Universidad deValladolid

Facultad de Ciencias

TRABAJO FIN DE GRADO

Grado en Estadistica

Statistical Model Checking in Approximate Computing Systems

Autor: Sergio Pérez Herndndez

Tutor: Luis Angel Garcia Escudero

Resumen

Este trabajo se centra en la prueba de sistemas computacionales aproximados,
comprobando, entre otras cosas, su tasa de acierto y si son utiles. Para es-
tas pruebas se utilizara UPPAAL SMC, una herramienta de comprobacién de
modelos estadisticos.

Abstract

This thesis is focused in testing approximate computing systems, checking,
among other things, its hit rate and if they are useful. For these tests, UP-
PAAL SMC, a statistical model checking tool, will be used.

Acknowledgements

I would like to thank Mr. Josef Strnadel, teacher of the Information Technology
Faculty at Brno University of Technology, for his effort and dedication in helping
me throughout the proccess of creating my thesis.

Contents

2 Background: Statistical Model Checking]

I3 Choice of Implementation Areas and Means|
3.1 Implementation Areas| L.
[B.I.1 Approximate logical multiplier]
8.1.2 DRAM memory|

4 "Evaluationl

4.1 Tests on multiplier based on gate networks|

4.2 lests on multiplier based on truth tables|.

4.3 omparison of the two implementations|

5 _Conclusions

11
12
12
14

19
19
24
29
30

33

CONTENTS

Chapter 1

Introduction

In the last two or three dacades, information has became the most valuable
thing in the world. With it, we can study what has happened, what is happen-
ing and what will happen. But have these data is not free. In a lot of cases,
it is needed a lot resources to process and store it. This concepts introduce
‘Big Data’. By definition, Big Data is a extremely large data sets that may be
analysed computationally to reveal patterns, trends, and associations, especially
relating to human behaviour and interactions. But sometimes, handle with this
huge amount of information is not possible because there isn’t any tool available
or it is so expensive.

Here is where approximate computing appears. Admitting that some error could
occur, we can improve the speed, complexity and size of our problem so we are
able to have significative results.

Approximate computing is used in a lot of fields, such as machine learning,
scientific computing, etc. To observe the behaviour of some systems that use this
technology, Statistical Model Checking method will be used. It does simulations
of a system in a stochastic way, that is, non-deterministic, with certain condi-
tions. Then, the results will be studied. Quantitative properties of stochastic
systems are usually specified in logic that allow one to compare the measure of
executions satisfying certain temporal properties with thresholds. The model
checking problem for stochastic systems with respect to such logic is typically
solved by a numerical approach that iteratively computes (or approximates) the
exact measure of paths satisfying relevant subformulas. (3]

In this bachelor’s thesis, I will try to prove that approximate computing
systems are useful in some specific fields. To do that, I will check the properties
of some approximate computing circuits that I've design in my Information
Technology thesis. The tool that will be used for the implementation will be
UPPAAL, on version 4.1. It is an integrated tool environment for modelling,
validation and verification of real-time systems modelled as networks of timed
automata. (@)

CHAPTER 1. INTRODUCTION

Chapter 2

Background: Statistical
Model Checking

Model Checking is a recognized approach to guarantee the correctness of a
system (). It is based on algorithms that check whether all executions of a
system satisfy some properties stated in specification logic. If this happens, the
system is correct. Else, a bug is reported. Model checking can detect all bugs
of a system, but it is generally slower.

Classical model checking techniques are Boolean, but this view is now obsolete.
This has motivated the development of a series of new techniques, based in
probability.

Statistical Model Checking has recently been proposed as an alternative to
avoid an exhaustive exploration of the state-space of the model. The main idea is
to conduct some simulations of the system, monitor them, and then use results
from statistic area to decide if the system satisfies the property or not with
some degree of confidence. SMC is a compromise between testing and classical
model checking techniques. Furthermore, it is very simple to implement, it
doesn’t require extra modelling or specification effort and it allows to model
check properties that cannot be expressed in classical temporal logics.

Prel IConf

o J

Figure 2.1: Scheme of Statistical Model Checking (4)

8 CHAPTER 2. BACKGROUND: STATISTICAL MODEL CHECKING

Chapter 3

Choice of Implementation
Areas and Means

3.1 Implementation Areas

In this thesis, I will evaluate some models that I have designed and developed for
my Information Technology thesis (B)). It includes two models of an approximate
logical multiplier, one based on gate networks and another one based one truth
tables. These are the specifications of those models:

3.1.1 Approximate logical multiplier

A logical multiplier is a circuit that, from a series of inputs that represents a
binary number, and another that represents another binary number, the multi-
plication of both numbers in the form of 0 and 1 is obtained (B). The length of
the output will be the sum of the length of the two inputs. This, in case that the
length of these numbers is very high, can lead to a high cost in the processing
of the output. One solution can be the approximate logical multipliers.

The approximate logical multipliers are the same as the exact ones, except that
they have fewer outputs. That means that we will have fewer costs but some
multiplications won’t be correct. This kind of multipliers are useful in systems
that don’t require a perfect computation, that is, they are tolerant of errors.
Because of that, a certain amount of accuracy is sacrificed to reduce the area of
the circuit and power consumption and increase the performance.(2))

To do the tests, an accurate multiplier and an approximate multiplier will be
implemented. Both will have 4 inputs, where we want to multiply (B1, B0) with
(Al, A0O), obtaining 4 outputs: (Out3, Out2, Outl, Out0). This is the truth
table for the exact logical multiplier:

10 CHAPTER 3. CHOICE OF IMPLEMENTATION AREAS AND MEANS

B1 | BO | A1 | A0 | Out3 | Out2 | Outl | OutO
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Table 3.1: Truth table of the accurate logical multiplier

We can see that, for Out3, all possible outputs are 0 except for the last one.
What is done with the approximate multiplier is to delete this output. The last
one will be transformed into (1,1,1), so, for these 16 possible outputs, only 1
will be incorrect:

Bl | BO | A1 | A0 | Out2 | Outl | Out0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 1
0 1 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 0
1 1 0 1 0 1 1
1 1 1 0 1 1 0
1 1 1 1 1 1 1

Table 3.2: Truth table of the approximate logical multiplier

3.1. IMPLEMENTATION AREAS 11

Then, from these tables, the logic circuits can be created:

by b

iol out, E:Iol

outy
by by
do outy ty

b
0
- outy a

(a) Accurate multiplier circuit (2) (b) Approximate multiplier circuit

As can be seen in the pictures above, the accurate multiplier has 8 logic
gates (6 AND gates and 2 XOR gates), while the approximate one only has 5
(4 AND and 1 OR), being this last one the simplest.

3.1.2 DRAM memory

A DRAM (Dynamic Random Access Memory) memory is a kind of RAM mem-
ory based on capacitors, which lose their charge progressively, so they need a
refresh dynamic circuit that, every certain period, check this charge and replen-
ish it. Its principal advantage is the possibility of build memories of a high
density of positions and that work at a high speed. Like the rest of the types
of RAM memories, it is volatile. It means that if the electrical power is in-
terrupted, the stored information will be lost. The DRAM is widely used in
digital electronics where low-cost and high-capacity memory is required. At the
moment, it is one of the most used memories.(J; [10)

Each memory cell is the basic unit of each memory, able to store a bit in its
logic circuits. Each cell has a transistor and a capacitor. Cells are organized in
two-dimensional matrices, which are accessed through rows and columns.

Row Address Strobe (RAS)
o—# o o o o

Bit Line
HL HL HL H
o TS
Add ‘ oumn —o0
(Wocglsiine F Transistor ?ﬂgﬁ“(’— —li —i -—I; 4; -;]'_o
Storage s Hi _‘; Hi _'i
Capacitor
I T P
—
Ground 0_15-:]'—0
Single Memory Cell Memory Cell Array

Figure 3.1: DRAM scheme (I1)

12 CHAPTER 3. CHOICE OF IMPLEMENTATION AREAS AND MEANS

If there is a charge inside the capacitor, it means that the logic value of the
cell is 1. Otherwise, it is 0. The transistor connects or disconnects the capacitor.
Over time, the capacitor will be discharging progressively. In the case that the
voltage is below a threshold value, it will be assumed that the logic value of the
cell is 0. That’s why every so often it is necessary to recharge the capacitor.
Therefore, the error rate of a DRAM memory will be checked depending on the
time between the refresh periods.

3.2 Implementation Means

The tool that I have used to build the models and I will use to evaluate them is
UPPAAL. It is a toolbox for validation and verification (via automatic model-
checking) of real-time system ().

The objective of this tool is to model a system using timed automata, simulate it
and then verify properties on it. Timed automata are finite state machines with
time (clocks). A system consists of a network of processes that are composed of
locations. Transitions between these locations define how the system behaves.
The simulation step consists of running the system interactively to check that it
works as intended. Then, we can ask the verifier to check reachability properties.

This tool, at this moment, is in version 4.0, but there is also a version 4.1
that is in development, which includes an SMC extension. This last version is
what will be used.

3.2.1 UPPAAL 4.0

UPPAAL is based on timed automata, that is a finite state machine with clocks.
The clocks are the way to handle time. It is continuous and the clocks measure
time progress. It is allowed to test the value of a clock or to reset it. Time will
progress globally at the same pace for the whole system.

A system in UPPAAL is composed of concurrent processes, which are mod-
elled as an automaton. This automaton has a set of locations. Transitions are
used to change location. To control when to take a transition, it is possible to
have a guard and a synchronization. A guard is a condition on the variables and
the clocks saying when the transition is enabled. When a transition is taken,
two actions are possible: assignment of variables or reset the clocks.

3.2. IMPLEMENTATION MEANS 13

idle = want idle = want
regql := req2 := 1
@) O © O
reql =0 turn := 2 req2 =0 turn =1
turn == 1 turn ==2
cs wait Ccs wait
req2 ==0 reql1==0

Figure 3.2: Example of a UPPAAL model (8))

Locations

There are different kinds of locations of UPPAAL (7)):
e Normal locations (with or without invariants).

e Urgent locations: This kind of locations freeze time. It means that time
is not allowed to pass. They are marked by a U inside the circle.

e Committed locations: These locations also freeze time, but also, the
next transition must involve an edge from one of the committed locations.
They are useful for creating atomic sequences and for encoding synchro-
nization between more than two components. They are marked by a C
inside the circle.

There is also one (and only one) initial state. It is marked by a double circle.

S0 s2

o—" 0 ©

S0 S1 s2

© 0O o

S0 S1 s2

O © O

Figure 3.3: Example of a normal, urgent and committed states

14 CHAPTER 3. CHOICE OF IMPLEMENTATION AREAS AND MEANS

Verifying properties

To check if a property of our model is correct, UPPAAL has a verifier tool. The
queries available in the verifier are (8):

o E<> p: There exists a path where p eventually holds.

A] p: For all path p always holds.

E[] p: There exists a path where p always holds.

A <> p: For all paths p will eventually holds.
e p —— > q: Whenever p holds, q will eventually hold.

p and q are state formulas.
There is also a special query: A[]| not deadlock, that checks for deadlocks
(more transitions are not possible).

Editor Simulator ConcreteSimulator Verifier yggdrasil

Overview

E<> P1.C5
L[] not deadlock
A[] not (P1.CS and not P2.CS) Insert

Remove

Comments

Figure 3.4: Verifier tool in UPPAAL

In this example we can see that the first and the second properties that we
want to check are validated, but not the last one.

3.2.2 UPPAAL 4.1 (SMC)

The modelling formalism of UPPAAL SMC is based on a stochastic interpre-
tation and extension of the timed automata formalism used in the classical
model checking version of UPPAAL.(I]) For individual timed automata compo-
nents, the stochastic interpretation replaces the non-deterministic choices be-
tween multiple enabled transitions by probabilistic choices. Similarly, the non-
deterministic choices of time delays are defined by probability distributions,
which at the component level are given either uniform distributions in cases
with time-bounded delays or exponential distributions in cases of unbounded
delays.

3.2. IMPLEMENTATION MEANS 15

= Wo="2 == END
xX>=2 Py X=>=2 P x=>=2 /-)
x=0 A4 X= o b
s X<=4 x<=4 x<=4
17
\\
8 %
b X>=2 -‘-m X>=2)
¥=0 \-...-/

x<=4 x<=4

Figure 3.5: Example of a stochastic timed automata (I

A model in UPPAAL SMC consists of a network of interacting stochastic
timed automata. It is assumed that these components are input-enabled, deter-
ministic and non-zero. These components communicate via broadcast channels
and shared variables to generate networks of stochastic timed automata. The
communication is restricted to broadcast synchronizations to keep a clean se-
mantics of only non-blocked components which are racing against each other
with their corresponding local distribution.

Additional verifying properties

Simulation In addition to the standard model checking queries, UPPAL SMC
provides a number of new queries related to the stochastic interpretation of
timed automata. In particular, it allows the user to visualize the values of
expressions along simulated runs (evaluating to integers or clocks), providing
insight to the user on the behaviour of the system so more interesting proper-
ties can be asked to the model-checker.

The concrete syntax applied in UPPAAL SMC is as follows:

simulate [<= bound]{E1,...,Ey}

where N is a natural number indicating the number of simulations to be
performed, bound is the time bound on the simulations, and E1,...,Ey are the k
expressions that are to be monitorized and visualized.

Probability estimation The probability estimation algorithm of UPPAAL
SMC computes the number of runs needed to produces an aproximation interval
[p—e,p+e] for p= Pr(¥) with a confidence 1 — .. A frequentist interpretation
of this result tells us that if we repeat the interval estimation N times, then
the estimated confidence interval (p £ €) contains the true probability at least
(1 —a) N in the long run (N — o0)

16 CHAPTER 3. CHOICE OF IMPLEMENTATION AREAS AND MEANS

The syntax applied to check probability estimations is:
Pr [bound](Ezpression)

Also, UPPAAL gives you some plots, like the probability density distribution
plot or the cumulative probability distribution plot.

Editor Simulator ConcreteSimulator Verifier

Overview
Pr[<=1000] {<> sta.END)

simulate [<=10000] { sta.END }

Get Trace

Insert
Remaove

Comments

Figure 3.6: Queries about probability estimation and simulation

Probability Density Distribution

@
2
&

0,24 Il density
= average
= 020 ==} g

0,12|

0,08

0,04

ol
44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78
run duration in time

Figure 3.7: Probability density distribution plot

Hypothesis testing This approach reduces the qualitative question to test
the null-hypothesis Hy : p > po against the alternative hypothesis H; : p < pg.
In UPPAAL SMC, we use the following query:

Pr [bound](Exzpression)>= pg

Probability comparison The algorithm use the Wald test to compare prob-
abilities, with the following query:

3.2. IMPLEMENTATION MEANS 17

Prlbound,|(Expression,) = Pr[bounds|(Expressions)
Expected values UPPAAL SMC also supports the evaluation of expected
values of min or max of an expression that evaluates a clock or an integer value.

The syntax is:

E[bound;N](min: Expression) or E[bound;N](max: Expression)

18 CHAPTER 3. CHOICE OF IMPLEMENTATION AREAS AND MEANS

Chapter 4

Evaluation

For the different tests that will be done on the models described before, the
verifier tool of UPPAAL SMC will be used. With it, we can obtain various
plots, confidence intervals, results of simulations using diagrams, etc.

4.1 Tests on multiplier based on gate networks

Verification of the model

First of all, it will be checked that the system behaves correctly. To do that,
the parameter of the template Main will be set on 1, so only one iteration will
be done. The following plot has been obtained with the command:

simulate[<=2] {randomV[0], inputl[0],
randomV[1]+2,input [1]+2,randomV[2]+4, input[2]+4, randomV[3]+6,
input [3]+6, success+8}.

On it, there will be represented, starting from below, the four random values
obtained using a normal distribution. With them, if the value is positive, the
input will be 1, and if it is negative, the input will stay in 0. At the top, the
success variable is shown. These are two possible results:

s,?j 8,0
8,2 2]
75 f
64
68
5.6
o |ErandomV(0] - randomVi0]
54 [input[] 4,8 [input[0]
47| [Jrandomv(1] +2 [JrandomV[1] +2
o j [inputf1] +2 @ 4,0] E]input[1] + 2
2 49 Elrandomvia] 4 2] randomv(2] +4
2 [input[2] + 4 = 39| F]input[2] + 4
33 - randomv(3] + 6 - P!
F randomV(3] + 6
2.4 Hinput3] + 6 2,4 5
) Hsuccess + 8 i input[3] + 6
1,9 Ed success + 8
' 1,6]
1,2
0,8}
0,5
) ;i o
“0 02 04 06 08 L0 12 14 16 18 20 0 02 o4 06 08 10 12 14 16 18 2,0
time time
(a) (b)

19

20 CHAPTER 4. EVALUATION

In figure [I.1a] we can see that, for the inputs 0, 1 and 3, the random values

obtained are negative, and for the input 2 it has been positive, so the corre-
sponding input is 0010. With this combination of inputs, the approximate and
the accurate multipliers have the same outputs, so the variable success has
increased one unit.
In the simulation that is represented in the second plot [£.IH} all random values
have been positive, so the inputs of the system were 1111. That is the only
possible input which the outputs of the multipliers are different. That means
that there has been a failure, so the variable success doesn’t increase.

Number of successes
In this test, I will see how many successes are obtained depending on the number
of iterations that the system does. It is known that, theoretically, there is only

1 chance of 16 that the system fails (0.0625%). For the simulations, the next
command has been used:

simulate[<=N] {success}

where N represents the number of iterations done. These are the results:

N Successes | Fails
10 10 0
50 46 4
100 94 6
200 183 17
300 278 22
400 376 24
500 471 29
750 710 40
1000 922 88
2000 1871 129

These results seem similar to the theoretical value, but it is needed to check
it. To do it, for each number of iterations, I will do a hypothesis test for
proportions , testing Hy : p = 0.0625. T use R to do it, obtaining a p-value with
the function:

prop.test(Fails,N,p=0.0625,alternative="two.sided")

The results are:

4.1.

TESTS ON MULTIPLIER BASED ON GATE NETWORKS

N p-value
50 0.8266
100 1
200 | 0.2426
300 | 0.5118
400 | 0.9177
500 | 0.7465
750 | 0.3362
1000 | 0.00109
2000 | 0.7465

21

With these results it can be said that it is not possible to reject Hy for all

N tested except for N=1000.

Behaviour of the number of successes

With this test, I will check what is the statistical behaviour of the number of
successes. To do that, I calculate the expected values of the maximum of the
variable success and then check the plots. I’ve used the next command in the
verifier tool of UPPAAL:

E[<=bound;N] (max:success)

where bound and N are numbers big enough to have the significant results, and
bound need to be at least as big as the parameter loops of the template Main.
For the experiment, I’ve chosen 1000 for both numbers. These are some results:

Probability Distribution

0,10(
0,09
0,08
0,07
20,06
3 0,05]
£ 0,04
0,03
0,02
0,01

ol
910

916 922 928
mak: Success

940

946

952

958

B probability i 0,48
=] average

0,96|
0,84
0,72
0,60|
F
2
£ 0,36|
&

0,24

0,12|

‘Cumulative Probability Distribution

./'
y

910

916

922 928 934 940 946 952
max: success

958

cumulative

(c) Probability Distribution Plot (d) Cumulative Probability Distribution Plot

As numerical results, this simulation has been obtained as mean u = 937.6
and a confidence interval of 95% [937.129, 938.071].

Observing the plots and we can see clearly that the variable
success follows a normal distribution.
Transforming now these values to error rate (doing the operation 1 — (3555))
we obtain that the average error rate is 0.0624, and the confidence interval in
95% is [0.061929, 0.062871]. With this interval, we can see that the theoretical
value is in it, and the mean is also really proximate to that number.

22 CHAPTER 4. EVALUATION

Comparison of the resources used by both multipliers

In this test, I will compare the time needed by the system to calculate N outputs
of the accurate and the approximate multiplier separately. This time is given
by UPPAAL at the end of the calculation. I’ve used the same command of the
first test but varying the bound. These are the results:

N Accurate multiplier | Approximate multiplier

100 0.032 0.016
1000 0.235 0.125
2000 0.36 0.281
3000 0.594 0.359
4000 0.75 0.563
5000 0.969 0.64
6000 1.093 0.75
7000 1.328 0.86
8000 1.485 1.015
9000 1.703 1.125
10000 1.969 1.344
11000 2.047 1.375
12000 2.266 1.5
15000 2.891 1.828

Table 4.1: Time used by the multipliers in seconds depending on the number of
iterations

1000 2000 3000 4000 5000 60OD0 7000 BODD 9000 10000 11000 12000 15000 14000 15000 16000

—a— Accurae Mukiplier Approximate Mukiplier
Figure 4.1: Plot of times of both multipliers

With this table and this plot, we can see that the time used by the accurate
multiplier is higher than the used by the approximate multiplier in every point.
But first, I will check the relation between both lines, checking if they are related.

4.1. TESTS ON MULTIPLIER BASED ON GATE NETWORKS 23

For that I will do a paired t-test with Hy : up < 0 and Hy : up > 0. I've used
the function:

t.test (acc_mult,appr_mult,alternative="greater" ,paired=TRUE)

obtaining the following results:

data: acc_mult and appr_mult
t = 4.0768, df = 13, p-value = 0.0006545
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.2183836 Inf
sample estimates:
mean of the differences
0. 3861071

Figure 4.2: Paired t-test for times in gate network approach

The p-value obtained is 0.0006545, so Hy can be rejected in favor of Hi,
showing differences between both models.
Now I will do an coincidence test to check if there exists any differences between
the two regression lines. I unify all the times in a unique column and I create
two new columns: Z, which is 0 in case the observation is from the accurate
multiplier and 1 if it is from the approximate one; and W=Z*N to deal with
different slopes for the regression lines:

N Time | Z W
100 | 0.032 | O 0
1000 | 0.235 | 0 0
2000 | 036 | O 0
100 | 0.016 | 1 | 100
1000 | 0.125 | 1 | 1000
2000 | 0.281 | 1 | 2000

I consider two different models:
e Model 1: Time=fy+p1 N
e Model 2: Time=0y+51N+B>Z+L3W.

First, I see if there is any gain adding the information of W and Y codifying
the categorical one. I use the function anova(Model_1,Model _2):

Res. Df rRss Df sum of sSg F Pr(=F)
1 26 1.85137
2 24 0.03045 2 1.8209 717.72 « 2.2e-16 #=**

Figure 4.3: Anova test for Model 1 and Model 2

24 CHAPTER 4. EVALUATION

The p-value obtained is practically 0, so it can be said that the second model
gives more information than he first one. Using summary(Model_2) we can see
more information:

call:
Tm{formula = Tiempo ~ N + Z + W, data = X)

Residuals:
Min 10 Median 3Q Max
-0.049512 -0.019564 -0.005595 0.014678 0.088301

Coefficients:

Estimate std. Error t value Pri=|t]|)
{Intercept) 3.946e-03 1.760e-02 0.224 0.825
M 1.898e-04 2.227e-00 B853.228 «2e-1f #*=
Z 1.574e-02 2.489%9e-02 0.632 0.3533
W -6.618e-03 3.149e-06 -21.018 «2e-1f #*=

signif. codes: O "#%%' 0,001 ‘%%’ Q.01 **' 0.05 ‘." 0.1 ° "1

rResidual standard error: 0.03562 on 24 degrees of freedom
Multiple R-squared: 0.9979, Adjusted R-squared: 0.9976
F-statistic: 377% on 3 and 24 DF, p-value: < 2.2e-16

Figure 4.4: Summary of Model_2

Observing the p-values of the coefficients, it makes sense that the intercept
and the Z can be set on 0, so the can be deleted from the model. The final
model is:

Time=0 N+B32Z-N

So the levels of the Z variables changes the slope of the fitted regression lines.
Since W has not been rejected, we can say that there are coincidences, so there
is not any parallelism between the accurate model and the approximate one.

Then, observing that the model of the approximate multiplier has less slope
than the accurate one, it has been demonstrated that the approximate mul-
tiplier is more efficient than the accurate multiplier in terms of time.

4.2 Tests on multiplier based on truth tables

Tests on this model will be similar to the ones done in the previous model, so
we can check that the results are correct.

Verification of the model

The first test will check if the system works correctly. For that, I will use both
templates that generate inputs. The two next plots are generated in the verifier
tool on UPPAAL with the next command:

4.2. TESTS ON MULTIPLIER BASED ON TRUTH TABLES 25

simulate [<=bound]{bits[0],bits[1]+2,bits[2]+4,bits[3]+6,equalBits+8,
errorRate+10}

bound is set in 16 for the first simulation and in 50 for the second.

11 10|

10| 9

9r‘ EQ]_ l_l U _l L

9 7|

’ =0 § 3 bisfo]

& [bits[1] +2) :lmls[1; +2
SRS SEEoge
: its[3] + 6 4 i +

4 E= equalbits + 8 b E=J equalBits + 8

a] errorRate + 10 3 E errorRate + 10

2| 2|

1 1 1

110 [0NA [
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 o 4 a 12 16 20 24 28 32 36 40 44 48
time time
(a) Simulation using set_inputs (b) Simulation using set_inputs_random

Starting from below, the variables shown are the 4 inputs, equalBits, that
says if there has been a failure in the iteration, and the error rate.
In figure [I.5a] we can see that all possible inputs have been generated. The first
one is the only one that fails, so the error rate is 1 at that moment. Then, it
decreases in every iteration, reaching 0.0625 at the end of the simulation, the
theoretical error rate value.
In figure the inputs have a random distribution, so the error rate change
depending on them.
With this information, it can be concluded that the system is correct.

Number of successes

The template that generates random inputs will be used. With it, I will generate
N random inputs, and count the number of successes. Finally I will do, with
the values obtained, the same hypothesis test that I did for the gate network
model: Hy : p = 0.0625 It will be used the same command of the first test,
changing the bound depending on N. These are values obtained:

N Successes | Fails
50 49 1
100 94 6
200 184 16
300 278 22
400 375 25
500 462 38
750 710 40
1000 933 77
2000 1862 138

26 CHAPTER 4. EVALUATION

Using the same R command as in the first model, The p-values obtained for
each N are:

N p-value
50 0.3424
100 1
200 | 0.3808
300 | 0.5119
400 1
500 | 0.2482
750 | 0.3362
1000 | 0.06741
2000 | 0.2482

In this case, we can see, considering a = 0.05, that all p-values are higher
enough to accept Hy

Behaviour of the error rate

In this test I will obtain the statistical behaviour of the error rate, calculating
the expected value of the maximum of the variable finalErrorRate. It will be
done with the next command:

E[<=1000;1000] (max:finalErrorRate)

Some of the plots obtained are:

Probability Distribution Cumulative Probability Distribution
0,11 0,96| I P —
0,10| 0,84 //
0,09) /
008 0,72 f/
0,07| 0,60|
EU.U@ - E /
z probability 5 0,48 / 3 cumulative
Foos Joverage & / = averag
& 0,04 50.36 /
0,03| 0,24 /
0,02 /
0,01 0,12|
0 0l —
0,034 0,046 0,058 0,070 0,082 0,094 0,034 0,046 0,058 0,070 0,082 0,094
max: finalErrorRate max: finalErrorRate
(c) Probability Distribution Plot (d) Cumulative Probability Distribution Plot

As numerical values, the mean of the 1000 simulations is a error rate of
0.0623, with a confidence interval (o = 0.05) of [0.061827,0.062773], which in-
clude the theoretical error rate.

Observing the plots, we can conclude that the error rate follows a normal dis-
tribution with mean 0.0623.

Comparison of the resources used by both multipliers

In this last test, I will check the time that the verifier tool last to complete N iter-
ations of each multiplier separately. I will disable outputs_acc or outputs_aprox,

4.2. TESTS ON MULTIPLIER BASED ON TRUTH TABLES 27

depending on the multiplier which will be tested. The command used on the
verification of the model will be used, varying the bound. These are the times
obtained, in seconds:

N Accurate multiplier | Approximate multiplier
100 0.016 0.015
1000 0.046 0.031
2000 0.094 0.078
3000 0.125 0.093
4000 0.156 0.125
5000 0.172 0.156
6000 0.188 0.171
7000 0.219 0.203
8000 0.266 0.219
9000 0.297 0.266
10000 0.359 0.281
11000 0.391 0.296
12000 0.422 0.313
15000 0.453 0.375
0,15
0,1
0 2000 4000 6000 BOOO 10000 12000 14000 16000
——Accurae multiplier Approximate multiplier

Figure 4.5: Plot of times of both multipliers

It seems that there are no such big differences between both times. First,
I do a paired t-test checking Hy : up < 0 an Hj : up > 0 to see the relation
between the lines as I did with the first model, using the same function. The
results are:

28 CHAPTER 4. EVALUATION

data: acc_mult and appr_mult
t =4.434, df = 13, p-value = 0.000337

alternative hypothesis: true difference in means is greater than D
95 percent confidence interwval:

0.02471061 nf

sample estimates:

mean of the differences

0.04114286

Figure 4.6: Paired t-test for times in truth table approach

A low p-value has been obtained, so differences can be considered between
both lines.
Then, I will check the possible coincidences that can exist. I've built the same
table as I did in with the gate approach but with the corresponding values:

N Time | Z W
100 | 0.016 | O 0
1000 | 0.046 | O 0
2000 | 0.094 | 0 0
100 | 0.015 | 1 | 100
1000 | 0.031 | 1 | 1000
2000 | 0.078 | 1 | 2000

I use the same models that I used in the other test: I consider two different
models:

e Model 1: Time=f8y+B1 N
o Model 2: Time=By+B1 N+BsZ+55 W.

With the R function anova(Model_1,Model_2), I'll check if W and Y give any
information:

Res.DF " rss of sum of sq F Pri=F)
1 26 0.0237233
2 24 0.0063416 2 0.017382 32.891 1.331e-07 #%=

Figure 4.7: Variance analysis to Model 1 and Model 2

The p-value obtained is very low, so the second model gives more information
than the first. Now, with summary(Model_2) T’ll check the significance of the
variables:

4.3. COMPARISON OF THE TWO IMPLEMENTATIONS 29

call:
Tm{formula = Tiempo ~ N + Z + W, data = X)

Residuals:
Min 10 Median 3Q Max
-0.037579 -0.007732 -0.000973 0.010619 0O.026002

Coefficients:

Estimate std. Error t value Pri=|t]|)
{(Intercept) 1.965e-02 8.034e-03 2.446 0.0221534 *
M 3.140e-05 1.016e-06 30.896 <« Z2e-16 *#*
Z Z2.58Be-03 1.136e-02 0.228 0. 821882
W -6.576e-06 1.437e-06 -4.53706 0.000122 #**

signif. codes: O "#%%' 0,001 ‘%%’ Q.01 **' 0.05 ‘." 0.1 ° "1

rResidual standard error: 0.01626 on 24 degrees of freedom
Multiple R-squared: 0.9852, Adjusted R-squared: 0.9833
F-statistic: 332 on 3 and 24 DF, p-value: < 2.2e-186

Figure 4.8: Summary of Model_2

In this case, the only variable that can be deleted from the model with
a = 0.05 is Z. This results are different from the test done for the gate approach,
where the intercept was also deleted. The final model is:

T%m6:ﬁ0+61N+ﬂ32N

In this case, W gives information to the model, which means that the slope of
the fitted lines are significatively different depending on whether Z=0 or Z=1.
Finally, observing that the approximate multiplier has less slope than the ac-
curate one, it can be concluded that the approximate multiplier is more
efficient than the accurate multiplier in terms of time.

4.3 Comparison of the two implementations

In both implementation have been tested similar characteristics, obtaining sim-
ilar results in all of them. In the test done on the gate network model, there
was a notable difference between both multipliers, but that behaviour doesn’t
appear in the truth table model. In my opinion, this difference is caused because
of the number of states that are in the first model. The accurate multiplier has
more gates than the approximate one, so more transition needs to be done and
more time is used. The second model has the same number of iterations in both
multipliers, but there is 1 calculation less on the approximate one because it
just needs to find 3 outputs and not 4 as the accurate multiplier does. This
could cause the insignificant difference between them.

In conclusion, observing all the results, it has been proved that the truth
table implementation is more efficient than the gate network one.

30 CHAPTER 4. EVALUATION

4.4 Tests on DRAM model

For all the tests, the dimension of the DRAM will be 1 row and 8 columns, but
it can be increased as much as the user wants.

Verification of the system

As it has been done before, I will check that the model works correctly. I will
write in some registers with different times of refresh and see what are the
output. These are two plots with different time of refresh:

Figure 4.9: Simulation with tRefresh = 50

Figure 4.10: Simulation with tRefresh = 100

Each plot is divided into 8 parts as if they were the 8 columns of the DRAM.
Each part has 4 variables on it: cVolt representing the voltage, V_.TRESH rep-
resenting the threshold, eBit representing the expected logical value and cBit
representing the real logical value.

In both figures, there is a writing on the cells 1,2 and 3 because the data intro-
duced was 2,4 and 8. The rest of the cells stays doing nothing.

In figure [4.9] the time of refresh is enough so the voltage never gets the thresh-
old, so the real value is equal to the expected value all the time.

4.4. TESTS ON DRAM MODEL 31

In figure [£.10] the voltage exceeds the threshold before the second refresh, so
the real value is not equal to the expected value anymore. When a refresh is
done, the real value is 0, so it doesn’t recharge again.

Therefore, we can conclude that the model works correctly.

Error rate depending on the time of refresh

With this test, it is wanted to be known what is the error rate of the system
varying the time of refresh of the system. Only 1 cell will be used because a
writing in several cells at the same time returns the same error rate on all of
them. This template simulates a writing on cell 0 on the time unit 50. The
command used in UPPAAL verifier is:

simulate [<=bound]{cVolt [0] [0],eBit[0] [0],
cBit [0] [0],V_TRESH, errorRate[0] [0]+4}

bound should be as big as necessary to see the correct error rate.
These are the results:

Time of refresh Rigisalar i ref TGS Error rate
before a failure

20 - 0%
40 - 0%
58 1 1.59%
60 1 3.2%
80 1 18.8%
100 1 26.57%
111 0 1.41%
120 0 13.63%
140 0 33.82%
160 0 46.05%
180 0 54.72%
200 0 60.83%

4.0
3,6
3.2
28
2,4

%20

=

=
1,6
1,2|

0,8
04

L] 20 40 60 80 100 120 140 160 180 . .
time 40 60 80 100 120 140 160 180

(a) Simulation with tRefresh = 80 (b) Error rate depending on the time of refresh

32 CHAPTER 4. EVALUATION

In plot [£11a] the writing is correct till the time 140 approximately, where
the voltage starts to be lower than the threshold and the expected value is set
on 0. There is a refresh on time 80, that can be seen because the voltage value
is again the maximum possible.

In plot we can see that the error rate always increases with the time of
refresh, except on one point, on 111. This is because on that point there is a
refresh just after the threshold has been reached, so the system updates its real
value when very little time has passed since the expected value was updated.
In this case, if the system allows committing some failures, then the time of
refresh that should be selected is 111 because it is the time which gets a
lower error rate and without doing any refreshes. If there would be an error rate
even lower but doing one refresh , then the system manager must decide what
is the best for him, get less error rate but doing a refresh, which has a cost, or
gets a little more error rate and doesn’t do any refreshes.

This results will change depending on the experiment done. This is given be-
cause the writing has been done on the time unit 50, but if this operation is
done at another moment, the optimal time of refresh will change. This is caused
because the time of refresh is done all times at the same moment, doesn’t matter
when an operation happens.

Chapter 5

Conclusions

The aim of this thesis was to prove that approximate computing systems are
useful if some errors can be accepted in the results obtained. For that, two types
of models have been tested: Two models of accurate and approximate logical
multiplier and a model of a dynamic random access memory (DRAM). These
tests have been done using UPPAAL SMC.

In my opinion, the final results obtained on the different tests performed
confirm that the approximate computing systems have a lot of utilities in differ-
ent fields, such as in image and sound processing, machine learning or artificial
intelligence, where some bits can be lost without having serious problems.

Some other tests could be done on these systems but are not implemented in
this thesis could be amplify the number of inputs and outputs of the multipliers
and see if the error rate is still as low as it is with 4 inputs, or check the behaviour
of the error rates with more writings on different moments on the DRAM model.

33

34

CHAPTER 5. CONCLUSIONS

Bibliography

[1]

David, A.; Larsen, K. G.; Legay, A.; et al.. UPPAAL SMC tutorial. 2015.
[Online; visited 09.05.2019].
Retrieved from: https://doi.org/10.1007/s10009-014-0361-y

Emerging Computing Technology Laboratory at SJTU: Approxzimate Com-
puting. [Online; visited 09.05.2019).
Retrieved from: http://umji.sjtu.edu.cn/~wkgian/research.html

Legay, A.; Delahaye, B.; Bensalem, S.: Statistical Model Checking: An
Overview. 2010. [Online; visited 09.05.2019].
Retrieved from: https://arxiv.org/pdf/1005.1327.pdf

Plasma Lab: Statistical Model Checking. [Online; visited 09.05.2019].
Retrieved from: https://project.inria.fr/plasma-lab/
statistical-model-checking

Pérez, S.: Design and Implementation of Approximate Computing Systems.
2020.

UPPAAL: [Online; visited 09.05.2019).
Retrieved from: www.uppaal.org

UPPAAL: Locations. [Online; visited 09.05.2019].
Retrieved from: http://www.it.uu.se/research/group/darts/uppaal/
help.php?file=System_Descriptions/Locations.shtml

UPPAAL: UPPAAL 4.0: Small Tutorial. 2009. [Online; visited 09.05.2019].
Retrieved from: http://www.it.uu.se/research/group/darts/uppaal/
small_tutorial.pdf

Wikipedia: DRAM. [Online; visited 09.05.2019].
Retrieved from: https://es.wikipedia.org/wiki/DRAM

Wikipedia: Dynamic Random Access Memory. [Online; visited 09.05.2019].
Retrieved from: https://en.wikipedia.org/wiki/Dynamic_
random-access_memory

35

https://doi.org/10.1007/s10009-014-0361-y
http://umji.sjtu.edu.cn/~wkqian/research.html
https://arxiv.org/pdf/1005.1327.pdf
https://project.inria.fr/plasma-lab/statistical-model-checking
https://project.inria.fr/plasma-lab/statistical-model-checking
www.uppaal.org
http://www.it.uu.se/research/group/darts/uppaal/help.php?file=System_Descriptions/Locations.shtml
http://www.it.uu.se/research/group/darts/uppaal/help.php?file=System_Descriptions/Locations.shtml
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
https://es.wikipedia.org/wiki/DRAM
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory

36 BIBLIOGRAPHY

[11] Yoon, A.: Understanding Memory. 2018. [Online; visited 09.05.2019].
Retrieved from: https://semiengineering.com/
whats-really-happening-inside-memory/

https://semiengineering.com/whats-really-happening-inside-memory/
https://semiengineering.com/whats-really-happening-inside-memory/

	Introduction
	Background: Statistical Model Checking
	Choice of Implementation Areas and Means
	Implementation Areas
	Approximate logical multiplier
	DRAM memory

	Implementation Means
	UPPAAL 4.0
	UPPAAL 4.1 (SMC)

	Evaluation
	Tests on multiplier based on gate networks
	Tests on multiplier based on truth tables
	Comparison of the two implementations
	Tests on DRAM model

	Conclusions

