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Abstract
Newcomb-Benford’s Law, also known as “the first significant -digit Law “ or “the
Law of Anomalous Numbers ”, is based on an observation from which a law was
formalized about the distribution of the first significant digits in positive numerical
data,  where  the  probabilities  of  the  most  significant  figures  are  not  uniformly
distributed, as might be expected. In addition, it receives these other names be-
cause it shows how the lower digits occur in nature more-often than the higher
ones, indicating the absence of this event a possible risk of abnormal duplications
and anomalies in certain datasets, and this is why it is a key tool in fields like fraud
detection.

In  this  sense,  the  issue  of  this  project  is  to  summarize  bibliography  with  the
purpose of  showing  the  mathematical,  statistical  and  empirical  frameworks
concerning this Law. We will  study the distribution of the first  significant digits,
point  out  how  to  apply  the  formulas  and  we  will  interpret  and  check  its
effectiveness with the results obtained using two different datasets. Finally, we will
also review the applications of this law in our day-to-day.

Keywords:  Newcomb-Benford’s Law; First or significant -digit Law; The Law of
Anomalous Number; distribution of the first significant digits; fraud detection.

Resumen

La ley de Newcomb-Benford , también llamada “la ley del primer dígito” o “ley de
los números anómalos”, está basada en una observación a partir de la cual se
formalizó una ley sobre la distribución de los primeros dígitos significativos en
conjuntos de datos numéricos positivos, donde las probabilidades de las cifras
más significativas no están distribuidas de manera uniforme, como cabría esperar.
Además, recibe estos otros nombres ya que muestra cómo los primeros dígitos
ocurren  en  la  naturaleza  con  mayor  frecuencia  que  los  últimos,  indicando  la
ausencia de este suceso en  ciertos conjuntos de datos un alto riesgo de que este
contenga anomalías, y es por eso que es una herramienta clave en campos tales
como la detección de fraude.

En este sentido, este proyecto se basará en la recopilación de bibliografía acerca
de la ley de Newcomb-Benford con el objeto de mostrar su marco matemático,
estadístico  y  empírico.  Estudiaremos  la  distribución  de  los  primeros  dígitos
significativos  y  lo  aplicaremos  a  dos  conjuntos  de  datos  reales  . Por  último,
revisaremos también las aplicaciones de dicha ley en nuestro día a día.

Palabras  clave:  Ley  de  Newcomb-Benford,  ley  del  primer  dígito,  ley  de  los
números anómalos, distribución de los primeros dígitos significativos, detección
de fraude.
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1. Introduction

Benford’s Law gives us the opportunity to wonder whether there are patterns to
the numbers that we use daily and these patterns could help us identify whether a
dataset has been manipulated or not. 

This Law consists of the description of the distribution of the first significant digits,
which  ensures  that  the  initial  digits  of  the  numbers  are  not  equiprobable  in
datasets which conform to the Law. Therefore, the probability of  occurrence of
digits,  in decimal notation,  is not uniform.  Those numbers starting with the digit
one occur more-often than those starting with two and so on, up to 9, which is the
least frequency. This indicates that as the value of the first digit increases, the
more unlikely it is. This fact, which is accepted as a law, can be applied to large
datasets made up of positive numbers and related to the natural world or social
data. 

The Law was named after Benford, but he was not the first to study it. Therefore,
we prefer to  refer to this law as the Newcomb-Benford’s Law, as other authors
did, whose acronym will be NBL for short, in order not to forget Newcomb’s merit,
who was the  first  to  publish  a  paper  related  to  the  Law.  Moreover,  NBL was
forgotten  after  its  discovery,   maybe because it  was non-intuitive and not  well
recognized because of the absence of mathematical foundation. However, some
decades ago it regained its interest due to the number of its applications increased
considerably.

Undoubtedly, the most important application of the Law is its use as a possible
mean  to  assist  in  the  detection  of  erroneous  or  fraudulent  data  as  we  have
mentioned. If the law is not verified this may be due to the presence of inaccurate
or retouched data. Evidently, the non-conformity to NBL in a given dataset is not a
sufficient proof of the existence of these irregularities. Nevertheless, it constitutes
a good indication to justify a further detailed inspection.  

Nowadays, NBL has widespread use in other areas such as forensic accounting,
auditing, etc. In many countries, especially in Venezuela and Mexico, it has been
used as the main tool in the detection of electoral fraud. The treasury of the USA
also uses it to detect fiscal fraud, auditors to analyse accounting statements… 

NBL also makes predictions about the distribution of second digits, third digits,
digit combinations, and so on. In fact, NBL describes the probability distribution of
all  digits.  However,  it  is  not  universally  applicable,  we  need  data  from  any
distribution taking values over a wide range, covering different orders of magnitude
and being reasonably smooth, then it will tend to be Benford. For this reason, it
has  received  many  criticisms,  as  it  cannot  be  used  indiscriminately.  Its
mathematical background has already been proved and the empirical evidence is
obvious, its practical potentialities have also been recognized, and that meanwhile
this empirically derived Law can be considered theoretically well-analyzed, but we
need a connection between both backgrounds, so let us summarize it.
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2. Biography/ History

In 1881, the mathematician and astronomer Simon Newcomb [25] wrote a paper
titled “Note on the frequency of use of the different digits  in natural numbers” in
the “Americal Journal of Mathematics”, being the first to publish a paper related to
“The first significant digit Law”. He noticed that the nine digits, excluding zero, do
not  occur  with  equal  frequency  looking  at  the  pages  of  the  logarithms’  book
because the first pages were more worn than the last ones due to their use, so
from Newcomb’s personal observation a new Law was going to  be stated. 

He  concluded  his  study  using  statements  like  “natural  numbers  are  to  be
considered as  quantities’  ratios”,  “  The law of  probability  of  the  occurrence of
numbers is such that all the mantissae of their logarithms are equally likely”, and
he proposed the following formula: 

P(N) = log(N + 1) − log(N) , with P(N): the probability of a single number N as the
first digit.

but  he  did  not  investigate  it  further.  Newcomb  did  not  include  the  most
representative formula in his paper which we will see later, although he used it in
its study. 

Frank Benford [3], who was a physicist from Pennsylvania, took over Newcomb’s
work  and extended  it,  but  his  research  only  dealt  with  his  hobby,  which  was
mathematics.  In  1938,  he  published  the  paper  titled  “The  Law  of  Anomalous
Numbers paper” .

The first step taken by Benford was to perform an analysis of the first digits of the
positive numbers in 20 data tables by hand using a total of 20,229 records. He
selected data from several datasets such as the areas of rivers, population figures
or atomic weights of elements, and about one-half of his datasets did not exhibit
the property. His work illustrates the empirical observation about the occurrence of
each of the digits showing that smaller digits occur more often than greater ones
as  the  first  digits  in  those  datasets.  This  concept  is  contrary  to  the  common
intuition as if they were distributed uniformly. 

In 1972, the economist Hal Varian [31] suggested NBL could be used to prove if
data are fraudulent and in that case, it will not conform to NBL. Some years later,
in 1995, its mathematical foundations were formalized thanks to T. P. Hill [14, 15,
16], where its main properties were established. 
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3. Mathematical justification.

We  are  going  to  explain  now  the   mathematical  framework  thanks  to  the
contributions mainly from T.P.  Hill  [14, 15, 16],  Arno Berger [4]  and Allaart  [2]
among others, since their studies on NBL have turned out to be vital for its correct
and complete explanation. However, as a correct introduction, let us explain first
the  proper  meanings  of  significant, significand  and mantissa  due  to  these
words are going to appear throughout the explanation:

Definition 3.1.  The first  significant  digit of a real number  x > 0 is the first digit
different from zero that appears in decimal expansion, e.g., the first significant digit
of 301 and 0.301 is 3 in both cases. This definition is applicable to other digits.

In scientific notation, the significand of a real number is its coefficient when we
express it in floating point, e.g., 20= 2*10 so its significand is 2. 

Definition 3.2. The Significand S(x) of x> 0   is the unique real number such∈ ℝ is the unique real number such ℝ is the unique real number such
that, assuming base 10:

  

The order of magnitude, k, represents the number that more varies according to its
absolute value.
Remember that it is related to the first-digit, if we go now to the first-two digits the
interval’s definition would change to S(x)   [10, 100).∈ ℝ is the unique real number such

In American English, what we have defined as significand is denoted as mantissa,
Currently, exists an open debate on the merging of the meanings of significand
and mantissa, but the “traditional” meaning of mantissa is:

Definition 3.3. The mantissa is the difference between the logarithm of a number
and its integer part,  log(x) – [log(x)], where if we represent the mantissa of the
logarithm base  10  of  a  number  x  by  m(x),  it  has  the  following  property:
m(x)= m(10x). That is, the mantissae are cyclic, circular data and can take values
on the unit circle centred at (0,0) [1]. 

The relationship between mantissa and significand lies in m(x)= log(S(x)).

All references in this paper to logarithms will be to the base 10, if not otherwise
indicated.

9



3.1 The first digit distribution

Taking into account the above definitions, we could see that the significant digit of
x is the same as the significant digit of S(x). However, we only need to evaluate
one interval for S(x),  [d, d+1) and for x there are several:  [d, d+1), [10d, 10d+1),
[102d, 102d+1), etc, where d denotes the different digits. Thus, we choose the only
interval for S(x) because we are interested in the first digit and it is common for
both, as:

The probability of the first digit d, using the uniform distribution as the natural way
to think about digits, is the probability of the significand S(x)   [d, d+1), d ≤ S(x) <∈ ℝ is the unique real number such
< d+1, and on a logarithmic scale, log (d) ≤ log( S(x)) < log (d+1), where we obtain
log(d+1) – log(d) = lg(1+d-1) , which is the interval width [11].

Definition 3.1.1. The distribution of the first significant digit.

where D1 is the  first significant decimal digit. 

These significant digits are dependent as they follow logarithmic laws and their
results show that 30.1% of the numbers have as first digit 1. The first digit 2 occurs
17.6 percent of the time, and if we sum both results we obtain a percentage close
to fifty,  47.12%, so almost half  of  the observed numbers which would conform
perfectly  to  NBL  will  have  in  its  first  place  the  number  one  and  two.  This
logarithmic pattern continued up to 9, where only 4.6% of the numbers would have
the first digit 9. They are obviously not uniformly distributed as we can see in the
graphic below. 

We use the logarithmic scale since it  allows us to work with a wide variety of
quantities, as a condition to achieve a good fit to the Law, because the logarithm
reduces them to a more manageable range. 
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Figure 3.1. Benford’s Law plot using heat.colors in R. The higher the probability of
the first significant digit, the redder the bar. The black line shows the case if the
numbers were uniformly distributed, which  has been calculated from a random
sample of a  U(0,1) with n=1000.

Definition 3.1.2. Its distribution function is :

with P(D≤ 9)=1 [20].

Example 3.1.3. The number x  [0, 10)∈ ℝ is the unique real number such  begins with digit 1 if  1 ≤ x < 2 , x begins
with digit 9 if 9 ≤ x < 10. Applying logarithms, log (1) ≤ log (x) < log (2) and log (9)≤
≤  log (x) < log (10). The first interval is wider than the second interval, although
before applying logarithms they had the same length, but this hinges on the idea
that the first digits are not evenly distributed, thus as log(x) is distributed uniformly,
it is more likely to start with 1 than with 9 because its interval width is larger. 

In NBL, its mantissae are uniformly distributed between 0 and 1; from this, we can
now understand what we mentioned in Section 2,  ‘The Law of probability of the
occurrence of numbers is such that all mantissae of their logarithms are equally
probable’’, as Newcomb stated. 
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Following with this idea, now suppose a random variable X which represents the
number whose logarithm is searched for [20], then:

Property 3.1.4. X satisfies NBL  log X – [log X] ~ U(0, 1), ⇔ log X – [log X] ~ U(0, 1), where [.] is the floor
function.

In  order  to  finish  this  section,  let  us  show  now  NBL’s  predictions  about  the
distribution  of  second  digits  and  first-two  digits  ,as  this  law  describes  the
probability distribution of all digits and we are going to mention them later:

Definition 3.1.5. Probability of the second-place digit:

Definition 3.1.6. Probability of the first-two digits:

  

3.2. The Generalized Significant Digit Law

Benford claimed that “mere man counts arithmetically,{1,2,3,..}  and it is not the
natural number scale, nature counts e0 , ex , e2x , and so on”. Since it appears that
many natural functions are of the logarithmic form in base e, neither Newcomb nor
Benford  provided  any  theoretical  basis.  In  1995,  T.P.  Hill  [16]  provided  a
generalization of the first significant digit law stated in terms of the significant digit
functions {Db

(i)}, which for b   ∈ ℝ is the unique real number such ℕ\ {1},  Db  
(i)(x) is the ith significant digit of x when

represented base b.

Definition 3.2.1. For the general case of any base,  integer b>1, the logarithmic∀ integer b>1, the logarithmic
joint distribution of the first significant digits is defined by:

 

 k  N; d∀ integer b>1, the logarithmic ∈ ℝ is the unique real number such 1   {1,…, b-1} and d∈ ℝ is the unique real number such i   {0,…, b-1}, i=2,…,k.∈ ℝ is the unique real number such

(Its arguments continue to other digits and joint distributions of the digits.)
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Example 3.2.2. taking the number 999889 in the formula above, we obtain:

The probability will be very low with a result close to 0. In the light of this, the worst
fit of any data would  be if the numbers  were made up only of nines. This extreme
case would occur if all significands are equal to 10(1- ε) ) ,where ε)  denotes a very tiny
quantity >0 [26].

3.3. Invariances

3.3.1. Scale invariance

Benford   saw  that  the  set  of  natural  integers  with  one  as  first  digit  has  no
asymptotic natural frequency, as:

Definition 3.3.1. The limit below does not exist.

Roger S. Pinkham [27],  an American mathematician, offered an answer to this
problem in  1961.  He  claimed  that  “  if  there  was  some  Law governing  digital
distributions, this Law should be invariant by scaling”. He discovered this property
of  the  NBL  which  characterizes  it,  but the  problem  here is  related  to  the
universality of this reasoning.

Example 3.3.2.  if we multiply our data by an arbitrary constant c> 0 ( it must be
positive as all the entries in a dataset that conforms NBL), e.g., c= ¾, and as the
probability of the significand in [a, b]  [1, 10) is log(b/a), assuming base 10, we⊂ [1, 10) is log(b/a), assuming base 10, we
compute the probability that numbers have as leading digit 1, where we obtain the
interval [3/4, 30/40). If we divide this interval by the parts containing 1 as the first
digit we have that we can find 1 as first digit in the interval [1,2) and applying the
formula said before,  the probability of  the interval  is:  log(2/1),  which is the NB
probability of the first digit, so we check how the distribution of the first significant
digits remains unchanged. This is just what we do when we apply conversions in
different units of measurement [4].

Property 3.3.3.  n ∀ integer b>1, the logarithmic   ∈ ℝ is the unique real number such ,  dℕ ∀ integer b>1, the logarithmic 1   {1,…,9},  d∈ ℝ is the unique real number such ∀ integer b>1, the logarithmic k   {0,…,9} with k ∈ ℝ is the unique real number such ≥ 2 and  c>0,∀ integer b>1, the logarithmic

The  probability  distribution  of  a  random  variable  x  is  independent  of  the
measurement scale. If the data show deviations with NBL, these deviations shall
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be  present  in  all  measurements.  Therefore,  our  data  must  be  measurable  in
different scales like Dollars/ Euros, miles/ km…

3.3.2. Base invariance

The values of the majority of the data do not usually depend on the base used. Hill
[15] established the relationship between base-invariance and the uniformity of the
mantissas of the logarithms [1].

Following the same idea than in previous section: 

Property 3.3.4. X is a positive continuous random variable and it has the same
significand distribution for two different bases b1 and b2   X⇒ X  is NB for both bases
[32].

Scale- invariance implies base-invariance, but not conversely.

3.3.3. Sum-invariance

As  an  Allaart’s  correction  of  what  Nigrini  observed  first  [20]  we  have:  “  A
distribution is sum-invariant if for any natural number k, the sum of the significands
of all entries starting with a fixed k-tuple of leading significant digits is the same as
that for any other k-tuple”. Sum invariance property is a characterization of the
logarithmic Law [2].

Infinite datasets can obey NBL exactly. However, Nigrini observed first that real
data, we refer to non-infinite datasets, approximately follows NBL and the sum of
the significand of its entries with first digit 1 is similar as the sum with first digit 2
and so on [4].

Property 3.3.5. The sums of significands entries with (D1, …, Dk)= (d1, …, dk) are
approximately equal  tuples (d∀ integer b>1, the logarithmic 1, …, dk)  of a fixed length k.

The  Benford  distribution  is  the  only  sum-invariant  distribution,  i.e.  datasets  of
mixtures of other datasets.

3.3.4. Multiplication and division

Property 3.3.6. Y is a random variable that conforms to NBL and  X is an arbitrary
random variable with a continuous density  XY conforms to NBL.⇒ X

Property 3.3.7. Y is  a  random variable  ≠0 that  conforms to NBL and X is  an
arbitrary random variable ≠0 with a continuous density  X/Y and Y/X conform to⇒ X
NBL.
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The  NB’s  distribution  is  invariant  under  inversion  and  multiplication  by  any
distribution  [20].  A  sequence  of  products  of  random variables  is  very  likely  to
converge to NBL, i.e. datasets from long series of computations.

3.3.5. Addition and subtraction

Related to addition the principle of invariance is not so trivial. R.W. Hamming [13],
an American mathematician, has proved this property as other authors. He proved
that the distribution of a sum of  random variables converges to NBL. Empirically, it
works quite well.

3.4. Sequences of interest

3.4.1. NBL sequences

Definition 3.4.1. A sequence xn= (x1, x2,...) of real numbers is a NB sequence in
base 10 if as N → ∞, the limiting proportion of indices n ≤ N for which  xn has first
significant digit d is [4]:

  n ∀ integer b>1, the logarithmic   ∈ ℝ is the unique real number such ,  dℕ ∀ integer b>1, the logarithmic 1   {1,…,9},  d∈ ℝ is the unique real number such ∀ integer b>1, the logarithmic k   {0,…,9} with k ∈ ℝ is the unique real number such ≥ 2 

3.4.2. Geometric sequence

The second part of Benford's paper was titled “The Geometric Basis of the Law”,
which explains a process with a constant growth rate where more time is spent at
lower digits than at higher ones [4]. He associated the pattern of the digits with a
geometric progression (as Raimi [29] did in 1976) where one of its main properties
is that it is memoryless, the probability of an event does not depend on previous
ones, and thus some of the best fits were for data whose numbers are not related
to each other [20].

The  geometric  foundation  of  NBL  means  that  a  dataset  will  have  NB-like
properties if the ordered records closely approximate a geometric sequence[26].
The classical sequence 2n  also conforms to NBL.
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3.4.3. Other Sequences.

NB sequences also include: n!, nn, Fibonacci sequence and Lucas numbers (which
follow  a  similar  pattern  to  the  Fibonacci  sequence). Its conformity  to  the  law
improves as N increases, so do all sequences with similar recurring patterns. The
numbers generated by the 3n+1 series, the Collatz conjecture, where n is any
positive integer, also show NB tendencies. Nevertheless, these are dominated by
the ending numbers in the sequence.                                       

As curiosity, Zipf’s Law is based on the number of times words are used in papers.
With NBL, we would need a greater number of lower digits, but under Zipf’s Law
the trend is towards the most-often used words. Empirically, as it is obvious, data
that conform to NBL do not conform to Zipf's Law, and vice-versa. [26]

To conclude, there are more sequences in the world that do not conform to NBL
than do conform to NB, e.g. The sequence of primes does not conform to NBL.

 

3.5. Relation with the main distributions

Now, we are going to show the probability of occurrence of each digit, except zero,
in different distributions and taking also into consideration the simulations’ results
by Formann [12] which are of special interest in order to sum them up. 

We generate  randomly  in  RStudio  some selected  distributions  with  n=100,000
simulations which correspond to: Cauchy(0, 1), Exponential(1), Normal(0,1), Chi-
square with 1 degree of freedom, Uniform(0,1), Normal(5,1) and Chi-square with
100 degrees of freedom, placed in a particular order.

Thanks to the table below of the chosen distributions in the first four rows, we see
that the digit one is the most frequent one, always exceeding the 30%, it appears
as the leading significant digit. By contrast, we easily appreciate the progressive
decrease in the percentages where the number nine appears less than 6%, so the
results  are close to NBL.

On the contrary, in the 5th row appears the results of a random generation of the
U(0,1), where we obtain a very different output.  All the digits occur with an equal
frequency, it will take the value 0.0111 (1/90) approximately and depending on the
n, so as we can see each occur about 11% of the time and this is because the
uniform distribution and NBL are incompatible.  However,  what we know is that
some mathematical operations, when performed on the uniform distribution, end
up giving us NBL at the limit and Formann’s paper also proves that its ratio fits
better the law.   

As we are working with the line of positive numbers, distributions like Cauchy(0,1)
and  N(0,1)  seem  to  fit  well  to  the  law,  but  if  we  change  its  location/mean
parameters things change (6th row). This is why symmetric distributions and those
whose density increases as the value of its random variable are bad examples for
NBL.                                                             
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Not that trivial  we find that distributions of the ratio of two random variables fit
better than the distributions of a single random variable, e.g.  the F-distribution, as
ratio of two chi-squares, fits better than does chi-square. As we increase the df of
a chi-square the fit will get worse because it approaches a normal distribution. (7 th

row)

 1 2 3 4 5 6 7 8 9
C(0,1) 30.96

7
16.84
2

12.04
0  

9.437 7.903 6.690 5.90
8  

5.37
2

4.840

Exp(1) 32.99
3

17.48
5

11.40
5  

8.447 7.232 6.351 5.79
8  

5.36
8

4.921

N(0,1) 35.93
2

12.91
0  

8.619 8.124 7.647 7.531 6.97
0 

6.39
0 

5.876

χ²1 30.58
6

18.34
7

12.50
9

9.314 7.701 6.394 5.75
9

4.98
4

4.406

U(0,1) 11.27
3

11.00
1

11.10
2

11.05
2

11.23
6

11.20
8

11.0
92

11.0
98

10.93
8

N(5,1) 0.129 2.068 13.56
0 

34.40
9

34.03
6

13.49
3

2.15
4

0.14
9

0.002

χ²100 47.80
9

0.00 0.00 0.001 0.053 1.019 6.10
1

17.5
95

27.42
2

Table  3.1.  Probability  of  occurrence  of  each  digit  following  them  different
distributions obtained with Rstudio.

Therefore, the validity of  the NBL requires that the frequency of small  ‘natural’
numbers have to be predominant.  The most common probability distributions are
not exactly NB. However, some parametrized families are close for some specific
values. 

3.6. Convergence

If sets of numbers x1,  …, xN  are independent continuous random variables with
densities f1, …, fN as N → ∞, for many choices of densities, the distributions of the
products converges to NBL and seem to be closer to NBL than its operands.

Definition 3.6.1. As n → ∞ the distribution of the leading digits of Xn converges to
NBL, and further that if X1 is NB then Xn is also NB.

NBL is more robust than we might imagine, not all numbers will conform to NB’s
distribution,  but   if  distributions  are  randomly  selected  and  we  take  random
samples  from  them,  then  the  frequency  of  digits  of  this  combined  set  of
distributions will converge to NBL even if the separate distributions deviate from it
[14].
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3.6.1. Convergence to the uniform distribution

We might  also  remark  that  NBL is  only  useful  for  the  first  digits  because the
distribution of the kth digit tends to U(0,9) exponentially fast as k increases [20] [9].

Figure  3.2.  Plot   for  second,  third   and  fourth  significant  digits  respectively
showing their probabilities.

From the fifth significant digit onwards the difference can barely be seen, if we
take a few decimals it is equal to the graph of the density function of a U(0,9).

3.7. Bayesian approach

There are some problems with some of the stats used in a NB’s analysis such as
in  a  chi-square  test,  as  we  will  see  in  Section  4.  Because  of  this  methods’
weakness we can attend to Bayesian ones because datasets that  reject these
classical tests could still have a good fit to NBL.    

In Bayesian statistics, it is essential the use of an initial distribution or prior, among
others,  although  it  is  a  hard  task  to  explain  its  selection.  The  principle  of
insufficient  reason  establishes that  if  there  is  no  information  to  differentiate
between values other than its parameter θ, the same probability must be given to
them. The principle implies a uniform prior for θ, where if the θ support is infinite,
the prior distribution will be improper. In 1812, Laplace proposed it and it received
many  criticisms   as the  uniform  distribution  is  not  invariant  in  case  of
transformations. This means that it is not adequate for NBL, as we know one of its
main properties is that it is scale-invariant.

In this way, Sir Harold Jeffreys whose considerations on the transformations of a
problem had their beginnings, in order to be able to obtain non-informative priors,
introduced what is known as the Jeffrey’s prior and it is not affected by restrictions

18



on the parameter space, it is reparametrization-invariant. Moreover, it is the unique
prior (on the positive real numbers) that is scale-invariant, so it is suitable for NBL
[5], pp.85–86.

4. Empirical framework

4.1. Conditions for conformity

As we already know, many datasets satisfy NBL and within them, we highlight
those  where  numbers  represent  sizes  of  facts  or  events,  where  they  grow
exponentially or emerge from multiplicative fluctuations or even, some well-known
infinite integer sequences (like Lucas numbers) and the mixture of these datasets.

NBL  also  needs  data  that  are  not  entirely  random  or  highly  conditioned.  For
example,  the result  of  the  lottery  is  completely  random,  each number  has the
same probability of appearing so it is not suitable for NBL.

Other  data  that  do  not  conform  to  the  Law  are  the  numbers  coming  from
evaluating functions such as: x2, x1/2 or 1/x.

Preferably, more than 1000 numbers should conform to this kind of datasets in
order to avoid greater  deviations from the NB’s proportions and no minimum or
maximum values should be incorporated into the data. Some suitable examples
could be : death rates, diameter of planets, accounting transactions, stock prices,
etc.

If our dataset does not conform this Law, this may be due to cases with narrow
intervals for the data observations, numbers used as ids or labels,  e.g.  phone
numbers  or  additive  fluctuations  instead  of  multiplicative  ones  in  time  series
analysis, and the data should also have a larger amount of small numbers than
higher ones, which is intuitive so that the data are not clustered around its mean
value [26].

4.2. Statistical methods

We  select  some  of  the  options  provided  by  Rstudio  libraries  such  as
“benford.analysis”  [7],  which  provide  tools  to  validate   data   with  using  NBL,
“BeyondBenford” [6], which compares the goodness-of-fit of NBL in a dataset and
“BenfordTests”  [10],  which  gives  statistical  tests  for  determining  if  a  dataset
conforms to  NBL.  These options include an analysis  for  the  first  and first-two
significant digits.
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4.2.1. Mantissa ARC Test.

We know mantissae would be uniform over [0,1) and as a proof to test it,  the
Mantissa ARC Test (MAT) was proposed. If the mantissae of a set of numbers are
uniformly distributed on the circumference of a unit circle, the centre of the mass is
at (0, 0) and the represented points on its circumference are equally spaced on it,
in other cases it will be at the distance of L2, where its length is a measure of non-
uniformity and if it is too large the data will not conform to NBL [1]. The centre of
mass is called the mean vector, where its x and y coordinates are :

with angle 2πm(a) where m(a) is referred to its mantissa and a the number . Then,m(a) where m(a) is referred to its mantissa and a the number . Then,
we average each component to obtain the mean vector and compute the distance
L2, which  is the squared euclidean distance,where L2= (mean(x))2 +(mean(y))2 

Figure 4.1. Pie chart of the unit circle with the different probabilities of NBL.

Each portion represents the probability of the first significant digits from 1 to 9
counter-clockwise. The points must lie on its circumference and depending on the
section of the arc they are found, they would have one leading digit or another,
e.g., a number whose first digit is 1, its mantissa will be in any point of the arc of
the first portion, from 0 to 0.301. As mantissae are centred on (0,0), a mantissa= 0
will be on the position (0,1), a mantissa= 0.25 on (1,0), a mantissa= 0.5 on (-1,0)
and a mantissa= 0.75 on (-1,-1).
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The proposed hypothesis shall be:

H0: The mantissa of the observed distribution is uniformly distributed. 

Under this hypothesis, the probability distribution of the size of the mean vector is
precisely calculable. The larger L2, the more likely the null hypothesis H0 is to be
rejected.

The distribution of the squared length of a two-dimensional normally distributed
vector of length 1 is the chi-square distribution with two degrees of freedom, which
is an exponential distribution,  so in Rstudio’s code [7] the p-value is calculated as:

p-value= exp(-(L2)*N ), where N is the length of the dataset.

However it is a very sensitive test and its validity depends on whether the data are
sufficiently dense in the unit circle.

4.2.2. Significand analysis 

This test calculates confidence intervals using the  Normal approximation for each
digit only if N is large,  taking as parameters: 

where i identifies the digit, for the first digit di=1   {1,…,9} and for the first-two∈ ℝ is the unique real number such
digits di=1di=2   {10,…,99}∈ ℝ is the unique real number such , n is the length of the dataset and p i the proportion of
each digit.

Its graphical output in RStudio also gives the frequencies of the first or first-two
digits and the p-value for investigating each individual significant digit [10].

4.2.3. Mean Absolute Deviation 

The mean absolute deviation (MAD) test is a measure of conformity to NBL where
the number of records, N, is not used and there are no objective critical values  [7].
It is calculated as:

where K represents the number of bins.

The higher the MAD, the larger the average difference between the actual and
expected proportions.   
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Following Nigrini’s suggestions [26], a MAD ≤ 0.0012 implies close conformity, a
MAD  [0.0012, 0.0018] as acceptable conformity , a MAD  [0.0018, 0.0022] as∈ ℝ is the unique real number such ∈ ℝ is the unique real number such
marginally acceptable  and a MAD≥ 0.0022 presents non conformity.

4.2.4. Chi-Square Test 

The chi-square (χ2) test performs a goodness of fit test for the first and first-two
digits [7].

Analysing the first digit , we compare the frequencies of the first significant digits of
the chosen variable in a dataset with NB's frequencies with the same length N, so
it compares these frequencies one by one and prints the corresponding plot. Of
course,  for  finding  NB’s  frequencies  we need  to  use the  first  digit  distribution
formula (Definition 3.1.1) and then multiply it by N. 

For the first-two digits, it follows the same principle as the previous explanation but
it  uses the first-two significant  digits  and Definition  3.1.5.  It  is  more useful  for
finding  biases  in  data  and  at  detecting  invented  numbers.  A  weak  fit  to  NBL
usually suggests risk of errors, fraud or that the data are not suitable to conform
NBL. 

Then, since we have calculated the parameters needed in the formula below:

where K represents the number of bins, N, the number of observations, θj  is the
observed frequency of digit j, and f(j) is the frequency of digit j implied by Benford’s
law. The number of degrees of freedom will be K–1.

H0: the sample comes from the distribution with probability density function {f i}i=1…n 

The problem is that it is drastically affected by sample size, as it increases the
results could be unfavourable to NBL. 

Aside from this, the real datasets used will never conform perfectly to this law, we
should not focus only on the significance of p-values. 

The chi-square and K-S tests evaluate all the digits at the same time. These tests
only tolerate  small  deviations  from NBL for  large N.  For  this  reason,  the  best
solution could be the MAD test because it does not take into account the number
of records [26].
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4.3. Real datasets

4.3.1. Introduction

There have been plenty of publications about newly discovered NB’s datasets and,
as they are mainly carried on by physicists and computing scientists, we are going
to put this into practice too. Among the elements of a list of datasets that follow
this Law, we can find the list of constants and measurements in physics, long
series  of  floating-point  operations,  financial  and  accounting  data  or  population
datasets (Census data). The latter cases will be the ones chosen in our research.
In  the  second  dataset  proposed  we  will   try  to  detect  possible  manipulations
following the indications  from a dataset already analysed, described in Nigrini’s
book [26] and the data are included in RStudio, data(“sino.forest”), where we will
show  its main characteristics in order to learn how to detect fraud. 

Consequently,  our main aim here will  be to guess if  these real-world  datasets
conform or not to NBL, or even, if they present some fraudulent indications, mainly
following Nigrini’s instructions from his book and it is also worth noting RStudio
software.

4.3.2. 1st Dataset: “Municipal population“

We have  selected  a  dataset  from the  INE’s  website,  the  National  Institute  of
Statistics  (https://www.ine.es  )  ,  about  socio-demographic  data  of  the  registered
population on 1st January 2019. (The dataset is available at [17] → “Población
empadronada a 1 de enero de 2019” →  Población de 60 o más años por sexo:
Mapa municipal y de secciones censales →  Descarga de ficheros).

We have depurated our data which are eventually made up of 8132 observations
and  only  four  variables,  which  include  “Municipality”,  “Age”,  “Sex”  and “Total”,
where  in  the  latter  we  will  put  special  interest  as  it  indicates  the  number  of
inhabitants per municipality. 

The  data  belong  to  a  wide  interval  of  values,  corresponding  to  sizes  of  the
aforesaid fact, where they do not have any relationship among them, in principle.
The primary conditions seem to be met and our dataset will be referred, from now
on, as “Municipal population“.

In a brief summary of the dataset, we see how the median differs a lot from the
mean  but  this  is  because our  country  lives  in  a  painful  paradox:  Spanish
population  has  increased  by  about  36%  since  1975, but  this  increase  in  the
population is not balanced, the population is more concentrated in big cities such
as  “Madrid”  and  “Barcelona”  (as  we  have  proved  with  a  chi-square  test  for
detecting outliers), whose number of inhabitants is too large in comparison with
almost  the  rest  of  Spain,  making  this  fact  mean  value  much  higher  than  the
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median. For this reason, the density function of our data are right-tailed, putting
more mass on small values, so it follows some of the conditions presented before
to fit the NBL. 

Min. 1stQuant Median Mean 3rdQuant Max.
Total 3 154 525 5784 2392 3266126

Table 4.1. Summary of the variable Total from “Municipal population”.

In  order  to  continue  with  the  NBL’s  study,  we  need  first  to  calculate  the
frequencies of the first significant digits as well as compare them with the expected
values as follows:

First Digit Frequency First digit 
proportions

NB
probabilities

Absolute
Difference

1 2471 0.3039 0.301 0.0029
2 1464 0.1801 0.176 0.0041
3 1011 0.1243 0.125 0.0007
4 734 0.0903 0.097 0.0067
5 674 0.0829 0.079 0.0039
6 526 0.0647 0.067 0.0023
7 478 0.0588 0.058 0.0008
8 386 0.0475 0.051 0.0035
9 387 0.0476 0.046 0.0016

Table  4.2.  Frequencies,  proportions  and  absolute  differences  from  “Municipal
population” compared with NB proportions, d1 ϵ {1,…,9}.

The best adjusted observed frequencies are those for the digits d1= 3 and d1= 7,
while d1= 4 is the worst and therefore this digit will be the one that least fits the
curve set according to NB’s conditions. These differences are represented as:

Figure 4.2. Absolute differences of the first significant digits.
- In red, the highest one corresponds to digit 4, in green the two-lowest ones.
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It is easier to understand if we visualize it and thanks to the table below we can
now plot a graph for the first digit, we see how our data follow NBL’s behavioural
patterns without anomalies and the differences of the observed and the expected
data are not alarming at all. 

Figure  4.3.  The  first  plot  shows  the  distribution  of  the  first  significant  digits
comparing the observed probabilities vs. NB's ones by using a red dotted line. The
second one represents the same but using  the second significant digit [6].

Our study will focus on the first significant digits and the first-two, however we will
graphically show the distribution of the second digit,  in order to apply what we
explained  in  Section  3.5.  about  the  convergence  to  the  uniform  distribution.
Comparing the graphs in Figure 4.3., the probabilities values in the second plot
decrease in a more progressive way, trying to approach a uniform distribution as
we increase the digit. 
 
Digit 0 1 2 3 4 5 6 7 8 9
Prob 0.121 0.118 0.107 0.102 0.099 0.098 0.092 0.09 0.094 0.077
NB 0.119 0.114 0.109 0.104 0.100 0.097 0.093 0.09 0.088 0.085

Table 4.3. Probabilities’ table of the second significant digit, d2  ∈ {0,…,9}.

Nevertheless, the study does not finish here, just studying the first significant digit
is not enough to assess NB’s conformity. In the case of the first-two digits, the plot
also shows that the data do have a tendency to follow NBL without any notable
discrepancy.
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Figure  4.4.  Plot  for  the  first-two  digit  distribution  and   chi-square  differences
respectively,  where  the  second  plot  uses  the  squared  differences  of  the
frequencies [7].

Note that for the chi-square test we use the frequencies instead of the proportions 
and for plotting its results the squared differences of the frequencies are needed.

Graphically, the Chi2  differences show that digit 13 has the largest deviation. We
complement this showing now the “suspects table”, created as a data frame with
the first-two digits  of  the absolute differences between expected and observed
frequencies in decreasing order. It  allows us to detect which digits present the
greater deviation from the expected distribution. 

Digits Absolute difference
13 42.69
11 35.74
10 33.44
18 26.08
22 26.03

Table 4.4. The five largest deviations from data ”Municipal population”.

Digits 13 shows up as the first to appear in our table with an absolute difference of
42.69 as the highest one. By contrast, the lowest one corresponds to digits 22 and
takes  the  value  of  26.03.  Therefore,  11  and  13  represent  these  suspicious
numbers. We have found that the frequency of  the first-two digits as 11 is 343
and for 13, 219.

Moreover, expanding the content and relating our results with what we know about
the characteristics of the Spanish population, we should remark that Spain is the
country with the largest population over 60 years but population under this age
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tend to live in the most populated areas as we can see in the plot below, so the
rest of our country consists almost of this aged population.

Figure 4.5. Map of Spain with the municipality and census data levels. The legend
shows the percentage of the population aged 60 or over [28]. 

- On the one hand, our autonomous community leads  this ranking, on the other
hand, Madrid, Western Andalusia and the islands show the lowest percentage of
population  aged  over  60  or  more,  meaning  that  a  younger  population
predominates over these areas.

We have to look now at the duplicated digits, in our variable Total we have:

Total’s values Duplicates
56 29
33 28
57 27
106 25
22 25

Table 4.5. The most duplicated first-two digits in descending order of appearance.

The number 56 appears duplicated 29 times and the 33,  28 times,  where we
highlight  municipalities  from  Castilla  y  León,  as  we  might  expect,  and  more
specifically  we  remark  the  provinces  of  Ávila and  Burgos,  because  the  Total
values  obtained  are  low and  our  community  is  mostly  unpopulated  with  aged
population.

27



Some municipalities’  examples which belong to Castilla La-Mancha, in the first
case, and Castilla y León in the other cases are:

Municipality Total
Villa de Ves 56

Aguas Cándidas 56
Villar de corneja 33

Hoyos del Collado 33
Table 4.6. Examples of Municipalities with the first-two most duplicated values.

Following the  previous explanations,  these  low numbers  of  inhabitants  appear
more often than the rest indicating a low rate of usually aged population which is
concentrated in certain areas as it can be seen in the map.

We can perform a Significand analysis [10], where for the first digit, the significant
p-values at 5% correspond only to the digit 4, p-value4= 0.0430, so close to the
significance level. If we remember, it was the digit with the largest deviation. For
the first-two digits,  looking at  the p-values for  each digit  𝑑1𝑑2   {10,...,99},  the∈ ℝ is the unique real number such
significant ones correspond to:

𝑑1𝑑2 frequency p-value
11 343 0.03764932
13 219 0.00730326
39 70 0.03906579
58 80 0.01119117

Table 4.7.  Frequencies and significant p-values of a significand analysis for the
first-two digits.

See the relationship with what we have commented before, digits  11 and 13 were
already highlighted as  the  first-two digits  with  largest  deviations.  The p-values
related to 𝑑1𝑑2=47 and 75 are close to the significance level.
As regards the mathematical background of NBL, we are going to put into practice
what we explained before. 

Pinkham’s  proof  [27]  about  the  scale  invariance  property  consists  of  the
multiplication by a constant of  a certain group of data where their  distributions
functions of mantissae will return the same distributions. We proceed the same
way, by multiplying our variable Total by several different constants > 0 (we also
need to calculate  the mantissae where we add this constants instead of multiply
them due to logarithm properties) and we perform a different Mantissa Arc Tests
for each result of multiplying by the selected constant obtaining the same values:

The statistical  result is: p= 6.7773e-05. and there is not strong enough evidence to
reject the p-value= 0.5763 at a 5% significance level. 

We conclude that our mantissae are uniformly distributed  and they have taken
these values:

28



Statistic Expected value Observed value 
Mean 0.5 0.495

 Standard deviation 0.288675 0.289826
 Kurtosis -1.2 -1.195
Skewness 0 0.014

Table  4.8.  Summary  statistics  of  the  log  mantissa  from  data  ”Municipal
population”.

where  the expected values show the properties if the mantissae were perfectly
distributed U(0,1) and the results show how they are really close to them.   

Consequently,  we  have  tested  the  scale  invariance  property  and  that  our
mantissae are uniformly distributed.

Finally, analysing the proposed statistics, for the first and first-two digits, we have: 

First Digit  First-two digit 

MAD                        0.00292753 0.0009472796

Conformity Close Close
χ² and df Χ²=9.5415, df =8 Χ²=89.807, df =89

χ² p-value 0.2987 0.4561

K-S 0.61579 0.85595

K-S p-value 0.4846 0.3585
Table 4.9. Main statistics for first and first-two digits.

The “MAD Conformity” by Nigrini [26] says that our data have “Close Conformity”
to the Law in both tests as its value is ≤ 0.0012.

As to the  Chi-Square test,  χ²,  where if  we remember the degrees of freedom
where  K-1 ( this is why in the first test applied they are only eight and in the
second one, 89). H0 will be rejected if χ² is large. But as N is large, χ² also tends to
be large. However, the p-values are not statistically significant, as they are higher
than 0.05, so the null hypothesis is fulfilled.

The  acceptance  of  H0  suggests  that  the  data  represent  accurately  the  true
behaviour of the variables measured and that the data follow the NB distribution.
However, it is not warranted and its validity should be tested by contrasting results
with other data quality metrics. It can be seen as a limit of the Neyman-Pearson
theory.

The problem of goodness-of-fit in here is that it is a large dataset and the χ2 is not
that precise. The simple distance to NBL that we have also used is more useful in
these cases but it also presents an absence of accuracy and it depends on the
data. 

The Kolmogorov-Smirnoff test is also chosen here, it is a nonparametric test to
determine the goodness of fit of two distributions, where one of them will be the
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NB distribution.  The  p-values  obtained  for  the  first  and  first-two digits  are  not
significant, so our data follow the NB distribution.

Although we discuss the results of the p-values during the study, it is worth noting
real data will never conform perfectly to NBL so we might not focus on them.

To conclude, our dataset's choice has been guided by the fact that it is one of the
types of datasets in which NBL has been conformed to, thanks to it we can also
confirm that our dataset does follow NBL, where its results show a good fit to the
Law despite the limitations. Because of this,  the municipal  population in Spain
seems to have smaller digits which occur more often than greater ones.

4.3.2. Fraud detection guide

We are going to study a famous example of fraud detection described by Nigrini
[26]. He denoted the corresponding section in his book as “Can’t see the forest for
the trees”. Let us summarize his study and  prove the results.

The data  consist  of  772  observations  about  financial  statement  numbers  from
Sino-Forest  Corporation,  which  was  one  of  the  leading  commercial  forest
plantation operators in China  known for a research report in June 2011, due to
this company reduced its stock price by almost 78% in a few days. The financial
statement numbers were analysed and it was discovered that many information
required have been omitted made with the intent to deceive. In 2012, the company
filed for bankruptcy protection and also announced that it would be sold. 

Studying the first-digits, the plot shows how the digits are close to NB’s curve, in
red, looking at the MAD= 0.0065988135, it indicates “Acceptable conformity” and
the largest deviation corresponds to digit 8. The first-two digits plot fits worse the
NB’s curve and the MAD= 0.003463887 indicates “No conformity” to the Law.
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Figure 4.6. Plot for the first-digit and first-two digits frequencies’ respectively [7].

Following with the first-two digits,  the largest  deviation is  for  87,  where Nigrini
remarks that it is interesting that there is a spike at 87 but not at 88. If we look for
duplicates we obtain several numbers which include those whose first-two digits
are 87. The number 87670 is duplicated 5 times, 87670000, 3 times and all  of
them are related to the same debt instrument; 8756, which appears 3 times, is
also involved in this transaction. However, duplicates do not imply fraud.

Although  the  dataset  does  not  conform  NBL,  and  this  is  an  indicator  of
irregularities, deviations are not extreme. The spikes in the second plot showed
repetitions of the same item, but only with the digit patterns we cannot conclude
anything about the reported numbers, as  there are simply  few numbers in the
dataset  to accurately signal fraud and to achieve a good fit we need more than
1,000 entries  [26].  However, some years later,  in 2017, after the publication of
Nigrini’s book, it was released that Sino-Forest had committed fraud.

4.3.3. 2nd Dataset- “Stock Price(2012-2016 )”

In our demographic dataset there is no reason to think about fraud, however in
fields of economy things change, let us now study a dataset related to the five year
daily  stock  price  information,  from  2012  to  2016,  of  the  Japanese  Company
FastRetailing (Uniqlo), which is a public retail holding company. 

The source of the dataset is Kaggle’s website [19] and it is made up of data about
this organization’s purchases and sales of securities, where our main purpose is to
identify suspicious data that will need further verification.
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The chosen dataset consists of 1226 observations and 7 variables which include:
Date, open, High, Low, Close, Volume and Stock.Trading. We are going to select
the last variable, which collects information about the buying and selling of shares
in the company and it  has the widest range of values. As a brief description we
have:

Min. 1stQuan Median Mean 3rdQuan Max.
Total 3.966e9 1.454e10 2.154e10 2.441e10 3.016e10 1.460e11

Table 4.10. Summary of the variable Stock.Trading from “Training Data”.

First Digit Frequency First digit
proportions

NB
proportions

Absolute
Difference

1 418 0.3409 0.301 0.0399
2 371 0.3026 0.176 0.1266
3 182 0.1485 0.125 0.0235
4 66 0.0538 0.097 0.0432
5 41 0.0334 0.079 0.0456
6 33 0.0269 0.067 0.0401
7 47 0.0383 0.058 0.0197
8 33 0.0269 0.051 0.0241
9 35 0.0286 0.046 0.0174

Table 4.11. Frequencies, proportions and absolute differences from “Stock Price”
compared with NB proportions, d1 ϵ {1,…,9}.

We highlight the differences mainly between 1 and 2, being the last one more
noticeable than usual. From d1=4 onwards the differences begin to be smaller than
NB’s proportions and this fact will be reflected in Figure 4.10. where we will see
how these proportions are not going to reach NB’s curve. 

Now we are going to focus on the first-two digits as they are more suitable for 
detecting fraud:

Figure 4.7. Graph for the first-two digits and chi-squared test respectively [7].    
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It is easy to appreciate how the first three dozens surpass the red dotted curve by
far, but the majority of the values after d1d2=40 do not even reach NB’s curve so
we highlight overall the first part of the graph. Reinforcing what has been said with
the  help  of  the  second  plot,  we  can  see  that the  five  largest  deviations  in
descending order come from the digits 22 , 15, 21, 23 and 25, where all of them
belong to the interval  [15,  23]  ,  a narrow interval  which may arouse suspicion
about some kind of manipulations over this area. 

Moreover, we find how digits one and two differ the most only looking at the first
digit:

Figure 4.8.  Plot of the distribution of digits comparing the observed probabilities
(light blue) vs. Benford's ones (blue), for the first and second digits respectively
[6].

Taking now the mantissae of this variable we obtain: (suppose the mantissae are
uniformly distributed [0,1) and whose properties are the following)

Statistic Expected value Obtained value
Mean 0.5 0.420

Standard deviation 0.288675 0.246982
Kurtosis -1.2 -0.396

Skewness 0 -0.562
Table 4.12. Summary statistics of the mantissa.

The obtained values differ much more than in the first dataset, the skewness now
is negative. The mantissae does not seem to be perfectly distributed, although we
will  complete it  with the Mantissa Arc Test, where its p-value is rejected  so a
significant  difference  does  exist indicating  that  our  suspicions  have  been
confirmed. 
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Therefore, we can see how they tend to cluster in the plot.

Figure 4.9. Points on the unit circle to evaluate Mantissa Arc Test for the first-two
digits. Note that the circumference is slightly flattened, like a geoid, in order to
improve the vision of the points.

The K-S and  χ² tests are also rejected and the MAD=0.005100875 shows non
conformity to the law, as it is ≥ 0.0022.

In closing, NBL is not conformed but the graphs seem to be similar to the curve
that it produces, except for the first digits when analysing the first-two digits. 
We have found several suspicious observations and we know that a weak fit to
NBL means that there is a high risk the data contain anomalies. 
Therefore, can we say that this is a case of fraud? Stock prices are referred to the
current price that a share of stock is trading for, this can lead us to think that the
company tended to change those prices in order to benefit themselves according
to its own interests, but these are just mere assumptions. However, we should
remember that the manipulation of stock prices can happen quite easily depending
on the entity’s trading power and this kind of event happens more often than we
could imagine, but let us leave this to economic specialists as we do not know the
company’s economic history or trajectory.
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4.4. Applications

The applications of the NBL are of great interest since from them it  has been
possible to develop much of the theory. These applications considerably increased
with the arrival of computing, where huge masses of data need to be used [20].
The prevailing domains are:

4.4.1. Computation and Computer design

In the 70’s, its use resurfaced with the arrival of computers where its application
was in computation and in the design of computers. NBL took part mainly in the
consideration of the distribution of computers’ operands, in number representation.
Significands are essential in floating-point arithmetic, where extremely large and
small quantities of real numbers  can be represented efficiently. This real numbers’
codification requires a number of bits and depending on a certain pattern on the
significand, a choice shall be made in order to optimize speed and storage.

The NBL can also be used to analyse different types of computational errors, e.g.,
round-off errors in the computation of products, to design algorithms in order to
estimate  their  parameters’  values  as  well  as  in  the  design  of  hardware  and
software,  e.g.,  Hamming  proposed  a  design  problem which  can  be  solved  by
applying NBL where he had to find a place to put the decimal point in his data in
order to minimize the number of shifts in products.

4.4.2. Modelling

Another  application  used  is  mathematical  modelling  where  NBL  is  useful  to
evaluate the predicted outcomes of mathematical models. In 1972, H. Varian [31]
proposed the following idea: "If a certain set of values follow Benford’s Law, then
the models for the corresponding predictive values will also follow the Law".

Moreover, NBL has also provided a good diagnostic for selecting certain models in
different types of researches such as an investigation  about  gas and condensed
phases where NBL was the key for a good diagnostic in the selection of dynamical
models or  as a tool for controlling the quality of datasets produced by different
measurement devices.

4.4.3. Fraud detection

Since in 1992 it was observed that financial data fit NBL [32], it has become of
widespread use and this is why fraud detection is its main application. We need to
define  fraud  detection  as  a  fact  typically  committed  by  adding  not  suitable
numbers, changing the real observations with a purpose, mainly lucrative, where
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some of the dataset entries could be sums of others, duplicated, splitted into sums
or even fabricated. In order to detect this kind of trap, NBL has become a popular
tool. 

Some interesting examples include:

 Electoral fraud  : The presidential elections in Mexico in 2006, where certain
districts  were found to  have anomalies in  the votes’  count  because the
distribution of the first digits, especially that of the second, did not conform
to NBL. This led the authorities to a vote recount in order to verify the data
provided by the Federal Electoral Institute [24].

 Tax  return  :  Mark  Nigrini  also  designed  a  computer  program  where  an
example  of  its  applications  was  the  analysis  of  Bill  Clinton’s  tax  return.
Although it revealed that there were probably several rounding instead of
exact figures, there were no indications of fraud. NBL’s method, in turn, has
some  limitations  in  this  field.  Sometimes  the  figures  cannot  be  given
precisely and because of the rounding the first digit of a number, it can be
modified [26]. 

 “White Collar” crimes  : NBL is the clue to detect corporate crimes committed
either  by  a  corporation,  company,  individuals  acting  on  behalf  of  a
corporation, as in the case of  Sino-Forest Corporation,  or business entity,
but studying this possible fraud deeply remains as a task concerning the
relevant economic areas. Consequently, with NBL it is possible to detect a
significant change in the reported figures by companies and/or individuals in
consecutive years, where huge changes would indicate that something is
going wrong.

 Currency impact:   deviations from NBL were found  after the introduction of
the Euro in data from stock index returns, stock prices or consumer prices.
Therefore,  the  application  of  NBL  was  a  useful  criterion   for  detecting
anomalies in data [12].

 Clinical  investigation  :  Recently,  a  research  about  COVID-19  has  been
carried out using NBL. It consisted of  an analysis of the registered cases of
people infected with  the COVID-19   in  23 different  countries.  After  the
appliance  of  some tests,  which  include  MAT,  Chi-square  test,  etc.  The
results have shown that countries such as Italy, Portugal, Netherlands, UK,
Denmark, Belgium and Chile are suspicious of data manipulation as they do
not conform NB’s patterns. However, it needs further study in order to verify
it.
There is  a thing that  draws our  attention and it  is  that  the sample was
randomly selected, where 11 out of 23  countries were European ones, so
almost  50%.  However,  after  applying  NBL,  the  possible  cases  of  fraud
belong  in  its  majority  to  these  European  countries,  except  one,  Chile.
Nevertheless,  authors consider that  they  must  wait  until  the end of the
pandemic to ensure what has been found and the source of the publication
is not so reliable [18].
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4.4.3.1. Machine learning

As NBL is a well-known procedure used in these fields, machine learning can be
analysed for studying its behavioural patterns.

The task which concerns it, would be the selection of the classification rule which
would be based on whether a dataset is fraudulent or not  with a dichotomous
variable that splits those chosen examples to fraud or legal ones.   For example,
the use of machine learning methods could be of interest if we had a dataset made
up of information about other datasets at the same time. Thanks to this machine
learning, we will improve forecasting to identify better the possible cases of fraud
committed.

NBL  also  stands  out  in  other  fields  such  as  diagnosis,  detecting  natural
phenomena,  as  a  pedagogical  tool,  verification  of  demographic  models,  in
deciding the allocation of computer disk space, as a mean to identify  problems
with survey data, self-reported ratings, macroeconomic data quality, etc.

5. Conclusions

The purpose of this project is to summarize the most important aspects of NBL
due to it is regaining its importance gradually as more findings are being made
about it.
To close what we mentioned in the introduction, we have tried to convey the core
concepts of the Law showing both mathematical and empirical frameworks:
On the one hand, in the mathematical background, we have seen how the first
significant digits in nature does not follow a uniform distribution, how NBL meets
different types of invariances and we have also studied its convergence and even
some famous sequences and common distributions  and how they follow NB’s
patterns. 
On the other hand, in the empirical background, we have put NBL into practice
with two real datasets concluding that the first dataset does conform to NBL but
the second one not, perhaps due to possible fraudulent actions.
Accordingly, we have tried to regroup and check the most relevant information that
involves this  Law.  However,  there is  something still  incomplete  with  NBL, and
maybe it is referred to the linkage of both frameworks, which keeps this law under
constant review, or to the fact that it is not applicable to all datasets. In spite of
this,  NBL usually presents a good fit to empirical data because small objects or
digits occur more often than do medium ones and they, in turn, occur more often
than larger ones. It seems that these frequencies of occurrence follow an inverse
function according to the objects’ or numbers’ sizes [12]. For this reason, inside
datasets or other domains, NBL is usually conformed but we do not have a clear
proof of it, e.g. the closing prices of stocks, the numbers of inhabitants, etc.  We
can conclude thanks to all of our work, that NB’s distribution is non-uniform, with
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smaller digits being more likely than larger ones, as can be seen empirically and
data from any distribution will tend to follow NBL, as long as the distribution spans
several orders of magnitude on the original scale and as long as the distribution is
reasonably smooth.

12We want also to give credit to all the authors mentioned, but especially to Mark
Nigrini, even though he is not a scientist, his work on NBL is noteworthy because
of its ease of understanding and usefulness today which have been helpful for us
to comprehend the law properly. Thanks to him, this law has regained its interest
and has became more popular, being its use now almost indispensable in certain
areas, especially in the field of the economy, where this law is growing more and
more because of its utility in terms of auditing and fraud detection ( due to NBL’s
application gives us the opportunity to know if a random dataset is fraudulent or
not  as  deviations  from  NBL  can  be  caused  by  irregularities  or  anomalies).
Therefore,  more countries are adding to the use of the Law, like Nigrini’s native
country, the USA, where NBL is free to apply.
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6. Appendix

#Load packages
library(ggplot2)
library(dplyr)
library(stringr)
library(magrittr)
library(benford.analysis)
library(BeyondBenford)
library(BenfordTests)
library(sm)
library(outliers)
#colours
library(viridis)

########3.Mathematical justification.#########

#3.1.The first digit distribution
#Figure 3.1
#The distribution of the first significant digit
benfd1 <- log10(1+1/(1:9)) # log(1+1/(1:9), base = 10)
data.frame(benfd1)
#generation of a uniform(0,100)
N <- 1000
x <- runif(N, 0, 1)
freq <- fd1(x)
freq
#Plot
df <- data.frame(x = 1:9, y = benfd1)
ggplot(df, aes(x = factor(x), y = y) ) + geom_bar(stat = "identity", fill=heat.colors(9))
+
  xlab("First  Digit")+ylab(NULL)
+geom_line(data=freq,aes(x=Var1,y=Freq,group=1),colour="black",size=2)+
 geom_point(data=freq,aes(x=Var1,y=Freq,group=1),colour="black",size=4,pch=2
3,bg="black")

#################################################################
#3.5.Relation with the main distributions
#For explaining Formann's paper for the first digit
#Simulation  for the first digit
simd1<- function( distro, ..., n = 100000 ){

 digit <- distro( n, ... )
 digit <- as.character( digit[ digit > 0] )
  digit <- strsplit( digit, "" )
  first<- function( x )
    x[ ! x %in% c( "0", "." )][1]
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  digit <- unlist( lapply( digit, first ) )
  table( digit ) / length( digit )
}

#Cauchy(0,1)
simd1( rcauchy )
#Changing its parameters
simd1( rcauchy,5,1)

#Exponential(1)
simd1( rexp, rate = 1 )

#Normal(0,1)
simd1( rnorm,0,1)
#Changing its parameters
simd1( rnorm,5,1)

#Uniform (0,1)
simd1(runif)
#similar results U(0,100)
simd1(runif,0,100)

#Ch-sqare df=1
simd1(rchisq,df=1)
#worse results, chi-square df=100
simd1(rchisq,df=100)

#Other distributions:
simd1(rlogis)
simd1(rlnorm)
#F distribution
simd1(rf,df1=1,df2=1)
#worse results
simd1(rf,df1=100,df2=100)

################################################################
#3.6.Convergence
#First two-digits, from 10 to 99
par(mfrow=c(1,3))
benford1d2=log10(1+(1/((10:99))))
names(benford1d2) = 10:99
aux = 10:99 - floor(10:99/10)*10
benford2  =  (data.frame(v1  =  benford1d2,v2  =  aux)  %>%  group_by(v2)  %>%
summarise(v1 = sum(v1)))$v1
names(benford2) = 0:9
barplot(benford2, xlab = "Second Digit", 
        ylim = c(0, .12),ylab="probabilities",col= colorRampPalette(c('blue', 'red'))
(10),main="NB's probabilities")

40



#We check both sums
sum(benfd1)#1
sum(benford1d2)#1

#we pass the probabilities directly
#third significant digit
x3=c(0.10178,0.10138,0.10097,0.10057,0.10018,0.09979,0.0994,0.09902,0.0986
4,0.09827)
barplot(x3, names.arg = 0:9, xlab = "Third Digit", 
        ylim = c(0, .11),ylab="probabilities",col= colorRampPalette(c('blue', 'red'))
(10),main="NB's probabilities")
#fourth significant digit
x4=c(0.1002,0.1001,0.1001,0.1001,0.1,0.1,0.0999,0.0999,0.0999,0.0998)
barplot(x4, names.arg = 0:9,ylab="probabilities",xlab = "Fourth Digit", 
        ylim  =  c(0,  .11),col=  colorRampPalette(c('blue',  'red'))(10),main="NB's
probabilities")

#Same probabilities for the fifth significant digit
#x5=c(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)
#barplot(x5, names.arg = 0:9, xlab = "Fifth Digit", 
      #  ylim = c(0,  .11),ylab="probabilities",col=col= colorRampPalette(c('blue',
'red'))(10),main="NB's probabilities")

#################################################################

#4.2.1. Mantisa Arc Test (MAT)
#Plots for the explanation of MAT
bfp=c(0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046)
#con ggplot
ggplot(df, aes(x = "", y = y,fill=y,labels = bfp )) +
  geom_bar(width=1,stat = "identity")  + 
  coord_polar("y", start=3*pi/2,direction=-1)+
  scale_color_viridis(discrete = FALSE, option = "C")+
  scale_fill_viridis(discrete = FALSE) +ggtitle("Unit circle with NB's proportions")

#Plot for the mantissa arc test in the first dataset: municipalitys population
plot(0,0,asp=1,type="n",ann=F, xlim = c(-.5, 0.5), ylim = c(-1,1))
mantisa=as.numeric(datosBenford$LogTotal)-Ent
t=2*pi*mantisa
abline(v = seq(-1, 1, 0.5), lty = 2, col = "gray50")
abline(h = seq(-1, 1, 0.5), lty = 2, col = "gray50")
x = cos(t)
y =sin(t)
points(x,y,col="black")

#Plot for the mantissa arc test in the third dataset: stockPrice because MAT is
rejected
plot(0,0,asp=1,type="n",ann=F, xlim = c(0, 0), ylim = c(0,0))
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stockPrice$LogVolume=log(as.numeric(stockPrice$Volume))
Ent<-floor(as.numeric(stockPrice$LogVolume))
mantisa=as.numeric(stockPrice$LogVolume)-Ent
t=2*pi*mantisa
abline(v = seq(-1, 1, 0.5), lty = 2, col = "gray50")
abline(h = seq(-1, 1, 0.5), lty = 2, col = "gray50")
x = cos(t)
y =sin(t)
points(x,y,col="dark blue")

#Plot for the mantissa arc test in the second dataset: sino.forest
plot(0,0,asp=1,type="n",ann=F, xlim = c(0, 0), ylim = c(0,0),main="Mantissae on
the unit circle")
sino.forest$Log=log(as.numeric(sino.forest$value))
Ent<-floor(as.numeric(sino.forest$Log))
mantisa=as.numeric(sino.forest$Log)-Ent
t=2*pi*mantisa
abline(v = seq(-1, 1, 0.5), lty = 2, col = "gray50")
abline(h = seq(-1, 1, 0.5), lty = 2, col = "gray50")
x = cos(t)
y = sin(t)
points(x,y,col="gray")
plot(mantisa,main="Points on the unit circle")

#################################################################
#4.3.2. Municipal population

#Registered population at 1 January 2019, population aged 60 or over
#Corrected dataset due to the use of "ñ" and tildes in the original
#we took the rows for both genders
#We change the names
datosBenford1=read.csv2("C:/Users/Admin/Desktop/
Benford'sLaw.History,mathematical  justification  and
applications/Datasets/pob60ymas_mun.csv",sep=";")
names(datosBenford1)=c("Municipio","Edad","Sexo","Total")
datosBenford1$Edad=as.factor(datosBenford1$Edad)
levels(datosBenford1$Edad)=c("Poblacion de +60","Poblacion total")
datosBenford2=datosBenford1[datosBenford1$Sexo=="Ambos sexos",]
#For total age, the dataset conforms NBL. From datosBenford2
datosBenford4=datosBenford2[datosBenford2$Edad=="Poblacion total",]
datosBenford=datosBenford4[-c(1),]

head(datosBenford)
attach(datosBenford)
barplot(table(Total),main="Barplot for Total")
dens=density(Total)
plot(dens)
#For first digit proportions
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prop <- Total %>% 
  as.character() %>% 
  str_extract(pattern = "[^0\\.]") %>% 
  substr(1,1)
prop <- factor(prop, levels = 1:9)
table(prop) %>% prop.table()

#Brief study of our data
#Removing madrid obs. as the largest
datosBenford$num=1:nrow(datosBenford)
#related to outliers obs. num. 4369 and 883
datosBenfordOut=datosBenford[-c(4369,883),]
summary(datosBenfordOut$Total)
#Outliers
chisq.out.test(datosBenfordOut$Total)
#The plots remain similar
#We avoid this, coming back to the begginning -> datosBenford
#Density
hist(datosBenfordOut$Total)
sm.density(datosBenfordOut$Total)
#main statistics of ben
getBfd(ben)

#datosBenford=as.data.frame(datosBenford)
#No NA's
#Generates Benford objects
#For first two digits
ben=benford(datosBenford$Total,2)
ben 
plot(ben)
#For first digit 
ben1=benford(datosBenford$Total,1)
ben1
plot(ben1)
#plotting the differences between empirical frequencies proportios and NB ones.
x=c(0.0029,0.0041,0.0007,0.0067,0.0039,0.0023,0.0008,0.0035,0.0016)
absDif=data.frame(x = 1:9, y = x)
ggplot(data = absDif, mapping = aes(x = factor(x), y = y,col=heat.colors(9)))+

  geom_point()+geom_line()+labs(x="Digits")+ggtitle("Absolute difference")

#Scale invariance

mantissa(ben)
#To calculate the mantissas through the logs of the observations
datosBenford$LogTotal=log(as.numeric(datosBenford$Total))
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sortLog=sort(datosBenford$LogTotal, decreasing = FALSE)

#Plot for ordered logs
old.par <- par(no.readonly = TRUE)
par(bg = "gray98")
par(col.axis = "black")
par(col.lab = "black")
par(font.lab = 4)
par(font.main = 4)
plot(sortLog,cex.lab=0.8,pch=24,bg="7",col = "honeydew4",main="Ordered logs of
total population", ylab="Log of total population", xlab="Rank",col.axis="dark gray")

#First way for finding the mantissa
Ent<-floor(as.numeric(datosBenford$LogTotal))
datosBenford$mantissa=as.numeric(datosBenford$LogTotal)-Ent

#Second way applying Nigrini's formula
N=8132
datosBenford$mantissa2= ((rank(datosBenford$mantissa)-1)/N) + (1/(2*N))

#Multiplying by a constant
datosBenford$mantissaChange=as.numeric(datosBenford$mantissa)+3.162
datosBenford$mantissaChange2=as.numeric(datosBenford$mantissa2)+3.162
datosBenford$Total2=as.numeric(datosBenford$Total)*3.162

scaleInv1=data.frame(datosBenford$Municipio,datosBenford$Edad,datosBenford$
Sexo,datosBenford$Total2,datosBenford$mantissaChange)
benford(scaleInv1$datosBenford.Total2)

#by 1.5
datosBenford$mantissaChange=as.numeric(datosBenford$mantissa)+1.5
datosBenford$mantissaChange2=as.numeric(datosBenford$mantissa2)+1.5
datosBenford$Total2=as.numeric(datosBenford$Total)*1.5

scaleInv2=data.frame(datosBenford$Municipio,datosBenford$Edad,datosBenford$
Sexo,datosBenford$Total2,datosBenford$mantissaChange)
benford(scaleInv2$datosBenford.Total2)

#by 9
datosBenford$mantissaChange=as.numeric(datosBenford$mantissa)+9
datosBenford$mantissaChange2=as.numeric(datosBenford$mantissa2)+9
datosBenford$Total2=as.numeric(datosBenford$Total)*9

scaleInv3=data.frame(datosBenford$Municipio,datosBenford$Edad,datosBenford$
Sexo,datosBenford$Total2,datosBenford$mantissaChange)
benford(scaleInv3$datosBenford.Total2)
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###################################
#For getting duplicates
getDuplicates(ben, datosBenford)
duplicatesTable(ben)
getDuplicates(ben1, datosBenford)
duplicatesTable(ben1)
###################################
#suspicious data
suspects <- getSuspects(ben, datosBenford)
suspects
suspectsTable(ben, by="absolute.diff")
####################################
#extract the first digit
datosBenford$first_digit=substr(Total,1,1)
#extract the second digit
datosBenford$second_digit=substr(Total,1,2)
attach(datosBenford)
#Filter amounts starting with the suspected digit:
suspects_orders1 <- subset(datosBenford,first_digit== 1)
suspects_orders1
summary(suspects_orders1)
suspects_orders2 <- subset(datosBenford,second_digit== 13)
suspects_orders2
summary(suspects_orders2)
#Filter amounts starting with the suspected digit:
suspects_orders1
summary(suspects_orders1)
suspects_orders2 <- subset(datosBenford,second_digit== 11)
suspects_orders2
summary(suspects_orders2)
#####################
#Summary of stats
ben$bfd
summary(ben$bfd)
#####################
#dat.distr(datosBenford$Total), for first and first-two digits
digit.distr(datosBenford$Total,  dig=1,  mod="ben",  No.sd=1,  Sd.pr=1,col=c("dark
blue","light blue"))
digit.distr(datosBenford$Total,  dig=2,  mod="ben",  No.sd=1,  Sd.pr=1,col=c("dark
blue","light blue"))
## Measure of Benford's Law goodness of fit code in benford.analysis [7]
#Code behind Chi-square test in [7]
#squared.diff=((empirical.distribution$dist.freq-benford.dist.freq)^2)/
#benford.dist.freq
#chisq=sum(squared.diff)#the chi-squared diff. between data and NB freq.
#chisq.pvalue=pchisq(chisq,df,lower.tail=F)
obs.numb.dig(Total, dig=2)
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obs.numb.dig(Total, dig=1)
#####################
#For different tests, Beyond Tests
help("BenfordTests")
#Kolmorov-Smirnov test
ks.benftest(x = Total, digits = 2, pvalmethod = "simulate", pvalsims = 10000)
#Significand analysis
signifd.analysis(Total,graphical_analysis=TRUE,freq=TRUE,tick_col="red",
                 ci_col="light blue",ci_lines=c(0.05))
#The same for the first two digits
signifd.analysis(Total,digits=2,graphical_analysis=TRUE,alphas=0.05,freq=TRUE,t
ick_col="red",                 ci_col="pink")

##############################Datasets about fraud###################
#4.3.3. Fraud detection guide

data("sino.forest")
benForest1=benford(sino.forest$value,1)
benForest1
plot(benForest1)
benForest=benford(sino.forest$value,2)
benForest
plot(benForest)
#Suspects
suspectsTable(benForest)
getSuspects(benForest, sino.forest)
#Extract the first digits 
left=function(string,char){
  substr(string,1,char)
}
sino.forest$d11=left(sino.forest$value,1)
#frequencies of each digit
obs.numb.dig(sino.forest$value,2)
obs.numb.dig(sino.forest$value,1)

#For getting duplicates
getDuplicates(benForest, sino.forest)
duplicatesTable(benForest)

#################################################################
#4.3.4. Training Data (2012-2016 Stock Price)

stockPrice=read.csv("C:/Users/Admin/Desktop/
Benford'sLaw.History,mathematical  justification  and
applications/Datasets/stocks.csv",sep=",")
attach(stockPrice)
#For first digit
prop <- Stock.Trading %>% 
  as.character() %>% 
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  str_extract(pattern = "[^0\\.]") %>% 
  substr(1,1)
prop <- factor(prop, levels = 1:9)
table(prop) %>% prop.table()

stockbf=benford(stockPrice$Stock.Trading,2)
stockbf
plot(stockbf)
#frequencies of each digit
obs.numb.dig(Stock.Trading, dig=1)
obs.numb.dig(Stock.Trading, dig=2)
#chi2 Test
chi2(Stock.Trading, dig=2, pval=1)
#Suspects
suspectsS<- getSuspects(stockbf, stockPrice)
suspectsS
suspectsTable(stockbf, by="absolute.diff")

#extract the first digit
stockPrice$first_digit=substr(Stock.Trading,1,1)
#extract the second digit
stockPrice$second_digit=substr(Stock.Trading,1,2)
attach(stockPrice)
#Filter amounts starting with the suspected digit:
suspects_orders1 <- subset(stockPrice,first_digit
                           == 1)
suspects_orders1
summary(suspects_orders1)
suspects_orders2 <- subset(stockPrice,second_digit
                           == 15)
suspects_orders2
summary(suspects_orders2)
#Filter amounts starting with the suspected digit:
suspects_orders1 <- subset(stockPrice,first_digit
                           == 2)
suspects_orders1
summary(suspects_orders1)
suspects_orders2 <- subset(stockPrice,second_digit
                           == 22)
suspects_orders2
summary(suspects_orders2)

#For getting duplicates
getDuplicates(stockbf, stockPrice)
duplicatesTable(stockbf)

#Digit distribution comparing observed prob. vs. Benford for first-two digits
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digit.distr(Stock.Trading,  dig=2,  mod="ben",  No.sd=1,
Sd.pr=1,col=c("grey","pink"))
digit.distr(Stock.Trading,  dig=1,  mod="ben",  No.sd=1,
Sd.pr=1,col=c("blue","light blue"))

#Kolmogorov-Smirnov test
ks.benftest(x = Stock.Trading, digits = 2, pvalmethod = "simulate", pvalsims
= 10000)
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