SIGCSE 20: Proceedings of the 51st ACM Technical Symposium on Computer Science Education, Association

for Computing Machinery, 2020, Pages 643-649 https://doi.org/10.1145/3328778.3366864

What Agile Processes Should We Use in Software Engineering
Course Projects?

An Ju
an_ju@berkeley.edu
EECS, University of California, Berkeley
Berkeley, California, USA

Yannis Dimitriadis
yannis@tel.uva.es
Universidad de Valladolid
Valladolid, Spain

ABSTRACT

While project-based software engineering courses aim to provide
learning opportunities grounded in professional processes, it is not
always possible to replicate every process in classrooms due to
course constraints. Previous studies observed how students react
to various processes and gave retroactive recommendations. In this
study, we instead combine a field study on professional Agile (eX-
treme Programming, XP) teams and an established team process
taxonomy to proactively select team processes to incorporate in a
project-based software engineering course. With collected knowl-
edge from the field study, we choose three XP processes to augment
the design of a mature software engineering project course. We
choose processes that are 1) considered important by professionals,
and 2) complete with respect to coverage of the taxonomy’s main
categories. We then compare the augmented course design with the
original design in a case study. Our results suggest that 1) even with-
out extra resources, adding these new processes does not interfere
with learning opportunities for XP processes previously existing
in the course design; 2) student teams experience similar benefits
from these new processes as professional teams do, and students
appreciate the usefulness and value of the processes. In other words,
our approach allows instructors to make conscious choices of XP
processes that improve student learning outcomes while exposing
students to a more complete set of processes and thus preparing
them better for professional careers. Course designers with limited
resources are encouraged to use our methodology to evaluate and
improve the designs of their own project-based courses.

KEYWORDS

software engineering; Agile; project-based learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6793-6/20/03...$15.00
https://doi.org/10.1145/3328778.3366864

Adnan Hemani
adnan.h@berkeley.edu
EECS, University of California, Berkeley
Berkeley, California, USA

Armando Fox
fox@cs.berkeley.edu
EECS, University of California, Berkeley
Berkeley, California, USA

ACM Reference Format:

An Ju, Adnan Hemani, Yannis Dimitriadis, and Armando Fox. 2020. What
Agile Processes Should We Use in Software Engineering Course Projects?. In
The 51st ACM Technical Symposium on Computer Science Education (SIGCSE
’20), March 11-14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3328778.3366864

1 INTRODUCTION

Project-based software engineering courses aim to provide learn-
ing opportunities grounded in practice [23, 29]. They emphasize
processes that are used by professionals to work smoothly and
efficiently in teams [20, 24, 29, 34]. In this study, we focus on the
widely-used Agile software development methodology [10], and
specifically, the eXtreme Programming (XP) method [2].

Ideally, instructors want to teach students all XP processes
that they may use as professionals [11, 29]. However, with lim-
ited resources and various course constraints, instructors must
decide which processes to include and how to adapt them for class-
rooms [4, 11, 21]. The decision should not be arbitrary; in this study,
we choose as our main constraint that the selection of processes
should be complete with respect to a well-established taxon-
omy. And we present a method for instructors to make choices and
adaptations informed by professional processes.

In contrast to “retroactive” methods, which may allow undesired
outcomes, we rely on an established team process taxonomy of
Marks et al. [19], which shows three categories of team processes
essential for any working teams, including software development
teams. We combine the taxonomy with professional processes at a
software company through a field study. By mapping both profes-
sional processes and our current pedagogy into the taxonomy, we
identify areas in our course design that are under-covered. Then,
we augment the course design with XP processes that are important
for professionals and complete for working teams with respect to
the taxonomy’s main categories. With this method, we improve
our course’s completeness without risking undesired outcomes.

Our case study examines two research questions about the aug-
mented course design. First, as both students and instructors have
limited resources, we investigate whether new processes interfere
with learning opportunities for XP processes that are previously
included in the course design. Second, we ask whether the new
processes deliver benefits to the students comparable to those expe-
rienced by professional teams, and whether students recognize the

https://doi.org/10.1145/3328778.3366864
https://doi.org/10.1145/3328778.3366864

usefulness and value of the new processes. As studies have shown,
students may fail to recognize the value of a process if it is im-
properly used in classrooms [3, 11]. Our case study shows positive
results for both questions by comparing self-reported performance
from this case study with the most recent previous offering of the
same course. These results suggest that our method could achieve
desired learning objectives while avoiding undesired outcomes such
as overloaded students.
The contributions of this paper are therefore as follows:

(1) A method for using a team process taxonomy as the basis for
measuring the completeness of process coverage in a software
project course and making informed choice of processes
without experiments;

(2) A field study in an XP software company, allowing us to
choose which processes to incorporate into an existing XP
project course;

(3) Initial results of integrating three selected processes into a
course, suggesting that processes selected with our approach
improve learning outcomes.

The rest of the paper is organized as follows. Section 2 compares
our approach with previous studies and briefly reviews the team
process theory literature. Section 3 describes our field study of a
successful, mature professional organization, explaining how XP
processes map to the taxonomy and allowing us to choose three
processes to fix gaps in our pedagogy. Section 4 describes the results
of incorporating the three processes into the course, validating the
benefits of the augmented course design. Section 5 discusses threats
to validity and future work.

2 RELATED WORK

Several studies and experience reports have shown that the aca-
demic environment has constraints that prevent replicating indus-
trial Agile processes in classrooms [3, 5, 9, 30, 36]. For example,
it may be impossible for students to meet at a time other than
scheduled lectures [3]. Thus, instructors should carefully deter-
mine what processes students should follow and make necessary
adaptations [11].

Masood et al. [21] examined course constraints, adaptations that
students made to Agile processes, and effects of those adaptations.
They recommended all Agile processes to students and observed
how students adapted processes due to course constraints. It was
unclear, however, whether and how adaptations made by students
influenced learning outcomes. In contrast, we proactively adapt
processes based on industrial observations and a team process
taxonomy. We believe this method leads to a course design that
has a firm real-world grounding [23] and clear learning benefits
designed by instructors.

Similarly, Goldman et al. presented an experience report about
teaching XP in classrooms [11]. The authors found that adaptations
may be needed because not all XP practices are possible or desirable
in all situations. They made retroactive recommendations based on
their experiences. In contrast, instructors can use our method to
make informed choices and adaptations without experimenting on
real students, thus reducing the risk of undesired outcomes.

We note that that evolving teaching methods with Agile or
XP [28, 35] is out of this paper’s scope. Instead, we examine methods

for teaching Agile/XP. The focus of our study is an approach that
allows instructors to make informed design choices that benefit stu-
dents and emphasize industrial practices. We focus on project-based
learning as this is a widely used and effective teaching method for
software development.

We inform our selection of Agile processes using team process
theories. Moe et al. [25] used a team process theory to observe a
team transitioning to the Scrum methodology [29]. They were able
to connect observed barriers to success with the theory, showing
that team process theories could explain the failure and success of
Agile teams. Similarly, Lindsjern et al. [18] borrowed ideas from
teamwork theories to examine the success factors in Agile software
development. They designed a survey based on a teamwork theory
to measure teamwork quality and team success. Based on the survey
data, they showed that teamwork is a significant predictor of team
performance. The two studies showed that team theories could
provide useful insights and measurements for Agile teams. In this
study, we choose Marks et al’s team process taxonomy [19]. We
recognize that there are other successful team process theories [6,
15, 33], but they do not contradict Marks et al’s taxonomy. Instead,
they present alternative perspectives that confirm and extend the
taxonomy. Thus, this taxonomy can serve our goal of selecting
processes that are complete for working teams, since the format of
taxonomy gives us a straightforward way to define measurements
for completeness.

3 OBSERVE, CLASSIFY, AND CHOOSE XP
PROCESSES

Pivotal! is a US-based company that builds software for clients
using the XP, works with clients to transition their organizations
to XP, and provides services and tools to support XP. The company
has collaborated with other software engineering researchers [32].

We observed 3 Pivotal teams of different maturity levels. Our goal
was to observe processes that teams used in an effective workflow
and classify those processes with a taxonomy. The eventual goal
of doing so was to identify a subset of processes for incorporating
into our XP course according to the following criteria:

o The process is judged important by professionals.
o The process fills a gap in our course design.

3.1 Data collection

We use observations, interviews, and a survey to collect data. Data
is collected between May 2018 and September 2018.

Observations. We conducted observations on 3 teams for about
one week each. The company uses 1-week XP iterations, so ob-
serving a team for one week allows us to observe all the processes
they use during a typical iteration. We also participated in a few
meetings of other teams. In the observations, we started with a
broad interest about workflows and focused on a subset of behav-
iors/meetings that were most relevant to the taxonomy (listed in
Figure 1) as the research proceeded.

Interviews. For data triangulation, we conducted 5 semi-structured
interviews with 4 employees (1 product manager, 3 engineers).

Uhttps://pivotal.io

Category Process Definition Importance
Transition Pre-IPM A meeting prior to an IPM where stories are prepared. 1.8
Process Iteration Planning Meeting (IPM) Create an iteration plan [2, 27, 31]. 2.8
Backlog Creat, prioritize, implement, and accept/reject user stories [2, 31]. 3.0
Action Continuous Integration (CI) Frequent integration of individual’s code into a mainline [2]. 3.4
Process Information Radiator Set up a monitor to track key information [2]. 2.1
Pairing Pair programming applied to coding, managing, and design works [2]. 2.9
Standup Short daily meetings [31]. 24
Test-Driven Development (TDD) Write tests before the production code [2]. 3.2
g;t)e;ei eronal Retrospective Discuss team problems openly at the end of an iteration [27, 31]. 3.5

Figure 1: Categories in the taxonomy, XP processes, explanations, and their importance. We choose IPM, Retrospective, and
Standup (all highlighted in the table) to examine in the case study. Importance of a practice is averaged over survey responses
(0=“Not at all important”, 1=“Slightly important”, 2=“Somewhat important”, 3=“Very important”, 4=“Extremely important”).

Survey. We designed a 12-question survey asking opinions about
the importance of different processes within Pivotal 2. A contact
within Pivotal distributed the survey internally to all developers
via an email list. We received N = 18 responses.

3.2 Analysis: Transition, Action, Interpersonal
Processes

Marks et al’s taxonomy of team processes [19] is developed from
studies on general teams, and distinguishes transition, action, and
interpersonal processes, among others:

e Transition processes are ones in which “teams focus primar-
ily on evaluation and/or planning activities to guide their
accomplishment of a team goal or objective”

e Action processes are “periods of time when teams conduct
activities leading directly to goal accomplishment”

e Interpersonal processes “typically lay the foundation for the
effectiveness of other processes.”

We use a closed coding method to explain our observations, with
codes derived from the taxonomy. Observation notes, interview
notes, and transcripts are coded line-by-line. One researcher coded
the data alone. Figure 1 lists all the processes we observed and
which of the three categories they fall into. Processes with names
in bold are the ones we decided to incorporate into our course,
and which we describe in more detail in the rest of this section.

IPM is a transition process. An Iteration Planning Meeting (IPM)
occurs at the beginning of each iteration. One objective of the IPM
is to develop a shared understanding of the value, constraints, and
acceptance criteria of each user story, the basic unit of work during
an iteration, “to ensure everyone is on the same page and has a
common understanding of the stories in the backlog” (as one sur-
vey response states). In the IPMs we observed, one person usually
explained each user story, the team clarified each story’s expecta-
tions through explanations and discussions, and the meeting would
not proceed until all developers indicated that the expectations

Zhttps://github.com/ace-lab/xp-study-sigcse20/blob/master/PivotalProcessSurvey.pdf.

were clear. Some details of this discussion might be recorded in the
story’s description. IPM is directly linked to planning; therefore, it
is a transition process.

Standup is an action process. A primary objective of Standup is
to discuss new findings and blocking factors. Standup is a short (a
few minutes) daily meeting in which members take turns to update
their status and plan. One survey response found Standup to be
“most effective as a daily ‘health check’ and context-sharing activ-
ity” One interviewed engineer mentioned that “problems would be
surfaced by a Standup and thus other team members can help to fix
them.” Standup directly contributes to the team’s goal accomplish-
ment by unblocking the team and sharing team status. Therefore,
Standup is an action process.

Retrospective is an interpersonal process. The Retrospective
occurs at the end of each iteration, after the iteration’s work has
been delivered. During a Retrospective meeting, the team’s prac-
tices are analyzed and improved. As one interviewed engineer put it,
“[Retrospective] is the only practice that allows the team to tweak
the practices” and “Retrospective is the place where you analyze
your process and try to make it better” Furthermore, Retrospective
regulates team emotions. In a typical retrospective, members ex-
press feelings on a message board, physical or virtual, with three
columns for different feelings (a standard set of choices is “happy,
meh [idiomatic American English for indifferent], and sad”). Ret-
rospective is thus a place where team members can safely share
their feelings for the team to stay effective in other processes. One
inteviewed engineer mentioned that “creating that space where
everybody on the team feels like they can say things that they
are feeling” is important for Retrospective. In summary, Retrospec-
tive lays the foundation for teams to stay productive, and thus,
Retrospective is an interpersonal process.

3.3 Select Processes

In selecting processes, we first exclude those that are already cov-
ered in previous and current offerings of the course: Backlog, CI,

TDD. (We describe the course more completely in Section 4.) We
exclude Information Radiator and Pre-IPM because their importance
as judged by professional practitioners is low (as shown in Figure
1), and because we do not want to overwhelm students with too
many processes in a single course. While professional practition-
ers we interviewed practice Pairing exclusively, previous studies
suggest that pairing may be impractical to do consistently in class-
rooms [3, 26]. As such, pairing was recommended but not mandated,
as in previous offerings of the course.

This leaves IPM, Retrospective, and Standup to focus on in our
case study. We note that in addition to being missing from previous
offerings of the course, these three processes provide students with
learning opportunities in all three categories of Marks et al’s tax-
onomy: IPM is a transitional process, Standup is an action process,
and Retrospective is an interpersonal process. Therefore, adding
these processes improves the completeness of the course from the
perspective of covering the taxonomy.

4 CASE STUDY

This case study was conducted at the University of California, Berke-
ley, from January through May 2019, in the context of CS169, a
14-week project-centric software engineering course that teaches
XP. The course had 120 students divided into 20 teams. Each team
worked with a customer to develop or enhance a Web application
tailored to the customer’s small-business need.

During an initial short iteration, student teams met with their
customer to understand the requirements and goals for the project.
The teams then worked on the project during four 2-week iterations.

The course was supported by two 20-hour-per-week teaching
assistants, each of whom supervised and coached 10 student teams,
meeting with each team during each iteration to provide feedback
and evaluation. Both teaching assistants were also researchers in
this study.

We compare this case study with the most recent offering of the
same course. The previous course was offered in Fall 2017. It had
126 students divided into 21 teams. The course had the same course
project schedule. In this case study, we made the following major
updates to the course design:

e Added checkpoints for IPM, Customer Meeting, and Retro-
spective in order to incorporate the processes.

o Updated the self-assessment survey to track newly incorpo-
rated processes.

o Gave students access to a new metrics dashboard that was
different from the one used previously. We made this change
migrating the dashboard to a new platform [12]. The new
dashboard presented a similar set of metrics about Backlog,
CL and TDD as the previous one. Thus, we expected this
change to have a minimal impact on this case study.

e Gave instructors access to data from newly added tools. Al-
though the data was not used for grading, instructors could
use it to provide feedback in meetings.

The case study focuses on investigating whether students benefit
from these augmentations. Specifically, we focus on the following
two questions:

e Do new processes interfere with learning opportunities pro-
vided by processes already present in the course?

Monday Tuesday Wednesday Thursday Friday

Week 1 Customer Meeting Team Meeting “
Week 2 n Development (including Standup)
Week 3 [l Retrospective

ment

Checkpoints

I Processes

Figure 2: Iteration schedule. The development stage includes
other processes such as CI, Backlog, and Standup.

e Do students appreciate the usefulness and values of new
processes for XP development?

4.1 Embed Processes

Figure 2 is the iteration schedule. Each iteration is two weeks long,
but we leave some overlap so that students have enough time for
retrospectives. Thus, the start of week 3 is also the start of the next
iteration.

Because teaching processes is demanding for instructors [8, 13,
24, 29], new processes are supported by student-facing tools. The
tools give instructors more visibility into new processes with usage
data and allow students to learn new processes with more support.
We adapt open-source tools planning poker 3, postfacto 4, and slack
manager > for IPM, Retrospective, and Standup respectively.

Besides tools, we use checkpoints to make processes transparent
to students. Checkpoints are online surveys that students complete
every iteration ®. Checkpoints make instructor expectations explicit
so that students can follow and improve over time. In our case study,
checkpoints are mandatory and graded.

For each iteration, we changed two or three questions for teach-
ing purposes. For example, in Iteration 4 we added two questions
each to the IPM and Retrospective checkpoints. One question asks
how confident the student is in contributing to a productive process
(IPM or Retrospective) in a professional team. The other asks how
likely the student would be to use this process (IPM or Retrospec-
tive) in the future if the student were leading a team.

4.2 Data Collection

We collect data about tool use from checkpoints, and data about
learning outcomes from checkpoints and self-assessment surveys 7.

The self-assessment survey contains both questions used in pre-
vious courses and questions newly added in this case study. For
example, we add questions about team communication to measure
the effect of Standup. The survey is adapted from surveys used

Shttps://github.com/bimovidia/planning-poker

*https://github.com/pivotal/postfacto

Shttps://github.com/anonrig/slack-manager

®IPM: https://github.com/ace-lab/xp-study-sigcse20/tree/master/IPM. Retrospective:
https://github.com/ace-lab/xp-study-sigcse20/tree/master/Retrospective.
7https://github.com/ace-lab/xp-study-sigcse20/tree/master/Self-assessment.

40 m Strongly Agree " Strongly Agree

- Agree - Agree
35 Disagree Disagree

Strongly Disagree Strongly Disagree

3 2
Iteration Iteration

(a) Usefulness of planning poker (b) Usefulness of postfacto

8

23

Percentage
Percentage

40

3

3 2
lteration lteration

(c) Use of planning poker (d) Use of postfacto
Figure 3: Tool use and tool satisfaction reported by students
(107 < N < 117 for all iterations).

and validated in previous studies, focusing on XP processes [16],
software development waste [32], and teamwork [14].

We acknowledge that our data is not an objective measurement
of learning outcomes. However, studies show that self-efficacy—
students’ belief and self-confidence in their capabilities and in their
ability to use a particular course of action to achieve a desired
result [1]—is a reasonable predictor of student performance [7].
Our self-assessment surveys and checkpoints measure self-efficacy,
so we use them as reasonable proxy measurements for learning
outcomes. Previous studies have also shown that surveys are useful
instruments for teaching software engineering processes [22].

4.3 Results

Students followed the processes and were satisfied with the
tools supporting them. Figure 3 presents student-reported tool
usefulness and tool usage. Although most students agree that the
tools (planning poker and postfacto) are useful for their team devel-
opment, Figures 3¢ and 3d show that only 40%-60% of students used
planning poker and 50%-80% used postfacto). Further investigation
showed that in most cases, students used an alternative approach
for the process. For example, students reported in Iteration 4 that
they used in-person discussions instead of the tool. One student
mentioned that “we implemented this into our general meeting
pretty naturally, so we didn’t really need it”

Iteration 4’s survey results suggested that students had proper
training on IPM and Retrospective with the new course design. 41
(38%) students reported that they were “extremely confident” in
contributing to a productive IPM in a professional team while 48
(45%) reported that they were “very confident”; 41 (37%) students
reported that they were “extremely confident” in contributing to a
productive retrospective meeting in a professional team while 51
(46%) reported that they were “very confident.”

The inclusion of new processes does not interfere with exist-
ing learning opportunities. In this case study, students achieved
similar or better self-reported performance on all previously tracked
XP processes. Presented in Figure 4a to Figure 4e, the median of
self-reported performance on these tracked processes in this case
study (Sp19) is the same or higher than the previous semester (Fa17)
in Iteration 4. Furthermore, with an alternative hypothesis that It-
eration 4’s score in this case study is higher than the score of the
previous semester, a Mann-Whitney rank test shows that student
performance is significantly better on Planning, Pairing, and Tech-
nical Debt (p < 0.01). This result indicates that the augmented
course design does not negatively influence existing processes.

Students appreciate the usefulness and value of the new pro-
cesses (IPM, Retrospective, Standup) for XP development.
Planning improves significantly in this case study (Figure 4a). This
is directly linked to IPM. In the Iteration 4 survey, 58 (54%) respon-
dents would “definitely” use IPM if leading a team and 41 (38%)
“probably” would, suggesting that most students appreciate the
usefulness of IPM for team development.

Improvements (value differences) measured by self-assessment
surveys between two consecutive iterations are significantly higher
in this case study than the previous semester for all processes ex-
cept for Pair programming and Planning (Mann-Whitney rank test,
p < 0.05). This observation indirectly supports the claim that Retro-
spective has changed student behaviors, since Retrospective focuses
on process improvements. When asked in Iteration 4 whether they
would use Retros if leading a team in the future, 51 (46%) responded
“definitely” and 49 (44%) responded “probably”, which suggests that
most students appreciate the usefulness of Retrospective for team
development.

Figure 4f shows that teams have a high communication score
across iterations, which is related to the use of Standup. For com-
parison, according to one study[14], professional software teams
answering the same questions report an average of 0.84 (normal-
ized) for communication.

In summary, self-assessment surveys show improvements that
are related to IPM, Retrospective, and Standup. It suggests that stu-
dent teams benefit from the processes as professional teams. It-
eration 4’s survey responses support the inference that students
appreciate the value of the processes.

Summary. When we changed our project-based course to incorpo-
rate IPM, Standup, and Retrospective selected in Section 3, we found
that in comparison with a previous offering of the course lacking
these processes: (1) students reported similar or better performance
on existing XP processes, suggesting that our design augmentation
does not interfere with existing processes; (2) student teams can
benefit from new processes as professional teams, and students
recognize the usefulness and value of these processes. Thus, we
believe our approach can result in augmented course designs that
lead to better learning outcomes.

5 DISCUSSION

Threats to validity. Field observations conducted in one com-
pany, however mature, do not necessarily represent the industry;
researchers can apply our method to observe other companies so as

10 10+ 10+
8- 8- 8-
o
2
®
[
2 o g o]
£ © £
S) ©
a4 £ 4 & 4 .
o
= f . .
S
24 24 . o 2
. spio . . Sp1o . . Sp19
ol = Fal? o . . = Fat? o . . = Fat?
1 2 3 4 1 2 3 4
lteration lteration lteration
(a) Planning (b) Collective Ownership (c) Pairing
10 104 . 1.0
%] %] T T T T
3 s
61 & o . 3067
= g
S g . g
2
41 . . S 49 . . £ 04 ¢ ¢ * ¢
2 3
. . © . . .
24 . 24 . 0.2
+ ‘. .
. spio . . Sp1o
ol . . == Fa17 od == Fat7 004 . \
1 2 3 4 1 2 3 4 1 3 4

Iteration

(d) Test-driven Development

lteration

(e) Technical Debt

Iteration

(f) Communication

Figure 4: Self-reported process performance (communication is not previously measured). 112 < N < 115 for all iterations.

to analyze more industrial practices. That said, Pivotal is among the
most disciplined and consistent practitioners of XP, having created
widely-used tools including the Jasmine JavaScript TDD framework
and the Tracker project manager to support their workflows and
processes. Also, while we used a field study to emphasize the in-
dustrial grounding of our selection of processes, practitioners may
rely on other data sources for this purpose.

We rely on one in vivo case study to examine the new processes.
The “gold standard” of controlled A/B testing is challenging to
achieve in such a setting. First, we do not have the resources to
manage enough student teams for a statistically reliable compari-
son. Second, student teams work on different projects, which is a
confounding factor that we cannot avoid. Third, withholding poten-
tially pedagogically-helpful tools or processes from a control group
raises ethical issues in a setting where students must receive course
grades. Thus, we chose case study as our research method, despite
these confounding factors that might influence student behaviors
and self-assessments.

This paper focuses on XP. Other Agile variants such as Scrum [29]
also exist. We do not claim XP is superior, but we choose it because
the course examined in Section 4 focuses on XP. Our method is
generalizable to other Agile variants, since all Agile methods stem
from a similar set of values and often share processes. Indeed, IPM,
Retrospective, and Standup are also important processes in Scrum.

Future work. Our case study results do not show a causal re-
lationship between the augmented course design and improved

learning outcomes. More case studies using our method and care-
fully designed controlled experiments could provide more under-
standings to XP and Agile processes in classrooms. In addition, our
measurements of learning outcomes rely on self-reported surveys.
While these are reasonable proxy measurements, future studies
should evaluate learning outcomes with objective measurements,
such as code quality and velocity [17].

6 CONCLUSION

Combining an established taxonomy with a field study, we selected
three processes to augment a course design, and showed evidence
that these additions improve learning outcomes without interfering
with prior processes. Teaching and measuring team processes is
difficult [8, 22], but using tools that generate instructor-visible data,
as we have done, can provide better insights into student behaviors.
In the future we hope to use this data to determine whether teams
that adhere more closely to the processes experience better learning
outcomes, produce higher quality software artifacts, or both.

We believe we are among the first to describe and follow this
systematic approach to incorporating team processes into XP peda-
gogy. Compared with previously reported retroactive approaches,
our approach proactively informs the course design, avoiding de-
signs that are overwhelming for students [29] or in which students
fail to appreciate the value of the processes being taught [26].

ACKNOWLEDGMENTS

The research of the third author is partially funded by the European
Regional Development Fund and the National Research Agency
of the Spanish Ministry of Science, Innovations and Universities
under project grants TIN2017-85179-C3-2-R, by the Ministry of
Science and Education (PRX17/00410), by the European Regional
Development Fund and the Regional Council of Education of Castile
and Leon under project grant VA257P18, and by the European
Commission under project grant 588438-EPP-1-2017-1-EL-EPPKA2-

KA

REFERENCES

[1] Albert Bandura, Claudio Barbaranelli, Gian Vittorio Caprara, and Concetta Pas-

[2

[3

[4

(5

[9

[10

[11

[12

[13

[

]

=

=

]

]

[14]

[15

[16

(17

(18

]

]

torelli. 2001. Self-efficacy beliefs as shapers of children’s aspirations and career
trajectories. Child development 72, 1 (2001), 187-206.

Kent Beck and Erich Gamma. 2000. Extreme programming explained: Embrace
change. Addison-Wesley Professional.

Joe Bergin, James Caristi, Yael Dubinsky, Orit Hazzan, and Laurie Williams. 2004.
Teaching software development methods: the case of extreme programming. In
ACM SIGCSE Bulletin, Vol. 36. ACM, 448-449.

Jennifer Campbell, Stan Kurkovsky, Chun Wai Liew, and Anya Tafliovich. 2016.
Scrum and Agile Methods in Software Engineering Courses. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education - SIGCSE '16.
ACM Press. https://doi.org/10.1145/2839509.2844664

David Delgado, Alejandro Velasco, Jairo Aponte, and Andrian Marcus. 2017.
Evolving a Project-Based Software Engineering Course: A Case Study. In 2017
IEEE 30th Conference on Software Engineering Education and Training (CSEE&T).
IEEE. https://doi.org/10.1109/cseet.2017.22

Terry L Dickinson and Robert M McIntyre. 2010. A Conceptual Framework
for Interprofessional Teamwork. In Interprofessional Teamwork for Health and
Social Care. John Wiley & Sons, Ltd, Chapter 4, 57-76. https://doi.org/10.1002/
9781444325027.ch4

Steven M. Elias and Scott MacDonald. 2007. Using Past Performance, Proxy
Efficacy, and Academic Self-Efficacy to Predict College Performance. Journal of
Applied Social Psychology 37, 11 (nov 2007), 2518-2531. https://doi.org/10.1111/].
1559-1816.2007.00268.x

Hakan Erdogmus and Cécile Péraire. 2017. Flipping a graduate-level software
engineering foundations course. In 2017 IEEE/ACM 39th International Conference
on Software Engineering: Software Engineering Education and Training Track (ICSE-
SEET). IEEE. https://doi.org/10.1109/icse-seet.2017.20

James B. Fenwick. 2003. Adapting XP to an Academic Environment by Phasing-In
Practices. In Extreme Programming and Agile Methods - XP/Agile Universe 2003.
Springer Berlin Heidelberg, 162-171. https://doi.org/10.1007/978-3-540-45122-
8_19

Armando Fox and David Patterson. 2014. Engineering Software as a Service: An
Agile Approach Using Cloud Computing (1st ed.). Strawberry Canyon LLC, San
Francisco, CA.

Alfredo Goldman, Fabio Kon, Paulo JS Silva, and Joseph W Yoder. 2004. Being
extreme in the classroom: Experiences teaching XP. Journal of the Brazilian
Computer Society 10, 2 (2004), 4-20.

Alejandro Guerrero, Rafael Fresno, An Ju, Armando Fox, Pablo Fernandez, Carlos
Muller, and Antonio Ruiz-Cortés. 2019. Eagle: a team practices audit framework
for agile software development. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, 1139-1143.

Nicole Herbert. 2018. Reflections on 17 years of ICT Capstone Project Coordina-
tion. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education - SIGCSE '18. ACM Press. https://doi.org/10.1145/3159450.3159584
Martin Hoegl and Hans Georg Gemuenden. 2001. Teamwork quality and the
success of innovative projects: A theoretical concept and empirical evidence.
Organization Science 12, 4 (2001), 435-449.

Steve W. J. Kozlowski. 2017. Enhancing the Effectiveness of Work Groups and
Teams: A Reflection. Perspectives on Psychological Science 13, 2 (dec 2017), 205-212.
https://doi.org/10.1177/1745691617697078

William Krebs. 2002. Turning the Knobs: A Coaching Pattern for XP through
Agile Metrics. In Extreme Programming and Agile Methods — XP/Agile Universe
2002. Springer Berlin Heidelberg, 60-69. https://doi.org/10.1007/3-540-45672-4_7
Eetu Kupiainen, Mika V. Méntyl4, and Juha Itkonen. 2015. Using metrics in Agile
and Lean Software Development — A systematic literature review of industrial
studies. Information and Software Technology 62 (jun 2015), 143-163. https:
//doi.org/10.1016/j.infsof.2015.02.005

Yngve Lindsjern, Dag LK. Sjeberg, Torgeir Dingsgyr, Gunnar R. Bergersen, and
Tore Dyba. 2016. Teamwork quality and project success in software development:

[19

[20

[21

~
&,

[23

[24

[25

[26

[27

[28

[29

(30]

@
=

(32

(33]

(34

[36

A survey of agile development teams. Journal of Systems and Software 122 (dec
2016), 274-286. https://doi.org/10.1016/j.js5.2016.09.028

Michelle A. Marks, John E. Mathieu, and Stephen J. Zaccaro. 2001. A Tempo-
rally Based Framework and Taxonomy of Team Processes. The Academy of
Management Review 26, 3 (jul 2001), 356. https://doi.org/10.2307/259182

Maira Marques and Sergio F. Ochoa. 2014. Improving teamwork in students
software projects. In 2014 IEEE 27th Conference on Software Engineering Education
and Training (CSEE&T). IEEE. https://doi.org/10.1109/cseet.2014.6816787
Zainab Masood, Rashina Hoda, and Kelly Blincoe. 2018. Adapting agile practices
in university contexts. Journal of Systems and Software 144 (oct 2018), 501-510.
https://doi.org/10.1016/j.js5.2018.07.011

Christoph Matthies, Thomas Kowark, Keven Richly, Matthias Uflacker, and Hasso
Plattner. 2016. How surveys, tutors, and software help to assess Scrum adoption in
a classroom software engineering project. In Proceedings of the 38th International
Conference on Software Engineering Companion - ICSE '16. ACM Press. https:
//doi.org/10.1145/2889160.2889182

Nancy R Mead. 2009. Software engineering education: How far we’ve come and
how far we have to go. Journal of Systems and Software 82, 4 (2009), 571-575.
Andreas Meier, Martin Kropp, and Gerald Perellano. 2016. Experience Report of
Teaching Agile Collaboration and Values: Agile Software Development in Large
Student Teams. In 2016 IEEE 29th International Conference on Software Engineering
Education and Training (CSEET). IEEE. https://doi.org/10.1109/cseet.2016.30
Nils Brede Moe, Torgeir Dingseyr, and Tore Dyba. 2010. A teamwork model for
understanding an agile team: A case study of a Scrum project. Information and
Software Technology 52, 5 (may 2010), 480-491. https://doi.org/10.1016/j.infsof.
2009.11.004

Matthias M Miiller and Walter F Tichy. 2001. Case study: extreme programming
in a university environment. In Proceedings of the 23rd International Conference
on Software Engineering. ICSE 2001. IEEE Computer Society, IEEE Comput. Soc,
537-544. https://doi.org/10.1109/icse.2001.919128

Mary Poppendieck and Tom Poppendieck. 2003. Lean Software Development: An
Agile Toolkit: An Agile Toolkit. Addison-Wesley.

Pasquale Salza, Paolo Musmarra, and Filomena Ferrucci. 2019. Agile Method-
ologies in Education: A Review. In Agile and Lean Concepts for Teaching and
Learning. Springer, 25-45.

Andreas Scharf and Andreas Koch. 2013. Scrum in a software engineering
course: An in-depth praxis report. In Software Engineering Education and Training
(CSEE&T), 2013 IEEE 26th Conference on. IEEE, 159-168.

J.-G. Schneider and Rajesh Vasa. 2006. Agile practices in software development -
experiences from student projects. In Australian Software Engineering Conference
(ASWEC'06). IEEE. https://doi.org/10.1109/aswec.2006.9

Ken Schwaber and Mike Beedle. 2002. Agile software development with Scrum.
Vol. 1. Prentice Hall Upper Saddle River.

Todd Sedano, Paul Ralph, and Cecile Peraire. 2017. Software Development Waste.
In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
IEEE. https://doi.org/10.1109/icse.2017.20

Dana E. Sims, Eduardo Salas, and C. Shawn Burke. 2004. Is There a “Big Five” in
Teamwork? https://doi.org/10.1037/e518632013-346

Jan-Philipp Steghofer, Eric Knauss, Emil Alégroth, Imed Hammouda, Hakan
Burden, and Morgan Ericsson. 2016. Teaching Agile: addressing the conflict
between project delivery and application of Agile methods. In Proceedings of the
38th International Conference on Software Engineering Companion - ICSE '16. ACM
Press. https://doi.org/10.1145/2889160.2889181

Willy Wijnands and Alisa Stolze. 2019. Transforming Education with eduScrum.
In Agile and Lean Concepts for Teaching and Learning. Springer, 95-114.

Sergio Donizetti Zorzo, Leandro de Ponte, and Daniel Lucredio. 2013. Using
scrum to teach software engineering: A case study. In 2013 IEEE Frontiers in
Education Conference (FIE). IEEE. https://doi.org/10.1109/fie.2013.6684866

https://doi.org/10.1145/2839509.2844664
https://doi.org/10.1109/cseet.2017.22
https://doi.org/10.1002/9781444325027.ch4
https://doi.org/10.1002/9781444325027.ch4
https://doi.org/10.1111/j.1559-1816.2007.00268.x
https://doi.org/10.1111/j.1559-1816.2007.00268.x
https://doi.org/10.1109/icse-seet.2017.20
https://doi.org/10.1007/978-3-540-45122-8_19
https://doi.org/10.1007/978-3-540-45122-8_19
https://doi.org/10.1145/3159450.3159584
https://doi.org/10.1177/1745691617697078
https://doi.org/10.1007/3-540-45672-4_7
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.1016/j.jss.2016.09.028
https://doi.org/10.2307/259182
https://doi.org/10.1109/cseet.2014.6816787
https://doi.org/10.1016/j.jss.2018.07.011
https://doi.org/10.1145/2889160.2889182
https://doi.org/10.1145/2889160.2889182
https://doi.org/10.1109/cseet.2016.30
https://doi.org/10.1016/j.infsof.2009.11.004
https://doi.org/10.1016/j.infsof.2009.11.004
https://doi.org/10.1109/icse.2001.919128
https://doi.org/10.1109/aswec.2006.9
https://doi.org/10.1109/icse.2017.20
https://doi.org/10.1037/e518632013-346
https://doi.org/10.1145/2889160.2889181
https://doi.org/10.1109/fie.2013.6684866

	Abstract
	1 Introduction
	2 Related Work
	3 Observe, Classify, and Choose XP Processes
	3.1 Data collection
	3.2 Analysis: Transition, Action, Interpersonal Processes
	3.3 Select Processes

	4 Case Study
	4.1 Embed Processes
	4.2 Data Collection
	4.3 Results

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

