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Introduction

A basic exercise of Calculus is to prove that for any f: D € R x RY — RY,
continuous, the Cauchy problem

&= f(t,z),  a(t) = o, (0.1)

is equivalent to the integral problem

t
z(t) = xo + / f(s,2(s)) ds. (0.2)
to
However, it is straightforward to notice that, due to Lebesgue theory, the formula
in (0.2) is meaningful for a broader class of functions than just the continuous
ones. In other words, given I C R so that ¢ty € I, if one looks for a function
r: I C R — RY, not necessarily continuously differentiable, satisfying (0.2)
in its interval of definition, then one can relax the assumptions on f to the
sole local integrability. The Greek and cosmopolitan mathematician Constantin

Carathéodory proved in [15] that under the assumptions

e f is Borel measurable,

e for every compact set K C RY there exists a real-valued function m* € L;,,
such that for almost every t € R, one has

|f(t,x)] < m™(t) for all x € K,

e for almost every t € R, f(t,-) is continuous,

any problem like (0.1) admits a solution in an extended sense, that is, an abso-
lutely continuous function defined on an interval I C R containing %y, so that
(0.1) holds almost everywhere in I or, equivalently, (0.2) holds for all ¢ € I.

Such a class of differential problems has been named after Carathéodory, and
contributed to enlarge the field of applicability of differential equations in both
theoretical and applied studies. As a matter of fact, the development of a coherent
mathematical theory of differential equations with discontinuous right-hand side
has been, in some sense, pushed forward by its many applications including,
for example, numerous problems in automatic control, mechanics and electrical



2 Introduction

engineering, where the prevalent use of switches, relays or digital inputs, is not
only customary but, in some cases, also necessary to reach optimal results (see
for example Bressan and Piccoli [11], Brogliato [12], Clarke [19]).

The aim of this work is to apply tools of non-autonomous dynamical sys-
tems to Carathéodory differential equations, and, in particular, to successfully
define a continuous skew-product flow in order to study the qualitative behavior
of the solutions. The idea of skew-product flow dates back to the groundbreaking
work of Bebutov [7], and it has become a fundamental tool in the study of non-
autonomous ordinary differential equations. In order to retrieve a group structure
on the evolution of a non-autonomous system (immediate for autonomous sys-
tems, where one can build a flow using the solutions), the idea is to jointly track
the solution and the evolution of the vector field in time. If these two components
are continuous with respect to time, initial vector field and initial data, then the
obtained map defines a continuous skew-product flow.

The study of the topologies of continuity for a skew-product flow generated
by a Carathéodory differential equations is a classical question which was ini-
tially posed by Miller and Sell |41, 42|, and then treated by Artstein [3, 4, 5],
Heunis [30], Neustadt [43], Opial [45], Sell [52, 53], among many others. Since
then, strong and weak L = topologies have been employed to investigate non-
autonomous linear differential equations (see Bodin and Sacker [10], Chow and
Leiva [20] and Siegmund [55] among others) but, despite its potential interest,
the classic theory has not been conveniently developed in the field of non-linear
differential equations.

We start this work by harmonizing most of the results contained in Longo
et al. [38, 39], and building on top of them, in order to fill some gaps in the
original theory, improve its applicability, and allow a more exhaustive analysis
of the qualitative behavior of the solutions. In particular, we define new metric
topologies and new locally convex vector spaces where the flow map defined by
the time-translation is proved to be continuous, and deduce theorems of contin-
uous dependence with respect to the variation of initial data for the solutions of
differential problems whose vector fields belong to such spaces. Hence, we ob-
tain the continuity of the skew-product flow composed of the base flow of time
translations on the hull of a vector field, and by the solutions of the respective
differential problem.

A key ingredient to achieve such results is the thorough study of the so-called
m-bounds and [-bounds of a Carathéodory function f, i.e. the families of positive
locally integrable functions which respectively serve as a bound for the modulus
of f and a Lipschitz coefficient for f on the compact subsets of R. In fact, the
analysis of the m-bounds and /-bounds allows us to obtain additional topological
information. For example, we provide the requisites for the relative compactness
of subsets of Lipschitz Carathéodory functions and clarify the conditions (rather
weak indeed) under which the (strong or weak) topologies considered in our work,
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and previously in the literature, coincide. Such results are particularly impor-
tant, not only because they make the whole theory more homogeneous, but also
because, wherever applicable, they improve and/or simplify the usable mathe-
matical tools. Indeed, in the first case we obtain, for example, the existence of an
invariant ergodic measure for the base flow and thus the possibility of applying
results from ergodic theory, whereas in the second case we are allowed to handle
the easiest among all the possible topologies, that is, the ones which involve the
pointwise convergence. Interestingly, most of the known applications in science
and engineering include assumptions which are stronger than the ones for which
such results hold.

As a further evidence of the importance of the results of continuity for the
skew-product flow, we include a range of theoretical applications. We are able to
define two types of linearized skew-product flows, and to obtain the differentia-
bility of the solutions with respect to initial data also for some systems which are
not continuously differentiable in the variable x, and thus do not admit a clas-
sic variational equation. Additionally, we propagate the exponential dichotomy
of a system, as well as the structure of the corresponding Sacker-Sell spectrum,
over the trajectories of such linearized flows. We also include a result of exis-
tence of solutions for specific Carathéodory differential equations whose vector
field is possibly discontinuous in the variable x and, as such, is not covered by
Carathéodory’s theorem. The used approach is completely independent of Filip-
pov theory and relies on Carathéodory’s theory and continuity of the solutions
with respect to the variation of the vector field.

Furthermore, as a consequence of the previous results, a range of dynamical
scenarios is opened in which it is possible to combine techniques of continuous
skew-product flows, processes and random dynamical systems (see Arnold [2],
Aulbach and Wanner [6], Berger and Siegmund [9], Caraballo and Han [13], Car-
valho et al. [16], Johnson et al. [34], Kloeden and Rasmussen [36], Sell [53], Shen
and Yi [54] and the references therein). Particularly, by thoroughly calibrating
the contemporary use of processes and skew-product formalisms, we provide con-
ditions under which the existence of particular bounded absorbing sets for the
process defined by a suitable Carathéodory vector field f, allows to deduce the
existence of bounded pullback attractors for the processes with vector field be-
longing to either the alpha-limit set, the omega-limit set, or the whole hull of f.
Under appropriate assumptions, these theorems also provide the existence of a
pullback or a global attractor for the induced skew-product semiflow.

As a final theoretical contribution, we aim to set the path for a generalization
of the obtained results to Carathéodory delay differential equations of the type

i = f(t,x(t),z(t—1)). (0.3)

Such a problem has the additional intrinsic difficulty of being infinite dimen-
sional due to the fact that the phase space is C([—7,0],RY), i.e. the space of
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continuous functions mapping [—7,0] to RY. Nevertheless, the specific type of
delay differential equation in (0.3), together with the fact that f is defined on a
finite dimensional space, allow to use some of the already cited techniques and
arguments to extend, to some degree and with the unavoidable discrepancies, the
theory developed for Carathéodory ODEs to this class of problems. Particularly,
we show how to construct a continuous skew-product semiflow from (0.3), again,
with respect to several (strong and weak) metric topologies. It is interesting to
point out that, despite being a very peculiar class of delay differential problems,
equations like (0.3) are widely and successfully used in engineering and applied
sciences to modelize many phenomena in which the past affects the future.

Throughout the work, we provide three motivational examples taken from
actual models in mechanics (K. Popp and P. Stelter [47]), control theory (Fabbri
et al. [25]) and mathematical biology (Rasmussen et al. [50]), and apply some of
the obtained results to them. The exposition on such examples is not intended to
be exhaustive but to show the wide range of applicability of the results contained
in this work.

The theory of Carathéodory differential equations embraces almost one cen-
tury of mathematical results. From a dynamical systems point of view, it also
includes studies of stability, numerical analysis and bifurcation theory (see for ex-
ample Filippov |26], Osinenko et al [46], P6tzsche and Rasmussen [49], Potszche
[48]). We believe that the topological framework and results contained in this
work could be applied also in these directions.

The thesis is structured as follows. In Chapter 1 we set the notation and
introduce basic notions and results which serve as preliminary content for the
rest of the work. Particularly, the chapter is divided in two sections respectively
dealing with Carathéodory ordinary differential equations and the formalism em-
ployed in the study of non-autonomous dynamical systems together with a brief
summary on the exponential dichotomy and on the dichotomy spectrum. We also
include a short description of a simple modelization of a violin string through a
Carathéodory differential system.

Chapter 2 is devoted to the topological framework on which is based most of
the rest of the following chapters. First, we introduce the spaces of Carathéodory
functions. Together with the classical spaces of Lipschitz Carathéodory (£€)
and Strong Carathéodory (&¢€) functions, we consider two new classes of spaces
accounting for Carathéodory functions which are possibly discontinuous in the
variable z, namely, the ©-Carathéodory (©€) and weak ©-Carathéodory (200¢)
functions. The symbol © stands for a set of moduli of continuity which identify a
numerable quantity of compact sets of continuous functions on which the elements
in O, or respectively 200¢€, are asked to behave “nicely”, that is, somehow
continuously in Lj,.. The problem of identification of functions in such spaces is
also discussed.



Introduction 5

Afterwards, we will define several strong and weak metric topologies of integral
type with whom we endow each one of the previously introduced spaces. Among
such topologies, a key role will be played by the two new classes of topologies Tg
and og. In particular, the sequences in (O€,7g) and (WOC, 0g) will be asked
to converge (strongly or weakly, respectively) uniformly on the compact sets of
continuous functions determined by ©.

Hence, we focus on the so-called m-bounds and /-bounds of a Carathéodory

p -
loc

boundedness and L] -equicontinuity and relating them to Carathéodory func-

function or set of functions. In particular, after introducing the notions of L

tions through their m-bounds and/or [-bounds, we show that such properties
are inherited by limit functions through the considered topologies and deduce
topological results on three important classes of problems: the equivalence of the
topologies on suitable subsets, the compactness in £&€ and the continuity of the
time-translations in ©€ and QWOC.

In Chapter 3, we address the core problem of defining a continuous skew-
product flow starting from a Carathéodory ordinary differential equations of the

type
T = f(t,x), z(0) = zo,

and from Carathéodory systems of triangular type as

[e=]

{x' = f(t,z), z(0) ==z (0.4)

Y= F(t,[E)y + h(t> [E), y(O) = Yo

Y
Y

where the function f(-,-) € £€ admits either L; -equicontinuous m-bounds or
L} -bounded I-bounds, and F'(-,-) and h(-,-) are taken in either 200¢€ or OC, so
that the problem is well-posed. In particular, notice that © will be determined
either thanks to the assumption of L; -equicontinuity for the m-bounds of f or
by the solutions of & = f(¢,z) when f is in a compact subset of £€.

The triangular system in (0.4) assumes particular relevance if f has continuous
partial derivatives with respect to x, F' = J,f € &€, i.e. F is the Jacobian of f
with respect to x and it is a strong Carathéodory function, and h = 0, that is,
the second equation in (0.4) is the variational equation of the first one. Under
the assumptions of the theorems for the continuity of the induced skew-product
flow, we prove the existence of a linearized skew-product flow (with respect to the
topology Te) and a o-linearized skew-product flow (with respect to the topology
0e), both composed of the base flow on the hull of (f,J,f) (with respect to
either Tg or og) and of the solutions of the respective differential equations. In
particular, we show that the solutions of Carathéodory differential equations are
differentiable with respect to initial data even in some cases in which the vector
field (in the hull of f) does not have continuous partial derivative with respect
to x.
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Moreover, we look into the exponential dichotomy and the dichotomy spec-
trum of the linear system in such linearized skew-product flows and how it prop-
agates thanks to the continuous skew-product flow.

The chapter ends with a section of applications. We start with a theoretical
result; a theorem of existence of solutions for differential problems whose vector
fields are in 20O€, i.e. not necessarily continuous in the space variable. The

underlying condition is that such vector fields are limit, in the topology og, of

1

le-€quicontinuous m-bounds. Secondly, we study the im-

sequences in 6¢ with L
pact of the developed theory on a problem of digitization for non-autonomous
control systems, and on a non-autonomous and non-linear Carathéodory com-

partmental system.

Chapter 4 deals with pullback and global attractors for Carathéodory ODEs
(whose solutions are defined up to +00) and for the relative continuous skew-
product flow generated thanks to the results in the previous chapter. After pro-
viding all the basic definitions and results, we proceed to show how a continuous
skew-product flow can be used to infer the existence of an attractor for a set of
limit systems. In particular, starting from specific properties on the solutions of
an initial problem & = f(¢,z), we show how it is possible to obtain the existence
of a bounded pullback attractor for the processes induced by systems whose vec-
tor field is either in the alpha limit set of f, in the omega limit set of f, or in the
whole hull of f. Additionally, we give a result of existence of pullback and global
attractors for the whole skew-product flow.

Furthermore, we provide sufficient conditions under which the previous results
can be applied. In fact, several types of attractors, both for the induced process
and the induced skew-product flow, are obtained through comparison results
in which the size of the solutions of a Carathéodory differential system = =
f(t,x) is firstly compared to the size of the solutions of a scalar Carathéodory
linear equation and then also to the size of the solutions of a system of linear
Carathéodory equations.

Chapter 5 aims to highlight how the theory developed for Carathéodory ODEs
can be extended to Carathéodory delay differential equations with constant delay
like (0.3). After providing basic preliminaries on Carathéodory delay differential
equations with constant delay, we introduce new strong and weak topologies
which exhibit a hybrid behavior with respect to the ones presented in Chapter
2. The term hybrid means that, while still asking for a convergence of Lj, . type,
we will possibly treat the first N components of the spatial variable (representing
the current state in a delay differential equation) in a different way from the last
N ones (representing the history of the state). Furthermore, we show how such
topologies relate to the ones in Chapter 2 and how to apply or develop, in this
new context, some of the previously obtained topological results.

Finally, we prove the continuity of the skew-product semiflow induced by
problems of the type (0.3) when £¢€ is endowed with either two topologies from
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the first part of the work, or the new hybrid topologies (and suitable hypothesis
are assumed on f). As a result, we leave everything ready to develop, wherever
it is possible, results analogous to the ones contained in Chapters 3 and 4, but
for Carathéodory delay differential equations with constant delay.






Chapter 1

Preliminaries

In this chapter we provide basic definitions and results about Carathéodory dif-
ferential equations and non-autonomous dynamics. In fact, although the work
contains several different topics, as follows we will only include those results and
definitions which apply to the whole dissertation or that would break the reading
flow if included in the text later. As regards the rest of preliminary notions, we
will keep them as close as possible to (or anyway recall them next to) the actual
point in which they are used.

Let us start by setting some notation. In the following, we will denote by
RY the N-dimensional euclidean space with norm | - |, by measg~ the Lebesgue
measure on RY, and by B, the closed ball of R" centered at the origin and
with radius r. Notice also that, in some cases in which there is no possibility of
misunderstanding, the symbols 0 and 1 will represent the N-dimensional vectors
composed of zeros and ones, respectively. When N = 1, we will simply write R
and the symbol R* will denote the set of positive real numbers. Moreover, for
any interval I C R and any W C RY, we will use the following notation

C(I,W): space of continuous functions from I to W endowed with the
norm || - ||co-

Cc(R): space of real-valued continuous functions with compact support in
R, endowed with the norm || - ||o. When we want to restrict to the positive
continuous functions with compact support in R, we will write C} (R).

LP(I,RY), 1 < p < oco: space of measurable functions from I to R whose
norm is in the Lebesgue space LP(I).

LP (RY), 1 <p < oo: the space of all functions z(-) of R into R" such that

for every compact interval I C R, z(-) belongs to L” (], ]RN). When N =1,

P

we will simply write L.

The chapter is structured as follows. In Section 1.1 we present classic defini-
tions and results on Carathéodory ordinary differential equations together with a

9
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motivational example of stick-slip vibration through a Carathéodory modelization
of a violin string.

On the other hand, Section 1.2 contains basic notions of non-autonomous
dynamics as, for example, the definitions of process, skew-product flow and hull
of a function, and of exponential dichotomy and dichotomy spectrum.

1.1 Carathéodory differential equations

In this section, we outline the classic results for initial value problems of the type
= f(t,x), x(0)= xo, (1.1)

where 7 is in RY, and the dependence on ¢ in the right-hand side is possibly just
measurable. Particularly, after giving a proper definition of solution for a Cauchy
Problem of Carathéodory type, we also provide the statements for the theorems
of existence and uniqueness of the solution and continuous variation with respect
to initial data. Since such results are classic, their proof are not included in
this work and can be found in many textbooks as, for example, Coddington and
Levinson [21].

A notion of solution for (1.1) is needed.

Definition 1.1 (Solution for a Carathéodory problem). An absolutely continuous
function z(-) : I € R — R" such that

e 0 €] and z(0) = xg, and

d
o %x(t) = f(t,z(t)) forae. t € I

is said to be a solution (in an extended sense) for (1.1).

If z(-) : I C R — RY is a solution for (1.1), one can also write the equivalent
integral problem

z(t) =z + /0 f(s,z(s)) ds.

Carathéodory proved that such an integral problem admits a solution if the right-
hand side satisfies the conditions which have been named after him.

A function f: R x RY — RM satisfies Carathéodory conditions if

e f is Borel measurable,

1

e for every compact set K C RY there is a real-valued function m*(-) € L},

such that for almost every ¢ € R, one has

1f(t,2)] <m&(t)  forallzeK.
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e for almost every t € R, f(¢,-) is continuous.

Later on, we will refer to the function m(-) as an m-bound for f on K.

As folllows, we state a theorem of existence and uniqueness of the solution
for a Cauchy Problem of Carathéodory type. As one may expect, some kind of
Lipschitz continuity in the variable x is necessary. We will refer to the function
[(+), which acts as a Lipschitz coefficient for f, as an [-bound for f. The notation,
used within this statement will be used in the rest of the work.

Theorem 1.2. Let f : R x RY — RY satisfy Carathéodory conditions and also
be locally Lipschitz continuous, i.e. for every compact set K C RN there exists a
real-valued function 1% (-) € L}, such that for almost every t € R one has

(o) = fyl <EWe -yl forallzy € K.

Then, for any xo € RY there exists a mazimal interval Ity = (Qfmy,brap) and a
unique continuous function (-, f,x¢) defined on Iy, which is the solution of the
Cauchy Problem

T = f(t,x), z(0) = zo .
In particular, if ag ., > —00 (resp. by, < 00), then |x(t, f,x0)] = 00 ast ] afq,
(resp. ast 1 bsa, ).

A proof of 1.2 can be found in [21, Theorem 1.1, p.43, Theorem 1.2, p.45 and
Theorem 2.2, p.49].

Moreover, a theorem of continuous dependence of the solutions with respect
to the initial conditions holds true, too (see |21, Theorems 4.2 and 4.3, p.59]).

Theorem 1.3. Let f : R x RY — RY satisfy Carathéodory conditions and also
be locally Lipschitz continuous in x for each fired t € R. Then, there exists a
§ > 0 such that for any (1,€) € R x RN, if

|7 —to| + | — wo| <4,
then all the solutions x(-,7,§) of

i’:f(t,l’), :L’(T)Zf.

exist over some interval [a,b] C It 4, Moreover, as (1,€) — (to,x0), one has
that

SU(', T, 5) — .T(‘, th xO) )
uniformly on [a,b].
Example 1.4. Stick—slip vibration is a phenomenon occurring in physics and

reality when two bodies A and B are in contact through a surface and one of
them, namely A, is subject to an elastic constraint whereas the other, call it B,
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(t) L X(t)
- — lF

Spring

BOW k(t) | _Mass

m

T

| MASSLESS | ':’ p——
STRING/: STRING ! @ v(t) (4.)
I -——
”’l”’ b Belt
(a) (b)

Figure 1.1: Examples of stick—slip vibration in a bow-rubbed string (a) and in a
mechanical model (b).

can be moved in a direction which is parallel to such contact surface. Due to
static friction, when the body B starts to move, the body A will move integrally
till the elastic force will balance the friction and the body A will begin to slide
back to its original position. At this point the process reiterates.

An interesting example of this phenomenon is given by bowed string instru-
ments where the sound is produced when the strings are rubbed by a bow (see
Figure 1.1a). In this case, A would be represented by one of the strings, while B
is the bow.

An equivalent mechanical example is portrayed in Figure 1.1b, where a body
is connected to a wall through a spring and it is positioned on top of a belt that
can move longitudinally. For more information, see [47|. The system is governed
by the following equation

mi = Fy, + F}

where [}, represents the force due to the spring and F; the one due to the friction.
In full generality such forces can depend explicitly on time and/or on the state
in a possibly nonlinear way. That is

Fi=—k(t,z)x and |Fy| < p(t, @)|F],

where k(-, -) represents the coefficient of elasticity of the spring, pu(-,-) the coeffi-
cient of static friction and F' the gravitational force.

In fact, in this work we are interested in those cases in which the functions
k(-,-) and u(-,-) are not necessarily continuous on time. Just to go back to the
example of bowed string instruments, the elasticity of the string can be abruptly
changed by the player anytime he suddenly presses it with his fingers to play
a different note. If k(-,-) and u(-,-) satisfies the Carathéodory conditions, this
problem can be treated within the framework of this work.



1.2 Basic notions of non-autonomous dynamics 13

1.2 Basic notions of non-autonomous dynamics

1.2.1 Processes and skew product flows

When dealing with autonomous differential equations, it is well known that the
behavior of the solutions depends on the elapsed time more than the initial and
the final time. However, in non-autonomous dynamics, both the initial and the
final time are crucial to understand the behavior of the solutions of a dynamical
system. As follows, we introduce the two formalisms used in non-autonomous
dynamics that allow to take into account this double dependence on time and
that will be used in the rest of the work.

Definition 1.5 (Process). A process on a metric space (X,d) is a family of
continuous maps {S(¢,s) | t > s} C C(X) satistying

o S(t,t)x =x for every t € R and x € X.
o S(t,s) = S(t,r)S(r,s), for every t > r > s.
e (t,s,x) +— S(t,s)x is continuous for every t > s and x € X.

A process can be induced by a non-autonomous differential equation if one
assumes that, for any 7 € R and any xy € RY, the initial value problem & =
f(t,x), z(r) = xy has a unique solution z(-, f,r, o) defined on [r,00). In fact,
one can pose

Sit+r,r)xe =a(t+r, f,r,x0),

where t > 0 and r € R and easily check that the properties in Definition 1.5 are
satisfied.

Before giving the definition of skew-product flow, let us clarify what one means
by a continuous flow.

Definition 1.6 (Continuous flow). Consider a metric space (E,d). A continuous
flow on E is a continuous group action of the additive group of real numbers on
E, that is, a continuous map # : R x ¥ — FE such that for all w € F and all
s,t € R one has

0(0,w) =w and 0t + s,w) =0(t,0(s,w)).

Definition 1.7 (Skew-product flow). Let (X, d;) and (E,ds) be metric spaces,
and consider two continuous applications § : Rx F — Fand p : Rx Ex X — X.
The pair (0,¢): Rx Ex X — E x X is called a continuous skew-product flow if

e 0 is a continuous flow.
e For any w € F and z € X one has

(0, w,x) =x (Initial value condition).
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e Forany we F, xr € X and t,s € R one has
ot +s,w,x) = p(t,0(s,w), p(s,w,z)) (Cocycle property).

Particularly, if X is a Banach space and ¢ is linear in z, then (0, ) is called a
linear skew-product flow. Moreover, if ¢ is defined only on RT x E x X, then
(0, ) is called a continuous skew-product semiflow. Additionally, if ¢ is defined
on a subset U of R X E x X (resp. RT x E x X), then (0, ) is called a local
continuous skew-product flow (resp. semiflow).

Remark 1.8. A skew-product flow is in fact a flow on E x X as stated in
Definition 1.6. The term skew-product is referred to the fact that it is composed
of two components so that the first affects the second one but the opposite is not
true.

Before seeing how a non-autonomous differential equation can induce a (local)
continuous skew product flow (or semiflow) we introduce the notion of time-
translation and hull of a function.

Definition 1.9 (Time-translation). Consider a Banach space X and a function
fiRx X — X. We call time-translation at time t of f, the function

firRx X = X, (s,z) — fi(s,x) = f(s+t,x).

Definition 1.10 (Hull of a function). Let (F,d) be a metric space of functions
mapping R x X onto X, where X is a metric space, and let 7 be the topology
induced by the metric. If f € F, and for any ¢ € R also f; € E, where f; is the
time translation at time ¢ of f (see Definition 1.9), then we call the hull of f with
respect to (E,T), the metric subspace of (E,T) defined by

Hullg 1 (f) = (csen{fi [t R}, T),

where, cls(g)(A) represents the closure in (£,7) of the set A and T is the
induced topology.

Consider a differential equation & = f(¢,z), where f belongs to a suitable
metric space (F,d) of functions mapping R x X to X, and let T be the topology
induced by the metric. For any 2y € X and g € Hull(g 7)(f), let (-, g, zo) be the
unique solution at time ¢ of the initial value problem & = ¢(t, z), (0) = zo and
let I, ,, be its maximal interval of definition. Define

U= |J A{tga)|tel.}.

geHull g 7(f),
zeX

If the maps
0 : R x Hullig 7 (f) = Hulligr(f), (t,9) — g,
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and
@:UCRxHullgr(f) x X = X, (t,9,20) = z(t, g, 70)

are continuous, then (6, ¢) is a local continuous skew-product flow induced by the
differential equation & = f(¢,x). Notice in particular that for a linear differential
problem one obtains a continuous linear skew-product flow.

Remark 1.11. Notice that the problem of giving sufficient conditions for the
continuity of # and ¢ in the case of a Carathéodory differential equation is one
of the core problems of this work and the actual content of most of Chapter 3.

Example 1.12. As follows, we aim to present a classic and well-studied case of
skew-product flow induced by a non-autonomous ordinary differential equation.
Specifically, consider

'jj = f(t7 »I),
with f € C(R x R, RY) and such that for any compact set K C R there is a
constant [X > 0 for which the following inequality holds
|f(t, 1) — f(t,20)| < IF|wy — 25| forall 2,20 € K and t € R. (1.2)

Let us endow the space C'(R x RY,RY) with the compact-open topology T,
i.e. the topology of uniform convergence on the compact subsets of R x RY. It is
well-known that (C(R x RN, RY) T,,) is a complete metric space and it is easy
to prove that the application

6:Rx CR xRYRY) = C(R x RY,RY), (t,9) — gt (1.3)
is a continuous flow. Moreover, it is also straightforward to see that the hull of f
in (C(R x RY RY),7), as constructed in Definition 1.10, satisfies
HuH(C(RXRN,RN),TCO)(f) C C(R X RN,RN),

and that (1.2) also holds for any function g € Hullcmxr~y rv)7,)(f). As a
consequence, for every (tg,r9) € R x RY there exists precisely one solution for
jﬁ' = g(t, l’), q (- HUII(C(RXRN,RN),ﬁo)(f)' (14)

By simplicity, assume that all the solutions of any problem like (1.4) are defined
on the whole real line. Thanks to [53, Theorem IV.3, p.62]|, one has that the map

IT: R x Hull orupry gy 7.y () X RN = Hull cmxry gy 7, (f) x RY
(t7g7170) = (gtax(tvgaxO))

defines a continuous skew-product flow on R x Hull ¢ xr~ gy 7,)(f). Addition-
ally the following result holds true.

Theorem 1.13. Consider f € C(R x RN, RY). The following statements are
equivalent.

(1.5)

(i) f is uniformly continuous and bounded in R x K for every compact set
K C RY;

(ii) Hullomxry rN),7,)(f) s compact.
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1.2.2 Exponential dichotomy and dichotomy spectrum

Consider a linear continuous skew-product flow on E x RY, where E is a metric

space, 1.e.
U:Rx ExRY — E xRN

(t,w,yo) — (9(25, w), d(t,w) yo) ,

where ®(t,w) denotes the fundamental matrix solution of the linear differential

(1.6)

problem
y=A(0(t,w))y, (1.7)

with A(6(-,w)) € Li, (R¥*Y) for any w € E so to have existence and uniqueness
of the solutions, and ®(0,w) = Iy.

Definition 1.14 (Exponential dichotomy). Let I be one of the half-lines (—o0, 0],
[0,00) or the real line R and let A be a subset of E. We say that the linear skew-
product flow (1.6), has exponential dichotomy on I over the set A if there are a
continuous family of projections P: A — L(RY RY), w + P(w), and constants
K > 1 and a > 0, such that for every s, t € I and every w € A

|®(t,w) P(w) @' (s,w)|| < Ke ot if t>s,
O(t,w) (Iy — Plw)) @ (s,w SKea(t_S) if ¢t <s.
@ (tw) ( (@) @7} (s,w)]|

When A reduces to a point w, we say that the corresponding system y = A(6,w) y,
has exponential dichotomy on I. If I = R we will simply say that the linear skew-
product flow (resp. the system) has exponential dichotomy.

We recall the definition of dichotomy spectrum, or Sacker-Sell spectrum for a
non-autonomous linear ODE and for a linear skew-product flow.

Definition 1.15 (Dichotomy spectrum and resolvent set over a trajectory). Let
w € E be fixed. The dichotomy spectrum of y = A(6(t,w))y, which will be
denoted by (w), is the set of v € R such that y = [A(6(t,w)) —vIn]y does
not have exponential dichotomy. The resolvent set is p(w) = R\ X(w).

Such notion can be generalized to a family of non-autonomous linear systems
generated by the elements of a subset of the set E.

Definition 1.16 (Dichotomy spectrum for a linear skew-product flow). Let A be
a subset of E. The dichotomy spectrum of the linear skew-product flow (1.6) over
A, denoted by $(A) is the set of v € R such that the family y = [A(0(t,w)) —
~v1 N] y does not have exponential dichotomy over A.

When A is an invariantly connected compact invariant set of E, Sacker and
Sell [51, Theorem 2 p.334| proved that ¥(A) is the union of 0 < k < N compact
intervals

E(A) = [al, bl] J---uU [ak, bk] s
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where 1 < k< Nand a; < by <ag <by <---<a <b.

When dealing with invariant sets which are not necessarily compact, Sieg-
mund’s approach in [55], for linear skew-product flows induced by measurable
linear differential systems, turns out to be very useful to study the dichotomy
spectrum Y(w) and the respective decomposition of R x RY in spectral mani-
folds.

In order to properly introduce it, let us give the definition of linear integral
manifold and of v+ and vy~ -quasibounded functions, together with some addi-
tional notions and properties.

Definition 1.17 (Linear integral manifold). A nonempty set W C R x R is a
linear integral manifold of (1.7) if

(i) it is invariant, i.e. (1,y) € W = (¢, ®(t,w) P (1,w)y) € W for all t € R.

(ii) For every T € R the fiber W(7) = {y € R" | (1,y) € W} is a linear subspace
of RY.

Because of the invariance, the fibers of a linear integral manifold have constant
dimension. Moreover, it is easy to prove that R x RY and R x {0} are always
linear integral manifolds for any system like (1.7). Notice also that a linear
integral manifold is a topological manifold in R x RY and a vector bundle on R.
In particular, if W, and W, are linear integral manifolds of (1.7), then also the
intersection and the sum

WiN Wy = {(1,) € R x RY | y € Wi(1) N Wy(7)}
W1+W2 = {(T,y) ERXRN ’ yEWl(T)+W2(T)}

are linear integral manifolds of (1.7). Specifically, a sum W; + --- + W, of
linear integral manifolds is said to be a Whitney-sum W; @ --- & W, if for any
i=1,...,n—1 one has (W1+---+Wi)ﬂWZ-+1 =R x {0}.

On the other hand, we can describe the exponential growth of a continuous
function through the following definition.

Definition 1.18 (y*-quasibounded and v~ -quasibounded functions). Consider
v € R. A continuous function f: R — RY is

o y*-quasibounded if sup, | f(t)|e”™" < oo,

o 7 -quasibounded if sup,, | f(t)]e” " < oo.

In particular, one can prove that for any v € R, the sets
S, ={(r,y) e RxRY | &(-,w)® (7, w) y is vt -quasibounded},
U, = {(r,y) e R x RN | &(-,w)® *(7,w) y is 7 -quasibounded }

are linear integral manifolds of (1.7). Then, we can finally state the following
spectral theorem (see [55, Spectral Theorem p.249| for the proof).
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Theorem 1.19. The dichotomy spectrum %(w) of (1.7) is the disjoint union of
k closed intervals (called spectral intervals) where 0 < k < N. That is, ¥(w) is
empty, it is the whole R, or there exists k € N, with 1 < k < N — 1, such that

Y(w) =L Ulag, b U+ Ulag—1,bp1] U I,

where Iy is either [ay,by] or (—oo,by], Iy is either [ag, by] or ax,o0), and a3 <
b1 < ag < by < - <ay <b,. Moreover, choose

Y € plw)  with (—o0,70) C p(w) if possible,
otherwise, define U, := R x RY and S, := R x {0}; choose
Tn € p(w) with (v, 00) C p(w) if possible,
otherwise, define U,, == R x {0} and S, := R x RN. Then, the sets
Wo = &, and W, =U,,,

are linear integral manifolds for (1.7). Additionally, for k > 2 choose any ; €
p(w) with
big’}/igai+1 fOTizl,...,k—l.

Then, for every i =1,...,k — 1, the intersection
Wi = u’Yi—l N S%"

is a linear integral manifolds for (1.7) with dimW; > 1. The linear integral man-
ifolds W;, with 1 =0...,k are called spectral manifolds and they are independent
of the choice of ;. Furthermore

RXRNZWO@"'@Wk+1-

The following result is also important because it gives sufficient condition
for which the dichotomy spectrum in Theorem 1.19 reduces to the Sacker-Sell’s
spectrum (see [55, Theorem 3.1 p.253] for the proof).

Theorem 1.20. The following statements are equivalent

(i) The system = A(6(t,w))y has bounded growth, i.e. there exist constants
K >1 and o > 0 such that

1D (¢, w) D7 (s,w)| < K el for t,seRR;
(ii) The system y = A(G(t,w)) y has a nonempty and compact dichotomy spec-

trum
Y(w) = [ay, bi] U - U [ag, by with 1 < k < N,

and the spectral manifolds Wy and Wy are trivial, i.e.

RXRN:V\/l@@Wk



Chapter 2

Spaces and Topologies

This chapter deals with the introduction of the topological spaces and notions
that will be used for most of the rest of the work.

In Section 2.1 we will present all the spaces that will be used for the study of
Carathéodory ordinary differential equations. Together with the classical spaces
of Lipschitz Carathéodory and Strong Carathéodory functions, we introduce two
more spaces accounting for Carathéodory functions which are possibly discontin-
uous in the variable z and that will play an important role in the rest of the work.
The problem of identification of functions differing only on a negligible set is also
discussed.

In Section 2.2 we endow the spaces presented in Section 2.1 with suitable
metric topologies and we also present a first technical lemma which makes the
space 2WOC(RM) easier to be used.

In Section 2.3 we look deeper into the so-called m-bounds and [-bounds
of a Carathéodory function or set of functions. We introduce the notions of

LP -boundedness and L], -~equicontinuity and relate them to a Carathéodory func-

tion or set of functions through the m-bounds and/or I-bounds.

In Sections 2.4 to 2.7 we develop some applications of the L7 |

and L}, -equicontinuity for Carathéodory functions that will be useful in the fol-

-boundedness

lowing chapters.

2.1 Spaces

Consider 1 < p < oo and denote by €, (RM) (or simply €, when M = N), the
set of functions f: R x RY — RM satisfying

(C1) f is Borel measurable and

p

(C2) for every compact set K C RY there exists a real-valued function m* € L |

called m-bound in the following, such that for almost every ¢t € R, one has

|f(t,2)] <m&(@t)  forallz e K.

19
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The assumptions (C1) and (C2) are called Carathéodory conditions from the
name of the Greek mathematician Constantin Carathéodory who proved the ex-
istence of solutions for ordinary differential equations whose vector fields satisfy
such conditions together with the continuity in the variable x for almost every
t € R. As follows, we introduce the sets of Carathéodory functions which are
used in this work.

Definition 2.1 (Lipschitz Carathéodory functions). A function f: R x RY —
RM is said to be Lipschitz Carathéodory for 1 < p < oo, and we will write
f € L¢,(RM) (or simply f € £¢€, when M = N), if it satisfies (C1), (C2) and

p

(L) for every compact set K C RY there exists a real-valued function I¥ € L7 |

such that for almost every t € R one has

\f(t,2) — f(t,y)| < 15|z -y for all z,y € K. (2.1)

In particular, for any compact set K C RY, we refer to the optimal m-bound and
the optimal [-bound of f as to

‘f(t,l’) _ f(tvy)’

m® (t) = sup | f(t, )| and I%(t) = sup ) (2.2)
zeK 5071/;]{ [z —y|
ey

respectively. Clearly, for any compact set K C RY the suprema in (2.2) can be
taken for a countable dense subset of K leading to the same actual definition,
which guarantees that the functions defined in (2.2) are measurable.

Definition 2.2 (Strong Carathéodory functions). A function f: R x RY — RM
is said to be strong Carathéodory for 1 < p < oo, and we will write f € &€,(RM)
(or simply f € &€, when M = N), if it satisfies (C1), (C2) and

(S) for almost every ¢t € R, the function f(¢,-) is continuous.

The optimal m-bound for a strong Carathéodory function on any compact set
K C RY is defined exactly as in equation (2.2).

Functions which are not necessarily continuous in the second variable are also
considered. First, we set some notation.

Definition 2.3 (Suitable set of moduli of continuity). We call a suitable set of
moduli of continuity, any countable set of non-decreasing continuous functions

@ = {ejl S C(R+7R+) |j € N7 I = [QLCD]; q1, 42 € @}

such that HJI' (0) = 0 for every 931- € O, and with the relation of partial order
given by
9511 < 9522 whenever I; C I, and j; < js.
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Now we introduce the family of sets O€,(R) and 2OE,(RM), where O is a
suitable set of moduli of continuity.

Definition 2.4 (O-Carathéodory and weak ©-Carathéodory functions). Let ©
be a suitable set of moduli of continuity as in Definition 2.3, and le[ the compact
set of functions in C'(I, B;) which admit ] as a modulus of continuity.

e We say that a function f : R x RY — RM is ©-Carathéodory for 1 < p < oo
and write f € OC,(RM) (or simply f € ©C€, when M = N), if f satisfies
(C1), (C2), and

(T) for each j € N and I = [q1,¢], q1,92 € Q, if (z,(-)) is a sequence in

IC]I- uniformly converging to z(-) € /C]]- , then

T}Lnio/l‘f(t’ z,(t)) — f(t,x(t))["dt = 0.

e We say that a function f : R x RY — RM is weak ©-Carathéodory, and write
f € WOLE(RM) (or simply f € WOC when M = N), if f satisfies (C1), (C2)
and

neN

is a sequence in

(W) for each j € Nand I = [¢1,¢], 1,92 € Q, if (xn())
KI uniformly converging to z(-) € K}, then

neN

n—oo

lim ftxn dt /ftx

Remark 2.5. As regards Definitions 2.1, 2.2 and 2.4, when p = 1, we will omit
the number 1 from the notation. For example, we will simply write £€ instead
of 2@:1 .

As a first topological result we give a characterization of the functions in
oc, (]RM) and in 20OC, (RM).

Theorem 2.6. Let f be a function in €, (RM).

(i) If there exists a sequence (fn)nen in @QZ(RM) such that for every ICJI., as in
Definition 2.4, one has

lim sup /‘fn (t,y(t ,y(t))’pdt =0, (2.3)

n—>oo E’CI
then f € @C(RM).

(i) If there exists a sequence (fy)nen in QOE(RM) such that for every Kf, as
in Definition 2.4, one has

lim sup
n—o0 y(~)€/€§

[ lale.ato) = se.vo))e| =o.

then f € QU@Q:(RM).
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Proof. (i). Since condition (C1) and (C2) are satisfied by hypothesis, we only
need to prove condition (T). Consider I = [q1,q2], ¢1,¢2 € Q, j € N, and let
(z&(-))ren be a sequence in K converging uniformly to some z(-) € Kf. Thanks
to equation (2.3), for a fixed £ > 0 there exists ny € N such that,

1/p
aup [1wlest) - sl <5

EICI

Therefore, we have that

£ CoaeC)=F CozO), < 117 Coon() = fuo (2 )Ilp
{1 o (20 () = o (s ))H + ||f( () = fuo (2O, (24)
<e+ ano<7xk() fno » & ||

Then, recalling that f,, € ©€(RM), from (T) and (2.4), we conclude that

,}Lrgo/l\f(t,xk(t)) — f(t,z(t)|Pdt =0,

and condition (T) holds for f.
(ii). Analogous reasonings lead to the thesis also for 200€(R). O

Remark 2.7. We identify the functions which lay in the same set and only
differ on a negligible subset of R'*. The constraint about belonging to the
same set is crucial. Otherwise, a function in G€,(RM) could in fact be identi-
fied with a function which is not in &€,(RM). Furthermore, such a rule implies
that £&,(RM) C &€,(RM) and O, (RM) C WOC(RM) but &€,(RM) is not
included in ©€,(RM). Nevertheless, a continuous injection (which is not a bijec-
tion) of G€,(RM) in OC,(RM) is straightforward. Thus, the following chain can
be sketched

£¢,(RY) c &6¢,(RY) — 0¢,(RY) C woeRY), (2.5)

where © is any suitable set of moduli of continuity. In particular, for any function
[ € WOL(RM), we will say that f € G€,(RM) (resp. f € L&, (RM))if fis a
representative of an equivalence class in Q0O€(RM) in which there is at least one
function that belongs to &€,(RM) (resp. £¢€,(RM)). On the other hand, the
equivalence class in WOC(RM) of a function f € G€,(RM), contains elements
which do not belong to the equivalence class in &€,(RM) of f.

The following results characterizes the process of identification in the sets
WOC(RM) and OC,(RY), and, as a consequence, implies that 20OC(RM) and
O¢,(RM) are metric spaces when endowed with the topologies defined at the
beginning of the following section.
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Proposition 2.8. Let f, g € WOEC(RM) (resp. f,g € OC,(RM)) coincide almost
everywhere in R x RN. Then, for any /C][- as in Definition 2.4, we have that

() e Kl = f(ta(t)) =g(t,x(t) forae. t €. (2.6)
Proof. Consider f,g € QU@@(RM), and the Borel set V C R x R¥, such that
f(t,x) =g(t,x) V(t,z) €V and measgirv (RV\V) =0.
Fix j € N, I = [q1,¢2], ¢1,42 € Q, and z(-) € K, and consider the set
E={(t,e) eI x B CR"™ | (t,z(t)+¢) eV}.

Moreover, for any ¢t € I denote by E; and by V;, the sections in ¢ of £ and V,
respectively, i.e.

E,={c€By|(t,e)e E} and Vi={zcRY|(t,z)ecV}.
Now, for a given t € I one has

Therefore, measgn (B \ E;) = 0 for almost every ¢ € I. Then, applying Fubini’s
theorem twice, one has

measg (/) - measgn (B;) = measgi+n (E) = measg (E;) de ,
RN

where F. denotes the section of E for any fixed € € By, i.e.
E.={tel|(te) € FE}.

Therefore, we have that measg(F.) = measg(/) for almost every ¢ € B;. Now,
let (€,)nen C By be such that

n—o0

en —— 0 and measg(F.,) = measg(I) VneN.

Then, for any n € N, called z,,(t) = x(t) + &,, one has that z,(-) € KI,,, and

J+1
F(t,za(t)) = g(t, 2, (t)) for all t € I. Then,

[ 15 uato) ~ a(esto)) ) < | [ [5u00) = 7 (0.00)] )
- ] [ 17(au0) = a(t.2,(0)] dt\ ¥ \ [ lo(t.2.(0) = o(t.(0)) dt\
/[f(t,:c@)) —f(t,xn(t>)]dt‘+ /[g(t,:cn(t)) —g(t,x(t))]dt‘

1 1
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and the terms on the right-hand side go to zero as n — oo because f,g €
QU@(’:(RM). In other words, we have that for any j € N, I = [¢1,¢2], ¢1,¢2 € Q

() eKl = /If(t,:c(t))dt:/Ig(t,x(t))dt. (2.7)

However, as a first step to obtain (2.6), we would need that for every t € I and
h > 0 so that ¢t + h € I one has

/f f(t,x(t))dzf—/tt+ g(t, z(t))dt, (2.8)

which can not be directly deduced from (2.7), nor reasoning as to obtain (2.7)
because if a function z(-) belongs to the set IC]I , and we take py, po € Q such that
J = [p1,p2] C I, then z(-) does not necessarily belong to K7. In fact, due to the
relation of partial order in a set of moduli of continuity (see Definition 2.3), it
might happen that for any ¢ € R\ {0} one has /(t) < 81(t), where 67 (-) and 6](-)
are the moduli of continuity on IC;-] and ICJI. ,
modulus of continuity for the restriction of z(-) to the interval J. Nevertheless,

respectively, and that 93] (+) is not a

we can proceed as follows: fix py, ps € Q such that ¢; < p; < ps < ¢ and consider
the function z: I — R” defined by

z(pr) ift € [q,pil,
z(t)=q () ifte|p,pl, (2.9)
z(pa) ift € [pa, qol-

Clearly, Z(+) is still a function in IC]I- . Then, using the linearity of the integral and
the triangular inequality, one has

/p2[f(t,m(t)) —g(t,z(t))] dt‘ < ‘/:Z[f(t,/x\(t)) —g(t,2(1))] dt‘+

p1

_|_

/ T (b 2(p2) — g(t,2(p2))] dt

P2

P1
#| [ 17 ato0) = ot ato) ,

q1
and each one of the three integrals on the right-hand side is equal to zero due to
(2.7) applied to Z(p:) € KF, z(:) € ICJqu’pl] and z(py) € lCE-m’qz], respectively. In
particular, we obtain (2.8) for any ¢t € I and h > 0 so that ¢t + h € I, thanks to
the continuity of the integral with respect to the interval of integration.

Thus, dividing both the sides in (2.8) by h, and taking the limit as h — 0 (see

N. Dunford and J.T. Schwartz [24, Corollary I11.12.7, p.216]) one obtains that

ft,x(t) = g(t 2(t)) for a.e. t € R.

If f,g € ©C,(RM), and p > 1, one has the thesis recalling that L], C Lj,,. O

loc*
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2.2 Topologies

We endow the previously introduced sets with suitable topologies. As a rule,
when inducing a topology on a subspace we will denote the induced topology
with the same symbol which denotes the topology on the original space.

The space WOE(RM) will be endowed with the following weak topology.

Definition 2.9 (Topology 0g). Let © be a suitable set of moduli of continuity
as in Definition 2.3. We call og the topology on 2OE(RM) generated by the

family of seminorms
/ ft,x(t)dt|,

with I = [¢1,¢], ¢1,¢2 € Q, j € N, and K] as in Definition 2.4. The space
(QTU@Q:(RM ) a@) is a locally convex metric space.

The topology og can also be induced on the spaces GC(RM ), GC(RM ) and
SQ(RM ) Moreover, the space ©C, (]RM ) will be endowed with the following
strong topology.

pri(f) = sup f e WOeRM),

elcf

Definition 2.10 (Topology Tg). Let © be a suitable set of moduli of continuity
as in Definition 2.3. We call 7g the topology on ©¢C, (RM ) generated by the
family of seminorms

/p

() = s V|f (t,a(t \pdt] . feoeRY),
(eKt

with I = [q1,¢), ¢1,¢2 € Q, j € N, and K] as in Definition 2.4. The space

(@Cp (RM ) , 7'@) is a locally convex metric space.

Remark 2.11. Notice that, according to the previous definition, one actually
has a different topology 7o = Te(p) for any 1 < p < oco. However, in order to
keep the notation simple, we will simply write Tg since in each case it is always
clear which p we are using because it is specified in the notation of the space (e.g.
(@Q:p (RM ),7'@)). The same reasoning also applies to the rest of the topologies
that we will define in this chapter.

Besides the already introduced topologies 0o and 7o, on the set &€, (]RM )
we also consider the following three topologies which have been previously used
in the literature.

Definition 2.12 (Topology T5). We call Tp the topology on &€, (RM ) generated
by the family of seminorms

pr;(f)= sup {/|f t x(t ‘pdt} , fe€ Gﬁp(RM),
JeC(I,By)

where I = [q1,¢], ¢1,q2 € Q and j € N. (GQ:,,(]RM),E) is a locally convex
metric space.
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Definition 2.13 (Topologies 7p and op). Let D be a countable and dense subset
of RV,

e We call 7p the topology on &¢, (RM ) generated by the family of seminorms
1/p
p (0= | [l
I

for f e GQP(RM), z; €D, I =[q,q], ¢, € Q.

e We call op the topology on G€(RM) generated by the family of seminorms

/]f(t,a:)dt‘,

fOI' f € GQ(RM)7 T c D7 I= [Q17QQ]7 q1,92 € @

pl,x(f) =

(6€,(RM),Tp) and (SE(RM),0p) are locally convex metric spaces.

Notice that, as well as &€, (RM ), also £¢, (RM ) can be endowed with all the
previous topologies and the following chains of order hold when all the previous
topologies are considered in either &¢, (RM ) or £¢, (RM ):

op<Tp<Toe<Tp and op<oe<To. (2.10)

We conclude this section with a technical lemma on (QU@Q(RM ),0@). As
one may notice, both the property (W) in Definition 2.4 and the way the topol-
ogy og is defined in Definition 2.9, require that the interval on which we take
the integral coincides with the domain of the functions over which we take the
supremum. However, in many cases we will need to consider the integral on a
smaller subinterval that we can not directly control with the integral on the whole
interval due to the employed weak formulation. Nevertheless, playing with the
functions in the compact sets IC}-] (on the line of what we already did in the proof
of Proposition 2.8), we are still able to achieve the properties we need, as shown
in the technical lemma below.

Lemma 2.14. Let © be a suitable set of moduli of continuity as in Definition 2.3,
and for each j € N and I = |[q1,¢), 1,92 € Q, let IC;T be the compact set in
C(1, B;) defined as in Definition 2.4.

(i) Let f be a function of WOE(RM). For eachj € N and I = [q1, ), ¢1,¢2 € Q,
if (xn(-))neN 1S a sequence in ICJI- uniformly converging to x(-) € ICJI-, then

P2

lim [ f(tz,(t))dt = /m f(t,x(t)) dt,

neo p1 p1

whenever pr, p2 € Q and ¢1 < p1 < p2 < ga.
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(ii) Let (gn)nen be a sequence in WOE(RM) converging to g in (WOE(RM), 0g).
Then, for any I = [q1, 4], ¢1,92 € Q and j € N one has

lim sup
n—oo x(-)E/CJI-

/ " lgn(t.2()) — g(t.2(6))] de| = 0

whenever py, po € Q and g1 < p1 < p2 < qs.

Proof. (i). Consider I = [q, q2], with ¢1,¢2 € Q, and a sequence (xn('))neN in
ICJI- uniformly converging to a function z() € ICJI- . For every n € N, consider the

function 7,,: I — B; defined by

xn(pl) 1ft € [q1ap1]7
xn(t) = xn(t) 1ft € [p17p2]>
Tn(p2) ift € [p2,qol.

Notice that for all n € N one can write

p}(t,xn(t))dtz q}(t,fn(t))dt— p}(t,zn(pl))dt— q}(s,xn(pg))dt.

p1 q1 q1 p2
(2.11)
The sequence (@n(-))neN is in IC]I- and converges uniformly to the function z7: I —
RY which coincides with z(-) on [p,ps], and it has constant value z(p;) and

x(p2) on [q1,p1] and [pe, o], respectively. In particular, notice that (xn(pl))n N

is a sequence in K; il and (zn(p2)) is a sequence in ICEPQ"”], since both are

neN
sequences of constants bounded by j, and they respectively converge to the con-
stant functions given by x(p;) € IC]qu’p Tand z(p,) € ICJLP 2% Therefore, statement

(i) follows from (2.11) and (W).

(ii). Consider a sequence (g, )nen in WOE(RM) converging to a function g in
(%@@(RM),JQ), a function z(:) € IC]]-, where I = [q1, 2], ¢1,¢2 € Q, and let
p1, p2 be elements of Q such that ¢ < p; < py < ¢o. Consider the function
7: I — RY defined as in (2.9).

Clearly, 7 is still a function in IC31~ . Recalling how Z has been defined in the
previous formula, using the linearity of the integral and the triangular inequality,
one has

‘/ gn (t, (1)) — g(t, z(t)) dt‘ ‘/ gn (£, Z(2) _g(m())]dt‘
’/ gn(t,z(p1)) — g(t,x(p1))] dt| + / [0 (t, 2(p2)) — g(t, 2(p2))] dt“

p2

Moreover, since any constant function bounded by j belongs to IC}-] for any interval
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J C R with rational extrema, then from the previous inequality we can deduce
q2
/ [on (. 2(1)) = 9(t, 2(1))] dt‘
q1
P1
/ [ga(t,2(8)) — g(t,2(1))] dt‘

q1

‘/pj2[gn(t,x(t)) —g(t, z(t))] dt‘ < sup

m(~)€/CJI-

+  sup
w()eklinry

+  sup
:C(-)G]CEPQ’(ZQ]

/ "lon(t,2(0) — g(t,2(0)] dt‘

p2

and the right-hand side of the previous inequality goes to zero as n — oo since
(gn)nen converges to g in (%@Q(RM ), a@). In particular notice that such limit
is uniform in z(-) € K and thus one obtains the thesis. O

Remark 2.15. Notice that properties (i) and (ii) of Lemma 2.14 are trivially
true for any strong topology. Indeed, the modulus inside the integral allows us
to control any integral with one on a bigger interval in which we are sure to have
the convergence.

2.3 The m-bounds and the [-bounds

This section is devoted to a deeper understanding of the m-bounds and /-bounds
of a Carathéodory function or set of functions. Interestingly, the role of these
locally integrable functions goes far beyond the existence and uniqueness of solu-
tions for Carathéodory differential problems as stated in Theorem 1.2. However,
in order to proceed in the development of the theory, we need to give a bit of
structure to them in a way that different Carathéodory functions can be related
to each other through their m-bounds and /-bounds. To the aim, we introduce
P ~boundedness and subsequently relate

them to Carathéodory functions through their m-bounds and [-bounds.

the notions of L} -equicontinuity and L

Definition 2.16 (L} -boundedness). A subset S of positive functions in L7

loc?

with 1 < p < 0o is bounded if for every r > 0 the following inequality holds

T
sup [ mP(t)dt < oo.
meS J—p

In such a case we will say that S is L} -bounded.

Definition 2.17 (L;,,
Ll

loc

-equicontinuity). A set S of positive functions in L}, is

-equicontinuous if for any r > 0 and for any € > 0 there exists a 6 = §(r,e) > 0
such that, for any —r < s <t <r, we have

t
t—s<éd = sup/m(u)du<5.
meS Js
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Remark 2.18. According to the previous definitions, the L}, -equicontinuity im-
plies the L} -boundedness. On the other hand, if p > 1, then, thanks to Holder
inequality one immediately obtains that the L? -boundedness implies the L;

loc™
equicontinuity.

As follows, we aim to give a characterization of the L} -equicontinuous subsets

loc™

of positive functions in L} _through the relative compactness of the associated set

loc
of positive absolutely continuous measures. In order to proceed, we need to set
some notation and give some statements of classic results of measure theory. By
M we denote the set of locally finite, positive and regular Borel measures on R.
Recall that a measure u € M™ is said to be continuous if u(t) = 0 for any ¢ € R.
Additionally, we denote by M the set of measures u € M™ such that for every
r € R* the restriction of p to the interval [—r,r] is absolutely continuous with
respect to the Lebesgue measure, i.e. such that, for any Lebesgue measurable set
A C R, one has

measg(A) =0 = pu(A4) =0,

where measg represents the Lebesgue measure on R. By the Lebesgue-Radon-
Nikodym theorem, if p € M, then, there exists f € L; . such that for any
measurable set A in R, one has

:/f(t)dmeasR(t):/f(t)dt. (2.12)
A A

If a measure 1 € M™ is not absolutely continuous with respect to the Lebesgue

ac?

measure, then it is said to be singular. In particular, we will denote by M1, the set
of singular continuous measures, i.e. positive and regular Borel measures which
are continuous and singular with respect to the Lebesgue measure, and by Mpd,
the set of purely discontinuous measures, i.e. positive and regular Borel measures
with support on a countable subset of R. The set M™ can be decomposed as
Mt = ME oM e M, (see Hewitt and Stromberg [31, Theorem 19.61, p.337]).

We endow M™ with the following topology.

Definition 2.19 (Vague topology). We say that a sequence (i, )nen of measures
in M wvaguely converges to € M+, and write y, = p, if and only if

lim [ ¢(s)dpn(s /¢ ) dpu(s for all ¢ € CZ(R).

n—o0 R
We will denote such a topological space by (M™,7).

As shown in Kallenberg [35, Theorem 15.7.7, p.170], (M™*,5) is a Polish
space, i.e. it is separable and completely metrizable. Moreover, the following
propositions hold true (see |35, Theorems 15.7.5, p.170 and 15.7.2, p.169)).

Proposition 2.20. Any subset M C M is relatively compact in the vague
topology if and only if sup,cp p(B) < oo for any bounded Borel set B.
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Remark 2.21. As a consequence of the previous proposition, if S is a subset
of Lj,., and M C M, is the set of positive absolutely continuous measures
whose densities are the functions in S, then S is L}, -bounded if and only if M is
relatively compact in the vague topology.

Proposition 2.22. Given a sequence (pi,)nen of measures in M™ converging to
some measure i € M™ in the vague topology o, for every s,t € R, with s < t,
one has

(a) wu([s,t]) > limsup,,_, pn([s, t]), and
(b) w([s,t]) < liminf, o pn([s — 9, + d]) for every § > 0.

We are now ready to give a characterization of the Lj -equicontinuity for
subsets of positive functions in Lj.

Theorem 2.23. Let S C L}, be a set of positive functions and let M C M, be
the set of absolutely continuous measures whose densities are the functions of S.
Then, the following statements are equivalent.

(i) S is L},.-equicontinuous.

(ii) M is relatively compact in (M*, ) and clsip+ 5 (M) C M, @ ML,

Proof. (i) = (ii). One immediately has that M is relatively compact thanks to
Remark 2.18 and Remark 2.21. Let us prove that clsgv+ 5 (M) C M & ML,
Let p be a measure in cls v+ 7 (M) and (jin)nen be a sequence in M converging
to u. We have that fixed ¢ > 0 there exists a § > 0 such that, due to (i), for
every n € N we have

tn([s,t]) <e  whenever t — s < 4.

Now consider —r < s <t <r and t —s < §/2. Then, from Proposition 2.22(b),
one has that

M([Sat]) < hir_l)golf/in([s - 6/47t+ 5/4]) <e,

which means that p has a continuous variation on ¢ and s. Therefore, it can not

have a purely discontinuous component which means that p € M7 & M{.
(i) = (i). Assume on the contrary that S is not L}, -equicontinuous. There-

fore, there exist » > 0 and £ > 0 such that for any n € N there is a function
mp(-) € S and an interval [s,,t,] C [—r,r] with ¢, — s, < 1/n, such that

tn
/ my(u) du > €.

Firstly notice that, since the sequences (s,)neny and (t,)nen take values in the
compact set [—r,r] and t,, — s, — 0 as n — oo, then there exists 7 € [—r, r| such
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that, up to a subsequence s, — 7 and t,, — 7 as n — 0o. Now, let us consider the
sequence (fi,)nen Of absolutely continuous measure in M such that for any n € N
the function m,,(-) is the density of the measure p,. By (ii), (fin)nen vaguely
converges, up to a subsequence, to a measure yu € MF @ M. Then, for the
given ¢, there exists a 4 > 0 such that

u([r — 6,7+ 4)) < e. (2.13)

Moreover, there exists ng € N such that [s,,t,] C [t —§,7 + ] for all n > n,.
However, from Proposition 2.22(a) we have that
p([m — 0,7+ 6]) > limsup p,([7 =, 7 + 0]) > Umsup ,([sn, tn]) > €,

which contradicts (2.13). Therefore, we deduce that S is L}, -equicontinuous,
which concludes the proof. ]

p

P -boundedness and L;

At follows, we extend the notions of L loc

-equicontinuity
given in Definitions 2.16 and 2.17, respectively, to sets of Carathéodory functions
through their m-bounds and/or [-bounds. A special attention will be paid to
the set of the time translations of a function, because it plays a key role in the
construction of its hull (see Definition 1.10), and consequently in the continuity of

a skew-product flow induced by a non-autonomous ordinary differential equation.

Definition 2.24 (L} -boundedness and L]

loc loe-equicontinuity for Carathéodory

functions). Consider 1 < p < co. We say that

(i) aset E C €,(RM) has Lt -bounded (resp. L}, -equicontinuous) m-bounds,
if for any j € N there exists a set S7 C L of m-bounds of the functions of

E on Bj, such that S7 is L! -bounded (resp. Lj,.-equicontinuous);

ii) a function f € €,(RM) has L? -bounded (resp. L} -equicontinuous) m-
14 loc loc

bounds if the set {f; | t € R} has L} -bounded (resp. Lj,.-equicontinuous)
m-bounds;

(iii) aset B C £&,(RM) has LY -bounded (resp. L}, -equicontinuous) [ -bounds,

if for any j € N, the set S C L¥ . made up of the optimal [-bounds on B;

loc?

of the functions in E, is L! -bounded (resp. L], -equicontinuous);

iv) a function f € £¢,(RM) has L? -bounded (resp. L} -equicontinuous) -
P loc loc
bounds if the set {f; | t € R} has L} -bounded (resp. L} -equicontinuous)
[-bounds.

Remark 2.25. Notice that (ii) and (iv) in Definition 2.24 are well-posed. In
fact, if f € €,(RM), then for any ¢ € R one has that f(-,-) = f(t + -,-) is Borel-
measurable and, for any j € N, if z € B; C RY, then for almost every s € R one
has

[fe(s.x)| = |f(t+ s,2)| < mi(t + s) = m](s), (2.14)
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where m?(-) € L7 is an m-bound for f on B;. As a consequence for any j € N,
the function f; has an m-bound on B;. Therefore, f; satisfies (C1) and (C2) and
thus f; € €,(RM). Furthermore, if f € £¢,(RM), one has that, for any j € N, if
z,y € B; C R then for almost every s € R one has

[fi(s.x) = fls, )l = [ f(s + t.2) = fuls + t.y)| SV (t+ )|z —y| = (s)lx —y,

where l7(-) € LV is the optimal [-bound for f on B;. As a consequence for any

j € N, the function f; has an [-bound on B; and thus, it also satisfies (L) in
Definition 2.1 and thus f; € £&,(RY).

2.4 Topological closure

As a first application of the notions introduced in Definition 2.24, we aim to
investigate if such properties can be extended to the limit functions once we
take the closure in a suitable topological space. The possibility of maintaining
properties on the m-bounds and/or on the [-bounds through the limits is actually
crucial because it allows to treat the closure of sets as “homogeneous’ (with

respect to a specific property), as we will see in the following sections. Just

p

to cite two essential applications, for a converging sequence in a set with L

bounded [-bounds we will be able to deduce the existence and uniqueness of
solutions for the induced limit differential problem or that, within a closed set
with L}, -equicontinuous m-bounds, all the solutions of the respective differential
problems share the same moduli of continuity.

The following three cases are of interest for the rest of our work.

(a) The closure of any subset of S€ or £¢& with respect to any of the introduced
topologies.

b) The closure of any subset of &G¢&, or £&,, with p > 1, with respect to any
P P
of the introduced strong topologies.

(c) The closure of any subset of ©C or WOC respectively endowed with the
topologies Tg and og.

Notice that in case (b), only the subcase p = 1 lays within the scope of (a).
Furthermore, case (c) does not fall within any of the other two cases because
the closure is taken with respect to either, the strong topology 7g or the weak
topology g, but in larger spaces than in case (a).

Proposition 2.26. Let T be any of the topologies introduced in Section 2.2.

loc

(resp. Ly, -bounded l-bounds) then clsgewmy ) (E) has Ly, -bounded m-

loc
bounds (resp. clsgemm) ) (E) C LERM) and it has Ly, -bounded l-bounds).

(i) If E C GC(RM) (resp. E C £&(RM)) admits Lj, -bounded m-bounds
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(i) If E C SE(RM) (resp. E C L£&(RM)) admits Ly, -equicontinuous m-
lloc_
1 -
loc

bounds (resp. L, -equicontinuous I-bounds), then clsse, @) 1 (E) has L
equicontinuous m-bounds (resp. clsigemmy 7y (E) C LERM) and it has L
equicontinuous [-bounds).

(iii) If f € SE(RM) (resp. f € L&(RM)) admits L},.-bounded m-bounds (resp.
Lj,.-bounded 1-bounds) then any g € Hulligemn) ) (f) has Lj,.-bounded
m-bounds (resp. Lj, -bounded l-bounds).

(iv) If f € GEC(RM) (resp. [ € £&(RM)) admits L},
(resp. Ly, -equicontinuous l-bounds), then any g € Hulligemany 7)(f) has

1 . . 1 . .
L,,.-equicontinuous m-bounds (resp. L,,.-equicontinuous [-bounds).

-equicontinuous m-bounds

Proof. By (2.10), if we prove the result for the topology op, we have it for all the
other topologies.

(i). Let us firstly reason for the m-bounds and, in order to simplify the nota-
tion, let £ denote the set clsse®My o) (). As we are applying the topological
closure in (G€(RM),op), we already know that each function in E admits an
optimal m-bound. However, without any additional information, it is difficult to
say whether the optimal m-bounds of the limit functions allow us to preserve the
property of L], .
f € B\ E, we consider a sequence (f,,)nen in E converging to f with respect to op,

and we build an m-bound for f starting from the optimal m-bounds of (f,,)nen-

-boundedness in E or not. The idea then, is that, for each function

In such a way, the obtained m-bound encloses some additional information which
allows us to prove L} -boundedness for E. Notice that, for any function f and
j € N, if this kind of property is true for a generic m-bound for f on Bj, then it
is also true for the optimal m-bound for f on B; (see Definition 2.1).

Fix j € N and, for any n € N, let m? be the optimal m-bound for f, on
Bj and pf € M™ be the positive absolutely continuous measure (with respect
to the Lebesgue measure) with density m?(-). By hypothesis, the set {m/(-) |
n € N} is L}, -bounded. Hence, due to Remark 2.21, the sequence of induced
measures (/) en, is relatively compact in (M™,5) and thus vaguely converges,
up to a subsequence, to a measure p/ € MT. Moreover, by Lebesgue-Besicovitch
differentiation theorem (see Ambrosio et al. [1, Theorem 2.22, p.54]), there exists
mi(-) € L}, such that

m? (t) = lim —M([t,t + 1))

lim - : for a.e. t € R, (2.15)

and m?(+) is the density of the absolutely continuous part of the Radon-Nikodym
decomposition of 7 in each compact interval. We claim that m/ () is an m-bound
for f on B;. Let us firstly fix x € D N Bj, and take t,h € Q, with A > 0, and
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¢ € CL(R) such that ¢ =1 in [t,¢ + h]. Then, we have
1 [tth t+h
il - j
‘h/t f(s,x)ds 77:/[1—>I1(;10‘ / fa(s,x)ds| < nh_{go t m (s)ds
< lim 5 ¢(s) dysd, (s / ¢(s) dp (s

Moreover, thanks to the regularity of ;7, one has

W ([t t+h]) = inf{/ B(s) dp? (s) ‘ ¢ € CLR), p=1in [t,t—{—h]} :
R
Therefore, gathering the previous two formulas, we obtain

’%/th(s,x)ds < wULith). (2.16)

h

Now, consider ¢, h € R, with h > 0, and let (s,,)nen and (¢, )nen be two sequences
in Q such that, as n — oo, s, | t and t,, Tt + h, respectively. By (2.16), applied
on the intervals [s,,t,], and noticing that 1 ([s,,t,)] < p/([t,t + h]) for every

n € N, one can write
J
_ 1t + )

1 [t
‘E\/Sn f(S,Z’)dS h ;

Hence, passing to the limit as n — oo and using the continuity of the integral, one
obtains (2.16) for every t,h € R with A > 0. Now, as h — 0 (see [24, Corollary
I11.12.7, p.216]) and using (2.15), we obtain that for almost every t € R,

for all n € N. (2.17)

[t @) <m(t), (2.18)

for the fixed x € DN B;. For every fixed € DN B; let us now denote by R(x) the
subset of R such that measg(R\ R(x)) = 0 and (2.18) holds for all t € R(z). Such
a set clearly depends on x € D N B;. However, since D is numerable, by simply
intersecting all the possible R(z), with x € D N Bj;, (there is only a numerable
quantity of them), one can obtain a set Ry C R of full measure for which (2.18)
holds for any x € DN B;. Finally, by the continuity of f(¢,-), we obtain the result
for almost every ¢ € R for all x € B;, and m/ provides an m-bound for f in B;,
as claimed.

Now, we prove that E admits L} -bounded m-bounds. For each f € F
and any j € N, let mﬁc be either, the optimal m-bound of f on B’ if f € E,
or the m-bound given by (2.15), i.e. the absolutely continuous part of a limit
measure, if f € '\ E. Moreover, for each f € E, let (f,)nen be a sequence in £
converging to f with respect to op. Consider j € N, r > 0 and ¢ € C} such that
supp¢ C [-r — 1,7+ 1] and ¢ = 1 in [—r, ], then, we have

/ m(t) dt < /¢ mi(t)dt < lim [ ¢(t)m’ (t)dt

n—oo R

(2.19)
Ssup/ 1 m () dt < oo,

gerE
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where the last inequality comes from the assumption of L}, ~-boundedness for the
m-bounds of E. Hence, taking the superior on f € E in the previous chain of

inequalities, we obtain
s

sup mgc(t) dt < ©.
feEJ -
Therefore, E admits L}
proof.
Now, consider £ C £&(RM) with L]
the first part of the proof, we have that the sequence of absolutely continuous

-bounded m-bounds, which concludes this part of the

loc™

e-bounded [-bounds. Reasoning as in
measures with densities (17 (¢)),en vaguely converges, up to a subsequence, to
a positive measure whose absolutely continuous part has density l/(-) € L]
Additionally, for any z,y € D N B; with = # y the following inequality holds

loc*

If(t,x) — f(t,y)| < V() |z —y| forae teER. (2.20)

Notice that the set R(x,y) C R of total measure for which (2.20) holds, depends
on x and y. However, since D is numerable, again, by intersecting all the possible
R(z,y) (there is only a numerable quantity of them), one can obtain a set Ry C R
of full measure for which (2.20) holds for any =,y € D N B;. An extension of the
previous inequality to the entire B; is thus achieved thanks to the continuity of f
with respect to the variable x. Therefore, f € £& (RM ) and thus £ C £&(RM).
Finally, reasoning exactly as in (2.19), one obtains that E has L} _-bounded [-
bounds.

(ii). Again, let us firstly work on the m-bounds. For each f € E and any
j € Nlet mic be either, the optimal m-bound of f on B’ if f € E, or the m-
bound given by (2.15) if f € E'\ E, i.e. the absolutely continuous part of a limit
measure. Moreover, for each f € E let (f,)nen be a sequence in E converging to
f with respect to op. By the L} -equicontinuity of the m-bounds, we have that
for each j € N, and r,& > 0 there exists § = §(r, &) > 0 such that

forallt,se[-rr]: O0<t—s<d = sup/mgf(u)du<5.
feb Js

Moreover, consider ¢, s € [—r,7] with s <t and t —s < /3 and ¢ € C} such that
supp¢ C [s —0/3,t+ /3] and ¢ =1 in [s,t]. Then, we have

/ mf du</¢> mf u) du < hm qb( )m}n(u)du
t+5/3
< sup/ m)(u)du < €.
9geE Js—6/3

Hence, taking the superior on f € E in the previous chain of inequalities, we
obtain

t
sup/ mp(u) du < e.

feE Js
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Therefore, E admits L}, -equicontinuous m-bounds. The result for the I-bounds
can be obtained by analogous reasoning.

(iii) and (iv) are a direct consequence of (i) and (ii), respectively. O

Proposition 2.27. Let T be any of the strong topologies introduced in Section 2.2
and 1 < p < 0.

(i) If E C 6C,(RM) (resp. E C £&,(RM)) admits L}, -bounded m-bounds
(resp. Ly, -bounded [-bounds) then clsge, w7 (E) has L, -bounded m-
bounds (resp. clsgemm) ) (E) C LERM) and it has LY, -bounded l-bounds).

(i) If E C &€,(RY) (resp. E C £&,(RM)) admits Lj, -equicontinuous m-
bounds (resp. Ly, -equicontinuous I-bounds), then clsse, @) (E) has Lj,,-
equicontinuous m-bounds (resp. clsseran 1) (E) C LERM) and it has L},

loc™
equicontinuous l-bounds).

(iii) If f € &€, (RM) (resp. f € £&,(RM)) has LY -bounded m-bounds (resp.
Ly, .-bounded 1-bounds) then any g € Hullge, @) (f) has Lj,.-bounded
m-bounds (resp. Lj -bounded l-bounds).

(iv) If [ € 6C,(RM) (resp. f € £&,(RM)) has L}, -equicontinuous m-bounds

(resp.  Lj,.-equicontinuous I-bounds), then any g € Hullge, @) (f) has
L} -equicontinuous m-bounds (resp. L},.-equicontinuous l-bounds).

Proof. For all the four statements (i) to (iv), the case p = 1 is included in
Proposition 2.26. Now, consider p > 1 and let us work for the case of the
m-bounds in (i). In particular we can apply the same reasoning used in the
proof of Proposition 2.26 recalling that L < L} , and we only need to prove

loc locy
that the function m?(-) € L;,., provided by (2.15), is also in L} . By hypothesis
{mi(-) | n €N} is L} -bounded and, by Alaoglu-Bourbaki theorem, for every
r > 0 the closed balls of LP([—r,r]) are relatively compact in the weak topol-
ogy o(LP([—r,r]),L9([~r,r])). Therefore, if (mfn())

subsequence of (mJ(-))

ey 18 @ weakly convergent
wen With limit m*(-) € LP([—r,7]), then the sequence of
induced measures (ugn)neN vaguely converges to the absolutely continuous mea-
sure whose density is m*(-) in [—r,r]. Hence, since Equation (2.15) holds, m*(-)
has to coincide with m?(-) in [—r, 7].

The same reasoning applies to the [-bounds and to the rest of the cases in (ii),
whereas (iii) and (iv) are a direct consequence of (i) and (ii), respectively. O

The resulted presented so far, involve the spaces G€,(RM) and £€,(RM).
At this point we would like to address the analogous problem in the space
(WOCE(RM),0g). In other words, we aim to show that the existence of L}, -

bounded or L}, -equicontinuous m-bounds (respectively I-bounds) for a set £ C
QU@Q:(RM ) (resp. E C S(’:(RM )) is inherited by all the elements of the closure
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of E with respect to og (see Definition 2.4). A special case is the one in which
E' is the set of the time translations of a function and, there, a problem arises.
As shown in Remark 2.25, if a function f belongs to either &G€,(RM), £¢,(RM)
or OC,(RM), then any time-translation of f (see Definition 1.9) also belongs to
the same set. Nevertheless, the same result is not so obvious for WOE(RM) and
thus, before proceeding, we include a proof of this fact.

Lemma 2.28. Let © be a suitable set of moduli of continuity as in Definition 2.3.
Ift e R and f € WOC(RM), then f, € WOE(RM).

Proof. Notice that for any fixed f € WOEC(RM) and t € R, the function f;
trivially satisfies (C1) and (C2). In order to prove that condition (W) of Defini-
tion 2.4 holds, consider j € N, I = [q1,¢2], ¢1,¢2 € Q, and a sequence (:L‘n())
in K} converging uniformly to 2(-) € KI. Then, one has that

neN

i | [ o20(5) = il ()] s

n—oo

— lim (2.21)

n—0o0

/ [f(s+txn(s)) — f(s+t,2(s))] ds

1

= lim
n—oo

/Ht [f(u,xn(u — t)) — f(u,x(u — t))] du

Considering an interval J with rational extrema such that U (I +t) C J and, up
to an extension by constants to J, the functions x,,(- —t) and (- —t) are in K.
If t € Q we immediately obtain the thesis thanks to Lemma 2.14(i). If t € R\ Q,
fix e > 0 and let d1,d> > 0 be such that

q1+t ) e q2+t+62 e
/ my(u) du < 1 and / mp(u) du < 1
q1+t—61 g2+t

where m?() is the m-bound of f on B;. The previous inequalities hold because
of the continuity of the integral. Thus, denoted by 6 = min{d;,d}, consider
pE[pg+t—906¢g+t]NQand py € [go + ¢, g2 +t + 6] N Q. Starting from the
last step of the chain of equalities in (2.21), one has

Jim, / + [F (w2au =) = f(u,2(u = 1)] du
< lim /p [F (0 — 1) — £ (s, 0 — £))]
+2/:Hm;;(u) du+2/qim§<u) du
< lim / [ (s wnl— ) — f sl — )] du| +c.

Therefore, we obtain the thesis, thanks to Lemma 2.14(i), putting together the
previous chain of inequalities and (2.21). O
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Thanks to the previous lemma, now we can safely proceed to the following
theorem, whose proof, however, contains an additional difficulty compared to the
ones of Theorems 2.26 and 2.27, due to the fact that the functions in 20OC(RM)
are possibly discontinuous in the variable x. In fact, recall that the idea of
the proofs of Theorems 2.26 and 2.27 is to construct an m-bound or an /-bound
(satisfying the required property in any of the cases) on R x D where D is a dense
and countable subset of R, and then extend it to the whole RY through the
continuity in the variable z. Clearly, such argument will not work in 200¢(RM).
The idea, then, is to change the limit function for a new one which coincides with
the first one almost everywhere, satisfies the required property on the m-bounds
or I-bounds on R x RY and it is still in WOE(RM).

Proposition 2.29. Let © be a suitable set of moduli of continuity as in Defini-
tion 2.3 and og the topology defined in Definition 2.4.

(i) If £ C WOERM) (resp. E C L&(RM)) admits L}

loc
1

loc

-equicontinuous m-

bounds (resp. L;,.-equicontinuous I-bounds), then clsgpoe®i) ) (£) has

L},.-equicontinuous m-bounds (resp. clsgyee®i) o) (E) C LERM) and it
has L]

loe-€quicontinuous [-bounds).

(ii) If £ C WOC(RM) (resp. E C £E€(RM)) admits L} -bounded m-bounds

loc

(resp. Lj,.-bounded I-bounds) then clsgpee®i)oq)(E) has Lj,-bounded

m-bounds (resp. clsgyee®i) o) (E) C LE(RM) and it has L], -bounded
[-bounds).

(iii) If f € WOE(RM) (resp. f € L&(RM)) has L; -equicontinuous m-bounds
(resp. L},
1;1

loc

(iv) If f € WOL(RM) (resp. f € LE(RM)) has L}, -bounded m-bounds (resp.
Lj,.-bounded I-bounds) then any g € Hull gyoer) s0)(f) has Lj, -bounded

loc loc

-equicontinuous [-bounds), then any g € Hull gyee@M) 00 (f) has

1

Le-equicontinuous [-bounds).

-equicontinuous m-bounds (resp. L

m-bounds (resp. L, -bounded I-bounds).

loc

Proof. Consider E C 20O¢(RM) with L}

Le-€quicontinuous m-bounds, that is, for

every j € N there is a family of m-bounds for E, namely
ST = {m;() | feE, m;() m-bound for f on B},

satisfying the condition in Definition 2.17. By simplicity and without loss of
generality, we will also assume that for every j € N, m‘}(t) < mifl(t) for almost
every t € R. Let us denote by E = clsiyee®rM)oe)(£), and, for any f € E, let
(fa)nen be a sequence in E converging to f in (WOC(RM), 0¢).

Fixed 7 € N and reasoning as in the first part of the proof of Proposition 2.26,
we can find an m-bound for f on By, i.e. a function m/(-) € L;,,. such that for

almost every t € R one has that

|t )| <m(t). (2.22)
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for almost every « € B;. Therefore, we look for a new function f* € WOC(RM)
that coincides with f almost everywhere (in other words, f and f* are in fact
representatives of the same element in Q0O€(RM)) and such that for almost every
t € R, the function f* satisfies an inequality of the type (2.22) for all z € B;. Let
us consider the function f*: R x RY — RM defined as follows: for every ¢t € R
we set

i f(t,r) ifz € B;\ Bi_y and |f(t,x)| < m™(t),i € N,
f (t7x> =

(2.23)
0 otherwise ,

where 0 represents the null vector of RY. The function f* is Borel measurable
and coincides with f almost everywhere. Furthermore, we have that for each
j € N and for every t € R, f* satisfies

[f(t2) <m’ (1), (2.24)

for all x € B;. Thus, f* satisfies (C1) and (C2). Therefore, to prove that f
and f* are representatives of the same element in Q0OE€(RM), we only need to
prove that f* satisfies (W) in Definition 2.4. In order to do that, we firstly show
that for any I = [q1,q2), ¢1,q2 € Q, if x(+) € ICJI, then f* (t,x(t)) = f(t,a:(t)) for
almost every t € I. Let z(-) € lC]I and reason locally. Consider ¢, € I and assume
that ¢ < |z(t9)| < i+1 for some i € N. Then, by the continuity of z(-), there exist
d > 0, such that |z(t)| € (i —1,i+1] for every t € I, = [to—0,to+d]NI. Let (-
be the continuous function defined on I which coincides with z(-) on Iy, and it is
its extension by constants on I'\ I,. Trivially, Z(-) € K and ||Z(-)|| gy < i+ 1.
Hence, for every t € I N Q and for every h € Q, with h > O and t +h € I,
considered ¢ € CZ(R) such that ¢ = 1 in [t,¢ + h] and using Lemma 2.14, we
have that

O

1 t+h
< lim — mi(s) ds

n—o0 n—oo n

< lim — /(b Hl dS— /(;5 d Hl
n—00 h

Reasoning as in (2.17), one can prove that the previous inequality actually holds
for any t € I and h > 0 such that ¢+ h € I. Thus, taking the limit as h — 0, and
reasoning as before, we obtain that | f (¢, Z(t))| < m"*!(t) for almost every ¢ € I.

— lim ‘1/t+hfn(s (s)) ds

In particular, for almost every ¢t € I,
|f(tz(t)| < m™(t)

and recalling how f* is defined in (2.23), we have that f*(¢, z(t)) = f(t, z(t))
for almost every ¢ € I;,. Thanks to the compactness of I, we can repeat such an
argument a finite number of times and deduce that actually

I (t,:v(t)) = f(t,x(t)) for a.e. t € 1.
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As a consequence, one can prove condition (W) of Definition 2.4 for f* as folllows:

consider (z,(-)), _ in KI uniformly converging to z(-) € Kf, then

neN

lim f (t,2,(t)) dt = lim f(t (1)) dt

n—oo n—oo

:/If t,x(t)) dt:/lf*(t,:v(t) dt

Therefore, f and f* are two representatives of the same element of 20O¢(RM),
because both are in Q0OC(RM) and only differ from each other on a negligible
subset of R x R,

Finally, we prove that E admits L}, -equicontinuous m-bounds. For each
f € FE and any j € N, let mgc be either, the m-bound of f in S7 if f € E, or the
m-bound given by (2.24) if f € E'\ F, i.e. the absolutely continuous part of a
limit measure.

Consider j € N, r,e > 0 and let § = §(r,e) > 0 be the one given by the
L}, ~equicontinuity of S¥*!. If t,s € [-r,r] with s < t,t —s < /3, and ¢ € C},
is such that supp ¢ C [s —0/3,t+ /3] and ¢ =1 in [s,t]. Then, we have

/mf du</¢ mf w)du < hm o(u )m;:l(u)du

R

Lo/
< sup/ m) M (u) du < ¢,
geE Js—§/3

and thus, taking the superior over the functions in £ in the previous expression,
one gets
t

sup/ mp(u) du < ¢.

feE Js
Therefore, E admits L} ~equicontinuous m-bounds. Analogous reasonings apply
to the remaining cases in (i) and (ii), whereas (iii) and (iv) are a direct conse-
quence of (i) and (ii), respectively. O

Remark 2.30. Notice that, since OC€(RM) C WOLC(RM) and og < T, then the
previous result can be directly applied in particular to the space (@C(RM ), ’7@).
For p > 1 one extend the result to (@Q:p(]RM ), 729) reasoning as in the proof of
Proposition 2.27.

2.5 Equivalence of the topologies

As we have noticed before, all the introduced topologies can be induced on
£¢,(RM). As follows, we show that, given a subset E of £&,(RY) (resp. L&(RM))
with L

loc™

-bounded (resp. Lj,-bounded) I-bounds, all the introduced strong topo-
logies (resp. weak topologies) coincide on E. Remarkably, such a rather weak
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assumption on the [-bounds allows to deduce such an important result for both,
strong and weak topologies. A direct consequence is that, on such sets, one can
simply use the topologies Tp and op, respectively, to take the actual limits, but
still change from one topology to another when it is required. Notice also that
in many applications such assumption is trivially satisfied as, for example, when
the [-bounds of a set E are taken constant and bounded.

Theorem 2.31. Let E be a set in £¢, (RM) with LY

loc

-bounded [-bounds, then
(E, 71) = (E, 75) and ClS(ch(RM)J—I)(E) = ClS(ch(RM)’B)(E) s
where Ty and Ty are any of the previously introduced strong topologies.

Proof. From Proposition 2.27 we know that clsge,®m)m(E) C £&, for any
strong topology 7 among the ones presented in Section 2.2. Moreover, due
to relation (2.10), it suffices to prove that if (f,).en is a sequence of elements
of E converging to some f in (SCP(RM),TD), then (f,)nen converges to f in
(SQP(RM),E). Fix a compact interval I = [q, q], with ¢1,¢0 € Q, j € N
and, for any n € N, let IZ(-) € L! be the optimal I-bound of f, on B; (see
Definition 2.1). By assumption, there exists p > 0 such that

sup/ (H(s))"ds < p < o0.

neN J1

Now, fix € > 0 and consider § = ¢/(3p*/?). Since B; C RY is compact, and D is
dense in R, there exist z1,...2, € D such that B; C |J;_, Bs(z;), where Bs(x)
denotes the closed ball of RY of radius 6 centered at x € RY. Fori =1,...,v
let us consider continuous functions ¢; : RY — [0, 1] such that

supp(¢;) C Bs(z;) and igzﬁz(x) =1 Vze By, (2.25)
and define the functions
quz ) fu(t, x;) and Z@ ft,z;).  (2.26)
Then, for any z(-) € C(I, Bj) we have that

12 (o2 ()) = £, < (1 (2 () = £2 (2O,

Let us separately analyze each element in the sum on the right-hand side of
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equation (2.27). As regards the first one, we have that
[5220) = i Ca) = /] Z@ ) Ut 2(0) ~ fult, )] [t
</ (Z@(x(t)) () a(t) - il )t
/ (Z@ ) dt
- (%)p/l ) a< (5)

As regards the third element of the sum in (2.27), recall that, due to the Propo-
sition 2.27, the -bound I/(-) € LY on B; for f satisfies

(2.28)

loc

/(l_j(s))p ds < p.

I

Therefore, reasoning as in (2.28), we obtain that

|

and notice that both, (2.28) and (2.29), are independent of z(-) € C(I, B;).
Finally, since (f,)nen converges to f in (£€,(RM), Tp), consider n big enough
so that

F(2() = fa()], < (2.29)

wlm

[ £ i) = fxa)ll, <e/(Bv), foranyi=1,...,v.

Then, from the expressions (2.26) and the fact that ¢;(z) < 1 for each z € RY
we deduce that

[ fr(z() = : Zufn Jx) = )l gg. (2.30)

Gathering together (2.28), (2.29) and (2.30), we obtain the result. O

When dealing with a function in £¢, (RM ) with L7 -bounded [-bounds, the
previous theorem provides, as a corollary, a condition of equivalence of the hulls
with respect to the introduced strong topologies.

Corollary 2.32. Let f be a function in £&,(R™) with L,

1oe-bounded [-bounds,
then

HUH(G@(RM),Tl)(f) = Hun(eg(n@%,n)(f) )

where T; and Ty are any of the previously introduced strong topologies.

A result similar to Theorem 2.31 can be obtained for weak topologies.
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Theorem 2.33. Let E be a set in LE(RM) with L}, -bounded [-bounds, © be any
suitable set of moduli of continuity as in Definition 2.3 and D any dense and
countable subset of RN . Then

(E, O'D> = (E, O'@) and CIS(GQ(RM),UD)(E) = CIS(GQ(RAJ)J@)(E) .

Proof. Fix D, dense and countable subset of RV, and O, suitable set of moduli
of continuity as in Definition 2.3. Thanks to Proposition 2.26, we know that
cls(se®My)op) (E) C LE(RM). We will complete the proof in two steps.

Step 1. Consider a set E; with L] -bounded m-bounds and L] -bounded
l[-bounds. Let (f,)nen be a sequence of elements of F; converging to some f in
(£€(RM),0p). We shall prove that (f,)nen converges to f in (LE(RM), 0g). Fix
a compact interval I = [q1, q], with ¢1,¢2 € Q, j € N and, for any n € N, let

mi (+),12(-) € L}, be respectively the optimal m-bound and the optimal I-bound
of f, on B;. By the L}, -boundedness of the I-bounds, there is a p > 0 such that

loc™

sup/l%(s)ds<p<oo.

neN Jr1

Fix € > 0 and consider § = £/3p. Since B; C R" is compact, and D is dense in
RY| there exist x1, ...z, € D such that B; C J;_, Bs(w;), where B;(x) denotes
the closed ball of RY of radius § centered at z € RY. Fori = 1,...,v, let us
consider the continuous functions ¢; : RY — [0, 1], and the functions

fFRxRY - RY neN, and  f*:RxRY - RM,

defined exactly as in (2.25) and (2.26), respectively. Denoted by IC]I the compact
subset of C(I, B;) admitting 6! € © as a modulus of continuity, one has that for
any x(-) € K}

‘/fntx f(t,z(t) dt‘ ‘/fntx — (t,x(t))}dt‘

+ ‘ /I[fii(t,x(w) - f*(t,a:(t))]dt‘ + ‘ /I[f*(t,g;(t)) - f(t,x(t))]dt"

Let us separately analyze each element in the sum on the right-hand side of

(2.31)

equation (2.31). As regards the first one, we have that

‘/ fult, it f*(t,:):(t))]dt‘
’/Z¢ ) [fn(t (1)) = fult, )] dt'
< [ o) 00 -l

/Z@ )I(t) 6dt = —/lﬂ

(2.32)

OJIFV)
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Similar reasonings apply to the third element of the sum in (2.31): in particular,
recall that, due to Proposition 2.26, the I-bound for f on B;, namely l/(-) € L}
satisfies

loc?

/l_j(s)ds<p<oo.

I
Finally, let us deal with the remaining integral in (2.31). By the uniform conti-
nuity of the functions ¢;(-) on B;, and recalling that all z(-) € KI share the same
modulus of continuity, we have that for the given € > 0 there exists ¢ > 0 such
that for all s € {1,...,v} one has

VsteILVa() ekl [s—t]<d = |oi(a(s)) — di(2(1))] < 95,) ,
where
—max{/m] t)dt, sup/mﬁb(t) dt} < 00,
neN
and m;(-) € L;,, denotes the optimal m-bound for f on B’ whose existence is

guaranteed by Proposition 2.26. In particular, the constant p,, is well defined
thanks to the L}
let us consider a d-partition of 7, i.e. 7y,...,7, € INQ such that I = [ry, 7,)] and

i,.—boundedness of the m-bounds of the functions in E;. Thus,

0<Tpi1 — T <0, forany k=1,...,7— 1, and a function
U
¢ Kj = Lo(IL,R)  defined by ¢ (2(1)) = > ¢i(2(7%)) X(rymep] ()
k=1

Notice that, for any z(-) € K and any ¢ = 1,..., v one has

13 (2()) = 6i(2())llzoe(r) <

£
vpy

Now, we can write

‘/I[f;i(t,x(t)) —f*(t,x(t))]dt‘

) [fo(tz) — f(t,20)] dt‘

ZV: /@ ) [fult, @) — f(t,23)] dt‘+

+Z /I | (t )| |03 (2(t)) = i ((t))] dt+ (2.33)
+ZVI / £t i) | |63 (2(1)) — i (e ()|
< Z { Z@ / () = ()] dt' +

+2pmn(2() — 5 <x<->)r|Loom]-
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By the convergence of (f,)nen to f in (L€(RM), op) and considering that we are

only using a finite number of points x;, with ¢ = 1,...,v, there exists nyp € N
such that, if n > ng, then for alli =1,... v and for all k = 1,...,7n one has
Tk+1 d e
n t7 i) t; 7 t < .

/Tk (o) = S(t.)] ] < 5

Thus, for n > ng, (2.33) becomes
€  2UppE €
t (t,x(t)) |dt| < = = —. 2.34

From (2.31), (2.32) and (2.34) we obtain that the sequence ( f,,)nen converges to f
n (SQ:(RM ), 09). Consequently, the topologies of type op and og are equivalent
on Fj.

Step 2. Now, consider E as in the assumptions, i.e. £ C £&€(RM) with (just)

L} -bounded I-bounds, and, again, let (f,)n.eny be a sequence of elements of F

converging to some f in (SQ(RM ), OD). We shall prove that (f,,),en converges to
fin (L&(RM),00). In particular consider zy € By N D and define the functions

h(t,z) = f(t,x) — f(t,x0) and h,(t,x) = fu(t,z) — fult,z0), VN € N,

Notice that the set {h, | n € N} U{h} has L;
any j € N, considered x € B; one has that for any n € N

1oe-bounded m-bounds. Indeed, for

\hn(t, )| = | fult,2) — fult,20)| KU (t) |2 — 0| < (F+1)E(t) forae tER,

where l/(-) € L},
repeat analogous arguments for the function h obtaining

is the optimal [-bound for f, on B;. Additionally, one can

loc

|h(t,z)] < (j+1)F(t) for ae. t €R,

where l7(-) € L}, is the optimal [-bound for f on B;. Thus, the L, -boundedness
of the I-bounds for the set E gives L, -bounded m-bounds for {h,, | n € N}U{h}.
Moreover, we have that the same set has also L}, ~-bounded I-bounds. Indeed, for
any j € N, considered x,y € B; one has that for every n € N

|hn(t7x) - hn(tay>| = |fn(tax> - fn(t7y)| < liz(t) |JI - y| for a.e. t € R?

and one can repeat analogous arguments for the function h obtaining

loc™

\h(t,x) — h(t,y)| < V(t) |z —y| forae. tecR.

Therefore, from the L} -boundedness of the I-bounds for the set F one has that
{h, | n € N} U {h} also has L}, -bounded I-bounds. Finally notice that (h,)nen
converges to h in (£&€(RM),0p). Indeed, for each z € D and for each interval
I = [q1, q2], with ¢1,¢2 € Q we have

’/l[hn(t,x) — h(t,x)]dt‘ < ‘/I[fn(t, z) — f(t,:c)]dt’ n

/] (b 20) — Fult, zo)]de
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and since (fy)nen converges to f in (£&€(RM) 0p), then the integrals on the
right-hand side of the previous inequality go to zero as n — oo. Therefore, the
assumptions of step 1 apply to the set Ey = {h,, | n € N} U{h} and thus one has
that (h,)nen converges to h in (SC(RM), a@). Hence, for each interval I = [q1, g2],
with ¢, g2 € Q and for each j € N one has

oo JU(e.a(0) = £(eat0)
SI(S.)UEII)C;T /I[hn(t,x(t))—h(t,x(t))]dt‘—l— /I[fn(t,xo)—f(t,xo)]dt,

and the right-hand side goes to zero as n — oo because (h,,),en converges to h in
(SC(RM),J@) and (f,)nen converges to f in <£¢(RM),O'D), which implies that
(fn)nen converges to f in (£€(RM ), a@) and, as a consequence, all the topologies
of type op and og coincide on E. m

Thanks to the previous theorem, if one has a function f in £¢, (]RM ) with
L%OC
to the introduced weak topologies.

-bounded [-bounds, then one has the equivalence of the hulls of f with respect

Corollary 2.34. Let f be a function in £&(RM) with L}, .-bounded l-bounds, ©
be any suitable set of moduli of continuity as in Definition 2.3 and D any dense
and countable subset of RY. Then,

Hull gemry o) (f) = Hullgerr) o) (f)-

2.6 Relative compactness in £¢,

The notion of compactness together with the continuity of the flow generated by
a dynamical system allow to infer important information on the system and its
behavior. As an example, thanks to Krylov—Bogoljubov theorem, a compact hull
implies the existence of an invariant measure for the base flow and allows to use
tools of ergodic theory in the study of the solutions. Therefore, it seems natural
to us to look into the conditions that characterize the relatively compact subsets
of the space £&,(RM).

In this section, we firstly address the relative compactness in £&, (]RM ) with
respect to the strong topologies introduced in Section 2.2 and then recall the
results in the literature for the weak topologies in £& (RM )

2.6.1 Strong topologies

A characterization of compactness in LY | (RM ), when 1 < p < 00, has been given

in [52, Theorem 1 p.133|, where it is proved that F C L7 (]RM ) is relatively

loc

compact if and only if both the following conditions hold:
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(i) for every compact interval I C R there exists a constant ¢ = ¢(I) such that

1/p
{/ |f(t)|pdt} <c¢, forevery fekF, (2.35)
I

(ii) and for every £ > 0 and for every compact interval I C R there exists a
d =6(e, 1) > 0 such that

1/p
IT| <6 = {/J‘f(t-i—T) — f(t)]pdt] <e forevery fe E. (2.36)

A sufficient condition for the relative compactness of a set E in (£€,(RM), Tp)
is also given in the same reference. Next, we characterize such a compactness
under the assumption that the set £ admits L] -bounded [-bounds.

-bounded l-bounds, T be any of
the strong topologies introduced in Section 2.2, and D be a countable dense subset

loc

Theorem 2.35. Let E C SQP(RM) admit L?

of RN. The following statements are equivalent.
(i) The space (E,T) is relatively compact.

(ii) For any fized x € D the set {f.(-) = f(-,x) | f € E} is relatively compact
in L} (RM).

loc

Proof. Firstly, recall that, since E has L -bounded /-bounds, then all the strong
topologies introduced in Section 2.2 are equivalent thanks to Theorem 2.31, and
thus we will work with (E,7p). (i) = (ii) is straightforward.

(ii) = (i). Consider a sequence (f,)nen in E |, fix j € N and, for any n € N,
let I(+) be the optimal I-bound for f, on B;. Moreover, let D; be the set DN B;.
By hypothesis, for any = € D; the set {f,(-,z) | n € N} is relatively compact in
LP : as a consequence, there exists a function f,(-) € L} (RM) such that, up to

loc? loc
a subsequence

faly2) === fo(), in Lj, (RY)

and thus also almost everywhere. Recalling that D is countable and using a
diagonal argument, we obtain a subsequence of (f,,)nen, which we keep denoting
with the same indexes, such that

fult,z) =2 f(t,x) forae teR, Ve Dy,
where for every z € D;, f(t,z) = f.(t). Moreover, by assumption, the set {I/(-) |
n € N} is bounded in Lj . and thus, reasoning as in the proofs of Proposition 2.26
and 2.27, we obtain a function /() € LI such that for any x,y € D, the following
inequality holds

|f(t,z) = f(t,y)] < lj(t) |r —y| forae. teR.
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A continuous extension of f to the entire ball B; is given by

f(t,z) = lim f(t,z,) whenever x € B;, (z))nen in D, and z,, — x.

n—oo

The definition is well-posed; indeed if (x,,)nen and (y,)nen are sequences in D;
such that x,, — x and y, — x, then

If(t,zn) — f(t,yn)| <V (t)|2n — ya| forae tER,

and the right-hand side goes to zero as n — oo, for almost every ¢t € R. It
is straightforward to prove that [7(-) keeps being a Lipschitz coefficient for the
function f defined on the whole ball B;. Eventually, we check the properties (C1)
and (C2). For every j,n € N, define

t+1/n A t+1/n
F.(t,z) = n/ f(s,z)ds and Ll (t) = n/ (s)ds.
¢ ¢

Notice that for any n € N one has that L7 () is continuous, and, for any x € RV,
also F,,(-, x) is continuous. Moreover, for any ¢t € R we also have

t+1/n
|Fn<t7‘r1)_Fn(t’x2)| STL/ |f(8,:L‘1)—f(S,J]2)|dS
t (2.37)

t+1/n ‘ .
< |x1—x2|n/ V(s)ds = L(t) |1 — xof,
0

for all n € N and 1, 22 € B;. In fact, for any n € N the function F, (-, -) is jointly
continuous. To see that, consider ¢, — t and x;, — x as k — oo, and j € N such
that |zj| < j for all £ € N. Then, using the triangular inequality, (2.37) and the
m-bound of f,, on Bj, we have that

| Fo(te, 2n) — Fult, @)| < | Fu(te, 2) — Fa(te, ©)| + [Fa(te, ) — Fu(t, @)
< Li(ty) lox — x| +n | md () dt,
Iy,

where I}, is either [t,t] or [t,t;]. Hence, by the continuity of Lebesgue integral,
one has that the right-hand side of the previous chain of inequalities goes to zero
as k — oo, and thus F,(-,-) is jointly continuous. Notice also that there exists a
Borel set Ry C R, with measg(R \ Ry) = 0 such that,

n—oo

F.(t,x) — f(t,z) and Li(t) 2225 19(1), (2.38)

for every (¢,x) € Ry x D and for every j € N. However, the convergence in (2.38)
can be extended to Ry x RY. Consider x € RY| (z;);eny C D converging to z and
fix ¢« € N. Then, for any t € Ry one has

[En(t, ) = f(E,2)] < [Eu(t x) = Fu(t, @)

+ [Fo(t, i) — f(t )| + [f(t, 2:) — f(t,2)]
S L) | — | + [Fu(t, ) — f(E )| + P () |2 — .
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Therefore, from (2.38) and taking the limit as n — oo, and from the arbitrariness
of ¢ € N we obtain the result. Hence, fxg,«xg~y is a Borel function, i.e. it
satisfies (C1). Finally, let us fix 2y € Bj, and assume without loss of generality
that |f(¢,20)| < co. For every x € B;, we have that

(8 @) < |t zo)l +E(t) |o — wo| = mi(2),

for a.e. ¢t € R. Thus, f admits m-bounds, i.e. [ satisfies (C2). As a con-
sequence, (f,)nen converges to f in (£¢, (]RM ),7};), which in turn implies f €
cls e, ®M) 1) (), and cls ge, ) 75 (E) is compact in (£, (RM), Tp), which con-
cludes the proof. |

As a corollary of Theorem 2.35 and of the conditions given in (2.35) and (2.36),
we obtain a characterization of the compactness of Hullige, 1) 7)(f) when f €
£¢, admits L} -bounded I-bounds.

Corollary 2.36. Let f € £€,(RM) admit L -bounded I-bounds, T be any of
the previously introduced strong topologies, and D be a countable dense subset of
RY. The following statements are equivalent.

(1) Hull(ge,mr) ) (f) s compact.

(ii) For every x € D the map R — LV
uniformly continuous.

(RM), t — fi(-,x) is bounded and

loc

Proof. (i) = (ii). If Hullg¢,®) 7 (f) is compact, then from Theorem 2.35(i) we
have that for every x € D the set

H, ={g(-,z) | g € Hull(ge, )7 (f)} is relatively compact in Lj,, (]RM).

Since for every x € D one has {fi(-,z) | t € R} C H,, then one also has
that {fi(-,z) | t € R} is relatively compact in L] (RM). As a consequence the
conditions given in (2.35) and (2.36) hold true for {f;(-,z) | t € R}. Particularly,
for every x € D the map

R— LY (RM), t— fi(-, )

is bounded in L} . thanks to (2.35). Therefore, in order to complete the proof, we
only need to check the uniform continuity in L] .. Fix x € D, I C R and € > 0,
and let 0 = d(x,e,1) > 0 be the one given in (2.36). Now, consider 0 < 7 < ¢
and t € R. Noticing that the condition in (2.36) is uniform on the functions in
{fi:(-,x) | t € R}, one has

1/p 1/p
[/I|ft+7(s,:v) — fi(s,z)P ds} < sup {/| fi), (s,x) = fi(s,x)P ds <,

teR

which concludes this part of the proof.
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(ii) = (i). One immediately has that for every x € D, the conditions given in
(2.35) and (2.36) hold true for {f:(-,x) | t € R} and hence

{fi(-,z) | t € R} is relatively compact in L} (RY).

Therefore, from Theorem 2.35, we have that {f; | t € R} is relatively compact in
£¢,(RM), and thus Hull(ge, mr),7)(f) is compact. O

2.6.2 Weak Topologies

The problem of compactness in £€(RM ) with respect to a weak topology has
been investigated in [3] and [4]. In order to recall the results contained in such

papers, let us introduce the notion of uniformly integrable m-bounds in L} = for

loc
a Carathéodory function.

be). Aset E C €(RM) has
L., if for any j € N there exists a set S7 C L},
of m-bounds of the functions of £/ on B;, such that for every » > 0 one has that
the set {m|[_m] :[=r,r] = R | m(-) € S7} is uniformly integrable in [—r, 7], i.e.

Definition 2.37 (Uniformly integrable m-bounds in L]

uniformly integrable m-bounds in L} loc

for any r > 0 and € > 0 there exists a § = 0(r,&) > 0 such that

VA C [-r,r] : measg(A) <d = sup /m(t) dt < e.
meSI
We say that a function f € @(]RM ) has uniformly integrable m-bounds in L}, if
the set of the time translation of f namely {f; | ¢ € R} has uniformly integrable

1
m-bounds in L.

Remark 2.38. Notice that the uniform integrability of the m-bounds in L} .
implies the L] -equicontinuity of the m-bounds. Moreover, as we have seen in
Remark 2.18, if p > 1, then the L} -boundedness implies the L}

However, something a little bit stronger is true. Indeed, as an easy application of

ioe-equicontinuity.
Hélder inequality, one has that, for p > 1, the L} -boundedness implies the uni-
form integrability of the m-bounds in L}, (and thus also the L}, -equicontinuity).

In [3] one can find a result of compactness for subsets in £€(R") with uni-
and L; -bounded l-bounds. In particular, the

formly integrable m-bounds in L] loe™

loc
compactness is achieved with respect to the topology (see Proposition 2.4 in the
same reference) which is characterized as follows: a sequence (f;)nen in £€(RM)

converges to some f € £€(RM) if for every 2 € RY and every ¢ € R one has

n—0o0

t
lim [ f.(s,x)ds —/ f(s,x) (2.39)
0

However, such a topology is stronger than o and weaker than og (both presented
in Section 2.2) for any D dense and numerable subset of RY  and for any ©



2.6 Relative compactness in £¢, 51

suitable set of moduli of continuity. Therefore, from the proof of Theorem 2.33,
one can easily deduce that the topology characterized in (2.39) coincides with any
op and any og on any subset of £&(R) with L], -bounded I-bounds and Lj, -
equicontinuous m-bounds. For the sake of completeness, we include a proof of
such a result now updated to any of the weak topologies presented in Section 2.2.

Theorem 2.39. Let E be a subset of QC(RM) with uniformly integrable m-
bounds in Ly, and Ly, -bounded l-bounds. Then, clseemr) ) (E) is compact in
(S(’:(RM),U), where o is either op, og or the topology characterized in (2.39).

Proof. As a consequence of Theorem 2.33 we have that all the cited topologies
coincide on F and thus we will use the topology op for our reasoning. Moreover,
in order to simplify the notation, let us write E in place of clsiee@My,op) (B).
Consider a sequence (f,)neny in E. For each z € D and r > 0, the sequence
(fal, x)), o of functions with domain in [—r,7] is dominated by the uniformly

integrable sequence (mifn()) where j € Nis chosen so that |z| < j. Therefore,

neN’
from Corollary IV.8.11 in [24], one has that the sequence (f,(-, x))neN converges,
up to a subsequence, to some f(-,z) € L'([-r,r],RM) for the weak topology

o(LY([—r,r], RM), L>([—r, 7], RM)) that is, for any ¢ € L>®([—r,7], RM) one has

/_r falt, z)o(t) dt 222 /_ f(t,2)p(t) dt.

Notice that for each x € D and subsequently enlarging the interval [—r, ], one
can extend f(-,z) to the whole R and thus obtain f(-,z) € L, . (RM). By a
standard diagonal process, one can find a subsequence, that we keep denoting
with the same indexes, such that (f,(-, m))neN converges weakly to f(-, x) for all

x € D and in any interval I C R and thus such that
/fn(t,x)dt Lmbac /f(t,x)dt YreDNB;.
I I

Moreover, by assumption the set {//(-) | n € N} is bounded in L and thus,

1

reasoning as in the proof of Propositions 2.26, we obtain a function l7(-) € L;,

such that for any x,y € D N B; the following inequality holds
If(t,x) — f(t,y)| <V(t)|z —y| forae teR.
A continuous extension of f to the entire ball B; is given by

f(t,z) = lim f(t,z,) whenever x € B;, (z,)nen in D;, and x, — x.

n—oo

The definition is well-posed; indeed if (2,,)nen and (y,)nen are sequences in D;
such that x, — x and y, — x, then
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and the right-hand side goes to zero as n — oo, for almost every t € R. It is
straightforward to prove that I7(-) keeps being a Lipschitz coefficient for the f
defined on the whole ball B;.

Finally, reasoning as in the last part of the proof of Theorem 2.35, one can
prove that f satisfies (C1) and (C2). As a consequence one has that (f,)nen
converges to f in (£€(RM), op), which in turn implies f € E, and E is compact
in (LE(RM),op). O

One may pose the question whether the uniform integrability of the m-bounds
in L . is the weakest property which still allows to obtain the compactness of
subsets of SC(RM ) A thorough look at the proof should make clear why the
Ll

le-€quicontinuity of the m-bounds is not sufficient. Roughly speaking, taken

a sequence of absolutely continuous measures with L] -equicontinuous densities,
and assuming that such sequence converges in the vague topology to a measure y,
we are not able to tell whether p is absolutely continuous or not. In other words,
we might end up with a limit problem which can not be formulated in terms of
an ordinary differential equation. As a matter of fact, it is shown in [4] that a
subset of £€(RM) with L}, -equicontinuous m-bounds and L}, -bounded l-bounds
is precompact with respect to the topology characterized in (2.39) (and thus also
with respect to any op and any og as a consequence of Theorem 2.33) and,
by identifying functions in S@(RM ) with their respective differential equations,
it admits a compactification in the space of Kurzweil equations. Such topic,
although interesting and worthwhile, falls beyond the scope of this work, and
thus will not be covered. We recommend [4] for further details.

2.7 Continuity of the time translations

This section contains the first step to build a continuous skew product flow for
differential equations of Carathéodory type. In particular, we present two the-
orems providing sufficient conditions to obtain continuity of the base flow, i.e.
continuity of the time-translations (see Definition 1.9), in (@€p (RM ),7@) and
(WOEe(RM), 0g), respectively.

Theorem 2.40. Let © be a suitable set of moduli of continuity as in Defini-
tion 2.3. The map

R x O¢,(RY) = 0¢,(RM),  (t,f)— f,
defines a continuous flow on (@Qp (RM),T@).

Proof. We separately deal with the continuity with respect to f and with respect
to t, and eventually gather them together. Let (f,,)nen be a sequence in ©C, (]RM )
converging to some f in (@Cp (RM ) , 7@). We prove that

(fu)e = fi, in (O€,(RM), 7o),
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uniformly for ¢ in a compact interval. Consider I = [py, p2] and J = [q1, ¢2] such
that p1,p2,q1,92 € Q, 0 € J and fix t € J. Moreover, for any j € N consider ICJI-
and IC]I.J“] as in Definition 2.4. Notice that z(-) € K] implies z(- —t) € ICJI-+J up
to a suitable extension by constants of the function x(- —¢) in I + J. Then

lim sup [ [(fa)e(s,2(s)) = fils () ["ds
a(yekt J1

= lim sup/ [fulr,2(r = 1)) = f(r2(r = 1) ["dr (5 4)
z(yekt J I+t

< lim  sup /I | fu(r z(r)) — f(r,x(r))}pdr =0.

Next, we prove the continuity with respect to the first variable; in other words,
the map ¢ — f; of R into (©€,(RM),Tg) is continuous. Consider f € O€¢,(RM),
I = [a,b] where a,b € Q and t € R fixed. We aim to prove that for any compact
set IC]I-, as in Definition 2.4, we have that

lim sup /I‘ft+7(s,:c(s)) — fi(s,x(s))["ds = 0. (2.41)

T—0 m(-)GIC]I»

Firstly, let us fix z(-) € K] and prove that if 7, — 0 as n — oo then

lim /I‘fHTn (s,2(s)) — ft(s,x(s))‘pds =0. (2.42)

n—o0

Notice that ft(-, :c()) e Lr ([, RM) and consider the operator
T.: LP(I,RM) — LP(R,R"), such that g(-) — Trg(-),

where T.g(-) is defined by

g(s+71), ifs+rel
TTg(s):{

0, otherwise.

By the continuity of translations in L”(I), see Castillo and Rafeiro |17, Theorem
3.58], we have that, if |7,| — 0 as n — oo, then for a given € > 0 there exists
0 > 0 such that

sup. | Tr fi( () = fi(L 2O, < e

Tn|<
Now, for any n € N, define a, = max{a,a — 7,} and b, = min{b,b — 7,,}, and
consider ng € N so that for any n > ng we have |7,| < §. Therefore, for any
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n > ng the following chain of inequalities holds true

ferr, (o 2()) = £ (2D,
S| Tnfe(20) = SO, + [ ferm (5 20)) = T fi( 2 O)
S €+ ||ft+7‘n ,ZE()) - TTnft(.’x('))”p

1/p

< e+ /C:n !ft(s—i-Tn,x(s)) — ft(S+Tn,$(S+Tn))}pd51
+ :/aan\ft(s%—m, }pds} {/ | fi(s+ T, ))\pds}l/p

r bn+Tn
< e+ / ‘ft(u,x(u Tn)) ft(u,x ‘pdu}
L J an+Tn
B an+Tn 1/]7
+ / |ft (u, x(u — Tn)) ‘pdu}
LJ a+7n

+ / ’ft(uax<u_7—n))|pdu:| :€+11+IQ+]3,
bn+n

As regards I, notice that, up to extending the functions z(-) and (x( — Tn))neN
by constants to an interval J containing I + [—d, d] we have that

I < { /J oy 2 = 7)) — i (s () ypdu] 1/,,7

and the integral on the right-hand side goes to zero as n — oo, due to the fact
that f € ©€,(RY) and ||z(-—7,,) —2(")||c — 0in J as n — co. As regards I, let
m? be an m-bound of f on B, and notice that the following chain of inequalities
holds

and the integral on the right-hand side of equation (2.43) goes to zero as n — 00,
thanks to the absolute continuity of the Lebesgue integral. Similar reasonings
apply to I3. Therefore, for any fixed ¢ € R and z(+) € IC]I- we obtain the limit in
(2.42). Next we check that such a convergence is uniform in Kf. Otherwise there
would exist an £ > 0, a sequence (xn())n oy In ICJ[» , and a sequence (7, )pen in R
converging to 0, such that

1/p

[/I | fram (8, 20(8)) = fi(s,2a(s)) |pds > g, VneN.

However, being ICJI» compact, there exists a subsequence of (:En(-))neN, which we
keep denoting with the same indexes, converging uniformly in I to some z(-) € K}

as n — oco. From (2.42), there exists ng € N such that, if n > ng, then

| fisr (5 20)) = fi 2O, < 5 (2:44)
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Moreover, since f, € O€,(RM) and (z,(-))
exists ny € N such that, if n > nq, then

ey converges uniformly to x(-), there

[FACEIO) EFACENC)| RS (2.45)
Then, for n > max{ng, n;}, we have that
€< Hft+rn (7xn<>) - ft('axn<'>)Hp
< i (2a0) = o 2O+ i (20) = 22O,
+ ||ft(,x()) - ft('ﬂ?n(‘))Hp
=A+e/d+¢e/4.
Finally, notice that
1/p
A = |ft (u, Tp(u — Tn)) — fi (u, x(u — Tn)) |pdu

1/p
< [/J |ft (u, Tn(u — Tn)> — f (u, x(u — Tn)> |pdu} < Z ,
for n greater than some ny € N since, once again, f; € ©C, (RM) and (mn(-))neN
converges uniformly to z(-). Gathering (2.46), (2.44), (2.45) and (2.47) we get a
contradiction, which implies the uniform limit in (2.41).

In order to conclude the proof, we check the joint continuity. Consider
(fn)nen C @QP(RM) converging to some [ in (@GP(RM),’E)) and (tp)neny C R
converging to some ¢t € R. Fixed j € N, I = [q1, g2, with ¢1,¢2 € Q, and ICJI as in
Definition 2.4, recalling that the limit in (2.40) is uniform for ¢ in compact sets,
we have that

1/p
lim sup [/‘ (fn) tn s, x( ft(s,x<s))‘pd3:|

n—)oo )EICI

< lim  sup [ /[ |(Fuden (5, 2(5)) — ftn(s,x(s)ﬂpds] "

T lm sup [/}ftn(sx ) = £i(s.( >)\pds]l/p:o,

n—oo Z(~)€’CJI-
which ends the proof. O

Remark 2.41. The continuity of the time translation map in (GCP (RM ), TD)
can be easily proved using the same arguments of the proof of Theorem 2.40.
Therefore, the proof is omitted. Furthermore, the continuity in (6€p (RM ),TB)
is stated in [53, p.53| and the proof can be derived by the one given in [41,
Lemma I1.1 p.24] for (SCP(RM),E).
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As a corollary of what we have seen so far in the section, we deduce a first
theorem of continuity of the translations on the hull of a Carathéodory function.

Corollary 2.42. Let (E,T) be any of the following topological spaces (or any
topological subspace of them):

(OC®RY),To), (6C,(RY),Tp) and (S€,(RY),Ts).
Then, considered f € E, the map

R x Hullig 7 (f) = Hullg (f),  (6.9) — o,

defines a continuous flow on Hull(g 7(f).

Next, the continuity of the time-translations in the space (QU@@(RM ), O’@) is
proved. Notice that a key difference arises with respect to Theorem 2.40. Indeed,
while trying to accomplish the same result in a larger space and with a weaker

topology, we are forced to assume L -equicontinuity of the m-bounds.

loc

Theorem 2.43. Let © be a suitable set of moduli of continuity as in Defini-
tion 2.3 and consider the space (WOLC(RM), 0g). If E C WOL(RM) admit L, -
equicontinuous m-bounds, then, denoted by E = clsoe®M) 0o)(E), one has that
the map

R x E — 0O¢(RM) (t, f) = fi,

18 continuous.

Proof. Firstly, notice that the map is well-defined thanks to Lemma 2.28. Let
(fn)nen be a sequence in E converging to f in (%@C(RM),JQ) and (t,)nen a
sequence in R converging to ¢t € R. We want to prove that for every I = [¢1, g2],
qi,q2 € Q, and every j € N one has that

lim sup
n—oo :E(-)E’C]I.

/I[fn(tn—l—s,:c(s)) — f(t+s,2(s))]ds| =0, (2.48)

where K is as in Definition 2.4. Let us fix e > 0, j € N, and I = [g1, o],
¢1,q2 € Q and consider an interval [rq,rs] such that, for every n € N, one has
(1 + tn,q2 + tn] C [r1, 7). Since E admits L}, -equicontinuous m-bounds, and
thanks to Proposition 2.29, one has that there exists d > 0 such that
T2 .

sup m)(u)du < €/6,

geE J 1
whenever 7,75 € [, 7] and 0 < 7, — 71 < §. Consider p(t), p2(t) € Q such that
G+t <pi(t) <pat) < g+t and

mt)—q—t<o and g +t—pot) <9.
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Notice also that, since t,, — t, then there exists ng € N such that for every n > nyg
one has that ¢; +t, < p1(t) < p2(t) < g2 + t,, and

p(t)—q —t, <6 and g +t, —pa(t) <9.

Then, for every n > ng one has that

/ [fo(tn +5,2(s)) — f(t+s,2(s))]ds

sup
x(-)GlC§ I
q2+tn q2+t
= sup / fn (u, x(u — tn))du — / f(u, x(u — t))du
e()eKt 1 Ja1+tn Qi+t
p2(t) 4e
< sup / [fo(uw,z(u—1t,)) = fu,z(u—1t))]du |+ —
a()ekt | Jpi(t) 0 (2.49)
p2(t)
< s | [ [fulwatu ) = oot t)]du]+
z()ekt 1 Jpi(t)
p2(t) 2e
+ s | (et ) = £ (e - 0)]du| + 5
w()ek! | Jpi) 3
— P Ryt 2

3
If we take an interval J with rational extremes so that [ U [pi(t), p2(t)] C J, then,
up to a suitable extension by constants to .J, the functions y,(-) = z(- — t,)
belong to K/ and we deduce that

lim P, < lim sup
n—00 n—>ooy(.)e’C5]

p2(t)
[ Ualnytu) = £ (uy(u)] du| =0
p1(t)
because (f,)nen converges to f in (QWOC(RM), 0g) and Lemma 2.14(ii) can be
applied.

Analogously, recalling that f € Q0OC(RM) satisfies (W), from Lemma 2.14(i)
we deduce that lim,,_,., R, = 0. Therefore, gathering together the results on P,
and R,, and by the arbitrariness of ¢, from (2.49) we obtain (2.48) which ends
the proof. O

Remark 2.44. The continuity of the time translation map in (G€(RM), op) can
be easily deduced from the proof of the previous theorem.

As a corollary of the previous theorem, one has that the map defined by the
time-translations is a continuous flow on the hull of a function in 20OC(RM) with
L}, ~equicontinuous m-bounds.

Corollary 2.45. Let f € WOE(RM) admit L},

1oe-€quicontinuous m-bounds. Then,

the map

R x Huu(ﬂﬁ@@(RM),J@)(f) - Huu(ﬂﬁ@@(RM),J@)(f) ) (ta g) = g, (25())

defines a continuous flow on Hull gyoe®i) ze)(f)-
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Proof. The result is a direct consequence of Theorem 2.43. In particular, fixed
t € R and a sequence (f, )neny of time translations of f converging to g €
Hull gyoe®) 00 (f), due to (2.48), one has

lim sup

/[an(t+S7x(s)) —g(t+s,z(s))]ds| =0,

1

and thus g, € Hulligoemrt) o) (f) for all £ € R, which implies that the map
in (2.50) is well-posed. The continuity is then a direct consequence of Theo-
rem 2.43. [



Chapter 3

Continuity of the flow for
Carathéodory ODEs

In this chapter, we address the problem of defining a continuous skew-product
flow for Carathéodory ordinary differential equations of the type

T = f(t, ), z(0) =z, (3.1)

and Carathéodory systems of triangular type as

o

{x’ = f(t, ), 2(0) =z 52)

Y= F(t,l‘)y + h(t,l’), y(0> = Yo,
where the function f(-,-) is Lipschitz Carathéodory, and F(-,-) and h(-,-) are
taken either in 200C or in ©C,, so that the problem is well-posed. Due to the
the variety of topologies presented in Section 2.2 and of assumptions on the m-
bounds and/or [-bounds presented in Section 2.3, one may find several results of
continuity for the induced skew-product flow.

In Section 3.1 we provide the optimal ones in terms of the strength of the
used topologies, and of the assumptions on the initial vector field. As follows, we
portray the scheme of assumptions in the three cases (the notation is simplified
neglecting the dimension of the image space).

Case 1: f € (L€, 0¢) with L]

Le-€quicontinuous m-bounds,

F € (WOC, 0e) with L}, -equicontinuous m-bounds,
h € (WOC, 0g) with L}

loc
Case 2: [ € (£¢€,,To) with L}, -equicontinuous m-bounds,

F e (0¢,Ts), he (06¢,To).

Case 3: [ € (£€,,Tp) with LY -bounded I-bounds,
F e (0¢,Ts), he (0, To).

-equicontinuous m-bounds.

29
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A trade between the strength of the used topologies and the assumptions on
the functions f, F', and h, arises. With few assumptions on the initial vector
fields, it will be necessary to use a stronger topology and vice versa.

The last sections of the chapter deal with applications of the continuity of the
skew product flow. Particularly, in Section 3.2 we treat the case in which f is
continuously differentiable with respect to x and the second equation in (3.2) is
the variational equation of the first one, that is, F' = J, f is a strong Carathéodory
function and h = 0. Applying the results contained in Section 3.1 we are able to
construct two types of linearized skew-product flows depending on the topology
used, either Tg or o0g. We conclude the section with an example portraying the
atypical case in which it is possible (thanks to the continuity of the skew-product
flow) to obtain the differentiability of the solutions with respect to initial data
for a system which is not continuously differentiable in the variable z, and thus,
it does not admit the classic variational equation.

In Section 3.3 we show how to propagate the exponential dichotomy of a
linearized system through the trajectories of the linearized skew-product flows.

Section 3.4 contains a further theoretical result and two examples. Specifically,
thanks to the continuity of the time translations in (Q00€, og) given in Theorem
2.43 and thanks to the theorems of continuity of the solutions with respect to the
variation of initial data and vector field in Section 3.1, we are able to prove to
existence of solutions for differential problem whose vector field is a function in
QJOC which is the limit, with respect to the topology og, of a sequence in G¢€.

Furthermore, we notice that the assumptions used in [25] to obtain stability
results for an abstract digitization scheme in control theory, are such that Theo-
rem 2.31 applies, and thus the integral-like topology used in such work coincide
with any of the strong topologies considered in Chapter 2. Additionally, we high-
light how some of the results contained in such paper can be read in view of the
theory developed in this work.

Finally, inspired by [50], where a study of a triangular system composed of a
non-autonomous linear compartmental system and an induced mean-age system
is accomplished, we construct a triangular system for a Carathéodory non-linear
compartmental system and point out how a continuous skew-product flow can be
obtained if any of the theorems in Section 3.1 applies.

3.1 Continuity of the flow

This section contains several results of continuity for skew-product flows gen-
erated by either, a single Carathéodory system with vector field in £&, or, by
triangular systems composed of a nonlinear system with vector field in £&, and
a linear system with vector field in 200 or ©¢,. The joint role of m-bounds
and [-bounds in proving the continuous variation of ODESs’ solutions with respect
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to initial conditions, has been investigated in [3, 4] when weak topologies are
involved. However, later on we show how assumptions on the sole m-bounds,
or the sole [-bounds, can still be sufficient to prove the continuous variation of
ODEs solutions when weak topologies are used. Furthermore, we show how such
topological properties turn out to be useful in order to prove the continuity when
the strong topologies are employed and which differences arise. We state the
following theorem as a corollary of Theorem 1.2 to set some notation.

Corollary 3.1. Let © be a suitable set of moduli of continuity as in Definition 2.3.
For any f € £€, F € QU@Q:(]RNXN), h € WOEC, and xy, yo € RY, there exists a
unique solution of the Cauchy problem

{j; = f(t, ), 2(0) =z

[e=]

which will be denoted by (x(-,f, x0),y(-, £, F,h,mo,yo)), and whose maximal in-
terval of definition coincides with the interval I ., provided by Theorem 1.2.

The suitable set of moduli of continuity © used to determine the sets 20O
and/or ©¢,, assumes particular relevance when one wants to prove the continuity
of the solutions with respect to the variation of initial conditions and thus the
existence of a continuous skew-product flow. In the first two theorems of continu-
ity of the flow presented in this section, the set © will be constructed, as follows,
using the m-bounds of the vector fields defining our initial systems.

Definition 3.2 (Moduli of continuity given by the m-bounds). Let E C £¢& admit
L} ~equicontinuous m-bounds. For any j € N and for any interval I = [qy, go],

q1,q2 € Q, define

t+s )
0i(s) ;= sup /t my(u) du, s >0,

tel,feE

where, for any f € E, the function mic() € Lj,. denotes the optimal m-bounds
of f on B;. Notice that, since E admits L;,-equicontinuous m-bounds, then
0 = {6]1() | I = [q1,92), ¢1,92 € Q, j € N} defines a suitable set of moduli of

continuity (see Definition 2.3).

Remark 3.3. If f € £¢ has L] -equicontinuous m-bounds we similarly define
for any j € N,
t+s )
0;(s) := sup/ m’ (u) du , s> 0,
t

teR
where m/(+) is the optimal m-bound for f on B;. Here again, notice that, thanks
to the L}, -equicontinuity of the m-bounds of f, one has that © = {6,(-) | j € N}
defines a suitable set of moduli of continuity (see Definition 2.3).
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Theorem 3.4. Consider E C £€ with L} -equicontinuous m-bounds and let © be
the countable set of moduli of continuity in Definition 3.2. Additionally, consider
B C WOC(RMN) and C C QWOC, both with L}, -equicontinuous m-bounds.
With the notation of Theorem 1.2 and Corollary 3.1,

(i) if (fu)nen in E converges to f in (£€,00) and (xon)nen in RY converges
to xy € RN, then

n— o0

.I'(', fn; ZCO,n) E— .fL'(‘, f7 .Z'o)
uniformly in any [T1,T5) C Iyy,;

(ii) in addition, if (F,)nen in B converges to F in (WOE(RYN) o), (hy)nen
in C' converges to h in (WOC, 0g), and (Yo, )nen in RY converges to yy €
RN, then

n—oo

y('» fn7 Fn7 hna Xo,n, yO,n) — y(7 f’ F; h7 X, yO)
uniformly in any [T1,To] C I 4,-

Proof. (i) We will prove the uniform convergence of (m(, fos xo,n))neN to z(-, f, xo)
in [0,7] for any 0 < T < bs,,. The case as,, < T < 0 is analogous. Denote

0< p= 1 4 max {(‘xO,n’)neNa Hx(a f’ xO)HL‘X’([O,TD} ) (33)

and define
t, fn, Ton), if 0 <t <T,,
2n(t) = {x( Jur Ton), (3.4)

(T, fn,vom), T, <t<T.

where T, = sup{t € [0,T] | |z(s, fn, Ton)| < p, Vs € [0,t]}. Notice that by (3.3)
and by the continuity of (a:(, fns moyn))neN, we have that T,, > 0 for any n € N.

In particular notice that (zn())n is uniformly bounded. Moreover, consider

eN )
j € Nso that p < j and let (mn(-))neN (m?n(‘))neN be the sequence of optimal

m-bounds of (f,)neny on By. If t1,t5 € [0,T,), t1 < to, then

on(ty) — 2 (k)] < /t [ (5, 20(s)) | ds §/t2mn(s) ds. (3.5)

Fixed ¢ > 0, since F admits L}, -equicontinuous m-bounds, there exists § =
d(T,e) > 0 such that, if 0 < t; < ty < T, then the right-hand side in (3.5)
is smaller than ¢ whenever ¢, — ¢; < 4. Notice that, in fact, the inequality
|2n(t1) —2n(t2)| < € is true on the whole interval [0, 7’| whenever to—t; < ¢ because
in [T,,,T] the difference on the left-hand side of equation (3.5) is zero. Thus,
the sequence (z,(+))nen is equicontinuous. Then, Ascoli-Arzeld’s theorem implies

that, up to a subsequence, (zn()) converges uniformly to some continuous

neN
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function z : [0,7] — RY. In order to conclude the proof, we prove that z(-) =
z(-, f,zo) in [0, T]. Define

To =sup{t € [0,T] | |z(s)| <p—1/2 Vse]l0,t]}, (3.6)

and notice that T > 0 because (g, )nen converges to xp and z(+) is continuous.
Since z,(-) converges uniformly to z(:) in [0,7], then there exists ny € N such
that if n > ng, then

lzo(t) <p—1/4  Vte[0,Tp.

Therefore, for any t € [0, 7] and for any n > ng one has z,(t) = z(t, f,, xo,) and
thus

Zn(t) = 2o +/0 fn(s,zn(s)) ds, t €0,Tp], n>ng. (3.7)

Since we already know that z,(-) converges uniformly to z(-) in [0, Ty], if we prove
that for any t € [0,7}] one has
t

lim [ fu(s, zu(s)) ds = /0 f(s,2(s)) ds, (3.8)

n—oo 0

then, passing to the limit as n — oo in (3.7), we would have that z(-) is a solution
of the limit problem & = f(t, ), ©(0) = zo in [0, ). Let us fix t € [0,7p)NQ and
consider the compact set K = {z,(-) | n € N} U {z(:)} c C([0,¢],RY). Notice
that IC C Kgo’t] for the previously identified j € N and thus one has

‘ /ot [fu(s:2n(s)) = f (s, 2(s))] ds
= ‘ /ot [fa(s,20(5)) = f (5, 20(5)) | ds

+ /Ot [f(87zn(3)) - f(S’Z(S))} ds

/ [fn(5,9(s)) = f(s,y(s))] ds +/0 1(8)|2n(s) = 2(s)| ds,

0

< sup

y()ekl

where l}() € Lj,. is the optimal I-bound for f on B;. The right-hand side of the
previous chain of inequalities goes to zero as n — oo because (f,)nen converges
to f in 0g, and (z,(-))nen converges uniformly to z(-) in [0, 7]. Hence, from (3.7),

(3.8) and recalling that (x,)nen converges to xy as n — oo, one has

2(t) = zo + /Ot f(s,2(s))ds  fort€[0,T)NQ. (3.9)

As a matter of fact, the equality holds on the whole interval [0, 7p]. Indeed, for
any t € [0,Tp], if (gn)nen is a sequence in Q such that g, Tt as n — oo, then,
using (3.9) one has

2(t) — 29 — /0 f(s,2(s)) ds

<1400 = 20l +| / F(5,2()) ds

< J2() — 2(an)] + / m(s) ds,
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loc

(3.9) for all t € [0,Tp] due to the continuity of z(-) and of the Lebesgue integral.
Therefore, z(-) coincides with z(-, f, z¢) on [0,T5]. The only thing left to end the
proof is to prove that T, = T'. Assume, on the contrary, that Ty < 7. Then, by

where mip() € L}, is the optimal m-bound for f on B;. Thus, one obtains

(3.6) and by the continuity of z(-), one would have

|Z<TO)| = |£U(T0,f,£€0)| =p—- 1/27

which contradicts (3.3). Hence, Ty = T, as claimed, and thus for any ¢t € [0, 7]
we have that x(t, f,z0) = 2z(t) and x(t, fn,Ton) = zu(t) for any n € N, which
concludes the proof of (i).

(ii) In order to simplify the notation, let us denote by z,(-) = x(-, fu, Ton),
Yn(+) = y(; fos By By Tons Yon), ©(-) = x(-, fr20), and y(-) = y(-, f, F, h, 2o, Yo).
From (i) we have the continuous dependence in the first component and also
that there exists p > 0 such that for every n € N the following inequality holds:
|Zn ()| Lo (jo,77) < p < 00. Consider j € N such that j > p, and for any n € N let

my, and my, respectively denote the m-bounds on B; for F,, and h,, satisfying the

1

assumptions of L, .

-equicontinuity. We will prove that, for every 0 < T' < by,

one has
n—o0

19n(+) =y ()l Lo o,7) — 0.
For every n € N define the function g,: R x RY — R by

F.(t,x,(t)) y + hn(t, za(t)), f0<t<T),
0 otherwise ,

and similarly define g: R x RV — R by

0 otherwise .

g(ty) = {F(tax@))yﬂLh(tfv(t)) L 0<t<T,

It is easy to check that such functions are in £€. Furthermore, notice that the
solutions of the Cauchy problems

v =9ty J = ga(t,y)
{y(O) =1 and {y(()) = Yo forn €N, (3.10)

coincide on [0, 7] with y(-) and y,(-), for n € N, respectively.
For almost every t € R and every y € RY, and up to rescaling mJ}, (-) using
the equivalence of the norms on the space of matrices RV*¥ one has that

|9t y)| < i, () [yl +mi, (1) and  |g(t,y)| < mp(t) [yl +mi(t).  (3.11)

Then, from the assumptions on B C 20OC(RY*Y) and C' C WOC and from
Proposition 2.29, we have that the set {g, | n € N} U{g} has L} -equicontinuous

loc
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m-bounds and thus a specific suitable set of moduli of continuity O can be defined
as in Definition 3.2. Therefore, if we were able to prove that g, —— ¢ in
(£¢€,05), we would have that the assumptions of part (i) would be satisfied by
the systems in (3.10) and thus, by the fact that the solutions of such systems
respectively coincide with y(-) and y,(+), for n € N, on [0,7], we would obtain
the thesis. However, fixed any dense and numerable subset D of RV, we can
use the equivalence of the topologies and employ the topology op instead of og.
Indeed, for almost every ¢t € R and every v,y € RY, one has that

190t y1) — gult,y2)| < M (8) [y1 — 2| and |g(t, y1) — g(t, y2)| < mp(t) [y1 — vol-

Hence, once again from the assumptions on B C QLU@C(]RN xN ) and from Proposi-
tion 2.29, we have that the set {g,, | n € N}U{g} has L, -equicontinuous [-bounds
and thus, by Remark 2.18 and Theorem 2.33, the topology og coincide with op
on the set {g, | n € N}U{g}. Therefore, in order to finish the proof we only need
to check that g, —— g in (£¢,0p), i.e. that for any I = [¢1, g2, with ¢, g2 € Q,
and y € D one has

lim

n—oo

Jlontt.o) = st at| 0. (3.12)

Denote by Ir the interval I N[0, 7]. Recalling that the functions (g, )nen and g
are zero outside the interval [0, 77, if Ir = @, then (3.12) trivially holds true. If
T ¢1Iorif T e INQ, then the interval I1 has endpoints in Q and one has

/I[gn(t, y) —g(t,y)] dt‘
[ Iena(8) = h(e )] 1

It

/ Pt an(®)) — F(t, 2(0))] dt’ Tl ‘ /I [F(t.0(0) = F(t.0(0)] dt‘

It

+ ‘ /IT[hn(t,xn(t)) — h(t,z,(1))] dt‘ - ‘ /IT[h(t,xn(t)) — h(t,z(t))] dt‘

< ‘ /IT[Fn(t,a:n(t)) - F(t,x@))}ydt‘ ;

<yl

<o, [yy| / [ (e20) = F (1. 2(0) dt‘ - [ [1at-2(0) =t 2(9)] dtH
Tyl ‘ / [F(t.0(0) = F(0.2(0) dt‘ i /IT[h(t,xn(t)) (e (0)] dt’.

In the last step of the previous chain of inequalities, the first two integrals go to
zero as n — oo because, by assumption, F, —— F in (WOE(RV*N), 0g) and
hn 2% hoin (WOC, 0g), whereas the last two integrals go to zero as n — oo,
because F € WOC(RYVN), h € WOL, and (z,(-))

z(+) on [0, 7] (see Definition 2.4).
The only remaining case is for " € I but T ¢ Q. Then, fixed ¢ > 0 and k € N

aen Converges uniformly to
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consider ¢ € I N Q such that

T
sup / mi(t) dt < e, (3.13)
Ge{gn|neNjuig} Jq

where, for any G € {g, | n € N} U {g}, m&(-) € L}, is the optimal m-bound

loc

for G on By, and the previous inequality holds true since {g, | n € N} U {g}
has L}

Le-equicontinuous m-bounds (due to (3.11) and Proposition 2.29). Then,

considering k € N such that |y| < k, we obtain

/Im[o ][Fn(t, Z(t)) - F(t, z(t))} dt'

‘/I[Qn(t,y) —9(t,y)] dt‘ <2e+ksup

Z(_)€K§N[O»Q]

+ sup
2()er; O

+ [yl ’ /m[mq] [F(t,2.(t)) — F(t, 2(t))] dt’
+ ‘ /m[om [h(t, 2 () — h(t,2(t))] dt' .

And again, from the fact that F, 2% Fin (QU@Q(RNXN)J@) and h, —> h
in (WOC, ge), and since F' € WOL(RY*N), h € WOL, and (w(-)),

uniformly to z(-) on [0, 7], and from the arbitrariness of €, we have that the right-

/Im[o ] [hn (t, Z<t>) - h(t, z(t))} dt‘

converges

hand side of the previous inequality goes to zero as n — co. Hence, ¢, ——» ¢ in
(£¢€,0p) and thus also in (£&, 05). As a consequence, the assumptions of part (i)
are now satisfied by the systems in (3.10) whose solutions respectively coincide
on [0, 7] with y(-) and y,(-), for n € N, and thus we obtain the thesis. O

Consider f € £¢, a suitable set of moduli of continuity © = (6;),en, and
the family of differential equations @ = g(t,x), where g € Hullige »)(f). With
the notation introduced in Theorem 1.2, let us denote by U, the subset of R x
Hull(ge »)(f) x RY given by

U, = U {tga)|tel.}.

g€Hull(ge o) (f),
z€RN

Analogously, let f € £¢€, F € WOE(RN*Y) and h € WOC, where © = (6;);en
is a suitable set of moduli of continuity, and consider the family of differential
equations of the type (3.2) for

(gu G) k) cH = Hun(ﬂ@x%ﬁ@@x%@@,aeXU(-)XU(—))(f7 Fa h)7

where the hull is constructed as in Definition 1.10. Then, we denote by Us the
subset of R x H x RY¥x R¥ given by

Z’IQ: U {(t,g,G,k,$0,y0) | te]g,woa Yo eRn}

(g7G7k) EH b
zoGRN
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With the previous notation we can state the following theorem.

Theorem 3.5. Let the functions f € £€, F € WOC(RY*N) and h € WOC have
L}, -equicontinuous m-bounds, where © = (6;),en is the suitable set of moduly of
continuity given by the m-bounds of f as shown in Remark 3.3.

(1) The set Uy is open in R X Hullige o) (f) X RY and the map
II: U C R x Hullige,pe)(f) x RY = Hull(ge,pe)(f) x RY
(t,qg,z0) — (gt, x(t, g, mo))
defines a local continuous skew-product flow on Hull(ge »0)(f) X RY.
(ii) The set Uy is open in R x H x RY x RN and the map

U: Uy CRxHxRY<RY — H x R¥x RY
(ta 9, G7 ka Lo, ZUO) = (gta Gt7 kta x(ta g, SL’()), y(t7 9, G7 k7 Zo, ZJO))

defines a local continuous skew-product flow on H x RVx RN,

Proof. (i) Firstly, notice that the property of group and of identity at time zero
are trivially satisfied, and the continuity in the first component of the image is
given by Corollary 2.45.

As regards the second component, it is enough to show that the assumptions
of Theorem 3.4 apply to £ = Hullige 75)(f). To the aim, we check that the
set of moduli of continuity given by the m-bounds of f as in Remark 3.3, also
turns out to be the set of moduli of continuity given by the m-bounds of the
functions in Hull(ge 7,)(f) as in Definition 3.2. Thus, fix j € N and consider
g € Hull(ge o) (f) and a sequence (7,,)nen in R such that f;, 2% g. Moreover,
denote by m/(-) = mﬁc() the optimal m-bound for f on Bj; as shown in (2.14),
one has that for every n € N, the optimal m-bound of the 7,,-time translation of
f is the 7,-time translation of the optimal m-bound of f, that is

VneN: mj}m(-) =ml ().

Reasoning as in the first part of the proof of Proposition 2.26 we have that the

sequence of absolutely continuous measures with densities (m? (-)) vaguely

neN
converges, up to a subsequence, to a positive measure whose absolutely continuous
part has density m?(-) € Lj,., and mJ(-) is an m-bound for g on B;. Furthermore,
for any t € R, h > 0 and 6 > 0, one can consider a function ¢ € C/, such that

supp¢ C [t —0,t +h+ 6] and ¢ = 1 in [t, ¢ + h] and write

t+h ' 4 t+h+s
/ m(u) du < /¢(u) m!(u) du = li_>m d(u) m? (u) du < sup/ ml(u) du,
t R =0 JRr 7eR Jt—§
and thus, by the arbitrariness on § we get

t+h t+h
/t m)(u) du < sup/t m?(u) du < 0;(h).

TER
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Then, the sets of moduli of continuity coincide, as stated, and applying Theo-
rem 3.4 we obtain the result.

(ii) Analogous reasonings apply to this case. m

The following theorem addresses the same problem, i.e. the continuity of the
skew product semiflow, but the strong topology Tg is employed. Particularly, in
the following theorem, the triangular problem is considered in a smaller space
with a stronger topology (with respect to Theorem 3.4) but no assumptions on
the m-bounds of the functions defining the vector field of the linear problem, are
necessary anymore.

Theorem 3.6. Consider E C £&, with L}, -equicontinuous m-bounds and let ©
be the countable set of moduli of continuity in Definition 3.2. With the notation
of Theorem 1.2 and Corollary 3.1,

(i) if (fu)nen in E converges to f in (£€,,To) and (Ton)nen in RN converges
to zg € RY, then

n—oo

x(‘? fna xO,n) — .CE(, f7 330)
uniformly in any [Th, 1] C If4;

(ii) moreover, if (F,)nen in OC,(RY*N) converges to F in (O€,(RV*N), Tg),
(hp)nen in ©C, converges to h in (€, T6), and (Yon)nen in RY converges
to yo € RY, then

n—oo

y('7 fn7 FTH h'n7 xO,THyO,n) — y<7 f7 F7 h,ﬂfo, y(])

uniformly in any [Th, To] C It 4, .
Proof. (i) Notice that for any 1 < p < oo if f, “—> f in (£¢,, To), then it
also converges in (£€,0g). Therefore, a careful look at the proof of Theorem 3.4
shows that (i) of such theorem applies.

(ii) The continuous dependence in the first component is given by part (i).
Let us simplify the notation, as follows

J,‘n() = $<~, fm IO,H) ’ yn() = y('7 fn; Fny hn; %,n,yo,n) s
.CE() :m('vfwa)v and y() :y('afaFahaanyO)‘

From part (i) we already have that (z,(-)) _ converges uniformly to z(-) on the

nEN ~
compact subsets of If,,. Moreover, call F,(t) = F,(t,za(1)), F'(t) = F(t,z(t)),
ha(t) = ho(t,z,(t)) and h(t) = h(t,x(t)). If we prove that (F,(-))nen and

hn(+))nen converge in L7 to F(-) and h(-) respectively, then we have the thesis

loc
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applying Lemma IV.9 in [53] to the linear case. Therefore, let us fix an interval
I C R. Then,

[Fn() = FO, = [1Fa () = F(2())]],
<[|Fu(owa()) = FCoaal) ||, + 1F (aa() = F(20)]],
< sup [|Fn(60)) = F(EO) |, + 1F (o an() = F(2() |

p
I
gek!

where j € N is chosen so that j > max{||z(:)||zw), (||n(-)||zo(1))nen}. The
right-hand side of the previous inequality goes to zero as n — oo because (F},)nen
converges to F'in (@Cp (RN xN ),7@), and F satisfies (T'). Analogous reasonings
apply to the sequence (ﬁn(-))neN. Therefore, we have the required L = conver-
gences and thus uniform convergence of the solutions of the nonhomogeneus linear

equation. n

Let f € £&,, © = (6,)jen be a suitable set of moduli of continuity and
consider the family of differential equations & = g(t, z), where g € Hull(¢e, 75)(f)-
With the notation introduced in Theorem 1.2, let us denote by U; the subset of
R x Hullge, 76)(f) x RY given by

ulz U {(t,g,x) |t€]g,9€}‘

geHull(Q@p,T@) (f) )
z€RN

Let f € £¢,, F € OCRYY) h € OC and consider the family of differential
equations of type (3.2) for

(.97 Ga k) cH = HUII(SGPX(%@X@@,TQXTQXT@)<f7 Fa h)a

where the hull is constructed as in Definition 1.10. Denote by Us the subset of
R x H x R¥x R¥ given by

u2: U {(t’gaG7k7x07y0) |t€]g7z0, yOER”}
(9,G k)M,
IQGRN

With the previous notation we can state the following theorem.

Theorem 3.7. Let f € £€, have L}, -equicontinuous m-bounds and let © =

(0;)en be the suitable set of moduli of continuity given by the m-bounds as shown
in Remark 3.3.

(i) The set Uy is open in Hullge, 70)(f) X RY and the map

®1: U C R x Hullge, 75)(f) x RY —  Hullee, 76)(f) x RY
(tvgvx()) = (gtax(tagax(])) )

defines a local continuous skew-product flow on Hullge, 70)(f) X RV,
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(ii) The set Uy is open in R x H x RY x RN and the map

®y: Uy CRxH x RV RY — H x RVx RY
(tagaG7k7$0ay0) = (gt7Gtvktax(tagax0>7y(tvva7 k:a'TOvyO)) )

defines a local continuous skew-product flow on H x RVx RV,

Proof. The proof is a consequence of Corollary 2.42 and Theorem 3.6, reasoning
as in the proof of Theorem 3.5. n

Finally, we provide two results of continuity of the solutions for Carathéodory
differential systems whose vector fields are in a set E C £¢, with L} -bounded
[-bounds. Thanks to Theorem 2.31, we have that all the strong topologies in-
troduced in Section 2.2 coincide on E. In particular, if C' C E is compact (and
recall that the problem of compactness in £& has been studied in Section 2.6),
then the solutions of the differential equations of type (3.1), whose vector fields
belong to C, determine a suitable set of moduli of continuity which will be used
to obtain the continuity of the solutions of the second equation in the triangular

system. Notice that no assumptions on the m-bounds are required.
Theorem 3.8. Consider E C £&, with LY -bounded l-bounds.

(i) If (fu)nen in E converges to f in (£€,, Tp) and (xon)nen in RY converges
to g € RY, then

n—00

l’(', fn7 xO,ﬂ) — .I'(‘, f7 370)
uniformly in any [Ty, T5] C I 4.

(ii) Let C C E be compact with respect to Tp and, for any interval I = [q1,q2] C
R, with q1,q2 € Q, and any j € N, define

J C I wnterval, and
Cl=Sz:J— B 3f € C such thatVs,teJ, . (3.14)

] w(t) = 2(s) + * F(u, () du

Then, each of the sets Cf s equicontinuous and, denoted by 9][ its modulus
of continuity, the set

O = {ej € C(R*,RY)

I= [QDQQ] C Ra with qi1, 92 € @7 .] € N7
GJI- modulus of continuity of C’jI ’

15 a suitable set of moduli of continuity.
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(iii) Let C C E be compact with respect to Tp and © be the suitable set of moduli
of continuity given by (ii). If (fu)nen in C converges to f in (£€,,Tp),
(Fy)nen in @CP(RNXN) converges to F in (@QSP(RNXN),%), (hp)nen in
O¢, converges to h in (0€,, Te), and (Ton, Yon)nen n RYx RN converges
to (xo,y0) € RVX RY | then

(x('vfmxo,n)ay(',fmthnawO,myO,n)) — (ZE(',f, xO)ay('7fa F, haanyO))

as n — oo, uniformly in any [11,To] C If4,.

Proof. (i) Since E has L}

loc

in (£¢,, Tp) implies the convergence in (£€&,, Tg). The proof closely follows the
one given in Theorem 3.4, whose notation is hereby inherited. In particular,

-bounded [-bounds, by Theorem 2.31 the convergence

we focus on the interval 0 < T < by,,, since analogous reasonings apply for
Af oz < T < 0.

After setting the constant p as in (3.3), and after defining the sequence of
in C([0,T],RY) as in (3.4), we notice that (z,(-)) _ is

functions (Z”('))neN neN

uniformly bounded and for any 7 € N one also has
() = 2a(2) < [ Vs, ()| ds
< [Mlscanto) = s st [ 1G5z ds 35)
< /:| Fu(5,20(5)) — £ (5, 20(s)) | ds + /tlhmg;(s) s,

where m;() € L7 is the optimal m-bound for f on B;. Fixed ¢ > 0, due to
the convergence of (f,)nen to f in (£, Tp), and recalling that {z; | £ € N} is
a bounded set of continuous functions, we have that there exists an ng € N such

that

)

n>ny = sup/ | fa (s, 26(5)) = f(s,21(s)) | ds < e. (3.16)
keN J¢;

On the other side, by the absolute continuity of the integral, there exists § > 0

such that if 0 < t, — t; < d, then

/2 ‘fn(s,zn(s)) — f(s,zn(s))| ds < e Vn=1,...,ng, (3.17)

t1

and also

/t 2 m;(s) ds <e. (3.18)

1

Gathering the inequalities (3.15), (3.16), (3.17) and (3.18), we obtain a common
modulus of continuity for all the functions in {z; | i € N}. Therefore, thanks to
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Ascoli-Arzela’s Theorem, we have that, up to a subsequence, (Z”())n N
uniformly in [0, 7] to a continuous function z(-). At his point, it is possible to
prove that z(-) coincide with (-, f, zo) on [0, T] following the same arguments of
Theorem 3.4, with the only exception that the equality in (3.8) will be guaranteed

converges

by the convergence in the strong topology 7T, once one notice that {z;(-) | i €
N} U{z(-)} is a bounded set.

(i) Let us fix e > 0, I = [q1, 2] C R, with ¢1,¢2 € Q, and j € N, and consider
the following seminorm defined on F

p;(f) = sup /}ftz ‘dt fekE.

z€C(I,By)

Moreover, for any f € C, denote by U g /Q(f) the following set

UL(f)={feE | pj(f-Ff)<e/2}.

Therefore, by the compactness of C, there exist v € N and fi,...,f, € C such

that
Cc U oS

For any i = 1,...,v, denote by ml() the m-bound of f; on B; and notice that
there exists 0 > 0 such that, if s,t € [ and 0 <t — s < ¢, then

t
/ m;(u) du <
S

Now, consider z: J — B;, with z() € C’f and possibly extend it by constants
to the whole interval I. Also, by the definition of CJ in (3.14), x(-) determines
f € C such that

Vi=1,...,v.

[\Dlm

z(t) = z(s) + /t f(u,z(w)) du, for every s,t € J.

Moreover, up to a reordering of the functions fi, ..., f, whose £/2-neighborhoods
provide a covering of C, assume that p;(f — fi1) < /2. Then, for any s,t € J
with 0 <t — s < § we have

o) o601 < [ 11wt
/‘fu:c fl(uaz ‘du—l—/ml
<=+ [ i duse

Hence, from the arbitrariness of z(-) € C/, one has that the set C] is equicontin-
uous.
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(iii) The proof of this part is the same as the one of part (ii) of Theorem 3.6
with the exception that now © is no more determined by the m-bounds of the
functions in £ but as in the statement. Notice that everything is consistent,
since for any I = [q1,q2] C R, with ¢1,¢2 € Q, and for any j € N, we have that
Cf C IC;T , where the functions in ij are possibly extended by constants to the
whole interval I, as before. n

Next, we state the result of continuity of the skew-product flow for the topol-
ogy Tp. Notice that, in analogy with Theorem 3.7, we provide a result for both
systems like (3.1) and like (3.2) in the respective hulls. However, a major dif-
ference in the assumptions of the second case occurs, that is, Hullge, 7,)(f) is
required to be compact, due to the fact that Theorem 3.8(iii) is used to ob-
tain the result. Incidentally, recall that a characterization of compactness of
Hullg¢, 77,)(f) is given in Corollary 2.36.

As before, let us set some notation first. Considered f € £&,, let us denote
by U; the subset of R x Hullige, 72,)(f) x RY given by

ul - U {(tagax()) ‘ le [97900}‘

g€Hull(¢ee,, 7p) (f)
onRN

Moreover, considered a suitable set of moduli of continuity © = (6;),en, and the
functions F € @@(RN XN ) and h € OC, let us denote by H the set given by
H = Hull(¢e, xoexoe, 7 x 7o x70) (f> 5 1),

and by Uy C R x H x R¥x R¥ the set given by

u2: U {(t7va7k7x07y0) |t€]g,xo7 yOE]R}

(9,G.k)eH
y) eRN

Theorem 3.9. Let f € £&, have L] -bounded [-bounds.

loc

(i) The set Uy is open in R x Hullige, 7,,)(f) X RY and the map
d: U CRx HUH(EQP,TD)(f) X RN — HUH(EQP,TD)(f) X RN,
(t7g7x0) = (gtwr(tagaa?())) )
defines a local continuous skew-product flow on Hullee, 7,,)(f) X RV,

(ii) Furthermore, if Hullige, 7,)(f) s compact, © is the suitable set of moduli
of continuity given by Theorem 3.8(ii), F' € @Q:(RNXN), and h € ©C, then
the set Us is open in R x H x R¥x RN, and the map

®y: Uy CRx H x RV RY — H x RVx RY
(t7g7G7k7'r07y0> = (gt7Gtaktux(tugux(])?y(t?g?G7 kerayO))?

defines a local continuous skew-product flow on H x RVx RV,
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Proof. The property of group and of identity at time zero are trivially satisfied.
Moreover, the continuity in the base flows in (i) and (ii) are a direct consequence of
Corollary 2.42, while the continuity of the solutions is given by Theorem 3.8. []

3.2 Linearized skew-product flows

In Section 3.1, triangular systems composed of a nonlinear system with vector field
in £¢ and a linear system with vector field in 200¢€ or O€ were treated. This kind
of systems assume additional relevance when the linear system is the variational
equation of the non-linear one. In particular, (depending on the assumptions on
f and on its Jacobian with respect to x) the previous theorems allow to deduce
two different types of skew-product flow and to prove the differentiability of the
solutions of the non-linear equations with respect to the initial data also in some
cases in which the vector field is not differentiable with respect to x, and thus
does not admit a classic variational equation. Such results motivate the definition
of linearized skew-product flows that we will introduce at the end of the section.

The classic theory of Carathéodory ODEs provides the differentiability of the
solutions with respect to the initial conditions when the respective vector fields
are continuously differentiable with respect to x (see Kurzweil [37] and Bressan
and Piccoli [11]). In order to set some notation and for the sake of completeness
we include a proof of such a result.

Theorem 3.10. Let f € £& be continuously differentiable with respect to x for
a.e. t € R and denote by J,f € SC,(RV*N) the Jacobian of f with respect to x.
If (-, f,x0) and y(-, f, Jof, To, o) are respectively the solutions of the Cauchy
Problems

{a::f(t,x) and {y: J:ch(tax(tvf7x0))y
z(0) = xo y(0) =yo

defined on any compact interval [Ty, T1] included in the mazimal interval of defi-
nition Iy, , then we have that

x(t, f, 0+ eyo) — (¢, f, z0)
3

lim
e—0t

_y(tafvjrfux(]?y()) :Ov

uniformly for t € [Ty, T1] and yo € By .

Proof. Let us simplify the notation, denoting by x(-,xz¢9) = z(-, f,zo), and by
y(-, z0,v0) = y(, f, Jof, o, yo) and consider the case t € [0,T}]; all the other
cases can be worked out analogously. By definition of solution, we have that

x(t, v + 53/2) — a(t, xo) = yo + %/0 [f(s, x(s, o + 8y0)> - f(s>$(3’ :EO))] ds

=% + /;(/;fo(safs(s,a)) da> (5, @0 + £y0) — (5, o) ds.

3
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where
E(s,a) = x(s,x0) + afz(s, 0+ cyo) — x(s, x0)]

is determined by the fundamental theorem of calculus. Furthermore, by definition

y(ta Zo, yO) = Yo + /0 fo(S, 33’(8, .’Eo)) y(S, X, yO) dS . (319)

Therefore, if 0 <t < T} one has

z(t, wo + eyo) — x(¢, 7o)

- —y(t, 20, Yo)
S/O </0 Tof (s,6.(5, ) da> {x(s,xo +€y2) —x(s,70) Z/(S,SUo,yo)} s
—l—/o [/0 (fo(S,fs(S,oz)) - sz(S,.TJ(S,SC())))dOJ] y(s,zo,90)| ds. (3.20)
Let us denote by n.(t, xo, yo) the following integral
/0 {/0 (fo(S,fs(S,oz)) — fo(s,m(s,xo)))doz] y(s,zo,v0)|ds . (3.21)

Next, we prove that 1.(t, zq, yo) goes to zero as € — 0 uniformly in yy € B; and
t € [0,7]. Firstly, let us fix o € RY and consider j € N so that [|z(-, 7)|le < j
and also [|.(+, @)||ee < j in [0,T7] for every € < 1 and every a € [0,1]. From
(3.19), one has

t
ly(t, 20, 30)] < [0l + / 9 ()l 0, o) ds.
0

1

where, up to a rescaling due to the equivalence of the norms in R¥*¥ 'mi(.) € L}

denotes the optimal m-bound for J, f on B;. Therefore, using Gronwall Lemma
one has

Ty

|y(t, 2o, Yo)| < [yo| exp (/Ot m?(s) dS) < |yo|eXp( m’(s) ds) :

0
As a consequence, the solutions y(-, zg, yo) are uniformly bounded for yy € By and
t € [0,71]. Moreover, notice that & (s, «) =20 x(s, xg) uniformly in a € [0, 1],
Yo € By and s € [0,T1] and, since J,.f € GE,(RY*YN) one also has that for almost
every s € [0,T1]

fo(s, & (s, a)) =0 fo(s, x(s, xo))

uniformly in @ € [0,1]. Now, recalling that we have taken j € N so that
|z(-, 20)||o < j and also ||E&(-, @)||ee < j for every ¢ < 1 and every a € [0, 1],
then we have that

/01 <fo(5,£€(s,a)) - fo(s,x(s,xo))>da < 2m!(s) (3.22)
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Therefore, applying Lebesgue theorem of dominated convergence one obtains that
lim. o n-(T1, o, yo) = 0 uniformly in yo € By, and recalling how 7.(-, zo, yo) is
defined in (3.21) one has

lir% ne(t, zo, yo) = 0, uniformly in yo € By and t € [0, T}]. (3.23)
E—r

Now, reasoning as for (3.22), we have

1
| 12565, c)) da < 0 (s),
0
that, together with (3.20), provides

x(t, xo + eyo) — x(t, x0)
€

- y(t7 X, ?JO)

b (S, Xo + €Yog) — x(S,x
S ns(ta Zo, yO) + / m3<8) ( s 2) ( 0) - y(87 o, yO) ds )
0
and applying Gronwall’s inequality we get
z(t,xo + €yo) — x(T, @
(o0 2 20) Z0hT0) _ 4, 1)
< n:(t, zo, Yo) +/ Ne(8, o, yo) M’ (s) exp (/mJ(T) dr) ds
0 i (3.24)

T
S ns(tax(]?y()) +c / 77€<S,I‘0,y0> mj(5>d57
0

where the positive constant c satisfies ¢ > exp < fOTl m?(r)dr). Notice that, as

e — 0, the right-hand side of (3.24) vanishes uniformly for ¢t € [0,7}] and yy € By,
due to (3.23). As a consequence one has

x(t, f, 0 +eyo) — z(t, f, o)

li =y(t, f, Jof, xo, , 3.25
g—1>%1+ - y(t, f, Jof, 7o, Yo) ( )
uniformly in ¢ € [0,7}] and yo € By, which ends the proof. ]

Remark 3.11. As follows, we provide conditions that allow to extend such con-
clusions to the solutions z(-,g,x¢) and y(-,g, G, zo,yo) of any pair of Cauchy
Problems of the type

{:’c:g(t,:c) and {QIG(tax(taga%))y

3.26
£(0) = 2o y(0) = 1o (3:26)

where g € £¢€ and G is either in O€ or in 2WOC and in any case the pair (g, G)
is the limit, in a suitable topology, of a sequence (f,, J.fn)nen for which the
variational equation is well-defined in the classical sense. Notice that g may
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possibly not admit continuous partial derivatives with respect to = and thus G is
possibly not the Jacobian of g with respect to the variable x. However, we will

still prove that
8:17(75, g, xO)

8m0

for all ¢ in the maximal interval of definition I, ,, of z(¢, g, x¢) and y(t, g, G, o, yo)-

Yo = y(t79,G7I’anO) )

Theorem 3.12. Consider Ey C £&, with L}, -equicontinuous m-bounds, assume
that all the functions in Eyi are continuously differentiable with respect to x for
a.e. t € R and, for any f € Ey, assume that J,f € SC,(RV*N). Let © be the
suitable set of moduli of continuity given by the m-bounds of the functions in E;
as in Definition 3.2, and consider

E = ClS(SEpX@vaTGXTG){(f7 ‘]$f> ’ f e El} °

For any (g9,G) € E, and following the notation of Remark 3.11, if x(t, g, zo) and
y(t,9,G,xo,v0) are the solutions of the Cauchy Problems in (3.26) defined for
t € [To, T1]) C I;4,, then we have that

tv ) € - t? 9
lim z(t, g, 20 + €yo) — x(t, g, o)

e—0t IS

- y(ta%Gan,?Jo) - 07 (327)

uniformly for t € [Ty, T1] and yo € B;.

Proof. For any f € E; we have that (3.27) holds with g = f and G = J, f thanks
to Theorem 3.10.

Now, consider (g,G) € E and let (f,)nen be a sequence of functions in E,
such that (f,, Jyfn)nen converges to (g,G) in (£€, x OC,(RV*N) Tg x Tg).
From (3.25), we have that for any n € N, and for any z1,7, € RY such that
|21 — 22| < 1, the following equality holds for every t € Iy, ., N Iy, 4,

1
l’(t, fn: 331) - $<t7 fm x2) = / y(t: fna szm ax+ (1 - Oé) L2, X1 — x2) do. (328>
0
Then, if [Ty, T1] C 1,4,, thanks to Theorem 3.6, we have that the application
[Ty, T1] x C x B — R¥x RY, (t,h, H,Z,7) — (x(t,h,T),y(t,h, H,Z,7)),

is uniformly continuous and bounded, where

C={(fu: Jufa) | n €N} U{(9.G)},

(3.29)
B={(@9) e R R" | |Z— 20| < 1,7 € B }.

Thus, we have that, as n — 0o, equation (3.28) becomes

1
x(t,g,xl)—x(t,g,xz):/ y(t7g7G,aZE1—f-(1—Oé)l’2,I1—ZL’Q) da. (33())
0
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Eventually, if in (3.30) we consider x5 = 2 and 27 = g + £y, where ¢ < 1 and
Yo € Bj, and noticing that, due to the linearity of y(t, g, G, ¢ + acyo, yo) with
respect to the initial data yq

1
g y(t7 g, G7 Zo + aEYo, Syﬂ) = y(ta g, G7 o + agYo, y0)7

then, we deduce that

‘T(ta g,%o + 51/0) B ‘T(t7 g, 'IO)
9

- y(taga G,on,?}o)
1 1
= ’g/ y(t, 9,G, o + agyo, eyo) da — y(t, g, G, o, Yo)
0

1
S / |y(t7g7Gax0+CY€yan0) —y(t797G>$07yo)’d04-
0

Then, applying Theorem 3.6 once again, when ¢ — 0, and reasoning as before,
we obtain the thesis. O

As follows, we present an analogous result for the weak topology og used in
Theorem 3.4. However, a stricter assumption on the m-bounds of the Jacobian
of f has to be assumed.

Theorem 3.13. Consider Ey C £€ with L}, -equicontinuous m-bounds, assume

that all the functions in Ey are continuously differentiable with respect to x for a.e.
t € R and, assume that {Jf | f € E1} C GERN*N) has L} -equicontinuous

loc
m-bounds. Let © be the suitable set of moduli of continuity given by the m-bounds

of the functions in Ey as in Definition 3.2 and consider

E = Cls(S@XQU@@,U@XU@){(fy J:Ef) ’ f € El} .

For any (g9,G) € E, and following the notation of Remark 3.11, if x(t, g, zo) and
y(t,g9,G,xo,y0) are the solutions of the Cauchy Problems in (3.26) defined for
t € [To, T1] C I;4,, then we have that

ta ) € - t7 9
lim z(t, g, v0 + €yo) — x(t, g, xo)

e—0t 15

- y(thgaGaIO?yO) = 07

uniformly for t € [Ty, T1] and yo € By .

Proof. The proof follows the same arguments of the one of Theorem 3.12, except
for the fact that now (¢g,G) € E is such that there exists a sequence (f,)nen in
FE; so that

(frr Jufn) — (9,G) in (£¢ x WOC(RVN) 5 x 06).

Then, because of the L}, -equicontinuity of the m-bounds of F; and of {J,f |
f € Er}, we can apply Theorem 3.4 and obtain that for any [T, 71| C I, the
application

[Ty, T1] x C x B — RV¥x RV, (t.h, H,Z,9) — (x(t,h,Z),y(t, h, H,T,7)) ,
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is uniformly continuous and bounded, where C' and B are the sets in (3.29).

The rest of the proof is the same as the one of Theorem 3.12. O

As a consequence of the previous theorems, it makes sense to name linearized
and o-linearized the skew-product flows obtained in Theorem 3.7(ii) and Theo-
rem 3.5(ii), respectively, when f is continuously differentiable with respect to z
fora.e. t € R, F'= J,f, and h = 0. Particularly, we give the following definition.

Definition 3.14 (Linearized and o-linearized skew-product flows). Let f € £€&

1

be continuously differentiable with respect to = for a.e. ¢ € R and with L;_-

equicontinuous m-bounds. Let © be defined as in Remark 3.3 and denote by
J.f € G(’:(]RNXN) the Jacobian of f with respect to the coordinates x.

o If Hy = Hulligexoe, 7o x70) ([, Jof) and Uy is the subset of R x Hy x RV% RN
given by
Z/{T: U {(t7g7G7:C0,yO> ’tGIg’IO, yOGRN} ,

(va)GHT

zg€RN
then we call a linearized skew-product flow the map
Ur:Ur CR x Hr x RV RY — Hy x RVx RY

(ta g, G: o, yO) = (gta Gt7 l’(t, 9, mO)a y(t7 9, Ga Lo, yO)) )

o If H, = Hullieexwoe,ooxoeo)(fs Jof), where J,f has Lj, -equicontinuous m-
bounds, and if I, is the subset of R x H, x R¥x R¥ given by

U, = U {(t,g,G,xo,yg)]telgyxo,yOERN},

(9,G)eHo
xo ERN

then, we call a o-linearized skew-product flow the map
U,: U, CR x H, x RYx RY — H, x RVx RY
(tuga GJ/’O’Z/O) = (gt7Gtax<t7g7$0)7y(t7g7Gax07yO)) )

Next we give a simple example, for N = 1, exhibiting the phenomenon cited
in Remark 3.11. That is a limit problem for which the variational equation is not
defined but, thanks to the continuity of the skew-product flow, it is still possible
to obtain the differentiability of the solutions with respect to initial data.

Example 3.15. Consider the continuous function H: R — R such that H(t) =0
if ¢ < 0 and, for any n € N, H(t) is defined in the interval [4n, 4n + 4] as follows:

((1+n)(t — 4n), ift €It = [dn,dn + 1],
i 1
L, ift € I = [4n+ 25, 4n+2 — 4],
H(t) = —(1+n)(t—4n —2), iftG[g: 4n+2_n+_1’4n+2_‘_%+1}7

-1, iftel=

(14+n)(t—4n —4), iftel®=

[

[
[4n+2+n¢+1,4n+4—n¢+1},
[

1
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/N [\ [

Figure 3.1: The function H(t).

Figure 3.2: The function H(t).

Notice that, by construction (see also Figure 3.1), one has that for any n € N

/4%4 H(s)ds =0, (3.31)

n

and as n — oo the measures of I', I3 and I’ go to zero, whereas the measures of

n’ - n

I? and I! go to 2. Thus, if we consider the sequence of translations of H given
by (H4k('))k€N, we have that

0, if t =4n,
. 1, ifte (4n,4n +2),
Hu(t) 2225 (1) = it € (4n, 4n +2) neZ, vteR.
0, ift =4n+ 2,

=1, ifte @n+24n+4),

Notice that H(-) is a Borel function because of being a pointwise limit of contin-
uous functions. Now consider the function h: R — R defined by

t
h(t) :/ H(s)ds.
0
Clearly h € C'(R) since for all ¢ € R we have that h'(t) = H(t) and thus we

also have that |h'(t)| < 1; consequently, h has Lipschitz constant equal to 1.
Moreover, |h(t)| < 2 for any ¢t € R; indeed, thanks to (3.31), for each ¢ € R there

exists ng € N such that
t
/ H(s)ds
4ng

Therefore, cls{h,(-) | 7 € R} is compact in C(R) endowed with the compact
open topology and (h4k(-)) ey Converges uniformly on compact sets, up to a

Ih(t)] = <2
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subsequence, to some bounded and Lipschitz function h. Notice that

t+4k t
hae(t) = h(t + 4k) = H(s)ds = H(u+ 4k) du

0 — 4k
0 t t

:/ H4k(u)du+/ H4k(u)du:/ Hy(u) du,
—dk 0 0

where the last equality is due to (3.31). Therefore, if in the previous chain of
equalities we pass to the limit as £k — oo and use Lebesgue Theorem of dominated
convergence, we have that

t
E@:/H@@.
0
Now, consider the functions f € £€, and F' € &€, defined by

f(t,x)zh(i—i—f) and F(t,x):1H<t+£).
3 3 3
Since we already showed that for all ¢ € R one has |h(t)] < 2 and |A/(¢)| < 1, then
we have that f has a bounded m-bound, m = 2, and a bounded [-bound, [ = 1,
and they hold for all z € R. As a first consequence, from Remark 3.3, we have the
common modulus of continuity §(¢) = 2¢. Then, consider Hull¢¢,xoe7,x75) (f5 ),
where, according to the notation used since the beginning of the section, we may
write F' = J,.f.

Now, let us consider the following family of differential systems whose vector
fields are in the Hull(ee, xoe, 75 x75) (f5 ),

{i:ﬂgmm
= Fu (t,x(t)) Y

One can easily check that, for any & € N, the second differential equation in (3.32)

keN. (3.32)

is the variational equation of the first one, evaluated along the solution z(t) of

the first equation. Moreover, since hyy(t) LaiN h(t) uniformly on compact sets,

then fyx(t, ) LaiN g(t,z) in Tp, where g(t,z) = h(t +2/3). Actually, since f
has a bounded [-bound, then it satisfies the hypothesis of Corollary 2.32, and
thus the convergence fyx(t, ) — g(t, x) holds for any of the considered topologies
and in particular in 7y. Furthermore, we claim that Fy, — G in 7Ty, where
G(t,x) = (1/3) H (t + x/3). Indeed, for any compact interval I C R, any j € N,
and any z(-) € C(I, B;) with 6(t) = 2t as modulus of continuity, we have

|

/I Fu(t, 2(t)) — G(t, (1)) |"dt

:3% IH4k<t+? —F(t—l—? pdt
gsl—p/I Hau <t+@) —F(H?) ’ 1+Z/i(f)‘dt
1

S i
3P Jri(-3/3.4/3)
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where, in the first inequality, 2/(¢) is the derivative almost everywhere of z(t),
whose existence is granted by the fact that z(¢) is Lipschitz, and we use the fact
that 1/3 < |1+ 2/(t)/3| for almost every t € I. Moreover, the theorem of change
of variables for the measurable case (see [31, Corollary 20.5, p.344]) has been used
in the last inequality. Therefore, since (Hyx(s))ren converges almost everywhere
to H(s), the Lebesgue theorem of dominated convergence gives us the result.
Finally, notice that G(t,z) is a Borel function. Hence, thanks to Theorem 2.6,
we have that G € ©¢,.

In order to conclude that we are in front of a non trivial case of linearized skew
product flow, we only need to check that G ¢ &€, that is, G does not satisfy (S),
and G does not coincide almost everywhere with a function in &&,,. Firstly, notice
that for each fixed ¢ € R there is a numerable quantity of discontinuities in the
variable z. In fact, given xy € R such that ¢ + z4/3 = 4n for some n € N, we
have that

1 1
lim G(t,z) = = and lim G(t,xz) = —=.
z—mg 3 m—mg' 3
Therefore, for each ¢t € R the function G is not continuous in the variable x and

thus in particular it does not satisfy (S). Furthermore, the set

W@GWHMQMMﬁmQMﬁ
z—T~ z—xt

is not negligible and thus it is not possible to change G in a subset of R? of
measure zero so that it coincides with a function in &¢,.

3.3 Exponential dichotomy and dichotomy spec-

trum

In this section we look more deeply into the properties of the linearized skew-
product flows introduced at the end of last section. In particular, we investigate
the behavior of the solutions of the linear system when it has exponential di-
chotomy and study its dichotomy spectrum. Firstly, let us state some assump-
tions and simplify the notation.

Let H be either Hy or H, as defined in Definition 3.14, and assume that for
each (g,G) € H. the solutions of

{i:g@x% (0)

xo,
y=G(t,z)y, y(0) :

Yo

are globally defined or, equivalently, x(-, g, o) is globally defined. As a conse-
quence, the linearized skew-product flow is defined on the whole R x H x R¥x R¥.
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Moreover, denoting by = H x RY, any of the continuous skew-product flows
in Definition 3.14 can be read as a continuous linear skew-product flow

T:RxQxRY — QxRN
(3.33)
(t7w7y0) = (wt7y<t7wuy0>) )

where the flow on the base R x Q@ — Q, (t,w) — w; is defined, for each w =
(9,G,x0), by wy = (gt,Gt,x(t,g,xg)). Additionally, consider the function A :
Q — RV*N defined as follows

1 [h
lim —/ G(s, x(s,g,xo)) ds if the limit exists
0

Alw) = ¢ b0 h
0 otherwise.
Notice that, in fact,
Alw) = G(t,2(t, g, 70)) for a.e. t € R. (3.34)

Indeed, fixed w; = (gt, Gy, x(t, g, mo)), one has

1 1
}17,1£>I(1)E 0 Gt(87x(svgtvx(tvgax0>)> ds = }llli}r(l]— ; G(S —|—t,CC(S +ta9a$0>) ds
1 t+h
= lim — G(u,az(u,g, xo)) du = G(t,z(t,g,x0)) for a.e. t € R,
h—0 h t

where the last step in the previous chain of equalities is due to Corollary I11.12.7
in [24], which implies (3.34).

Then, the family of systems ¢ = G(t,x(t, g,20))y, with w = (g,G,zg) € Q,
can be written as follows

y=Aw)y, we. (3.35)

Thus, if ®(¢,w) denotes the fundamental matrix solution of the system corre-
sponding to w with ®(0,w) = Iy, we have that y(t,w, o) = ®(t,w) yo.

Let us recall that the linear skew-product flow (3.33), or that the family
(3.35), has exponential dichotomy on I over the set A, if the linear skew-product
flow (3.33) satisfies the conditions given in Definition 1.14, i.e. there are a contin-
uous family of projections P: A — L(RY RY), w +— P(w), and constants K > 1
and a > 0, such that for every s, t € I and every w € A one has

|®(t,w) P(w) @' (s,w)]|| < K e t=) if t>s,

0(t,w) (Iy — Pw)) & (s,w)|| < K e if t<s. (3.36)

(f,G,xp), it is said that the

In particular, when A reduces to a point w =
corresponding system § = A(w;)y, i.e. y = G(t,x(t,g,70)y has exponential

dichotomy on 1.
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Definition 3.16. The set A(w) will denote the alpha limit set of a point w =
(9.G,x0) € Q, that is, & = (§,G, %) € A(w) if there is a sequence (£, )nen in R
such thit t, 4 —oo and @ = lim,,_,, wy, in the corresponding product topology,
ie. (9,G, 7o) = lim, oo (gs,, Gi,, (tn, g, o))

Analogously & = (g, C/;\, Zo) belongs to the omega limit set O(w) if there is a
sequence (t,)nen in R such that ¢, T oo and @ = lim,, o wy,, i.e. (7, @, Zy) =
lim,, 00 (91, , Gt,,» ©(tn, g, z0)). Finally, H(w) will denote the closure in Q2 of the set
{wr = (g1, Gy, z(t, g,20)) | t € R} for the corresponding product topology on 2.

The next result shows how the exponential dichotomy of a particular system
can be transferred to the exponential dichotomy of the skew-product flow over
its alpha limit set, its omega limit set or its hull.

Proposition 3.17. Let w = (g, G, ) € §2.

(1) If the linear system y = A(w:)y has exponential dichotomy on (—oo,0],
then the skew-product flow (3.33) has exponential dichotomy over the alpha
limit set A(w) C Q.

(ii) If the linear system y = A(w;)y has exponential dichotomy on [0, 00), then
the skew-product flow (3.33) has exponential dichotomy over the omega limit
set O(w) C Q.

(iii) If the linear system y = A(wy)y has exponential dichotomy, then the skew-
product flow (3.33) has exponential dichotomy over the hull H(w) C .

Proof. (i) Let P(w) be the projection corresponding to the exponential dichotomy
on (—oo, 0] for the system ¢ = A(w;)y and define the family of projections

P(w,) = ®(r,w) P(w)® *(r,w) foreachr <0. (3.37)
Then, one has

@t c0r) Pler) @7 (50| = [|[9(t 1) D) Plo) @7 (r0) 87 (5,0,
= Hq)(t%—r,w) (w) (13_1(3+r,w)H and

HCID(t, wy) (In — P(w,)) @‘1(3,%,)“
= [|®(t, w,) D' (s,wp) — (t,w,) B(r,w) P(w) @ (r,w) (s, w, )|
= [|®(t,w,) P(r,w) @' (r,w) ' (s,w,) — O(t + r,w) P(w) (s + r,w)||
= [|®(t +r,w) Iy — P(w)) @' (s + r,w)||.

Consequently, one has

||<I>(t,wr) P(w,) q)_l(s,wr)H < Ke @(=9) if s<t<-—r,

3.38
||<I>(t,wr) (In = Pw,)) 7 (s, 0| < Ke*t9) if t<s<—r (3.38)
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Next we take W € A (w) with & = lim,,_,, w,, for a sequence r,, | —oo. From (3.37)
and (3.36), we deduce that ||P(w,)|| < K for every r < 0 and hence, the sequence
of projections (P (wrn))neN admits a subsequence converging to a projection P(@),
whose uniqueness is guaranteed by Proposition 1.56 in [34]. From this fact, (3.38)
and the continuity of the flow on the base €2, we deduce that § = A(&;) y admits
exponential dichotomy with projection P (&), that is

|2, @) P@) 27 (5,0)|| < K e @) if t>s

H@(t,@) (IN — P(CJ)) @*1(57@)“ <Kt i <. (3.39)

In order to conclude the proof, we show the continuity of
P:A(w) — LRY RY), o P@).

To the aim, consider a sequence (&0"),en in A(w) converging to some & € A (w)
and let us prove that (P(@"))neN converges to P(@). As before, from (3.39),
with ¢ = s, one has that for all n € N: ||P(@")|| < K and thus, it converges, up
to a subsequence, to a projection ]3, and again, from (3.39) for each n € N, the
continuity of the flow on the base 2 and the uniqueness of the projection, we have
that P = P(@). Then, one has the exponential dichotomy of the skew-product
flow (3.33) over A(w), as stated in (i).

The proofs of (ii) and (iii) are omitted because analogous. O

Before proceeding, recall that taken A C €2, the dichotomy spectrum of the
linear skew-product flow (3.33) over A, denoted by X(A), is the set of v € R
such that the family y = (A(Gtw) -7l N) y does not have exponential dichotomy
over A. As a consequence of the previous theorem we can relate the spectrum of
w € () to the spectrum of its hull.

Remark 3.18. Considered two subsets A; and Ay of © such that Ay C A,
and recalling Definition 1.15, one has that 3(A;) C 3(Ay). Therefore, since in
particular {w} C H(w), we have that X(w) C X(H(w)). However, by Proposi-
tion 3.17(iii), we actually have that

which in turn implies that for any w; € H(w) one has
S(wr) C 2(H(w)) = X(w).

As we have already noticed in Section 1.2.2, Sacker and Sell [51]| proved that,
if A is an invariantly connected compact invariant set of €2, then 3(A) is the
union of £ compact intervals

E(A) = [al, bl] J--- U [ak, bk] s



86 3. Continuity of the flow for Carathéodory ODEs

where 1 < k< N and a; <b; <ag <by < --<aqap <b.

However, from Proposition 3.17 we deduce that X(w) = S(H(w)) but H(w)
is not necessarily compact. Yet, we can look into the dichotomy spectrum in-
troduced by Siegmund in [55] for a single system. In particular, due to The-
orem 1.20, a linear system § = A(w;)y keeps having a spectrum like ¥(w) =
[a1,b1]U---Ulay, by] if and only if it has bounded growth, i.e. there exist constants
K > 1 and o > 0 such that

|®(t,w) @ (s,w)|| < Ke*l'=* for t,seR.

Moreover, in such a case the spectral manifolds Wy and Wy (see Theorem 1.19)
are trivial, i.e. RxRYN =W, @ --- & W,

We finish this section looking into conditions under which Carathéodory sys-
tems have bounded growth and thus the dichotomy spectrum (w) = X (H(w))
is a finite number of compact intervals as in the Sacker-Sell dichotomy spectrum.

Proposition 3.19. Let w = (9,G,x9) € Q fized. Assume that G has L}

loc™

bounded m-bounds and that x(-, g, o) is bounded. Then the system § = A(w;)y
has bounded growth and ¥(w) = [ay,b1] U --- U [ag, bg).

Proof. Using the notation introduced in Theorem 1.2, let I, ., be the interval of
definition of x(-,g,20) and let j € N be such that [|z(-, g, zo)||L=(,.,) < j. If m/
is an m-bound of G on B; satisfying the assumption of L, .-boundedness, then
there is a positive constant « such that

1
sup/ m?(r+s)dr < a. (3.40)
0

seR

Consider s,t € I,,, and assume that s < ¢, the other case being analogous.
Notice that ®(¢t,w) @~ (s, w) yo = y(t,w, s,y). Then

t
y(t,w,5,90)| < ol + / 1G (s 2w, g, o)) [y oty 0, 5, 30)] e,

and Gronwall inequality provides

t
ly(t,0,5,30)] < ol exp ( [ 160 atu,g. a0 du)
Stfs (3.41)
— Jyo] exp ( |16+ 5,000 dr> .
0

Using the equivalence of the 2-norm and the matrix norm, and up to rescaling
m?(+) by a constant, we deduce that

G (r,a(r +t, g, 20)[| < m?(r +5).



3.4 More applications 87

Then, from (3.41), and using (3.40) on a finite covering of the interval [0,¢ — s]
with subintervals of unit length, we can conclude that

ly(t,w,s,50) < K ey
for an appropriate constant K > 1, which ends the proof. O

Recall that Q is defined as either Hy x RY or H, x RY, where H, and Hy
are defined in Definition 3.14. Notice that in the case in which Q = Hy x RY
both the assumptions of Proposition 3.19 are necessary, whereas if Q = H, x R",
then the L} -boundedness for the m-bounds of G is already implied by the L}, -

equicontinuity for the m-bounds of J, f thanks to Proposition 2.29.

3.4 More applications

We conclude the chapter presenting a theoretical application of the continuity
results contained in Section 3.1, and examples from control theory and compart-
mental dynamical systems.

3.4.1 Existence of solutions for a differential problem in

WO

As follows we give a theorem of existence of the solutions for differential prob-
lems whose vector fields are in 200, i.e. not necessarily continuous in the space
variables either. The underlying condition is that such vector fields are limit of
sequences in &€ with L] -equicontinuous m-bounds in the topology g (or any
stronger topology of course), where © is the suitable set of moduli of continu-
ity given by the m-bounds as in Definition 3.2. Notice that this approach has
some similarities with the work on discontinuous autonomous systems by Dieci
et al. [23].

Theorem 3.20. Let (f,)nen be a sequence in &€ with Lj,.-equicontinuous m-
bounds and © be the suitable set of moduli of continuity given by the m-bounds
as in Definition 3.2. Assume that (f,)nen converges to some f in (WOC, og)
and that (Ton)nen 8 a sequence in RN converging to o € RN. Then, denoting
by x,(-) a solution, in the sense of Definition 1.1, for the differential problem
& = fu(t,x) defined on the maximal interval (a,,b,) and such that 0 € (ay,by)

and x,(0) = zg,,, we have
(i) imsup,,_,o, @, = a* <0, and liminf,_,, b, = b* > 0.

(ii) There exist a* < a < b < b* and a continuous function x(-) such that, up to

a subsequence,
n— oo

() — ()

uniformly on the compact subsets of (a,b).
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(iii) For every s,t € (a,b), the function x(-) satisfies

Proof. Firstly, we aim to prove that b > 0. Assume, on the contrary, that
liminf, . b, = 0, that is, up to a subsequence, (b, ),en converges to 0. Moreover,
consider the following constant

0<p=1+max{|zo,| | neN}, (3.42)
and, for every n € N, set
T, =sup{t € [0,b,) | |zn(s)| < p Vs €]0,t]}. (3.43)

Since, for every n € N, one has 0 < T,, < b, by construction, and since (b,)nen
converges to 0 by assumption, then one has that

lim T, = 0. (3.44)
n—o0
Consider j € Nso that p < j and let (mn(-))neN = (mjcn(-))neN be the sequence of

optimal m-bounds of (f,)nen on B;. Fixed 0 < € < 1, by the L], ~equicontinuity

loc

of the m-bounds of the sequence (f,,)nen, there exists 6 > 0 such that

t

0<t<d = sup/ ml (s)ds < e. (3.45)
neN Jo

However, by (3.44), one has that there exists ng € N such that if n > ng then

T,, < 6 and thus, by definition of solution, and using (3.45) and (3.42), one has

Tn
|z, (T)| < |z,(0)] + mi(s)ds <p—1+e<p, (3.46)
0

which is a contradiction due to the fact that for every n € N, |z, (7},)| = p thanks
to the continuity of z,,(-) and (3.43). Therefore, one has that that lim inf,,_,. b, =
bx > 0. Analogous reasonings holds for a*, which concludes part (i).

As regards (ii) and (iii), we prove the existence of z(-) in [0,b). Analogous
arguments leads to the result in the interval (a, 0]. Consider the constant p defined
in (3.42), and define z,: [0,00) — RY by

" za(t), HO0<t<T,
2, (1) =
z,(Ty,), if T, <+oo and T, <t,

where, for every n € N, T,, is the one defined in (3.43). Notice that by (3.42) and
by the continuity of the functions x,(-), n € N, we have that T,, > 0 for any n € N.

In particular, notice that (zn()) is uniformly bounded. For the fixed j € N

neN
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such that p < j, and recalling that we denoted by (mn(~))n€N = (m?‘n('))new the
sequence of optimal m-bounds of (f,),en on B;, we have that, if ¢;,¢, € [0,75,),

and t; < to9, then

2 t2
zn(t1) — 2 (k)] < / [ (52 20(9)) | ds < / ma(s)ds.  (3.47)
t1 t1
Fixed € > 0, since { f,, | n € N} admits L}, _-equicontinuous m-bounds, there exists
d = d(e) > 0 such that, if 0 < t; <ty < T),, and t3 — t; < 4, then the right-hand
side in (3.47) is smaller than €. In fact, the inequality |z, (t1)—z,(t2)| < € is always
true in [0,0*) whenever ¢, — ¢t; < 0 because in [T},,b*) the difference on the left-
hand side of (3.47) is zero. Thus, the sequence (Z"('))neN
Ascoli-Arzeld’s theorem implies that, up to a subsequence, (zn())

is equicontinuous. Then,
ey Converges
uniformly to some continuous function x : I — RY in any compact interval
I C [0,0%). In this way it is possible to define z(-) on the whole [0, b*). Moreover,
set

b=sup{t € [0,0%) | |z(s)| <p—1/2 Vse[0,d]},

and notice that b > 0 because (Zon)nen converges to xp, x(-) is continuous
and (3.42) holds. Since z,() converges uniformly to z(-) in any compact interval
[0, b1], with by < b then there exists ng € N such that if n > ng, then

2, ()| <p—1/4  Vte[0,b].

Therefore, for any ¢ € [0, b;] and for any n > ngy one has z,(t) = z,(t) and thus

2n(t) = 2o + /Ot fn(s, Zn(s)) ds, t€0,b1], n>mng. (3.48)

Since we already know that z,(-) converges uniformly to x(-) in [0, by], if we prove
that for any t € [0,b] one has

t

lim [ fu(s,20(s)) ds = /0 f(s,2(s)) ds, (3.49)

n—o0 0

then, passing to the limit as n — oo in (3.48), we would have that z(+) is a solution
of the limit problem & = f(t,z), (0) = o in [0, b;]. Let us fix t € [0,b6;] NQ and
consider the compact set K = {z,(-) | n € N} U {z(-)}  C([0,t],R"). Notice
that IC C ICEO’t] for the previously identified j € N and thus one has

(s 20(5)) = F(5,2(9)] ds
I

<[ [ 1fo209) = s s
[0 = £(s.0069) s

+

/Ot [f(8,2n<8)) — f(s,x(s))} ds
/Ot[f(s,zn(s)) _ f(S,J,’(S))} ds

+
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Now, in the last step of the previous chain of inequalities, the first integral goes
to zero as n — 0o because, by assumption, (f,).en converges to f in og, and
the second integral goes to zero as n — oo because f € WOC and (z,(*))nen
converges uniformly to x(-) in [0,b;] (see (W) in Definition 2.4). Hence, from
(3.48), (3.49) and recalling that (zo,)nen converges to zp as n — oo one has

z(t) = xo + /Ot f(s,z(s))ds  forte[0,b]NQ. (3.50)

As a matter of fact, the equality holds on the whole interval [0,b;]. Indeed, for
any t € [0,b1], if (gn)nen is a sequence in Q such that ¢, 1 t as n — oo, then,
using (3.50) one has

< |z(t) — x(an)| +

/ ' (s.a(s) ds

qn

x(t) —xo — /0 f(s,2(s)) ds

< Ja(t) — 2(gn)] + / ) (s) ds,

where mif() € L, is an m-bound for f on B;. Thus, one obtains (3.50) for all
t € [0, by] due to the continuity of x(-) and of the Lebesgue integral.

Therefore, recalling that z,(-) = x,(-) in [0, b;], we have that (x,(-))nen con-
verges uniformly to x(-) in [0,b;] (which finishes part (ii)), and also that z(-) is
an absolutely continuous function solving the Carathéodory initial value problem
&= f(t,x), z(0) = o, with f € WOC (which finishes part (iii)). Notice that such
a problem and its integral solution are well-defined thanks to Proposition 2.6. [

Remark 3.21. A concrete example of a differential equation in 20©¢€ for which
we can provide a solution through the application of Theorem 3.20 is given by

i=G(t,x),  with Fy, 2= G in (WOC,0e), and F C £¢,

where F' and G are the functions defined in Example 3.15 and © = {2¢}. Notice
that in Example 3.15, we proved that (Fy,),en converges to G in (©€, 7o) and
thus it also converges in (QO€C, 0g).

3.4.2 Digitization of a non-autonomous control system

As follows, we show how some of the results contained in this thesis can be applied
to study the digitization of non-autonomous control system like

T = f(t,z,u),

where f : U C R x RY x R® — R is continuous and sufficiently regular.
Particularly, any digitization method of a control system consists of a systematic
way of constructing differential problems of the type

= fo(t,z,u), withteR, ze€RY, uweRY,
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where f° is a Borel function which is piece-wise constant with respect to the
variable ¢, and approximates f in some sense that will be made clear later.

The interest of the digitization of a non-autonomous control system resides in
its applications in real science. For example, digitization is useful for the inves-
tigation of numerically approximated control systems or in those cases in which
one has to “sample” a vector field in a systematic way during an experiment. The
importance of proving the robustness of some stability properties under a digiti-
zation method, is thus obvious. Further applications in problems of engineering
or control theory can be found in L. Griine [27] and D. Nesi¢ et al. [40].

Let f: R x R?®Y — R¥ be such that, for any j € N,

e fis bounded and uniformly continuous in R x B; and
e there exist constants m? > 0 and I/ > 0 such that
[f(t,z,u)] <m?, and  [f(t,2,u) — f(t,y,0)] < P|(z,u) = (y,0)], (3.51)
for all t € R and (z,u), (y,v) € B; C RNTM,

We will consider the following digitization method: let § be a positive number,
for every k € Z denote by I the interval [kd, (k + 1)d], and define the function
fOrUCRxRYxRM™ 5 RN, by

(k+1)5

f‘s(@m,u) = %fok(t)/ f(s,z,u)ds, (3.52)

keZ ks

where x;(+) is the characteristic function of the interval I C R. The function f?
is piece-wise continuous with respect to t. Additionally, for every ¢ > 0 there
exists a § > 0 such that for all s, € R and (z1,u1), (v2,u2) € Bj,

|t — 8|+ (21 — 22, u1 —u2)| <20 = [f(t,21,u1) — f(5,20,u2)| <€,

because for any j € N we have that f is uniformly continuous in R x B; by
assumption. Therefore, taken (z1,u1), (2, ug) € B; with (21 — z2,u1 — ug)| <9
one has

(k+1)8

(1) = P ) < 53 ) [ 1) = flsaau)lds <

kEZ k
Thus, one has that for any j € N and € > 0, there exists 6 = §(j, ) > 0 such that
If — f5||L°o(RxBj) <e¢ (3.53)
We claim that for any 6 > 0, f° € £¢€P. Firstly, notice that f° is Borel. Moreover,

one has that for all t € R and (x,u) € B; C RV*M

£ )] < £ () / Fls.mwlds < md S xi ()65 =md, (354)

keZ keZ
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and, for all t € R and (x,u), (y,v) € B; C RN*M,

fO(t,2,u) — 2t y,0)| < %me/f |f(s,2,u) = f(s,y,0)| ds

kEZ

< Bl ) () Yo xn ()35 (3.55)

keZ
=V|(z,u) = (y,v)|.

As a consequence, f° has the same m-bound and I-bound of f on B; (due to the
assumptions on f and the chosen digitization method), and thus f° € £¢,,.

Now, let us consider £ C £€,(RY) composed of the functions which, for
each j € N, admit m/ and I/ as an m-bound and an [-bound, respectively, on
B; c RN x R™. Notice that, trivially, £ has L}, .-bounded m-bounds and L] -
bounded /-bounds. Consequently, reasoning as in the proof of Theorem 2.26, we
obtain that E is closed and, thanks to Theorem 2.31, all the considered strong

topologies coincide on FE.

Furthermore, for any ¢ € E one has that also g, € E for all t € R, and that
due to (3.51), (3.54) and (3.55), f, f° € E for all § > 0. Therefore, if T is any of
the considered strong topologies, one has

Hullee)(f) C E,  and  Hullieer (f°) C E. (3.56)

In fact, (3.56) is true also for the metric topology Typ on £€ used in [25]. Typ is
induced by the following family of seminorms

r 1/p
prj(g) = sup { |g(t,x,u)|pdt] , withr, j€Nand g € £€,

(z,u)€By —r

and define the metric

1 L prjlg1 — g2
d(g1,92) = Z Y] (Z 1 —]Zpr(j(m 322)> : (3.57)

JEN reN

Notice that Ty p can be seen as a topology To with the trivial set of moduli of
continuity ©y = {0}. In particular, for any dense and countable set D C RN*M

and for any suitable set of moduli of continuity ©, one has that
To < Tvp <To < Tp,

and thus, thanks to the L} -boundedness of the I-bounds of F, Typ coincides
with the other topologies on E.
Actually, we can say a little bit more about the hull of f. Let us consider

Hull(f) with respect to the compact-open topology. Since f is bounded and
uniformly continuous on R x K, where K is any compact subset of RV*M then
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Hull(f) is compact (see Example 1.12 and specifically Theorem 1.13), and thus it
coincides with Hull(ge, 7(f), where T is any of the considered strong topologies.
In other words we have

Hull(f) = Hullee 1 (f) C E, where T € {Tp, Tup, To, Ta}-
Furthermore, because of the previous reasonings we have that
Vh e Hull(f) : h° € E, for any § > 0,
and thus also
Hull(h) c Hull(f) c B,  and  Hullgee ) (h°) C E.

We recall the following theorem from [25], that can now be proved as an easy
consequence of Theorem 2.35.

Theorem 3.22. Let f: R x RY — RN be bounded and uniformly continuous on
R x B; for each j € N and such that f is uniformly Lipschitz continuous on each
B;, with j € N, that is, it satisfies (3.51). If for any h € Hull(f) and any 6 > 0
we denote by h° the digitization of h through the method in (3.52), then the set

G50 = U Hull(mm(h(s),

heHull(f),
0<6<dg

15 relatively compact in (SC(RN),T), where T is any of the considered strong
topologies. Furthermore,

(151_13(1) dist (cls(ee,7)(Gs), Hull(f)) =0,
where dist(A, B) is the Hausdorff distance between two nonempty sets A, B in
(LE(RN),d) (with d(-,-) defined as in (3.57)) i.e.

dist(A, B) := max{d(A, B),d(B,A)} and d(A, B) :=sup inf d(a,b).
acA beB
In [25], such result is preliminary to prove the persistence under digitization
of the properties of local null controllability and local feedback controllability of
a non-autonomous control system. Clearly, such robustness is also based on the
continuous variation of the solutions with respect to the the vector fields, and in
particular Theorem 3.8 can be applied.

3.4.3 Carathéodory compartmental systems

A compartmental system is a mathematical modelization of a real phenomenon
characterized by conservation laws (e.g. mass, energy, fluid) in which there are
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2+cos(t) )
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1+sin(t)
1/2 1+

Figure 3.3: Example of a compartmental model

particles entering into a network of compartments (also called pools), travelling
through them and evetually leaving the system.

The compartments are assumed to be kinetically homogeneous, that is, the
material entering any compartment is instantaneously mixed with the material
which is already inside that compartment. Moreover, they can represent actual
containers, as for example in pharmacokinetics where they are identified with the
organs of the body, or abstract sets of elements sharing the same properties, as
for example in epidemiology where susceptible, infected and recovered people are
considered as different compartments.

Further applications include models in biology, chemistry, demography, ecol-
ogy, economic systems, epidemiology, hydrology, large-scale systems, pharma-
cokinetics, queuing systems, social dynamics, stochastic systems (whose state
variables represent probabilities), structural vibration systems, telecommunica-
tions systems, transportation systems etc (see Haddad et al [28|, Jacquez [32],
Jacquez and Simon [33] and the references therein).

As follows, one finds a non-autonomous non-linear modelization for a com-
partmental system. Consider B : I x (RT)Y — RNV and s : I x (RT)N — (RT)V,
and the system

&= B(t,z)x + s(t,x) (3.58)

such that for all t € I, x € (R")" one has
1) by(t,z) <0 Vi=1,...,N;
2) bij(t,x) >0 Yi#j;
3) >biy(t,x) <0 Vj=1,...,N.

The entries of the matrix-valued function B represent the rate of particles
moving from one compartment to the other. In this formulation such rates de-
pends on the time ¢ and on the vector of the amount of particles in each of the
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compartment of the system, namely z. For every i € {1,..., N}, the entry b;
represents the rate of particles leaving box 7. Assumption 1) implies that there is
no creation of matter inside the compartments. For any ¢ # j the entry b;;(¢, z)
represents the rate of particles going from box j to box i. As a consequence, for
any ¢ # j the entry b;;(t,z) is required to be positive (see assumption 2). For
every j € {1,..., N}, the sum over the entries of the column j gives the rate
of particles that leave the system from box j. Therefore, assumption 3) implies
that there is no accumulation of matter inside the compartments. Finally, for
any i € {1,..., N}, s;(t,z) represents the rate of particles entering the system
from the external environment directly into box 7. As an example, consider the
simple compartmental system depicted in Picture 3.3. Then, we would write the
compartmental matrix and the input vector using the mentioned rules, as follows,

—2 — cos(t) ﬁ : 0
1
B(t,z) = | 2+cos(t) —5— o 2 and s(t,x) = 0 |. (359
0 0 —2-1 Lokets

More in general, B(-,-,-) and s(+,-) can be Lipschitz Carathéodory functions.
Such assumption allows to take into account those real phenomena in which the
rate of flow or the input flow may possibly change discontinuously in time. For
example, in (3.59), one can change the third component in the input vector s(t, z)
by

1+ sgn(sin(t))

where sgn(-) denotes the sign function.

Key notions for the modelization of compartmental systems are the mean age
of the system, i.e. the mean over the age of the particles inside the system at any
given time, and the transit time, i.e. the mean age of mass leaving the system
at any instant of time. The following formula has been suggested in [50] for the
mean age of each compartment in a non-autonomous compartmental system

fOJrOO ap;(a,t)da

f0+°° pi(a,t)da

where p;(a,t) is the density function of age a for the mass in pool i at time ¢.

a;(t) = forall i € {1,...,d},

Following the same reasonings used in [50], one can use McKendrick—Von Forster
PDE

Op; Op;

d

with boundary condition p;(0,t) = s;(¢) to obtain the following ordinary differ-

ential equation describing the evolution of the mean ages of any pool.

0 [ttt ) 3,(0) (a,(0) — ai(t) ) — () it )

a;(t) =1+
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Consequently, given a solution x(t) of (3.58), one may write the linear problem
a=A(tz(t)a+(1,...,1)7,

where A(t,z(t)) is given by

—Sl(t, CC) — Zj;ﬁl blj (t,x) Ij(t) l712(t7 x) Ctz(t) bld(t,x) :cd(t)
X(t)—l bzl(t,x) Il(t) —82(757 x) _Zj;ﬁl bgj(t,x) Z’j(t) bgd(t,x) Id(t)
ba1 (¢, ) z1(¢) baz(t, ) z2(t) —8q(t, @) — 30,24 baj (£, ) 75 (¢)

with X (¢) = diag(z1(¢),...,z4(t)) for all ¢ € I. As a consequence one obtains
the system of skew product type made of the following Carathéodory ordinary
differential equations

{:'c = B(t,z)z + s(t, z)

a=A(tz®t)a+(1,...,1)7. (3:60)

A continuous skew-product flow can be obtained for the triangular system (3.60)
thanks to any of the Theorems 3.5, 3.7 or 3.9, whenever B(-,-), and s(-, ) satisfy
the relative assumptions.



Chapter 4

Pullback and global attractors for
Carathéodory ODEs

This chapter deals with pullback and global attractors for Carathéodory ODEs
whose solutions are assumed to be defined up to +oco. If the notion of forward at-
traction is transversely known in dynamical systems for the study of the long-time
qualitative behavior of the solutions, the pullback attraction is instead specific of
non-autonomous dynamics. In some sense, since the behavior of the trajectories
of an autonomous dynamical system only depends on the elapsed time t — tg,
looking at what happens as ¢ — oo for a fixed t; € R, is the same as pulling
to — —oo for a fixed t € R. On the contrary, for a non-autonomous dynamical
system these two approaches give back different type of attractions. Specifically,
we refer to pullback attraction whenever we fix a time ¢ € R and pull the initial
data xq back to —oo to see the behavior of the corresponding trajectory at time t.

It is known that pullback and forward attraction are not related. In particular,
a non-autonomous dynamical system can have a forward attractor without having
any pullback attractor and vice versa. Moreover, such notions can be scaled up to
the whole skew-product semiflow induced for such a kind of differential equation.
We recommend Caraballo and Han [13] and Carvalho et al. [16] for a detailed
dissertation.

The chapter is structured as follows. In Section 4.1, we include all the initial
definition and results which are useful in the rest of the chapter.

In Section 4.2, we show how a continuous skew-product flow can be used to
infer the existence of an attractor for a set of limit systems. In particular, starting
from specific properties on the solutions of an initial problem & = f(t, z), we show
how it is possible to obtain the existence of a bounded pullback attractor for the
processes induced by systems with vector field in either the alpha limit set of f,
the omega limit set of f, or the whole hull of f. Additionally, we conclude the
section with a result of existence of pullback and global attractors for the whole
skew-product flow.

97
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In Section 4.3, we provide sufficient conditions to apply the results of the pre-
vious section. In fact, several types of attractors, both for the induced process
and the induced skew-product flow, are obtained. Before that, some known com-
parison results for Carathéodory ODEs are recalled. In Subsection 4.3.1 the size
of the solutions of a Carathéodory differential system & = f(t,z) is compared
with the size of the solutions of a scalar linear equation, while in Subsection 4.3.2
a comparison with a system of linear Carathéodory equations is given.

4.1 Preliminary definitions and results

The different types of ultimately bounded character of the solutions are subse-
quently defined in terms of the process associated to the corresponding dynamical
system. Recall that a process can be induced by a non-autonomous differen-
tial equation if one assumes that for any r € R and any xz, € R”, the initial
value problem & = f(t,z), z(r) = xo has a unique solution z(-, f,r,zo) defined
on [r,00). In fact, one can pose

Set+r,r)xg =x(t+r, f,r,x0) = (¢, fr, o), (4.1)

where t > 0 and r € R, and easily check that the properties in Definition 1.5 are
satisfied. In this chapter, anytime we consider a process induced by a differential
equation, we implicitly assume that the relative solutions are defined up to +o0.

Definition 4.1 (Uniformly ultimately bounded solutions). Consider f € £€.
The solutions of & = f(t, z) are said to be

o uniformly ultimately bounded if there is a positive constant ¢ > 0 such that for
every d > 0 there is a time T'(d) > 0 satisfying

|Se(t+r,r)xo] <c  foreveryr e R, t>T(d) and |zo| < d;

e uniformly ultimately bounded on [T, 00) if there is a positive constant ¢(7) such
that for every d > 0 there is a time 7'(7,d) > 0 such that

|Se(t+r,1) 20| < c(T), (4.2)
whenever r > 7, t > T(1,d) and |zo| < d.
The definition of pullback attractor for a process is also hereby recalled.

Definition 4.2 (Pullback attractor for a process). Consider a process S(-,-) (see
Definition 1.5) defined on RY. A family of subsets A(-) = {A(t) | t € R} of RY
is said to be a pullback attractor for the process S(-,-) if

(i) A(t) is compact for each t € R;
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(i) A(-) is invariant, that is, S(¢, s) A(s) = A(¢t) for all t > s;

(iii) for each t € R, A(t) pullback attracts bounded sets at time t, i.e. for any
bounded set B C RY one has

lim dist(S(¢,s) B, A(t)) = 0,

S——00

where dist(A, B) is the Hausdorff semi-distance between two nonempty sets
A, BC RN ie. dist(A, B) := sup,e 4 inf, g d(z,y).

(iv) A is the minimal family of closed sets with property (iii).

The pullback attractor is said to be bounded in the past (resp. bounded) if for all
7 > 0 one has that J,, A(?) (resp. U,cr A(t)) is bounded.

The following characterizations of the bounded and bounded in the past pull-
back attractors for S¢(-,-) are given in Theorem 1.17 and Corollary 1.18 of Car-
valho et al. [16].

Proposition 4.3. Let A(-) be a pullback attractor for the process S¢(-,-) induced
by © = f(t,z) with solutions denoted by x(-). Then

(i) A(t) = {z(t) | z(-) is a backward bounded solution} if A(-) is bounded in
the past, and

(i) A(t) = {x(t) | x(-) is a global bounded solution} if A(-) is bounded.
The notion of pullback absorbing family will also be necessary.

Definition 4.4 (Pullback absorbing sets). Let S(-,-) be a process (see Defini-
tion 1.5) defined on RY. A family of nonempty bounded sets { B(t) Cc RY |t € R}
pullback absorbs bounded sets, if for every t € R and every bounded subset D of
RY there exists a time T'(t, D) > 0 such that

S(t,t —s)D C B(t) forevery s >T(t,D).

We also say that {B(t) C RN |t € R} is a pullback bounded absorbing family. If
for all t € R one has B(t) = B C RY we will say that B is a pullback absorbing
set.

Definition 4.5 (Pullback strongly bounded dissipative process). A process S|, )
(see Definition 1.5) is pullback strongly bounded dissipative on (—oo, ] if there
exists a family {B(t) C RY | ¢ € R} of pullback bounded absorbing sets such
that for every bounded subset D C R, there is a time T'(7, D) > 0 so that

S(t,t —s)D C B(r) foreveryt<tands>T(r,D). (4.3)



100 4. Pullback and global attractors for Carathéodory ODEs

Remark 4.6. In the finite dimensional case, the existence of a pullback bounded
absorbing family ensures the existence of a pullback attractor (see, e.g., [16]
and [36]). If in addition the family satisfies (4.3), then the pullback attractor
{A(t) | t € R} is bounded in the past. When there is a bounded set B such that
for every bounded subset D C RY there is a time T'(D) > 0 so that

S(t,t—s)D C B foreveryt e Rand s >T(D), (4.4)
then there is a bounded pullback attractor.

Remark 4.7. Notice that condition (4.4) is equivalent to the uniformly ulti-
mately bounded character of the solutions of the system.

We also recall the definitions of pullback and global attractor for a skew-
product semiflow. Consider the space of Lipschitz Carathéodory functions map-
ping R x RY onto R, endowed with a topology T, namely (£€,T), and f € £€,
so that the induced local skew-product flow

II: Y C R x Hullge y (f) x RY = Hullger(f) x RY
(t,g,fL’(]) = (gt7x<t7gax0)) )

is continuous. Recall that the properties on f and the topologies of continuity

(4.5)

for (4.5) are treated in Section 3.1. In particular, we recall the following two
cases:

o [ € (L€ 0p) with L]

Le-€quicontinuous m-bounds; see Theorem 3.5(i).

o [ € (L€, Tp) with LI -bounded I-bounds; see Theorem 3.9(i).

Definition 4.8 (Pullback and global attractors for a skew product semiflow).
Assume that for any g € Hullige 7(f) and any zo € RY, the solution z(-, g, )
of & =g(t,z), x(0) = xo, is defined on [0,00), i.e. the skew-product semiflow
(4.5) is defined on R*x Hull(ge 7 (f) x RY.

e A family A= {A, | g € Hullige 7(f)} of nonempty, compact sets of R is said
to be a pullback attractor for the skew-product semiflow if it is invariant, i.e.

x(t,g,Ag) = Ay, foreacht >0 and g € Hulliee 7)(f), (4.6)

and, for every nonempty bounded set D of RY and every g € Hull(ge 7 (f) one
has
tlim dist(z(t, g, D), Ay) =0, (4.7)
—00

where dist(A, B) denotes the Hausdorff semi-distance of two nonempty sets A,
B of RV,

A pullback attractor for the skew-product flow is said to be bounded if
U A, is bounded.

g€Hull(ee 7)(f)



4.1 Preliminary definitions and results 101

e A compact set A of Hulliee7)(f) x RY is said to be a global attractor for
the skew-product semiflow if it is the maximal nonempty compact subset of
Hull(ge 7(f) x RY which is [I-invariant, i.e.

(¢, A) = A foreach t >0,
and attracts all compact subsets D of Hull(ge 17(f) X RY, i.e.
tlgglo dist(II(¢, D), A) =0,
where now dist(B,C) denotes the Hausdorff semi-distance of two nonempty
sets B, C of Hull(ge 7(f) x RY.

Remark 4.9. We aim to provide a little bit of additional information about the
relationship between the pullback attractor of a skew-product semiflow and the
behavior of the solutions of each process composing the skew-product semiflow
in Definition 4.8. Particularly, for each g € Hull(ge 7)(f), we would like to clarify
who is the set A, C RY in the previous definition of the pullback attractor of the
skew-product semiflow A = {A, | g € Hullige. 1) (f)}-

Recalling that for every g € Hullige 7 (f) one has

Sg(s+r, T) Zo :m(sugrax0)7 (48)
then, for every nonempty bounded set D of RY, (4.7) becomes

lim dist(5,(0, —t) D, A,) =0, (4.9)

t—o00

which implies that, for the given process Sy(-,-), A, pullback attracts bounded
sets at time 0. Now, for every 7 € R one can write (4.9) for g, and A, instead
of g and Ay, respectively, i.e.

tlgglo dist(S,,(0,—t) D, A, ) =0. (4.10)
Nevertheless, using (4.8) twice, we also have
Sy, (0,—t) D = x(t, gr—t, D) = Sy(1,7 — 1) D,
and thus (4.10) can be written as
tllglo dist(Sy(r,7 —t) D, A, ) =0, (4.11)

which implies that, for the given process S,(,-), 4, pullback attracts bounded
sets at time 7. Therefore, as a consequence of the invariance contained in (4.6)
and of the fact that A, is taken compact for any g € Hullge 7)(f), we deduce
that the process Sy(-,-) has a pullback attractor. In particular if

A, ={A(1) =A, |7 €R}
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is the minimal family of closed sets satisfying (4.11), then A, is the pullback
attractor for the process Sy(-,-). On the other hand if for any g € Hull(ge 7)(f),
the induced process S,(-,-) has a pullback attractor and A, denotes the section
at time O of the pullback attractor of Sy(-,-), then one has that

A= {4, g€ Hullgen ()}
is a pullback attractor for the skew product flow on Hull(ge 7)(f).

4.2 Pullback attractors and the skew-product flow

This section deals with results of existence of pullback and global attractors for
Carathéodory ODEs as a consequence of the continuity of the skew-product flow.
In particular, we show how, starting from specific properties on the solutions of
an initial problem & = f(¢, z), it is possible to obtain the existence of a bounded
pullback attractor for the processes induced by systems with vector field in either
the alpha limit set of f, the omega limit set of f, or the whole hull of f. Fur-
thermore, conditions for the existence of pullback and global attractors for the
induced skew-product flow are also provided.

Theorem 4.10. Let f be in £& and T be a topology such that the induced local
skew-product flow (4.5) is continuous, and assume that

- forany g € {fs | s <0} UA(f) and xg € RY, the solution z(-, g, o) of
& =g(t,z), x(0) =z, is defined on [0, 00);

- there is a T € R for which the process S¢(-,-) is strongly pullback bounded
dissipative on (—oo, 7.

Then, for any function g € A(f), the solutions of © = g(t,x) are uniformly ulti-
mately bounded. In particular, the induced process Sy(-,-) has a bounded pullback
attractor.

Proof. Let D be a bounded set. By hypothesis, there are ¢ = ¢(r) > 0 and
T(D) =T(r,D) > 0 such that for each xy € D one has

|Sf(t,t —s)zo| = |2(s, fies, o) < ¢ fort <7 and s>T(D).

If g =lim,_, fi, with t,, | —oo, then we have ¢;_s = lim,,_, fi,++—s and by the
continuity of the semiflow

|Sg(t7t - S) .To)‘ = |$(Sagt—sax0>‘ = T}i_}r{.lo-r(saftn—i—t—saxO) .

Finally, there exists ny € N such that, if n > ng, then ¢, +¢ < min{0, 7}, and
thus
|Sy(t,t —s)xo| < c foreveryteRand s >T(D).

Therefore, from Remark 4.7 the solutions of & = g(t, z) are uniformly ultimately
bounded and, from Remark 4.6, a bounded pullback attractor exists. O
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Analogously, we give conditions to have a bounded pullback attractor for the
process induced by & = ¢(t,z), when g € £€ is any function in the omega limit

set O(f).

Theorem 4.11. Let f be in £& and T be a topology such that the induced local
skew-product flow (4.5) is continuous, and assume that

- forany g € {fs | s > 0} UO(f), and zyg € RY, the solution (-, g, z0) of
T =g(t,z), (0) =z, is defined on [0, 00);

- there is a T € R for which the solutions of & = f(t,z) are uniformly ulti-
mately bounded on [T, 00).

Then, for any function g € O(f), the solutions of & = g(t,x) are uniformly ulti-
mately bounded and the induced process Sy(-,-) has a bounded pullback attractor.

Proof. From (4.2) one has that
|Sf(t + 878) l’()l = |I’(t + S:fa3a$0)| = |Jf(t, fs,x0)| < C(T)7

whenever s > 7, t > T(1,d) and |zo] < d. Since g € O(f) there is a sequence
t, T oo with lim, . f;, = g. Thus, ¢, = lim,,, fi,+» and by the continuity of
the solutions

|Sg(t—|—7”, T) x0| - ’m<t’g7‘7x0)| = nli_{{.lo‘r@’ftn-&-mx()) :

Since there is ny € N such that, if n > ng, then ¢, + r > max{0,7}, we con-
clude that

|Sy(t +7r,7) x| < (1)  whenever r € R,t > T(7,d) and |x| < d,

that is, the solutions of & = g(t, ) are uniformly ultimately bounded, as claimed.
As for Theorem 4.10, from Remarks 4.7 and 4.6 we obtain the thesis. O]

Finally, we give conditions to have a bounded pullback attractor for the pro-
cess induced by & = ¢(t,x), when g € £€ is any function in the hull of f.

Theorem 4.12. Let f be in £& and T be a topology such that the induced local
skew-product flow (4.5) is defined on RTx Hull(ge 7)(f) x RY and it is continuous.

If there is a pullback bounded absorbing set B satisfying (4.4), then, for any g €
Hull(ge, 7y (f), one has that the solutions of & = g(t,x) are uniformly ultimately
bounded and the induced process Sy(-,-) has a bounded pullback attractor.

Proof. First, notice that Hullee 7)(f) = A(f) UO(f) U{f; | 7 € R}. Moreover,
condition (4.4) implies that the assumptions of Theorems 4.10 and 4.11 are sat-
isfied, as shown in Remarks 4.7 and 4.6. Therefore, if g € A(f) (resp. g € O(f))
the result follows from Theorem 4.10 (resp. Theorem 4.11). If g is f, or one of
its time-translations, the uniformly ultimately bounded character of the solutions
cames again from Remark 4.7, which together with Remark 4.6 allows to end the
proof. O
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The next result provides the existence of a pullback attractor as well as a global
attractor (when Hullge 7(f) is compact) of the skew-product semiflow (4.5) and
the relation between them. We denote by (¢, f, D) the subset of RY given by

x(t, f, D) = {x(t, f,z0) | xzo € D}.

Theorem 4.13. Let [ be in £& and T be a topology such that the induced skew-
product semiflow (4.5) is defined on R Hullge 7(f) x RY and it is continuous.
Assume that there is a bounded set B C RY such that for each nonempty bounded
set D there is a time T(D) such that

x(t, fs, D) C B whenever t > T(D) (4.12)

for every s € R. Then

(i) there exists a unique bounded pullback attractor A = {Ag] g € Hullige 1 (f)}
of the skew-product semiflow (4.5) given by

A, = ﬂ U x(t,g—,B) for each g€ Hullige 1(f),

T>0 t>1

(ii) of Hulliee)(f) 4s compact, there is a global attractor of the skew-product
semiflow (4.5) given by

A= Uneulleen(f) xB) = |  {{g} x4y}

>0 t>1 g€Hull ge 1) (f)

Proof. First, from the continuity of the skew-product flow, we deduce that
x(t,g,D) C B for every t >T(D) and every g € Hulliee(f).

Therefore, among other references, (i) follows from Theorem 3.20 of [36]. The
existence of a global attractor A under the compactness of the base Hull g 1) (f)
follows from Theorem 2.2 of Cheban et al. [18] and, as shown in Theorem 16.2
of [16], A, is the section of A over g, that is,

A= U o x4

g€Hul(¢e 7 (f)
which finishes the proof. m
Remark 4.14. Notice that, because of the relation
z(t, fs, D) = S;(t +s,8) D, fege s;teR, DcCRY,

condition (4.12) is equivalent to (4.4), that is, the process induced by f has a
pullback bounded absorbing set B.
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Remark 4.15. Under the assumptions of Theorem 4.13(i-ii), in general the pull-
back attractors {A,, | t € R} with g € Hull(ge ) (f) have no forward attraction
properties for the corresponding processes. However, the global attractor A al-
ways exhibits collective properties of forward attractivity (see [14]).

Finally, from Theorems 4.10, 4.11 and 4.13 we obtain the corresponding results
for the induced skew-product flow on A(f) x RY and O(f) x RY.

Corollary 4.16. Let f € £&€ and T be a topology such that the induced local
skew-product flow (4.5) is continuous, and assume that

- for any g € (. | s < 0y UA(S), and any z0 € BY, the solution x(-,g, 1)
of ©=g(t,x), x(0) =x¢ is defined on [0, 00);

- there is a 7 € R for which S¢(-,-) is strongly pullback bounded dissipative
on (—oo, T].

Then, (i) and (ii) of Theorems 4.13 hold for the skew-product flow on A(f) x RN,

Corollary 4.17. Let f € £€ and T be a topology such that the induced local
skew-product flow (4.5) is continuous, and assume that

- forany g € {fs | s >0y UO(f), and any o € RY the solution x(-, g, x¢) of
T =g(t,z), x(0) =1xq is defined on [0,00);

- there is a T € R for which the solutions of & = f(t,x) are uniformly ulti-
mately bounded on [T, 00).

Then, (i) and (ii) of Theorems 4.13 hold for the skew-product flow on O(f) x RY.

4.3 Comparison results for Carathéodory ODEs

This section provides sufficient conditions under which the abstract results of
subsection 4.2 can be applied. In fact, several types of attractors, both for the
induced process and the induced skew-product flow, are obtained. Such results
are based on comparison theorems for the solutions of a Carathéodory differential
system which are recalled at the beginning of the section.

In Section 4.3.1, the size of the solutions of a Carathéodory differential system
& = f(t,x) is compared with the size of the solutions of a scalar linear equation,
while in Section 4.3.2 a comparison with a system of linear Carathéodory equa-
tions is carried out.

We firstly recall the following comparison result for the scalar case from Olech
and Opial [44].
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Proposition 4.18. Consider f : R xR — R, f € £&€, zyp € R and denote
by x(-, f,to, z0) : [to,t1] — R the solution of the Cauchy Problem & = f(t,x),
x(to) = mo. If 2 : [to, t1] = R is an absolutely continuous function such that

2(0) < and  (t) < f(t,2(t)) for a.e. t € [to, ],

then one has
Z(t) < ZE(t, f, to,l‘o) forallt € [to,tl].

Moreover, if, in particular, z(0) < xq, then one has
2(t) < x(t, f,to,x0) for allt € [to,t1].

Proof. The first part of the proof is a consequence of the comparison theorem
contained in [44, Théoréeme 1 p.250]. If z(0) < xo, consider z; € R such that
2(0) < z1 < xy. Then, from the first part and by the uniqueness of the solution
for the Cauchy Problem & = f(t, z), x(ty) = xo, one has that

Z(t) < l’(t, fa lo, xl) < $(t, f> to, xo)a for all ¢ € [t()? tl]
which concludes the proof. O]

From the scalar case a comparison result for the vectorial case can be deduced.
Let us firstly recall some notation. For every ¢ = 1,..., N the ith component of
z € RV will be denoted by z;. Moreover, if we write z > 0 we mean that for all
t=1,...,N one has z; > 0, whereas we will write x > 0 if for every i =1,... N
one has z; > 0. The space (R )+ will denote the set of points # € RY such that
x > 0. Analogously, the ith component of a vector function f: R x RV — RY
will be denoted by f;.

Proposition 4.19. Consider f € £& and assume that for every z,x € RY with
z < x the following condition of monotonocity is satisfied:

zi=wx; forsomei=1,....N = fi(t,z) < fi(t,x) forae t€R. (4.13)
Fized v € RY, and denoted by x(-, f,to, x0) : [to,t1] — RY the unique solution of
the Cauchy Problem i = f(t, ), x(to) = xo. If z : [to,t1] — RY is an absolutely
continuous function such that

2(0) <z and  £(t) < f(t,2(t)) for a.e. t € [to, 1], (4.14)

then one has that

2(t) < x(t, f,to,xo) for allt € [to, ti]. (4.15)
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Proof. The case N = 1 is proved in Proposition 4.18. Consider N > 2 and, in
order to simplify the notation, pose x(-) = x(-, f, o, xo). Firstly we prove that

2(0) <zg = 2(t) <a(t) forallte lty,t]. (4.16)

Assume, on the contrary, that there exists 7 € [to,t1] such that the previous
inequality is not true at time 7 for one of the components. In other words, and
assuming by simplicity that such component is the first one, we have that

2(t) < x(t) foralltelty,7) and 2z(7)=z1(7). (4.17)
Consider the function g : R x R — R defined by
g(t,y) == fi(t,y, z2(t), ..., zn(1)), (4.18)
and notice that, thanks to (4.14) and (4.13), one has
2t) < fi(t 2(0) < fi(t, z0(t), ma(t), ... an(t) = g(t, 21 (1)),
for almost every t € [to, 7|. Therefore, due to Proposition 4.18 we have that
21(t) < y(t,g,to, (z0)1) forall t € [to, 7], (4.1

9)
where y(-, g,to, (z0)1) denotes the solution of the scalar problem y = g(¢,y)
with y(t9) = (z0);. However, due to (4.18), one has that y(t,g,to, (x0)1) =
y(t, f1,%0, (x9)1) and for the uniqueness of the solution for the Cauchy Problem
T = f(t,x) with z(ty) = xo, one has

y(s fisto, (o)1) = 21(-, £, to, o).
Therefore, one can write (4.19) as
251(25) < xl(t, f, to,l’o) for all t € [to, 7'] .

However, such inequality evaluated at time 7, contradicts (4.17). As a conse-
quence we obtain (4.16). Now let xy € RY be such that 2(0) < zy. Then, taken
e > 0 we have that z(0) < x¢ + €1, where 1 denotes the N-dimensional vector
of ones. Then, as a consequence of the first part of the proof, one has

Z(t> < l.(ta f7 thxO + 51) for all ¢t € [to,tl],

and thanks to the continuity of the solutions with respect to the variation of the
initial condition (Theorem 1.3), one obtains (4.15) as ¢ — 0, which finishes the
proof. n

Remark 4.20. If in Proposition 4.19 condition (4.14) is changed for
zo < z(0) and  f(t,2(t)) < z(t) for ae. t € [to, 1],
then, one obtains

SL’(t, f7 to,l’o) < Z(t), for all t € [to,tl].
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4.3.1 Comparison with a scalar Carathéodory linear equa-
tion

Consider a Carathéodory differential system & = f(¢,x) and the condition below
for f € £¢:

(H,) there exist a(-), 3(+) € L}, with 8(-) non-negative, such that
2(f(t,x),z) < at)|z|* + B(t) for a.e. (t,xz) € RVT!,

where (-, ) represents the scalar product in RY.

This assumption implies the following inequality for the solutions of & = f(¢, x).

Proposition 4.21. Assume that (Hy) holds for f € £&. If xz(-) is a solution of
T = f(t,x) defined on an interval I, then it satisfies

2 (f(t,z(t)),z(t)) < a(t) |z@)] + B(t) forae. tel. (4.20)
Proof. Let V C R x R" be such that measgi+v (R"™ \ V) = 0 and
2(f(t,x),r) < a(t) x>+ B() forall (t,z)eV.

Consider the set E = {(t,e) € I x By | (t,z(t) + ) € V}, where By is the closed
ball of RV centered at the origin and with radius 1, and for any ¢ € I denote by
E; the section in t of E, i.e. By = {c € By | (t,e) € E}. Moreover, given t € [
one has that z(t) + (B \ E;) C B, \'V; for some r, and hence measg~ (B1\ E;) =0
for almost every t € I. Then, applying Fubini’s theorem twice, one has

measg (/) - measgn (B;) = measgi+n (F) = measg (E.) de
RN
where FE. denotes the section of E for any fixed ¢ € By. Therefore, one has
measg (E.) = measg () for almost every ¢ € B;. Now, let (&,,)neny C By be such
that

n—00

en —— 0 and measg(F.,) = measg(I) VneN.

As a consequence, taking J = ﬂNEgn we deduce that
ne

2(F(t,2(t) + £0), 2() + 20} < alt) [at) + 2+ B(E) Vi€ S,
and as n — oo we obtain (4.20) because measg (/) = measg(J). O

Remark 4.22. If f € £€ satisfies (H;) then, considering the Cauchy problem
i = f(t,z), z(ty) = xo, and denoting by z(-) its solution, from (4.20) and |z(r)|* =

(x(r),x(r)) one has that for a.e. r € R

—Ja ()] = 2(x(r),@(r)) = 2 (2(r), f(r,2(r))) < alr) [2(r)[* + B(r).
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Therefore, if we pose y(r) = |z(r)|> and apply Proposition 4.18 and the variation

of constants formula, we obtain that

|2 (t)]* < exp </t0toz(u) du> 2o + /t:ﬁ(r) exp (/rtoz(u) du) dr,  (4.21)

for every t > t;. As a consequence, the solutions of & = f(¢,x) are defined on
[to, 00) and thus a process S¢(-,-) can be induced as in (4.1).

In addition to (H;) we also consider the following conditions:

(Hy) the equation § = «(t)y has exponential dichotomy on (—oo, 0] with pro-
jection P = Id, that is, there are constants a; > 0 and K > 1 such that

¢
exp </ au) du) <Ke @9 fors<¢<0;

(H3) the set of functions {3(*) }+er is L}, -bounded,

Assumptions (H;), (Hy) and (Hj) allow to obtain that the process Sy(-,-) is
strongly pullback bounded dissipative on (—oo, 7| for all 7 € R (see Defini-
tion 4.3), as shown in the next result.

Theorem 4.23. Consider f € £&€ and assume that (Hy), (Hy) and (Hs) hold.
Therefore the induced process Sy(-,-) is strongly pullback bounded dissipative on
(—oo, 7] for all T € R. Consequently, there exists a pullback attractor which is
bounded in the past.

Proof. Consider the nondecreasing function K(-) > 1 defined by

K itt <0

i) = {KealtN(t) if ¢t >0, (4:22)

where N (t) := exp (fg la(u)] du). First we check that one has

exp (/ a(u) du) < K(t)e =) fors<r<t, (4.23)

that is, for any ¢t € R, the equation y = «(t)y has exponential dichotomy on
(—o0, t] with projection P = Id.

Clearly, if t < 0 or s <7 < 0 <t then, thanks to (H,), we have that (4.23)
holds. If 0 < s <r <'t, recalling that K > 1, we have that

exp (/ a(u) du) < N(t) < Kea“"N(t) e~ (r—s) < K(t) et (rfs).
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Finally, for s < 0 < r < t, again from (H,) and from the definition of N(-), we

have that
exp (/;a(u) du) < exp (/Sooz(u) du + /Ora(u) du)

< Ke“sN(t) < K(t)e (=9,

Gathering all the previous facts, we have that (4.23) holds as stated.

Let D be a bounded set. Thus, there is a positive constant d > 0 such
that sup,cp |z| < d. We take p € D, t € R, s > 0 and denote by z(-) :=
z(-, f,t—s,x0), i.e. the solution of the Cauchy problem @ = f(t,x), z(t—s) = xo.
In particular, since S¢(t,t —s) xg = x(t, f,t — s,20) = z(t) from (4.21) and (4.23)
we deduce that

1S¢(t,t — s) zo|? < |wol? K(t) e ™ + I(t, s) (4.24)

I(t,s) / B(r) exp ( / o(u) du) dr < K(t) / ; e~ (1) B(r) dr
- / t e~ ) B(_y) du .

Now, from (Hj) there is a ¢; > 0 such that

where

sup /Hl Bu)du < ¢, (4.25)

teR

and, hence, since [~,00) C ;[ + j, =t +j + 1], we obtain

0 —t+]+1_a1j 00 . 1 K(t)
§=0 —t+7 ]:0

because a; > 0. Therefore, denoting by

K(t)
2(t) =1 a :
p(t) * 1—e o’ oy
from (4.24) and (4.26), one has that

Syt t —s)wo|* < A K(t) ™™ + I(t,s) < p(t)

provided that s > T'(¢t, D) > 0.

Hence, {B,u) | t € R} is a family of bounded absorbing sets. In addition,
since the functlon K(+), defined in (4.22), is nondecreasing, then p(t) and T'(¢, D)
are also nondecreasing. Therefore, we deduce that

St(t,t —s)D C By fort <r7ands>T(r,D),

and the process is strongly pullback bounded dissipative on (—oo, 7| for all 7 € R,
as claimed. The existence of a pullback attractor bounded in the past follows from
Remark 4.6. O]
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Consequently, an application of Theorem 4.10 provides for each ¢ in the al-
pha limit set A(f) the existence of a bounded pullback attractor for the pro-
cess Sy(+, ).

Corollary 4.24. Let f be in £& and T be a topology such that the induced local
skew-product flow on Hullige 7y(f) X RY is continuous. Under assumptions (H,),
(Hy) and (Hs), for each g € A(f) the solutions of & = g(t,x) are uniformly ulti-
mately bounded. In particular, the induced process Sy(-,-) has a bounded pullback
attractor.

Proof. Firstly, notice that, thanks to Remark 4.22, the solutions of & = f,(¢, z),
with s € R, are defined on [0,00). Therefore, in order to apply Theorem 4.10,
we only need to prove that for any g € A(f) and any z, € RY the solution
of & = g(t,x), z(0) = zo is defined on [0,00). From (4.24) and (4.26) and
recalling that the function K (-), defined in (4.22), is nondecreasing, one has that
for any d > 0, and zy € RY with |z¢| < d

|S(t,t — s) wo| = |2(s, fies, 0)| < c(d) forallt <0, s>0, (4.27)

where c?(d) = K(0)(d®>+c¢;/(1 —e™)) and ¢; > 0 is determined by (4.25).
Now, consider some g € A(f), i.e. g = lim, . f;, with ¢, | —oo, and let
us fix s € [0,b,4,). Notice that, for any n € N, one may write z(s, f;,, %) as
(8, f(tn+s)—s>To). Thus, considered ng € N such that ¢, + s < 0 for any n >
no, one has that x(s, fi,, o) = (s, fi,+s)—s: To) satisfies (4.27) for any n > ny
and, by the continuity of the flow, the sequence (x(s, ftn,xo))n oy converges to
x(s, g, x0). Therefore, we conclude that

|2(s,g,20)| < c(d) for all s € [0,by,,) and zy € RY with |zo| < d.

As a consequence, one has that the solution z(-, g, zo) of & = g(s,z), x(0) = xg
can not explode in finite time, i.e. it has to be defined on [0, c0). Otherwise it is
easy to prove that a contradiction arises.

One concludes the proof applying Theorem 4.10. m

In order to have that for all 7 € R the solutions of & = f(¢,z) are uniformly
ultimately bounded on |7, 00), we change hypothesis (H,) by

(H3) the linear equation ¢ = «(t)y has exponential dichotomy on [0, 00) with
projection P = Id, i.e. there is an a; > 0 and a constant K > 1 such that

t
exp (/ au) du) < Ke =9 forevery 0<s<t.

Theorem 4.25. Under conditions (Hy), (HY) and (Hj), for each fivred 7 € R
the solutions of & = f(t, ) are uniformly ultimately bounded on [r,0).
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Proof. Analogously to the first part of the proof of Theorem 4.23, consider now
the nonincreasing function K(-) > 1 defined by

Ke W N(ty) iftg <0,
K(to) =4 ° (o) it to (4.28)
K if 5> 0,
where N (to) := exp ( L,?) la(u)| du). First we check that one has
exp (/ a(u) du) < K(tg)e =9 for every ty < s <, (4.29)

that is, for any ¢ty € R, the equation y = a(t)y has exponential dichotomy on
[to, 00) with projection P = Id.

Clearly, if ¢ty > 0 or to < 0 < s < r then, thanks to (H}), we have that (4.29)
holds. If ty < s <r <0, then, recalling that K > 1, we have that

exp ( / " a(u) du) < N(ty) < K(ty) e =),

Finally, for ¢ < s < 0 < r, again from (H}) and from the definition of N(-), we

have that
exp (/:a(u) du) < exp </Soa(u) du + /Ora(u) du)

< N(to)K e™ " < K (tg) e~ (r=9),

As a consequence we have that (4.29) holds as stated.

Now, consider d > 0 and let 2y € RY be such that |zo| < d. Recalling that
St(t 4 to, to) xo represents the solution z(t + to, f,to, x¢) of the Cauchy Problem
&= f(t,x), x(ty) = xo, then, thanks to (4.21) and (4.29), we deduce that

1S (t + to, to) wol® < |zo|? K (tg) e + I(t,ty), forallt >0, (4.30)

where

t+to t+to

I(t o) = (r) exp ( / " ) du> dr < K(to) [ Br) e @t gy

to to

t—to 00
— K(to) / ﬁ(t _ u) e*al (t0+u) du S K(to) / ﬁ(t _ u) 6*0[1 (t0+u) du .
—to —to

Now, recalling that for (Hj) there exists ¢; > 0 is such that

teR

t+1
sup/ Bu)du < ¢,
t

then, as in Theorem 4.23, we deduce that

C1 K(to)

l—e >

I(t,t) < for all £ > 0. (4.31)
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Thus, denoting by

o1 K(t In (d? K (t
c*(to) == 1+—11_ ;_‘;)1 and  T(to, d) := In (" K{to)) o : 0)),
from (4.30) and (4.31) we have that
|S(t +to, to) xo| < c(to) whenever ¢ > T'(to,d) and |zo| < d, (4.32)

and the nonincreasing character of ¢(-) and T(-,d) proves (4.2) and finishes the
proof. O

Hence, an application of Theorem 4.11 provides, for each ¢ in the omega limit
set O(f), the existence of a bounded pullback attractor for the induced process

Sg('7 )

Corollary 4.26. Let f be in £& and T be a topology such that the induced local
skew-product flow on Hull ge 1) (f) % RY is continuous and assume that conditions
(Hy), (HY) and (Hj3) hold. Then, for each g € O(f) the solutions of & = g(t,x)
are uniformly ultimately bounded and the induced process S,(-,-) has a bounded
pullback attractor.

Proof. Firstly, notice that, thanks to Remark 4.22; the solutions of & = f,(¢,x),
with s € R, are defined on [0,00). Therefore, in order to apply Theorem 4.11,
we only need to prove that for any g € O(f) and any 2, € RY the solution of
& =g(t,z), (0) = z¢ is defined on [0, 00). From (4.30), (4.31) and recalling that
the function K(-), defined in (4.28), is nonincreasing, one has that for any d > 0,
and o € RN with |zo| < d

|Sf(t + to,to) I‘()‘ = |$(t,ft0,$0)| < 5(d> forallto e R, t >0, (433)

where ¢?(d) = K(0)(d®>+¢1/(1 —e ™)) and ¢; > 0 is determined by (4.25).
Now, consider some g € O(f), i.e. g = lim,_, f;, with ¢, T 0o, and let us fix
t €[0,by4,). Thus, considered ny € N such that t,, > 0 for any n > ng, one has
that z(t, f;,, xo) satisfies (4.33) for any n > ng and, by the continuity of the flow,
the sequence (x(t, ftn,xo))
that

ey converges to x(t, g,z0). Therefore, we conclude

|z(t, g,70)| < &(d) forallt € [0,b,,,) and zy € RY with |zo| < d.

As a consequence, one has that the solution z(-, g, zo) of & = g(s,x), z(0) = zq
can not explode in finite time, i.e. it has to be defined on [0, 00). Otherwise it is
easy to prove that a contradiction arises.

One concludes the proof applying Theorem 4.11 . m
Next, substituting (H,) with the stronger assumption below, we obtain a

pullback bounded absorbing set B satisfying (4.4) which is what we need in the
assumptions of Theorem 4.12.
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(H3) the linear equation y = «(t)y has exponential dichotomy on R with pro-
jection P =1d, i.e. there is an a; > 0 and a constant K > 1 such that

t
exp (/ a(u) du) < Ke U= fors<t; (4.34)

Theorem 4.27. Consider f € £&€ and assume that (H,), (HS) and (Hs) hold.
Then there is a pullback bounded absorbing set B satisfying (4.4) and, hence, the
induced process S¢(-,-) has a bounded pullback attractor.

Proof. From (H$) we have that
¢
exp </ au) du) < Ke ™! forallte R and s> 0. (4.35)
t—s

Therefore, reasoning as in Theorem 4.23, with the exception that now K(-) = K,
one has that

Sy(t,t —s)D C B, foreveryte R and s> T(D), (4.36)

where p? =14 ¢, K/(1 — e ™), T(D) = In(d® K) /a1, and (4.4) holds with B,
as stated. In particular, Sy(-,-) has a bounded pullback attractor. O

As a consequence, an application of Theorem 4.12 provides the existence of a
bounded pullback attractor for the process Sy(-,-) induced by g € Hull(ge 7(f).

Corollary 4.28. Let f be in £& and T be a topology such that the induced local
skew-product flow on Hullge 1y(f) X RY is continuous and assume that (H,),
(HS) and (Hs) hold. Then if g € Hullge)(f) one has that the solutions of
& = g(t,x) are uniformly ultimately bounded, and the induced process Sy(-,-) has
a bounded pullback attractor.

Proof. In order to apply Theorem 4.12, we need to prove that for any g €
Hull(¢e 7(f) and any zo € RY the solution of & = g(t,z), x(0) = z¢ is de-
fined on [0,00). Reasoning as in Theorem 4.23, with the exception that now,
since (4.35) holds, we can pose K(-) = K, from (4.24) and (4.26), one has that

K
S5t = ) wof? < [ K et +
—e «
where ¢; > 0 is determined by (4.25). In other words, we can write
|S¢(t, t — s) xo| = |x(s, fi_s, x0)| < €(d) forallt € Rand s >0,

where ¢?(d) = K (d* + ¢;/(1 — e~*)). Now, reasoning as in either Remark 4.22,
Corollary 4.24 or Corollary 4.26, depending on the fact that, respectively, g = f,
for some 7 € R, g € A(f) or g € O(f), one obtains that the solution of & =
g(t,x), x(0) =z is defined on [0, c0).

One concludes the proof applying Theorem 4.10. O
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We summarize the results for the existence of a pullback and a global attractor
for the induced skew-product semiflow in the following remark.

Remark 4.29. Under assumptions (H;), (HS) and (Hj), (i) and (ii) of Theo-
rem 4.13 hold. The same happens for Corollary 4.16 (resp. 4.17) when (H;), (H,)
and (H3) (resp. (H;), (H}) and (Hj3)) are assumed.

As follows we present three simple examples to show the applicability of the
previous theorems.

Example 4.30. Consider the system

1 ift <o,
b= f(t,x)=a()z,  witha(t) = nh= (4.37)
1 ift>0.

Such a system trivially satisfies (H;), (H) and (Hj3), and thus the induced pro-
cess, S¢(+,-) is strongly pullback dissipative on (—oo, 7] for all 7 € R. As a
consequence, the system admits a pullback attractor which is bounded in the
past. In fact, the pullback attractor for S¢(-,-) is given by

A(t) =0, for all ¢ € R.

Indeed, for any zo € RY, s < 0 and any fixed ¢ € R one has
,8) wo| = |wo| exp a(u)du | =
g ’ ’ s |$0| estt o if t > 0,

which goes to zero as s — —o0. Notice also that the system does not have any
forward attractor since for any fixed s € R one has that |S¢(¢,s)| — oo ast — oo.
Finally, notice that A(f) = {—z}, and again the set given by A(t) = {0} for all
t € R, is the (bounded) pullback attractor for the process induced by the system
& = —x. However, in this case, {0} is also a forward attractor for & = —x.

Example 4.31. Consider the system
t=f(t,x) =a(t)x+1, (4.38)

where a(-) is the one given in (4.37). The induced process is

Sy(t, s) z = g exp ( / t a(u) du> + / exp ( / t a(u) du) dr.

Notice that the system trivially satisfies (H;), (Hs) and (H3) and in fact we
obtain a pullback attractor which is bounded in the past. In particular, using the
definition of a(-), if £ <0, then

Se(t,s)mg =mpe® "+ 11—
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which goes to 1 as s — —o0. As a consequence, we have that A(f) = 1 for all
t < 0. On the other hand, by the invariance of the pullback attractor, we have
that for any ¢ > 0

A(t) = 54(t,0) A(0) = =(t, £, 1),

that is, the solution of (4.38) starting at 2(0) = 1 which is
l‘(t,f, 1) =—-1+ 2¢".

Summing up, the pullback attractor for this system is given by

1 if t <0,
A(t) = .
—1+4+2e¢" ift >0,

and notice that | J,.p A(%) is not bounded. Finally, one has that A(f) = {—2+1}
and the set given by A(t) = {1} for all ¢ € R, is the bounded pullback attractor
for the process induced by the system & = —x + 1.

Example 4.32. Consider the system

1 ift<0
i=f(t,z)=alt)z,  witha(t) = Bh= (4.39)
—1 ift>0.

Such a system trivially satisfies (H;), (H}) and (Hj3), and thus, for each fixed
7 € R the solutions of & = f(t,x) are uniformly ultimately bounded on [, 00).
In fact, we have that

. |zol e if s <t <0,
|S¢(t,s) ko] = |xo| exp </ a(u) du) = |zole™" ifs <0<t
’ |zgles™t 0 <s<t

where S¢(-,-) denotes the process induced by (4.39), and one has that

lim S;(t,s)x =0, forallz € RY and s € R.

t—o0

Notice also that such system does not admit a pullback attractor. In fact for any
fixed ¢t € R one has that

lim S(t,s)r =00, forallzeRY.

S——00

Finally, O(f) = {—x} and the set given by A(t) = {0} for all t € R, is the
(bounded) pullback attractor for the process induced by the system & = —x.
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4.3.2 Comparison with a Carathéodory linear system

In this subsection we aim to develop results analogous to the ones proved in Sub-
section 4.3.1 but the Carathéodory vector field f is now compared with a whole
system of linear Carathéodory equations. Let us firstly recall some notation. For
every i = 1,..., N the ith component of + € R" will be denoted by z;. Moreover,
if we write x > 0 we mean that for all ¢ = 1,..., N one has x; > 0, whereas we
will write x > 0 if for every + = 1,... N one has x; > 0. The space (]RN)+ will
denote the set of points € RY such that x > 0. Analogously, the ith component
of a vector function f: R x RY — RY will be denoted by f;.

We consider the new assumptions for f € £¢:

(A;) if 2 > 0 with 2; = 0, then f;(t,z) > 0 for a.e. t € R;
(Ay) for a.e (t,x) € R x (RN)+
f(t,x) < A(t)z+b(t),

where the functions A(+) = [a;;(-)] € L, (RY*Y), a;(-) > 0 for every i # j,

b(-) € L. (RY), and b(t) > 0 for every ¢ € R;

loc

(A3) the linear equation y = A(t)y has exponential dichotomy on (—o0, 0] with
projection P = Id, i.e. there is an a; > 0 and a constant K > 1 such that

|®(t) D7 (s)|| < Ke =) for s <t <0,
where ®(t) is the fundamental matrix solution with ®(0) = I;

(Ay) the set of functions {b;()}ier is Lj,.(R"Y)-bounded.

loc

The inequality in (A,) actually holds for the positive solutions of & = f(t,z).
The proof is similar to the one of Proposition 4.21 and thus omitted.

Proposition 4.33. Let f be a function in £ satisfying (As). If x(t) is a solution
of © = f(t,x) defined on an interval I, with x(t) > 0 for all t € I, then

f(tx(t) < A(t)z(t) +b(t) forae. tel. (4.40)

Conditions (A;) and (A,) imply that the system & = f(¢,z) induces a con-
tinuous time process on (RN )+, as shown in the following result.

Proposition 4.34. Let [ be a function in £& and z(t, f,to, o) the solution
of & = f(t,x),x(ty) = xo with g > 0.

(1) If f satisfies (Ay), then z(t, f,to,xo) > 0 for every t > to on its maximal
interval of existence.
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(i) If f satisfies (A1) and (As), then z(t, f,to, zo) is defined on [ty,00).

As a consequence, under assumptions (A1) and (As) a continuous time process
18 induced on (RN)+ by

Sp(t,s)xg = x(t, f,s,20) = x(t—s, fs,20) >0, Vt>s and x € (RN)+. (4.41)
Proof. (i) Denoting by 0 the N-dimensional null vector, by (A;), we have
0< f(t,x) for all z € (RN)+ and a.e. t € R.
Therefore, applying Proposition 4.19 to z(-) = 0, we deduce that for any xy > 0
0 <z(t, f,to, o)
for all ¢ > to in the maximal interval of existence of x(-, f,to, zo), which ends the

proof of part (i).
(ii) For simplicity of notation, let x(t) = x(t, f, to, zo). From (4.40) we have

(t) < A(t) z(t) + b(t) for a.e. t € R.

Thus, since a;;(-) > 0 for @ # j, the linear system y = A(t)y + b(t) is quasi-
monotone and the assumptions of Proposition 4.19 are satisfied. Therefore, using
also (i), one has that 0 < x(t) < y(t) for every t € (ty,t;) where y(¢) denotes the
solution of y = A(t) y + b(t) with initial data y(ty) = zo, that is,

t
0 <a(t) <Pt)d (o) o +/ (L)@ (r) b(r)dr,
to
where the right-hand side comes from the variation of constants formula for
Carathéodory linear systems (see |6, Theorem 2.10 p.58|). Therefore, we have
that x(t) = x(t, f, to, xo) is defined on [tg, 00), which concludes part (ii). O

The following result provides the existence of a pullback attractor bounded in
. N\t
the past in (R ) )

Theorem 4.35. Let f be a function in £C€ satisfying (A1), (As), (As) and
(Ay). Then, the induced process (4.41) is strongly pullback bounded dissipative
on (—oo, 7] for all T € R and, as a consequence, there exists a pullback attractor
which is bounded in the past.

Proof. As is Theorem 4.23, from (Aj) we deduce the existence of exponential
dichotomy on (—o0, t] for any fixed ¢t > 0. More precisely, there is a nondecreasing
function K'(-) > 1 such that

[®(r) @7 L(s)|| < K(t)e 1 "=*)  for s <r <t. (4.42)
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Let D be a bounded set of (RN )+. Thus, there is a positive constant d > 0 such
that sup,cp |z] < d. We take o € D, s > 0 and consider z(r) := z(r, f,t — s, z9),
i.e. the solution of the Cauchy problem &(r) = f(r,z(r)), z(t —s) = xy. Asin
Proposition 4.34, we deduce that 0 < z(r) < y(r) for every r € [t — s,t] where
y(r) denotes the solution of § = A(r)y + b(r) with initial data y(t — s) = o,
that is,

0<z(t) <PMHt)d 't —s)xo+ /t D) (r)b(r)dr.
t—s
Therefore, inequality (4.42) provides
|Sp(t,t —s) xo| < |xo| K(t) e % + K(t) /t e~ (=) |b(r)| dr
t—s
and the rest of the proof follows step by step the one of Theorem 4.23 and thus

it is omitted. [

Remark 4.36. The part in condition (A,) which implies that the system ¢ =
A(r)y + b(r) is quasi monotone, i.e. a;(-) > 0 for i # j, can be substituted
by the quasi monotone condition for & = f(r,z), that is (4.13). In this case,
maintaining the notation of Theorem 4.35, we would obtain

f(r,y(r)) <g(r) forae. r,

which implies from Remark 4.20 that z(r) < y(r) for every r € [t — s,t], and the
rest of the proof remains the same.

From Theorems 4.35 and 4.10 we obtain we following result, whose proof is
omitted because it is analogous to the one of Corollary 4.24.

Corollary 4.37. Let f be a function in £& and T be a topology such that the
induced skew-product flow on Hullige 7y (f) X (RN)T is continuous. If f satisfies
(A1), (As), (A3) and (Ay,), and g € A(f), then the solutions of & = g(t,z) are
uniformly ultimately bounded, and the induced process Sy(-,-) on (]RN )+ has a
bounded pullback attractor.

If we change hypothesis (A3) by

(A}) the linear equation y = A(t)y has exponential dichotomy on [0, c0) with
projection P = Id, i.e. there is an a; > 0 and a constant K > 1 such that

@)D~ (s)| < Ke @9 for 0<s<t,
where ®(¢) is the fundamental matrix solution with ®(0) = Iy,

we obtain a result analogous to Theorem 4.25.

Theorem 4.38. Let f be a function in £& satisfying (A1), (As), (AL) and (Ay),
for each fixed T € R the solutions are uniformly ultimately bounded on [T, 00).
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Proof. As is Theorem 4.25, from (A}) we deduce the existence of exponential
dichotomy on [ty, o) for any fixed to € R. More precisely, there is a nonincreasing
function K(-) > 1 such that

[D(r) @~ (s)|| < K(to)e ™ ™) forty <s<r. (4.43)

Let xy € (RN)+ be such that |zy| < d for some d > 0, and consider z(r) :=
x(r, f,to, zo), i.e. the solution of the Cauchy problem & = f(r,z), x(ty) = z¢.
As in Proposition 4.34, we deduce that 0 < z(r) < y(r) for every r € [ty, t] where
y(r) denotes the solution of y = A(r)y+b(r) with initial data y(tg) = zo, that is,

¢
0 < a(t) < d(t) D (to) w0 +/ O(t) D (r) b(r) dr.
to
Therefore, inequality (4.43) and x(t 4 to) = S¢(t + to, to) xo provides
t+to
‘Sf(t + to, to) 1’0’ < ’mo‘ K(to) e M o + K(to) / e~ M (t+to—) ‘b(T’)‘ dr s
to

and the rest of the proof follows step by step the one of Theorem 4.25 and thus
it is omitted. O

In particular, this implies that Theorem 4.11 holds in this case and we deduce
the following result.

Corollary 4.39. Let f be a function in £& and T be a topology such that the
induced skew-product flow on Hullige 7(f) x (RN)T is continuous. If f satisfies
conditions (A1), (As), (A3) and (Ay) and g € O(f), then the solutions of & =
g(t, ) are uniformly ultimately bounded, and the induced process Sy(-,-) on (R¥ )+
has a bounded pullback attractor.

Finally, if we change hypothesis (A3) by

(A3%) the linear equation ¢ = A(t)y has exponential dichotomy on R with pro-
jection P =1d, i.e. there is an a; > 0 and a constant K > 1 such that

@)@ 1(s)|| < Ke (=9 for s <t,
where ®(t) is the fundamental matrix solution with ®(0) = Iy,

we obtain a result analogous to Theorem 4.27, whose proof is omitted, and the
corresponding corollary, consequence of Theorem 4.12.

Theorem 4.40. Consider f € £€ satisfying (A1), (As), (A%) and (Ay). Then,
there is a pullback bounded absorbing set B satisfying (4.4) and, hence, the induced
process (4.41) has a bounded pullback attractor.
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Corollary 4.41. Let f be a function in £& and T be a topology such that the
induced local skew-product flow on Hullige 1y(f) x (RN) is continuous. If f
satisfies (A1), (As), (AS) and (Ay), and g € Hullige ) (f), then the induced
process Sy(-, ) has a bounded pullback attractor.

Again, we summarize the results for the existence of a pullback and a global
attractor for the induced skew-product semiflow on Hullige 7(f) x (RV)* (resp.
A(f) x (RM)T and O(f) x (RY)*) in the following remark.

Remark 4.42. Under assumptions (A;), (A,), (A%) and (A,), (i) and (ii) of
Theorem 4.13 hold. The same happens for the conclusions of Corollary 4.16
(resp. 4.17) when (Ay), (Ay), (A3) and (Ay) (resp. (A1), (As), (A}) and (Ay))

are assumed.

Example 4.43. Let us go back to the compartmental modelization presented in
Section 3.4.3. Consider B : I x R? — R%¥? and s : I x R? — (R")? satisfying
Lipschitz Carathéodory conditions and defining the compartmental system

= f(t,z) == B(t,x) x + s(t, x). (4.44)

Therefore, we know that the compartmental conditions hold for B. In particular
we have that for all ¢t € I, x € R? one has

- bm<t,$) <0 Ve=1,...,n,

As a consequence, for any = > 0 and such that z; = 0 for some i = 1,..., N, we
have that

N

Z bij(t, l‘) l‘j + Si(t, .T) Z 0

j=1

since the only negative entry on the ith row of B is b;, which is multiplied by
zero, and s(t,z) > 0 by definition. Hence, any compartmental model satisfies
condition (A;).

If there exist functions C(-) = [c;;(+)] € L, (RV*N), ¢;5(-) > 0 for every i # j,

loc

b(-) € L},.(RY), and b(t) > 0 for every t € R such that
- for a.e (t,x) € R x (RN)+ one has

f(t.z) = B(t,z)z + s(t,z) < C(t)z + b(t),

- the linear equation ¢ = C'(t)y has exponential dichotomy on (—oo, 0] with
projection P = Id, and
- the set of functions {b;(-) }ser is L;.

loc

(RN ) -bounded,
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then, f satisfies also (A,), (A3) and (A,). Thus, Theorem 4.35 provides the
existence of a pullback attractor bounded in the past for the process induced
by (4.44), whereas Corollary 4.37 provides a bounded pullback attractor for any
process induced by a system whose vector field is in A(f). On the other hand, if
f itself is in the alpha limit set of a Lipschitz Carathéodory function satisfying
(A1), (As), (A3) and (A,), then the process induced by (4.44) has a bounded
pullback attractor.

Similar reasonings hold in case the system ¢ = C(t)y has exponential di-

chotomy on [0,00) (resp. on R) with projection P = Id and applying Theorem
4.38 and Corollary 4.39 (resp. Theorem 4.40 and Corollary 4.41).



Chapter 5

Continuity of the semiflow for
Carathéodory DDEs

This chapter aims to extend part of the theory that has been developed so far, to
the case of Carathéodory delay differential equations with constant delay of the
type

T = f(t, x(t), z(t — T)), (5.1)

i.e. in which the vector field not only depends on the time and on the present
state, but also on the past.

It is important to notice that such extension is not trivial because steps into an
infinite-dimensional formulation. In fact the phase space for a skew-product flow
induced by (5.1) would be C([—7, 0], RY). Nevertheless, the specific type of differ-
ential equations considered, together with the fact that the function f is defined
on a finite-dimensional space, make it possible to use some of the arguments of
the previous chapters to extend or develop, with unavoidable discrepancies, some
of the results seen before.

An equation like (5.1) allows to modelize a variety of phenomena in which
the past consistently influences the future. One may object that, however, this is
the simplest type of dependence on the past that one can think of. Yet, this for-
mulation finds extensive and successful application in the modelization of many
phenomena. Examples include applications in economics, industry, military prob-
lems, population dynamics and more (see Bellman and Danskin [8] and Smith
[56] for further details).

The chapter is structured as follows. In Section 5.1, we provide basic prelim-
inaries of Carathéodory delay differential equations with constant delay.

In Section 5.2, we introduce new strong and weak topologies which exhibit a
hybrid behavior with respect to the ones presented in Chapter 2. Furthermore,
we show how such topologies relate to the first ones and how to apply or develop,
in this new context, some of the topological results contained in Sections 2.2, 2.3,
2.4 and 2.5.

123
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Section 5.3 deals with the continuity of the skew-product semiflow induced by
problems of the type (5.1) when £¢€ is endowed with either 7, Tp or the new
hybrid topologies Top, Top and ogp (and suitable hypothesis are assumed on f).

5.1 Preliminaries

For the sake of completeness and to set some notation, we include a theorem of ex-
istence and uniqueness of the solution for a Cauchy Problem of Carathéodory type
with constant delay. A proof can be derived by the one given for Carathéodory
ordinary differential equations in [21, Theorem 1.1, p.43, Theorem 1.2, p.45 and
Theorem 2.2, p.49| as shown below (see Cruz and Hale [22| and Hale and Verduyn
Lunel [29] for the proofs of existence, uniqueness and continuous dependence for
a more general class of delay differential equations). Notice also that, in order to
simplify the notation, from now on we will consider the delay 7 = 1 so that (5.1)
takes the form

i = f(t z(t),z(t —1)).
Moreover, we will denote by C the set

C :=C([-1,0],RY).

Theorem 5.1. For any f € £€ and any ¢ € C there exists a mazimal interval
Ity =(—1,bsy) and a unique continuous function x(-, f, ¢) defined on Iy, which
s the solution of the delay differential problem

{¢:f@@@%up—ny
x(t) = ¢(t) fort e [-1,0].

In particular, if by, < 0o, then |z(t, f,¢)| — o0 ast — bye.

(5.2)

Proof. Firstly, consider the ordinary differential Cauchy Problem

{g’c = f(t2(1), 6t = 1)),
z(0) = ¢(0).
Due to Theorem 1.2, such problem admits a solution Zo(-) defined on [0, by 4(0)),

where by 4(0) is as in Theorem 1.2. In particular, Z(-) satisfies (5.2) on [0, Tp] for
any 0 < T, < min{1, by ) }. Therefore, defining

To(t) := o(t) fort e [-1,0],

we have that Z(-) is a solution of (5.2) on [—1,Tp]. If in particular 1 < by 40,
then we can repeat the same reasoning in the interval [0,7}], with 1 < T} <
min{2, bsz,1)} for the delay differential problem

{i:f@@@%mp—ny

x(t) = To(t) for t € [0, 1]
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and obtain the solution z;(-) defined in [0, 77]. In particular, due to the unique-
ness of the solution for the ordinary differential Cauchy Problems provided by
Theorem 1.2, we can extend Zo(-) to [—1,T1] by posing Zo(t) := z1(t) for all
t € [Ty, Ty which is the solution of (5.2) on [—1,7}]. Reiterating such argument
we end up with a solution of (5.2) in a maximal interval [—1, ;). O

5.2 Spaces and topologies revised

In this section we aim to get back to the spaces introduced in section 2 and
blend them in the context of delay differential equations. While still using the
same spaces of functions as before, in the following we will slightly change the
notation on such spaces (to avoid any possible misunderstanding) by including
the set where the space variable takes values. For example, if f: R x R?Y — RV
satisfies (C1) and (C2), we will write that f € €(R* RY) (instead of just
f € €(RY)). The same principle holds also for the rest of the spaces.

An important role will be played by an hybrid version of the topologies pre-
sented in Chapter 2. The term hybrid means that, while still asking for a con-
vergence of L] _ type, we will possibly treat the first N components of the spatial
variable (representing the current state in a delay differential equation) in a dif-
ferent way from the last N ones (representing the history of the state). Firstly,
let us consider the set of Lipschitz Carathéodory functions £E€(R*Y RY) (see
Definition 2.1) and introduce the notion of /;-bounds and l3-bounds.

Definition 5.2 (/;-bounds and lr-bounds in €(R*¥, RY)). Let us consider a func-
tion f € E€(R*N RY). We say that f admits l;-bounds (resp. ly-bounds) if for
every j € N there exists a function I{(-) € L;,, (resp. l5(-) € L},.) such that for

loc

almost every t € R
|f(t, x1,u) — f(t, zo,u)| < U(t) |2 — 25| for all (x,u), (x9,u) € B,
(vesp. |f(t, @, u1) — f(t,z,uz)| < B(t) Juy —uy| for all (z,uy), (z,us) € Bj).

In particular, if f € LE(R?Y,RY), ie. f: R x R?YN — RY satisfying the assump-
tions in Definition 2.1, for every j € N we refer to the optimal l;-bound and the
optimal ly-bound for f on B; C R*N as to

|f(t,x1,u) - f(t7x27u>|

lj(t) = sup 7
l (w1,u),(z2,u)EB,; |$1 — I’Q‘
z17£T2
) " _
lh(t) = sup [f(t, 2, u) = f( >$,U2)!‘
(z,u1),(z,u2)EB; |U1 — uQ|
w1 Fu2

If f € GCR*,RY) one can still define either the optimal /;-bounds and/or
the optimal l>-bounds if, for almost every ¢t € R, f is Lipschitz continuous with
respect to the first and/or the last N space variables, respectively.
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Remark 5.3. Consider f € LE€(R*N RY). We claim that for all £ € R one has
1 (t) < TJ(t) + 1(t), where by /() we denote the optimal I-bound for f on B; as
in (2.2). In order to prove it, firstly observe that if (z1,u1), (22, us) € B; C R?Y,
then, at least one between (x1,us) and (z2,u) is in B; C R?N. Otherwise, we
would have

((@ru)* > 5% and (w2, w)] > 5%

However, by assumption we know that
(1, w)[? <52 and (a9, u0)? < 57,
and thus we would obtain the following contradiction
277 < |(w1,u0)|* + (w2, wn) [ = (21, w) [ + (w2, u0) | < 257

Therefore, for any ¢t € R, any pair (z1,u1), (z2,u2) € B; C R* and assuming
without any loss of generality that (zo,u;) € B;, one has

‘f(tvxlaul) B f(t,l'g,U2)|
(21, u1) — (22, up)|
< ‘f(tv xlaul) - f(t’x27ul)| + |f<t7$2>u1) - f(tvx?au2)|
- (21, u1) — (22, u2)]

|371 — Iy

(21, u1) — (22, us)]

|uy — us|

(21, u1) — (w2, up)]

< 4(t) +5(t) < {(t) +13(t),

which gives us the aimed inequality once, in the previous formula, one takes the
superior over (xy,uy), (2, us) € By, with (z1,u) # (22, u2).

As follows, we introduce some new topologies on S€(R?Y RY).

Definition 5.4 (Hybrid topologies on G€(R2Y RN)). Let © and © be suitable
sets of moduli of continuity as defined in Definition 2.3, D be a countable dense
subset of RY and, for any I = [g1,¢2], ¢1,¢2 € Q and j € N, let K} and E]I be the
sets of functions in C(I, B;) which admit 6] and éjl , respectively, as a moduli of
continuity.

e We call Top the topology on GE(R*Y RY) generated by the family of semi-
norms

pru,i(f) = sup /\f(t,x(t),u)\dt, f e GeR¥ RN,
x(-)GICJI- I

with I = [¢1,¢2), ¢1,¢2 € Q, u € D and j € N. (S€(R*¥,RY), Top) is a locally
convex metric space.
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e We call Tos the topology on S&€(R?*Y RY) generated by the family of semi-
norms

pri(f) = sup /‘f t x( (t—l))‘dt, f € GC(R*™ RY),
w(- ek, u(-)eki ™!

with I = [g1,¢2), ¢1,¢2 € Q and j € N. (S€(R?*N,RY), Tgs) is a locally convex
metric space.

e We call Top the topology on S&€(R?Y RY) generated by the family of semi-
norms

o= / £t (), ult — 1)|dt, f € SER,RY),
(eI, u(-)eC(I-1,By)

with I = [q1,¢2), ¢1,¢2 € Q and j € N. (SE(R?*M,RY), Top) is a locally convex
metric space.

e We call ogp the topology on GE€(R*Y RY) generated by the family of semi-
norms

pruj(f) = sup /ftx dt‘ f € GER*™ RY),

z(+) EICI

with I = [q1,¢2), ¢1,q2 € Q, u € D and j € N. (6€(R2N,RN),0@D) is a locally
convex metric space.

e We call 0gg the topology on SE€(R?*Y RY) generated by the family of semi-
norms

pr;(f) = sup
x(-)EIC§, u(-)GIC]Ifl

/[f(t,:z:(t),u(t— 0)]dt|, feSe®N,RY),

1

with I = [g1, 2], ¢1,¢2 € Q and j € N. (G€(R*¥,R"Y), 065) is a locally convex
metric space.

The topologies introduced in the previous definition are called hybrid because
they are derived from the ones presented in Chapter 2 so that the condition of
uniformity for the first N space variables differ from the one of the remaining
N space variables. A natural question arises, concerning the relation between
the topologies To and Tge (resp. ge and ceg) on SE(R*Y RY). In order to
deal with such a problem, we need to state the following technical lemma for the
topologies of the type cgg (which is the analogous of Lemma 2.14 for 0g). Since
its proof differs from the one of Lemma 2.14 only on minor details, we skip it.
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Lemma 5.5. Let © and © be suitable sets of moduli of continuity as in Defini-
tion 2.3 and, for each j € N and I = [q1,q2], ¢1,92 € Q, let ICJI- and IEJI be the
compact sets in C(I,B;) which admit 931 and éjf, respectively, as a modulus of
continuity.

(i) Let f be a function of SEC(R*N RY). For each j € N and I = [q1, g0,
G,q € Q, if (xn(-))neN is a sequence in K} converging uniformly to some
function x(-) € K and (un(-))neN

formly to some function u(-) € 16]1.—1, then

18 a sequence in IC]I-_1 converging uni-

P2

lim Ft 2 (t), ua(t — 1)) dt = /m f(t,x(t), u(t — 1)) dt,

oo p1 p1

whenever p1, py € Q and q1 < p1 < p2 < ga.

(ii) Let (gn)nen be a sequence in SE(R?N RY) converging to some function g
in (GQ:(RN),a@@). Then, for any I = [q1,G2], ¢1,q2 € Q and j € N one

has

P2
lim sup / (90 (t,2(t), u(t — 1)) — g(t, z(t),u(t — 1))] dt| = 0,
T ()ekt, u()ekit 1

whenever py, p2 € Q and 1 < p1 < pa < qa.

Then, we are finally ready to relate the topologies Tg and Tge (resp. og and
0'@@) on G¢.

Proposition 5.6. Let © be a suitable set of moduli of continuity as in Defini-
tion 2.3. Considered the topologies To, 0o, Toe and oge introduced in Definitions
2.9, 2.10, and 5.4, respectively, the following order relations hold in &€

To < Too and oo < 0pe.

Proof. We will complete the proof for the weak topologies because the other one
is analogous (and simpler). Furthermore, in order to avoid any abuse of notation,
within this proof we will write

Kion ={& 1 — B CR*™ | [£(t) — &(s)| < 65(|t — s]), for all t,5 € I},
ICJI-,N ={n: I = B; CRY | |n(t) —n(s)| < 6’11.(|t —sl), forall t,s € I}.
Firstly, let us consider a sequence (f,,)nen in S€ converging to some f € &€

with respect to the topology oee and prove that one also has f,, =% f asn — 0o.
To the aim, fix I = [q1,q2], (1,92 € Q, and 7 € N and consider J = [p1, pa],
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p1,p2 € Q such that I C Jand U (I —1) C J — 1. Then, one has

sup
(2()u(-)ek]

/ [fu (t, (), u(t)) — f(t,2(t), ul(t))] dt‘

1

< sup
2()EK] n» u()ER]

[t ®,0(0) = 10,200, 000)] dt] 53)

1

< sup
2()eK] v, u(-)ek !

/[f"<t7x(t)vu(t - 1)) - f<t7$(t)vu(t - 1))] dt‘

I
where the last inequality is obtained up to extending by constants to J the func-
tions z(-) € ’Cf,m and up to changing any function u(-) € ICiN for its translation
@:I1—1— B; C RY so that a(t) = u(t+1) for all t € I —1, and up to extending
such functions w by constant to J — 1. Now, by assumption we have that

n—oQ

sup — 0,

z(-) K] u(-)GIC;{]_Vl

[][fn(t,x(t),u(t S 1) — (b a(t),ult - 1))] dt

and thus, passing to the limit as n — oo in (5.3), we obtain the result thanks to
Lemma 5.5(ii) and recalling that I C J. O

Remark 5.7. Consider any dense and countable set D C RY, and any pair ©
and © of suitable sets of moduli of continuity as in Definition 2.3 such that, for
any I = [q1, |, ¢1,92 € Q and j € N, one has

01(t) < 01(t), for all t € [0, 00).

Then, the following chains of order relate the topologies introduced in Defini-
tion 5.4 to some of the topologies presented in Section 2.2 when all of them are
considered on GE(R?N, RY):

op <Tp <Top <To <Toe <Tet < Top <Tp and (5.4)
5.4
op < oep < 0o < oee < 0e6 < Tos,

where, in particular, the order relations 7o < Tge and oo < oge hold true
thanks to Proposition 5.6. As a consequence, we have that some of the theorems
proved in Chapter 2 already give information about the new topologies introduced
in Definition 5.4. In particular, the results of propagation of the L],
and/or L}, -equicontinuity of the m-bounds and/or I-bounds from a set to its

-boundedness

topological closure contained in Propositions 2.26, 2.27 and 2.29 directly apply.
Furthermore, by checking the proof of Theorem 2.31, one immediately notice
that all the strong topologies in the first chain of (5.4) coincide on the subsets
of L&(R*Y RY) with L}, -bounded I-bounds. Consequently, analogous comments
hold for the results of relative compactness contained in Section 2.6.

In analogy of Proposition 2.26, we present a result of propagation of the
lo-bounds with respect to all the considered topologies.
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Proposition 5.8. Let T be any of the topologies depicted in (5.4), and whose
definitions are contained either in Section 2.2 or in Definition 5.4. The following
statements hold true.

(i) If E C 6€(R*N,RN) has L},,-
Ll

loc™

bounded ly-bounds then clsgemeny1)(E) has
-bounded l-bounds.

(ii) If f € SC(R*N,RYN) admits L;

we-bounded ly-bounds then also any g €
Hull(GQ(sz) T) (f) has Ll

io-bounded ly-bounds.

Proof. Let D be any countable dense subset of R*¥. By (5.4), if we prove the re-
sult for the topology op, then we have it for all the other topologies. Furthermore,
in order to simplify the notation, let

E = CIS(GQ(RN),JD) (E)

Consider f € E and let (f,)nen be a sequence in E converging to f with respect
to op. For any j,n € N let us denote by /() € L}, the optimal l-bound of f,
on B;. Consider t,h € Q, with h > 0 and (z,u), (x,u2) € B; N D. Then one has

t+h

[f(s xyuy) — f(s,mu9)]ds| <

t+h
‘ [ful(s,uy) — fu(s, z,ug)] ds| +

t+h

[f(S x,uy) — fols, x,u)] ds|+

t+h
‘ [ful(s,ug) — f(s,2,us)] ds|.

(5.5)

Notice that, since (f,)nen converges to f in (SGE(R*,RY), op), then the first
and the last integrals on the right-hand side of the previous inequality tend to

_ t+h
t

-boundedness of the l,-bounds we have that the set of positive

zero as n — 0o. Moreover, one has

t+h
%‘ / [fn(s,2,u1) — fuls,x,u2)] ds

and by the L}
measures {\, | n € N} with densities {l/(-) | n € N} is relatively compact in

loc™

M™ with respect to the vague topology (see Remark 2.21 and Definition 2.19).

Therefore, there exists M € M™ such that, up to a subsequence, one has M\, LAY
Moreover, recall that by the regularity of A\, one has

N ([t,t + h)) :inf{/R¢(s) dN (s) ‘ € CLMR), p=11in [t,t+h]}.

Hence, dividing both the sides in (5.5) by h, taking the limit as n — oo and
gathering all the previous reasoning, one has

N ([t,t + h])

‘/ (s,z,u1) — f(s,x,uz)]ds| <
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Now, consider t,h € R, with h > 0, and let (s,,)nen and (¢, )nen be two sequences
in Q such that, asn — oo, s, | t and t,, 1 t+ h, respectively. By (5.6), applied on
the intervals [s,, t,], and noticing that N ([s,,,)] < M ([t, ¢+ h]) for every n € N,
one can write

1

h

N ([t, t + h])
h

|U1 —U,2|.

/n[f(‘g?xaul) - f(S,I,U2>] ds S

Hence, passing to the limit as n — oo and using the continuity of the integral,
one obtains (5.6) for every ¢, h € R with h > 0.

Now, by the Lebesgue-Besicovitch differentiation theorem (see |1, Theorem
2.22, p.54]), there exists I/(-) € L, such that

loc

N[t h)

—
lim h =U(t) forae teR, (5.7)

and [(-) is the density of the absolutely continuous part of the Radon-Nikodym
decomposition of M. Therefore, as h — 0 (see [24, Corollary II1.12.7, p.216]),
(5.6) becomes

|f(t,z,u1) — f(t, 2, u9)] <P (t)|uy —uy| for ae. t €R. (5.8)

The set R(x,u1,us) C R such that meas(R \ R(x,u,us2)) = 0 where (5.8) holds,
depends on x, u; and uy. However, since D is numerable, by simply intersecting all
the possible R(x, uy, us), with (x,uy), (z,us) € B;N D (there is only a numerable
quantity of them), one obtains a set By C R of full measure for which (5.8)
holds for all (x,uy), (z,u2) € B; N D. Nevertheless, (5.8) can be extended to all
(z,u1), (x,us2) € B; through the continuity of f with respect to the last variables;
which proves that the functions in F admit a Lipschitz coefficient in the third
variable.

Finally, we prove that E admits L} -bounded l,-bounds. For each f € E
and any j € N, let ljc be either, the optimal lr-bound of f on B’ if f € E, or
the lo-bound given by (5.7) if f € E \ E, i.e. the absolutely continuous part
of a limit measure. Moreover, for each f € E, let (f,)nen be a sequence in E
converging to f with respect to op. Consider j € N, r > 0 and ¢ € C such that

supp¢ C [-r — 1,7+ 1] and ¢ = 1 in [—r, ], then, we have

/ ' (t) dt < / o) (t)dt < lim [ ¢(t) 1 (t) dt

n—o0 R

r+1 )
< SUp/ () dt < oo,
geE J —r—1

which ends the proof. O

Considered the different role played in delay differential equations by the first
N and the last N space variables of the vector field, and the notion of /; and [,
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bounds given in Definition 5.2, at this point we would like to see if it is possible
to deduce a result similar to Theorem 2.33, but just for the hybrid topologies
presented in Definition 5.4.

Theorem 5.9. Let E be a set in SE(R?*N  RN) with L. -bounded ly-bounds. If D

~

is any dense and numerable subset of RN, and © and © are any pair of suitable
sets of moduli of continuity (see Definition 2.3 ), then

(E, 7i1) = (E, 75) and ClS(@Q(R2N7RN)’7E)(E) = ClS(@Q(R2N7RN)’7—2)(E).

where Ty and Ty are any of the strong topologies introduced in Definition 5.4.
Furthermore, one also has that

(E,UGD) = (E,U@é) and  clS@e®2N ®B) 0op) (E) = clS@e®y, mY) 00s) (E)-

Proof. We will prove the case of the weak topologies and omit the proof for the
strong topologies because it is analogous and simpler. Moreover, in order to
simplify the notation, let us use the following symbols:

E@D = CIS(GC(R2N,RN),J@D)<E) and E@é = CIS(GQ(RQN,RN)J@@)(E)'

Thanks to Proposition 5.8, we know that Fgp has L} -bounded ly-bounds. In

loc
analogy with Theorem 2.33, we will complete the proof in two steps.

Step 1. Consider a set E; in S€(R*N RY) with L}, _-bounded m-bounds and
L} -bounded ly-bounds. Let (f,)nen be a sequence of elements of E; converging
to some f in (GCR* ,RY), 0ep). We shall prove that (f,)nen converges to f
in (SQ(RQN ,RYY, 0@(:)) where © and O are suitable sets of moduli of continuity.
Fix a compact interval I = [q1, ¢o], with ¢1,¢2 € Q, j € N and, for any n € N,
let m¥(-) € L}, and [%(-) € L, be respectively the optimal m-bound and the

optimal ly-bound of f,, on By; C R*". By the L},.-boundedness of the lr-bounds,
there exists p > 0 such that

sup/lij(s)ds<p<oo.

neN J T

Fix € > 0 and consider § = £/3p. Since B; C RY is compact, and D is dense in
RV, there exist uq,...u, € D such that

Bj C U B(g(ui),

=1

where Bs(u) denotes the closed ball of RY of radius § centered at u € RY. For
i=1,...,v, let us consider the continuous functions ¢; : RY — [0, 1], so that

supp(¢;) C Bs(u;) and Z@(U) =1 Vue B;,
i=1
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and define the functions

v

(t,x,u) Z¢Z ) fu(t,x, u;) and fr(t,x,u) = Z(bi(u)f(t,:c,ui).

i=1

Denote by Kf and /@f.—l the compact subsets of C'(I, B;) and C(I—1, B;), with
B; C RY, admitting 9; € 0 and QA]I e @, respectively, as moduli of continuity.
For any z(-) € K} and u(-) € I/C\JI-_1 one has

[ st - 1) = 50000, )]t
< | [ [ (tat0hate = ) = (e ute — 1)
| [ Uz uatt)ate = ) = 7 (et ute - 1)t
] [ 17 (ot ate = ) = fleoo).ute - 1)t

(5.9)

Let us separately analyze each element in the sum on the right-hand side of the
previous inequality. As regards the first one, we have that

’/ fa(ts (), ult = 1)) = f*(tvx(t)w(t—l))]dt‘

Z@ (t = 1)) [fa(t,2(t), ult — 1)) — fult, z(t), u;)] dt‘
< / Z@(u(t — 1)) () Ju(t — 1) — wi| dt
/Z@ (t—1))1%(t) §dt = —/W

where the first mequahty holds thanks to Definition 5.2 and recalling that for any

(5.10)

colm

t € I, one has that } ), u(t —1) )‘ < 2j. Similar reasonings apply to the third
element of the sum in (5.9): in particular, recall that, due to Proposition 5.8, the
l>-bound for f on Bsy;, namely [%(-) € L}, satisfies

/le(s)ds < p < 00.
I
Finally, let us deal with the the remaining integral in (5.9). By the uniform
continuity of the functions ¢;(-) on B; C RY, and recalling that all u(-) € /C]Ifl
share the same modulus of continuity, we have that for the given € > 0 there
exists § > 0 such that for all i € {1,...,v} one has

3

9

Vs,tel—1,Vu(-) € I@f.—l Cos—tl <6 = gi(u(s)) - ¢,(u(t))| < 907
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—max{/m t)dt, sup/mij(t)dt}<oo,
neN

and by ma;(-) € L}, we denote the optimal m-bound for f on B¥ C R?*" whose
existence is guaranteed by Proposition 2.26 and (5.4). In particular, the constant
pm is well defined thanks to the L}

loc™

where

-boundedness of the m-bounds of the functions
in E;. Thus, let us consider a d-partition of I, i.e. 7,...,7, € I N Q such that
I=[mn,7)and 0 < 741 — 7, < J, with k=1,...,7— 1, and a function

¢t KI7V— L®(I,R)  defined by & (u(t — 1)) Zgzﬁz (7h = 1)) X (rpresn) ()

Notice that, for any u(-) € Ejf-_l and any i = 1,...,v one has
- 5
i (u(- = 1)) = @i (u(- — 1) | ooy T

Now, we have

’/ (t,2(8), ult — 1)) — f*(t,x(t),u(t—l))]dt’

u(t —1)) [fult, 2(t),w) — f(E,x(t), )] dt’

u(t — 1)) [falt,z(t),w) — f(t,2(t),w)] dt’+
£ /I (o2, )| [0 (ult — 1)) — Gofult — D)) |de+ (5.11)
+ Z/‘f(t,x(t),ui)‘ |63 (u(t — 1)) — ¢y (u(t — 1)) | dt

< Zl |: Z¢Z Tk — 1
+ 2 pp || (u(- = 1)) — i (u(- — 1))||L°°(1)}

/ml[fn(t,x(t),ui) — f(t,2(),u)] dt‘ N

Tk

By the convergence of (f,)nen to f in (S€(R*Y,RY), 0gp) and considering that
we are only using a finite number of points u;, with ¢ = 1,...,v, there exists
ng € N such that, if n > ng, then for allz =1,... ;v and for all k =1,...,n one
has

/ml [ (b, 2(t), i) — f(E,2(t),u;)] db| < —

" vy’

Thus for n > ng, (5.11) becomes

e 2VUppE €

‘/ (t,z(t), u(t — 1)) — f*(t, 2(t),u(t — 1))}dt‘ <gT =3 (5.12)

Ovpm
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From (5.9), (5.10) and (5.12) we obtain that the sequence (f,,)nen converges to f
in (S¢(R?*N,RY),008), and thus the equivalence of the topologies of type cep
and oge on Ej.

Step 2. Now, fixed a dense and countable set D C RY and a pair © and
O of suitable sets of moduli of conitnuity, assume that (f,).en is a sequence of
elements of F converging to some f in (GQ(RW ,RY) og D). In order to complete
the proof, we prove that (f,)sen converges to f in (SE€(R*M,RY) 00p). In
particular consider uy € B; N D C RY and define the functions

h(t,z,u) = f(t,z,u) — f(t,x,up) and
ho(t,x,u) = fo(t,z,u) — fu(t,z,ug), Vn € N.

Notice that the set {h, | n € N} U {h} has L}, -bounded m-bounds. Indeed, for
any j € N, considered (z,u) € B; C R*" one has that for any n € N

[ty 2, w)| = [ fu(t, 2, 0) = fult, 2, u0)] < B (E) [u—uo| < (5 +1)1(1)

for almost every ¢t € R, where I/(-) € L] is the optimal ly-bound for f, on
B; C R*N. Additionally, one can repeat analogous arguments for the function h
obtaining

|h(t,z,u)] < (j+1)I(t) for ae. t €R,

where 1/(-) € L}, is the optimal l»-bound for f on B; C R*N. Thus, the L} -

boundedness of the l;-bounds for the set E gives Lj -bounded m-bounds for

{h,, | n € N} U {h}. Moreover, we also have that the same set has L] -bounded

loc

l>-bounds. Indeed, for any j € N, considered (x,u;), (x,u2) € B; C R*N one has
that for every n € N

|hn(t’xvu1) - hn(t,fL‘,UQN = |fn(t7$au1) - fn(taxaUQ)l S l%(t) |u1 - u2|7

for almost every t € R, and one can repeat analogous arguments for the function
h obtaining

\h(t,2,uy) — h(t, 2, us)| < VP(t) |ug —up| for ae. t €R.

Therefore, from the L], -boundedness of the ly-bounds for the set E one has that
{h, | n € N} U {h} also has L}, -bounded ly-bounds. Finally notice that (h,)nen
converges to h in (GE(R*¥,RY), 0ep). Indeed, fixed I = [q1, ¢o], with ¢1,¢2 € Q
and j € N, for any z(-) € Kj and u € D we have

< ‘/I[fn(t,:c(t),u) —f(t,x(t)7u)]dt' N

J15(00),0) = 510) )

1

and since (f,)nen converges to f in (SE€(R*¥,RY),0¢p), then the integrals on
the right-hand side of the previous inequality go to zero as n — oo. Therefore,
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the assumptions of step 1 apply to the set £y = {h,, | n € N} U{h} and thus one
has that (h,)nen converges to h in (S€(R?*N,RY), 0es). Hence, for each interval
I = [q1, 2], with ¢1, g2 € Q and for each j € N one has

/I[fn(t,l’(t),u(t)) — f(t7$(t),U(t))]dt'

sup
z()eK], u(-)eki™!

< sup
o(-)eK], u(-)eki™!

/[fn(t,w(t),uo) — f(t,x(t), uo)] dt

1

/[hn(t,x(t),u(t)) — h(t, z(t), u(t))] dt’

1

+ sup
J?(')EKJI-

9

and the right-hand side goes to zero as n — oo because (h,),en converges to h
in (GE(R*,RY),006) and (f,)nen converges to f in (SE(R*Y,RY),00p). As
a consequence (f,)nen converges to f in (GQ(RQN (RN ),0@@) and, thus, all the
topologies of type op and og coincide on E. O]

Remark 5.10. As a consequence of Theorems 5.9 and 2.33, and recalling that
L} ~bounded l-bounds imply L; -bounded ly-bounds, one immediately notice
that all the weak topologies in the second chain of (5.4) coincide on the subsets
of LE(R*N RY) with L}

e-bounded [-bounds. Consequently, the results of relative

compactness contained in Section 2.6 apply also to the weak hybrid topologies
on the subsets of £&(R?*YN RY) with L}, -bounded I-bounds.

loc

5.3 Continuity of the semiflow

This section will include some results allowing to construct a continuous skew
product semiflow for Carathéodory DDEs. Depending on the properties on the
vector field of the initial Carathéodory problem and on the topology used, several
different results can be written.

5.3.1 Continuity with respect to 7z and 7p

The first results of continuity for skew product semiflows that we present, take
into account two topologies that have been introduced in Chapter 2: 7Tz and Tp.
Notice that the content of Section 2.7 already solves the problem of the continuity
on the base for this topologies and thus we can directly face the continuity of the
solutions with respect to initial data and vector fields.

Theorem 5.11. Consider a sequence (fy)nen in LE(R?*N RY) converging to f
in (SE(R*™N,RY), Tg) and (¢,(-))
with the notation of Theorem 5.1,

I’(‘, f'n? ¢n) ”_”X)} LE’(', f; ¢)
uniformly in any [Th,Ts] C It4.

nen C converging uniformly to ¢ € C. Then,
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Proof. Following the notation of Theorem 5.1, let Iy, be the maximal interval of
definition of the solution of the delay differential equation & = f (¢, z(t), z(t — 1))
with initial data x(t) = ¢(t) for all t € [—1,0]. Let us consider the interval [—1, /]
with 8 < by 4. Denote

0 < p=1+max{ (I6allze(r00) e 120 S O} (5:13)

and define
x(thfnvqsn)a lf _1 §t<Tn7
zp(t) =
Ty, frybn), if T, <t <B.

where T,, = sup{t € [—1,0] | |z(s, fn,on)| < p, Vs € [—1,t]}. Notice that by
(5.13) and by the continuity of (:c(, I, (bn))neN,
n € N. In particular notice that (2,(+))nen is uniformly bounded and let j € N be
so that p < j. If t; < 9, and in particular they are both in the same subinterval,

either [—1,0), [0,T},) or [T, (], then

we have that 7,, > 0 for any

‘(bn(tl) - ¢n<t2)‘ if t17t2 € [_170)7
|2 (t1) — 2n(t2)] < /t2 fa(s, 2a(8), 2a(s — 1)) ds| if t1,t € [0, T5,),
0 1 iftl,tQG[Tn,ﬁ].

In order to study the equicontinuity of the functions z,(-), with n € N, we can
assume, without any loss of generality, that ti,¢5 always belong to the same
subinterval, either [—1,0), [0,7},) or [T}, 5]. Let us fix ¢ > 0 and analyze each
case separately.

Case 1: ty,ty € [—1,0). Since ((bn(-))neN converges uniformly to ¢(-) on
[—1, 0], there exists ng € N such that if n > ng, then ||¢,(-) = d(-) || oo (1,0 < €/2.
Using the continuity of the functions ¢, (:) for n = 1,... ,ng, we find a §; > 0
such that for every n = 1,...,ng and t1,t, € [—1,0), if |t; — t3| < 07, then
|dn(t1) — @n(t2)| < €. Therefore, irrespectively of n € N, if ¢;,t, € [—1,0) and
|t1 — to| < 61, we have |¢,(t1) — ¢n(ta)] < e.

Case 2: t1,ty € [0,T,,). Denote by my(-) the optimal m-bound of f on By; C
R2¥. Then, we have that

|2n(t) — zn(t2)] <

/ 2 fa(8,2n(8), zn(s — 1)) ds

t1

t2

< /2 !fn(s, 2n(8), zn(s — 1)) — f(s, 2n(8), zn(s — 1))| ds + t my(s)ds

15
< /0 ‘fn(s,zn(s), Zn(s — 1)) — f(s, 2n(8), zn(s — 1)) ‘ ds + my(s)ds.

t1

For the given € > 0, since (f,)nen converges to f in (£E(R* RY) Tpg) and
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(zn('))neN is bounded, one has that there exists n; € N such that, if n > n; then

p €
sup / ‘fn(s,x(s),u(s)) — f(s,x(s),u(s)) ‘ ds < 3
(z(-),u(-))€C([0,8],B25) 40

On the other side, for n = 1, ..., ny, by the continuity of the integral, there exists
a 52 > 0 such that if ti1,t € [O,Tn) and |t1 — t2| < 52, then

/2 |fn(s,2’n(5>’zn(5 — 1)) — f(s,zn(s),zn(s — 1))}ds < %, n=1,...,n,

t1

and also
to c
/ mys(s)ds < —.
t1 2

Hence, irrespectively of n € N, if ¢1,t5 € [0,T,,) and |t; — ta]| < 02, we have that

/ 2 fa(s,2n(8), 2n(s — 1)) ds| < e.

t1

Case 3: t1,ty € [Ty, ]. This case is trivial.

Therefore, taking § = min{d;, d2} we have that for all n € N if |[t; — 5] < 0
then |z, (t1) —zn(t2)| < €,1.e. (2n(*))nen is equicontinuous. Thus, applying Ascoli-
Arzeld’s theorem we obtain a subsequence, that we keep denoting with the same

indexes, converging uniformly to some z(-) € C([—1,3]). We claim that z(-)
coincides with z(-, f, ¢) on [—1, 8]. Trivially, z(-) = ¢(-) on [—1,0]. Define

Ty =suplt € [-1,8] | |2(s)| < p—1/2 Vse|-1,]}, (5.14)

and notice that Ty > 0 because (¢n(-)), oy converges uniformly to ¢ in [—1,0]

and z(-) is continuous. Moreover, from the uniform convergence of (z,(-))_ oy O

z(+) in [—1, 8], we have that there exists ny € N such that if n > ng, then
lzn(t)] < p—1/4  Vte[-1,Tp.

Therefore, for any t € [—1,7Tp] and for any n > ng one has z,(t) = z(t, fn, n),
i.e., if n > ng, then

) if t € [~1,0)

t 5.15
0) + /0 fa(ss2n(8), zn(s — 1)) ds if ¢ € [0, Ty)]. (5.15)

Pn
Zn(t) =
(t) b

Now consider the bounded set B C C([0, Tv], B;) x C([—1,Tp — 1], B;) given by

B={(z0(-),2a(- = 1)) [In € N}U{(2(-),2(- = 1)) } .
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Then, for all t € [0, Tp], we have that

/0 fn(s, 2n(8), zn(s — 1)) ds — /o f(s, 2(s),2(s — 1)) ds

< /0 ‘fn(s,zn(s), Zn(s — 1)) — f(s,zn(s), Zn(s — 1)) ‘ ds
+/0 |f(s,zn(s),zn(s — 1)) — f(s,z(s), z(s — 1))| ds (5.16)
< s R CECs = ) = £ (5. Cls 1) ds
€()¢(-—1)eBJo

t
12z — 2Ol vt / 1y(s) ds,

where [;(-) € L}, is the optimal [-bound for f on By; C R*. In particular,
when ¢ € [0, Ty] N Q, the right-hand side of the previous inequality goes to zero
as n — oo because (f,)nen converges to f in (£€(R*Y RY), Tp) and (Z"('))neN
converges uniformly to z(-) in [—1,5]. Then, thanks to (5.16) and to the fact
that (qbn(-))neN converges uniformly to ¢ € C, passing to the limit in (5.15), we
have that

o(t) if t € [-1,0)

) = ¢(0) + /Otf(S,z(S), (s —1))ds ift€[0,T]NQ.

(5.17)

As a matter of fact, the formula in the second line of (5.17) holds for any ¢t € [0, Tp)
thanks to the continuity of z(-) and the continuity of the integral. Therefore, z(-)
coincides with z(-, f, zo) on [0, Tp).

Moreover, we claim that Ty = 8. Otherwise, by (5.14) and by the continuity
of z(+), one would have |z(7y)| = |=(Tb, f, ¢)| = p—1/2, which contradicts (5.13).
Hence, Ty = (3, as claimed, and thus for any ¢ € [0, 3] we have that (¢, f, ¢) = 2(?)
and z(t, fn, &n) = 2,(t) for any n € N, which concludes the proof. ]

Theorem 5.12. Consider E C £E(R?*N RY) with LI -bounded l-bounds. If
(fa)nen is a sequence in E converging to f in (SE(R*N RY), Tp) and (¢"('))neN
is a sequence in C converging uniformly to ¢ € C, then, with the notation of

Theorem 5.1,
CC(', f’m ¢n) TH—OO> I(') f7 ¢)
uniformly in any [Th,Ts] C It 4.

Proof. This result is a direct consequence of Theorem 5.11 and Theorem 2.31. [

As a consequence of Theorem 5.11 and Theorem 5.12, together with Re-
mark 2.41 and Corollary 2.42, one can deduce a first result of continuity of the
skew-product semiflow composed of the time translation of the initial vector field
and the solutions of the respective delay differential equation.
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Consider f € £&€(R?*Y,RY). With the notation introduced in Theorem 5.2

let us denote by Up the subset of R x Hull(ge 75,)(f) x C given by

Up = U {(t>g7¢) | te [g7¢}7

g€Hull g¢ 75)(f)
peC

Y

and by Up the subset of R x Hull(ge 75,)(f) X C given by

UD: U {(tvgv¢) |t€]97¢}'

gEHuH(EC,TD) (f) ’
peC

Theorem 5.13. Consider f € LE(R?*N RY).
(i) The set Up is open in R x Hull(ge 75,)(f) x C and the map
II: Ug C R x Hu11(£¢7TB)(f) xC — HHH(QQTB)(]C) x C
(tagu (b) = (gt;xt<'7g7¢))

defines a local continuous skew-product semiflow on Hullge 75,y (f) % C.

i) If additionally f admits LY -bounded l-bounds, then the set Up 1is open in
( ) loc
R x Hull(ge,7,)(f) x C and the map

II: UD CRx Hull(gg’TD)(f) xC — HUH(S@,TD)(f) x C
(t7g7¢> = (gtaxt('7g7¢>)
defines a local continuous skew-product semiflow on Hullge 7,,)(f) % C.

Proof. The proof is a direct consequence of Corollary 2.42, of Theorem 5.11 and
of Theorem 5.12. O

5.3.2 Continuity with respect to 7gp, Top and ogp

As one can easily check, the results contained in the previous subsection are
mainly based on the ones presented in Chapter 3. As follows, we want to inquire
into the new topologies presented in Definition 5.4 and see which advantages they
have with respect to 7Tz and Tp. As a first step we need to prove the continuity
on the base for such hybrid topologies.

Theorem 5.14. Let © and © be suitable sets of moduli of continuity and D a
dense countable subset of RV,

(i) The map
II:Rx RN, RY) — e¢(R*N,RY), (¢, f) =1t f) = fi,

defines a continuous flow on (SQ:(RQN,RN), T), with T € {Ten, Tos, Top}-
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ii) Moreover, if E C £E(R?*N RY) has L -equicontinuous m-bounds and it is
loc
such that f € E implies f; € E for allt € R, then the map

I:Rx E— E, (t, f) = 1L(t, ) = fr,

defines a continuous flow on (E, o), where o € {008, 00p}-

Proof. Let us firstly deal with the case (SQ(RZN RN, 7[9@). We separately deal
with the continuity with respect to f and with respect to ¢, and eventually gather
them together.

Let (fn)nen be a sequence in £€(R*Y RY) converging to some function f
n (LE(R?*M,RY),Toa). We prove that (f,); — fi in (LE€(R*N,RY), Tos) as
n — 0o, uniformly for ¢ in a compact interval. Consider I = [py,ps] and J =
[q1, q2] such that py, pa, q1,¢2 € Q and fix t € J. Moreover, for any j € N consider
Kl ICJI-J“], I/C\Jl-’l and I/C\JI-’HJ as in Definition 5.4. Notice that z(-) € K} implies
z(-—1t) € ICJ”J up to a suitable extension by constants of the function (- — )

in I + J, and that similar reasonings apply to I/C\jl-*l and I/C\]I-’HJ . Then

sup /‘ fa)e(s,2(s),u(s — 1)) — fi(s,2(s),u(s — 1)) |ds

(VeKl,u(-)eki~"

= sup | fa(r,a(r —t),u(r —t = 1)) = f(r,az(r —t),u(r —t —1))|dr
o(-) ekt u()eki 1 I+t
< sup ‘fn(r,:n(r),u(r — 1)) — f(r,x(r), u(r — 1)) ‘dr,

o( K u()eki I JI+d

(5.18)

and taking the limit as n — oo we have that the right-hand side of (5.18) goes to
zero, since f, ~—— f in (£&(R*,RY), Tog). Therefore, one obtains the aimed
continuity in the first variable, uniformly for ¢ in a compact set. Notice that,
with an analogous reasoning, one obtains the continuity of II with respect to the
second variable, uniformly for ¢ in a compact set, for any of the strong or weak
hybrid topologies cited in the statement.

Next, we prove the continuity with respect to the first variable; in other words
that the map ¢ — f; of R into (L&(R?*N,R"), 7o) is continuous. Consider
f € Le(R?N RYN), an interval I = [a,b], with a,b € Q, and t € R fixed. We aim
to prove that for any couple of compact sets ICJI- and IEJI ~! as in Definition 5.4, we
have that

lim sup / | frir (s, 2(5),u(s—=1)) = fi (s, 2(s), u(s—1)) |ds = 0. (5.19)

"0 a()ek] u(yeRI-1 I

Firstly, let us fix z(-) € Kf and u(-) € I/C\]I-’1 and prove that if 7, — 0 then

lim /’fHT" (s,z(s),u(s — 1)) — fi(s,z(s),u(s —1))|ds = 0. (5.20)

n—oo I
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Notice that, for all ¢ € R, fi(-,z(-),y(- — 1)) € L'({,RM™) and consider the
operator T, : L*(I,RM) — L'(R,RM), such that g(-) — Trg(-), where Tyg(-) is
defined by
g(s+71), ifs+7el
T,9(s) = {

0, otherwise.

By the continuity of translations in L'(I), see Castillo and Rafeiro [17, Theo-
rem 3.58, p.101], we have that, if |7,,| — 0 as n — oo, then for a given € > 0 there
exists 0 > 0 such that

sup || Tr, fe(n2() u(- = 1)) = fe( () uC = D) ||,y <e-

|Tn|<d

Now, for any n € N define a,, = max{a,a — 7,} and b, = min{b,b — 7,,}, and
consider ng € N so that for any n > ng we have |r,| < . Therefore, for any
n > ng the following chain of inequalities holds

||ft+rn('al'(')au(‘ —1) = fi(2(),ul- = 1)) HLl(I)
< ||Tmft('al’(')au(‘ —1) = e x()u(- — 1) )HLl(I)

+ Hft+rn (,a:(),u( ) Tfnft( (- 1)) HLl(I)
< e+ Hft+rn (,m(),u( ) Tnft( (- 1>) HLl(I)
bn
< | fi(s + 7o, 2(s),u(s = 1)) = fu(s + T, x(s + 1), u(s + 7, — 1)) | ds
[ Tats + rmatohats = )las + [ 5o+ )05 - )] s
abn-i-'rn '
< e +/ X |ft(r,x(r — Tp)su(r — 7 — 1)) — ft(r,:v(r),u(r - 1))| dr
+ /{Hm ‘ft(r,x(r — 7)), u(r — 7, — 1)) ‘ dr

b+7n
+/ }ft(r,x(r—Tn),u(r—Tn—1))‘d7‘=5—|—]1+]2+_73.
b

n+Tn

As regards I, notice that, up to extending the functions z(-), u(-), (z(-— Tn))neN
and (u(-— 7, — 1))71eN by constants to an interval J containing I +[—d, 0] we have
that

I, < /J |ft(r,$(r — Tp)su(r — 7 — 1)) - ft(r,:n(r),u(r - 1))| dr
< /Jl?j(r)}(:c(r — 7)), u(r — 7, — 1)) - (x(r),u(r — 1))| dr (5.21)
< H (l’( - Tn)au(' = Tn — 1)) - (x(),u( - 1)) HLOO(J) /]lfj(r) d?”,
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where [%(-) denotes the optimal I-bound for f on By; C R*N. The right-hand
side of equation (5.21) goes to zero as n — oo, due to the fact that

H (z(- = 70),u(- = 7 = 1)) = (z(-),u(- — 1)) HLOO(J) 27%0.

As regards I, let m* be the optimal m-bound of f on Bs; and notice that the
following chain of inequalities holds

a

I, < lTn}ft (r,z(r — 7),u(r — 7, — 1)) ‘ dr < / mtﬂ(r)) dr,

a—|7n|

and the integral on the right-hand side goes to zero as n — oo, thanks to the
absolute continuity of the Lebesgue integral. Similar reasonings apply to I3.
Therefore, for any fixed t € R, z(-) € K} and u(:) € I/C\Jlfl we obtain the limit
n (5.20). Next we check that such a convergence is uniform in K} and lejl-’l.
Otherwise, it would exist an ¢ > 0, a sequence (xn())n oy I IC]I. , a sequence

(un(-))neN in 16]{—17 and a sequence (7,)nen in R converging to 0, such that for all
neN

/I|ft+Tn (8, 2n(s), un(s — 1)) = fi(s,zn(s), un(s — 1)) | ds > e. (5.22)

However, being IC]I and I%f ~! compact, there exist subsequences of (xn( -))neN and

(un( -))neN, which we keep denoting with the same indexes, converging uniformly

to some z(-) € KJ and u(-) € I/C\]I-’l, respectively, as n — oco. From (5.20), there
exists ng € N such that, if n > ng, then

Hft+rn('=x(')=“(' - 1)) - ft(,x(),u( N 1))HLl(I) <

Then, recalling that [%/(-) denotes the optimal I-bound for f on By C RV,
considered ¢ > 0 such that |7,| < 6 for all n € N| for all n > ng we can write

€< Hft+rn('a93n(‘)aun(‘ - 1)) - ft(‘» ( ) ( ))HLl(I)
< fotmn G n (st = 1)) = fopm, () ul = 1) [y
+}|ft+m(, (su- = 1) = fi(2()ul- = 1) [y
[ fe (2 ()ul = 1) = fi(mn()sual = D)

<e/24 || () un(- = 1) = (2(),ul- = D) | [/IZ?L (s)ds +/Iz§j(s) ds]
<e/2+ [[(za()sunl- = 1) = (2()su( = D) [ ooy Q/IHM] 7 (s) ds.

(5.23)

DO ™

Moreover, since (asn(-))neN and (un(-))neN converge uniformly to z(-) € KI and

u(-) € lejl-’l, respectively, then there exists ny; € N such that, if n > n, one has

£

) = 1)) = @O0 = D) < 5
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where C' = 2f1+[755] 1/(s)ds. Therefore, for n > max{ng,n,}, from the two
previous inequalities we obtain a contradiction which implies the uniform limit

n (5.19).

In order to conclude the proof, consider (f,)nen C LE(R?*Y , RY) converging
to some f in (EC(RQN,RN),T@@) and (t,)nen C R converging to some t € R.
Fixed j € N, I = [q1, q2] with ¢1,¢2 € Q, and ICJI and ICJI-_1 as in Definition 5.4,
recalling that the limit in (5.18) is uniform for ¢ in compact intervals, we have
that

lim sup /‘(fn)tn (s,2(s),u(s = 1)) = fi(s,z(s),u(s — 1)) | ds

"0 2 (e u(-) ekl

< lim sup /’ fn) tn s, x(s),u(s — 1)) — fu, (s,x(s),u(s — 1))’ds
’CI 1

n—oo EICI u()e
+ lim sup /‘ftn s,x(s),u(s — 1)) — fi(s,z(s),u(s — 1)) | ds = 0,
o(-) ek, u(-)eki ™!

which ends the proof for the topology Tes.

The proof for the topology Top can be easily deduced from the previous one
and thus we skip it. As regard the topology Teop, notice that we can still use
the same arguments till formula (5.22) except fo the fact that now the sequence
(un(-))neN is only bounded, that is for all n € N one has u,(-) € C(I — 1, B;),
and thus it does not necessarily admit a converging subsequence. Therefore, we

change the proof as follows. Denote by 7 (-) € L] the optimal /;-bound for the

loc
function f on By; C R*N. Then we can write

e < [ ferm (o n()sun- = 1)) = files () - = D) gy
< ||ft+7n (~,xn(-),un(- - 1)) - ft+rn('7$(')aun(' - 1)) HLl(I)
+ Hft+fn('ax(’>7un(‘ - 1)) - ft(',ﬂf(‘),un(- - 1)) HLl(I)
Al = 0) = Gzl = D)y, 62

= ”x”(> o x(')||L°°(I) {/j (lfj)t_”n(s) ds + /I (l%j)t@) ds}
et (20, 0 = 1)) = £ 20, 1 = 1)

Let us analyze separately the two elements of the sum on the right-hand side
of the previous chain of inequalities. As regard the first one, recall that we can
consider ¢ > 0 such that |7,| < d for all n € N, and thus write

0 = O] s { /1 (), (s)ds + /I () (s) ds}

| (5.25)
<2ru) =2 Ollpmgy | (@) ()5 <2
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where the last inequality is true recalling that (a:n(~))n€N converges uniformly to
(-) € K} and thus there exists ng € N such that for n > ng one has

Hxn() - :E(-)HLOO(I) <50 where C = 2/1+[5,5] (llj)t(s) ds.

Furthermore, as regard the second element of the sum on the right-hand side of
(5.24), one has

frar (o) = 1)) = £l 2 ()l = D) gy
< HftJrfn('ax(‘)aun(‘ - 1)) - ft+Tn('75C<' + 7o), Un(- — 1)> HLl(I)
|| frira Co (4 7)) un (- = 1)) = fi( 2(), un(- — 1))HL1(1) (5.26)

< ) = 2+ )l po /I+[—65] (1) (s) ds

+ Hft—i-ﬂ—n('a‘r(' + Tn)ﬂun(' - 1)) - ft(vx()vun( - 1))HL1(I)'

Since (7,)nen in R converges to 0, there exists n; € N such that for n > ny one

has
€

Hx() — (- + T")HLOO(I) < 10 (5.27)
where, as before, C' = 2f1+[_575} (lfj)t(s) ds. Moreover, define f € LC(RY,RY)
by N

f(s,u) = f(s,2(s),u).
Therefore, by the continuity of the time translation for (2(’: (RN RN ) , 773) given
in [41, Lemma II.1, p.24] one has that

n—oo

ﬁ+m D f; with respect to the topology Tz.

In particular, considering an interval J C R with extrema in Q such that J
contains the intervals I, I — 1, and I + [—4, ] and up to extending the functions
in IC§ and lC;‘l by constants to the interval J, one has that there exists no € N

such that for all n > n, one has
‘}ftJrTn('vx(' + Tn)uun(' - 1)) - ft(vx()aun( - 1))HL1(1)

< 30 A (4 ) u0) = fil w0 u0) g

u(-)eC(J,B; (5.28)

= sup ) Hﬁ—i—m(au(» - ﬁ(?u())”Ll(J) < 5/4

u(~)€C’(J,Bj

Therefore, gathering together (5.24), (5.25), (5.26), (5.27) and (5.28) one obtains
the following contradiction

€ < HftJrrn(‘axn(')aun(' - 1)) - ft(7xn(>’u”( - 1)) HLl(I) <&
Consequently, we obtain the uniform limit in (5.19). The joint continuity for the
two variables is then proved exactly as in the case of the topology Tes.

The proof for the weak hybrid topologies cog and ocgp can be deduced from
the one of Theorem 2.43 with minor modifications. O
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Theorem 5.15. Consider E € £E(R?*N RY) with L}, -equicontinuous m-bounds
and let © be the suitable set of moduli of continuity given by the m-bounds as in
Definition 3.2. Moreover, let D be any dense and countable subset of RY. With
the notation of Theorem 5.11, the following statements hold:

(1) if (fau)nen is a sequence in E converging to f in (LE(R?N,RY), Top) and
(¢n(~))n€N is a sequence in C converging uniformly to some function ¢ € C,
then

‘T('a.fnagbn) 7H_OO> $('af7 ¢)
uniformly in any [—1,T| C Iy 4;

(ii) if E has also Li, -bounded la-bounds, (f)nen is a sequence in E converging
to f in (SCRN,BY), Top) and (6,())
uniformly to ¢ € C, then

neN 1s a sequence in C converging

n— o0

‘7:('7 fn7 ¢n) - .’17(', f’ ¢)
uniformly in any [—1,T] C Iy y;

(iii) if £ has also L}, -bounded ly-bounds, (fn)nen 8 a sequence in E converging

to f in (SE(RN,RY),00p) and (¢n(-))
uniformly to ¢ € C, then

neN 1s a sequence in C converging

n— oo

‘1.('7 fn7 (bn) — .fL'(', f’ ¢)
uniformly in any [—1,T] C Iy y;

Proof. Firstly, notice that once we prove (i), we immediately obtain (ii) thanks
to Theorem 5.9.

As regards both (i) and (iii), proceed as in the proof of Theorem 5.11 till
Case 1 included. Case 2 has to be treated differently, yet notice that in both
the cases, for each n € N, denoted by m?(-) the optimal m-bound for f,, on
By C R2N | one can write

/ 2 fn(s, 2n(8), zn(s — 1)) ds

t1

< /tz ‘fn(s, 2n(8), zn(s — 1))‘ ds < /:2 m (s) ds

t1

[2n(t1) = 2n(t2)] <

to
<sup [ mi(s)ds,
neN Ji,
and, due to the L; -equicontinuity of the m-bounds we obtain the result. The
rest of the proof is as for Theorem 5.11 with the exception that in order to pass
from (5.15) to (5.17) as n — oo, the limit has to be taken in the proper topology,
either Top for (i), or ogp for (iii). We shall treat the two cases separately and
with further details.
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(i) In order to pass from (5.15) to (5.17) as n — oo, we use the topology Top.
Notice that everything is consistent since z,(t) = x(t, fn, ¢,) for any t €
[—1,To] and n > ng, and (Z”('))neN
construction. Therefore, instead of (5.16), for all ¢ € [0, 75| NQ, we can write

is uniformly bounded in [—1,Tg] by

’/ Fa(5, 20(s), 2n(s — 1) ds—/tf(s 2(s),2(s — 1)) ds

< Seljcpofl /}fn s,x(s),u(s — 1)) — f(s,2(s),u(s — 1)) | ds
u(-)e ([ 1t 1],B5)

t

As said, the rest of the proof is as for Theorem 5.11.

(iii) In order to pass from (5.15) to (5.17) as n — oo, we should use the topology
oop. However, this does not allow to directly obtain the result as in case (i).
Yet, thanks to Theorem 5.9 we know that ogp coincides with any topology
of the type oga, where O is a suitable set of moduli of continuity. In partic-
ular, since (gbn(-))neN converges uniformly to ¢ € C, then by Ascoli-Arzela’s
theorem, there exists a shared modulus of continuity 6, € C(R*T,R*"). Let
us consider the following suitable set of moduli of continuity

6= {éj.(-) € C(R*,RY) | 6 (s) = max{eo(s),ej.(s)}},
Then, as said, since (f,)nen converges to f with respect to ogp, then it

also converges to f with respect to ogg. Therefore, instead of (5.16), for all
t € 0,5 NQ, we can now write

/0 fa (8, 2a(8), 2p(s — 1)) ds — /0 f(s,2(s),2(s — 1)) ds

< sup

x(-)GICE-O’t], u(~)6/€£-71’t71]

t

[ o661t = 1) = (s, u(s = 1) s

As said, the rest of the proof is, in both the cases, as for Theorem 5.11. O

As a consequence of the previous theorem, one can obtain a new theorem of
continuity of the induced skew product semiflow for the topologies Tog, Top and
oep, with © being a suitable set of moduli of continuity (see Definition 2.3) and
D a dense and countable subset of RY.

Consider f € £€(R*M RY) with L], -equicontinuous m-bounds, a dense and
countable set D C RY and let © be defined as in Definition 3.2. With the
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notation introduced in Theorem 5.1, let us denote by Uy, , the subset of R x
Hull( g 76 (f) % C given by

Z/{T@B - U {(t>g>¢) | le ]97¢}7

QEHU11(£Q‘,T@B)(f) ’
peC

by Uz, the subset of R x Hull(ge 7¢,,)(f) X C given by

Z/{T@D - U {(taga (b) | te Ig:fﬁ} .

g€Hulle¢, 75 1) (f) 5
peC

and by Uy, ,, the subset of R x Hull(ge 75,,)(f) X C given by

Uy = | {tg.0)[te .

geHuu(SG,a@D) (f) ’
ocC

Theorem 5.16. Consider f € LE(R* RY) with L}

loe-€quicontinuous m-bounds
and let © be defined as in Definition 3.2.

(i) The set Uy, is open in R x Hullge 75,y (f) X C and the map

uT@B C R x Huu(ﬂ@ﬂ'@f;)(f) xC — Hull(mT@B)(f) x C
(tvga gb) = (gtal‘t('aga Qb))

defines a local continuous skew-product semiflow on Hullge 75,y (f) % C.

If additionally f has L} -bounded ly-bounds, then the following statements hold

loc
true.

(ii) The set Uy, is open in R x Hullige 75,)(f) X C and the map

MT@D CRx Hull(m,T@D)(f) xC — Hull(£¢7T@D)(f) x C
(tugv ¢) = (gtwrt('vgv ¢))

defines a local continuous skew-product semiflow on Hullge 75,)(f) x C.

(iii) The set U,

JeD

is open in R x Hull(ge 5o,)(f) X C and the map

U,

00D

CRx HU.H(EQ(,@D)(]C) xC — HU.H(/QQUGD)(JC) x C
(t7g7¢) = (gtaxt('mga ¢))

defines a local continuous skew-product semiflow on Hull(ge 50,)(f) % C.



Conclusions

The theory developed in this work allows to extend the skew-product formalism to
Carathéodory ordinary differential equations and delay differential equations with
constant delay through the use of strong and weak metric topologies of integral
type. As aresult, one obtains a variety of tools from topological dynamics to study
the qualitative behavior of the solutions of such classes of differential problems.

As an example, the work includes several applications for Carathéodory ODEs
such as linearized skew-product flows, propagation of the exponential dichotomy
and of the dichotomy spectrum of a linear system and study of pullback and
global attractors, as well as some simple motivational examples taken from mod-
elizations of real phenomena, which aim to show the applicability of the theory.
Additionally, the thesis provides a rich description of the topological structure of
the considered spaces of Carathéodory functions (among which, some are new)
presenting, for example, characterizations of the classes of equivalences for func-
tions which differ on negligible subset of R x RY, propagation of properties on the
so-called m-bounds and [-bounds through the limits in the given topologies, and
sufficient conditions of relative compactness for subsets of Lipschitz Carathéodory
functions.

Having constructed several different skew-product flows also for Carathéodory
DDEs with constant delay, it seems natural that many of the previously cited
results could be possibly developed also for this class of differential problems and
thus we aim to include them in future publications. Furthermore, the theory
hereby developed offers many inspirations for a further investigation for both the
classes of problems. Among the many possible research directions for the future,
we like to mention applications in bifurcation theory, control theory, mathematical
biology and numerical analysis.
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Summary in Spanish

Un ejercicio elemental de anélisis matematico consiste en probar que, para cada
funcién continua f: D C R x RY — R el problema de Cauchy

i = f(t,z), x(to) =0, (S.1)

es equivalente al problema integral

t
z(t) = xo + / f(s,2(s)) ds. (S.2)
to
Sin embargo, gracias a la teoria de integracion de Lebesgue, es facil darse cuenta
de que la formula (S.2) tiene sentido para una clase de funciones mas amplia que
la de las continuas. Es decir, dado un intervalo I C R de manera que t, € I,
si uno busca una funcién z: I C R — RY que no sea necesariamente derivable
y satisfaga (S.2) en su intervalo de definicion, entonces se pueden relajar las
hipotesis sobre f a la integrabilidad local. El matematico griego Constantin

Carathéodory prob6 en [15] que, bajo las hipdtesis,

e f medible Borel,

e para cada conjunto compacto K C R" existe una funcion real m” € L,
tal que para casi todo t € R, se tiene

|f(t,z)| < m"(t) para todo z € K,

e para casi todo t € R, f(t,-) es continua,

cualquier problema de tipo (S.1) admite una solucién generalizada, es decir, una
funcién absolutamente continua, definida sobre un intervalo I C R que contiene
to, tal que (S.1) se satisface en casi todo punto de I o, equivalentemente, (S.2) se
verifica para todo punto de I.

Esa clase de problemas diferenciales toma su nombre de Carathéodory y ha
contribuido al enriquecimiento del campo de aplicacion de las ecuaciones diferen-
ciales tanto en los estudios tedricos como en los préacticos. De hecho, el desarrollo
de una teoria matemética consistente para ecuaciones diferenciales con campo
vectorial discontinuo ha sido, de alguna manera, impulsada por muchas de sus
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aplicaciones a problemas en teoria de control, en mecénica y en ingenieria eléc-
trica, donde el uso de interruptores, relés y senales digitales, no sélo es habitual,
sino incluso necesario para conseguir resultados 6ptimos (véase Bressan y Piccoli
[11], Brogliato [12]|, Clarke [19]).

El objetivo de este trabajo es aplicar herramientas de dinamica no auténoma
a ecuaciones diferenciales de Carathéodory y, en particular, definir un flujo trian-
gular continuo que permita el estudio cualitativo de las soluciones. La nocién
de flujo triangular se debe a Bebutov 7] y se ha convertido en una herramienta
fundamental en dindmica no auténoma. Para poder recuperar una estructura
de grupo en la evoluciéon de un sistema no-auténomo (lo que es inmediato para
sistemas dinamicos autéonomos, donde se puede construir un flujo a través de las
soluciones), la idea es considerar simultaneamente la solucion y la evolucion del
campo vectorial en el tiempo. Si las dos componentes son continuas respecto del
tiempo, del campo vectorial inicial y de los datos iniciales, entonces la aplicaciéon
asi obtenida, define un flujo triangular continuo.

El estudio de las topologias de continuidad para flujos triangulares generados
por ecuaciones diferenciales de Carathéodory es un tema clasico que fue iniciado
por Miller y Sell [41, 42] y posteriormente tratado por Artstein [3, 4, 5|, Heu-
nis [30], Neustadt [43], Opial [45], Sell [52, 53], entre otros muchos autores. Desde
entonces, se han utilizado topologias fuertes y débiles de tipo integral para inves-
tigar ecuaciones diferenciales no auténomas lineales (véase Bodin y Sacker [10],
Chow y Leiva [20] y Siegmund [55] entre otros) y, sin embargo, a pesar de su
interés potencial, la teoria clésica no ha sido convenientemente desarrollada en el
caso no lineal.

En este trabajo armonizamos muchos de los resultados obtenidos en Longo et
al. 38, 39] y continuamos con el estudio para completar la teoria original, mejorar
su aplicabilidad y realizar un anéalisis exhaustivo del comportamiento cualitativo
de las soluciones. En particular, definimos nuevas topologias métricas en espacios
vectoriales localmente convexos adecuados, en los que la aplicacion de translaciéon
en el tiempo resulta continua, asi como las soluciones varian continuamente res-
pecto de los datos iniciales. De esa forma, en dichos espacios conseguimos un flujo
triangular continuo formado por el flujo base de las trasladadas en el tiempo sobre
la envolvente de un campo vectorial y por las soluciones del respectivo problema
diferencial.

En la demostracion de estos resultados juega un papel importante el estu-
dio meticuloso de las m-cotas y [-cotas de una funciéon de Carathéodory f, es
decir, las familias de funciones positivas y localmente integrables que sirven, res-
pectivamente, como acotaciéon para el moédulo de f y como coeficiente de Lip-
schitz para f sobre los compactos de RY. Ademas, el analisis de las m-cotas
y l-cotas nos permite obtener alguna informacién topoldgica adicional. En par-
ticular, caracterizamos los subconjuntos relativamente compactos de funciones
Lipschitz Carathéodory y aclaramos las condiciones (de hecho bastante débiles)
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bajo las cuales las topologias (fuertes o débiles) consideradas en nuestro tra-
bajo, asi como anteriormente en la literatura, coinciden. FEsos resultados son
particularmente importantes, no sélo porque contribuyen a homogeneizar toda la
teoria, sino porque, en los casos en los que se puedan aplicar, mejoran o simpli-
fican las herramientas matematicas disponibles. En concreto, en el primer caso
podemos obtener la existencia de una medida ergédica invariante para el flujo
en la base y la posibilidad de utilizar técnicas de teoria ergodica, mientras que
en el segundo caso, podemos elegir, entre las posibles topologias, las mas faciles
de manejar como las que suponen una especie de convergencia puntual. Curiosa-
mente, muchas de las aplicaciones en ingenieria y ciencias aplicadas se basan en
hipoétesis que son més fuertes de las que se necesitan para aplicar estos resultados.

Completamos la importancia de los resultados de continuidad obtenidos para
flujos triangulares con algunas aplicaciones tedricas. En particular, definimos
dos tipos de flujos linealizados y obtenemos la derivabilidad con respecto a las
condiciones iniciales de las soluciones de algunos sistemas que no son derivables
en la variable x y por tanto, no tienen una ecuacién variacional clasica. Ademaés,
propagamos la dicotomia exponencial de un sistema lineal, asi como su espectro de
Sacker-Sell, a través de las trayectorias de estos flujos linealizados. Finalmente, in-
cluimos también un resultado de existencia de soluciones para algunas ecuaciones
de Carathéodory cuyo campo vectorial es posiblemente discontinuo en la variable
x y por tanto, no se le puede aplicar el teorema de Carathéodory. La prueba es
independiente de la teoria de Filippov y se basa en la teoria de Carathédory y el
teorema de continuidad de las soluciones con respecto al campo vectorial.

Como consecuencia de estos resultados, se abre una gama de escenarios diné-
micos en los que es posible combinar técnicas de flujos triangulares continuos, pro-
cesos, y sistemas dindmicos aleatorios (véase Arnold [2]|, Aulbach y Wanner [6],
Berger y Siegmund [9], Caraballo y Han [13], Carvalho et al. [16], Johnson et
al. [34], Kloeden y Rasmussen [36], Sell [53], Shen y Yi [54] y las referencias
citadas en ellos). En concreto, combinando cuidadosamente el uso simultaneo de
los formalismos de procesos y flujos triangulares, somos capaces de probar la exis-
tencia de determinados conjuntos acotados y absorbentes para el proceso inducido
por un campo vectorial f en una clase especifica de ecuaciones de Carathéodory.
Esto nos permite encontrar atractores pullback acotados para los procesos induci-
dos por ecuaciones cuyos campos vectoriales estdn en el conjunto alpha-limite,
en el conjunto omega-limite o en toda la envolvente de f. Bajo condiciones ade-
cuadas, probamos ademas la existencia de un atractor pullback o de un atractor
global para el respectivo flujo triangular.

Como ultima contribucién tedrica, queremos dejar la teoria preparada para
que los resultados obtenidos en este trabajo se puedan generalizar a ecuaciones
diferenciales de Carathéodory con retardo del tipo

i = f(t,z(t),z(t—1)). (S.3)
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Ese problema tiene la dificultad intrinseca anadida de ser infinito dimensional
debido al hecho de que el espacio fase es el espacio de las funciones continuas
definidas en el intervalo [—7,0]. Sin embargo, el tipo de ecuacion en concreto y
el hecho que f esté definida en un espacio finito dimensional, nos permite uti-
lizar algunas de las técnicas y de los razonamientos citados anteriormente, para
extender, hasta un cierto punto y con las inevitables discrepancias, la teoria de-
sarrollada para ecuaciones ordinarias de Carathéodory a esta clase de problemas.
En particular, construiremos un semiflujo triangular continuo asociado a (S.3),
respecto de varias topologias métricas (débiles y fuertes). Es interesante notar
que, a pesar de ser una clase muy especifica de problemas diferenciales, las ecua-
ciones como (S.3) estan ampliamente utilizadas in ingenieria y ciencias aplicadas
para modelizar muchos fenémenos reales en los que el pasado afecta el futuro.

A lo largo de la memoria, aplicaremos algunos de los resultados obtenidos
a tres ejemplos que han sido sacado de unos modelos concretos de mecanica
(K. Popp and P. Stelter [47]), teoria de control (Fabbri et al. [25]) y biologia
matematica (Rasmussen et al. [50]). No pretendemos hacer una exposicion ex-
haustiva, sino demostrar la vasta aplicabilidad de los resultados obtenidos en este
trabajo.

La teoria de ecuaciones diferenciales de Carathéodory contiene, a dia de hoy,
casi un siglo de resultados matematicos. Desde el punto de vista de los sistemas
dindmicos se han realizado muchos estudios en estabilidad, anélisis ntmerico
y teoria de bifurcacion (véase, por ejemplo, Filippov [26], Osinenko et al [46],
Potzsche y Rasmussen [49], Potszche [48], entre otros). Los resultados obtenidos
en esta memoria pueden ser aplicados en estas direcciones.

A continuacién proporcionamos un resumen un poco més detallado de cada
uno de los capitulos contenidos en la memoria.

1. Preliminares

En este capitulo, fijamos la notaciéon y proporcionamos algunas nociones béasicas
que sirven de preliminares para el contenido de la memoria. El capitulo esta
dividido en dos secciones. En la seccion 1.1 se recuerdan definiciones y resultados
clasicos de ecuaciones diferenciales ordinarias de Carathéodory como el teorema
de existencia y unicidad de soluciones para un problema de Cauchy y el teorema
de variacion continua respecto de los datos iniciales. Ademés, presentamos un
ejemplo de un fenémeno de vibracion mediante la modelizacion de una cuerda de
violin utilizando condiciones de Carathéodory.

La seccion 1.2 contiene nociones elementales de dinamica no auténoma como
las definiciones de proceso y flujo triangular y la manera en la que una ecuacion
diferencial puede inducir cada uno de ellos. Ademés, se dan las definiciones de
envolvente de una funciéon, de dicotomia exponencial y de espectro dicotéomico.
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2. Espacios y Topologias

Este capitulo contiene el marco topolégico en el que se basan la mayor parte de
los resultados de los capitulos siguientes. En la seccion 2.1 presentamos todos
los espacios de funciones que se utilizaran para el estudio de las ecuaciones dife-
renciales ordinarias de Carathéodory. Junto a los espacios clasicos de funciones
Lipschitz Carathéodory (£€) y Strong Carathéodory (&€), introducimos dos
espacios nuevos que contienen a los anteriores y cuyos elementos son funciones de
Carathéodory que no son necesariamente continuas en la variable x: los espacios
de funciones ©-Carathéodory (O€) y weak ©-Carathéodory (Q00€). El simbolo
O representa un conjunto de moédulos de continuidad que identifican una cantidad
numerable de compactos de funciones continuas en los que las funciones de ©€ y /o
Estos
espacios jugaran un papel importante en el desarrollo de algunos resultados de

20O¢ se comporten “bien”, es decir, de (alguna) manera continua en L] .
esta memoria. Ademas, tratamos el problema de la identificaciéon de las funciones
que difieren en un conjunto de medida cero.

En la secciéon 2.2 dotamos los espacios anteriores de topologias métricas de
tipo integral (débil o fuerte). Entre ellas, se distinguen dos clases nuevas de
topologias, las Tg y las og; la convergencia (fuerte o débil, respectivamente)
para las sucesiones en (O€,7g) v en (WOC, og) debera ser uniforme sobre los
compactos de funciones continuas determinados por ©.

En las secciones siguientes nos centramos en un estudio més cuidadoso de las
m-cotas y [-cotas. El papel de estas funciones, una vez que se les dote de una es-
tructura adecuada, va mas alla de la existencia y unicidad proporcionadas por el

Teorema 1.2 para las ecuaciones diferenciales de Carathéodory. En particular, en

1

le-€quicontinuidad

la seccién 2.3 introducimos las nociones de L] -acotacion y L
que posteriormente se relacionan con los conceptos correspondientes para las fun-

ciones de Carathéodory a través de sus m-cotas y [-cotas.

Como primera aplicacion, en la seccion 2.4 probamos que la L} -acotacion y
la L}, -equicontinuidad de las m-cotas y las I-cotas en conjuntos de funciones de
Carathéodory se conserva respecto de la clausura topologica en los casos:

(a) Clausura de subconjuntos en G€ o £€ respecto de cualquiera de las topolo-
gias introducidas.

(b) Clausura de subconjuntos en &€, o £&,, con 1 < p < oo, respecto de
cualquiera de las topologias fuertes introducidas.

(c) Clausura de subconjuntos en (O€,7g) y en (WOC, 0g).

Esta propagacion es crucial porque nos permitiré tratar la clausura de dicho
conjuntos como “homogénea” (respecto a una propiedad especifica). Citamos
dos ejemplos concretos: el limite de una sucesion de funciones convergente, con [-

cotas LP

e-acotadas, es una funcion del espacio £&€ y por consiguiente, el problema



156 Summary in Spanish

diferencial inducido tendra autométicamente unicidad de soluciones. Por otro
lado, si consideramos una sucesién de funciones, con m-cotas L, -equicontinuas
y que sea convergente en GC€, entonces las soluciones del problema diferencial
inducido por el limite tendran el mismo médulo de continuidad que las soluciones
de los problemas inducidos por los elementos de la sucesion.

En las secciones 2.5 y 2.6 tratamos dos tipos importantes de resultados para el
espacio £€: las condiciones de equivalencia para las topologias fuertes y para las
topologias débiles consideradas, asi como el estudio de los conjuntos relativamente
compactos. En primer lugar demostramos que en un subconjunto de £¢&, (resp.

I ~acotadas) las topologias fuertes (resp.

£¢) con l-cotas L} -acotadas (resp. L
débiles) coinciden. Ademads, proporcionamos una caracterizacion de los conjun-
tos relativamente compactos para las topologias fuertes, cuando tienen [-cotas
L7 -acotadas, mientras que para las topologias débiles recordamos los resultados

existentes en [3]| y [4].

Concluimos el capitulo con la seccién 2.7, donde utilizamos las propiedades de
Ll

loe-equicontinuidad y de L], -acotacion para las m-cotas y/o las [-cotas para pro-

bar la continuidad de las trasladadas en el tiempo en los espacios (@pr (]RM ) , 7@)
y (QU@Q:(]RM ),O’@). Como consecuencia, podemos construir flujos continuos en
las envolventes de una funcién en (@Qp (]RM ) , 729) y (Qﬂ@@ (]RM ) , 0@), lo que es el
primer paso para poder definir los flujos triangulares continuos inducidos por los
respectivos problemas diferenciales, tarea que se realizara en el siguiente capitulo
de la memoria.

3. Continuidad del flujo para ODEs de tipo Carathéodory

En este capitulo tratamos el problema de definir un flujo triangular continuo
inducido por ecuaciones diferenciales ordinarias de Carathéodory del tipo

T = f(t,x), z(0) = zo, (S.4)

y sistemas triangulares de ecuaciones de Carathéodory del tipo

{j; = f(t, ), 2(0) = 29, S5)

Y= F(tam)y_‘_h(tvx)v y(()) = Yo,

donde f es una funcién Lipschitz Carathéodory, mientras F' y h pertenecen, res-
pectivamente a 2OC y ©C, para que los problemas estén bien puestos.

En la seccién 3.1 proporcionamos los resultados de continuidad del flujo trian-
gular, 6ptimos en relacion a la topologia utilizada y a las hipotesis sobre el campo
vectorial inicial. A continuacion, damos un esquema de las hipétesis para los tres
casos que demostramos (se simplifica la notacién omitiendo la dimension de los
espacios de llegada).
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Caso 1: f € (£¢,00) con m-cotas L;

loe-€quicontinuas,

F € (WOC, 5o) con m-cotas L, ~equicontinuas,

h € (WOC, 5g) con m-cotas L, .-equicontinuas.
Caso 2: f € (£€,,7T6) con m-cotas L;, ~equicontinuas,
Fe (e, Ts), he (06¢,Tes).
Caso 3: f € (£€,,Tp) con l-cotas L -acotadas,

F e (8¢, Ts), he (0C,,To).

Se puede apreciar que hay un intercambio entre la fuerza de la topologia utilizada
y las hipotesis sobre las funciones f, F', y h. Es decir, con pocas hipotesis sobre
los campos vectoriales, sera necesaria una topologia mas fuerte y viceversa.

Las secciones restantes del capitulo contienen algunas aplicaciones directas de
la continuidad del flujo triangular. En particular, en la seccién 3.2 tratamos el
caso en que la funcién f es de clase C! en la variable z y la segunda ecuacion
de (S.5) es la ecuacion variacional de la primera, es decir, F' = J, f es una funcion
de &€ y h = 0. Gracias a los resultados de la seccién 3.1, podemos construir
dos tipos de flujos linealizados (dependiendo de la topologia utilizada, Tg 0 0g)
y probar la derivabilidad de las soluciones respecto de los datos iniciales para
problemas cuyo campo vectorial no es de clase C' en la variable z y, por tanto,
no admite una ecuacioén variacional clésica. Concluimos la seccién presentando
un ejemplo concreto en el que se verifica este fenémeno.

En la seccién 3.3 ensenamos como propagar algunas propiedades de estabilidad
de un sistema linealizado a través de los flujos linealizados definidos en la seccion
anterior.

La seccion 3.4 contiene otra aplicacion teédrica y dos ejemplos. La aplicacion
tedrica es un teorema de existencia de soluciones para problemas diferenciales
cuyos campos vectoriales son funciones en 200€ que sean limites, en la topologia
0o, de sucesiones en G€. Dicho teorema se obtiene gracias al resultado de con-
tinuidad de las trasladadas en el tiempo (Teorema 2.43), y al teorema de variacion
continua de las soluciones respecto de los datos iniciales y de los campos vectori-
ales contenido en la secciéon 3.1.

Los dos ejemplos tratados al final del capitulo proceden de [25] y de [50], res-
pectivamente. En el primer caso, notamos que las hipotesis consideradas para
conseguir algunos resultados de estabilidad para un esquema abstracto de digi-
tizacion en teoria de control, son tales que el Teorema 2.31 se puede aplicar y
entonces la topologia de tipo integral considerada en este articulo coincide con
cualquiera de las topologias fuertes utilizadas en esta memoria. Ademés, eviden-
ciamos que algunos resultados incluidos en la misma referencia se pueden obtener
de manera més sencilla utilizando la teoria desarrollada en este trabajo.

Por otro lado, inspirados por el segundo articulo, proponemos un sistema
triangular compuesto por un sistema compartimental no lineal no auténomo y
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por una ecuaciéon para la edad media asociada. Indicamos bajo que hipotesis se
puede construir un flujo triangular continuo utilizando los teoremas probados en
la seccion 3.1.

4. Atractores pullback y atractores globales para ODEs de
Carathéodory

Este capitulo contiene resultados de existencia de atractores para una ecuacion or-
dinaria de Carathéodory (cuyas soluciones se suponen definidas hasta +00) y para
el flujo triangular continuo inducido por ella. Tras recordar algunas definiciones y
resultados bésicos, ensenamos como un flujo triangular continuo permite deducir
la existencia de un atractor para un conjunto de problemas limite. En particular,
considerando ciertas propiedades sobre las soluciones de un problema & = f(t, z),
conseguimos la existencia de un atractor pullback acotado para los procesos in-
ducidos por sistemas cuyo campo vectorial esté en el conjunto alpha-limite, en
el conjunto omega-limite o en la envolvente de f. Ademaés, proporcionamos un
resultado de existencia de un atractor pullback y un atractor global para el flujo
triangular inducido.

También, facilitamos condiciones suficientes para aplicar los resultados ante-
riores. En concreto, a través de resultados de comparacion, obtenemos varios
atractores para ambos, proceso y flujo triangular inducidos. Comparamos el
tamano de las soluciones de un sistema diferencial de Carathéodory, en primer lu-
gar con el tamano de las soluciones de una ecuacion lineal escalar de Carathéodory
adecuada y después con el tamano de las soluciones de un sistema lineal de
ecuaciones de Carathéodory. Finalizamos el capitulo aplicando los resultados
obtenidos al ejemplo del sistema compartimental de la seccion 3.4.3, y de este
modo, obtener condiciones suficientes para la existencia de distintos tipos de
atractores para los procesos y flujos triangulares inducidos.

5. Continuidad del semiflujo para DDEs de Carathéodory

En el capitulo final de la memoria, mostramos como la teoria desarrollada para
ecuaciones diferenciales ordinarias de Carathéodory puede extenderse a ecua-
ciones diferenciales de Carathéodory con retardo constante del tipo (S.3).

Comenzamos el capitulo con algunos resultados preliminares sobre ecuaciones
diferenciales de Carathéodory con retardo constante y, a continuaciéon, intro-
ducimos nuevas topologias de tipo hibrido respecto de las que presentamos en

el Capitulo 2. El término hibrido quiere enfatizar el hecho de que, a pesar de

1

loe, trataremos las primeras N variables

seguir pidiendo una convergencia de tipo L
espaciales (que representan el estado actual del sistema en una DDE) de mane-
ra diferente respecto a las dltimas N (que representan la historia del estado).

Ademas, relacionamos estas topologias con las introducidas en el Capitalo 2 y
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enseniamos como aplicar o desarrollar, en este nuevo contexto, algunos de los
resultados topologicos obtenidos anteriormente en la memoria.

Finalmente, probamos la continuidad del semiflujo triangular inducido por
problemas del tipo (S.3), cuando £€ esta dotado de una de las topologias Tz, Tp
del Capitulo 2, o una de las nuevas topologias hibridas (y f satisfaga hipotesis
adecuadas). Por consiguiente, la teoria queda lista para poder desarrollar, donde
sea posible, resultados andlogos a los contenidos en los Capitiilos 3 y 4, pero para
ecuaciones diferenciales de Carathéodory con retardo constante.

Conclusiones

La teoria desarrollada en esta memoria permite extender el formalismo de flujo y
semiflujo triangular a las ecuaciones diferenciales ordinarias y con retardo cons-
tante de tipo Carathéodory, utilizando topologias métricas (fuertes y débiles) de
tipo integral. Como consecuencia, el estudio del comportamiento cualitativo de
las soluciones de esta clase de problemas podra llevarse a cabo mediante el uso
de herramientas de dinamica topologica.

Este trabajo incluye diversas aplicaciones para ecuaciones diferenciales or-
dinarias de Carathéodory como el estudio de flujos triangulares linealizados, la
propagacion de la dicotomia exponencial y del espectro dicotémico de un sistema
lineal y el estudio de los atractores pullback y globales, asi como algunos ejemplos
inspirados por modelos de fenémenos reales que demuestran la aplicabilidad de
la teoria desarrollada.

Ademés la tesis proporciona una descripcion detallada de la estructura topolo-
gica considerada en los espacios de funciones de Carathéodory estudiados, muchos
de ellos introducidos por primera vez. Se caracterizan las clases de equivalencia de
las funciones que definen las ecuaciones, se estudia la propagacion de las m-cotas
y l-cotas a través de los limites en las topologias dadas y se obtienen caracteriza-
ciones de los subconjuntos relativamente compactos.

Por dltimo, la construccion y caracterizacion de los distintos semiflujos conti-
nuos para ecuaciones funcionales de Carathéodory con retardo constante, prepara
el camino para el estudio posterior del comportamiento cualitativo de las solu-
ciones y de la existencia de atractores pullback y globales que sera llevado a cabo
en futuras publicaciones.

La teoria presentada aporta ideas para investigaciones posteriores, tanto en
el caso de ecuaciones ordinarias como en el de ecuaciones funcionales con retardo
constante. Entre las posibles direcciones para el futuro queremos senalar las
aplicaciones a teoria de bifurcaciéon, teoria de control, biologia matemética y
analisis numérico.
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