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Resumen de Trabajo Fin de Grado 
En este Trabajo Final de Grado se han cumplido una serie de objetivos para la implementación de un 

sistema acoplable a un vehículo para darle capacidades de vehículo autónomo de nivel 4 para un 

aparcamiento automatizado. Se realiza un diseño completo de los sistemas necesarios y su 

interconexión, haciendo un análisis de las tecnologías óptimas para el proyecto, su coste, y los 

elementos disponibles en el mercado, estudiando su viabilidad en el proyecto. Se diseña una interfaz 

de control del vehículo a través de un protocolo apropiado, mediante el cual un back-end puede 

enviar órdenes al vehículo y recibir información de este; y una mensajería CAN para mantener 

sincronizados y permitir una gestión de errores de los dos módulos de procesamiento que utiliza el 

sistema. Se implementa el software necesario en dichos módulos para que lleven a cabo las tareas de 

comunicación entre ellos y con el back-end. Finalmente, se desarrolla un simulador de los sistemas 

implementados que permite realizar múltiples simulaciones de estos simultáneamente variando 

ciertos parámetros, para así realizar una evaluación de la integración de los sistemas del vehículo con 

el back-end y comprobar el correcto funcionamiento del sistema completo en la realidad. 

Abstract 
In this Final Degree Project, several objectives have been achieved for the implementation of a system 

that can be coupled to a vehicle to give it level 4 autonomous vehicle capabilities for an automatized 

parking. A complete design of the necessary systems and their interconnection is carried out, 

performing an analysis of the optimal technologies for the project, its cost, and the elements available 

in the market, studying their viability in the project. A vehicle control interface is designed via an 

appropriate protocol, through which a back-end can send orders to the vehicle and receive 

information from it; and a CAN messaging to keep synchronized and allow error management of the 

two processing modules used by the system. The necessary software is implemented in these modules 

to carry out the communication tasks between them and with the back-end. Finally, a simulator of 

the implemented systems is developed, that allows multiple simulations of these simultaneously 

varying certain parameters. This way it is possible to carry out an evaluation of the integration of the 

vehicle systems with the back-end, and to check the correct operating of the complete system in 

reality. 

Keywords 
ODD, DDT, OEDR, AGV, line-tracking system, carsharing, CAN, MQTT, RFID, process, work queue, 

back-end. 
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1. Introduction 
1.1. Project motivation 
Today, private vehicle is one of the most commonly used means of transport. In Spain, there are 24.5 

million private cars [1], which corresponds to half of the population over 18 years old [2] and 

therefore, with the possibility of driving a vehicle. This means of transport currently confronts several 

problems. Due to its widespread use, it is of vital importance to eliminate these problems and to 

optimize the use of this means of transport. These problems are related to traffic accidents and 

pollution due to low energy efficiency. 

Traffic accidents are one of the main problems in today's transport sector. In 2018 there were 102,299 

accidents with victims only in Spain. The total number of injured was 140,415 people, of these 1806 

died [3]. This rate has varied over time (Figure 1). Since the private car became a common product, 

the death rate in traffic accidents has been increasing until 1989. From this year onwards, thanks to 

public awareness, the improvement of vehicle safety systems (safety bels, ABS technology, airbags...), 

and the improvement of signalling and road conditions, the death rate has been falling. However, since 

2012, the death rate has stabilized and in recent years there has been no decrease [3]. 

 

Figure 1. Death rate in Spain due to traffic accidents per year [3]. 

Currently, most of these accidents are due to human error. According to a study made by the 

National Highway Traffic Safety Administration of the United States [4], approximately 94% of 

accidents that occur in this country are caused by the driver (Table 1). 

Critical Reason 

Attributed to 

Estimated 

Number 
Percentage ± 95% 

conf. limits 

Drivers 2,046,000 94% ±2.2% 

Vehicles 44,000 2% ±0.7% 

Environment 52,000 2% ±1.3% 

Unknown 47,000 2% ±1.4% 

Total 2,189,000 100% 

Table 1. Driver, Vehicle, and Environment Related Critical Reasons [4]. 
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The main causes of accidents caused by drivers are the driver’s inattention, internal and external 

distractions, decision errors such as driving too fast, or performance. In general, human factors, which 

are difficult to remedy, are in the causation of most of the road traffic crashed (Table 2). 

Critical Reason 

Attributed to 

Estimated 

Number 
Percentage ± 95% 

conf. limits 

Recognition Error 845,000 41% ±2.2% 

Decision Error 684,000 33% ±3.7% 

Performance Error 210,000 11% ±2.7% 

Non-Performance 

Error (sleep, etc.) 
145,000 7% ±1.0% 

Other 162,000 8% ±1.9% 

Total 2,046,000 100% 100% 

Table 2. Driver-Related Critical Reasons [4]. 

Cities are a major focus for traffic accidents. In Spain, 63% of traffic accidents with total victims occur 

in urban areas [3]. 

Another major transport problem is pollution. Transport is responsible for a substantial fraction of 

worldwide energy consumption and greenhouse gas emissions. While emissions from other sectors 

are generally decreasing, those from transportation have increased since 1990 [5]. It is necessary to 

reduce the impact of transport on the environment, a task that can only be achieved if passenger 

vehicles are considered one of the main problems, since they constitute almost half of the entire 

sector [5]. Improving the energy efficiency of these vehicles can be a major step forward in this area. 

In any motor vehicle, there are always 3 main energy conversions of energy (Figure 2). The first 

consists of the distribution of energy to the vehicle from the energy sources, either gasoline or 

electricity. Through the second conversion, this energy is then used to move the wheels of the vehicle. 

In the third conversion, the mechanical energy of the wheels is converted into kinetic and potential 

energy required to produce the movement. All these conversions cause relevant energy losses, a 

waste of energy. Therefore, it is necessary to optimize the efficiency of this process. 

 

Figure 2. The three main energy conversions steps for road vehicles [5]. 
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The efficiency of the second conversion (Tank to Wheels) is determined by the type of propulsion 

engine being used, its characteristics, and the friction forces in the vehicle transmission. Electric 

motors can use 77% of the electrical energy. On the other hand, conventional combustion engines 

are only capable of converting between 12% and 30% of the energy stored in gasoline [6]. 

In the third conversion efficiency, several vehicle factors are involved, but also parameters that depend 

on the driver's profile. The following table (Table 3) shows the relative influence of vehicle parameters 

and driving profiles on the wheels-to-distance energy efficiency of a typical full-size passenger car. 

Sensitivity is a parameter that gives the percentage of reduction of energy consumption per 

percentage of reduction of the considered variable. 

Vehicle Parameter Sensitivity 

Weight 0.7 

Rolling friction 0.35 

Aerodynamics 0.3 

Driving Profile Parameter Sensitivity 

Mean square speed 0.6 

Mean acceleration 0.35 

Table 3. Influence of vehicle parameters and driving profiles on the wheels-to-distance energy efficiency [7]. 

Vehicle parameters are being improved year after year, lighter materials, aerodynamic studies... to 

improve efficiency and, therefore, less pollution and greater energy savings. However, the parameters 

that depend on driving the vehicle are more complicated to control. A very aggressive driving of the 

vehicle, braking and acceleration improperly, poor anticipation, not respecting the safety distance, and 

in general poor driving may decrease the efficiency in enormous amounts [8] and consequently, nullify 

the advances achieved. 

Fortunately, the world of transport is experiencing one of the greatest innovations in the world 

economy. This is the development of Automated Driving Systems (ADSs), commonly referred to as 

automated or self-driving vehicles. This technology, applied to the maximum of its capabilities, will 

allow the driver to become a passenger, who can leave the control of the vehicle to the system that 

it incorporates. As seen before, the human factor is the cause of most traffic accidents. If this type of 

error can be avoided, the death rate will be reduced. ADSs have the potential to accomplish exactly 

this by addressing the root cause of these tragic crashes. These systems can save thousands of lives, 

as well as reduce congestion, enhance mobility, and improve productivity [9]. 

The following table (Table 4) shows the driving strengths of a human versus a machine today. 

Aspect Human Machine 

Sensing 
Excellent vision 

Strong inertial (inner ear) 

Strong Multi-sensor 

Direct measurement 

Perception 
Excellent detection, tracking and 

prediction 
Poor detection, tracking and prediction 

Information 

Processing 
Single focus 

Limited attention 

Excellent multiple source processing 

Perfect attention 

Memory 
Strong recall of strategies and data 

Flexible 

Precise recall of detail 

Rigid 

Reasoning 
Intuitive, approximate 

Excellent at handling ambiguity 

Excellent recall and learning 

Deductive, precise 

Poor at handling ambiguity 

Excellent fleet-wide learning and recall 

Reaction Speed Slow, inconsistent Fast, limited by computation 

Command Output Sufficient, inconsistent Strong, Precise 

Table 4. Human vs. Machine - Driving Strengths [10]. 
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Although ADSs have certain drawbacks, especially around prediction and handling of ambiguous 

situations, they offer very interesting advantages related to the speed of reaction, the parallel 

processing of multiple information sources, and a stronger control of the vehicle. 

Moreover, the difficulties in which the sector finds itself about efficient driving were previously 

discussed. Thanks to the precise control of the vehicle by the machine, driving efficiency can be 

improved. ADSs allows to optimize energy consumption by using only the energy needed to travel, 

without unnecessary acceleration and braking, and with anticipation. 

In view of the current transport problems, and the emergence of these new technologies, in 

September 2019, Renault unveiled its third call for the “Twizy Contest”, an international competition 

in which participants from universities around the world must provide this time a mobility solution 

of transport at the 2024 Olympic Games in Paris. The contest asks the students to find a frugal, 

durable, and innovative solution to facilitate the access to the different events reducing the 

environmental impact [11]. It also recommends using the Twizy model to achieve these goals. The 

student team made up of Adrián Mazaira, Mario Martín, Samuel Pilar and Ignacio Royuela from the 

Universidad de Valladolid participated in the competition and is currently representing Spain. 

The proposed project is called TwizyLine (Figure 3). The idea is to reinvent the car-sharing service 

through autonomous car parks based on line tracking systems. Users, through a mobile application, 

can request a vehicle that will be delivered to the pickup zone automatically. When users wish to 

leave the vehicle in a car park, they must only leave it in the leaving zone and the vehicle will be 

automatically parked (Figure 4). 

 

Figure 3. Logotype and symbol of TwizyLine. 

 

Figure 4. Illustration of a TwizyLine car park. 

This project takes advantage of the benefits of autonomous vehicles to provide an efficient and 

innovative solution. Thanks to the autonomy of the vehicles, they can be parked in much smaller areas 

so that the use of space is more efficient. Users do not have to worry about finding parking spaces 

and performing complicated parking manoeuvres, they simply must leave the vehicle in the 

corresponding area and the system takes care of the rest. Therefore, the risk of possible accidents 
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when parking in urban areas is avoided. Since the vehicles are in a controlled environment when they 

are operating autonomously, the disadvantages of ADSs about ambiguity management are minimized. 

Also, the project promotes the electric vehicle since the project is designed to be implemented in 

the Twizy vehicle and, as seen before, this type of vehicle is much more efficient. 

To carry out the implementation of this project, some main objectives have been defined: 

1. Front-end implementation in a smartphone application: Development of user software 

capable of identifying and locating the user. It must allow to request a vehicle and to 

implement the interfaces of pick-up and release of this one. It must also have a special 

interface for administrators to view the status of all vehicles in real-time. This objective has 

been developed in the Final Degree Project of Adrián Mazaira [12]. 

2. Back-end implementation for the control of autonomous parking: The system must be able 

to monitor and update a database with the status of all vehicles in the service and keep track 

of all users. It must also be capable of giving the necessary instructions to the vehicles for the 

execution of the service without risk to the customer. This objective has been developed in 

the Final Degree Project of Samuel Pilar [13]. 

3. Design of a system to add autonomy capabilities to a vehicle and implementation of 

ECUs responsible of control and communication of the vehicle: The vehicle must be 

controllable through a defined interface and a simulator of the vehicle's operation in reality 

must be carried out to check the integration of this system with the back-end system. This 

objective has been developed in this Final Degree Project. 

4. System integration and installation in a real vehicle: The designed modifications in the 

previous point must be made. All the necessary sensors and actuators must be integrated, 

and their operation must be checked. This is the main future line of this project. 

Therefore, this final degree project explains how objective 3 of the joint project TwizyLine was 

developed. 

1.2. Objectives 
This project has two main purposes. On the one hand, to carry out a complete design of a vehicle-

mounted system to give it level 4 autonomous vehicle capabilities, and the development of the ECUs 

that are part of this design. On the other hand, to develop a simulator of this system to simulate 

several vehicles at the same time and to check the integration of this system with the back-end. 

The specific objectives covered in this project are the following: 

• Design of a system that can be attached to a vehicle in order to add level 4 autonomy 

capabilities using line following system. 

• Development of the necessary software in two ECUs that work in a synchronized way. 

• Design and implementation of a vehicle communication system through the CAN bus to 

achieve this synchronization. 

• Design and implementation of a communications interface through an appropriate protocol 

for vehicle control.   

• Management of errors in this system. 

• Development of a simulator of the previously developed ECUs in order to simulate several 

vehicles at the same time and to check the integration of this system with the back-end. 

• Development of a real-time viewer for “Google Earth” that allows to see the status of the 

whole system in real-time. 
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1.3. Stages and methods 
To carry out this project, a series of phases were followed: 

1. Initially, a review of current technological developments about the autonomous vehicle 

and automatic guided vehicles (AGVs) was performed. With this in mind, a study of the 

technologies needed to implement an autonomous vehicle according to the needs of our 

project was carried out. 

2. Then a design of the system to be implemented in the vehicle was made and the necessary 

software was developed in the added ECUs. 

3. Next, an adaptation of the original code was made to create a simulator capable of 

emulating the behaviour and messaging of several vehicles simultaneously. 

4. Afterwards, an evaluation of the use cases of the real system, programmed in the ECUs, 

was carried out, checking success cases and possible failures that may occur in practice. 

5. Finally, an evaluation of the integration of several simultaneous vehicles with the back-

end was carried out to prepare the “Twizy Contest” competition. 

It is important to remember the two main objectives of this project mentioned in section 1.2. Phases 

2 and 4 are necessary to carry out the design of the system and the development of the ECUs. Phase 

4 evaluates all the use cases that can occur with the vehicle. In this phase the check is made without 

the need of back-end, only through messages sent manually following the designed vehicle interface. 

This is because, since the system is not mounted in a real vehicle, checking the operation of the 

systems otherwise would not be valid. On the other hand, phases 3 and 5 are necessary to create 

the simulator and check the integration with the back-end. The objective of creating the simulator is 

precisely to be able to test with the back-end. In this case, the simulated vehicles, which behave as 

the real vehicle, would send GPS coordinates consistent with the service to be provided and, 

therefore, expected by the back-end. 

1.4. Resources 
To develop this project, the following materials have been used, which have been chosen specifically 

for this purpose: 

• 2 Humming Board CBi single-board computers [14] to operate as ECUs. These have a 1 GHz 

ARM processor, 2GB of ram, 1 CAN interface, 1 RS485 interface, 4 USB 2.0, 1 RJ45 port, 

and a PCI express port with SIM card slot. They are compatible with the 4.4x Linux kernel, 

resistant to extreme conditions, and have an extruded aluminium (IP32) enclosure. They also 

allow a power input between 7 and 36 volts which gives them a lot of flexibility. 

• 1 Garmin GPS18x USB GPS receiver [15]. A Garmin GPS18x USB GPS receiver. It 

incorporates differential DGPS capability using real-time WAAS corrections yielding position 

accuracy of less than 3 meters. It is waterproof and uses Garmin’s private binary protocol to 

transmit information via a USB interface. 

• 1 Huawei 4G Dongle E3372 4G modem [16] to give the vehicle an internet connection to 

communicate. It is connected via USB and is compatible with 4G, LTE, UMTS, HSUPA, 2G, 

FDD, UMTS, and GSM networks. Through 4G it can support up to 150Mbps. 

Apart from these main resources, cables, resistors, and LEDs have been used to make a CAN bus 

that simulates that of the real vehicle and an information panel that gives the status of the system in 

real-time. 
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2. State of the art 
In this chapter, a complete overview of the autonomous vehicle will be given, explaining the key 

concepts of it, the technology currently used, and the different levels of driving automation that exist 

today. It also shows a review of the technologies used to implement an Automatic Guided Vehicle 

(AGV) since the vehicle to be implemented will use one of these technologies. Then, based on these 

studies, the comparisons made and the conclusions reached it will be explained in order to carry out 

the project. 

2.1. Autonomous vehicle 
When defining an autonomous vehicle, it is necessary to previously define a set of key concepts in 

order to clarify the different levels of autonomy and the issues that the vehicle should be able to solve 

in every one of them. These concepts that are summarized below are defined by the SAE 

standardization organization in its J3016 standard [17]. It gives a logical taxonomy for classifying driving 

automation features along with a set of terms and definitions that support the taxonomy and 

otherwise standardize related concepts, terms, and usage in order to facilitate clear communications. 

The standard defines more than 30 concepts. Here I only introduce those that are crucial to 

understand the main questions of autonomous vehicles. 

Dynamic driving task (DDT) refers to all the necessary tasks for driving a vehicle. It comprises all of 

the real-time operational and tactical functions required to operate a vehicle in on-road traffic. It can 

be performed by a human driver or a machine. In the case this task can be carried out by a machine 

(“collection of software and hardware that are collectively capable of performing the entire DDT on 

a sustained basis” [17]) the whole system is called an automated driving system (ADS). When this 

system takes control of the vehicle, i.e. performs the DDT, the vehicle is in driverless operation. In this 

context, the term dispatch refers to place an ADS-equipped vehicle into service in driverless operation 

by engaging the ADS. Therefore, the entity that performs this action is called dispatching entity. 

Depending on the level of autonomy of the implemented system it will have different conditions to 

achieve this goal. These performance limitations depend on the operational design domain (ODD) of 

the system. The limitations of the designed system can be, among others, environmental, geographical, 

time-of-day restrictions, legislative and/or presence or absence of certain traffic or road 

characteristics. It is critical to define what happens when the ODD does not meet the conditions for 

the autonomous vehicle to be in driverless operation. This is called an ODD exit. 

To carry out DDT, two main sub-tasks are necessary. On the one hand, sustained longitudinal and 

transverse control of the vehicle in real-time is required. This includes the basic driving tasks, such as 

following the road and not colliding with vehicles in front of it. On the other hand, object and event 

detection and response (OEDR) is also required. This last sub-task must monitor the driving 

environment and execute an appropriate response to these objects and events. 

Another relevant task in autonomous driving is the achievement of the minimal risk conditions, that is, 

in the case of failure of DDT, or upon ODD exit, or the detection by the ADS of being in that 

condition (e.g. accident risk caused by another vehicle), to reduce the risk of a crash when a given 

trip cannot or should not be completed. This task is called DDT fallback and, like the DDT task, 

can be carried out by a human or a machine depending on the level of driving automation of the 

system. Note that the DDT and the DDT fallback are distinct functions, and the capability to perform 

one does not necessarily entail the ability to perform the other. Depending on the level of autonomy 

of the implemented system, and according to the situation, the system may ask the conventional 

driver to resume control of the vehicle. This request is called a request to intervene. 
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In order to carry out a risk analysis of an autonomous vehicle, it is necessary to know a series of 

concepts defined by the International Organization of Standardization (ISO) in its ISO 26262 standard 

[18]. Harm means physical damage to a living being. Risk is the probability of a certain event occurring 

that implies damage. Safety is the process that avoids risks of unreasonable damage. Hazard is a 

potential source of unreasonable harm risk or safety threat 

Based on the capabilities of a vehicle's ADS systems, SAE defines 6 levels of driving automation (Table 

5).  

 
Name Narrative definition 

DDT 

DDT 

fallback 
ODD 

Sustained 
lateral and 
longitudinal 

vehicle motion 

control 

OEDR 

Driver performs part or all of the DDT 

0 No Driving 

Automation 

The performance by the driver of the 

entire DDT, even when enhanced by 

active safety systems. 
Driver Driver Driver n/a 

1 Driver 

Assistance 

The sustained and ODD-specific 

execution by a driving automation system 

of either the lateral or the longitudinal 

vehicle motion control subtask of the DDT 

(but not both simultaneously) with the 

expectation that the driver performs the 

remainder of the DDT. 

Driver and 

System Driver Driver Limited 

2 
Partial 
Driving 

Automation 

The sustained and ODD-specific execution 

by a driving automation system of both the 

lateral and longitudinal vehicle motion 

control subtasks of the DDT with the 

expectation that the driver completes the 

OEDR subtask and supervises the driving 

automation system. 

System Driver Driver Limited 

ADS (“System”) performs the entire DDT (while engaged) 

3 
Conditional 

Driving 
Automation 

The sustained and ODD-specific 

performance by an ADS of the entire 

DDT with the expectation that the DDT 

fallback-ready user is receptive to ADS-

issued requests to intervene, as well as to 

DDT performance relevant system failures in 

other vehicle systems, and will respond 

appropriately. 

System System 

Fallback ready 

user (becomes 

the driver during 

fallback) 

Limited 

4 
High 

Driving 
Automation 

The sustained and ODD-specific 

performance by an ADS of the entire DDT 

and DDT fallback without any expectation 

that a user will respond to a request to 

intervene. 

System System System Limited 

5 
Full 

Driving 
Automation 

The sustained and unconditional (i.e., not 

ODD specific) performance by an ADS of 

the entire DDT and DDT fallback without 
any expectation that a user will respond 
to a request to intervene. 

System System System Unlimited 

Table 5. Summary of levels of driving automation [17]. 

Level 0 in the classification refers to all vehicles that do not have any kind of driving automation. The 

driver must perform the entire DTT. This level also includes vehicles that contain warning or support 

systems in very specific cases, such as a momentary emergency intervention. 
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Level 1 contains all vehicles that can, via a driving automation system, take longitudinal or transversal 

control of the vehicle in specific environments, that is with a limited ODD. Note that this level only 

includes vehicles that can autonomously control one of the two main parameters of the vehicle 

control, that is, either the longitudinal or the lateral vehicle motion control subtask of the DDT. The 

rest of the DDT tasks remain in the hands of the conventional driver. A clear example of this level is 

the well-known adaptive cruise control system. This system allows vehicles to maintain their 

longitudinal control by programming a cruising speed at which the driver wishes to move. If the system 

detects a vehicle driving ahead, it reduces the speed of the vehicle to maintain a safe distance. 

Therefore, this system is only valid for highways or roads without traffic lights or other limitations 

that depend on more factors than the possibility of having a vehicle in front of it. The driver continues 

to have transversal control through the steering wheel, he must supervise the performance of ADS 

and, of course, he is the one who must intervene in the case of risk. Most of the original equipment 

manufacturers (OEMs) currently offer this system as standard equipment in most of the vehicles and 

therefore they belong to this level. 

Level 2, unlike Level 1, covers vehicles that have an ADS capable of performing the DDT tasks of 

longitudinal and lateral control simultaneously. Therefore, in these cases the vehicle is able to 

accelerate and brake, stay in the lane and take any turn. At this level, as level 1, the conventional 

driver is expected to perform the remainder of the DDT, monitor the performance of the 

autonomous system's features, and supervise the ADS to achieve a minimal risk condition as needed. 

The ODD in this level is limited, so vehicles in this level can only operate with ADS active under 

certain conditions. Currently, there are in the market some vehicles that belong to this level such as 

the new Renault Clio and Renault Captur, the Nissan vehicles with the Propilot system, the Mercedes-

Benz E Class 2021, or most Tesla vehicles with the Autopilot feature. All these vehicles recommend 

using this mode only on highways or roads in good condition since the system may fail in other 

conditions. 

From level 3 all sub-tasks of DDT can be controlled by ADS. This means that in contrast to Level 2, 

in Level 3, apart from the lateral and longitudinal control of the vehicle by the system, the system is 

also able to recognize any type of object and event that may occur in the driving environment (OEDR 

task). Therefore, the system is more intelligent. On the one hand, the vehicle can make strategic 

decisions that not only focus on maintaining speed and following the path of the lane but also on 

choosing the best route, overtaking slower vehicles if necessary, predicting the behaviour of the 

environment's vehicles by taking into account, for example, turn signals, and even detecting traffic 

lights and signals. On the other hand, it can determine when it is necessary to launch a request to 

intervene (if the ODD limits are going to be exceeded or if there is a failure of the ADS performance) 

to the DDT fallback-ready user. It is important to note that, while Level 3 vehicles may be designed 

to manage fallback and achieve a minimal risk condition in some circumstances (e.g. avoiding an 

obstacle), their ADS do not guarantee that a minimal risk condition will be automatically achieved in 

all cases even if the vehicle is operating in the ODD. 

The main added value of level 4 is the management by the system of accident risk conditions to 

achieve the minimum risk condition, that is, the performance of the DDT fallback task by the system. 

This system, in the case of any risk, warns the user with a request to intervene. If the user does not 

respond and does not start to perform the DTT, the system continues to have control and activates 

the DDT fallback subtask in order to achieve a minimal risk condition. The correct operation of all 

these features is only guaranteed in the areas determined by the ODD. In fact, according to the 

standard, if the user is not in these zones, the system should never allow him to activate it. Currently, 

there are vehicles from different companies that promise to have ADSs with features of this level. 

Navya, a French company, is already building and selling Level 4 electric shuttles, cabs, and trucks that 

can reach a top speed of 90km/h [19]. The use cases of these vehicles are oriented to airports, 

industrial areas, campuses... clear examples of ODD limitations. Today they promise to be able to 
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bring this technology to the cities. Other companies like Google with Waymo [20], Manga [21], and 

the alliance between Volvo and Baidu [22] are starting to develop prototype vehicles of this level. 

Finally, level 5 comprises all the characteristics of level 4 but without any use limitation, i.e. without 

ODD limitations. These vehicles will allow their occupants to be taken to any point on the planet (as 

long as it is viable to go by car), without the need at any time for a driver, just as an experienced 

driver would drive today. They are the future of transport. Although some articles promise the arrival 

of the level 5 autonomous vehicle in 2025 [23], these contradict themselves by saying that they will 

only be able to be used in specific areas (which means level 4 vehicles). A true level 5 vehicle has no 

restrictions and must be able to cope with any type of route that a conventional driver might take 

today. 

In order to implement an autonomous vehicle, the company General Motors defines 3 main 

capabilities [24]: 

1. Perception: It includes all the technologies needed to monitor any event that happens in 

the environment around the vehicle or to detect any object near it. This capability includes 

two very different capabilities, on the one hand external perception of dynamic and static 

objects, and on the other hand the, so called, ego localization (position, velocity, and  others).  

2. Planning: It determines the desired behaviour of the vehicle based on the data received by 

the detection technologies. 

3. Control: It controls the longitudinal and transversal movement of the vehicle to follow the 

route marked by the planning technology. 

The following figure shows the different technologies used in General Motors' autonomous prototype 

vehicles (Figure 5) to achieve a complete perception of everything that happens around the vehicle. 

 

Figure 5. Detection technologies used in General Motors' autonomous vehicle prototypes [24]. 

Its prototypes currently have 5 LIDARs (Laser Imaging Detection and Ranging), 16 cameras, and 21 

radars [24]. The combination of all the data they provide is used to monitor the environment and act 

upon it. In this way the system can detect and classify objects, the position of the vehicle, and its 

direction. These technologies allow the generation of a three-dimensional model of the environment. 

With all these technologies, not only is the perception system able to detect objects, but to predict 

their future movements. In this way, the execution of the above-mentioned OEDR task by the system 

is achieved. With this model, the planning software running on a vehicle computer calculates which 

route the vehicle should take and how it should proceed (lane change, acceleration, braking, turning, 

etc.) also in the case of risk. Finally, thanks to the electric motors coupled in the direction of the 

vehicle and the possibility of controlling the vehicle engine by this system (control technologies) the 

planned route is carried out. 
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Figure 6 shows the diversity and redundancy of the systems used in General Motors' autonomous 

vehicle prototypes. According to the figure, there is complete redundancy in the information given 

by all the sensors, the vehicle communications, the power supply of the systems and the detection of 

possible collisions. A series of redundant electric motors are used to control the braking and steering 

system. It is also seen that two large embedded computers as electronic control units (ECU) are used 

to manage all the sensor data and send commands to the actuators to control the vehicle. An ECU is 

a dedicated task computer that is installed in a vehicle to control various electrical subsystems of it. 

The main difference with a conventional computer, apart from being designed to perform a specific 

task and therefore have specific communication interfaces (such as CAN), is its robustness. They offer 

characteristics such as allowing temperatures between -40ºC/+85ºC or tolerance to vibrations and 

physical shocks. [25] Therefore, these computers, which make the operation of ADS possible, must 

be well protected. 

 

Figure 6. Systems diversity and redundancy at General Motors' autonomous vehicle prototypes [24]. 

Other companies such as Tesla, in their ADS-incorporated commercial vehicles, do not use LIDAR 

technology and, to carry out the perception of the environment, use only cameras and radars [26]. 

Tesla guarantees that the hardware mounted in the vehicles it currently sells is ready to reach level 5 

of autonomy and that the only limitation falls on the software. They promise to release vehicle updates 

as they develop new versions of their Autopilot system so that, gradually, those vehicles already 

purchased, acquire greater autonomy capabilities [26]. 

As we have seen, perception systems are very relevant when developing an autonomous vehicle. Next 

a review of the state of the art of the technologies currently in use and their different purposes will 

be shown. To perform the external perception of dynamic and static objects 4 technologies 

are commonly used: 

• Cameras: Used in conjunction with artificial intelligence software capable of interpreting the 

images they make it possible to recognize and classify objects in the environment. 

Furthermore, by using two separate cameras pointing in the same direction (called stereo-

camera), depth estimation can be achieved. The cameras can be classified according to the 

following metrics: resolution of the image provided; field of view, much field of view implies 
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the need to have a higher image resolution if the detection of small and/or distant objects is 

required; and dynamic range, a poor dynamic range can difficult the detection in environments 

with a lot of lighting contrast such as shadows. The main disadvantage of cameras is the need 

for a powerful computer that is capable of processing images in real time. In addition, these 

systems are not reliable in bad weather conditions that produce low visibility, such as rain, 

snow, or fog. 

• LIDAR (Light Detection And Ranging sensor): Allows to estimate a 3D scene geometry 

through a laser light and measuring the reflection with a sensor, taking into account delay and 

intensity. They usually include spinning elements with multiple light sources so that more 

information can be collected. These systems can be classified according to certain metrics: 

number of light sources and sensors; point rate per second; rotation rate, if spinning elements 

are incorporated; detection range, that is, limit distance that can be covered; and viewing 

angle. LIDARs are more accurate than cameras in depth estimation as they cannot be fooled 

by shadows, sunlight, or the headlights of other vehicles. They also allow to save computer 

power. LIDARs give immediate absolute information about the distance to a point, while 

camera-based systems need to process and interpret the images before a reliable result can 

be obtained. However, as with cameras, LIDARs are unreliable in bad weather conditions 

such as snow and rain. 

• RADAR (Radio Detection And Ranging sensor): It uses a method similar to LIDAR but 

employing radio waves instead of light. It allows object detection and motion estimation They 

can be classified according to certain metrics: detection range, that is, the maximum distance 

at which it can detect; field of view; and accuracy of position and speed. Generally, if the radar 

provides a long detection range, it presents a smaller field of view and vice versa. RADAR 

technology provides less accuracy and flexibility than LIDAR. However, in bad weather 

conditions it provides better results, and it does not need light to operate. 

• Ultrasonic sonar: Through the emission and detection of ultrasounds it is able to measure 

the distance from the sensor to the target object. They are very useful for detecting close 

objects but not for distant objects. These devices can be classified depending on the detection 

range and field of view. Like radars they offer good results even in bad weather and do not 

need light to operate. 

On the other hand, to carry out the internal perception of the vehicle, called ego localization, 

a series of sensors are commonly used: 

• GNSS (Global Navigation Satellite Systems) and IMU (Inertial Measurement Units): GNSS 

allows the vehicle system to know its position and estimated speed in real time. The accuracy 

of these systems depends on the technology used. On the other hand, IMU calculates the 

accelerations and the angular rate of rotation of the vehicle. 

• Wheel odometry: It allows to know the speed at which the wheels of the vehicle turn and 

therefore the speed of the vehicle. 

Finally, a self-driving brain is needed to carry out all the tasks of the ADS. This takes in all sensor 

data and, depending on them, operates the vehicle actuators necessary to carry out the autonomous 

driving tasks. 

2.2. Automatic Guided Vehicles 
Automatic guided vehicles (AGVs) are robots capable of following pre-set routes autonomously. 

Their main objective is to help in the industry sector. They are always electric and can incorporate 

manual or automatic systems for recharging or replacing the battery. They are generally used in 

factories and warehouses to transport materials performing slow and repetitive operations [27]. 
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However, today their use is expanding, and they can be seen in some hospitals (transporting necessary 

material), and even theme parks. 

To follow the pre-set routes, multiple technologies can be used by these robots. The following 

paragraphs provide a brief review of the main technologies commonly used in this sector. 

• Radio Frequency Guidance: A wire is buried along the entire route that the robot must 

follow. This cable is connected to an AC generator, so it emits magnetic fields at a certain 

frequency. The robot must have a sensor to detect the magnetic field from the cable and be 

able to determine where it is. This way, it can follow the cable. If the robot reaches a point 

where the cable splits, and therefore there are two possible routes, there is a method for 

the robot to differentiate the magnetic field of both cables and, depending on the 

configuration, choose to follow one or the other. This method consists of using different 

frequencies in each cable. The sensor of the robot is able to detect and differentiate the 

magnetic field of the cables at different frequencies. In this way, the pre-programmed vehicle 

knows where it should go. This possibility brings a lot of flexibility to the system as it can be 

used not only to differentiate routes, but also to mark areas where the vehicle should behave 

in a certain way (e.g. changing speed) [27]. 

• Magnetic tape: Through magnetic tape, routes are created that define the robot's path. It 

incorporates a magnetic sensor that allows it to know where the tape is in real-time. The 

magnetic tape can be superficial or buried under the ground at a short distance from the 

surface so that it can be detected by the robot's sensor. In the case there is a point where 

the tape splits, as in the previous technology there is a method to get the robot to follow the 

correct path. The magnetic sensor of the robot is able to detect multiple tapes simultaneously, 

however, it is necessary to be able to inform it of where it is so that, depending on the path 

it has to take, it follows one track or another. The method consists of adding pieces of tape 

with different combinations of polarities, sequences, and length at the sides along the path 

(Figure 7). Thus, the robot gets information about where it is and how it should act [28] [27]. 

 

Figure 7. Example of the possibilities of the magnetic tape [28]. 

• Coloured tape: Similar to the magnetic tape. In this case a coloured tape is used which is 

detected by the robot through an optical sensor. Therefore, this tape must be on the surface. 

In order to allow the robot to make decisions during its route, different pieces of tape can 

be added to the sides along the path, similar to the magnetic tape [28]. 

• Pulsed or modulated laser: To use this technology to guide the vehicle, it is necessary to 

mount a reflective strip on all the walls of the environment where the robot will operate. 

This must incorporate a laser transmitter and receiver that constantly rotates and must have 

a preloaded map of the environment in which it will work. The rotating laser transmitter and 

receiver sends information to the robot about the angles at which it has detected the 

reflection of the laser and those at which it has not. In this way, thanks to the robot's 

preloaded map of the site, it can determine where it is located [29] [27]. 

• Vision guidance: It consists of the mounting of a series of cameras on the robot which, 

through artificial intelligence, creates a 3-dimensional mapping of the environment. In this 

way, it is able to know its position and, therefore, it can follow pre-established routes, and 

change its behaviour depending on its location. This technology makes it possible not to 
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modify the environment or add new elements to it. However, achieving a high level of 

accuracy can be complicated in certain environments [30]. 

In AGVs, the use of these technologies is often complemented by others. Radio frequency guidance 

technologies or magnetic or coloured band guidance are usually complemented with RFID (Radio 

Frequency Identification) technology to allow the robot to know where it is on the path and how it 

should behave. 

RFID is a system for the transmission of identifiers from a device (active or passive), called an RFID 

tag, to another device, called an RFID sensor, at relatively short distances. Generally, RFID tags carry 

a unique identifier that allows them to be unequivocally identified. Some tags allow not only to be 

read but also to be written, being able to overwrite their identifiers by other more convenient ones 

[31]. The maximum communication distance depends on the type of tags (active or passive) and the 

frequency range in which they operate. Active tags have a power supply and since they have such 

power, their identifier can be read up to 100 meters away. On the other hand, in order to transmit 

their identifier, passive tags need to be charged by the RFID sensor which wants to read it. Since they 

acquire power in this way, they cannot be placed as far away from the RFID sensor. Also, due to the 

characteristics of the system they have limited power. In summary, it is possible to read these tags  at 

a maximum distance of 25 meters. Passive tags usually operate in 3 different frequency ranges [31]: 

• Low Frequency (LF): 125 -134 kHz 

• High Frequency (HF): 13.56 MHz 

• Ultra-High Frequency (UHF): 856 MHz to 960 MHz 

This technology can be helpful for AGVs. Instead of using tape strips or different frequencies to 

differentiate specific areas, RFID tags can be used along the path. These tags can be located at decision 

points, where the robot must decide to follow one or another path. They can also be placed at 

different points of the route so that the robot knows where it is and therefore can make changes in 

its behaviour. The robot would contain a memory with the identifiers of those tags to know where 

they are and what to do according to the identifier it reads. 

2.3. Conclusions for the Project and selected technologies 
In this section, once the main concepts and technologies of the autonomous vehicle and the AGVs 

have been studied, a discussion will be carried out about which systems are the most recommendable 

to achieve a level 4 autonomous vehicle for the automated parking of the TwizyLine project. As seen 

above, a level 4 autonomous vehicle can carry out all the tasks of a conventional driver (DDT and 

DDT fallback tasks) autonomously under specific conditions (ODD) and, therefore, without the need 

for a driver. The following subsections show how these concepts correspond to the system to be 

designed. 

2.3.1. ODD 

The TwizyLine service car park is like the one shown in Figure 8. It can be divided into 3 different 

zones: Leaving Zone, where users leave the vehicle and, once they have left, the vehicle goes into 

autonomous mode; Park Zone, where vehicles operate in autonomous mode to be parked and 

unparked; and Pick-Up Zone, where the vehicle switches off the autonomous mode to be picked up 

by a user. Note that the Pick-up Zone of all the car parks includes a barrier that only opens if the 

system detects that a vehicle is closer than 15 metres to that barrier. More car park designs are 

available for the TwizyLine project. They can be seen in the final degree project by Samuel Pilar Arnanz 

[13]. Although they have differences, they are all divided into the same areas and have the same 

characteristics relevant to autonomous driving inside them. 
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As we have seen, the vehicles should only engage their ADS inside the car parks. These car parks are 

controlled environments closed to the public where there are only other autonomous cars and, 

occasionally, qualified maintenance personnel. These are the only possible obstacles inside the car 

park. However, the possibility that the vehicles may encounter some other obstacle ahead not initially 

contemplated is also considered. All vehicles will move inside at a speed of between 5 and 10 km/h 

for either parking or unparking. In this area, due to the vehicle guidance characteristics that will be 

shown later, there is no risk of lateral collision. Therefore, there is no possibility of one vehicle 

colliding with the lateral zone of another. 

This car park corresponds to the operational design domain (ODD) of the system. 

 

Figure 8. Small car park of the TwizyLine service seen from above. 

2.3.2. Sustained longitudinal and lateral control 

In order to implement the longitudinal and lateral control, we have look for solutions in the literature 

and we have used one of these solutions depending on the requirements of our project and other 

factors. 

The longitudinal control of the vehicle can be carried out in several ways. In current ADS systems, 

in order to carry out the acceleration control, the information given by the pressure sensor on the 

accelerator pedal is ignored and other similar messages from the ADS are sent to the engine to 

simulate the action of the accelerator pedal. For brake control, the Electronically Controlled Brake 

system of modern vehicles is used [32]. In order to have control of the accelerator, a bypass will be 

performed on it, and its analog signals will be simulated. To carry out the control of the brake, two 

main possibilities are considered. On the one hand, it is possible to use the system that was used by 

a research group at the University of Cartagena for the conversion of a Twizy vehicle into an 

autonomous vehicle [33]. This consists of an electric motor coupled to a cam that operates directly 

on the brake pedal (Figure 9). On the other hand, the hydraulic braking system of the vehicle can be 

modified to incorporate an Electronically Controlled Brake system and to control it through messages 

from the ADS [32]. This is necessary because the Twizy model does not incorporate any electronic 

braking system, not even ABS [34]. 
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Figure 9. Control of the vehicle's braking system using an electric motor [33]. 

At present, it has not been decided which braking method will be used. This will be decided in the 

next main objective of the project shown in section 1.2, which is the main future line of the project. 

We have found 2 main alternatives for carrying out the lateral control of the vehicle. The first 

consists in replacing the steering column of the Twizy with that of a Renault Clio II as was done in 

the thesis of Christopher Dunkel [35]. The difference between this and the original steering column 

is that the Clio has a power steering engine, therefore messages can be sent to it to move the steering 

wheel when necessary. The other alternative is to use the method used by the research group at the 

University of Cartagena [33]. This consists of coupling gears that connect to an electric motor on the 

current steering column of the Twizy. 

 

Figure 10. Control of the vehicle's steering wheel using an electric motor [33]. 

As can be seen in the following table (Table 6) the replacement of the steering column is a very 

complex task. Furthermore, there is no public information about how to control the power steering 

of the Clio II model. Therefore, it was decided to use the second method. 

Method Assembly complexity Use complexity 

Changing the steering 

column 
Requires disassembly and assembly 

of the entire steering column 

No public information about the 

control of the power steering of a 

vehicle. 

Adding electric motor 
Requires assembly of new parts on 

the vehicle 

There are motors with controllers 

on the market with clear user 

interfaces. For example Maxon 

motors [36]. 

Table 6. Methods for the control of the vehicle's direction. 

2.3.3. OEDR 

The object and event detection and response (OEDR) task includes the detection of the events that 

the vehicle must face when its ADS is working and the calculation of the necessary procedures to act 
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correctly according to the events detected. To explain how the vehicle should perform this task, we 

will focus on the Perception and Planning tasks explained in section 2.1. 

2.3.3.1. Perception 
To carry out the external perception tasks, a series of sensors are needed. 

The aim of this project is to achieve a vehicle that is guided by systems analogous to those of the 

AGVs. In view of the variety of technologies that currently exist (discussed above), a comparison of 

these is made and can be seen in the following table (Table 7). 

Method 

Installation of the 

system in the 

parking 

Programming 

complexity 
Reliability Flexibility 

Radio Frequency 

Guidance 

Requires buried cable 

installation connected 

to an AC generator 

plugged into the power 

grid 

No products were 

found on the market 

with public available 

manuals for the use of 

this technology. 

Reliable in the 

presence of dirt 

or rain 

Buried [28] 

Difficult to lay and 

difficult to change. 

Magnetic tape 
Allows simple surface 

mounting 

Easy to program 

For example: Roboteq 

magnetic guide 

systems [28]. 

Reliable in the 

presence of dirt 

or rain [28] 

It allows for 

burying to 

preserve its 

integrity over time 

Easy to lay and easy 

to change for 

testing - Allows for 

burying in the case 

of final installation 

to preserve the 

integrity of the tape 

Coloured tape 
Allows simple surface 

mounting 

Easy to program 

For example: Roboteq 

optical guide systems 

(discontinued) [28]. 

No reliable in the 

presence of dirt 

or rain 

No possibility of 

burying [28] 

Easy to lay and easy 

to change for 

testing 

Pulsed or 

modulated laser 

Requires installation of 

reflectors on all edges 

of the environment 

Difficult to program 

It is necessary to be 

able to interpret the 

data in order to 

create a site map 

No reliable in the 

presence of dirt 

or rain 

The system must be 

reprogrammed if 

the parking space is 

changed 

Vision guidance 
No installation required 

in the environment 

Difficult to program 

Works with artificial 

intelligence that must 

be prepared for the 

environment 

No reliable in the 

presence of dirt 

or rain 

The system must be 

reprogrammed if 

the parking space is 

changed 

Table 7. Comparison between the main current AGV guiding technologies. 

As shown in Table 7, the best option for our project is the use of the magnetic strip. This is easy to 

install and change and can be buried, so it provides a lot of flexibility. It is not affected by dirt or rain 

due to its characteristics, and in addition, it can be buried to prevent degradation over time. 

Furthermore, there are currently companies on the market such as Roboteq [28] that offer this type 

of sensor with a manual that explains its interface in detail. With a good design of routes made with 

the magnetic strip, avoiding crossings, and maintaining sufficient distance between each magnetic strip, 

the risk of lateral collision of a vehicle with another is eliminated. This sensor will allow a correct 

lateral control of the vehicle. 

Regarding the ODD of the system (subsection 2.3.1), the vehicle with the ADS activated inside the 

car park, must move at very low speeds (between 5 and 10 km/h) and must be prepared to act if it 

detects a vehicle or any other obstacle in front of it. Remember that it is only necessary to detect 

events in the front of the vehicle as there is no risk of lateral collisions. Therefore, the vehicle must 

be able to adapt its speed if there are other vehicles or obstacles in front of it and to stop if necessary. 

This does not require a long detection range since at such low speeds the braking distance is minimal 

and a wide anticipation is not necessary. There are multiple detection technologies seen in section 
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2.1 to accomplish this. The following table (Table 8) shows a comparison of these technologies to be 

used in the project. 

Technology Range detection 
Computing 

workload 

Weather 

conditions 
Price Utility 

Cameras 

with 

artificial 

intelligence 

Varies according to 

resolution and field 

of view. 

It needs a powerful 

computer, trained to 

detect different 

events. 

Unreliable in 

bad weather. 

Very 

variable 

depending 

on the 

quality 

required. 

 Recognize, classify, 

and locate objects in 

the environment 

and predict their 

future movements. 

Need two cameras 

to estimate depth. 

LIDAR 
Up to 200 meters 

[37]. 

It needs specific 

connections and 

hardware and 

software to receive 

its information. 

Unreliable in 

bad weather. 

Expensive. 

For 

example 

[38]. 

Very precise data 

about the distance 

to objects. Certain 

data is unnecessary 

for the project. 

RADAR 

Depends on the type. 

There can be 

obtained ranges of up 

to 200m with very 

little field of view or 

much shorter ranges 

with a lot of field of 

view [37]. 

It needs specific 

connections and 

hardware and 

software to receive 

its information. 

Reliable in 

bad weather. 

Not as 

expensive 

as LIDAR. 

Precise data about 

the distance to an 

object. A short-

range radar with a 

wide field of view is 

good for the 

project. 

Ultrasonic 

sonar 
Some can detect up 

to 8 meters away. 

Easy to use. 

They return only the 

distance of the 

object they are 

pointing at. 

Reliable in 

bad weather. 

Cheap. 

For 

example 

[39]. 

Accurate data on 

distance to nearby 

objects and vehicles. 

Table 8. Comparison between the detection technologies currently used in ADS. 

As shown in Table 8, the best options for this project are the use of ultrasonic sonars. The use of 

cameras is discarded because they imply a high computational workload, they may not work well in 

bad weather conditions, and at least two cameras are needed to be able to estimate the distance to 

an object. The use of LIDAR is discarded because of its price and because it provides unnecessary 

data for this project. On the other hand a short-range RADAR or ultrasonic sonars can be very 

effective. However, radars are more expensive and complicate the design of the vehicle due to their 

operation and interconnection. This is why it was decided to use ultrasonic sonars as they are easy 

to use, cheap, and perfect for the system ODD. The use of this technology allows the vehicle to 

detect objects and vehicles in front of it at low speeds and adapt its speed or even stop if necessary. 

This technology allows a correct longitudinal control of the vehicle. 

If an obstacle or vehicle is detected, the vehicle will adapt its speed to it. If the detected vehicle or 

obstacle remains stationary, the vehicle will reduce its speed and stop 30 cm away from it. If two 

ultrasonic sensors are used on the front of the vehicle, they must have a minimum range of 2.5 metres 

and a lateral range of 1.2 metres. In Figure 11 we see that, with these measures, the vehicle would be 

able to detect vehicles close even in tight curves. 
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Figure 11. Example of the detection of a vehicle with ultrasonic sensors. 

To carry out the internal perception tasks, the system must be able to access to some information. 

The vehicle's ADS must always be able to know the speed of the vehicle. This will allow it to control 

the actuators of the vehicle's longitudinal control in order to achieve a speed of between 5 and 10 

km/h, as required by the system's ODD (section 2.3.1). Currently all vehicles incorporate an 

odometer in the wheels to know their speed and to count the distance travelled by the vehicle. 

The vehicle needs to know its location. If we remember the ODD of the system, the entry barrier 

only opens if the system detects that the vehicle is less than 15 meters from it. Therefore, it is 

necessary to know the location of the vehicle with an accuracy of less than 7 meters approximately. 

There are multiple technologies that offer valid location accuracies for the system. GPS (Global 

Positioning System) technology allows to obtain accuracies of up to 3 meters provided that a correct 

GPS receiver is used [40]. On the other hand, to know its location inside the car park, the RFID 

technology explained in section 2.2 is used. A collection of passive RFID tags will be placed at different 

points in the car park. The vehicle needs to have an RFID antenna to be able to read them and thus 

know its position inside the car park. 

2.3.3.2. Planning 
The planning task determines the desired behaviour of the vehicle. It can be divided into two: long-

term planning and short-term planning. 

In the TwizyLine project, the long-term planning is carried out by the back-end. The back-end is 

informed about the position of each vehicle at all times, determines the routes the vehicles must take, 

and sends a message to the vehicles instructing them to follow it. This route decision comprises the 

long-term planning task of the system. The back-end will order the vehicles to follow one or another 

route depending on their battery charge and the number of vehicles parked in the car park. The final 

project degree by Samuel Pilar Arnanz [13] explains the operation of the back-end in depth. The RFID 

technology explained in section 2.2 is used to define these routes. This way the back-end define the 

route by informing the vehicle about what it should do when it detects an RFID (turn or vary speed). 

In addition, the back-end decides when the vehicle should go into autonomous mode or manual mode. 

Therefore, it is the dispatching entity that decides when to dispatch the vehicle in driverless operation. 

The short-term planning is carried out by the vehicle. Thanks to the information perceived by the 

sensors mentioned above (subsection 2.3.3.1), and the route designated by the back-end, the vehicle 

decides if it should vary the speed or stop, and when it should turn. 

2.3.4. DDT Fallback 

The vehicle, in the case of any risk, will immediately go into error mode. In this mode, the vehicle 

stops immediately, reaching the minimum risk condition. It then informs the back-end of what has 
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happened. In this way, the back-end, which has information about the location and status of all the 

vehicles, can decide when the vehicle should be restarted and, at the same time, can send other routes 

to the other vehicles operating autonomously in the car park if necessary. This operation forms the 

DDT fallback task. 

One of the future lines of this final degree project consists of carrying out a risk analysis, analysing 

each possible failure in depth. Annex II shows the errors that have been considered until now when 

implementing the actual system. However, these errors are only for the implemented part, i.e. the 

communication tasks. During the execution of the next project objective, the table will be completed 

with all possible error cases.  

2.3.5. Self-driving brain 

It is necessary to debate which central device, the system's “brain”, will be used. This computer, as 

seen in section 2.1, must be able to take in all sensor data and, based on this, operate the vehicle's 

actuators to carry out all the tasks of the ADS. In this way, at the beginning we considered installing 

an ECU that we would program to process the data. However, they are proprietary solutions which 

provide in general little flexibility as they are closed environments and consequently, the idea is 

discarded. One cheaper alternative is the use of Single Board Computers (SBC) based on ARM 

(Advance RISC Machine) architecture, like for example the well-known Raspberry. These low-cost 

SBC can operate as an ECU inside the vehicle, provided that a good selection of the necessary 

characteristics is made. It is possible to install many different Linux distributions in those SBC, what 

will give flexibility. Moreover, there are hardware modules to add mobile network connectivity and 

geolocation to them. 

For the programming of the software in this module, the Python 3 programming language will be used. 

It facilitates fast programming by allowing the developer to focus on the algorithms and disregard 

other less relevant issues. It allows quick and easy management of subprocesses and threads and is 

compatible with many libraries such as paho-mqtt, python-can or can-isotp. These libraries are very 

important in this project since the communication through CAN and MQTT is fundamental. Besides, 

the can-isotp library is exclusive for Python 3. Furthermore, the knowledge about this language before 

starting this final degree project was very high so the choice of this programming language allows to 

save time. 
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3. System design and ECUs 
implementation 

This chapter explains how the first main objective of this final degree project shown in section 1.2 

has been achieved. It is complemented by chapter 5 which shows an evaluation of the system's use 

cases. It shows two main issues. On the one hand, the design of the system, i.e. which devices will be 

used and how they will be interconnected inside the vehicle. On the other hand, the whole 

implementation of the ECUs is shown, its states, the CAN messaging used, the error management, 

the operation of their processes, synchronization between both, etc. Therefore, this chapter 

corresponds to phase 2 of this final degree project shown in section 1.3.  

3.1. System design 
This section explains the general design of the system that will be implemented in the vehicle. It is 

important to note that certain sections, such as the control of the vehicle, are not fully defined as, 

due to the global COVID-19 pandemic, the delivery of the real Twizy vehicle to the university has 

been delayed and there are certain parameters that need to be checked in the real vehicle. Therefore, 

these parts will be defined in objective 4 of the TwizyLine project, as explained in section 1.1, so they 

are not part of this final degree project. 

3.1.1. Processing 

As shown in section 2.3, Single Board Computers (SBC) based on ARM (Advance RISC Machine) 

architecture will be used to implement the necessary processing tasks in the vehicle. At present there 

are multiple alternatives on the market. Table 9 shows a comparison of those studied in terms of the 

main characteristics that an ECU must have, as seen in section 2.1. It compares its robustness, 

incorporation of CAN interface (indispensable in an ECU to be able to receive and send information 

to the rest of the components of the vehicle), the flexibility in its source of power (the electrical 

source of a vehicle can have wide variations of voltage during its use), and its processing speed and 

RAM memory. 

Device Robustness CAN interface 
Power source 

flexibility 

Processing 

speed and 

RAM 

Raspberry Pi 4 B 

[41] 

Optional plastic case 

It is necessary to buy a metal 

case separately 

No guarantees 

Not included 
Necessary to buy 

separate module 

5V only 
1.5 GHz 

Up to 4GB DDR4 

RAM 

Raspberry Pi 3 B+ 

[42] 

Optional plastic case 

It is necessary to buy a metal 

case separately 

No guarantees 

Not included 

Necessary to buy 

separate module 

5V only 
1.4 GHz 

1GB DDR2 RAM 

Humming Board 

CBi [14] 

Extruded aluminium (IP32) 

enclosure 

Operating temperature: -40°C 

to 85°C 

Guaranteed 

Included 
Speed up to 1Mb/s 

From 7V to 36V 
1 GHz 

Up to 2GB DDR3 

RevPi Core [43] 

Operating temperature: -40°C 

to 55°C 

EMI tests: according to EN 

61131-2 

Guaranteed 

Not included 
Necessary to buy 
separate module 

From 10.2V to 28.8V 
ESD protection 

1.2 GHz 
1 GB DDR3 RAM 

Strato Pi CAN 

board mounted 

on RPi [44] 

It is necessary to buy a 

separate case 

Not guaranteed 

Included 

Speed up to 1Mb/s 

From 9V to 65V 
Surge and reverse 
polarity protection 

1.5 GHz 
Up to 4GB DDR4 

RAM 

Table 9. Comparison between the embedded systems contemplated to implement an ECU. 
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As shown in Table 9 the most recommended options are the Humming Board Cbi and the Strato Pi 

CAN Board mounted on a Raspberry Pi. The problem with the second option is that it is necessary to 

buy a Raspberry Pi and then attach the CAN Board to it. In addition, after doing this, it would be 

necessary to buy a separate case which generally does not provide any guarantees. On the other 

hand, the Humming Board CBi has a slightly limited processing speed. However, as it will be seen later, 

there is no intention of developing resource-intensive software. Furthermore, as it will be seen below, 

there are two well-differentiated groups of tasks when it comes to implementing this system. 

Therefore, it is decided to use two ECUs instead of one. This makes it much more flexible as it is a 

more modular system and, as the load is distributed between both, the risk of lack of processing 

power is lower. Figure 12 shows a picture of a Humming Board CBi like the ones used in this project. 

 

Figure 12. A Humming Board CBi [14]. 

Hence two Humming Board CBi are going to be used as ECUs in the vehicle. These will have the 

Debian 10.0 Linux distribution installed. This distribution comes pre-configured with a set of 

repositories that allows easy installation of most of the software available for Linux. This model 

incorporates a CAN interface, an RS 485 interface, 4 USB ports, an RJ45 port and 20 general purpose 

pins [14]. Figure 13 shows all its interfaces. 

 

Figure 13. Interfaces available on the Humming Board CBi [14]. 

They must interpret the information from all the sensors, control the actuators installed in the vehicle 

to control it, check the status of the vehicle and manage the communications of the vehicle with the 

MQTT server, receiving orders and sending information. These tasks are distributed between the 

two ECUs. The first is called the Communication module and the second the Control module. 

They must have a permanent communication channel between them, which allows not only the 

transmission of orders and information between them, but also the sending and receiving of error 

messages in the case of failure in order to achieve full synchronization between them. 

The Communication module must manage the GPS signal reception, the vehicle battery status, the 

communication with the MQTT server (sending information and receiving orders) and control and 
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monitor the Control module. On the other hand, the Control module must take care of all tasks 

related with the control of the vehicle, that is, interpreting the information from the sensors and from 

the car (such as speed) and controlling the installed actuators so that the vehicle is able to follow the 

marked route. 

As we have just seen, both ECUs need information from the vehicle. The Control module needs at 

least vehicle speed information and the Communication module needs battery status information. On 

the Twizy vehicle this information can be found on the well-known and very used in automotive 

industry Controller Area Network (CAN) bus [45]. Therefore, both ECUs must be connected to 

this bus through the CAN interface provided by the Humming Board CBi. This bus can also be used to 

carry out the communication between both ECUs, by adding a new collection of messages. In this 

way, with the same connection we can obtain vehicle information and interconnect both ECUs. Figure 

14 shows a summary of the tasks carried out by the modules and their interconnection. 

 

Figure 14. Tasks of the modules and interconnection. 

In summary, the Communication module will maintain a constant connection with the server, 

informing it about the GPS position, the battery status, and any failures that may occur. It will interpret 

the commands it receives from the server and will control the Control module. The Control module 

will carry out the control of the vehicle according to the orders it receives from the Communication 

module and will inform it of its status and of possible failures that may occur in its tasks. 

3.1.2. Connectivity 

In order for the autonomous system to know the position of the vehicle in real time, as explained in 

section 2.3.3.1, it is necessary to install a GPS receiver with an accuracy of less than 7 meters. This 

must be connected to the Communication module. By means of one of the USB ports incorporated 

in the Humming Board CBi, a GPS receiver can be connected to carry out this task. The GPS receiver 

to be used is the Garmin GPS18x USB [15]. It incorporates differential DGPS capability using real-time 

WAAS (Wide Area Augmentation System) corrections yielding position accuracy of less than 3 meters, 

valid for the requirements of the project. It is waterproof and uses Garmin’s private binary protocol 

to transmit information via an USB interface [15]. Due to its precision and robustness it is a good 

choice for the project. Figure 15 shows an image of this GPS receiver. 



24 

 

 

Figure 15. Image of the Garmin GPS18x USB [15]. 

The Communication module must have an internet connection to be able to connect to the back-

end. To achieve this, it is necessary to connect a modem through another USB port of the Humming 

Board CBi. The system will not need high transmission rates, so it is not necessary to use high-

bandwidth technologies such as 4G. However, it is interesting to use a modem that is compatible 

with many wireless technologies so that it can be used in most areas and the probability of not getting 

coverage is as low as possible. There are multiple USB modems on the market. The 4G Huawei E3372 

modem has been chosen because of the experience that this modem works well with a Linux kernel 

and its high compatibility with different wireless technologies. It is compatible with 4G, LTE, UMTS, 

HSUPA, 2G, FDD, and GSM networks. Through 4G it can support up to 150Mbps [16]. Figure 16 

shows an image of this 4G modem. 

 

Figure 16. Image of the 4G Huawei E3372 modem [16]. 

In order to test the correct operation of the vehicle, the GPIO pins of the Communication module 

will be connected to a series of LEDs that will light up to give certain information. This collection of 

LEDs will be called the information board. 

3.1.3. Sensors 

As seen in section 2.3.3, proximity sensors are needed to prevent crashes and to adapt the speed of 

the vehicle to its environment. The company Maxbotix distributes a multitude of proximity sensors 

with different characteristics that work through the RS 232 protocol (ParkSonar-EZ Sensor series) [46]. 

This sensor series comprises the sensors from MB1001 to MB1009. The difference between these is 

the detection area they cover. Remember that in section 2.3.3.1 it is explained that if two sensors 

are used, they must have a minimum range of 2.5 meters and a lateral range of 1.2 meters. The sensor 

chosen for the project is the MB1009 (EZ-144) since it is the one that offers more longitudinal and 

lateral range. Figure 17 shows the range specifications of this sensor. These specifications define the 

range of the sensor according to the size of the object to be detected. As the aim of the proximity 

sensors is to detect vehicles in front of it, we can follow the specifications of the C and D drawings 

in the figure. Therefore, these sensors will be able to detect vehicles or obstacles that are 3 meters 
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away in a lateral range of 1.7 meters from side to side of the sensor, enough for the project according 

to the criteria discussed above. Hence, with two of these sensors installed on the sides of the front 

of the vehicle, we will have full coverage.  

 

Figure 17. EZ-144 Sensor Range Specifications [46]. 

The Humming Board CBi does not incorporate as many RS232 interfaces for these sensors but it 

incorporates several USB interfaces. A conventional USB-RS232 adapter solves this problem. 

The technology chosen to guide the vehicle, as seen in section 2.3, is magnetic tape guidance. The 

company RoboteQ sells different magnet sensors especially designed for line-guided systems. They 

have millimetric precision and are prepared to detect line merges and forks, magnetic side markers, 

and line crossings (see Figure 7). It is programmable through a software available on their website. 

With this software it is possible to watch and modify multiple parameters. They work with magnetic 

bands of 25mm or 50mm wide, sold by the same company. The sensor comes with CAN interface, 

RS232 serial, USB, analogic output and PWM so there are several possibilities to connect it to the 

Humming Board CBi. They also come with 2 meters wires, with all the necessary connectors, which is 

very suitable for easing the installation in the vehicle and connection to the ECU. It works with 

voltages between 4,5 and 30 volts, also convenient for installation in the vehicle [47]. The following 

figure (Figure 18) shows the pinout of the device. 
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Figure 18. Input and output pins on the 15-pin DSub connector of the RoboteQ magnetic sensors [47]. 

As seen in Figure 18, the pins available to interact with the sensor are as follows: 

• Power Down: If this pin is connected to ground, the sensor will automatically turn off. If it is 

set to a voltage higher than 1.5V, the sensor will turn on. Never apply a voltage higher than 

5V on this pin. 

• Track Present is an output pin. It is set at 5 volts if the sensor detects a line. If not, it is 

connected to ground. 

• Analog Out returns the position of the tape using a voltage range from 0 to 3 volts, therefore 

1.5V means that the line is in the centre of the sensor. It provides a resolution of 18.75mV. 

When no line is detected it is held at 1.5V, so it is very important to monitor the Track 

Present signal mentioned above. 

• PWM Out also returns the position of the line, but with a pulse width modulation. 

• Fork Right and Fork Left are two inputs. Depending on which of the two we set to 5 volts 

the sensor will follow one or the other line. This means that, if we have a fork of lines to the 

right and we keep 5 volts at Fork Left pin, the sensor will still give the position of the line 

that continues straight. If we keep 5 volts at Fork Right pin the sensor will give the position 

of the line that turns right. See Table 10. 

• Left Marker and Right Marker are two outputs. They are set with 5 volts if a left or right 

marker is detected. The marks detected by the sensor consist of portions of the magnetic 

band, located in the opposite direction on the sides of the line. 

Fork Left Fork Right Analog and PWM Output 

Low Low No change 

High Low Left track position 

Low High Right track position 

High High 
Left or right track position depending on command 

received on RS232 

Table 10. Route selected depending on Fork Left and Fork Right pins [47]. 
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The sensor can also be controlled by commands sent via RS232 interface or via CAN messages. In 

order to receive information from it through CAN messages, it is necessary to program a script in 

the sensor so that it sends the information of the position of the line by means of some specific 

messages. 

To carry out the project, the following pins and interfaces will be used (Figure 19). To control the 

sensor and receive information from it the pins Power Control, Fork Right, Fork Left & Track Present 

will be connected right to the Humming Board CBi GPIOs of the Control module. Using these we will 

be able to turn on or off the sensor, make it follow the left or right path, and check if the line is being 

detected. At the same time, the sensor will send the line’s position through CAN frames, thanks to 

a previously programed script. The sensor is therefore connected directly to the vehicle's CAN bus, 

to which the control and Communication module is also connected. 

 

Figure 19. Connections to be made in the 15-pin DSub connector of the RoboteQ magnetic sensors. 

As mentioned above, RoboteQ sells various sensors of this type depending on their size. In order to 

choose the optimum sensor, a study has been carried out, considering that the magnetic band used 

will be 50mm wide, and the resolution of every sensor is 160 points side to side. Figure 20 shows an 

example of the calculation of the maximum detection range that a 160mm sensor can carry out with 

a 50mm magnetic tape. 

 

Figure 20. Calculation of the maximum detection range with a 160mm sensor and a 50mm magnetic tape. 

Figure 21 shows the results obtained for each of the RoboteQ magnetic sensors. The Dmax parameter 

refers to how much the centre of the magnetic strip can be deviated from the centre of the sensor 

without losing its location by the sensor. For example, if using the 160mm sensor, and the vehicle 

deviates more than 104mm from the line, the sensor would lose the line and the system would fail. 
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Sensor name Range detection (Dmáx ) One side maximum distance oscillation 

MGS1600GY 160mm 104mm 

MGSW3200 320mm 183mm 

MGSW4800 480mm 262mm 

Figure 21. Comparison of magnetic sensors depending on the one side maximum distance oscillation. 

In order to know the period of the CAN frames sent from the sensor, containing the information 

about the position, some calculations have been made to find out the maximum deviation of the 

vehicle when it encounters the tightest possible curve (3.4 metres for the Twizy)1 at a particular 

speed. The results can be seen in Table 11. 

Frame’s period 5km/h deviation 10km/h deviation 
50ms 1mm 3mm 

100ms 3mm 11mm 

200ms 11mm 45mm 

300ms 25mm 102mm 

400ms 45mm 184mm 

500ms 71mm 293mm 

Table 11. Deviation before the system acts according to the period of the CAN message and the speed of the vehicle. 

Interpretation and decision-making according to these studies are part of the last main objective of 

the full TwizyLine project shown in section 1.1. Therefore, it is not explained in this final degree 

project. 

As seen in section 2.3, the vehicle must have an RFID antenna in order to read the RFID tags placed 

along the route and thus make decisions. The company SparkFun sells 125KHz RFID antennas that 

are capable of reading RFID tags up to 20cm away [48], enough for the project. The antenna is the 

ID-20LA. It works with 5 volts and when it detects an RFID tag it returns a specific frame (see 

figure12) indicating its identifier in hexadecimal numbers represented in ASCII with a checksum [49]. 

In order to connect it to the Control module, there is an adapter sold by the same company to be 

able to transmit the information from the antenna via USB [50]. 

 

Figure 22. ID-20LA RFID antenna and RFID USB adapter [48] [50]. 

 

Figure 23. ID-20LA RFID antenna frame format [49]. 

 

 

1 The tightest possible curve is the one with the radius of the vehicle's turning radius. To follow it correctly, the 

direction of the vehicle must be turned to its maximum. 
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3.1.4. Control 

To carry out the lateral control of the vehicle, as seen in section 2.3, due to the lack of assisted 

steering on the Twizy vehicle, and the complications resulted from installing a new steering column, 

an electric motor coupled to the steering column will be used in a similar way to the work carried 

out by a research group at the University of Cartagena [33]. This engine must offer the necessary 

torque to move the direction of the vehicle in any circumstance, not only in movement, but also when 

the vehicle is stopped (when the vehicle is stopped it is necessary to apply a greater force to be able 

to turn the steering). It must also be able to turn it at a sufficient speed so that the vehicle is agile 

during its autonomous movement. This last requirement is less relevant in the project since the 

vehicle will move at very slow speeds. The member of the team, Adrián Mazaira, made some 

measurements at the Renault engineering site in Valladolid  of the necessary torque to move the 

direction of a Twizy when this one is stopped applying weight in a lateral of the steering wheel and 

considering the radius of this one. Approximately 14 Nm of torque is needed to move the direction 

under these circumstances.  

After several investigations and supported by the Maxon Motor company [36], it was decided to use 

the 100W EC 60 flat brushless electric motor [51] mounted with a 1:81 GP 52C gearhead [52] and 

a MILE encoder with 4096 counts per turn [53]. This motor can provide a continuous torque of 

261mNm. To achieve a higher torque than mentioned above, a gearhead with a ratio of 81:1 is coupled 

to it. Hence, a torque of 21,141 Nm is available at the output of the gearbox, which is greater than 

14 Nm and therefore sufficient. A gear will be attached to the output shaft of the gearhead. This will 

be coupled to another gear of the same size which will be attached to the steering column. The ratio 

between the two shafts is therefore equivalent and the torque offered by the gearhead is the torque 

to be applied in the steering column. In order to have precise steering control by the system, it is 

necessary to know the position of the steering at all times. This is why an encoder is also attached to 

the motor. This encoder is not absolute, but incremental2, therefore it is necessary to make a previous 

calibration in order to have reliable data of the steering position. This electric motor is capable of 

delivering a continuous speed of 3210 rpm. This means that, with the reduction of the gearhead, it 

can turn the steering column in 2.27 seconds. However, according to information given by Maxon 

Motor engineers, with good engine power management, speeds of up to 6000rpm (1.21 seconds per 

1.5 turns of the steering column) can be reached at specific times without overloading the engine. It 

is possible to use this speed to implement the system as these aggressive turns will be made at specific 

times. 

A motor controller is needed to manage the power and movement of the motor and the data 

provided by the encoder. Maxon's EPOS 4 70/15 controller [54], fully compatible with the chosen 

motor and encoder, will be used (Figure 24). This simplifies the control of the motor; through a series 

of pre-set commands it is possible to calibrate the encoder information and order the motor to move 

to a specific position. The controller is pre-programmed to make full use of the electric motor's 

capabilities without overloading it. Therefore, thanks to this one, we will be able to reach the speeds 

previously mentioned. It is protected from overcurrent, excess temperature, undervoltage, 

overvoltage, voltage transients and short-circuits in the motor cable. It works with voltages between 

10 and 70 volts so there is no problem connecting it to the vehicle's power source. By means of some 

libraries for Linux that can be downloaded from the web page of Maxon, the system can be controlled 

by means of some pre-established commands via CAN, USB, or RS232. Therefore, the controller will 

 

 

2 Incremental encoders do not give an absolute value of the motor position. They give an incremental value 

starting from zero at power-up. Therefore, their value is only valid if the system is calibrated at that time in 

order to know the equivalence of the offered encoder values with the vehicle's steering position. 
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follow the commands sent by the Control module according to its status and the data it receives 

from the magnetic sensor. 

It is intended that communication between the Control module and the engine controller will take 

place via CAN bus of the vehicle, however, due to the lack of a real vehicle for testing, it cannot 

currently be guaranteed that this communication channel will be used. In the case this would produce 

some kind of interference (due to the use of message identifiers already used by the vehicle systems) 

the communication would be done via USB. 

 

Figure 24. Maxon EPOS4 70/15 Controller [54]. 

For throttle control, a bypass will be made in the connection between the throttle and the vehicle 

systems. According to meetings held with qualified Renault personnel and the article from the 

University of Cartagena [33], the pedal consists of two potentiometers that give different voltages 

depending on the pressure applied to it. This is done for safety, if the two values received by it are 

consistent with each other, the vehicle accelerates. These voltage values are interpreted by an ECU 

that controls the power of the Twizy's electric motor and sends status information via the CAN bus. 

Through tests carried out by Adrián Mazaira at the Renault engineering site in Valladolid we know 

that the signals returned by the accelerator potentiometers vary between 4 and 12 volts and between 

2 and 8 volts. However, as we do not yet have the vehicle at the university for more detailed studies, 

we have no more information about its operation. The design shown below approximates what can 

be implemented if certain assumptions are correct. 

As we have just said, there are two potentiometers inside the accelerator. We know that the 

connection of the accelerator with the ECU of the Twizy consists of 6 pins, so we can think that 3 

pins will be for one potentiometer and other 3 for the other one. This way two pins would give the 

voltage for the potentiometer to work and the third one would be the output voltage of the 

potentiometer. If these assumptions are true, we will use two digital potentiometers controlled by 

an SPI architecture. Since the Control module does not have this interface, another simple embedded 

system with this interface can be used to manage the potentiometers. A good candidate is Arduino 

Micro [55], a small and low-cost embedded system that can be programmed to receive commands via 

USB and, based on these, send commands via the SPI bus to the potentiometers or turn GPIO pins 

on or off. Non-latching relays will be used to bypass the connection between the accelerator pedal 

and the vehicle ECU. These relays only change state when they receive current. If they stop receiving 

current the switches return to their original position. It has been decided to use this system so that, 
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in an emergency, if the whole system is switched off, the relay always returns to the original position 

and the driver retrieves control of the vehicle. 

In Figure 25 we can see a scheme of the possible implementation to have the control of the 

accelerator of the vehicle. The controller of the potentiometer would be the Arduino Micro. This 

would also be responsible for controlling the relay. The Control module would send commands to it 

via USB and can be located in another area of the vehicle.  

 

Figure 25. Possible implementation of throttle control. 

 

3.1.5. Security and complete design 

This entire system must have a safety mechanism that allows it to be disconnected at any time. The 

simplest and most effective mechanism is to use an emergency button (Figure 26) that acts as a switch 

and disconnects power to all the added systems in the vehicle. In this way, everything would stop 

working and the driver would have control again. 

 

Figure 26. Example of an emergency button. 

With this button we have completed the design made in this phase of the TwizyLine project. In Figure 

27 a diagram of this can be seen. In this design the braking system, the verification of the vehicle's 
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acceleration system and the checking of the communication via CAN of the Control module with the 

engine controller is missing. In the case this communication cannot be carried out via the CAN bus, 

it would be necessary to add more USB ports to the Control module. This can be done using a USB 

port hub. In the next objective of the project, when the vehicle is available at the university, the design 

will be completed and implemented.  

 

Figure 27. Interconnection of the different system modules. 

To achieve the objectives described in Section 1.2 of this final degree project the following 

components have been provided: the Control module, the Communication module, a simulated CAN 

bus connected between both, the GPS receiver and the 4G modem. Figure 28 shows how all these 

elements have been interconnected to work with them. 

 

Figure 28. Equipment used and connected for the realization of this final degree project.  
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The Humming Board CBi does not include an HDMI port to connect a display. Therefore, to control 

and program it, an RS232 interface, which is included in the Humming Board for this purpose, was 

used. A terminal is accessible from this one. The CAN bus has been made by connecting two 120 

ohm resistors in parallel at the ends, simulating the CAN bus of the vehicle. Figure 29 shows how the 

CAN bus is connected to the Communication module. To make the information board connected to 

the GPIO of the Communication module (Figure 30), a multicolour LED has been used to inform 

about the status of the vehicle; two green LEDs inform about the status of the connection with the 

back-end, with the GPS receiver, and with the Control module; and a red LED that lights up in the 

case of failure. 

 

Figure 29. Rear view of the Communication module. 

 

Figure 30. Information board. 



34 

 

3.2. Vehicle system states 
To implement the system 5 states have been defined in which the vehicle can be. Depending on the 

state, the system will perform different tasks. In all states the communication and Control modules 

remain switched on, so that they can carry out their tasks or await a change of state. On the other 

hand, the devices connected to these modules can be switched off or on, depending on the status. In 

addition, because the processing system is composed of these two modules, it is necessary to 

guarantee a complete synchronization between both so that they are always in the same state. To 

achieve this, a specific CAN messaging has been designed that will be shown in the next section 3.3. 

Meanwhile, the states are: Start Up, Normal, Autonomous, Standby, and Failure mode.  

The Start Up mode is the state the system is starting up, or rebooting due to a system failure. In 

this state both modules start simultaneously, check that all devices are connected and get 

synchronized. The Communication module also checks if a connection can be established with the 

configured MQTT broker and if the back-end is available. When both are ready, the Communication 

module goes to the next default state (Normal, Autonomous or Standby) and instructs the Control 

module to do the same. In the case of errors at any point in this procedure the system immediately 

goes into Failure mode. 

The Normal mode is the state the system is in when the vehicle is being driven by a conventional 

driver. In this state, most systems connected to the Control module remain off since the vehicle is 

controlled by a person. The Control module keeps on and checks only the RFID sensor so that if an 

RFID tag is detected, it informs the Communication module, and this informs the back-end. This is 

necessary due to the operation of the car park, the first RFID of the parking located at the entrance 

must be detected in normal mode to confirm to the back-end that the vehicle is in the right place to 

start its autonomous operation3. On the other hand, the Communication module informs the back-

end, in addition to the RFID tags detected by the system, about the battery status and the location of 

the vehicle periodically, and about warnings4 issued by both modules. At the same time, this module 

waits orders from the server to change the status. In the case of errors triggered by any of the two 

modules, the system goes into Failure mode. 

The Autonomous mode is the state the system is in when it is in driverless operation, i.e. when 

the driving tasks of the vehicle are carried out by the installed system. In this state all the devices 

installed in the vehicle are switched on and are used. The Control module waits to receive a route 

through the Communication module and, once received, based on the information read by the 

magnetic sensor, controls the vehicle laterally and longitudinally with the previously mentioned 

actuators (Section 3.1.4) to follow the magnetic band. In the car park there are certain RFID tags that 

are placed before the forks of the magnetic band so that the system of the vehicle can decide which 

band to follow. In the case of detecting an RFID tag, the Control module will check the route it has 

received through the Communication module to act in one way or another. In addition, when it 

detects an RFID tag it always informs the Communication module. If ultrasonic proximity sensors 

detect any obstacle or vehicle in front of the vehicle, the Control module will adapt the speed of the 

vehicle and stop it if necessary, as explained in section 2.3.3.1. If the obstacle disappears before a pre-

set time, the vehicle continues its route normally. If it does not disappear, a timer will be triggered, 

and the Communication module will be informed. On the other hand, the Communication module, 

as in normal mode, periodically reports the position of the vehicle and the status of its battery. In this 

 

 

3 In the Final Degree Project of Samuel Pilar Arnanz [13] the complete design of the parking lots where this 

vehicle will operate can be seen. 
4 In this system, warnings and errors are the two types of failures that can occur. Section 3.5 goes into more 

detail about their meaning, their differences and all the possible errors that can occur. 
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state, the module expects to receive from the back-end a route to follow, orders to stop the vehicle, 

or to change the status. When any of these orders are received, the Communication module informs 

the Control module. In addition, the Communication module informs the back-end about the RFID 

tags detected by the Control module, the expiration of the obstacle timer, and any warnings issued 

by any module. In the case of errors triggered by any of the two modules, the system goes into Failure 

mode. 

The Standby mode is the energy-saving state of the system. In this mode, sensors, actuators, and 

the GPS receiver remain off. Therefore, the Control module does not carry out any tasks, it just 

waits for the Communication module to give it the command to change state. The Communication 

module maintains communication with the back-end by informing it about the battery status. In the 

case of any warning launched by either module when changing to this state or while in it, the Control 

module informs the back-end. In the case of errors triggered by any of the two modules, the system 

goes into failure mode. 

The Failure mode is the state that is passed to when any of the two modules throws an error. In 

this state, if the last state was Autonomous mode, the vehicle stops automatically. Through CAN 

messaging, both modules are placed in this state no matter which one of them has triggered the error. 

If the Control module is the one that has triggered the error, it sends the information of the error 

(error code and parameters) to the Communication module. Once they remain synchronized and 

the Communication module has all the necessary information, each module performs a different task. 

On the one hand, the Control module restarts and waits to receive commands from the 

Communication module to start in the Start Up state. On the other hand, the Communication module 

checks if there is an established connection with the back-end. If there is (and therefore the error has 

not been caused by a failure in the connection with it), the module sends the error code and its 

parameters to the back-end and waits for a restart message to be sent from the back-end. When it 

receives it, it goes to the Start Up state, informs the Control module and synchronizes with it to 

restart everything. In the case of no connection with the back-end, it waits for a timer with predefined 

time and tries to establish a new connection. This process is carried out continuously until the 

connection with the back-end is achieved. Once it succeeds, it goes to the Start Up state, informs the 

Control module and synchronizes with it to start everything again. Annex II shows a table with all the 

failures defined and contemplated in this phase of the project. 

As we can see, the changes of state always begin in the Communication module except for the failure 

mode. This is the one that knows when to change state since it has communication with the back-

end. Therefore, the Control module follows the status change commands received by the 

Communication module. 

3.3. CAN Messaging 
In this section the CAN messaging that is introduced in the vehicle for the communication between 

the Control module and the Communication module will be shown. This section will not show the 

messaging that will be used to communicate with other added devices such as the magnetic sensor 

or the steering motor. This is part of objective 4 of the project shown in section 1.1 and therefore 

not part of this final degree project. 

As seen above, this messaging must allow a complete synchronization between the control and 

Communication modules. At the same time, it must allow the immediate detection of any anomaly in 

the system, such as the malfunction of one of the modules, or the disconnection of the CAN bus. 

Also, it must allow the transmission of all the orders and information that must be sent between both 

modules to change the status, inform about the route to be followed, expiration of the obstacle timer, 

information about warnings and errors, etc. Six different message types have been designed and 

therefore with different CAN frame IDs. Thanks to the information provided by a GitHub user who 
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made reverse engineering in a Twizy to know the meaning of the messages sent by the Twizy ECUs 

through the CAN bus [45], it is possible to know which IDs are not being used in order to use them. 

This is why the range of IDs from 100 to 105 is used. When a Twizy is finally delivered to the 

University, it will be checked if these IDs are actually available and, in the case they are not, others 

will be used. Table 12 shows the messages used, with their ID and the different signals sent in each 

CAN frame. 

ID Type 
Period 
(ms) 

Source Dest. Name 
Length 
(bytes) 

Bit(s) Signal name 

100 Cyclic 100 COM CON COMM-STATUS 1 0-1 STATE-COM 

100 Cyclic 100 COM CON COMM-STATUS 1 2 PAUSE-COM 

100 Cyclic 100 COM CON COMM-STATUS 1 3 RFID-ACK 

100 Cyclic 100 COM CON COMM-STATUS 1 4 CON-ERR-ACK 

101 Cyclic 100 CON COM CONT-STATUS 1 0-1 SATE-CON 

101 Cyclic 100 CON COM CONT-STATUS 1 2 PAUSE-CON 

101 Cyclic 100 CON COM CONT-STATUS 1 3 TIMEOUT 

101 Cyclic 100 CON COM CONT-STATUS 1 4 GOTO-ACK 

102 Cyclic & spontaneous 100 CON COM RFID 5 0-39 ID 

103 Cyclic & spontaneous 100 CON COM CON-ERR 8 0-1 ERR-TYPE 

103 Cyclic & spontaneous 100 CON COM CON-ERR 8 2-15 ERR-INFO 

103 Cyclic & spontaneous 100 CON COM CON-ERR 8 16-63 ERR-ATTR 

104 ISO-TP  COM CON GOTO       

105 ISO-TP  CON COM GOTO       

Table 12. CAN messaging used for communication between both system processing modules. 

The utility of the messages shown in table 12 and their signals will be explained as follows. 

Both the Communication module and the Control module have an assigned message that reports 

their status periodically every 100 milliseconds, COMM-STATUS from the Communication module 

and CONT-STATUS from the Control module. The periodicity of this message is necessary since it 

allows both modules to know if the other module is connected and working correctly. In this way, if 

a module does not receive the message from the other module during a determined time, it will know 

that there is an anomaly and will be able to act appropriately (entering the failure mode and, if possible, 

informing the back-end). In addition, these messages allow at the same time to inform about the state 

of the module and to give and acknowledge orders. With the ACKs (acknowledge) signals it is possible 

to check the existence of anomalies in the system as well. These checks are very relevant in the 

system as it can take control of the vehicle and therefore, for security reasons, it must be able to 

detect any possible failure. 

The COMM-STATUS message includes the following signals: 

• STATE-COM: It consists of 2 bits. It reports the status of the Communication module, except 

for the failure mode. In this way, it informs about the state it is in to the Control module and 

orders it to change its state. 

• PAUSE-COM: It consists of 1 bit. It makes sense in autonomous mode. When the vehicle is 

following a route there may be times when it is necessary to stop temporarily. The back-end 

informs the Communication module of this and the module, by setting this bit to 1, orders 

the Control module to stop the vehicle until the bit returns to 0. 

• RFID-ACK: It consists of 1 bit that serves to confirm the reception of an RFID message sent 

by the Control module. This bit remains at 1 for half a second. Not receiving this bit at 1 

after sending an RFID message would mean that 5 COM-STATUS messages had been lost or 

that the Communication module was not working properly, which implies a system anomaly. 
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• CON-ERR-ACK: It consists of 1 bit that serves to confirm the reception of a CON-ERR 

message. It serves to optimise the processing of the Failure state so that the Control module 

stops sending its error message and can be restarted earlier. If this assent is not received 

after sending a CON-ERR message, the Control module remains sending it until a timer 

expires, where it will also restart and wait for the Communication module to start in the 

Start Up state. 

The CONT-STATUS message includes the following signals: 

• STATE-CON: Similar to STATE-COM. Its purpose is to report the status of the Control 

module. In this way it can confirm the status to the Communication module. 

• PAUSE-CON: Similar to PAUSE-COM. It reports that the vehicle has stopped, following the 

commands from the Communication module. 

• TIMEOUT: It consists of 1 bit that informs that the obstacle timer has expired and that the 

vehicle is stopped waiting for new orders. 

• GOTO-ACK: It consists of 1 bit that confirms the reception of the chained GOTO message. 

Like the other ACKs, this bit is set to 1 for half a second when this message is received. 

It is possible to think that certain information, such as ACK signals, sent in these messages may be 

sent through other non-periodic messages. However, as seen before, it is necessary to send one 

periodic message per module to ensure the correct functioning of the system and it is recommended 

that the status of each module be confirmed periodically. When doing this, since the minimum size 

with payload of a CAN frame is 1 byte, there are more bits than needed to transmit the status, and 

therefore, they can be used to introduce the ACK signals, performing a more efficient use of the 

bandwidth. 

The RFID message is sent by the Control module to the Communication module when it detects an 

RFID tag. It is sent periodically, and stops when the RFID-ACK signal is received at 1. The message 

includes a single signal (called ID) that serves to transmit the number of the detected tag. As seen in 

section 2.2 in figure 2.3, the length of the RFID tag number is 5 bytes and therefore the payload length 

of this message is 5 bytes. 

The message CON-ERR informs the Communication module about the triggering of a warning or an 

error on the Control module. This includes 3 signals: 

• ERR-TYPE: It is 2 bits that indicate the type of error. Currently there are only two types of 

errors: errors and warnings. However, it has been decided to reserve an extra bit for new 

error type definitions.  

• ERR-INFO: It consists of 14 bits indicating the error code. In the Annex II the established 

error codes and their meaning can be seen. 

• ERR-ATTR: It consists of 42 bits indicating the error attribute. Depending on the error, it 

may be necessary to send an error attribute, that is, a relevant value when the error occurs. 

This may indicate the reason for the error, or any other parameter of interest. 

The GOTO message is used to send the route to be followed by the vehicle when it is in autonomous 

mode from the Communication module, which receives it from the back-end, to the Control module. 

It consists of a collection of blocks of 6 bytes that specify what the vehicle should do when an RFID 

is detected. It specifies if the vehicle must take the route to the right or left in the case of a fork and 

the speed at which it must go. Initially, the initial speed that the vehicle must reach is specified by 

means of the 2-byte initial block. Then the rest of the blocks specify the speed and the line that must 

follow according to detected RFID. Table 13 shows how these blocks are coded. 
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Frame 
Byte 1 

Bytes 2-6 

7 6-0 

First Block Default Fork 
Initial 

speed 
- 

Normal Block Fork Speed RFID 

Last Block No matter 0 RFID 
Table 13. Encoding of the blocks in a CAN GOTO message. 

The default fork parameter indicates which deviation the vehicle should take as default. The fork 

parameter indicates if the vehicle should turn left (0) or right (1) at the next fork after the specified 

RFID is detected. Once a new RFID is detected after this, if this RFID it is not in the GOTO message 

it will follow the default fork again. The speed parameter gives the speed in km/h that the vehicle 

must maintain at the beginning of the route or after detecting an RFID. The structure of this message 

is designed to provide flexibility and scalability in the system, and so that its messaging is prepared to 

follow more complex routes than those taken in the designed car park. 

This message, as we can see, will always be larger than 8 bytes, the maximum payload size of a CAN 

frame. This is why a transport layer is needed, to be able to send messages with a length bigger than 

8 bytes. The ISO 15765-2 standard [56], also known as ISO-TP (Transport Protocol), defines a 

transport protocol that works over CAN and allows sending messages with a maximum length of 

4095 bytes, with the option of adding an extra addressing to the messages. To achieve this, it 

fragments the message, which is sent in several CAN frames and adds a specific header to them. To 

prevent the collapse of the receiver it implements a flow control mechanism, by which the receiver 

can report how many bytes it can receive at one time and can make the sender wait. 

The protocol defines 4 types of frames [56]: 

• Single frame: Frames that can carry a maximum payload of 7 bytes if the extra addressing is 

not used, or 6 bytes if it is. 

• First frame: First frame of a fragmented message transmission. The message is fragmented if 

it does not fit into the payload of a single frame. 

• Consecutive frame: Frames of a transmission of a fragmented message. It comprises all frames 

carrying fragments of the message except the first frame. 

• Flow control frame: Frame sent by the message receiver to acknowledge the first frame and 

give connection parameters. Depending on these parameters, the sender must wait for the 

reception of another flow control frame each certain bytes sent. 

The extra addressing of this protocol can be used in several ways. However, in this case it is not 

necessary to use it since the objective is to send messages longer than 8 bytes and we have two IDs 

for sending and receiving ISO-TP messages in both modules. Table 14 shows the format of the ISO-

TP message that is introduced into the payload of a CAN frame with a specific ID, using normal 

addressing, i.e. no extra addressing. 

Frame 

Byte 1 

Byte2 Bytes 3-8 Bits 7-4 Bits 3-0 

7 6 5 4  

Single Frame 0 0 0 0 Length Data 

First Frame 0 0 0 1 Bytes to transmit Data 

Consecutive Frame 0 0 1 0 SN Data  

Flow Control 0 0 1 1 FS BS STim 
Table 14. ISO-TP frame format with normal addressing [57]. 
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SN is the sequence number of the consecutive messages. It indicates in number of sent fragmented 

message. FS indicates the flow state. 0x0 means that the sender can continue sending, 0x1 means that 

the sender must wait. BS indicates the number of bytes the sender can send before waiting for another 

Flow Control frame. STim indicates the minimum time separation between each message sent by the 

sender. 

Figure 31 shows an example of a segmented message transmission using ISO-TP. 

 

Figure 31. Example of a segmented message sent via ISO-TP [56]. 

The transmission of the GOTO message, i.e. the route to be followed by the vehicle, will be carried 

out via this protocol. The result will be the transmission of a series of messages between the 

Communication module and the Control module very similar to the one shown in Figure 31. 

However, this transport layer does not provide a complete reliable transmission, since, as we see in 

this figure, not all the messages are acknowledged. The receiver (Control module), as it knows the 

number of bytes it must receive, can detect if a message has not arrived but must inform the sender 

(Communication module) in some way. This is why the previously mentioned GOTO-ACK signal 

exists. 

3.4. Vehicle control interface 
As we have seen before, the vehicle is controlled by the back-end. It receives its orders and sends it 

information. To be able to do this, it is necessary to define a communication interface, that is, the 

communication protocol to be used and a collection of messages. In this project, it has been decided 

to use the MQTT protocol. The benefits of this protocol and a detailed explanation of its operation 

can be seen in Samuel Pilar Arnanz's final project degree [13]. It uses a client-server architecture 

based on publications and subscriptions on topics. Clients can send messages by linking them to a 

topic. Clients who want to receive messages linked to a specific topic must subscribe to this topic. In 
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this way, once the MQTT broker receives a message, it checks the topic, and forwards the message 

to those clients who are subscribed to it. The topics can be ordered in a hierarchical way. Therefore, 

a client can subscribe to a general topic that includes other topics. 

In our project, each vehicle in the service will be assigned a unique identifier. This identifier will form 

their general topic. This general topic contains four specific topics: battery, location, info, and order. The 

vehicles will send periodic messages about the percentage of battery charge and the location of it 

through the battery and location topics, respectively. They will send any other type of information 

through the info topic and will be subscribed to the order topic by which they will receive orders from 

the back-end. The back-end will be connected to the MQTT broker as another client, will be 

subscribed to the battery, location, and info topics of all the vehicles, and will send orders to each of 

these through their respective order topic. In this way, the back-end will be able to receive information 

from all vehicles simultaneously and will be able to send specific orders to each one. Table 15 shows 

all the messages defined for the control and monitoring of the vehicle from the back-end. 

Publisher Subscriber Topic Payload 

Vehicle Server vehicleID/battery [0-100]OR[-1] 

Vehicle Server vehicleID/location [(latitude),(longitude)]OR[No signal]OR[GPS not connected] 

Vehicle Server vehicleID/info CONNECT regist_plate 

Vehicle Server vehicleID/info TIMEOUT 

Vehicle Server vehicleID/info RFID (ID number) 

Vehicle Server vehicleID/info WRN (error code) [(attribute)] 

Vehicle Server vehicleID/info ERR (error code) [(attribute)] 

Vehicle Server vehicleID/info STARTING UP 

Vehicle Server vehicleID/info AM-ON OK 

Vehicle Server vehicleID/info AM-OFF OK 

Vehicle Server vehicleID/info STANDBY OK 

Vehicle Server vehicleID/info PAUSE OK 

Vehicle Server vehicleID/info CONTINUE OK 

Vehicle Server vehicleID/info GOTO OK 

Server Vehicle vehicleID/order CONNECTED  

Server Vehicle vehicleID/order STANDBY 

Server Vehicle vehicleID/order AM-ON 

Server Vehicle vehicleID/order AM-OFF 

Server Vehicle vehicleID/order CONTINUE 

Server Vehicle vehicleID/order PAUSE 

Server Vehicle vehicleID/order RESTART 

Server Vehicle vehicleID/order 
GOTO initialSpeed [T(10bytes ASCII RFID) [speed]] [V(10bytes ASCII 
RFID) (speed)] S(10bytes ASCII RFID)  

Table 15. MQTT messaging used for communication between the vehicle and the back-end. 

As we can see in Table 15, there are different messages that can be sent through the topics mentioned 

above. The following paragraphs list and explain the usefulness of these messages. 

The battery topic is used to send the percentage of charge of the vehicle's battery periodically. 

Therefore, under normal conditions, messages may contain a number between 0 and 100. However, 

if the Communication module is unable to collect this information from the vehicle, it sends the value 

-1 periodically. The period of this message is 5 seconds when the vehicle is in the Standby state and 

1 second in the other states. 

The location topic is used to send the coordinates (latitude and longitude) of the vehicle's position 

periodically. In the case the GPS receiver is not able to receive the necessary GPS signal, the message 
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No signal is sent instead of the coordinates. In the case the GPS receiver is not connected, the message 

GPS not connected is sent instead of the coordinates. This message is sent in all states with a period of 

1 second except in the Standby state. When the vehicle is in Standby it is not moving and therefore 

it is not necessary to periodically receive its GPS information. 

The info topic is used to send any kind of non-periodical information from the vehicle to the back-

end. Through this topic a series of messages have been defined. 

• The CONNECT message is used to verify communication between the Communication 

module and the back-end. The Communication module sends it in the Start Up state and 

waits to receive a reply from the back-end by the order topic with a CONNECTED message. 

In order for the back-end to have the registration number of the vehicle, it is also sent in this 

message. 

• The TIMEOUT message indicates that the obstacle timer has expired. 

• The RFID message indicates the identifier of the RFID tag that has been detected. 

• The WRN message indicates that a warning type error has been issued, its error code, and 

its attributes if any. 

• The ERR message indicates that an error type error has been issued, its error code, and its 

attributes if any. Sending this message implies that the vehicle's system is in Failure mode and 

is therefore waiting to receive the RESTART message through the order topic from the back-

end to restart the system and go to the Start Up state. 

• The messages STARTING UP, AM-ON OK, AM-OFF OK, STANDBY OK, CONTINUE OK, 

PAUSE OK and GOTO OK confirm the status of the vehicle system, confirm the stopping 

or continuation of the vehicle in autonomous mode, and confirm the correct reception of 

the GOTO message. 

The order topic allows sending orders from the back-end to the Communication module. Through 

this topic a series of messages have been defined. 

• The CONNECTED message, as seen above, is complemented by the CONNECT message 

sent by the vehicle. It is sent through the back-end after the vehicle sends the CONNECT 

message in order to confirm the connection. 

• The STANDBY message instructs the vehicle's system to go into Standby mode. After sending 

this message, the back-end expects to receive a STANDBY OK message from the vehicle, 

confirming the correct status change. 

• The AM-OFF message instructs the vehicle system to go into Normal mode. After sending 

this message, the back-end expects to receive an AM-OFF OK message from the vehicle, 

confirming the correct status change. 

• The AM-ON message instructs the vehicle system to go into Autonomous mode. After 

sending this message, the back-end expects to receive an AM-ON OK message from the 

vehicle, confirming the correct status change. 

• The CONTINUE and PAUSE messages are used to order the vehicle to stop or continue 

when it is following a route in Autonomous mode. 

• The RESTART message is the one sent to the vehicle when it is in Failure mode, that is, when 

the vehicle has sent an ERR message. This message is designed to be sent once the necessary 

maintenance work has been carried out so that the Failure does not occur again. Once sent, 

the system is restarted. 

• The GOTO message is used to specify the route to be followed by the vehicle in Autonomous 

mode. This message is equivalent to the GOTO message explained in section 3.3, therefore 

it is divided into 3 blocks (Table 16). 
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Block Sent text string 

First Block initialSpeed defaultFork 

Second Block 
T(RFID) [(speed)] 

V(RFID) (speed) 

Last Block S(RFID) 
Table 16. Encoding of the blocks in a MQTT GOTO message. 

All blocks are separated by a space character in the message. The first block is mandatory 

and gives the initial speed that the vehicle must reach in km/s, and which deviation the vehicle 

must take as default (L for left and R for right). The second block is optional. Multiple blocks 

of this type can be concatenated to specify a route. It allows to specify if the vehicle must take 

the non-default deviation between this RFID and the next one, and the speed it must maintain 

after detecting a certain RFID. Note that there are two possibilities. On the one hand, we can 

specify that when a specific RFID tag is detected, the vehicle must follow take the non-default 

deviation between this RFID and the next one and, optionally, the new speed that it must 

maintain. This is done by entering the character T followed by the RFID identifier and, 

optionally, a space and the new speed. On the other hand, we can specify that, when an RFID 

tag is detected the speed of the vehicle must change but the vehicle must continue to take the 

default deviation. This is done by introducing the character V followed by the RFID identifier, 

a space, and the new speed in km/h. Finally, the last block is mandatory and specifies the final 

RFID. When the vehicle detects this RFID tag, it must stop since this is the end of the path. 

Two examples of the use of this message to define a route are shown in Annex III. 

3.5. Failures management 
Due to the risks involved in an autonomous vehicle, it is necessary to carry out a correct error 

management to stop the autonomous driving of the vehicle in the case of risk and thus guarantee 

safety. This is why two types of failures have been defined in this system: errors and warnings. 

Errors are any type of anomaly that involves a safety risk. This is for example the loss of 

communication between both modules (and therefore the Control module being out of control by 

the back-end), the loss of communication between the back-end and the Communication module, the 

non-response to status change commands, etc. In these cases, in order to minimize the risk, the 

system goes into Failure mode (state explained in Section 3.2) and therefore immediately stops the 

vehicle. 

Warnings are any type of anomaly in the system that does not imply a safety risk but that may be 

relevant to know about it. These are, for example, the incorrect reception of the CAN frame of the 

vehicle that indicates the battery status, the non-reception of GPS signal by the GPS receiver for a 

long time, or the reception of an unexpected message from the back-end (for example a malformed 

message). These anomalies need to be detected and managed, and the back-end must be informed of 

them, but they do not imply a security risk and therefore the system continues to operate normally. 

To address these failures, several error codes have been defined. Each of them refers to a specific 

anomaly. These error codes are 14 bits long and are organized in a specific way to facilitate their 

management and filtering according to the origin or reason. Table 17 shows how the error codes 

have been organized. Many codes are still available for future extensions of the project. Moreover, 

only the errors related to their communication with the Communication module have been defined 

in the Control module, which is what has been implemented in this final degree project. When starting 

to perform objective 4 of the TwizyLine project (explained in section 1.1), the list of error codes 

related to the Control module will be extended. 
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Vehicle 

[0-255] 

Communication module 

[0-127] 

Communication with internal 
devices 

[0-15] 

Communication with 

Control module 

[0-8] 

Communication with GPS 

and battery data reception 

[9-15] 

Communication with back-end 

[16-31] 
- 

Control module 

[128-255] 

Communication with Control 

module 
- 

Back-end 

[256-511] 
- - - 

Table 17. Error codes depending on the origin and type of error. 

Annex II shows a table with all the failures defined and contemplated in this phase of the project. The 

table contains their error code, their name, the meaning of their attribute (if any) and an explanation 

of the attribute including possible reasons. Although in the table we see that the error codes defined 

are always linked to a warning or an error, it has been decided to maintain the possibility that the same 

error code can be of different types depending on the moment it is triggered. This is why the message 

CON-ERR explained in the previous section (Section 3.3), it has a signal that indicates the type of 

error and another signal that indicates the error code. 

3.6. Communication module 
As explained before, the Communication module is responsible for monitoring the state of the 

vehicle's battery and receiving information about the location of the vehicle; managing communication 

with the back-end, receiving orders and giving information about the state of the vehicle; and 

controlling the Control module, by sending it orders and interpreting its messages. 

To achieve this, a series of processes, which work together, has been implemented. Each process 

carries out a specific fundamental task of the module. Communication between them is carried out 

through work queues that follow a specific messaging and shared global variables. In order to make 

the software as modular as possible, each process follows a well-defined specific interface, so that, in 

the case of future extensions of the project, the modification or replacement of any specific task of 

the module is as simple as possible. 

Figure 32 shows a diagram of all the processes and threads that run in the Communication module, 

as well as the working queues and shared global variables used to carry out communication between 

them. Note that communications through work queues are done in one direction, that is, they 

perform simplex communications. All messages sent through these queues consist of ASCII-coded 

text strings for easy programming and managing. 

There are 7 different processes that can be executed in the Communication module. The main 

process is responsible for managing the status and errors of the vehicle. It creates the child processes 

MQTT receiver, GPS receiver and CAN receiver. These in turn can launch other child processes or threads 

needed to perform all the tasks of the module. Note that the work queues are used for most but not 

all communications between processes. Some shared global variables are used to send the coordinates 

of the vehicle location and the percentage of the vehicle battery to the process that sends this 

information periodically to the back-end (MQTT periodic sender). This is because the information 

received by the GPS or by the vehicle can be received at a higher rate than the rate of sending 

information to the back-end and, therefore, if working queues were used, the information sent could 

be outdated and the queue could be filled. 
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Figure 32. Diagram of the processes that are executed in the Communication module. 

The following subsections will explain how each of these processes works. The operation of the 

processes related to the communication with the back-end is explained in subsection 3.6.1. The 

operation of the processes related to communication with the Control module and the reception of 

messages from the vehicle via the CAN bus is explained in subsection 3.6.2. The access to the 

information given by the GPS receiver and the operation of the process in charge of handling it is 

explained in subsection 3.6.3. Finally, the operation of the main process that manages the rest of 

processes, the state and the errors of the module is explained in subsection 3.6.4. 

Note that at the beginning of the programmed code, a series of global variables are also defined with 

the main parameters that can be modified depending on the vehicle in which the module is installed, 

the location of the server, and some default values. These variables define: the vehicle ID in the 

TwizyLine service, the vehicle number plate, the IP address of the MQTT broker, user and password 

to establish the connection with it, the IDs of all the CAN frames used and the state to go to by 

default after the Start Up state. 

3.6.1. MQTT communication 

To carry out the communication of the vehicle with the back-end, the Communication module must 

have an internet connection. As seen in section 3.1.2, the 4G Huawei E3372 modem is used for this 

purpose. This modem incorporates a flash memory with the necessary drivers for its correct 

operation in Windows. However, in Debian, these drivers are not supported, and the operating 

system interprets the modem as a storage unit. To solve this, there is a package called usb-modeswitch 

that is able to detect this problem and send a command to the operating system to interpret the 

device as a 4G modem and not as a storage unit [58]. Once this package is installed and having the 

usb-modeswitch daemon enabled and running, the operating system is able to connect to the internet 

through the mobile network when the modem is connected. It is also able to manage disconnections 

due to lack of signal, detecting it and trying to re-establish the connection automatically. 

Once we have an internet connection it is necessary to program the necessary processes to 

implement the MQTT messaging of the system explained in section 3.4. To use the MQTT protocol, 
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the paho-mqtt 1.5.0 library for Python 3 [59] has been used. As seen in Figure 32 there are 3 processes 

that take care of this task. Each of them will be explained below. 

The MQTT receiver process establishes and monitors the connection with the MQTT broker, 

subscribes to the specific vehicle order topic and receives the messages linked to this topic. It sends 

messages to the Status and error management process through the q_MQTT_receiver work queue 

following a defined messaging (Table 18). This process, when launched, configures the MQTT 

parameters of the connection (keep alive timer and user and password to establish connection). After 

that, it tries to connect to the MQTT broker with the pre-configured IP stored in the global variable 

defined at the beginning of the code. If the connection cannot be established, the process sends an 

error message through the work queue with the error code of the error that has occurred (See Table 

18). If the connection is successfully established, it sends an OK through the work queue and launches 

the MQTT sender and MQTT periodic sender processes. Once the connection is established, the process 

has two main tasks. On the one hand, it is in charge of receiving all the MQTT messages linked to the 

order specific topic of the vehicle, unpack them and send the payload of these through the work queue, 

adding an M character ahead to indicate that it is a message. On the other hand, it sends MQTT ping 

requests to the MQTT broker every 5 seconds and checks if the server responds to ensure that the 

connection remains correctly established. In the case the connection is lost, it sends the 

corresponding error message through the work queue. 

Work queue Message Explanation 

q_MQTT_receiver OK Connection with broker MQTT established 

q_MQTT_receiver M (payload) Payload received from server linked with order topic 

q_MQTT_receiver E (error code) [(attribute)] Triggering an error type failure 

q_MQTT_receiver W (error code) [(attribute)] Triggering a warning type failure 

Table 18. Messages sent through the q_MQTT_receiver work queue of Communication module. 

The MQTT sender process sends messages through the specific vehicle info topic. Through the work 

queue q_MQTT_sender the payload of the message that must be sent through that topic is given to 

this process. Therefore, this process must listen to this queue and send a message when it is ordered 

to do so. If the message TERMINATE is sent to it via the work queue, the process that received it 

finishes its execution. 

Work queue Message Explanation 

q_MQTT_sender (payload) Payload to send through info topic 

q_MQTT_sender TERMINATE Stop process 

Table 19. Messages sent through the q_MQTT_sender work queue of Communication module. 

The MQTT periodic sender process sends the percentage of the vehicle battery charge and the 

location of the vehicle periodically through the battery and location specific topics of the vehicle. This 

information is obtained through the shared global variables GPSdata and BATTERYdata. As seen in 

section 3.4, the sending of these messages varies depending on the status of the vehicle system. If the 

vehicle is in Standby mode, this process sends only the battery status every 5 seconds. If the vehicle 

is in any other state, the process sends the battery status and vehicle location periodically every 

second. The q_MQTT_periodic_sender queue is used to inform the process when it must act in one 

way or another and to order it to finish its execution if necessary (Table 20). 

Work queue Message Explanation 

q_MQTT_periodic_sender STANDBY Only send battery information every 5 seconds 

q_MQTT_periodic_sender NOTSTANDBY Send location and battery information every second 

q_MQTT_periodic_sender TERMINATE Stop process 

Table 20. Messages sent through the q_MQTT_periodic_sender work queue of Communication module. 
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In summary, through the q_MQTT_receiver work queue the Status and error manager process will 

receive messages about the state of the connection with the MQTT broker and all the payload of the 

messages linked to the order topic received. Through the work queue q_MQTT_sender the payload of 

the messages that should be sent linked to the info topic will be sent. Through the work queue 

q_MQTT_periodic_sender the Status and error manager process will order how the periodic messages 

should be sent through the battery and location topic. 

3.6.2. CAN communication of Communication module 

In order to be able to send messages via CAN with the acquired Humming Boards CBi, their CAN 

interfaces must be enabled. The procedure for enabling the CAN interface on a Humming Board CBi 

is explained in Annex IV. Once we have the CAN interface of the module correctly configured, we 

must have access to it through the software programmed in Python 3. The python-can library [60] is 

used to achieve this goal. This library offers a set of functions to send and receive messages through 

the CAN interface. It also allows to configure periodic messages, automatically generating threads 

that send the messages periodically. In addition, it allows to establish filters in the reception of the 

messages in order to only receive the messages of interest. In order to implement the ISO-TP 

transport layer explained in section 3.3 (necessary to send the GOTO message) the can-isotp library 

for Python 3 [61] is used, which simplifies the use of this protocol. With this library it is possible to 

specify in a function the message to be sent. The library automatically fragments and sends the 

messages, considering the reception of the flow control messages from the receiver. 

As shown in Figure 32, there are two processes that handle the CAN communication of the module: 

CAN receiver and CAN sender. The tasks of each of them will be explained below, as well as the 

messages used in the corresponding work queues. 

The CAN receiver process is responsible for receiving and filtering the messages from the CAN bus. 

It has assigned the q_CAN_receiver work queue that is used to send information from this process to 

the Status and errors manager process. Table 21 shows all the possible messages that can be sent 

through this work queue. The process has two operating-modes that are configured using an 

argument passed at the launch of the process: a normal mode and a power-saving mode. 

The power-saving mode is used in the Standby state of the system. In this mode the process only 

receives the messages that inform about the battery status, extracts the percentage of battery charge, 

and updates the value of the shared global variable BATTERYdata. 

In the normal mode of the process, when it is launched, it accesses the CAN interface, configures a 

reception filter to receive only the messages that the Communication module must receive, and 

launches the CAN sender process. After this, it waits to receive the first CONT-STATUS message via 

the CAN bus. If it does not receive it after a certain time, it sends an error message through the 

work queue indicating that the Control module is not responding. If it receives it, it sends an OK 

message through the work queue indicating that the Control module has correctly responded to the 

messages of the Communication module. Once the initial tasks have been completed, the process is 

responsible for receiving and interpreting all messages received through the CAN Bus. Depending on 

the one received, it will act in one way or another: 

• Reception of the CONT-STATUS frame: The signals are extracted from the message. If the 

STATE-CON, PAUSE-CON, or TIMEOUT signals have changed with respect to signals 

received in the previous message, this is reported through the work queue. If the GOTO-

ACK signal has the value 1 when before it had the value 0, a command is sent through the 

q_CAN_sender work queue to inform the CAN sender process that the ACK has been received 

and that it should not retry sending the message. A timer is restarted each time the CONT-

STATUS message is received, so if it is not received for a while, an error is triggered. 
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• Reception of the RFID and CON-ERR frame: Through the q_CAN_receiver work queue the 

received message is reported. Through the q_CAN_sender work queue, the CAN sender 

process is ordered to acknowledge the message by putting at 1 the RFID-ACK signal or the 

CON-ERR-ACK signal. A timer is established so that, after half a second, another order is 

sent to the CAN sender process indicating that it should put at 0 the RFID-ACK signal or 

the CON-ERR-ACK signal. 

• Reception of the battery status frame sent by the subsystems of the vehicle. The percentage 

of battery charge is extracted from the message and the BATTERYdata shared global variable 

is updated with the new value. 

Work queue Message Explanation 

q_CAN_receiver OK Connection with Control module established 

q_CAN_receiver S0 STATE-CON signal=00 (Start Up) 

q_CAN_receiver S1 STATE-CON signal=01 (Normal mode) 

q_CAN_receiver S2 STATE-CON signal=10 (Autonomous mode) 

q_CAN_receiver S3 STATE-CON signal=11 (Stand By) 

q_CAN_receiver P0 PAUSE-CON signal=0 

q_CAN_receiver P1 PAUSE-CON signal=1 

q_CAN_receiver T0 TIMEOUT signal=0 

q_CAN_receiver T1 TIMEOUT signal=1 

q_CAN_receiver R (ID) RFID frame received 

q_CAN_receiver W (error code) [(attribute)] Triggering a warning type failure 

q_CAN_receiver E (error code) [(attribute)] Triggering an error type failure 

Table 21. Messages sent through the q_CAN_receiver work queue of Communication module. 

The CAN sender process is responsible for sending CAN messages from the Communication module 

via the CAN bus. This process is controlled through the q_CAN_sender work queue. Using this queue, 

the process can be ordered to send certain messages or to modify the value of the periodic message 

signals. Table 22 shows all the possible orders that can be sent through this work queue. 

Work queue Message Explanation 

q_CAN_sender S0 STATE-COM signal=00 

q_CAN_sender S1 STATE-COM signal=01 

q_CAN_sender S2 STATE-COM signal=10 

q_CAN_sender S3 STATE-COM signal=11 

q_CAN_sender P0 PAUSE-COM signal=0 

q_CAN_sender P1 PAUSE-COM signal=1 

q_CAN_sender R0 RFID-ACK signal=0 

q_CAN_sender R1 RFID-ACK signal=1 

q_CAN_sender E0 CON-ERR-ACK signal=0 

q_CAN_sender E1 CON-ERR-ACK signal=1 

q_CAN_sender G0 Stop resending GOTO message through ISO-TP 

q_CAN_sender G1 (goto chain) Send GOTO message through ISO-TP 

q_CAN_sender TERMINATE Stop process 

Table 22. Messages sent through the q_CAN_sender work queue of Communication module. 

When this process is launched, it generates a thread (with the python-can library) to start sending the 

periodic COMM-STATUS message. It is sent with STATE-COM signal indicating the Start Up state, 

and PAUSE-COM, RFID-ACK and CON-ERR-ACK with the value 0. From this moment on, it remains 

waiting for orders, listening in the q_CAN_sender queue. Depending on the command received (Table 

22), it will change the value of the signals, or send the GOTO message with the ISO-TP transport 

protocol (with the help of the can-isotp library). In the case of sending the chained GOTO message, 

the process will wait for a confirmation that the message has been received, that is, through the 

GOTO-ACK signal sent by the Control module. As we have seen before, the CAN receiver process, 

when detecting the reception of this signal with the value 1, sends a message to the CAN sender 
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process through the q_CAN_sender work queue. If the CAN sender process does not receive such 

confirmation, it will retry sending the message via ISO-TP up to 5 times. If it continues not receiving 

the confirmation, it will send an error through the q_CAN_receiver work queue. 

3.6.3. GPS data reception 

As seen above, the used GPS receiver is the Garmin GPS18x USB. It sends information via Garmin's 

private binary protocol. To enable the software programmed in Python 3 to receive coordinates from 

the GPS, detect lack of signal, or detect module disconnection, the gpsd daemon has been used. 

The gpsd software is a service daemon that serves to monitor the information received by a GPS 

receiver via USB or RS232, and make it available to be queried on TCP port 2947 [62]. This daemon 

is capable of handling most of standards (such as NMEA) and proprietary protocols (such as the 

Garmin binary protocol). The daemon hides the differences between the different GPS receivers, 

converting the data received into a common format (information in JSON format organized in 

different classes), which can be interpreted by a program. In this way it can be used as an intermediary, 

so that applications avoid connecting to a serial device and interpreting the information. 

Once the gpsd daemon is installed, we configure it to receive data from the USB-connected GPS 

receiver using the following command: gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock. The installation 

of this daemon also installs the libraries needed to access the information provided by the daemon 

on the TCP port 2947 from a software programmed in Python 3. 

The GPS receiver process is the process responsible for receiving the information provided by the 

gpsd daemon. This process receives all the messages sent by the daemon, inserts the coordinates in 

the shared global variable GPSdata and triggers errors and warnings through the q_GPS_receiver work 

queue. Table 23 shows the messages that can be sent through this queue. 

The information given by the gpsd daemon is in JSON format, structured in objects with attributes 

[63]. When this process is launched, it starts (or restarts) the gpsd daemon and checks the reception 

of two types of object: 

• “DEVICE” objects: These objects give the information about the GPS receivers connected 

and detected by the gpsd daemon. The object is sent once at the start of the daemon, and 

every time there is a change, that is, the GPS receiver is connected or disconnected. Thanks 

to this object, the GPS receiver process knows when the GPS receiver is connected or not 

and can trigger errors if the receiver is disconnected. 

• “TPV” objects: These objects give a time-position-velocity report. That is, they have attributes 

that give the current GPS time, coordinates, and estimated speed. Thanks to these objects, 

the GPS receiver process is able to obtain the coordinates and update the shared global variable 

GPSdata. This object is received each time the GPS receiver gives new information. The GPS 

receiver used has a 1-second update rate, therefore, the GPS receiver process, using a timer 

that starts when the process is started and restarts each time one of these objects is received, 

can detect if the receiver has no signal, since, in this case, no “TPV” objects are received. 

Work queue Message Explanation 

q_GPS_receiver W (error code) (attribute) Triggering a warning type failure 

q_GPS_receiver E (error code) (attribute) Triggering an error type failure 

Table 23. Messages sent through the q_GPS_receiver work queue of Communication module. 
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3.6.4. Status, process, and error management of Communication module 

The Status and error manager process is in charge of launching or stopping the rest of the 

processes; and managing the status5 and errors of the Communication module based on the 

information provided by the rest of the processes and giving new orders to them, through the work 

queues mentioned above. 

Through the q_MQTT_receiver (Table 18), q_CAN_receiver (Table 21), and q_GPS_receiver (Table 23), 

the process obtains information about the status of the MQTT communication and the orders 

received from the back-end, the status of the communication through the CAN bus and the signals 

sent by the Control module, and the status of the GPS receiver. On the other hand, using the 

q_MQTT_sender (Table 19), q_MQTT_periodic_sender (Table 20) and q_CAN_sender (Table 22) work 

queues, the process can send orders to send messages to the back-end, modify the frequency and 

number of periodic parameters sent to the back-end, and modify periodic message signals or send 

new messages through the CAN bus. 

This process starts when the system is turned on. When launched, it defines the working queues and 

a series of auxiliary variables necessary for its proper functioning. The state variable defines the state 

of the vehicle system. It can take values from 0 to 4 to be able to refer to all possible system states. 

The initial value of this variable is the one referred to the Start Up status. Then, using a while loop 

that includes a switch statement that depends on this variable, the process acts depending on the 

state it is in. The following paragraphs show what the process performs in each of these states. Note 

that, in the next paragraphs, when it is mentioned that the state is changed, the value of the state 

variable is changed and a break is executed so that a new iteration of the while loop is performed 

and, therefore, the code of the new state is executed. 

The following paragraphs contain very precise information. For their correct understanding it is 

important to know how the rest of the processes work and the messages that can be sent through 

the work queues. Annex V shows all the messages that can be sent through the different work queues. 

In addition, a look at the use cases explained in chapter 5 is also recommended. 

In the Start Up state the process launches the MQTT receiver process and waits to receive a message 

through the q_MQTT_receiver queue. If an OK is received (connection to the MQTT broker 

established), the order to send the CONNECT message is sent through the q_MQTT_sender queue 

and the reception of the CONNECTED message through the q_MQTT_receiver queue is expected. 

Once received, and therefore confirmed the correct communication with the back-end, the GPS 

receiver process and the CAN receiver process are launched and the reception of a message through 

the q_CAN_receiver queue is expected. If an OK is received, the process confirms that the Control 

module is connected and turned on, and goes into the next default state (Standby, Normal mode or 

Autonomous mode, depending on the pre-set value). If at any point in this procedure an error 

message is received instead of the expected one or nothing is received for a while, the process 

immediately goes into Failure mode. 

In the Normal mode, the process sends the S1 message (indicate in the CON-MOD signal the 

normal mode) through the q_CAN_sender queue. It then listens only to the q_CAN_receiver queue. 

If error messages are received, the process goes into Failure mode. If warning messages are received, 

the order to send a WRN message is sent through the q_MQTT_sender queue. If an RFID message is 

received, an RFID message is sent through the q_MQTT_sender queue. If an S1 message is received it 

means that the Control module has changed its status and, therefore, the status has been correctly 

 

 

5 The states the vehicle system can be in are explained in section 3.2. 
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established in the vehicle system. Hence, an order to send the AM-OFF OK message to the back-end 

is sent through the q_MQTT_sender queue. If the message S1 is not received for a while, an error is 

triggered, and the process goes into the Failure mode. Once the status has been established, the 

process starts listening in the q_MQTT_receiver queue too6. Through this queue, if error messages 

are received, the process goes into Failure mode. If warning messages are received, the order to send 

a WRN message is sent through the q_MQTT_sender queue. If, through the q_MQTT_receiver queue, 

a message is received informing about the reception of the AM-ON or STANDBY message, the 

process goes to the Autonomous mode or to the Standby status, respectively. If any other type of 

message is received through this queue, the order to send a WRN message is sent through the 

q_MQTT_sender queue, reporting that an unexpected message has been received. 

In the Autonomous mode, the process sends the S2 message (indicate in the CON-MOD signal 

the Autonomous mode) through the q_CAN_sender queue. Then, in a similar way to that explained 

for the normal mode, it listens only to the q_CAN_receiver queue. This, listening in this queue, 

performs the same operations that were performed in the Normal mode but may receive some new 

messages. If it receives a T1, P1, or P0 message, it sends a command through the q_MQTT_sender 

queue so that the TIMEOUT, PAUSE OK, or CONTINUE OK messages are sent to the back-end. In 

addition, in this case, the status is considered established when the S2 message is received through 

the q_CAN_receiver queue. When the status is established, it starts to listen in the q_MQTT_receiver 

queue too. In this queue, apart from the operations that were already carried out in the Normal 

mode, others are carried out according to new messages. If a report is received indicating that a 

PAUSE or CONTINUE message has been received, the P1 or P0 order is sent through the 

q_CAN_sender queue and an ACK timer is activated. The timer is cancelled once the message P1 or 

P0 is received through the queue q_CAN_receiver. If the timer expires, an error is triggered, and the 

process goes into Failure mode. On the other hand, if a report is received indicating that a GOTO 

message has been received, this GOTO message is sent to the q_CAN_sender queue. If, through the 

q_MQTT_receiver queue, a message is received informing about the reception of the AM-OFF or 

STANDBY message, the process goes into the Normal mode or the Standby status. 

In the Standby state, the process sends the S3 message (indicate in the CON-MOD signal the 

Standby state) through the q_CAN_sender queue and waits to receive the S3 message through the 

q_CAN_receiver queue. If it does not receive it after a while, or receives an error message, it 

immediately goes into Failure mode. If it receives the S3 message, the status is correctly established. 

Then the GPS receiver process and the CAN sender process are terminated, and the CAN receiver 

process is restarted in low power mode. Once this is done, the order to send the STANDBY OK 

message to the back-end is sent through the q_MQTT_sender queue. From this moment on, the 

process listens simultaneously in the q_MQTT_receiver and q_CAN_receiver queues for any error 

messages, warning messages or a report informing about the reception of the AM-ON or AM-OFF 

message. In this last case, the system would go into the Start Up state in order to restart all the 

necessary processes. Moreover, there is a variable that defines the state the system should go after 

the Start Up state. This variable will be configured according to the message received. 

In the Failure mode, the error code, and the attribute of the error (if any) that caused the entry in 

this state are collected. The CAN sender and CAN receiver processes are terminated and the connection 

with the MQTT broker is checked (a variable is set to 1 when the connection with the MQTT broker 

is established and is set to 0 if there is no connection or the connection is lost). If the connection is 

established, an order is sent, through the queue q_MQTT_sender, to send an ERR message to the 

 

 

6 Note that, from this point on, the process is listening to both queues simultaneously. This is done to avoid 

performing new tasks ordered by the back-end without ensuring that the status has been correctly established. 
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back-end informing about the error. Then it waits to receive a message through the queue 

q_MQTT_receiver that informs that the RESTART message has been received. Once the RESTART 

message is received, all processes are terminated, and the process enters the Start Up state. If there 

is no connection with the MQTT broker, it waits 10 seconds and perform the same procedure. 

Note that in Normal mode and Autonomous mode, the process also listens in the q_GPS_receiver 

queue in order to receive warning or error messages from it. In these cases, the process does the same 

as it does with the warning or error messages that can be received through the rest of the work 

queues. In addition, depending on the system status, the process enables or disables certain GPIO 

pins that are connected to the information board LEDs. 

3.7. Control module 
The Control module performs the tasks of the vehicle control. Based on the route received via the 

chained message GOTO and, with the help of the sensors installed in the vehicle, it controls the 

actuators installed in order to follow the marked route. Through CAN it can receive orders from 

the Communication module to stop the vehicle or to stop controlling it. 

The implementation of the Control module software is very similar to that of the Communication 

module (section 3.6). The CAN interface must be enabled, and Python 3 is used for programming. A 

series of processes are used, that communicate with each other through work queues and shared 

global variables to work together. In the Control module, not all the processes required for its full 

operation have been implemented. As said before, the implementation of the sensors and actuators 

for vehicle control are not part of this final degree project as the necessary material is not yet 

available. Therefore, the processes related to the control of the vehicle are also not part of it and 

have not been implemented. The implementation of these processes will be done during the 

development of objective 4 of the TwizyLine joint project explained in section 1.1. In this final degree 

project, the processes of the Control module related to its communication and synchronization with 

the Communication module through the CAN bus are implemented. 

Figure 33 shows a diagram of all the processes and threads that run in the Control module, as well 

as the working queues used to carry out communication between them. Shared global variables have 

not been used to implement the CAN communication tasks of the module, but it is proposed to use 

them for the implementation of the rest of the processes. Note that this section will have many 

references to the implementation of the Communication module explained in section 3.6. It is 

recommended to read that section. 

 

Figure 33. Diagram of the processes that are executed in the Control module. 
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As seen in Figure 33, the CAN receiver and CAN sender processes for the CAN communication of the 

module follow the same structure as those of the Communication module. They use too two work 

queues called q_CAN_receiver and q_CAN_sender. There is another process called RFID receiver that 

receives the information given by the RFID sensor. The Status and error manager process it is the main 

process. It is in charge of launching the rest of the processes and receiving and sending orders to 

them through the work queues according to the status or possible errors. 

The following subsections will explain how the processes responsible for CAN communication of the 

module (section 3.7.1), the process responsible for reading RFID tags (3.7.2) and the main process 

Status and error manager (3.7.3) work. 

3.7.1. CAN communication of Control module 

To carry out the CAN communication of this module, the same initial steps carried out in the 

Communication module are followed. In summary, the device tree of the module must be modified 

to enable the CAN interface (explained in Annex IV) and the python-can and can-isotp libraries for 

Python 3 are used to be able to send and receive messages through CAN and, when necessary, through 

the ISO-TP transport layer. 

Similar to the Communication module, two processes are used for CAN communication. These two 

processes are explained below, detailing the differences between them and their equivalents in the 

Communication module. 

The CAN receiver process is responsible for interpreting the CAN messages received via the 

module's CAN interface. It informs the Status and error manager main process about the received 

messages and the possible warnings and errors through the q_CAN_receiver work queue. In the Table 

24 the messages that can be sent through this queue are shown. 

When this process is launched, it launches a thread that takes care of the reception of the messages 

encapsulated in the ISO-TP transport layer, and establishes a filter to interpret only the messages that 

must be received. It then waits to receive a COMM-STATUS message from the Communication 

module. Once it receives that message, it sends a CSR message (COMM-STATUS received) through 

the queue to indicate that the Communication module has been turned on, and launches the 

q_CAN_sender process. From this point on, the process interprets all CONN-STATUS messages and 

all GOTO messages. 

• If a COMM-STATUS message is received, the process extracts all signals. If STATE-COM or 

PAUSE-COM signals changes at any time, this is reported through the work queue. If the 

RFID-ACK or the CON-ERR-ACK signals changes to 1, the CAN sender process is ordered 

through the q_CAN_sender work queue to stop sending RFID and CON-ERR messages. A 

timer is restarted each time this message is received, so if it is not received for a while, an 

error is triggered. 

• If a GOTO message is correctly received through ISO-TP, the content of this message is sent 

through the q_CAN_receiver queue and the CAN sender process is ordered through the 

q_CAN_sender work queue to set the GOTO-ACK signal to 1. After half a second, with the 

help of a timer, the CAN sender process is ordered to set the GOTO-ACK signal to 0 through 

the q_CAN_sender queue as well. 
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Work queue Message Explanation 

q_CAN_receiver CSR First COMM-STATUS frame received 

q_CAN_receiver S0 STATE-COM signal=00 (Start Up) 

q_CAN_receiver S1 STATE-COM signal=01 (Normal mode) 

q_CAN_receiver S2 STATE-COM signal=10 (Autonomous mode) 

q_CAN_receiver S3 STATE-COM signal=11 (Stand By) 

q_CAN_receiver P0 PAUSE-COM signal=0 

q_CAN_receiver P1 PAUSE-COM signal=1 

q_CAN_receiver G (goto data) GOTO ISO-TP message received 

q_CAN_receiver W (error code) [(attribute)] Triggering a warning type error 

q_CAN_receiver E (error code) [(attribute)] Triggering an error type error 

Table 24. Messages sent through the q_CAN_receiver work queue of Control module. 

The CAN sender process is responsible for sending CAN messages. Through the q_CAN_sender work 

queue receives orders and, according to these, changes signals of the periodic messages or sends new 

messages. In the Table 25 the messages that can be sent through this queue are shown. 

When this process is launched, it waits to receive the READY message through the q_CAN_sender 

queue. Once it receives that message, it starts sending the periodic CONT-STATUS message. From 

this moment on, depending on the orders received through the q_CAN_sender queue, the value of 

the CONT-STATUS message signals changes and the sending of the periodic RFID or CON-ERR 

messages starts or ends. In the case of receiving the order through the q_CAN_sender queue to send 

the RFID message or the CON-ERR message, the CAN sender process starts the periodic sending of 

this message and sets a half-second timer, so that, if it does not receive in time the order to stop 

sending this message, it launches an error. This is because, when the Control module starts sending 

these messages, it expects to receive an ACK before half a second and, as seen above, the CAN receiver 

process, when it receives this ACK, sends an order to the CAN sender process to stop sending the 

message. Errors triggered by this process are sent to the Status and error manager main process 

through the q_CAN_receiver queue. 

Work queue Message Explanation 

q_CAN_sender READY Start sending periodic CONT-STATUS frame 

q_CAN_sender S0 STATE-CON signal=00 

q_CAN_sender S1 STATE-CON signal=01 

q_CAN_sender S2 STATE-CON signal =10 

q_CAN_sender S3 STATE-CON signal =11 

q_CAN_sender P0 PAUSE-CON signal =0 

q_CAN_sender P1 PAUSE-CON signal =1 

q_CAN_sender T0 TIMEOUT signal =0 

q_CAN_sender T1 TIMEOUT signal =1 

q_CAN_sender G0 GOTO-ACK signal=0 

q_CAN_sender G1 GOTO-ACK signal=1 

q_CAN_sender R0 Stop periodic RFID message 

q_CAN_sender R1 (RFID) Start periodic RFID message 

q_CAN_sender E0 Stop periodic CON-ERR message 

q_CAN_sender E1 (error code) [(error info)] Start periodic CON-ERR message. Error type failure. 

q_CAN_sender W1 (error code) [(error info)] Start periodic CON-ERR message. Warning type failure. 

q_CAN_sender TERMINATE Stop process 

Table 25. Messages sent through the q_CAN_sender work queue of Control module. 

3.7.2. RFID tag reading 

As seen in section 3.1.3, the ID-20LA RFID antenna and a RFID USB adapter are used to read the 

RFID tags. When connected to the module, the operating system interprets it as a serial port and 

through the pySerial library for Python 3 [64] it is possible to receive the messages sent by the reader. 

Figure 23 shows the message format. 
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The RFID receiver process receives this message from the RFID antenna, checks if the message is 

valid with the checksum and sends the identifier of the tag detected through the q_RFID_receiver 

queue. It is considered that, when the rest of the vehicle control processes are implemented, a shared 

global variable should be implemented that would always contain the identifier of the last tag detected. 

In this way, the processes in charge of controlling the vehicle will always be able to know what is the 

last RFID tag detected and therefore follow the route correctly. 

3.7.3. Status, process, and error management of Control module 

The main process Status and errors manager is in charge of starting and stopping the rest of the 

processes, of managing the state in which the system is, and of handling the errors that any process 

can trigger. To carry out these tasks it can receive information from the processes with the queues 

q_CAN_receiver and q_RFID_receiver, and can send orders to them through the queue q_CAN_sender. 

The method followed to program it is very similar to that used in its equivalent process in the 

Communication module explained in section 3.6.4. Note that the only functionality currently 

implemented in the Control module is to receive and respond to orders sent by the Communication 

module and to send RFID and CON-ERR messages to it. 

In the Start Up state, the CAN receiver process is launched and waits to receive the CSR message 

(COMM-STATUS message received) through the q_CAN_receiver queue. Once received, all devices 

connected to the module will be turned on and the connection to them will be checked (not 

implemented). When this is done, the READY message is sent through the q_CAN_sender queue so 

that the module's periodic message starts being sent. From this moment the process waits to receive 

another message from the queue q_CAN_receiver. Depending on the message received by this queue, 

different tasks can be performed: the status may change, the process can go into the failure mode or 

an order can be sent through the q_CAN_sender work queue to send a CON-ERR message of warning 

type. 

In Normal mode and Autonomous mode, using the q_CAN_sender queue, an order is given to 

set the CON-STATUS signal indicating the new status. Then the RFID receiver process is launched 

(if it was not launched before), and the main process kept listening in the queues q_CAN_receiver and 

q_RFID_receiver simultaneously. In the case of receiving status change orders through the 

q_CAN_receiver queue, the status is changed. In the case of receiving reports of detection of an RFID 

tag through the q_RFID_receiver queue, an order to send an RFID message is sent through the 

q_CAN_sender queue. In the case of receiving a warning from any of the processes, the order to send 

a CON-ERR message of warning type is sent through the q_CAN_sender queue. If an error type failure 

is received from any of the processes, the main process goes to the failure mode. 

In Standby status, the S3 order (indicate in the CON-STATUS signal the Standby state) is sent 

through the q_CAN_sender queue. Then, the main process waits for an error message through the 

q_CAN_receiver queue, indicating that the periodic COMM-STATUS message has stopped being 

received. Once received, all devices are turned off (not implemented) and all processes are 

terminated. The Control module is then immediately put into the Start Up state, where it waits for a 

COMM-STATUS message to be received again to restart all processes and turn the devices on. 

In the Failure mode, the error code and its attribute (if any) are collected. An E1 message is sent 

through the q_CAN_sender queue so it starts sending the CON-ERR periodic message. After 5 

seconds, all processes except the main process are terminated. The main process goes into the Start 

Up state. 
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4. Vehicle simulator for testing 
This chapter explains how the second main objective of this final degree project shown in section 1.2 

has been achieved. It presents the implementation of a simulator of the system implemented in 

chapter 3. This simulator, from the back-end point of view, behaves in the same way as the real vehicle 

system. The advantage of this simulator is to be able to simulate multiple vehicles simultaneously; to 

be able to simulate routes between car parks and RFID tag detection consistent with the TwizyLine 

service, and therefore expected by the back-end; and, consequently, to be able to check the correct 

integration of the vehicle systems with the back-end in different use cases. This chapter corresponds 

to phase 4 of this final degree project shown in section 1.3, and is complemented by chapter 6, which 

shows, once the simulator implementation has been completed, the evaluation of the use cases of the 

TwizyLine service with the back-end and the help of the simulator. 

This chapter is divided into 3 sections. Section 4.1 explains the modifications made to the original 

code (analysed in sections 3.6 and 3.7), in order to simulate the behaviour of real systems in a 

computer from the point of view of the back-end. Section 4.2 makes an analysis of the programmed 

software "Vehicle launcher", which allows to launch multiple vehicles simultaneously with different 

parameters. Section 4.3 explains the implementation of a software that allows to see the status and 

position of all vehicles (real or simulated) operating in the service in real-time. This software will be 

very useful when evaluating the operation of the back-end (chapter 6) since it offers a very visual 

interface and, therefore, a faster evaluation. 

4.1. Code adaptation of the real system 
To implement the simulator, the software programmed in Python 3 of the Communication module 

explained in section 3.6 is used. Some processes are removed, modified and added to avoid the use 

of the Control module code and to simulate the real behaviour of a vehicle based on initial parameters 

and some files that define the car parks, RFID tags and possible routes between car parks. 

Figure 34 shows the process diagram of a vehicle simulator, comparing it with the original processes 

of the Communication module. As we can see, the processes related to CAN communication and 

GPS data reception have been removed, the processes Status and error manager and MQTT receiver 

have been modified, and two new processes with new work queues and shared global variables have 

been added. Thanks to the modularity of the previously programmed software, the modifications have 

been made in a simple and orderly way. 

The following subsections show the modifications made in the original processes (subsection 4.1.1), 

the structure of the files that define the possible routes to be followed by a vehicle and the RFID tags 

of the parking (subsection 4.1.2) , and the implementation of the new processes Simulator and Battery 

Sim (subsection 4.1.3) . 



56 

 

 

Figure 34. Diagram of the processes that are executed in the simulation of a vehicle. 

4.1.1. Modifications in the Communication module processes 

The CAN receiver and CAN sender processes have been eliminated. CAN messaging will not be 

simulated in this simulator. The GPS Receiver process has also been removed as the coordinates will 

not be obtained from a real GPS receiver. 

The main process Status and error manager has been slightly modified. The tasks of sending and 

receiving messages through the work queues q_CAN_sender and q_CAN_receiver have been 

eliminated, so the establishment of status is done instantly. 

When this process is started, it obtains 4 parameters from the software input arguments: 

• Vehicle ID, which forms the general vehicle MQTT topic (explained in section 3.4). 

• Register Plate, which is sent in the CONNECT message, as explained in section 3.4. 

• Initial battery charge of the vehicle, which will decrease except when the vehicle is parked. 

At those times, the vehicle would be charging and therefore the value increases. 

• Route, which defines the initial parking lot to which the vehicle must go, and the following 

parking lots to which it must go once it leaves the previous one. This parameter is written as 

follows: (park_id)-(park_id)-(park_id) … 

Then, it launches the Simulator and Battery Sim processes that will be explained later (subsection 4.1.3).  

In the Standby state the process sends through the new q_Battery_Sim work queue the message 

CHARGE to indicate that the battery charge should be increased. In the rest of the states the process 

sends through this queue the message DISCHARGE to indicate that the battery charge must decrease. 

When it enters in Normal mode, it sends the START message through the q_Simulator work queue 

to indicate to the Simulator process that the vehicle must start moving to reach the next parking 

indicated in the software input argument Route. When the process, in autonomous mode, receives a 

GOTO message, it resends its content through the queue q_Simulator so that the Simulator process 
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simulates the coordinates of the vehicle and the detection of some RFID inside the parking according 

to the row in which the vehicle is ordered to be parked. 

The MQTT receiver process has also been slightly modified. If we pay attention to the small parking 

of the TwizyLine service (shown in section 2.3.1 and explained in detail in the final project degree by 

Samuel Pilar Arnanz [13]) we see that there are 4 barriers (Figure 35). When the simulated vehicles 

arrive at the first barrier (barrier 1 or entry barrier), if the barrier stays down they must wait for it 

to open, just as a real driver would do. The same applies to the last barrier (barrier 4 or exit barrier), 

the vehicle must remain waiting for the barrier to open before leaving and going to another car park. 

The back-end, as explained in the final project degree by Samuel Pilar Arnanz [13], sends messages 

through MQTT to these barriers to pull up or pull down. As the simulated vehicles must be aware of 

the state of these barriers, the MQTT receiver process must also subscribe to the topics of these 

barriers. For barriers 2 and 3 it is not necessary since the back-end opens these barriers automatically 

before sending the route (GOTO message) to the vehicle. 

 

Figure 35. Barriers in the small TwizyLine car park. 

Table 26 shows the messages and topics used by the back-end to order the barrier up or down. The 

MQTT Receiver process will subscribe to the topics of barriers 1 and 4 of all parking lots through 

which the vehicle will pass (defined in the software input argument Route). 

Publisher Subscriber Topic Payload 

Back-end Barrier barrier/(id_park)/(barrier_number) B_UP 

Back-end Barrier barrier/(id_park)/(barrier_number) B_DOWN 

Table 26. MQTT messaging used by the back-end to control parking barriers. 

Every time it receives a message linked to these topics, it will modify two global shared variables 

based on an array of boolean values that indicate the status of all barriers 1 (Barrier1Status) and all 

barriers 4 (Barrier4Status) through which the simulated vehicle will pass. 

4.1.2. Route information and RFID tags files 

The routes that a vehicle can take in the simulator are stored in KML files. KML (Keyhole Markup 

Language) is an XML notation developed by Google and standardized by the OGC (Open Geospatial 

Consortium) that is used to store geographic data [65]. This notation allows to store, among others, 

geographic routes. The simulator, to be able to simulate vehicles going to a car park or leaving it to 

go to others, needs to have access to the KML files of the corresponding routes. The following KML 

files are needed for each car park: 



58 

 

• Initial route: Indicates the GPS coordinates of the initial route to the first car park. Its name 

is 0-(park_id).kml where park_id is the id of the car park. 

• Route to another car park: Indicates the route a vehicle must follow to go to a car park 

from another one. There should be as many files as other car parks exist. Its name is 

(origin_park_id)-(destination_park_id).kml. 

All these files must be inside a folder named KML. An example of these two files is shown in Figure 36. 

 

Figure 36. Examples of initial route and route to another car park files for the simulator. 

The coordinates and RFID tags that the simulated vehicle must report to the back-end once it is 

inside a car park are stored in text files that follow a certain structure. These files are organized 

by folders, so that each car park has its own folder (called by the id of the car park) where the files 

related to it are located. Each car park's folders must be found in another folder called RFID. There 

are two types of files: 

• Initial RFID tag and coordinates: It indicates the identifier of the RFID tag located at the 

entrance to the car park and the coordinates of the entrance to this car park. Its name is 

always 1.txt and there is one for each car park in the respective folder. 

• RFID tags and coordinates from entrance to end of row: It indicates the coordinates 

and RFID tags to be reported by the simulated vehicle until it is parked. At the same time, it 

indicates in which coordinates a parking space exists. There is one file per parking row and 

the name of these is the id of the RFID tag located at the end of the corresponding row. 

Figure 37 shows a visual example of how these files should be created. Each white square indicates 

an entry within the file. As explained above, there is always a file called 1.txt and then as many files as 

there are rows in the car park. These files are marked with yellow arrows in Figure 37, so that by 

following the arrow the different file entries can be obtained. 

Annex VI shows an example of the file collection required for the operation of the simulator with 

three car parks. 
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Figure 37. Example of the generation of coordinate files and RFID tags in a car park. 

4.1.3. Battery Sim and Simulator processes 

As explained above, two new processes have been programmed to make the simulator: Battery Sim 

and Simulator. The following paragraphs show an analysis of their operation. 

The Battery Sim process simulates the battery charge and enters its value into the shared global 

variable BATTERYdata. It takes the initial value from the software input argument Initial battery charge. 

From this point on, every 10 seconds a unit is subtracted from the BATTERYdata variable. This process, 

at the same time, listens in the queue q_Battery_Sim. If it receives the CHARGE message it increases 

1 unit to the variable every second, if it receives the DISCHARGE message it returns to the previous 

state. 

The Simulator process simulates vehicle coordinates (inserting coordinates values in the shared 

global variable GPSdata) and RFID tags detection (sending orders to send RFID messages through the 

q_MQTT_sender work queue). 

When this process is launched, it waits to receive the START message through the q_Simulator work 

queue. Once received, it checks the software input argument Route. Then it opens the initial route 

file of the first car park (0-(park_id).kml) that appears in the Route argument and updates the 

coordinates of the GPSdata variable every second with the coordinates of this file. 

When the process finishes reading the file, and therefore the vehicle is in front of the entrance barrier 

of the first car park, the process checks, thanks to the shared global variable Barrier1Status, if the 

entrance barrier is open. If it is not, it waits until it is. If it is open, it accesses the initial tag and 

coordinates file (1.txt) of the car park, and reports the RFID tag and the coordinates that appear in 

the file. Then, the process waits to receive the content of the GOTO message received through the 

q_Simulator queue. 

Once received, the program extracts the final RFID to which the vehicle must go, and opens the 

corresponding file of coordinates and RFID tags. For the correct operation of the simulator, the back-

end also sends the parking column to which the vehicle must be directed via the GOTO message. 
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This way the Simulator process has all the necessary information and simulates the detection of RFID 

tags and the coordinates as they are in the file. Note that, if the vehicle is not dispatched at the end 

of the row, the simulator orders the sending of the TIMEOUT message through the q_MQTT_sender 

work queue once it is parked. This is done because in these cases the vehicle would detect another 

vehicle in front and will stop for this. 

Then, the process waits for another GOTO message through the q_Simulator queue. Once it receives 

it there are two possible events. 

• If the GOTO message indicates that the vehicle must go to the RFID of its same row, the 

vehicle moves to the next column of its row. This vehicle will not be the first one in the row, 

another vehicle has been ordered to leave the car park and therefore this vehicle will move 

forward and be placed in the next place. 

• If the GOTO message indicates that the vehicle must go to a different RFID than the one in 

its row means that the vehicle must leave the parking lot. Note that in reality, in order for 

the vehicle to drive correctly to the exit of the parking lot, the GOTO message must be sent 

to it with the corresponding RFID. In this case, the simulator only checks that the RFID 

received is not that of the row in which the vehicle is parked to simplify the development. 

The process then, thanks to the argument Route received at program start, knows which is 

the next car park the vehicle must go to and opens the file that gives the route coordinates 

from the current car park to the next one ((origin_park_id)-(destination_park_id).kml). 

After that, the process reports the first coordinate from the file and reports the detection of 

the RFID tag expected by the back-end. Next, it waits to receive the START message through 

the q_Simulator queue (indicating that the vehicle has switched to Normal mode) and, 

afterwards, checks if the barrier 4 of the car park that is open (thanks to the global variable 

Barrier4Status). If it is not, it waits until it is. If it is, the route is continued, and the entire 

procedure is repeated with the next car park. 

For information about the operation of the car park go to the final project degree of Samuel Pilar 

Arnanz [13]. 

4.2. Vehicle launcher 
In order to launch multiple vehicles, a program capable of launching multiple instances of the software 

analysed in the previous section (section 4.1) is required. This program is called "Vehicle launcher". It 

offers a simple and intuitive user interface that allows the configuration of the parameters of each 

vehicle to be launched. It is programmed in Python 3 and uses the tkinter library [66] to provide the 

user interface. Figure 38 shows its user interface. 

 

Figure 38. User interface of the Vehicles launcher software. 
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As can be seen in Figure 35, the user enters the input arguments for each simulated vehicle instance. 

By clicking on the "Launch vehicle" button, the program starts a new instance of the vehicle simulator 

in a new console by passing it the parameters introduced. 

Figure 39 shows an example of what is shown when simulating 4 vehicles simultaneously. The window 

of the "Vehicles launcher" software remains active so that new vehicles can be launched at any time. 

Each vehicle is displayed in a different terminal through which information about the vehicle's status 

is shown. 

 

Figure 39. Example of simulation of 4 vehicles simultaneously with the simulator. 

4.3. Real-time display of system status 
New software has been programmed to implement a real-time display of the system status. The aim 

of this software is to keep a new KML file always updated with the information of all vehicles and 

barriers. Then, with a KML viewer (such as Google Earth [67]) it is possible to see its information in a 

visual way. Next, an analysis of the functioning of the software and the necessary KML files will be 

shown. 

The new software has been programmed in Python 3, as most of the software of this final project 

degree. This software consists of a MQTT message sniffer for the TwizyLine project. The software 

uses the paho-mqtt library [59] (as the Communication module) to be able to subscribe and receive 

MQTT messages. This software subscribes to the location and battery topics of all vehicles (topics 

explained in section 3.4), and to the topics of all barriers (shown in Table 26). This way it can collect 

all the necessary information from the vehicles and the barriers in real-time. All this information is 

introduced in a KML file, so that when this file is opened with a KML viewer, all the vehicles and 

barriers are shown geopositioned. In the case of the barriers, the program has preconfigured the 

location of each one of them and changes its icon, configuring it in the KML file, depending if it is 
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opened or closed. Figure 40 shows the different icons configured by the program in the KML file, to 

be displayed by a KML viewer. 

   
Vehicle location in real-time Barrier closed Barrier opened 

Figure 40. Icons used in the real-time display of system status. 

Once we have a KML file that remains updated, it is necessary to make another KML file of the type 

NetworkLink [68] to indicate to the KML viewer that the first file should be opened periodically. Note 

that a KML viewer, if it opens directly the KML file offered by the software analysed above, will collect 

its data only at the time of opening and, therefore, the viewer will not update the data. KML files of 

the type NetworkLink solve this problem. It is possible to indicate the update rate of the target KML 

file. In this way, the KML viewer will open the NetworkLink KML file and, when it checks its information, 

will periodically show the information of the KML file generated by the previously analysed software. 

Figure 41 shows an example of the real-time display of the system status using Google Earth as the 

KML viewer. As we can see, it is possible to see the battery status of all vehicles and their location, 

differentiated by their identifier. At the same time, we can see the status of all the barriers in the 

system. This tool is useful and effective to check the operation of the back-end. 

 

Figure 41. Example of the real-time display of the system status using Google Earth as KML viewer. 
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5. Use cases in the real systems 
This chapter will explain the use cases of the real system, that is, the system implemented in the 

Communication and Control modules. The exchange of messages that occurs in all possible situations 

between these modules and the back-end will be analysed, checking success cases and possible failures 

that may occur in practice. This chapter complements chapter 3 of this document, which explains the 

design and implementation of the system, and therefore serves to complete the first main objective 

of this final degree project shown in section 1.2. This chapter corresponds to phase 4 of the 

development of this project, shown in section 1.3. 

5.1. Normal use 
In this section, cases of use under normal conditions will be analysed, that is, success cases in which 

no anomalies occur. The following subsections explain the use case of the change to a new state, and 

the use cases that can occur in those states. It is important to know that, in the diagrams that are 

going to be shown, the blue squares indicate the different possibilities. Therefore, the diagram makes 

sense if only one blue square is considered, not all at once. 

5.1.1. System Start Up 

The Start Up state is the state in which all systems and the connection between modules and the 

back-end are checked. The system, when turned on, enters this state directly. Figure 31 shows the 

message exchange that takes place during this state. It also shows the exchange of messages 

performed to reach this state, either by switching on the modules or coming from another state.  

 

Figure 42. Message exchange between modules and back-end performed in the Start Up state. 
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When this state is entered, the Control module waits to receive the first STATE-COMM message 

from the communication module. Meanwhile, the Communication module tries to establish a 

connection with the MQTT broker and subscribe to the corresponding topics. Once this is achieved, 

it checks the connection with the back-end by sending it a CONNECT message. The back-end 

responds with a CONNECTED message. When this message is received, the communication module 

knows that the back-end is connected and therefore starts sending the periodic battery and location 

messages to the back-end. Once this is done, the module starts sending the periodic COMM-STATUS 

message with the STATE-COM signal indicating the Start Up state to wake up the control module, 

and waits to receive the CONN-STATUS message from it. The control module, on receiving the 

message, checks the connection with all the devices to which it is connected. If everything is correct, 

it sends the CONN-STATUS message with the STATE-CON signal indicating the Start Up state. 

Note that the Communication module does not wait indefinitely for a message from the Control 

module. If the Control module does not respond after 8 seconds, the Communication module 

interprets that it is not switched on or connected and therefore goes into Failure mode (see section 

5.2.2). 

Once these tasks have been performed, the Communication module orders the Control module to 

go into another state, by changing the STATE-COM signal to the value of the new state, and waiting 

for the STATE-CON signal from the Control module to change. The state the system goes into after 

the Start Up state depends on how the Start Up state was reached. If the previous state was the 

power on of the modules (into which the operating system of the modules is loaded), or the failure 

mode (in which the reception of a RESTART message sent by the back-end is expected to restart the 

system), the state that is passed to after the Start Up state is the pre-configured default state. This 

can be Normal mode (shown in Figure 42), Autonomous mode, or Standby. On the other hand, if the 

previous state was Standby, the state that is passed to after the Start Up state depends on the message 

sent by the back-end to wake up the system. If an AM-OFF is received (shown in Figure 42) it switches 

to Normal mode and if an AM-ON is received it switches to Autonomous mode. 

5.1.2. Normal mode 

The normal mode is the state the system is in when the vehicle driving tasks are performed by a 

conventional driver, as explained in section 3.2. Under normal conditions, that is, without anomalies, 

the control module only informs the communication module about the detection of an RFID tag. 

Figure 43 shows the message exchange performed to switch to Normal mode. 

 

Figure 43. Message exchange between modules and back-end performed to go into the Normal mode. 

As shown in Figure 43, it is possible to go into this state from the Start Up state or the Autonomous 

mode (if an AM-OFF message is received from the back-end). To change the state, the 

Communication module changes the value of the STATE-COM signal from the COMM-STATUS 

message to the value of the Normal mode, and waits to detect the change of the STATE-CON signal 

from the CONT-STATUS message to the value of the Normal mode. The control module, when it 

detects the change in the value of the STATE-COM signal, changes its status and reports it by changing 
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the value of the STATE-CON signal. If the STATE-CON signal does not change after 1 second, the 

communication module will trigger an error (see section 5.2.2). Once the status has been correctly 

established, the communication module sends the AM-OFF OK message through MQTT to inform 

the back-end. 

5.1.3. Autonomous mode 

As explained in section 3.2, the Autonomous mode is the state the system is in when it is in driverless 

operation, that is when the driving tasks of the vehicle are carried out by the installed system. Figure 

44 shows the message exchange performed to switch to Autonomous mode. 

 

Figure 44. Message exchange between modules and back-end performed to go into the Autonomous mode. 

As shown in Figure 44, it is possible to go into this state from the Start Up state or the Normal mode 

(if an AM-ON message is received from the back-end). To change the state, the Communication 

module changes the value of the STATE-COM signal from the COMM-STATUS message to the value 

of the Autonomous mode, and waits to detect the change of the STATE-CON signal from the CONT-

STATUS message to the value of the Autonomous mode. The control module, when it detects the 

change in the value of the STATE-COM signal, changes its status and reports it by changing the value 

of the STATE-CON signal. If the STATE-CON signal does not change after 1 second, the 

Communication module will trigger an error (see section 5.2.2). Once the status has been correctly 

established, the communication module sends the AM-ON OK message through MQTT to inform 

the back-end. 

Once the autonomous mode has been established, there are several use cases that can occur. The 

following subsections will show each of these cases. 

5.1.3.1. Configuration of the route to be followed 
If the vehicle, even when it is in autonomous mode, does not have a route to follow, it will remain 

stopped. It will not start moving until it receives a correct GOTO message from the back-end. Figure 

45 shows the message exchange that takes place in the system when the back-end sends a correct 

GOTO message. 
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Figure 45. Message exchange between modules and the back-end performed for the configuration of a route. 

As shown in Figure 45, initially the back-end sends the route to be followed through the GOTO 

message. Once the Communication module receives it, it checks if the message is correct. If it is not, 

it triggers a warning (see section 5.2.1). It generates a GOTO equivalent message for transmission 

through the ISO-TP layer. The sending of this message with this transport layer follows the 

methodology explained in section 3.3. The Control module, if it receives the message correctly, sets 

the value 1 in the GOTO-ACK signal of the periodic CONT-STATUS message for half a second, as 

explained in section 3.3. If the Control module does not receive the message correctly, it does not 

set the GOTO-ACK signal to 1. When the Communication module receives the GOTO-ACK signal 

at 1, it sends a GOTO OK message to the back-end informing that the message has been correctly 

received by both modules. If the Communication module does not receive the GOTO-ACK signal at 

1 in half a second after the message has been sent, it tries again. If after 3 attempts the communication 

module still does not receive the GOTO-ACK signal at 1, it triggers an error. 

5.1.3.2. Pause and continue orders 
There are situations where it may be appropriate to order to stop immediately the vehicle in 

Autonomous mode. To order this, the back-end sends the PAUSE message. To order the vehicle to 

resume its route the back-end can send the CONTINUE message. Figure 46 shows the message 

exchange that takes place when both messages are received in autonomous mode. 

 

Figure 46. Message exchange between modules and the back-end performed when receiving pause or continue orders. 

When the Communication module receives the PAUSE message from the back-end, it sets the value 

of the PAUSE-COM signal of the periodic COMM-STATUS message at 1, and waits to receive the 

PAUSE-CON signal of the periodic CONT-STATUS message with the value 1. When the Control 

module detects the change in the value of the PAUSE-COM signal, it stops the vehicle and sets the 

value of the PAUSE-CON signal of the periodic CONT-STATUS message to 1. When the 
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Communication module receives the signal PAUSE-CON at 1, it sends the message PAUSE OK to 

the back-end informing that the vehicle has stopped correctly. If the Communication module does 

not receive the PAUSE-CON signal at 1 for half a second after setting the PAUSE-COM signal at 1, it 

triggers an error (see section 5.2.1). 

The procedure when the Communication module receives the CONTINUE message is similar to that 

for the PAUSE message. The Communication module changes the value of the PAUSE-COM signal to 

0 and waits to receive the PAUSE-CON signal at 0. When the Control Module receives the PAUSE-

COM signal at 0, it resumes the route for which it was configured and sets the PAUSE-CON signal 

to 0. The Communication module, on receiving this signal at 0, sends the CONTINUE OK message 

to the back-end informing that the vehicle will continue with the configured route. 

5.1.3.3. Obstacle detection 
When the vehicle detects an obstacle, it slows down and stops if necessary. If it stays stopped for 

more than 10 seconds, inform the back-end with the TIMEOUT message. Figure 47 shows the 

message exchange that takes place in the system when the obstacle timer of the control module 

expires. 

 

Figure 47. Message exchange between modules and back-end performed when the obstacle timer expires. 

When the obstacle timer of the Control module expires, it sets the TIMEOUT signal of the periodic 

CONT-STATUS message at 1. The Communications module, when it receives this signal, informs the 

back-end about this by sending a TIMEOUT message, and performs a procedure similar to that 

performed when it receives the PAUSE message from the back-end (subsection 5.1.3.2); that is, it 

sets the PAUSE-COM signal of the periodic COMM-STATUS message at 1 and waits to receive the 

PAUSE-CON signal of the periodic CONT-STATUS message at 1. When the Control module 

receives the PAUSE-COM signal at 1, it keeps the vehicle stopped no matter if the obstacle has 

disappeared or not, and sets the PAUSE-CON signal at 1. If the Communication module does not 

receive the PAUSE-CON signal at 1 for a half a second after setting the PAUSE-COM signal at 1, it 

triggers an error (see section 5.2.1). 

When the back-end considers it convenient that the vehicle tries again to resume the configured 

route, it can send the CONTINUE message. The procedure is similar to that shown in section 5.1.3.2. 

The communication module, on receiving the CONTINUE message from the back end, sets the value 

of the PAUSE-COM signal to 0 and waits to receive the PAUSE-CON signal at 0. When the Control 

Module receives the PAUSE-COM signal at 0, it reset the obstacle timer, resumes the route for which 

it was configured and sets the PAUSE-CON signal and the TIMEOUT signal at 0. The Communication 
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module, on receiving those signals at 0, sends the CONTINUE OK message to the back-end informing 

that the vehicle will try to continue with the configured route. 

5.1.4. Standby mode 

As explained in section 3.2, the Standby mode is the energy-saving state of the system. Figure 48 

shows the exchange of messages between the modules and the back-end when the system goes into 

standby state. 

 

Figure 48. Message exchange between modules and back-end performed to go into the Standby state. 

As we can see in Figure 48, it is possible to enter in the Standby state from the Start Up state, or the 

Normal and Autonomous modes (if the STANDBY message is received from the back-end). The 

Communication module changes the value of the STATE-COM signal to indicate the Standby state 

and waits for the Control module to change the value of the STATE-CON signal. The Control 

module, when it detects the change in the STATE-COM signal, changes the status (which means 

turning off all the devices it controls), and modifies the value of the STATE-CON signal to indicate 

the Standby status. The Communication module, on receiving the new value of the STATE-CON 

signal, considers the status as established and, therefore, sends a STANDBY OK message to the back-

end, stops sending periodic information about the location, sends periodic information about the 

battery every 5 seconds, and stops sending the periodic COMM-STATUS message via the CAN bus. 

The Control module, when it stops receiving COMM-STATUS messages, stops sending CONT-

STATUS messages and waits for new COMM-STATUS messages via the CAN bus to wake up again. 

5.1.5. RFID tag detection 

As explained in section 3.2, the system allows the detection of RFID tags in Normal mode and 

Autonomous mode. The control module, when it detects the tag, informs the communication module 

and this in turn to the back-end. Figure 49 shows the message exchange carried out when an RFID 

tag with the identifier 12345 is detected. 
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Figure 49. Message exchange between modules and back-end performed when an RFID tag is detected. 

As we see in Figure 49, the control module, when it detects the RFID tag, starts sending the periodic 

RFID message. The communication module, when it receives this message, informs the back-end 

about it and sets the value of the RFID-ACK signal of the periodic COMM-STATUS message to 1, in 

order to indicate to the control module that the RFID message has been received. This signal, as 

explained in section 3.3, is maintained at 1 for half a second. The control module, once it receives the 

RFID-ACK signal at 1, stops sending the periodic RFID message. Note that if the RFID-ACK is not 

received in half a second after starting to send the RFID message, the control module throws an error 

(see section 5.2.1). 

5.2. Failure cases 
This section will explain the cases of system failures, that is, the way the system acts in the case of 

detecting some anomaly. Annex II shows all errors contemplated in the system. Although there are 

several cases, the system has general procedures for any type of failure, so that whatever it is, the 

procedures are the same, only varying the error code and attributes. There are 4 general procedures 

that are followed when an anomaly is detected. Depending on the type of failure (error or warning) 

and the device that detects it (Communication module or Control module) one procedure or another 

is taken. In addition, there is a special procedure that is carried out when errors occur that prevent 

communication with the MQTT broker and therefore with the back-end. 

5.2.1. Failures triggered by the Control module 

5.2.1.1. Warnings 
When the Control module triggers a warning, it sends the error information via the CON-ERR 

message which it starts to send periodically. Then it waits for the CON-ERR-ACK signal from the 

periodic COMM-STATUS message to stop sending the CON-ERR message. If it does not receive it 

within half a second it triggers an error. If it receives it, it stops sending the CON-ERR message and 

continues its tasks normally. On the other hand, the Communication module, when it receives the 

warning type CON-ERR message, sets the CON-ERR-ACK signal at 1 for half a second and sends a 

WRN message to the back-end informing it about the failure. A diagram of the message exchange in 

this use case is shown in Figure 50. 
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Figure 50. Message exchange between modules and back-end performed when a warning is triggered by the Control 

module. 

5.2.1.2. Errors 
When the Control module triggers an error, it goes into the Failure mode. In this mode, the Control 

module starts sending the message CON-ERR with the error information for 5 seconds. It then stops 

sending that message and the CONT-STATUS message and waits for a new COMM-STATUS message 

in order to return to the Start Up state. On the other hand, the Communication module, when it 

receives the error type CON-ERR message, enters the Failure mode. In this state, the communication 

module stops attending the CAN bus, that is, it stops sending and receiving messages from it, and 

sends an ERR message to the back-end informing about the error. Then it waits for the RESTART 

message from the back-end to go into the Start Up state. 

 

Figure 51. Message exchange between modules and back-end performed when an error is triggered by the Control 

module. 

5.2.2. Failures triggered by the Communication module 

5.2.2.1. Warnings 
When the Communication module triggers a warning, it sends the WRN message to the back-end 

informing about it and continues its tasks normally. Figure 52 provides a diagram showing the 

message sent by the Communication Module in this case. 

 

Figure 52. Message exchange between modules and back-end performed when a warning is triggered by the 

Communication module. 
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5.2.2.2. Errors 
When the Communication module triggers an error, it goes into Failure mode. Therefore, as seen in 

subsection 5.2.1.2 in this state the Communication Module stops attending the CAN bus, that is, it 

stops receiving and sending messages through it; and it sends to the back-end an ERR message 

informing about the error. When the Control Module stops receiving the COMM-STATUS message, 

it launches another error and performs the same tasks seen in section  5.2.1.2. It sends a CON-ERR 

message reporting the error for 5 seconds and then, stops transmitting its periodic CAN messages 

and waits to receive a new COMM-STATUS message to go into the Start Up state. Figure 53 shows 

the message exchange between the modules and the back-end in this use case. 

Note that the error triggered by the Control module is deliberately caused by the Communication 

module so that the Control module also enters the Failure mode and waits for a new COMM-

STATUS message to restart the system. CON-ERR messages sent by the Control module are ignored 

by the Communication module. This method is effective and allows the use of the same Failure status 

algorithm in both modules, without having to differentiate between errors coming from one module 

or another. 

 

Figure 53. Message exchange between modules and back-end performed when an error is triggered by the Communication 

module. 

5.2.2.3. Failure due to non-connection with MQTT broker 
There are certain errors (defined in Annex II) that imply the impossibility to connect with the MQTT 

broker. These errors can occur at the beginning, due to the inability to establish the connection with 

the broker; or later, due to a disconnection with the broker detected thanks to the MQTT pings 

requests sent periodically (explained in section 3.6.1). In these cases of use, the same procedure is 

followed as in the previous case (subsection 5.2.2.2) with the difference that the Communication 

module, instead of sending the ERR message and waiting to receive the RESTART message, it waits 

10 seconds and goes directly to the Start Up status. There, it will try to establish a new connection 

with the MQTT broker. If it does not succeed, it will trigger an error again and the procedure will be 

repeated. 
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Figure 54. Message exchange between modules and back-end performed when an error due to non-connection with 

MQTT broker is triggered. 
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6. Testing and integration with 
simulator 

This chapter shows the use cases of the simulator used to evaluate the integration of the vehicle 

system with the back-end (the development and operation of the back-end is explained in depth in 

the final degree project by Samuel Pilar Arnanz [13]). This chapter complements chapter 4 of this 

document (where the development of the simulator and the real-time viewer is explained) and, 

therefore, achieves the second main objective of this final project degree shown in section 1.2. This 

chapter corresponds to the last phase of this final project degree shown in section 1.3. 

6.1. Preparation of the working environment 
To evaluate the integration of the vehicle systems with the back-end, it is necessary to prepare the 

working environment to be able to launch several simulated vehicles and check the status of the 

complete TwizyLine system in real-time. 

To achieve this, initially the files indicated in section 4.1.2 must be correctly configured. In the use 

case that will be shown in this chapter, it has been supposed that the TwizyLine service provides 3 

parking areas distributed in the city of Valladolid (Figure 55). These car parks have the identifiers 

63000, 63001, and 63002, respectively. Annex VI shows the files required to operate the simulator 

with these 3 parking areas. 

 

Figure 55. Supposed car parks to carry out the simulation. 

Once we have all the files correctly generated, it is time to launch the necessary programs. First, the 

“Vehicles launcher” software, analysed in section 4.2, must be launched. In this way the simulated 

vehicles can be launched with different parameters at any time during the simulation. Then, the 

MQTT message sniffing software, analysed in section 4.3, must be launched. This software 

updates periodically the KML file that will open the KML file viewer. From this moment on, this KML 

file will remain updated. Finally, a KML viewer must be launched (in this final project degree the 

Google Earth software is used) and configured to open the KML file NetworkLink to periodically open 

the KML file generated by the software previously mentioned. 
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Figure 56. View of the working environment to check the integration with the back-end via the simulator. 

6.2. General use case of the simulator 
In this section the general use case of the simulator when a vehicle enters and leaves the car park 

with id 63000 mentioned above will be analysed. By knowing this use case, all the simulator use cases 

are known since the procedure is equivalent for all the car parks. To carry out the simulation, a 

vehicle has been configured with ID 3, an initial battery charge percentage of 60% and the route 

63000-63001 (go to the car park 63000 and, when leaving it, go to the 63001). 

When launching the vehicle with the "Vehicles launcher" software, the instance of the simulated 

vehicle starts sending a CONNECT message which is answered by the back-end with the 

CONNECTED message. Then, in Normal mode, the vehicle goes to the entrance of the first car park 

marked in the "Route followed" parameter of the "Vehicles launcher" software. Figure 57 shows how 

this vehicle arrives at the car park. 

 

Figure 57. Simulated vehicle going to a car park. 
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Once the vehicle arrives at the car park entrance, there are two possible situations (Figure 58). If the 

barrier opens automatically when the vehicle arrives, the vehicle passes and is stopped inside the 

leaving zone of the car park. If the barrier does not open, the vehicle will wait for it to open.7 

 

Figure 58. Possible situations when a simulated vehicle arrives at a car park. 

Once the vehicle reaches the leaving zone, it informs the back-end about the detection of the 

corresponding RFID tag. This way the back-end knows that the vehicle is at that point. Afterwards, 

the simulated vehicle waits for further orders from the back-end. The back-end, when it considers it 

appropriate, opens barrier 2 and sends the AM-ON command to the vehicle to go into Autonomous 

mode. Then it sends the GOTO message to inform the vehicle about the route to be followed (Figure 

59). Depending on this message, the vehicle will be parked in one row or another. 

 

Figure 59. Simulated vehicle exiting the leaving zone after receiving the AM-ON and GOTO orders. 

 

 

7 The back-end opens the barrier automatically when a service vehicle is near. Generally, if the barrier does not 

open it is because there is another vehicle in the leaving zone. For more information about the decisions made 

by the back-end see the final project degree of Samuel Pilar Arnanz [13]. 
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From this point on there are two possible cases depending if there are more vehicles parked in the 

row where the vehicle will be parked or not. 

If there are no more vehicles in the row in which the vehicle is to be parked, it is placed at the 

end of the row and reports the detection of the back-end RFID. When the back-end detects this, it 

sends the STANDBY command to the vehicle so that it goes into Standby mode. From this moment 

on, the vehicle remains parked and in energy-saving mode waiting to receive wake-up orders from 

the back-end (Figure 60). 

 

Figure 60. Simulated vehicle parked at the end of a car park row. 

When the back-end considers it appropriate, it opens the barrier 3 and sends the AM-ON command 

to the vehicle so that it wakes up and goes into Autonomous mode. Then it sends the GOTO message 

indicating that it must go to the pick-up zone (indicating the corresponding RFID). The vehicle, upon 

receiving these messages, goes to the pick-up zone and reports the detection of the corresponding 

RFID (Figure 61). 

 

Figure 61. Simulated vehicle arrives at car park pick-up zone. 

When the back-end considers it appropriate, it changes the status of the vehicle to Normal mode by 

sending the AM-OFF order. From this moment on, the vehicle simulates being driven by a 

conventional driver and waits for the barrier 4 to open. Once the barrier is open, the vehicle leaves 

the car park and goes to the next car park, which is configured in the "Route followed" parameter of 
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the "Vehicles launcher" software. When it arrives at the next car park, the same procedure is carried 

out. 

If there are other vehicles parked in the row in which the vehicle must be parked, it is placed in 

the previous park place and, after 10 seconds, it sends the TIMEOUT message to the back-end 

informing that the obstacle timer has expired (since there is a vehicle in front of it). When the back-

end receives this message, it sends the STANDBY message and the vehicle goes into energy saving 

mode, waiting to receive a wake-up order from the back-end (Figure 62). 

 

Figure 62. Vehicle parked behind another in the same car park row. 

When the back-end orders the vehicle in front to leave the car park, it follows the procedure 

described above with that vehicle (Figure 63). 

 

Figure 63. Vehicle that was in front of another one go the car park's pick-up zone. 

It then orders the previous vehicle to wake up and go into Autonomous mode with the AM-ON 

message. After this, it sends a GOTO message to order it to move to the end of the row. The vehicle 

goes into Autonomous mode and advances. If it reaches the end of the row, it reports the detection 

of the corresponding RFID (Figure 64). If there is another vehicle in front, the same procedure is 

followed as before, sending the TIMEOUT message. 
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Figure 64. Vehicle advances to the end of a car park row and returns to Standby mode. 

From this point on, the procedure explained above is followed. The back-end orders the vehicle to 

go into Standby mode and the vehicle waits for new orders from the back-end to wake up and go to 

the pick-up zone and then to another car park. 
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7. Conclusions and future lines 
7.1. Conclusions 
Taking into account the objectives marked in section 1.2 of this final degree project, it can be 

concluded that a design of a vehicle on-board system has been carried out to give it level 4 parking 

autonomy, the two processing modules of this system have been developed (except processes related 

to vehicle control), and a simulator has been developed to test the correct integration of the vehicle 

systems with the back-end. In this way, the objective 3 of the TwizyLine project shown in section 1.1 

has been completed in time. 

Regarding the different devices that are planned to be installed in the vehicle, a long and meticulous 

investigation of these was carried out, analysing their manuals, and checking their viability in the 

project. Certain devices, such as the magnetic sensor, were difficult to find. An effort was made to 

avoid developing any proprietary electronic device in order to have a functional prototype in the 

shortest possible time and thus, be able to present it in Renault's Twizy Contest. 

The design of the CAN messaging was made considering the specific characteristics of this protocol. 

Different signals per message and periodic messages were used just as the CAN protocol is used in 

current vehicles. When this messaging was implemented in the real modules and tested, slight 

modifications were made to optimize it. The final designs are shown directly in this document. This 

reflects the importance of design testing. Verifying if a design is effective by checking its application in 

reality is a fundamental step when designing a new system. 

The vehicle control interface was designed to be as simple, effective, and flexible as possible. Through 

this interface, the vehicle can follow any desired route. The characteristics of flexibility and scalability 

have been considered in the whole realization of this final project degree. Although the current idea 

is that the vehicle will only park automatically in a designated location, in the future, making the 

corresponding modifications (especially in the area of perception sensors of the vehicle), it could be 

possible that the vehicle could be guided at higher speeds to any area, as long as there is a magnetic 

strip that reaches there, with the same vehicle control interface. 

The implementation of the Control and Communication modules was a long process. Instead of 

starting to program directly, a design of the processes that should run on each device was initially 

made, specifying who was going to launch them, what task each one should carry out, and most 

importantly, how they were going to communicate with each other. The design of these processes 

was carried out with the aim of making the programming as modular as possible. This makes future 

extensions or modifications of the project easier. Communication through messages via work queues 

was used to achieve a correct synchronization between these processes. This involved the definition 

of other specific messaging for each work queue. Just as with CAN messaging, when the design was 

implemented, slight modifications were made to optimize it. 

The development of the simulator was a task that made it easier to check the integration of the 

vehicle systems with the back-end. Thanks to the modularity of the software of the real modules, the 

process to realize a simulator was easier. Although this simulator fulfils the basic tasks for which it 

was designed, it is expected to develop improvements to it that will be discussed in the future lines 

of the project. 

This final degree project constitutes a great summary of everything I have learned in this degree. 

Designing and implementing a complete system starting from an idea and facing the different problems 

that arise during the process has been an exciting experience. The development of this final degree 
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project has been very motivating and enriching. In addition, being part of the TwizyLine project, I had 

to work with colleagues. As a team we have planned, discussed, and agreed different aspects of the 

project, which has helped me to learn how to work in teams on complex projects, a very important 

aspect that I will appreciate in the future. 

7.2. Future lines 
The main future line of this project is to complete objective 4 of the TwizyLine project explained in 

section 1.1. This consists of installing all the elements discussed in section 3.1 in a Twizy vehicle 

and programming the vehicle control processes in the control module. These processes would 

use guiding algorithms to make the vehicle operate correctly in the autonomous mode in order to 

follow the ordered route. 

It is also necessary to design and implement the vehicle's brake control system to achieve 

complete control of all the important elements of the vehicle. 

On the other hand, it will be necessary to carry out a complete risk analysis so that all possible 

events that may occur during the autonomous driving of the vehicle are deeply analysed. 

Once all the appropriate modifications have been made to the vehicle, the necessary processes for 

its correct control have been programmed and an analysis and management of all the events that may 

occur in the autonomous driving of the vehicle has been made, this project opens many doors to 

future projects. These new projects may add functionalities to the vehicle to expand the ODD of 

the system and therefore give new utilities to it. 
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8. Merits and awards received 
The TwizyLine project is our proposal for the international Twizy Contest 2020 organized by Renault 

and its partner Segula. Currently, this project has been the winner in the national phase of the 

contest, and therefore, will represent Spain in the international final. 

The TwizyLine project has also been awarded one of the PROMETEO awards. These are organized 

by FunGe (General Foundation of the University of Valladolid) with the aim of obtaining a market-

oriented prototypes. 

As part of the obligations of the PROMETEO awards, the TwizyLine project has been submitted 

for a patent. 
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Annex I 
This annex shows a table with all the CAN messages entered in the vehicle for communication between the Control module and the Communication module. 

ID Type 
Period 
(ms) 

Source Destination Name 
Length 
(bytes) 

Bit(s) Signal name Meaning 

100 Cyclic 100 COMMUNICATION CONTROL COMM-STATUS 1 0-1 STATE-COM 
00=Start-Up, 01=Normal, 
10=Autonomous, 11=Standby 

100 Cyclic 100 COMMUNICATION CONTROL COMM-STATUS 1 2 PAUSE-COM 
0=Continue 
1=Pause 

100 Cyclic 100 COMMUNICATION CONTROL COMM-STATUS 1 3 RFID-ACK 
0=Not RFID message received 
1=RFID message received 

100 Cyclic 100 COMMUNICATION CONTROL COMM-STATUS 1 4 CON-ERR-ACK 
0=Not CON-ERR message received 
1=CON-ERR message received 

101 Cyclic 100 CONTROL COMMUNICATION CONT-STATUS 1 0-1 SATE-CON 
00=Start-Up, 01=Normal, 
10=Autonomous, 11=Standby 

101 Cyclic 100 CONTROL COMMUNICATION CONT-STATUS 1 2 PAUSE-CON 
0=Continue 
1=Pause 

101 Cyclic 100 CONTROL COMMUNICATION CONT-STATUS 1 3 TIMEOUT 
0=Obstacle timer not exceeded, 
1=Obstacle timer exceeded 

101 Cyclic 100 CONTROL COMMUNICATION CONT-STATUS 1 4 GOTO-ACK 
0=Not GOTO message received, 
1=GOTO message received 

102 
Cyclic and 

spontaneous 
100 CONTROL COMMUNICATION RFID 5 0-39 ID 

Identification number of the RFID tag 
detected 

103 
Cyclic and 

spontaneous 
100 CONTROL COMMUNICATION CON-ERR 8 0-1 ERR-TYPE 

00=Warning 
01= Error 

103 
Cyclic and 

spontaneous 
100 CONTROL COMMUNICATION CON-ERR 8 2-15 ERR-INFO Error explanation 

103 
Cyclic and 

spontaneous 
100 CONTROL COMMUNICATION CON-ERR 8 16-63 ERR-ATTR Error attributte 

104 ISO-TP  COMMUNICATION CONTROL GOTO    GOTO chain 

105 ISO-TP  CONTROL COMMUNICATION GOTO    Flow control 
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Annex II 
This annex shows a table with all the errors contemplated in the system. It shows the error code, the type of error, the value of the error attribute (if any) 

and a brief explanation of the error and its possible causes. 

Source 
Dec 

Code 
Hex 

Code 
Type of 
failure 

Failure name Attribute Explanation 

Communication 
module 

1 0x001 Error CON-STATUS not received - 
The CON_STATUS frame is not being received. Is the CON-MOD on? Is the CAN-Bus connection 

of both modules correct? 

Communication 
module 

2 0x002 Error 

Control 
module does not respond to 
CON_STATUS signal - Cannot 

change status 

- 
CON-MOD does not change status when ordered to do so. Is the CON-MOD correctly 

configured? 

Communication 
module 

3 0x003 Error 
Control module does not 
respond to PAUSE signal 

- 
When sending a PAUSE or CONTINUE command from the COM-MOD, the CON-MOD does not 
respond correctly as the PAUSE signal does not change. Is the CON-MOD correctly configured? 

Communication 
module 

4 0x004 Error 
GOTO-ACK not received after 

several attempts 
- CON-MOD does not send an ACK when it has to do so. Is the CON-MOD correctly configured? 

Communication 
module 

5 0x005 Warning 
Malformed GOTO frame 

received from Communication 
module 

- COM-MOD has received a GOTO message but its information is not in the proper way. 

Communication 
module 

6 0x006 Error 
Unexpected frame from 

Control module 
ID of frame received 

CON-MOD is sending out signals that do not make sense right now. Is CON-MOD well 
configured? 

Communication 
module 

9 0x009 Error GPS not connected Last coordinates (if any) 
The GPS module is not connected to the Communication module. Is the COM-MOD correctly 

configured? Is the GPS broken? Is the GPS disconnected? 
Communication 

module 
10 0x00A Warning 

GPS is not receiving signal for a 
long time 

Last coordinates (if any) 
The GPS module is not receiving any signal from the satellites for a long time. Is the GPS 

broken? 

Communication 
module 

11 0x00B Warning Battery data not received 
Last battery data 
received (if any) 

The CAN message informing about the battery charge on the vehicle's CAN-bus is not detected. 
Is there a problem in the vehicle? 

Communication 
module 

17 0x011 Error Network is unreachable - COM-MOD is not connected to the internet. Is the COM-MOD connected to the Internet? 

Communication 
module 

18 0x012 Error 
Connection refused - 

Mosquitto service is not 
running 

- 
MQTT messages are arriving at a machine where the mosquito service is not running. Is the 

mosquitto service running on the server? 

Communication 
module 

19 0x013 Error Cannot connect with server - MQTT messages are not arriving at any machine. Is the IP address right? 

Communication 
module 

20 0x014 Error 
Connection refused - Not 

authorised 
- 

The MQTT broker is rejecting the connection due to no authentication. Is the client sending the 
correct authentication data? 

Communication 
module 

21 0x015 Error 
Connection refused - Bad 

username or password 
- 

The MQTT broker is rejecting the connection due to a bad authentication. Is the client sending 
the correct username and password? 

Communication 
module 

22 0x016 Error 
Connection refused - Server 

unavailable 
- Not tested 
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Communication 
module 

23 0x017 Error 
Connection refused - Invalid 

client identifier 
- Not tested 

Communication 
module 

24 0x018 Error 
Connection refused - Incorrect 

protocol version 
- Not tested 

Communication 
module 

25 0x019 Error Back-end is not responding - The server is not responding with the message CONNECTED when called. Is the server running? 

Communication 
module 

26 0x01A Warning Unexpected MQTT message Message received The server is sending an incorrect message. Is the server well configured? 

Communication 
module 

27 0x01B Error 
Lost connection with MQTT 

server 
- 

Ping responses from the server are not being received. Has CON-MOD lost the internet 
connection? Has the MQTT broker stopped? 

Control module 129 0x081 Error COM_STATUS not received - 
The COM_STATUS frame is not being received. Is the COM-MOD on? Is the CAN-Bus connection 

of both modules correct? 
Control module 130 0x082 Error RFID-ACK not received - COM-MOD does not send an ACK when it has to do so. Is the COM-MOD correctly configured? 

Control module 131 0x083 Error CON-ERR-ACK not received - COM-MOD does not send an ACK when it has to do so. Is the COM-MOD correctly configured? 

Control module 132 0x084 Error 
Unexpected frame received 

from Communication module 
ID of frame received 

COM-MOD is sending out signals that do not make sense right now. Is COM-MOD well 
configured? 

Control module 133 0x085 Error 
Malformed GOTO frame 

received from Communication 
module 

- CON-MOD has received a GOTO message but its information is not in the proper way. 
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Annex III 
This annex shows two examples of GOTO messages sent to the vehicle. The vehicle, receiving this 

message, will follow the route marked on the diagram at the speed shown. Each example shows two 

possible GOTO messages that can be sent to the vehicle depending on the default fork parameter. 

The first example shows a typical situation in the designed car parks (detailed in the final project 

degree of Samuel Pilar Arnanz) 

 

The second example shows a more complex route, this demonstrates the scalability and flexibility of 

this messaging. 
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Annex IV 
This annex explains the procedure for enabling the CAN interface on a Humming Board CBi. 

The operating system available for the Humming Board CBi comes with the same kernel as the 

Humming Board Edge and Humming Board Gate. The Humming Board Edge and Humming Board Gate 

have an HDMI port instead of a transceiver and CAN interface. On the Humming Board CBi this kernel, 

by default, interprets that there is an HDMI port and not a CAN transceiver. To change its 

configuration, it is necessary to edit the kernel device tree. 

The device tree tell the kernel how the internal devices of the system in which it is running are 

interconnected [69]. This can indicate, among others, the interfaces that the device currently has. 

The device tree consists of a dtb file that is read by the kernel at boot time. While dtb is binary and 

difficult to modify, there are tools such as device-tree-compiler [70] that can convert it to a dts file. This 

file is equivalent to the dtb file, but it is ASCII coded and allows an easy understanding and modification 

of it. 

To modify the tree of devices, we must initially convert it to a dts file with the following command: 

dtc -I dtb -O dts -o mydtsfile /boot/dtbs/4.9.150-imx6-sr/imx6q-hummingboard2-emmc-som-v15.dtb. 

Then we open the dts file and modify the following lines: 

flexcan@02090000 { 

                        compatible = "fsl,imx6q-flexcan"; 

                        reg = < 0x2090000 0x4000 >; 

                        interrupts = < 0x00 0x6e 0x04 >; 

                        clocks = < 0x02 0x6c 0x02 0x6d >; 

                        clock-names = "ipg\0per"; 

                        stop-mode = < 0x04 0x34 0x1c 0x10 0x11 >; 

                        status = "okay"; 

                        pinctrl-names = "default"; 

                        pinctrl-0 = < 0x16 >; 

                        }; 

 

hdmi@0120000 { 

                        #address-cells = < 0x01 >; 

                        #size-cells = < 0x00 >; 

                        reg = < 0x120000 0x9000 >; 

                        interrupts = < 0x00 0x73 0x04 >; 

                        gpr = < 0x04 >; 

                        clocks = < 0x02 0x7b 0x02 0x7c >; 

                        clock-names = "iahb\0isfr"; 

                        status = "disabled"; 

                        compatible = "fsl,imx6q-hdmi"; 

                        pinctrl-names = "default"; 

                        pinctrl-0 = < 0x05 >; 

                        ddc-i2c-bus = < 0x06 >; 

                        }; 

 

hdmi_cec@00120000 { 

                        compatible = "fsl,imx6q-hdmi-cec"; 

                        interrupts = < 0x00 0x73 0x04 >; 

                        status = "disabled"; 

                        pinctrl-names = "default"; 

                        pinctrl-0 = < 0x05 >; 

                        }; 

Finally, we compile the new device tree with the following command:  dtc -I dts -O dtb -o 

/boot/dtbs/4.9.150-imx6-sr/imx6q-hummingboard2-emmc-som-v15.dtb mydtsfile 

Once the device has been rebooted, we can use the CAN interface of the Humming Board CBi.
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Annex V 
This annex shows a table with the messaging of all the work queues used in both modules of the system. The table shows: the module in which the queue is 

implemented; the queue name; the queue direction, that is, if it goes from a secondary process to the main one or vice versa; the message; and an explanation 

of the message purpose. 

Device Working queue Direction Message Explanation 

Communication q_CAN_receiver To the main process OK Connection with Control module established 
Communication q_CAN_receiver To the main process S0 STATE-CON signal=00 (Start Up) 
Communication q_CAN_receiver To the main process S1 STATE-CON signal=01 (Normal mode) 
Communication q_CAN_receiver To the main process S2 STATE-CON signal=10 (Autonomous mode) 
Communication q_CAN_receiver To the main process S3 STATE-CON signal=11 (Stand By) 
Communication q_CAN_receiver To the main process P0 PAUSE-CON signal=0 
Communication q_CAN_receiver To the main process P1 PAUSE-CON signal=1 
Communication q_CAN_receiver To the main process T0 TIMEOUT signal=0 
Communication q_CAN_receiver To the main process T1 TIMEOUT signal=1 
Communication q_CAN_receiver To the main process R (ID) RFID frame received 
Communication q_CAN_receiver To the main process W (error code) [(attribute)] Triggering a warning type error 
Communication q_CAN_receiver To the main process E (error code) [(attribute)] Triggering an error type error 
Communication q_CAN_sender From the main process S0 STATE-COM signal=00 
Communication q_CAN_sender From the main process S1 STATE-COM signal=01 
Communication q_CAN_sender From the main process S2 STATE-COM signal=10 
Communication q_CAN_sender From the main process S3 STATE-COM signal=11 
Communication q_CAN_sender From the main process P0 PAUSE-COM signal=0 
Communication q_CAN_sender From the main process P1 PAUSE-COM signal=1 
Communication q_CAN_sender From the main process R0 RFID-ACK signal=0 
Communication q_CAN_sender From the main process R1 RFID-ACK signal=1 
Communication q_CAN_sender From the main process E0 CON-ERR-ACK signal=0 
Communication q_CAN_sender From the main process E1 CON-ERR-ACK signal=1 
Communication q_CAN_sender From the main process G0 Stop resending GOTO message through ISO-TP 
Communication q_CAN_sender From the main process G1 (goto chain) Send GOTO message through ISO-TP 
Communication q_CAN_sender From the main process TERMINATE Stop process 
Communication q_MQTT_receiver To the main process OK Connection with broker MQTT established 
Communication q_MQTT_receiver To the main process M (payload) Payload received from server linked with order topic 
Communication q_MQTT_receiver To the main process E (error code) [(attribute)] Triggering an error type error 
Communication q_MQTT_receiver To the main process W (error code) [(attribute)] Triggering a warning type error 
Communication q_MQTT_sender From the main process (payload) Payload to send through info topic 
Communication q_MQTT_sender From the main process TERMINATE Stop process 
Communication q_MQTT_periodic_sender From the main process STANDBY Only send battery information every 5 seconds 
Communication q_MQTT_periodic_sender From the main process NOTSTANDBY Send location and battery information every second 
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Communication q_MQTT_periodic_sender From the main process TERMINATE Stop process 
Communication q_GPS_receiver To the main process W (error code) (attribute) Triggering a warning type error 
Communication q_GPS_receiver To the main process E (error code) (attribute) Triggering an error type error 
Control q_CAN_receiver To the main process CSR First COMM-STATUS frame received 
Control q_CAN_receiver To the main process S0 STATE-COM signal=00 (Start Up) 
Control q_CAN_receiver To the main process S1 STATE-COM signal=01 (Normal mode) 
Control q_CAN_receiver To the main process S2 STATE-COM signal=10 (Autonomous mode) 
Control q_CAN_receiver To the main process S3 STATE-COM signal=11 (Stand By) 
Control q_CAN_receiver To the main process P0 PAUSE-COM signal=0 
Control q_CAN_receiver To the main process P1 PAUSE-COM signal=1 
Control q_CAN_receiver To the main process G (goto data) GOTO ISO-TP message received 
Control q_CAN_receiver To the main process W (error code) [(attribute)] Triggering a warning type error 
Control q_CAN_receiver To the main process E (error code) [(attribute)] Triggering an error type error 
Control q_CAN_sender From the main process READY Start sending periodic CONT-STATUS frame 
Control q_CAN_sender From the main process S0 STATE-CON signal=00 
Control q_CAN_sender From the main process S1 STATE-CON signal=01 
Control q_CAN_sender From the main process S2 STATE-CON signal =10 
Control q_CAN_sender From the main process S3 STATE-CON signal =11 
Control q_CAN_sender From the main process P0 PAUSE-CON signal =0 
Control q_CAN_sender From the main process P1 PAUSE-CON signal =1 
Control q_CAN_sender From the main process T0 TIMEOUT signal =0 
Control q_CAN_sender From the main process T1 TIMEOUT signal =1 
Control q_CAN_sender From the main process G0 GOTO-ACK signal=0 
Control q_CAN_sender From the main process G1 GOTO-ACK signal=1 
Control q_CAN_sender From the main process R0 Stop periodic RFID message 
Control q_CAN_sender From the main process R1 (RFID) Start periodic RFID message 
Control q_CAN_sender From the main process E0 Stop periodic CON-ERR message 
Control q_CAN_sender From the main process E1 (error code) [(error info)] Start periodic CON-ERR message. Error type failure. 
Control q_CAN_sender From the main process W1 (error code) [(error info)] Start periodic CON-ERR message. Warning type failure. 
Control q_CAN_sender From the main process TERMINATE Stop process 
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Annex VI 
This annex shows the collection of files required for the operation of the simulator in the use case 

developed in Chapter 4. In this case, 3 car parks with identifiers 63000, 63001, and 63002 are assumed. 

 


