S. Lozano, "La Economía Colaborativa: Factores desencadenantes y comparación
con la economía de mercado," 2016.

[9] L. MALYKHINA, "frace24.com, Paris briefly tops world charts for air pollution," 20 March
2015. [Online]. Available: https://www.france24.com/en/20150320-paris-city-smog-
pollution-plume-labs-hidalgo-public-transport-diesel. [Accessed 24 June 2020].

[10] "planvelo.paris," [Online]. Available: https://planvelo.paris/. [Accessed 24 June 2020].

[11] L. Bliss, "bloomberg.com, how paris shifted away from the car," 19 January 2018.
[Online]. Available: https://www.bloomberg.com/news/articles/2018-01-19/how-paris-
shifted-away-from-the-car. [Accessed 24 June 2020].

[12] "copenhagenixenidex.eu," 2019. [Online]. Available: https://copenhagenizeindex.eu/.
[Accessed 1 June 2020].

[13] A. Nossiter, "The New York Times, The Greening of Paris Makes Its Mayor More Than a
Few Enemies," 5 October 2019. [Online]. Available:
https://www.nytimes.com/2019/10/05/world/europe/paris-anne-hildago-green-city-
climate-change.html. [Accessed 24 June 2020].

[14] "ministere de la transition ecologique et solidaire Certificats qualité de l’air : Crit’Air," 15
June 2020. [Online]. Available: https://www.ecologique-solidaire.gouv.fr/certificats-
qualite-lair-critair. [Accessed 2024 June 2020].

[15] "bbc.com Paris Mayor Anne Hidalgo calls for ban on diesel cars by 2020," 7 December
2014. [Online]. Available: https://www.bbc.com/news/world-europe-30368504.
[Accessed 24 June 2020].

[16] A. C. a. A. Vaughan, "theguardian.com, France to ban sales of petrol and diesel cars by
2040," 6 July 2017. [Online]. Available:
https://www.theguardian.com/business/2017/jul/06/france-ban-petrol-diesel-cars-
2040-emmanuel-macron-
volvo#:~:text=France%20will%20end%20sales%20of,Emmanuel%20Macron's%20gover
nment%20has%20announced.. [Accessed 24 June 2020].

[17] A. Dusant, "oecdobserver.com, Paris leads the way in electromobility," November 2015.
[Online]. Available:
https://oecdobserver.org/news/fullstory.php/aid/5305/Paris_leads_the_way_in_electr
o-mobility.html. [Accessed 20 June 2020].

[18] "Chargemap.com," [Online]. Available: https://chargemap.com/cities/paris-FR.
[Accessed 18 June 2020].

[19] "Paris.fr Paris respire," [Online]. Available: https://www.paris.fr/pages/paris-respire-
2122. [Accessed 1 June 2020].

[20] "insee.fr Équipement automobile des ménages en 2017," 25 June 2019. [Online].
Available: https://www.insee.fr/fr/statistiques/2012694#tableau-
TCRD_001_tab1_departements. [Accessed 2 June 2020].

[21] "Harris Interactive Mobility in European metropolitan areas," August 2019. [Online].
Available: https://harris-interactive.fr/wp-content/uploads/sites/6/2019/09/Harris-
Report-Mobility-in-European-metropolises-Getaround.pdf. [Accessed 02 June 2020].

[22] S. R. Department, "statista.com Car sharing: number of vehicles in selected European
cities 2016," 21 September 2016. [Online]. Available:
https://www.statista.com/statistics/667728/number-car-sharing-vehicles-selected-
european-cities/. [Accessed 02 June 2020].

[23] "Renault y Ferrovial expandirán su servicio de carsharing de Madrid a otras ciudades,"
cincodias.elpais.com, 25 February 2020.

[24] wikipedia, "Juegos Olímpicos de Río de Janeiro 2016," [Online]. Available:
https://es.wikipedia.org/wiki/Juegos_Ol%C3%ADmpicos_de_R%C3%ADo_de_Janeiro_2
016. [Accessed 17 June 2020].

[25] RTVE.es/EFE, "rtve.es," RTVE, 23 August 2016. [Online]. Available:
https://www.rtve.es/noticias/20160823/rio-janeiro-recibio-117-millones-turistas-
durante-juegos-olimpicos-410000-eran-extranjeros/1390282.shtml. [Accessed 17 June
2020].

109

[26] S. P. Arnanz, "Back-end implementation for an automatized car parking," Valladolid,
2020.

[27] I. R. González, "Four level autonomous vehicle for an automatized parking," Valladolid,
2020.

[28] M. M. Fernández, "Plan de Comunicación de TwizyLine: plataforma de carsharing con
aparcamiento autónomo"," Valladolid, 2020.

[29] I. R. G. S. P. A. M. M. F. Adrián Mazaira Hernández, "TwizyLine Technologies," Valladolid,
2020.

[30] I. Abril, "cincodieas.elpais.com," 5 June 2006. [Online]. Available:
https://cincodias.elpais.com/cincodias/2006/06/05/empresas/1149514783_850215.ht
ml. [Accessed 02 June 2020].

[31] "gs.statcounter.com Desktop mobile tablet platform market share worldwide monthly-
201501-202005," [Online]. Available: https://gs.statcounter.com/platform-market-
share/desktop-mobile-tablet/worldwide/#monthly-201501-202005. [Accessed 19 June
2020].

[32] "zity.eco," [Online]. Available: https://zity.eco/. [Accessed 24 June 2020].

[33] "ubeeqo.com," [Online]. Available: https://www.ubeeqo.com/en/carsharing-paris.
[Accessed 25 June 2020].

[34] "share-now.com," [Online]. Available: https://www.share-now.com/fr/en/. [Accessed 25
June 2020].

[35] "free2move.com," [Online]. Available: https://fr.free2move.com/. [Accessed 25 June
2020].

[36] "getaround.com," [Online]. Available: https://fr.getaround.com/. [Accessed 25 June
2020].

[37] "Flurry Analytics: Apps Solidify Leadership Six Years into the Mobile Revolution," 1 April
2014. [Online]. Available: https://www.flurry.com/post/115191864580/apps-solidify-
leadership-six-years-into-the-mobile. [Accessed 19 June 2020].

[38] K. Technologies, "Medium, 9 Advantages of Mobile Apps over responsive eCommerce
websites," 28 march 2017. [Online]. Available: https://medium.com/@KNOWARTH/9-
advantages-of-mobile-apps-over-responsive-ecommerce-websites-6aed1e6db0d8.
[Accessed 19 June 2020].

[39] N. Deshdeep, "vwo, 10 reasons mobile apps are better," 4 June 2020. [Online]. Available:
https://vwo.com/blog/10-reasons-mobile-apps-are-better. [Accessed 19 June 2020].

[40] J. Badalian, "MobileSmith Health, html5 vs native debate is over," 20 May 2015. [Online].
Available: https://www.mobilesmith.com/html5-vs-native-debate-is-over/. [Accessed 19
June 2020].

[41] E. Spence, "Forbes, The Mobile Browser Is Dead, Long Live The App," 2 April 2014.
[Online]. Available: https://www.forbes.com/sites/ewanspence/2014/04/02/the-
mobile-browser-is-dead-long-live-the-app/. [Accessed 19 June 2020].

[42] J. Clement, "statista.com Number of apps available in leading app stores as of 1st quarter
2020," 4 May 2020. [Online]. Available:
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-
stores/. [Accessed 19 May 2020].

[43] J.Clement, "statista.com Annual number of global mobile app downloads 2016-2019," 17
Jan 2020. [Online]. Available: https://www.statista.com/statistics/271644/worldwide-
free-and-paid-mobile-app-store-downloads/. [Accessed 19 May 2020].

[44] J.Clement, "statista.com Most popular Apple App Store categories 2020," 22 June 2020.
[Online]. Available: https://www.statista.com/statistics/270291/popular-categories-in-
the-app-store/. [Accessed 19 May 2020].

[45] S. W. P. A. Tim A. Majchrzak, "Comparing the Capabilities of Mobile Platforms for Business
App Development," 2015.

[46] Imaginovation, "medium.com 5 Decisions to Make Before Developing a Mobile App," 25
October 2017. [Online]. Available: https://medium.com/@Imaginovation/5-decisions-to-
make-before-developing-a-mobile-app-7b832977f484. [Accessed 2 July 2020].

[47] "gs.statcounter.com Mobile-tablet vendor market share in north america monthly-
201501-202004," [Online]. Available: https://gs.statcounter.com/vendor-market-
share/mobile-tablet/north-america/#monthly-201501-202004]). [Accessed 22 5 2020].

[48] S. O'Dea, "statista.com Global mobile OS market share 2009-2018, by quarter," 27
February 2020. [Online]. Available: https://www.statista.com/statistics/266136/global-
market-share-held-by-smartphone-operating-systems/. [Accessed 20 May 2020].

[49] "gs.statcounter.com mobile OS market share Europe monthly-201501-202004," [Online].
Available: https://gs.statcounter.com/os-market-share/mobile/europe/#monthly-
201501-202004. [Accessed 20 May 2020].

[50] "gs.statcounter.com mobile OS market share North America monthly-201501-202004,"
[Online]. Available: https://gs.statcounter.com/os-market-share/mobile/north-
america/#monthly-201501-202004. [Accessed 20 May 2020].

[51] "shandweb.com Apps hibridas vs nativas vs generadas," [Online]. Available:
https://shandweb.com.mx/shandweb/article/apps-hibridas-vs-nativas-vs-
generadas/49. [Accessed 20 June 2020].

[52] A. A. Mohamed Lachgar, "Decision Framework for Mobile Development Methods,"
International Journal of Advanced Computer Science and Applications, no. 8, 2017.

[53] Imaginovation, "Medium, App Development Decisions: Native, Web or Hybrid?," 24
January 2018. [Online]. Available: https://medium.com/@Imaginovation/app-
development-decisions-native-web-or-hybrid-31c103f9b4e1. [Accessed 2 July 2020].

111

[54] M. Fitzgerald, "Medium, Android vs. iOS App Development: Which Is the Better Choice
for Your Business in 2019?," 9 October 2019. [Online]. Available:
https://medium.com/better-programming/android-vs-ios-app-development-which-is-
the-better-choice-for-your-business-in-2019-933b20e4d9b8. [Accessed 2 July 2020].

[55] V. Collins, "Forbes, The Decline Of The Native App And The Rise Of The Web App," 5 April
2019. [Online]. Available:
https://www.forbes.com/sites/victoriacollins/2019/04/05/why-you-dont-need-to-
make-an-app-a-guide-for-startups-who-want-to-make-an-app/#1bb9a3a86e63.
[Accessed 2 July 2020].

[56] "IONOS, Conceptos básicos: definición de web app y ejemplos," 7 March 2019. [Online].
Available: https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/que-es-una-
web-app-y-que-clases-hay/. [Accessed 2 July 2020].

[57] M. Fitzgerald, "Medium, Native, Hybrid, or Web Apps: What Is the Best Approach for
Lasting Success?," 4 October 2019. [Online]. Available: https://medium.com/better-
programming/native-hybrid-or-web-apps-what-is-the-best-approach-for-lasting-
success-91afbb872d89. [Accessed 2 July 2020].

[58] P. L. Sam Richard, "web.dev, What are Progressive Web Apps?," 6 1 2020. [Online].
Available: https://web.dev/what-are-pwas/. [Accessed 21 5 2020].

[59] A. Russell, "Infrequently Noted, What, Exactly, Makes Something A Progressive Web
App?," 12 Spetember 2016. [Online]. Available: https://infrequently.org/2016/09/what-
exactly-makes-something-a-progressive-web-app/. [Accessed 2 July 2020].

[60] P. LePage, "Tu primera Progressive Web App," 15 May 2019. [Online]. Available:
https://developers.google.com/web/fundamentals/codelabs/your-first-pwapp/.
[Accessed 2 July 2020].

[61] "MDN web docs, Progressive web apps (PWAs)," [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps. [Accessed 2 july
2020].

[62] "Wikipedia, Progressive Web Application," [Online]. Available:
https://en.wikipedia.org/wiki/Progressive_web_application. [Accessed 2 July 2020].

[63] F. B. Alex Rusell, "Infrequently Noted, Progressive Web Apps: Escaping Tabs Without
Losing Our Soul," 15 June 2015. [Online]. Available:
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-
soul/. [Accessed 2 July 2020].

[64] "MDN, Introduction to progressive web apps," [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/Progressive_web_apps/Introduction#Advantages_of_web_applications.
[Accessed 2 July 2020].

[65] M. Firtman, "Medium, Progressive Web Apps in 2020," 2 January 2020. [Online].
Available: https://medium.com/@firt/progressive-web-apps-in-2020-c15018c9931c.
[Accessed 2 July 2020].

[66] BoostTypers, "Medium, Why PWA is so popular right now?," 12 June 2019. [Online].
Available: https://medium.com/boosttypers/why-pwa-is-so-popular-right-now-
d35d35218d09. [Accessed 2 July 2020].

[67] "developers.google.com, Twitter Lite PWA Significantly Increases Engagement and
Reduces Data Usage," 3 November 2019. [Online]. Available:
https://developers.google.com/web/showcase/2017/twitter. [Accessed 2 July 2020].

[68] tecnoweb, "Aplicaciones nativas, aplicaciones web y aplicaciones híbridas," September
2013. [Online]. Available: http://tecnologiasdeinternet.com/2013/09/aplicaciones-
moviles-iphone-android/. [Accessed 2 July 2020].

[69] W. Jobe, "Native Apps Vs. Mobile Web Apps," International Journal of Interactive Mobile
Technologies (iJIM), 2013.

[70] "IONOS, Hybrid apps - combining the best of web and native apps," 2 November 2016.
[Online]. Available: https://www.ionos.com/digitalguide/websites/web-
development/hybrid-apps-combining-the-best-of-web-and-native-apps/. [Accessed 2
July 2020].

[71] C. Griffith, "Ionic, What is Hybrid App Development?," [Online]. Available:
https://ionicframework.com/resources/articles/what-is-hybrid-app-development.
[Accessed 2 July 2020].

[72] R. Chernysh, "Medium, Hybrid development: Ionic, React Native or Flutter?," 6 January
2020. [Online]. Available: https://medium.com/webspace-team/hybrid-development-
ionic-react-native-or-flutter-5aefa3025b6f. [Accessed 2 July 2020].

[73] A. F. Gutierrez, "blogthinkbig.com, Aplicaciones web vs. aplicaciones nativas vs.
aplicaciones híbridas," 20 February 2013. [Online]. Available:
https://blogthinkbig.com/aplicaciones-web-nativas-hibridas. [Accessed 20 June 2020].

[74] "Android authority: How to create non-games apps in unity," [Online]. Available:
https://www.androidauthority.com/make-unity-apps-1073017/. [Accessed 28 June
2020].

[75] J. MacFadyen, "phonegap, Our Continued Commitment," 14 February 2017. [Online].
Available: https://phonegap.com/blog/2017/02/14/continued-commitment/. [Accessed
28 June 2020].

[76] M. Kremer, "ionic, Comparing Cross-Platform Frameworks," [Online]. Available:
https://ionicframework.com/resources/articles/ionic-vs-react-native-a-comparison-
guide. [Accessed 2 July 2020].

[77] S. Liu, "statista.com, Cross-platform mobile frameworks used by software developers
worldwide in 2019 and 2020," 3 12 2019. [Online]. Available:

113

https://www.statista.com/statistics/869224/worldwide-software-developer-working-
hours/. [Accessed 22 5 2020].

[78] "Google Trends," [Online]. Available:
https://trends.google.com/trends/explore?date=2017-05-22%202020-05-
22&q=%2Fg%2F11f03_rzbg,react%20native,%2Fg%2F1q6l_n0n0,%2Fg%2F11bc5kmsh6,
%2Fm%2F06znsr5. [Accessed 22 05 2020].

[79] "Stack Overflow Trends," [Online]. Available:
https://insights.stackoverflow.com/trends?tags=flutter%2Creact-native%2Cionic-
framework%2Cphonegap-build. [Accessed 22 5 2020].

[80] "cordova.apache.org," [Online]. Available: https://cordova.apache.org/. [Accessed 2 July
2020].

[81] "Adobe PhoneGap, Embedding the Webview," [Online]. Available:
http://docs.phonegap.com/tutorials/develop/1-embed-webview/ios/. [Accessed 2 July
2020].

[82] "ionic, UI Components," [Online]. Available:
https://ionicframework.com/docs/components. [Accessed 2 July 2020].

[83] P. Walsh, "METACERT, What is a WebView?," 22 April 2015. [Online]. Available:
https://developer.metacert.com/blog/what-is-a-webview/. [Accessed 2 July 2020].

[84] Codemagic, "Medium, Flutter vs React Native: A Developer’s Perspective," 24 January
2019. [Online]. Available: https://medium.com/flawless-app-stories/flutter-vs-react-
native-a-developers-perspective-8914ca240a89. [Accessed 2 July 2020].

[85] P. Patel, "FasTrax INFO TECH, React Native vs. Ionic vs. Flutter vs. PhoneGap – What to
Choose in 2020?," 21 4 2020. [Online]. Available:
https://www.ftxinfotech.com/blog/react-native-vs-ionic-vs-flutter-vs-phonegap/.
[Accessed 22 5 2020].

[86] "flutter.dev, Add Flutter to existing app," [Online]. Available:
https://flutter.dev/docs/development/add-to-app. [Accessed 2 July 2020].

[87] "reactnative.dev, Integration with Existing Apps," [Online]. Available:
https://reactnative.dev/docs/integration-with-existing-apps. [Accessed 2 July 2020].

[88] A. Sharma, "Medium, Flutter v/s React native and Phonegap frameworks," 4 4 2019.
[Online]. Available: https://medium.com/@atul.sharma_94062/understanding-
difference-between-flutter-react-native-and-phonegap-frameworks-7721229068d5.
[Accessed 22 5 2020].

[89] M. Bowers, "toptotal.com, Creating a UI Style Guide for Better UX," [Online]. Available:
https://www.toptal.com/designers/ui/ui-styleguide-better-ux. [Accessed 2 July 2020].

[90] "w3c Standards webdesign," [Online]. Available:
https://www.w3.org/standards/webdesign/. [Accessed 22 June 2020].

[91] "developer.apple.com human interface guidelines," [Online]. Available:
https://developer.apple.com/design/human-interface-guidelines/. [Accessed 22 June
2020].

[92] "developer.android.com Design," 27 December 2019. [Online]. Available:
https://developer.android.com/design. [Accessed 23 June 2020].

[93] "flutter.dev, Material Components widgets," [Online]. Available:
https://flutter.dev/docs/development/ui/widgets/material. [Accessed 2 July 2020].

[94] "flutter.dev, Introduction to widgets," [Online]. Available:
https://flutter.dev/docs/development/ui/widgets-intro. [Accessed 2 July 2020].

[95] "flutter.dev, Cupertino (iOS-style) widgets," [Online]. Available:
https://flutter.dev/docs/development/ui/widgets/cupertino. [Accessed 2 July 2020].

[96] M. Saeed, "Medium, Flutter: Material + Cupertino make together ���," 11 November
2019. [Online]. Available: https://medium.com/@sendtosaeed2/flutter-material-
cupertino-make-together-a3d2d7849548. [Accessed 23 June 2020].

[97] S. Kulinski, "Medium, Do Flutter apps dream of platform aware widgets?," 1 March 2018.
[Online]. Available: https://medium.com/flutter/do-flutter-apps-dream-of-platform-
aware-widgets-7d7ed7b4624d. [Accessed 23 June 2020].

[98] "material.io," [Online]. Available: https://material.io/. [Accessed 22 5 2020].

[99] "material.io about shape," [Online]. Available: https://material.io/design/shape/about-
shape.html. [Accessed 26 June 2020].

[100] "material.io, Introduction," [Online]. Available:
https://material.io/design/introduction#principles. [Accessed 2 July 2020].

[101] E. Perez, "El androide libre, ¿Qué es Material Design?," 9 November 2014. [Online].
Available: https://elandroidelibre.elespanol.com/2014/11/que-es-material-design.html.
[Accessed 2 July 2020].

[102] "flutter.dev," [Online]. Available: https://flutter.dev/. [Accessed 23 5 2020].

[103] "Wikipedia, Flutter," [Online]. Available:
https://en.wikipedia.org/wiki/Flutter_(software). [Accessed 2 July 2020].

[104] "GitHub octoverse," 2019. [Online]. Available: https://octoverse.github.com/#top-
languages. [Accessed 22 5 2020].

[105] "Flutter comunity," [Online]. Available: https://flutter.dev/community. [Accessed 2 July
2020].

[106] "pub.dev," [Online]. Available: https://pub.dev/. [Accessed 25 June 2020].

[107] "Wikipedia, Dart (programming language)," [Online]. Available:
https://en.wikipedia.org/wiki/Dart_(programming_language). [Accessed 2 July 2020].

115

[108] "Dartium: Chromium with the Dart VM," [Online]. Available:
https://dartdoc.takyam.com/tools/dartium/. [Accessed 2 July 2020].

[109] "dart2js: Dart-to-JavaScript compiler," [Online]. Available: https://dart.dev/tools/dart2js.
[Accessed 2 July 2020].

[110] "dart.dev," [Online]. Available: https://dart.dev/. [Accessed 26 May 2020].

[111] "dart.dev, Platforms," [Online]. Available: https://dart.dev/platforms. [Accessed 2 July
2020].

[112] Flutter, "Why Flutter uses Dart," 12 November 2019. [Online]. Available:
https://www.youtube.com/watch?v=5F-6n_2XWR8. [Accessed 2 July 2020].

[113] K. Walrath, 25 July 2019. [Online]. Available: https://medium.com/dartlang/dart-
asynchronous-programming-isolates-and-event-loops-bffc3e296a6a. [Accessed 2 July
2020].

[114] A. Brogdon, "Youtube Video: Isolates and Event Loop - Flutter in Focus," 14 June 2019.
[Online]. Available: https://www.youtube.com/watch?reload=9&v=vl_AaCgudcY.
[Accessed 27 May 2020].

[115] Alibaba Tech, "Medium, Making the Most of Flutter: From Basics to Customization," 1
August 2018. [Online]. Available: https://medium.com/hackernoon/making-the-most-
of-flutter-from-basics-to-customization-433171581d01. [Accessed 2 July 2020].

[116] "Flutter engine," [Online]. Available:
https://chromium.googlesource.com/external/github.com/flutter/engine/. [Accessed
29 June 2020].

[117] K. Tolmachev, "What is Flutter and why it is a game-changer in app development," 3
December 2019. [Online]. Available: https://blog.quickblox.com/what-is-flutter-and-
why-it-is-a-game-changer-in-app-development/. [Accessed 2 July 2020].

[118] "medium.com The layer cake," 21 December 2018. [Online]. Available:
https://medium.com/flutter-community/the-layer-cake-widgets-elements-
renderobjects-7644c3142401. [Accessed 29 June 2020].

[119] "flutter.dev/docs Technical overview," [Online]. Available:
https://flutter.dev/docs/resources/technical-overview. [Accessed 23 June 2020].

[120] "flutter.dev, Start thinking declaratively," [Online]. Available:
https://flutter.dev/docs/development/data-and-backend/state-mgmt/declarative.
[Accessed 2 July 2020].

[121] M. A. Rodríguez, "Desarrollo de Aplicaciones Móviles con Flutter," Apuntes D.A.D.M.
E.T.S.I.T. UVA, Valladolid.

[122] Google developers, "Building your first Flutter Widget," 18 May 2018. [Online]. Available:
https://www.youtube.com/watch?v=W1pNjxmNHNQ. [Accessed 2 July 2020].

[123] Google Developers, "Inherited Widgets Explained - Flutter Widgets 101 Ep. 3," 19
November 2018. [Online]. Available:
https://www.youtube.com/watch?v=Zbm3hjPjQMk&t=118s. [Accessed 2 July 2020].

[124] Flutter, "How Flutter renders Widgets," 15 November 2019. [Online]. Available:
https://www.youtube.com/watch?v=996ZgFRENMs&t=323s. [Accessed 2 July 2020].

[125] Google Developers, "When to use Keys - Widget Flutter 101 Ep. 4," 26 November 2018.
[Online]. Available: https://www.youtube.com/watch?v=kn0EOS-ZiIc&t=320s. [Accessed
2 July 2020].

[126] "Adding interactivity to your Flutter app," [Online]. Available:
https://flutter.dev/docs/development/ui/interactive. [Accessed 2 July 2020].

[127] "flutter.dev, StatefulWidget class," [Online]. Available:
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html. [Accessed 2 July
2020].

[128] F. García, "elmundo.es/motor, El servicio de carsharing Zity inicia operaciones en Madrid
a 21 céntimos el minuto," 20 December 2017. [Online]. Available:
https://www.elmundo.es/motor/2017/12/18/5a381a13268e3e90268b45f2.html.
[Accessed 24 June 2020].

[129] "Ubeeqo app on Play Store," [Online]. Available:
https://play.google.com/store/apps/details?id=es.sw.bluemove&hl=en. [Accessed 29
May 2020].

[130] "media.groupe-psa.com Free2Move Paris extends its car sharing service to Issy-les-
Moulineaux," 12 March 2019. [Online]. Available: https://media.groupe-
psa.com/en/free2move-paris-extends-its-car-sharing-service-issy-les-
moulineaux#:~:text=Free2Move%20is%20a%20free%2Dfloating,spaces%20(ex%2D%20
Autolib).. [Accessed 24 June 2020].

[131] darticulate.com, "pub.dev mqtt_client," 13 July 2019. [Online]. Available:
https://pub.dev/packages/mqtt_client. [Accessed 2 July 2020].

[132] S. Hamblett, "github.com: mqtt_client," [Online]. Available:
https://github.com/shamblett/mqtt_client/blob/master/example/mqtt_server_client.d
art. [Accessed 26 June 2020].

[133] soft2tec.com, "pub.dev/packages universal_mqtt_client," 16 June 2020. [Online].
Available: https://pub.dev/packages/universal_mqtt_client. [Accessed 2 July 2020].

[134] "flutter.dev/docs shared preferences," [Online]. Available: https://flutter.dev/docs/get-
started/flutter-for/android-devs#how-do-i-access-shared-preferences. [Accessed 25
June 2020].

[135] appmire.be, "pub.dev pacakges flutter_keychain," 5 March 2019. [Online]. Available:
https://pub.dev/packages/flutter_keychain. [Accessed 27 June 2020].

117

[136] "flutter.dev/docs Internationalizing Flutter apps," [Online]. Available:
https://flutter.dev/docs/development/accessibility-and-
localization/internationalization. [Accessed 3 June 2020].

[137] "flutter.dev/docs Adding assets and images," [Online]. Available:
https://flutter.dev/docs/development/ui/assets-and-images. [Accessed 27 June 2020].

[138] "flutter.dev/docs state management," [Online]. Available:
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options.
[Accessed 29 June 2020].

[139] Flutter, "Pragmatic State Management in Flutter (Google I/O'19)," 9 May 2019. [Online].
Available: https://www.youtube.com/watch?v=d_m5csmrf7I&t=3s. [Accessed 2 July
2020].

[140] Flutter, "Pragmatic State Management Using Provider (The Boring Flutter Development
Show, Ep. 24)," 3 July 2019. [Online]. Available:
https://www.youtube.com/watch?v=HrBiNHEqSYU. [Accessed 3 July 2020].

[141] "sae.org," 11 december 2018. [Online]. Available: https://www.sae.org/news/press-
room/2018/12/sae-international-releases-updated-visual-chart-for-its-
%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-
vehicles. [Accessed 18 June 2020].

[142] T. N. a. R. Wu, "linkedin.com, Mobile App Security: Native v.s. Flutter," 22 July 2019.
[Online]. Available: https://www.linkedin.com/pulse/mobile-app-security-native-vs-
flutter-rick-wu/. [Accessed 25 June 2020].

119

ANNEX 1
This annex shows the table of messages that the app exchanges with the server and the vehicles. The table columns detail the message publisher, subscriber, topic, payload,
and a brief explanation as well. The broker redirects to the app the messages between the Twizy and the server when in the commands screen. The topics are explained in
3.2.

Publisher Subscriber Topic Payload Explanation

Twizy Server vehicleID/battery [0-100]OR[-1] -1 when no battery signal from the vehicle is
received

Twizy Server vehicleID/location [(latitude),(longitude)]OR[No signal]OR[GPS not connected] Real time vehicle position
Twizy Server vehicleID/info CONNECT regist_plate Connection request
Twizy Server vehicleID/info TIMEOUT Obstacle timer exceeded
Twizy Server vehicleID/info RFID (ID number) Identification number of the RFID tag detected
Twizy Server vehicleID/info WRN (error code) [(attribute)] Warning info
Twizy Server vehicleID/info ERR (error code) [(attribute)] Error info
Twizy Server vehicleID/info STARTING UP System is starting up

Twizy Server vehicleID/info AM-ON OK The vehicle has correctly switched to
autonomous mode

Twizy Server vehicleID/info AM-OFF OK The vehicle has switched to normal mode
correctly

Twizy Server vehicleID/info CONTINUE OK The vehicle will continue
Twizy Server vehicleID/info PAUSE OK The vehicle will stop

Twizy Server vehicleID/info STANDBY OK The vehicle has correctly switched to standby
mode

Twizy Server vehicleID/info GOTO OK Correct reception of the GOTO message. The
vehicle begins to move.

Server Twizy vehicleID/order CONNECTED Established connection
Server Twizy vehicleID/order STANDBY Enter power save mode
Server Twizy vehicleID/order AM-ON Go to autonomous operation
Server Twizy vehicleID/order AM-OFF Go to normal operation
Server Twizy vehicleID/order CONTINUE Continue after sending PAUSE message
Server Twizy vehicleID/order PAUSE Stop the car in autonomous operation

Server Twizy vehicleID/order GOTO (initialSpeed km/h) (defaultFork L o R) [T(RFID) [(newSpeed
km/h)]...] [V(RFID) (newSpeed km/h)...] S(RFID)

Route that the vehicle has to follow. T=Turn right
until the next rfid S=Stop

Server Twizy vehicleID/order RESTART Restarts vehicle after ERROR
Application Server log LOGIN/user/password Information about the client is sent
Application Server log LOGON/user/name/surname/employment/password Information about new client to log on is sent
Server Application log CONFIRM/username Verifies and accepts the data writen by the client
Server Application log DENY/username/ErrCode Verifies and denies the data writen by the client
Server Application user/app ADMIN/0 o 1 In orden to check if the user is an admin

Application Server user/server REQUEST-PARKS The servers responses with as many NEW-PARK
messages as parkings it has in the database

Server Application user/app NEW-
PARK/id_parking/name_park/latitud/longitud/availableTwizys/freeSpots New parking to show in the map

Server Application app INFO-PARK/id_parking/[availableTwizys]/[freeSpots] Periodical information to refresh the data about
the origin and destiny parkings

Application Server user/server PICK-UP/id_parking The client gets out the Twizy

Server Application user/app TWIZY-OUT /id_vehicle Confirms that the Twizy is going to the pick-up
zone and informs the vehicle license plate

Application Server user/admin_server REQUEST-ERRORS
The server asnwers in topic user/admin with as
many ERR messages as unresolved erros it has in
its database

Server Admin admin or
user/admin

ERR/id_fix/[id_vehicle o
id_parking]/fail/explanation/error_date/more_info

An error will be sent to the app if something is
going wrong

Admin Server user/admin_server ERR-FIX/id_fix Admin says that one error has been already fixed
Admin Server user/admin_server ASK-PARK/id_parking Admin asks for the status of a specific parking
Server Admin user/admin PARK/num_row/num_column/[(row_pos;column_pos;id_car)/...] Control over the parkings for the admin

Server Admin user/admin PARK-ERR/ErrCode Just in case the admin selects an inexistent
parking

Admin Server user/admin_server ASK-CAR/id_car Admin asks for information about a specific car

Server Admin user/admin CAR/enter_date;id_parking;exit_date;user/.../...
Server provides the information about in which
parkings and which users have taken a specific
car

Server Admin user/admin CAR-ERR/ErrCode Just in case the admin selects an inexistent car

121

ANNEX 2
This annex shows the different errors that vehicles and the server can emit. When a vehicle sends an error, it is processed by the server, who stores it in its database and
broadcast it to any connected app user too. Those errors can be seen in the error log screen, where there will be more information about the error provided by the server.
The vehicle errors can be seen in the app when in the commands screen too. In this case only the decimal code of the error will be displayed in the window at the bottom of
this screen. The server errors are displayed in the app on different situations. For instance, the “username is not unique error” would appear in the logon screen when a new
user tries to log on with a username already in use. Those errors are translated to the languages supported by the app.

Source Dec
Code

Hex
Code

Type of
error Failure name Attribute Explanation

Communication
Module 1 0x001 Fault CON-STATUS not received -

The CON_STATUS frame is not being received. Is
the CON-MOD on? Is the CAN-Bus connection of
both modules correct?

Communication
Module 2 0x002 Fault

Control
Module does not respond to CON_STATUS signal
- Cannot change status

- CON-MOD does not change status when ordered to
do so. Is the CON-MOD correctly configured?

Communication
Module 3 0x003 Fault Control Module does not respond to PAUSE

signal -

When sending a PAUSE or CONTINUE command
from the COM-MOD, the CON-MOD does not
respond correctly as the PAUSE signal does not
change. Is the CON-MOD correctly configured?

Communication
Module 4 0x004 Fault GOTO-ACK not received after several attempts - CON-MOD does not send an ACK when it has to do

so. Is the CON-MOD correctly configured?
Communication
Module 5 0x005 Warning Malformed GOTO frame received from

Communication Module -

Communication
Module 6 0x006 Fault Unexpected frame from Control Module ID of frame

received
CON-MOD is sending out signals that don't make
sense right now. Is CON-MOD well configured?

Communication
Module 9 0x009 Fault GPS not connected

Last
coordinates
(if any)

The GPS module is not connected to the
communication module. Is the COM-MOD correctly
configured? Is the GPS broken? Is the GPS
disconnected?

Communication
Module 10 0x00A Warning GPS is not receiving signal for a long time

Last
coordinates
(if any)

The GPS module is not receiving any signal from
the satellites for a long time. Is the GPS broken?

Communication
Module 11 0x00B Warning Battery data not received

Last
battery
data
received (if
any)

The CAN message informing about the battery
charge on the vehicle's CAN-bus is not detected. Is
there a problem in the vehicle?

Communication
Module 17 0x011 Fault Network is unreachable - COM-MOD is not connected to the internet. Is the

COM-MOD connected to the Internet?

Communication
Module 18 0x012 Fault Connection refused - Mosquitto service is not

running -
MQTT messages are arriving at a machine where
the mosquito service is not running. Is the
mosquitto service running on the server?

Communication
Module 19 0x013 Fault Can't connect with server - MQTT messages are not arriving at any machine. Is

the IP address right?

Communication
Module 20 0x014 Fault Connection refused - Not authorised -

The MQTT broker is rejecting the connection due to
no authentication. Is the client sending the correct
authentication data?

Communication
Module 21 0x015 Fault Connection refused - Bad username or password -

The MQTT broker is rejecting the connection due to
a bad authentication. Is the client sending the
correct username and password?

Communication
Module 22 0x016 Fault Connection refused - Server unavailable - Not tested

Communication
Module 23 0x017 Fault Connection refused - Invalid client identifier - Not tested

Communication
Module 24 0x018 Fault Connection refused - Incorrect protocol version - Not tested

Communication
Module 25 0x019 Fault Back-end is not responding - The server is not responding with the message

CONNECTED when called. Is the server running?
Communication
Module 26 0x01A Warning Unexpected MQTT message Message

received
The server is sending an incorrect message. Is the
server well configured?

Communication
Module 27 0x01B Fault Lost connection with MQTT server -

Ping responses from the server are not beeing
received. Has CON-MOD lost the internet
connection? Has the MQTT broker stopped?

Control Module 129 0x081 Fault COM_STATUS not received -
The COM_STATUS frame is not being received. Is
the COM-MOD on? Is the CAN-Bus connection of
both modules correct?

Control Module 130 0x082 Fault RFID-ACK not received -
Control Module 131 0x083 Fault CON-ERR-ACK not received -

123

Control Module 132 0x084 Warning Unexpected frame received from
Communication Module

ID of frame
received

Control Module 133 0x085 Warning Malformed GOTO frame received from
Communication Module -

Server 257 0x101 ERROR Username is not unique The username passed on the LOGON is not vaild
because it is already in use

Server 258 0x102 ERROR Parking busy. Try again to get your Twizy In that moment the origin Park is busy, so the user
must try again.

Server 259 0x103
Warning That parking id does not exit Administrator is asking for information about a

parking which does not exit.

Server 260 0x104
Warning That car id does not exit Administrator is asking for information about a

Twizy which does not exit.

	1. INTRODUCTION
	1.1 Motivation
	1.2 Objectives
	1.3 Steps and methods
	1.4 Available resources
	1.5 Structure of the memory

	2. STATE OF THE ART
	2.1 Introduction
	2.2 The expansion of apps
	2.3 Android vs iOS
	2.4 App Development
	2.4.1 Native Apps
	2.4.2 Web Apps
	2.4.3 Generated Apps
	2.4.4 Hybrid Apps

	2.5 Style guidelines
	2.6 Flutter
	2.6.1 What is Flutter?
	2.6.2 Dart
	2.6.3 Flutter architecture and features
	2.6.4 Widgets: Key concept in Flutter

	2.7 Current mobility apps comparison
	2.7.1 Carsharing Paris apps
	2.7.2 Public transport Paris apps
	2.7.3 Conclusion

	3. IMPLEMENTATION
	3.1 Criteria for the App design
	3.2 First steps. Connecting to the MQTT broker.
	3.3 main()
	3.4 Login page
	3.5 Logon page
	3.6 Twizy Map page
	3.7 Internationalization
	3.8 Admin app resources
	3.8.1 Error log
	3.8.2 Map
	3.8.3 Management
	3.8.4 Commands
	3.9 Dropdown menu

	4. USE CASES. TEST AND INTEGRATION
	4.1 Use case 1. User gets a car from a parking.
	4.2 Use case 2. Admin fixes an error.

	5. CONCLUSIONS AND FUTURE LINES
	6. AWARDS RECEIVED AND MERITS
	References
	ANNEX 1
	ANNEX 2

