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Abstract 

 

Density measurements from single-sinker magnetic suspension densimeters need to be corrected 

to compensate for the magnetic effects of the measuring cell materials and the fluid on the 

coupling transmission system. While the magnetic effect of the densimeter materials can be easily 

determined, the fluid effect requires the calculation of an apparatus-specific constant, ερ. In this 

work, the apparatus-specific constant of the single-sinker magnetic suspension densimeter at the 

University of Valladolid has been determined by using two alternative methods. The first method, 

which uses density data for the same fluid and conditions and different sinkers, yielded a value of 

ερ = 4.6·10-5. The second method, obtained from measurements with pure oxygen, yielded a value 

of ερ = 8.822·10-5. The second value is considered as more reliable, as the first method presents 

inherent limitations in this case. 
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1. Introduction 

Single-sinker magnetic suspension densimeters (SSMSD) provide very precise density 
measurements for fluids over extensive temperature and pressure limits [1]. In their operation, a 
sinker of known volume, immersed in the fluid whose density must be determined, is weighed by 
an analytical balance. The density of the fluid is determined from the buoyancy force on the 
sinker, according to the Archimedes’ principle. The sinker, surrounded by the fluid at the desired 
temperature and pressure, is coupled to the balance, which unlike the sinker is in air at ambient 
conditions, across the wall of the measuring cell by means of a contactless magnetic suspension 
coupling. A comprehensive description of the measuring method can be found in [2]. 
The balance reading when weighing the sinker through the magnetic suspension coupling is 
influenced by the magnetic properties of the materials of the measuring cell and by the magnetic 
properties of the fluid. This is accounted as a force transmission error (FTE) that must be 
evaluated and corrected for [3] for single-sinker densimeters and gravimetric sorption analyzers 
and other scientific equipment using a magnetic-suspension coupling [4]. 
There are different ways of estimating the correction that must be applied to compensate for the 
FTE. Kuramoto et al. [5] proposed a theoretical and quantitative determination of the FTE by 
developing a physical model, whereas Kano et al. [6] studied the FTE by using numerical 
methods, with the finite element analysis. These two methods require a detailed knowledge of the 
magnetic properties of all the materials in the cell, the sinker and the fluid, together with a precise 
knowledge of the geometry of the magnetic coupling and all the surrounding elements. This 
information is not always easily accessible, especially when the relative position of the magnetic 
coupling changes with temperature and pressure, due to the change of the magnetic properties of 
the permanent magnet with the temperature. Based on these works, Kayukawa et al. [7] developed 
a dual-sinker magnetic suspension densimeter capable of keeping the vertical position of the 
permanent magnet constant during  the entire measuring process, which minimizes the influence 
of the FTE. However, the mechanical complexity of this approximation is only of interest for 
some very accurate metrological issues and not practical for most of the SSMSD. 
Alternatively, McLinden et al. [3] proposed an empirical approach. The FTE can be split into two 
terms: the term due to the magnetic behavior of the apparatus materials (e.g. cell walls, sinker) 
and the fluid-specific term. The apparatus-specific term of the FTE can be easily determined by 
measuring the weight of the sinker in the evacuated cell. The fluid-specific term of the FTE can 
be neglected when dealing with diamagnetic fluids, which have weak magnetic susceptibility, but 
must be considered when measuring densities of paramagnetic fluids, which have a strong and 
temperature-dependent magnetic susceptibility, such as mixtures containing oxygen. The fluid-
specific term of the FTE, as well as the apparatus-specific effect, are unique for each SSMSD, 
and therefore, must be determined independently for each densimeter. 
The SSMSD at the University of Valladolid (UVa) [8][9] has been used during the last few years 
to measure the density of different binary mixtures [8,10–16] and multicomponent mixtures [17–
20]. As no significant amount of any paramagnetic component was present in those mixtures, 
only the apparatus-specific correction was considered. The fluid-specific term of the FTE was 
neglected and its small influence was considered to be covered by the uncertainty of the density 
measurements. A new set of density measurements is scheduled to be performed with this SSMSD 
for binary mixtures of relevance for processes involved in carbon capture and storage systems. 
Some of the relevant mixtures contain significant amounts of oxygen [21], and therefore the 
determination of the fluid-specific term of the FTE is needed in order to correct these 
measurements. 
In this work we have followed the procedure proposed by McLinden et al. [3] for the 
determination of the fluid-specific term of the FTE of the SSMSD at the UVa. The fluid-specific 
term of the FTE, as it will be explained in the next section, is proportional to the magnetic 
susceptibility and the density of the fluid, with the proportionality being constant the so-called 
‘apparatus-specific constant’, ερ. In order to avoid confusions arising from the use of the language, 



it is worth highlighting that the apparatus-specific constant, ερ, is the proportionality constant of 
the fluid-specific term of the FTE, and should not be mistaken with the apparatus-specific term 
of the FTE. 
The apparatus-specific constant, ερ. can be evaluated by measuring the density of a fluid at the 
same temperature and pressure using two different sinkers. For this purpose, any fluid with known 
magnetic susceptibility is appropriate, even if the fluid is diamagnetic (i.e. with small and 
negatives values of the magnetic susceptibility). An alternative approach to estimate the 
apparatus-specific constant is by measuring the density of a paramagnetic fluid, such as pure 
oxygen, at selected temperatures and pressures. In this case the magnetic susceptibility is much 
greater and with a positive value. In this work we have followed the two different approaches to 
estimate ερ and the results are compared. 
 

2. Force transmission error in a single-sinker magnetic suspension densimeter 

The operation of the SSMSD is schematically depicted in Figure 1. The magnetic coupling is 
formed by an electromagnet hanging from the lower hook of the analytical balance and a 
permanent magnet inside the measuring cell. The permanent magnet is fixed to a sinker support 
which allows coupling and decoupling the sinker to/from the balance. The magnetic coupling has 
two different positions: the zero position (ZP) and the measuring position (MP). A position sensor 
allows changing from one position to the other. 
A load compensation system permits running the analytical balance near its zero, avoiding any 
systematic errors associated with the non-linearity of the balance. Additionally, the load 
compensation system allows calibrating the balance at each measuring point. The load 
compensation system consists of two calibrated masses. Usually, one of them is made out of 
tantalum and the other of titanium. They have distinct masses but nearly the same volume, thus 
the air buoyancy effect on the compensation masses are the same for both of them. The difference 
in weight between the two masses is designed to be similar to the sinker mass. 
In the ZP the magnetic coupling attracts the permanent magnet but the sinker is not lifted and it 
rests on the bottom of the cell. In the MP the magnetic coupling attracts the permanent magnet so 
that the sinker is lifted. Simultaneously, the load compensation system places the tantalum mass 
on the upper pan of the balance when the magnetic coupling is in the ZP, and places the titanium 
mass when the magnetic coupling is in the MP. The balance readings in the ZP, WZP, and in the 
MP, WMP, are therefore: 
 
𝑊𝑊ZP = 𝛼𝛼�𝛷𝛷�𝑚𝑚pm − 𝜌𝜌fluid𝑉𝑉pm�+ 𝑚𝑚em + 𝑚𝑚Ta − 𝜌𝜌air(𝑉𝑉em + 𝑉𝑉Ta)�   (1) 

𝑊𝑊MP = 𝛼𝛼�𝛷𝛷�𝑚𝑚s +𝑚𝑚pm − 𝜌𝜌fluid�𝑉𝑉s + 𝑉𝑉pm��+ 𝑚𝑚em + 𝑚𝑚Ti − 𝜌𝜌air(𝑉𝑉em + 𝑉𝑉Ti)�  (2) 
 
where the factor α accounts for the balance calibration; Φ is the coupling factor, which corrects 
for the effect of the magnetic coupling in the reading of the balance; m, V and ρ, denote mass, 
volume and density, respectively; the subscripts pm, em, s, refer to the permanent magnet, the 
electromagnet and the sinker; and the subscripts Ta and Ti, refer to the tantalum and titanium 
compensation masses. 
The difference between these two readings is 
 
𝑊𝑊MP −𝑊𝑊ZP = 𝛼𝛼{𝛷𝛷[𝑚𝑚s − 𝜌𝜌fluid𝑉𝑉s] + 𝑚𝑚Ti − 𝑚𝑚Ta − 𝜌𝜌air(𝑉𝑉Ti − 𝑉𝑉Ta)}   (3) 
 
The differential nature of the measuring method cancels the weights of the permanent magnet, 
the electromagnet, and their corresponding buoyancy forces. As the volumes of the titanium and 
tantalum compensation loads are approximately equal (VTi ≈ VTa), the air buoyancy term for them 



is negligible. The density of the fluid, ρfluid, can be isolated from equation (3), thus obtaining the 
following expression: 
 

𝜌𝜌fluid = 𝜌𝜌s + 1
𝛷𝛷

(𝑚𝑚Ti−𝑚𝑚Ta)+(𝑊𝑊ZP−𝑊𝑊MP) 𝛼𝛼⁄
𝑉𝑉s

      (4) 

 
where ρs is the density of the sinker (ρs = ms/Vs). Equation (4) gives the density of the fluid, but 
includes the unknown balance calibration factor, α, and the coupling factor, Φ. 
The balance calibration factor, α, can be easily obtained by an independent calibration, free of the 
air buoyancy effect, using the two compensation masses. As the magnetic coupling is in the zero 
position (ZP), two measurements are taken, one with the titanium mass on the balance pan 
(WZP,Ti), and the other one with the tantalum mass (WZP,Ta). Subtracting one from the other most 
of the terms in equation (1) cancel and α can be obtained: 
 

𝛼𝛼 = 𝑊𝑊ZP,Ta−𝑊𝑊ZP,Ti
(𝑚𝑚Ta−𝑚𝑚Ti)−𝜌𝜌air(𝑉𝑉Ta−𝑉𝑉Ti)

        (5) 

 
The analysis of the coupling factor for a two-sinker MSD performed by McLinden et al. [3] states 
that, the coupling factor, Φ, can be separated into an apparatus-specific effect, Φ0 and a fluid-
specific effect Φfse, as expressed in equation (6). This is also valid for a SSMSD. 
 
𝛷𝛷 =  𝛷𝛷0 + 𝛷𝛷fse         (6) 
 
The apparatus-specific effect, Φ0, can be obtained by weighing the sinker in a vacuum. In that 
case ρfluid = 0 and Φfse = 0, and thus, Φ0 can be isolated from equation (4) as: 
 

𝛷𝛷0 = −(𝑚𝑚Ti−𝑚𝑚Ta)±−
𝑚𝑚s

      (7) 

 
It is worth noting that the apparatus-specific effect, Φ0, depends on temperature, because the 
strength of the permanent magnet is temperature-dependent, and therefore the equilibrium 
position of the magnetic coupling changes for each temperature. Furthermore, small changes on 
the alignment of the electromagnet, or in the leveling of the balance, also produce small variations 
in the value of Φ0. For this reason, the value of Φ0 must be estimated at the end of each single 
isotherm and the corresponding correction must be done with the obtained value. 
From the analysis for the two-sinker MSD by McLinden et al. [3], it was also demonstrated that 
the fluid-specific effect is proportional to the magnetic susceptibility and density of the fluid: 
 
𝛷𝛷fse = 𝜀𝜀ρ

𝜒𝜒s
𝜒𝜒s0

𝜌𝜌fluid
𝜌𝜌0

         (8) 

 
where χs0 = 10-8 m3·kg-1 and ρ0 = 1000 kg·m-3 are reducing constants for the specific magnetic 
susceptibility of the fluid, χs, and the density of the fluid, ρfluid, respectively; and ερ is a so-called 
‘apparatus-specific constant’. 
If the correction due to the FTE is not considered, i.e., setting Φ = 1 in Equation (4), the density 
obtained, ρΦ =1, has a deviation from the ‘true’ value. The relative deviation in density is given by 
the following expression (equation 23 from McLinden et al. [3]): 
 
𝛥𝛥𝜌𝜌

𝜌𝜌fluid
= 𝜌𝜌Φ=1−𝜌𝜌fluid

𝜌𝜌fluid
= (𝛷𝛷 − 1) �1 − 𝜌𝜌s

𝜌𝜌fluid
�      (9) 



 
Replacing the value of Φ given by equations (6) and (8) in equation (9), the following is obtained: 
 
𝛥𝛥𝜌𝜌

𝜌𝜌fluid
= (𝛷𝛷0 − 1) �1 − 𝜌𝜌s

𝜌𝜌fluid
� + 𝜀𝜀ρ

𝜒𝜒s
𝜒𝜒s0

�𝜌𝜌fluid
𝜌𝜌0

− 𝜌𝜌s
𝜌𝜌0
�     (10) 

 
The first term on the right-hand side of equation (10) stands for the relative deviation in density 
due to the apparatus effect, which will be easily compensated for with the appropriate value of Φ0 
obtained from equation (7). The second term represents the relative deviation in density due to 
the fluid-specific effect: 
 
𝛥𝛥𝜌𝜌fse
𝜌𝜌fluid

= 𝜀𝜀ρ
𝜒𝜒s
𝜒𝜒s0

�𝜌𝜌fluid
𝜌𝜌0

− 𝜌𝜌s
𝜌𝜌0
�        (11) 

 
As it can be seen in equation (11), the relative deviation in density due to the fluid-specific term 
of the FTE is proportional to the specific magnetic susceptibility of the fluid, χs, and to the 
difference between the density of the fluid and the density of the sinker, ρfluid – ρs, being the 
proportionality constant that is the apparatus specific constant, ερ. McLinden et al. [3] showed 
that the apparatus-specific constant, ερ, can be calculated from equation (11) following two 
different approaches. The first method is by measuring the density of a fluid at exactly equal T 
and p, using two different sinkers, which for a single-sinker MSD implies the disassembling and 
re-assembling of the whole cell. The second method is by measuring the density of pure oxygen, 
a strongly paramagnetic fluid with a high magnetic susceptibility. Both approaches have been 
used in this work to estimate the apparatus-specific constant, ερ, of the SSMSD at the UVa. 
The volume magnetic susceptibility is a dimensionless magnitude. The magnetic susceptibility, 
χs, that appears in equation (11) refers to the magnetic susceptibility on a mass basis (in m3·kg-1). 
The product of the specific magnetic susceptibility by the density, which appears in equation (11), 
gives the dimensionless volume magnetic susceptibility. Most of the values of magnetic 
susceptibilities in the literature are given as molar magnetic susceptibilities (χM, in m3·mol-1). The 
specific magnetic susceptibility, χs, can be obtained easily by dividing the molar magnetic 
susceptibilities, χM, by the molar mass, M, of the substance. In some cases, the published data of 
magnetic susceptibility are given in the centimeter-gram-second system of units (CGS-EMU). In 
this case, a convenient conversion factor, which can be found in Ref.  [22], should be used to 
obtain the magnitude in the corresponding SI units. 
Once the value of the apparatus-specific constant, ερ, is established, the density of the fluid can 
be easily obtained by introducing the value of the coupling factor, Φ, in equation (4), obtaining 
the following expression: 
 

𝜌𝜌fluid = 𝛷𝛷0𝑚𝑚s+(𝑚𝑚Ti−𝑚𝑚Ta)+(𝑊𝑊ZP−𝑊𝑊MP) 𝛼𝛼⁄
𝑉𝑉s

1
𝛷𝛷0

+ 𝜀𝜀ρ
𝛷𝛷0

𝜒𝜒s
𝜒𝜒s0

�𝜌𝜌s
𝜌𝜌0
− 𝜌𝜌fluid

𝜌𝜌0
� 𝜌𝜌fluid   (12) 

 
where an approximate value of ρfluid must be introduced in the right-hand side of the equation to 
obtain the experimental value of ρfluid. The value of density given by equation (4) with Φ = Φ0 
after more than one interaction, is a good approximation for this purpose. Otherwise, the value of 
ρfluid computed from RefProp [23] can be used. 
 

3. Experimental 

3.1. The single-sinker magnetic suspension densimeter at UVa 



The SSMSD at UVa was described thoroughly in the papers by Chamorro et al.  [8] and by 
Mondéjar et al. [9]. Formerly, the SSMSD had a cylindrical titanium sinker, with a nominal mass 
of 60 g and a nominal volume of 13 cm3. The ‘old’ titanium sinker was replaced by a ‘new’ 
monocrystalline silicon cylinder, with nearly the same mass but double the volume (26 cm3), as 
the density of silicon is approximately half that of titanium. This modification was made in order 
to reduce the measuring uncertainty in density measurements and increase the resolution of the 
SSMSD, mainly at low densities. Table 1 collects the mass, volume and density of the ‘old’ 
titanium sinker and the ‘new’ silicon sinker of the SSMSD at UVa. The measuring cell is made 
of a copper-chromium-zirconium diamagnetic alloy (CuCrZr) with χs/ χs0 = - 0.025 [24]. 
The temperature and pressure dependence of the volume of the sinker must be considered when 
using equation (4) or (12) to estimate the density of the fluid. This can be done by using equation 
(13): 
 

𝑉𝑉s(𝑇𝑇,𝑝𝑝) = 𝑉𝑉s0 �1 + 3𝛼𝛼(𝑇𝑇)������(𝑇𝑇 − 𝑇𝑇0)− 1
𝐾𝐾(𝑇𝑇)

(𝑝𝑝 − 𝑝𝑝0)�     (13) 

 
where Vs0 stands for the volume of the sinker at the reference state, specified in its calibration 
certificate; 𝛼𝛼(𝑇𝑇)������ is the average linear thermal expansion coefficient; K(T) is the compressibility 
modulus, which is more frequently expressed as function of the Young’s modulus, E, and 
Poisson’s ratio, ν, as K(T) = 3[1 - 2ν(T)]/E(T); and T0 and p0 are the reference state temperature 
and pressure. The expression for the dependence of the thermal expansion coefficient with 
temperature has been obtained from [25] for the titanium sinker and from [26,27] for the silicon 
sinker. The corresponding expressions for dependence of the mechanical properties with the 
temperature have been obtained from [28]. Note that, as the silicon is an anisotropic material, the 
average of the elastic constants for each crystalline direction have been considered. 
A high-precision analytical balance (Mettler Toledo XPE205DR, Mettler Toledo GmbH, Gießen, 
Germany, normal weighing range: 81 g, readability: 0.01 mg). measures the buoyancy force on 
the sinker through the magnetic coupling system. The load compensation system is formed by 
two calibrated masses, one of them made out of tantalum and the other titanium. The calibrated 
compensation masses have approximately the same volume (4.9 cm3) and the difference in weight 
between both of them is similar to the sinker mass (approx. 60 g for the ‘old’ titanium sinker and 
62 g for the ‘new’ silicon sinker). The two masses were provided by Rubotherm GmbH, Bochum, 
Germany. Their masses and volumes were calibrated at the Spanish National Metrology Institute 
(Centro Español de Metrología, CEM). The mass, volume and density of the two calibrated 
masses of the load compensation system (tantalum and titanium) are presented in Table 1. 
The temperature is set by an outer double-walled stainless-steel cylinder, through which the fluid 
from a Julabo FP50 thermal bath circulates, and an inner electrical heating cylinder made of 
copper, directly in contact with the measuring cell and powered by an electronic Julabo MC-E 
controller. Two platinum resistance thermometers (S1059PJ5X6, Minco Products, Inc., 
Minneapolis MN, USA) located one opposite the other in the middle section of the measuring cell 
and plugged into an AC comparator resistance bridge (F700, Automatic Systems Laboratories, 
Redhill, England) measure the temperature of the gas inside the cell. The probes have been 
calibrated on the ITS-90 scale [29]. Two pressure transducers, a Paroscientific 2500A-101 (0 to 
3 MPa) and a Paroscientific 43KR-HHT-101 (Paroscientific Inc., Redmond WA, USA), for 
pressures up to 20 MPa, measure the gas pressure. These pressure transducers are frequently 
calibrated against a dead weight pneumatic pressure balance and load masses with traceability to 
international standards. 
 

4. Results 

 



4.1. Determination of the apparatus-specific constant using the single-sinker method 

with two sinkers of different density 

The apparatus-specific constant, ερ, can be estimated by measuring the density of a fluid of known 
magnetic susceptibility, χs, at the same T and p, using, at different times, the same SSMSD with 
two different sinkers of distinct density [3]. Following this method, density measurements of 
nitrogen performed with the original setup of the SSMSD at the UVa (with the ‘old’ titanium 
sinker) and with the current configuration of the SSMSD (with the ‘new’ monocrystalline silicon 
sinker) can be used. It must be noted that the original objective of those measurements was not to 
determine the apparatus-specific constant, but simply to check the performance of the SSMSD 
with a reference fluid. 
For this purpose, equation (11) can be used twice, with the results of the measurements of nitrogen 
performed with the SSMSD with the two different sinkers, to evaluate the relative deviation in 
the density of pure nitrogen due to the fluid-specific effect in both cases: 
 
𝛥𝛥𝜌𝜌fse,1
𝜌𝜌fluid,1

= 𝜀𝜀ρ
𝜒𝜒s
𝜒𝜒s0

�𝜌𝜌fluid,1
𝜌𝜌0

− 𝜌𝜌s,1
𝜌𝜌0
�        (14) 

𝛥𝛥𝜌𝜌fse,2
𝜌𝜌fluid,2

= 𝜀𝜀ρ
𝜒𝜒s
𝜒𝜒s0

�𝜌𝜌fluid,2
𝜌𝜌0

− 𝜌𝜌s,2
𝜌𝜌0
�        (15) 

 
where ρfluid,1 and ρfluid,2 are the experimental density given by the densimeter with the sinker 1 and 
the sinker 2, respectively. ρs,1 and ρs,2 are the densities of the ‘old’ titanium sinker (sinker 1) and 
the ‘new’ silicon sinker (sinker 2), indicated in Table 1. 
If measurements are done at nearly the same T and p (ρfluid,1 ≈ ρfluid,2), the value of ερ can be 
obtained from equations (14) and (15), by subtracting one from the other: 
 

𝜀𝜀ρ = 𝜒𝜒s0
𝜒𝜒s
� 𝜌𝜌0
𝜌𝜌s,2−𝜌𝜌s,1

� �𝛥𝛥𝜌𝜌fse,1−𝛥𝛥𝜌𝜌fse,2
𝜌𝜌fluid

�       (16a) 

 
If the measurements with the sinker 1 and the sinker 2 are made at different conditions, the values 
of pressure and temperature may be slightly different for each measurement (more so in this case, 
as the measurements were not made for the purpose of being compared in mind). This can be 
solved by comparing the experimental results with an appropriate equation of state at the 
experimental temperature and pressure and adapting equation (16a) to this modification, as shown 
below: 
 
𝛥𝛥𝜌𝜌fse,1−𝛥𝛥𝜌𝜌fse,2

𝜌𝜌fluid
=

𝜌𝜌1,Φ=Φ0−𝜌𝜌EoS(𝑇𝑇1,𝑝𝑝1)
𝜌𝜌EoS(𝑇𝑇1,𝑝𝑝1) −

𝜌𝜌2,Φ=Φ0−𝜌𝜌EoS(𝑇𝑇2,𝑝𝑝2)
𝜌𝜌EoS(𝑇𝑇2,𝑝𝑝2)      (16b) 

 
where the subscripts 1 and 2 stand for the measurements with the sinker 1 or 2, respectively, and 
ρEoS is the estimated density from the equation of state for nitrogen of Span et al [30]. 
Nitrogen is a diamagnetic fluid with a molar magnetic susceptibility of χM = -0.151·10-9 m3·mol-

1 at T = 293.15 K [24,31]. Taking MN2 = 28.01348 g·mol-1 as the molar mass of nitrogen, this 
gives a specific magnetic susceptibility of nitrogen of χs = 5.39·10-9 m3·kg-1. The temperature and 
pressure dependence of χs for diamagnetic fluids is negligible [22]. 
Therefore, selected nitrogen density data measured with the old titanium sinker were compared 
with the density data of pure nitrogen measured with the new silicon sinker. The quality factors 
of the used nitrogen are summarized in Table 2. Table 3 gives the (p, ρ, T) values of the two sets 
of density measuring points used for the estimation of ερ. The values of ερ calculated with 



equations (16a and 16b) for each pair of measuring points are also presented in Table 3 and plotted 
versus density in Figure 2. 
As it can be observed, the scatter of the ερ values is significantly high at low densities and is 
reduced at high densities. Values of the apparatus specific constant yielded an average value of ερ 
= 4.6·10-5, but showed a significant scattering. It must be noted that the value of the apparatus-
specific constant following this single-sinker method with two sinkers of different density has 
been evaluated with very few density data, and not specifically obtained for this purpose. The 
obtained value is not very reliable, as a very small variation in the density data, even within the 
small experimental uncertainty of the equipment, yields important changes in the value of ερ.  
Using the obtained value of ερ, the value of density for pure nitrogen, corrected for the fluid-
specific effect, can be obtained through equation (12). The correction due to the fluid-specific 
effect will be very small as the magnetic susceptibility of nitrogen is very small, and results in a 
correction of less than 0.01 % in density, for a nominal value of ρ = 300 kg·m-3. 
 

4.2. Determination of the apparatus-specific constant by density measurements on pure 

oxygen 

McLinden et al. [3] stated that the apparatus specific constant, ερ, may also be evaluated by 
measuring the density of pure oxygen at near ambient conditions (T = 293.15 K and p = 0.1 MPa). 
This method, simpler than the single-sinker method with two sinkers of different density, will 
give an acceptable approximation of the apparatus-specific constant. If the densimeter allows the 
measurement of pure oxygen at higher pressures and different temperatures (considering material 
compatibility with oxygen and important safety related issues) it will provide more accurate 
results. 
Equation (11) could then be used to obtain ερ: 
 

𝜀𝜀ρ = 𝜙𝜙0 �
𝜌𝜌Φ=Φ0−𝜌𝜌EoS

𝜌𝜌EoS
� � 𝜒𝜒s

𝜒𝜒s0
�𝜌𝜌EoS
𝜌𝜌0

− 𝜌𝜌s
𝜌𝜌0
���        (17) 

 
where 𝜌𝜌Φ=Φ0 is the density given by the densimeter, corrected for the apparatus-specific effect 
but not for the fluid-specific effect, and ρEoS is the density given by a reference equation of state 
at the experimental temperature and pressure. 
The multiparameter equation of state for non- and weakly polar fluids, particularized for oxygen, 
proposed by Span and Wagner [32] has been used as the reference equation of state for oxygen. 
The molar magnetic susceptibility of molecular oxygen at the reference state, T = 293.15 K and 
p = 0 MPa, is taken as χM00 = (42.92 ± 0.06)·10-9 m3·mol-1, value measured by May et al. [33], 
and in close accordance with the ab initio calculation of Minaev et al. [34]. Taking MO2 = 31.9988 
g·mol-1 as the molar mass of oxygen, this gives a specific magnetic susceptibility of oxygen at the 
reference state of χ00 = 1.34130·10-6 m3·kg-1. This value is 250 times larger than the absolute value 
of the specific magnetic susceptibility of nitrogen. The dependence of the magnetic susceptibility 
of strong paramagnetic fluids, as oxygen, with temperature should not be neglected [33]. The 
Curie Law, which states that the magnetic susceptibility is proportional to 1/T, has been used to 
account for this temperature dependence: 
 

𝜒𝜒s = 𝜒𝜒00
293.15 𝐾𝐾

𝑇𝑇
         (18a) 

 
Even when the magnetic susceptibility of pure oxygen may also have a weak dependence with 
density, decreasing the magnetic susceptibility with increasing density, this effect is quite small 
[33] and has not been considered initially. 



Therefore, density measurements on pure oxygen were performed with the SSMSD at the UVa at 
(250, 273.15, 293.15, 325, 350, and 375) K and pressures up to 6 MPa. The measurement of 
oxygen at high pressures required a thorough review of material compatibility for our SSMSD 
[35] and other safety related issues [36]. The quality parameters of the pure oxygen are 
summarized in Table 2. Measurements were performed along each isotherm starting from the 
higher pressure, and decreasing pressure by 1 MPa steps to the lower pressure. Thirty points were 
measured for each temperature and pressure to make sure equilibrium had been reached, and the 
mean value of the last ten measurements was used to estimate ερ. 
The fourth column of Table 4 and the corresponding data shown in Figure 3 show the relative 
deviations of the obtained values of density of oxygen corrected for the apparatus-specific effect 
but not for the fluid-specific effect, 𝜌𝜌Φ=Φ0, from the density given by the reference equation of 
state for oxygen by Span and Wagner [32], ρEoS. It can be seen that the deviations range from 2.1 
% for the density data at 375 K to 3.1 % for the density data at 250 K. There is an appreciable 
dependence on temperature, with the deviations being larger at lower temperatures and decreasing 
with increasing temperatures. The dependence of the deviations with pressure is less significant. 
The ninth column of Table 4 and Figure 4 show the values obtained for ερ, by using equation (17). 
It can be seen that the values of ερ ranges from 8.4·10-5 (for T = 250 K, p = 5.7 MPa, and ρ = 91.8 
kg·m-3) to 9.2·10-5 (for T = 350 K, p = 1.0 MPa, and ρ = 10.7 kg·m-3). The obtained values of ερ 
increase with temperature and decrease with density. The excellent repeatability of ερ for each 
temperature and pressure can also be seen in Figure 4, where the last ten values of ερ for each 
temperature and pressure have been represented in the graph and not only its mean value, which 
is reflected in Table 4. It can be seen that the last ten measurements for each single (T, p) point 
show a very little scatter, although it increases slightly as the density decreases. 
The values of ερ were adjusted to a linear equation as a function of T and ρ separately. The 
resulting equation for ερ, as a function of temperature and density, is: 
 
𝜀𝜀ρ(𝑇𝑇, 𝜌𝜌) = 8.822 · 10−5 + 4.698 · 10−8 · (𝑇𝑇 𝐾𝐾� − 293.15) − 3.015 · 10−8 · 𝜌𝜌 (𝑘𝑘𝑘𝑘 · 𝑚𝑚−3)�  

           (19a) 
 
The residuals between the experimental values of ερ and the values given by equation (19a) are 
presented graphically in Figure 5. The adjustment of equation (19a) to the experimental data is 
very good, with a root-mean-square deviation, expressed as a percentage, of less than 0.44 % 
(4.01·10-7). 
Using the value of ερ given by equation (19a), the value of density for pure oxygen, corrected for 
the fluid-specific effect, can be obtained through equation (12). The sixth column of Table 4 and 
Figure 6 show the relative deviations of the obtained values of density of oxygen corrected for 
the apparatus-specific effect and for the fluid-specific effect, ρfluid, from the density given by the 
reference equation of state for oxygen by Span and Wagner [32], ρEoS. It can be seen that all the 
experimental density data are located within the claimed uncertainty of the equation of state (0.2 
%). The average absolute deviation (AAD) of the experimental data with respect to this equation 
of state is 0.009 %, with a maximum deviation of 0.012 %, as shown in Table 5. 
Comparison of the experimental density results were also made with the reference equation of 
state for oxygen by Schmidt and Wagner [37], which has a lower uncertainty. The results are 
presented in the seventh column of Table 4 and in Figure 7. It can be seen that all the experimental 
density data lay within the stated uncertainty of the equation of state (0.1 %). The average absolute 
deviation (AAD) of the experimental data with respect this equation of state is 0.023 %, with a 
maximum deviation of 0.026 %. 
The results of the statistical analysis of the comparison of the experimental density data against 
these two reference equations of state for oxygen are presented in Table 5. 



In the case that the slight dependence of the magnetic susceptibility of pure oxygen with the 
density is also considered, as indicated in [33], and not only the dependence with temperature, 
equation (18a) should be rewritten as:  

𝜒𝜒s = 1
𝑀𝑀
�

𝑁𝑁𝐴𝐴𝜇𝜇0�𝛼𝛼𝑚𝑚+
𝜇𝜇𝑚𝑚2

3𝑘𝑘𝐵𝐵𝑇𝑇
� ��1+𝑏𝑏𝜇𝜇𝜌𝜌�

1−𝜌𝜌𝑁𝑁𝐴𝐴𝜇𝜇03 �𝛼𝛼𝑚𝑚+
𝜇𝜇𝑚𝑚2

3𝑘𝑘𝐵𝐵𝑇𝑇
� ��1+𝑏𝑏𝜇𝜇𝜌𝜌�

�       (18b) 

 
where NA stands for the Avogadro’s constant, μ0 = 4π·10-7 N·A-2, αm stands for the molecular 
magnetizability, μm stands for the molecule’s magnetic dipole moment, kB stands for the 
Boltzmann constant, and bμ stands for the second magnetic virial coefficient. For oxygen, the 
recommended values are: NAμ0αm = -0.13·10-9 m3·mol-1, μm = 2.6282·10-23 N·m·T-1, and bμ = -1.8 
± 0.5 cm3·mol-1 [33]. 
With this magnitude for the magnetic susceptibility, the value obtained for ερ from the 
experimental densities of oxygen, by using equation (17), will be slightly different to equation 
(19a): 
 
𝜀𝜀ρ(𝑇𝑇, 𝜌𝜌) = 8.822 · 10−5 + 4.801 · 10−8 · (𝑇𝑇 𝐾𝐾� − 293.15) − 2.522 · 10−8 · 𝜌𝜌 (𝑘𝑘𝑘𝑘 · 𝑚𝑚−3)�  

           (19b) 
 
As it can be seen in equation (19b), even when the dependence of the magnetic susceptibility with 
density is considered, there is still an appreciable dependence of the value of ερ with density. 
Comparing equation (19b) to equation (19a) the coefficient for ρ decreases only by 16 %, from 
3.015·10-8 to 2.522·10-8, being the coefficient for T and the independent term of the equation 
practically the same in both equations. 
Using the value of ερ given by equation (19b), the value of density for pure oxygen, corrected for 
the fluid-specific effect, can also be obtained through equation (12), but in this case, the value for 
the magnetic susceptibility, corrected for temperature and density (equation 18b), should be used. 
Obviously, the results are exactly the same as when equation 12 is used with the values of ερ given 
by equation (19a) and the magnetic susceptibilities given by equation (18a). 
 

4.3. Estimation of the uncertainty of the apparatus-specific constant and its influence on 

the uncertainty of density. 

 
The uncertainty of each single value of ερ obtained for a selected temperature and pressure from 
density measurements on pure oxygen can be obtained by applying the law of propagation of 
uncertainty [38] to equation (17). For this purpose, the contributions from the uncertainty of the 
experimental density, corrected for the apparatus-specific effect but not for the fluid-specific 
effect, U(ρΦ=Φ0), the uncertainty of the reference EoS from Span and Wagner, U(ρEoS), the 
uncertainty of the specific magnetic susceptibility of O2, U(χs), and the uncertainty of the density 
of the silicon sinker, U(ρs), must be considered. 
The uncertainty of the experimental density, corrected for the apparatus-specific effect but not for 
the fluid-specific effect, U(ρΦ=Φ0), is given by the expression U(ρΦ=Φ0)/kg·m-3= 1.1·10-4·ρ/kg·m-

3+2.3·10-2, as it was explained in detail in [9]. The uncertainty in density of the reference EoS 
from Span and Wagner [32], U(ρEoS), is less than 0.2 %. The uncertainty of the specific magnetic 
susceptibility of O2, U(χs), is obtained from [33] and accounts to up to 0.14 %. Finally, the 
uncertainty of the density of the silicon sinker, U(ρs), is of 0.014 %, as indicated by its calibration 
certificate from the Spanish National Metrology Institute, CEM. 



From these values, the estimated relative expanded uncertainty (k = 2) of ερ amounts to 4 % for 
higher densities, but increases up to 20 % for lower densities. Under the assumption of normal 
probability density functions, the relative uncertainty of the extrapolated values to zero density of 
ερ have been computed by the Monte Carlo method [39] from a linear regression as function of ρ, 
with an average result of 0.97 %. 
The uncertainty of the experimental densities of oxygen, corrected by both the apparatus-specific 
and the fluid-specific FTE effects, U(ρfluid), is straightforward evaluated from the application of 
the law of propagation of uncertainty to equation (12). The relative expanded (k = 2) uncertainty 
of the density increases from 0.08 % at high densities (for ρ > 95 kg·m-3), up to 0.43 % for low 
densities (for ρ ≈ 10 kg·m-3). The estimated relative uncertainty for the 293.15 K isotherm is 
depicted graphically with error bars in Figures 6 and 7. The uncertainty of the experimental 
density, U(ρ), considering the effect of the uncertainty of ερ, can be given, as an approximation, 
by the expression: 
 
U(ρ)/kg·m-3= 2.5·104·χs/m3·kg-1 + 1.1·10-4·ρ/kg·m-3 + 2.3·10-2    (20) 
 

5. Discussion 

The scatter of the ερ values obtained from nitrogen density measurements by using the single-
sinker method with two sinkers of different density is significantly high, mainly at low densities. 
Small variations in the density data, even within the experimental uncertainty of the equipment, 
results in significant changes in the value of ερ, giving even negative values for ερ, as can be seen 
in Figure 2, which has no physical meaning. The mean value obtained for ερ by using the single-
sinker method with two sinkers of different density is 4.6·10-5, but this value is very unreliable, 
as it has been calculated with very few nitrogen density data, not specifically obtained for this 
purpose. In order to obtain a better result for ερ following this single-sinker method with two 
sinkers of different density, more density data should be used, preferably with fluids with a higher 
magnetic susceptibility, higher density and with two sinkers with a bigger difference in density 
(both with respect each other and with respect the density of the fluid measured), as can be 
deducted from the main influence parameters in equation (16a). For example, this may be 
achieved using a diamagnetic gas of higher susceptibility, as methane (χs/ χs0 = -1.36), or even 
better synthetic air (χs/ χs0 = 30.07), and two sinkers, one of silicon and the other of tantalum 
instead of titanium (ρTa ≈7.2ρSi), which would lead to a contribution of the fluid-specific effect 
about 0.21 % according to equation (11) (or about -5.1 % in case of synthetic air), rather than the 
0.01 % contribution when using the silicon and titanium sinkers (ρTi ≈ 1.9ρSi) and nitrogen (χs/ χs0 
= -0.54). In this way, the effect would be above the achievable relative uncertainties of density 
measurements of methane not worse than 0.03 %, and the single-sinker method with two sinkers 
of different density may be appropriate, thus, yielding more accurate results of ερ. The apparatus-
specific constant is unique for each SSMSD and should be recalculated when a major 
modification of the equipment is performed [3,4,40]. This is an inherent limitation of the single-
sinker method with two sinkers of different density: the apparatus-specific constant should be 
slightly different for the same SSMSD with two different sinkers, and this method provides only 
one single value. The value obtained by the single-sinker method with two sinkers of different 
density is, therefore, a mean value of two slightly different ερ, one for the SSMSD with each 
different sinker. 
The value for ερ obtained by measuring the density of pure oxygen has a weak, but appreciable, 
dependence on temperature and density. The value of ερ ranges from 8.4·10-5 (for T = 250 K, p = 
5.7 MPa, and ρ = 91.8 kg·m-3) to 9.2·10-5 (for T = 350 K, p = 1.0 MPa, and ρ = 10.7 kg·m-3). The 
value of ερ as a function of T and ρ, can be obtained from equation (19). This dependence of ερ 
with T and ρ can be explained because the geometry of the magnetic coupling changes with 
temperature and density. The influence of the temperature in the fluid-specific effect of the FTE 
is equivalent to the influence detected in the apparatus-specific effect, Φ0, recorded in the 



literature [3,4,40]. This effect of temperature in the value of ερ, due to the change in the geometry 
of the magnetic coupling, is avoided by some authors [6] by changing the measurement procedure, 
making the magnetic coupling always work at the same distance between electromagnet and 
permanent magnet. But also, the magnetic susceptibility of the measuring cell changes with the 
temperature. Although the housing or our equipment is made of a diamagnetic alloy of CuCrZr, 
the presence of other paramagnetic parts or even undesirable impurities of ferromagnetic particles 
in the surroundings of the magnetic coupling may shift the overall magnetic behavior from 
diamagnetic to paramagnetic. This is our case, as it is reflected from the (Φ0-1) values obtained 
when measuring in vacuum, with a strong temperature dependence, with results changing from 
negative to positive values, ranging from -13.2·10-6 at T = 250 K, up to 2.8·10-6 at T = 375 K. 
The value of ερ obtained in this work by this second method is double the value obtained by the 
first method. However, the mean value obtained for ερ with the first method, if the negative values 
of ερ (which have no physical meaning) and the outliers (two of the experimental ερ are beyond 
the 75 % quartile) are eliminated, is of 8.4·10-5,and this value is close to the value given by the 
second method. Anyway, this value is of no significance, as it is obtained from only 12 
experimental densities of nitrogen measured with two different sinkers. Additionally, with so few 
pairs of experimental density data, the first method is unable to detect any dependence of ερ with 
temperature. Even when McLinden [3] states that the second method will give only an 
approximation of the fluid-specific effect correction, in our case this second method has proven 
to be more precise. This is mainly because we have measured the density of pure oxygen not only 
at a single point, near ambient conditions (T = 293.15 K and p = 0.1 MPa), but over a wide range 
of temperatures and pressures. 
For all these reasons, we will take the value of ερ obtained by the second method as the reference 
value for the corrections due to the fluid-specific effect on the FTE for the SSMSD at UVa. This 
value is of the same order of magnitude as the values of ερ given by several authors for similar 
SSMSD’s. ερ  = 18.9·10-5 for the densimeter at Texas A&M University in Texas, USA [40], ερ = 
3.6·10-5 and ερ = 4.4·10-5 (before and after an important modification of the magnetic suspension 
coupling) for the SSMSD at the Ruhr- Universität in Bochum, Germany [3]. 
 

6. Conclusions 

Two different approaches were used to estimate the apparatus-specific constant, ερ. of the fluid-
specific term of the force transmission error of the magnetic-suspension coupling of the single-
sinker magnetic suspension densimeter at the University of Valladolid. The numerical results 
obtained are specific for the SSMSD at UVa, but, from a qualitative point of view, the conclusions 
obtained in this work are valid for other SSMSD and other scientific equipment using a magnetic-
suspension coupling. 
The mean value obtained for ερ by using a single-sinker method with two sinkers of different 
density is 4.6·10-5, but this value has a large uncertainty, as it was calculated with very few 
nitrogen density data, not specifically obtained for this purpose. The value for ερ obtained by 
measuring the density of pure oxygen has a weak, but appreciable, dependence on temperature 
and density. The value of ερ as a function of T and ρ, can be obtained from equation (19). The 
value of ερ obtained by this second method is double the value obtained with the first method. 
Nevertheless, both values are compatible, given the large uncertainty of the value obtained by the 
first method. For these reasons, the value of ερ obtained by the second method should be 
considered as more reliable. 
The correction due to the fluid-specific effect will be very small when measuring densities of 
diamagnetic fluids (very low magnetic susceptibility) and when using sinkers of density close to 
the density of the fluid (low density sinkers), as can be deducted from equation (11). In the case 
of the SSMSD at UVa, with the new silicon sinker (with a relatively low density), the correction 
due to the fluid-specific effect result in a correction of less than 0.01 % in density, for a nominal 
value of ρ = 300 kg·m-3, for a nitrogen sample, or for any other gas sample of diamagnetic fluids. 



Therefore, the omission of the fluid specific effect correction for mixtures of diamagnetic fluids 
is acceptable if maximum accuracy is not required. 
When measuring mixtures with high oxygen content, which will imply a high magnetic 
susceptibility of the mixture, namely up to two orders of magnitude larger than diamagnetic fluids, 
the correction due to the fluid-specific effect should be considered, even with SSMSD with low-
density sinkers installed. 
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Figures 
 

 
Figure 1. Schematic diagram of the single-sinker magnetic suspension densimeter, SSMSD: (a) 

Zero Point, and (b) Measuring Point. 

  



 

Figure 2. Apparatus-specific constant, ερ, calculated from pairs of nitrogen densities measured at 

nearly the same temperature and pressure conditions with the old titanium sinker (sinker 1) and 

the new silicon sinker (sinker 2), at four different nominal temperatures:  250 K,  275 K,  

300 K,  400 K. 
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Figure 3. Relative deviations, 100·(ρΦ=Φ0 - ρEoS)/ρEoS, of the experimental values of density of 

oxygen corrected solely for the apparatus-specific effect (but not for the fluid-specific effect), 

ρΦ=Φ0, from the density given by the reference equation of state for oxygen by Span and Wagner 

[32], ρEoS, as a function of pressure for different temperatures:  250 K,  273.15 K,  293.15 

K,  325 K,  350 K,  375 K. Dashed lines indicate the expanded (k = 2) uncertainty of the 

Span and Wagner EoS of 0.2 %.  
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Figure 4. Values obtained for the apparatus-specific constant, ερ, by using equation (17) at 

different temperatures and pressures as a function of the experimental density:  250 K,  

273.15 K,  293.15 K,  325 K,  350 K,  375 K. 
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Figure 5. Residual analysis (ερ,exp - ερ,fit)/ερ,exp as a function of density of the measured ερ,exp and 

the values fitted ερ,fit by equation (19a):  250 K,  273.15 K,  293.15 K,  325 K,  350 K, 

 375 K. 
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Figure 6. Relative deviations, (ρfluid – ρEoS)/ρEoS, of the experimental values of density of oxygen 

corrected for both the apparatus-specific effect and the fluid-specific effect, ρfluid, from the density 

given by the reference equation of state for oxygen by Span and Wagner [32], ρEoS, as a function 

of pressure for different temperatures:  250 K,  273.15 K,  293.15 K,  325 K,  350 K, 

 375 K. Dashed lines indicate the expanded (k = 2) uncertainty of the Span and Wagner EoS of 

0.2 %. Error bars (only given for the experimental densities at 293.15 K) indicate the expanded 

(k = 2) uncertainty of the experimental density. 
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Figure 7. Comparison of the experimental density results of oxygen corrected for both the 

apparatus-specific effect and the fluid-specific effect, ρfluid, with the reference equation of state 

for oxygen by Schmidt and Wagner [37], ρEoS, as a function of pressure for different temperatures: 

 250 K,  273.15 K,  293.15 K,  325 K,  350 K,  375 K. Dashed lines indicate the 

expanded (k = 2) uncertainty of the Schmidt and Wagner EoS of 0.1 %. Error bars for the 293.15 

K isotherm indicate the expanded (k = 2) uncertainty of the experimental density. 
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Tables 

Table 1. Specifications of the two load compensation masses and the two different sinkers of the 

SSMSD at the University of Valladolid (UVa). 

 Massa / g Volumeb,d / cm3 Densityc,d / kg·m-3 

Tantalum mass (load 
compensation system) 82.0883 4.9240 16670.9 

Titanium mass (load 
compensation system) 22.39968 4.9706 4506.5 

‘Old’ titanium sinker 
(sinker 1) 59.68962 13.2648 4506.5 

‘New’ silicon sinker 
(sinker 2) 61.59181 26.4440 2329.12 

a 106 U(m)/m = 2.0 

b 106 U(V0)/V0 = 100 

c 106 U(ρ0)/ρ0 = 140 

d At ambient conditions of tair = 20.8 ºC, twater = 19.965 ºC, p = 947.19 mbar, and Relative 

Humidity = 53.1 % 

  



Table 2. Purity, supplier, molar mass, and critical parameters for the pure gases used in this work. 

 Purity / 
mol-% Supplier M / g·mol-1 

Critical parametersa 

Tc / K Pc / MPa 

Nitrogen 99.9999 Air Liquide 28.0135 126.19 3.3958 

Oxygen 99.9999 Linde 31.9988 154.58 5.043 
a Critical parameters were retrieved for each substance from RefProp software [23] 

  



Table 3. Nitrogen (p, ρ, T) values of the measuring points compared to the density given by the 

reference equation of state for nitrogen by Span et al [30]. The subscripts 1 and 2 stands for the 

measures with sinker 1 (‘old’ titanium sinker) or 2 (‘new’ silicon sinker), respectively. Values of 

ερ calculated with equation (16) for each pair of measuring points. 

T1 / Ka p1 / MPaa ρ1,Φ=Φ0 / 
kg·m-3 

106 (ρ1,Φ=Φ0 
- ρSpan)/ρSpan T2 / Ka p2 / MPaa ρ2,Φ=Φ0 / 

kg·m-3 
106 (ρ2,Φ=Φ0 - 
ρSpan)/ρSpan 106 ερ 

249.959 2.00764 27.462 -29 250.009 1.98590 27.153 -90 52.4 

249.999 2.00864 27.471 -27 250.072 2.00410 27.401 36 -54.1 

249.999 4.99450 69.469 42 250.018 4.66921 64.839 0 35.9 

249.958 10.07050 141.612 -6 250.009 9.99092 140.447 -75 59.2 

249.960 15.27000 211.588 29 249.976 16.00491 220.862 53 -20.6 

249.961 19.85710 266.561 10 250.016 20.30953 271.503 6 3.4 

274.967 2.01164 24.837 -13 274.983 1.97856 24.414 -463 385.1 

274.966 10.06630 125.016 -20 274.988 10.04522 124.741 -65 38.9 

274.968 19.87500 235.358 15 274.994 20.00972 236.689 13 1.8 

299.975 2.45700 27.684 34 299.929 1.96301 22.115 159 -106.8 

299.970 4.92558 55.515 9 299.980 3.99811 45.063 -143 129.9 

299.971 10.97430 122.253 27 299.986 9.99571 111.695 92 -55.0 

299.972 10.97440 122.253 21 299.962 10.82772 120.696 132 -94.9 

299.971 13.85470 152.560 -29 299.952 13.98960 153.961 -24 -3.6 

299.973 13.85490 152.561 -27 299.968 14.00345 154.120 150 -151.5 

299.973 16.78010 181.982 -12 299.862 16.01318 174.493 -7 -4.0 

299.982 16.78760 182.050 -2 299.990 15.99464 174.243 136 -118.1 

399.996 2.40843 20.140 -92 400.001 1.99339 16.693 51 -122.3 

399.996 4.80372 39.843 15 399.981 3.99731 33.232 -587 515.0 

399.997 7.43540 61.038 -32 400.026 7.94218 65.042 -242 179.7 

399.997 10.10050 81.966 19 399.982 9.99378 81.132 -120 118.3 

399.994 10.10070 81.970 37 400.026 9.93710 80.677 -187 192.2 



399.988 14.80710 117.441 51 400.028 13.98416 111.374 71 -17.5 

399.990 17.24960 135.043 37 400.028 17.71045 138.267 -109 124.4 

399.996 19.95270 153.853 3 399.980 19.43794 150.330 4 -0.2 

399.998 19.95890 153.899 33 400.028 19.93398 153.699 -85 100.9 

a Expanded uncertainties (k = 2): U(T) = 4 mK; 𝑈𝑈(𝑝𝑝 > 3)/MPa = 75 · 10−6 · 𝑝𝑝
MPa

+ 3.5 · 10−3; 

𝑈𝑈(𝑝𝑝 < 3)/MPa = 60 · 10−6 · 𝑝𝑝
MPa

+ 1.7 · 10−3. 

 



Table 4. Percentage relative deviations of the experimental values of density of oxygen corrected 

only for the apparatus-specific effect (but not for the fluid-specific effect), ρΦ=Φ0, and for both 

effects, ρfluid, from the density given by the reference equation of state for oxygen by Span and 

Wagner, ρSpan, and the equation of state for oxygen by Schmidt and Wagner, ρSchmidt. Values of ερ 

obtained by using equation (17). 

T / Ka p / MPaa ρΦ=Φ0 / 
kg·m-3 

102 (ρΦ=Φ0 - 
ρSpan)/ρSpan 

ρfluid / 
kg·m-3 

102 (ρfluid - 
ρSpan)/ρSpan 

102 (ρfluid - 
ρSchmidt)/ρSchmidt 

102 U(ρexp)/ρexp 106 ερ 

250.010 5.691 91.776 -2.949 94.547 -0.019 -0.002 0.083 83.9 

250.008 5.002 79.949 -2.973 82.387 -0.014 0.011 0.092 84.1 

250.009 4.001 63.100 -3.010 65.052 -0.009 0.025 0.111 84.5 

250.010 3.001 46.675 -3.044 48.139 -0.003 0.035 0.143 84.8 

250.009 2.000 30.677 -3.077 31.652 0.004 0.040 0.207 85.1 

250.009 0.999 15.105 -3.129 15.591 -0.009 0.014 0.398 86.0 

273.143 5.868 84.758 -2.738 87.139 -0.005 0.005 0.080 84.8 

273.143 4.999 71.684 -2.764 73.721 -0.002 0.019 0.092 85.1 

273.142 3.999 56.845 -2.795 58.480 0.001 0.032 0.111 85.5 

273.142 2.999 42.246 -2.822 43.476 0.007 0.043 0.144 85.8 

273.140 2.000 27.904 -2.852 28.726 0.011 0.044 0.208 86.1 

273.141 0.999 13.801 -2.890 14.213 0.004 0.026 0.403 86.7 

293.077 5.524 73.159 -2.598 75.111 0.001 0.014 0.085 85.9 

293.079 5.000 66.024 -2.612 67.797 0.002 0.021 0.092 86.1 

293.077 4.001 52.515 -2.640 53.941 0.003 0.032 0.112 86.5 

293.077 3.000 39.126 -2.666 40.200 0.006 0.039 0.145 86.8 

293.080 1.998 25.892 -2.693 26.610 0.007 0.038 0.211 87.1 

293.078 0.998 12.845 -2.720 13.206 0.009 0.028 0.408 87.5 

324.943 6.055 71.409 -2.383 73.156 0.005 0.010 0.079 87.3 

324.944 4.999 58.789 -2.410 60.243 0.003 0.019 0.094 87.8 

324.943 3.999 46.881 -2.432 48.051 0.004 0.028 0.114 88.1 



324.943 2.986 34.885 -2.458 35.765 0.001 0.029 0.148 88.5 

324.942 1.999 23.267 -2.482 23.859 0.000 0.026 0.214 89.0 

324.943 0.999 11.577 -2.525 11.874 -0.021 -0.004 0.416 90.0 

349.931 6.122 66.505 -2.256 68.040 0.000 0.003 0.080 88.8 

349.930 5.001 54.252 -2.282 55.520 -0.004 0.009 0.095 89.4 

349.929 3.999 43.315 -2.302 44.336 -0.004 0.017 0.115 89.7 

349.928 2.985 32.270 -2.330 33.040 -0.012 0.012 0.150 90.4 

349.928 1.998 21.561 -2.346 22.079 -0.008 0.014 0.218 90.6 

349.928 0.999 10.745 -2.403 11.010 -0.046 -0.031 0.424 92.2 

374.916 6.145 61.950 -2.145 63.305 -0.004 -0.002 0.081 90.3 

374.917 4.999 50.383 -2.167 51.496 -0.006 0.005 0.096 90.8 

374.918 3.996 40.257 -2.173 41.153 0.005 0.022 0.117 90.6 

374.918 2.980 30.009 -2.188 30.682 0.007 0.027 0.153 90.9 

374.917 1.987 19.994 -2.198 20.447 0.014 0.033 0.223 90.9 

374.918 0.999 10.035 -2.214 10.264 0.016 0.027 0.431 91.1 

a Expanded uncertainties (k = 2): U(T) = 4 mK; 𝑈𝑈(𝑝𝑝 > 3)/MPa = 75 · 10−6 · 𝑝𝑝
MPa

+ 3.5 · 10−3; 

𝑈𝑈(𝑝𝑝 < 3)/MPa = 60 · 10−6 · 𝑝𝑝
MPa

+ 1.7 · 10−3. 

  



Table 5. Statistical analysis of the comparison of the experimental density data for oxygen 

corrected for both the apparatus and the fluid effects against the two reference equations of state. 

AAD = absolute average deviation, Bias = average deviation, RMS = root mean square deviation, 

MaxD = maximum deviation. 

 Span and Wagner [32]  Schmidt and Wagner [37]  

Number of experimental points 36 36 

AAD / % 0.008 0.022 

Bias / % 0.011 0.025 

RMS / % 0.011 0.025 

MaxD / % 0.046 0.044 
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