

Universidad de Valladolid

Escuela de Ingeniería Informática

TRABAJO FIN DE GRADO

Grado en Ingeniería Informática

(Mención en Computación)

Design and Implementation of
Approximate Computing

Systems

Autor: D. Sergio Pérez Hernández

Tutor: D. Quiliano Isaac Moro Sancho

1

Resumen

Este trabajo se centra en el diseño y creación de sistemas computacionales aproximados, los cuales
aceptan una determinada tasa de error para mejorar otras caracteŕısticas, como la velocidad, o
reducir costes. Para este proceso se utilizará la herramienta UPPAAL SMC.

Abstract

This thesis is focused on the design and implementation of approximate computing systems.
This kind of systems allows some errors but improving other aspect, such as speed, or reducing
resources. For this proccess, UPPAAL SMC will be used.

Acknowledgements

I would like to than Mr. Josef Strnadel, teacher of the Information Technology Faculty at Brno
University of Technology,for his effort and dedication in helping me throughout the proccess of
creating my thesis.

2

Contents

1 Introduction and objectives 5

2 Background: Approximate Computing 7

3 Selection of Implementation Areas and Means 11
3.1 Implementation Areas . 11

3.1.1 Approximate logical multiplier . 11
3.1.2 DRAM memory . 13

3.2 Implementation Means . 14
3.2.1 UPPAAL 4.0 . 14
3.2.2 UPPAAL 4.1 (SMC) . 15
3.2.3 Other versions . 16

4 Proposed solutions 17
4.1 Approximate logical multiplier . 17

4.1.1 Gate Network approach . 17
4.1.2 Truth Table approach . 20

4.2 DRAM memory . 25

5 Conclusions 31

3

4 CONTENTS

Chapter 1

Introduction and objectives

Since its beginning, information technology has been evolving to become in an essential field for
the society of these days. Every moment, a huge amount of information is in movement, which
has to be processed and stored. This could generate some problems because is possible that the
right tools are not available for manage that volume, sometimes exorbitant, of data.
In this last decade, the ’Big Data’ concept has been developing. It refers to the set of data o com-
binations of them which size, complexity and growing speed obstruct its capture, management,
processing or analysis with conventional technologies and tools, such as relational databases and
conventional statistics in the time that this data is useful.(5)
This is one of the reasons why it is necessary to use approximate computing. With it, we can
sometimes admit a certain percentage of error in data processing so its size, complexity and
speed can be adjusted to our possibilities. It is our task to determinate the accuracy that we
can work with.
Approximate computing has been used in a variety of domains where the applications are error-
tolerant, such as multimedia processing, machine learning, signal processing, scientific computing,
etc.(12)

Figure 1.1: Approximate computing accuracy plot (4)

Objectives

In this Bachelor’s thesis, the objectives to complete are:

• Design some models of approximate computing systems, which will be a logic multiplier
and a DRAM system.

• Implement the proposed solutions in UPPAAL 4.1, which is an integrated tool environment
for modelling, validation and verification of real-time systems modelled as networks of timed
automata(8).

5

6 CHAPTER 1. INTRODUCTION AND OBJECTIVES

• Check the correctness of the systems, observing if the requirements of the problems have
been solved.

• With several simulations of these implementations, obtain some data that I will use in my
Statistics Bachelor’s thesis (6) to check if an approximate computer system can be more
efficient than an accurate one, using also UPPAAL 4.1.

Report Content

This memory will be divided in four different parts:

1. Background: I will explain what approximate computing is, its utilities and where it is
used.

2. Implementation areas and Means: Describes the models implemented and the basics about
UPPAAL 4.0 and 4.1

3. Proposed solution: Shows how the implementation has been done and its characteristics.

4. Conclusions: I will give my impressions, difficulties and possible improvements of this job.

Time Planning

The time that I will expend into this thesis will be:

• Two weeks to search for information about the background and UPPAAL.

• One month to learn how to use UPPAAL 4.1, because this will be my first time using this
tool.

• Two months to design and implement the proposed systems.

• Two weeks to look for errors in the implementation, fix them and obtain some data.

With this estimation, this thesis is expected to be done in around 4 months.

Chapter 2

Background: Approximate
Computing

Approximate computing is a research agenda that seeks to better match the accuracy in system
abstractions with the needs of approximate programs (7). The main challenge in approximate
computing is forging abstractions that make imprecisions controlled and predictable without
sacrificing its efficiency benefits. The objective is to design hardware and software around ap-
proximation.
The research in this area combines insights from hardware engineering, architecture, system
design, programming languages, etc. Some of them are:

• Tolerance studies: This category shows how different parts of the application have different
impacts on reliability and fidelity. Certain program components, especially those involved
in control flow, need to be protected from all of approximation’s effects.

• Exploit resilience in architecture: Hardware techniques for approximation can lead to gains
in energy, performance, manufacturing yield or verification complexity. Hardware-based
approximation strategies can be categorized according to the hardware component they
affect: computational units, memories or the entire system architecture.

• Memory: Persistent Memories, where their storage cells can be worn out, approximate
systems can reduce the number of bits they flip to lengthen the useful device lifetime. Also,
memories like flash can use its probabilistic properties while hiding them from software.
This memory approximation techniques typically work by exposing soft errors and other
similar effects.

• Relaxed fault tolerance: Some circuit design techniques can be used to reduce the cost of
redundancy by providing it selectively for certain instructions in a CPU, certain blocks
in DSP or components of a GPU. Other use is to select critically information to allocate
software-level error detection and correction resources.

• Microarchitecture: One set of techniques uses external monitoring to allow errors even in
processor control logic. Other approaches compose separate processing units with different
levels of reliability.

• Stochastic computing: It is an alternative computational model where values are repre-
sented using probabilities. A challenge in stochastic circuits is that reading and output
value requires a number of bits that is exponential in the value’s magnitude.

7

8 CHAPTER 2. BACKGROUND: APPROXIMATE COMPUTING

Approximate systems

Most of work in approximate system architectures focuses on computation. Error tolerance in
transient and persistent data is present in a broad range of application domains, from server
software to mobile applications.
Memories have significant costs in performance, energy, area and complexity. It is because they
need to ensure perfect data integrity 100% of the time.

Techniques that exploit data accuracy trade-offs are proposed to provide approximate storage
and gain performance, energy and capacity:

1. Use multi-level cells in a way that enables higher density or better performance at the cost
of occasional inaccurate data retrieval.

2. Use blocks with failed bits to store approximate data. To mitigate the effect of failed bits
on overall value precision, the correction of higher-order bits is prioritized.

Approximate storage is applied to files and databases storage as well as transient data stored in
main memory.

Interfaces for approximate storage: Modern non-volatile memory technologies exhibit
properties that make them candidates for storing data approximately. By exploiting the syn-
ergy between these properties an application-level error tolerance, we can alleviate some of these
technologies’ limitations: limited device lifetime, low density and slow writes.
When an application needs strict data fidelity, it uses traditional precise storage. Then, the
memory guarantees a low error rate when recovering the data. When the application can tol-
erate occasional errors in some data, it uses the memory’s approximate mode, in which data
recovery errors may occur win non-negligible probability.
In approximate storage like Phase-change RAM and other solid-state, non-volatile memories,
the application must determinate which data can tolerate errors and which data needs “perfect”
fidelity.

Approximate Main Memory: Phase-change RAM and other fast, resistive storage technolo-
gies may be used as main memories. A wide variety of applications, from image processing to
scientific computing, have large amounts of error-tolerant stack and heap data.

Approximate persistent storage: In this section, file systems, database management sys-
tems (DBMSs) or flat address spaces are considered. A data centre-scale image or video search
database, for example, requires vast amounts of fast persistent storage. In occasional pixel errors
are acceptable, approximate storage can reduce costs by increasing the capacity and lifetime of
each storage module while improving performance and energy efficiency.

Hardware interface and allocation: The interface to approximate memory consists of read
and write operations augmented with a precision flag. In the main-memory case, these operations
are load and store instructions. In the persistent storage case, these are blockwise read and write
requests. The memory interface specifies a granularity at which approximation is controlled.
The compiler and allocator ensure that precise data is always stored in precise blocks.

9

Approximate multi-level cells: Phase-Change RAM and other solid-state memories work
by storing an analog value and quantizing it to expose digital storage. In multi-level cell config-
urations, each cell stores multiple bits. For precise storage in MLC memory, there is a trade-off
between access cost and density: many levels per cells requires more time and energy to access.
Furthermore, protections against analog sources of error like drift can consume significant error
correction overhead. But, where perfect storage fidelity is not required, performance and density
can be improved beyond what is possible under strict precision constraints.

(a) Precise MLC (7) (b) Approximate MLC (7)

This picture shows the range of analog values in a precise and approximate four-level cell.
The shaded areas are target regions for writes to each level. The curves show the probability of
reading a given analog value after writing one of the levels.

Figure 2.1: Single step in an iterative program-and-verify write (7)

In the figure above, the value starts at v1 and takes a step. The curve presents the probability
distribution from which the ending value, v2, is drawn. Since v2 lies outside the target range,
another step must be taken.
An approximate MLC configuration relaxes the strict precision constraints on iterative MLC
writes to improve their performance and energy efficiency.

10 CHAPTER 2. BACKGROUND: APPROXIMATE COMPUTING

Chapter 3

Selection of Implementation
Areas and Means

3.1 Implementation Areas

My thesis will be divided into two parts. In the first one, I will design and implement two
approximate logic multipliers, while in the second I will build a DRAM memory using UPPAAL
4.1. Then, I will evaluate the behaviour of this implementations in my Statistics thesis (6).

3.1.1 Approximate logical multiplier

A logical multiplier is a circuit that, from a series of inputs that represents a binary number,
and another that represents another binary number, the multiplication of both numbers in the
form of 0 and 1 is obtained. The length of the output will be the sum of the length of the two
inputs. This, in case that the length of these numbers is very high, can lead to a high cost in
the processing of the output. One solution can be the approximate logical multipliers.
The approximate logical multipliers are the same as the exact ones, except that they have fewer
outputs. That means that we will have fewer costs but some multiplications won’t be correct.
This kind of multipliers are useful in systems that don’t require a perfect computation, that is,
they are error tolerant. Because of that, a certain amount of accuracy is sacrificed to reduce the
area of the circuit and power consumption and increase the performance.(3)
To do the tests, an accurate multiplier and an approximate multiplier will be implemented.
Both will have 4 inputs, where we want to multiply (B1, B0) with (A1, A0), obtaining 4 outputs:
(Out3, Out2, Out1, Out0). This is the truth table for the exact logical multiplier:

11

12 CHAPTER 3. SELECTION OF IMPLEMENTATION AREAS AND MEANS

B1 B0 A1 A0 Out3 Out2 Out1 Out0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Table 3.1: Truth table of the accurate logical multiplier

We can see that, for Out3, all possible outputs are 0 except for the last one. What is done
with the approximate multiplier is to delete this output. The last one will be transformed into
(1,1,1), so, for these 16 possible outputs, only 1 will be incorrect:

B1 B0 A1 A0 Out2 Out1 Out0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 1
0 1 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 0
1 1 0 1 0 1 1
1 1 1 0 1 1 0
1 1 1 1 1 1 1

Table 3.2: Truth table of the approximate logical multiplier

Then, from these tables, the logic circuits can be created:

3.1. IMPLEMENTATION AREAS 13

(a) Accurate multiplier circuit (3) (b) Approximate multiplier circuit (3)

As can be seen in the pictures above, the accurate multiplier has 8 logic gates (6 AND gates
and 2 XOR gates), while the approximate one only has 5 (4 AND and 1 OR), being this last one
the simplest.

3.1.2 DRAM memory

A DRAM (Dynamic Random Access Memory) memory is a kind of RAM memory based on
capacitors, which lose their charge progressively, so they need a refresh dynamic circuit that,
every certain period, check this charge and replenish it. Its principal advantage is the possi-
bility of build memories of a high density of positions and that work at a high speed. Like
the rest of the types of RAM memories, it is volatile. It means that if the electrical power is
interrupted, the stored information will be lost. The DRAM is widely used in digital electronics
where low-cost and high-capacity memory is required. At the moment, it is one of the most used
memories.(13; 14)
Each memory cell is the basic unit of each memory, able to store a bit in its logic circuits. Each
cell has a transistor and a capacitor. Cells are organized in two-dimensional matrices, which are
accessed through rows and columns.

Figure 3.1: DRAM scheme (15)

If there is a charge inside the capacitor, it means that the logic value of the cell is 1. Otherwise,
it is 0. The transistor connects or disconnects the capacitor. Over time, the capacitor will be
discharging progressively. In the case that the voltage is below a threshold value, it will be
assumed that the logic value of the cell is 0. That’s why every so often it is necessary to recharge

14 CHAPTER 3. SELECTION OF IMPLEMENTATION AREAS AND MEANS

the capacitor. Therefore, the error rate of a DRAM memory will be checked depending on the
time between the refresh periods.

3.2 Implementation Means

The implementation of this thesis will be in UPPAAL. It is a toolbox for validation and verifi-
cation (via automatic model-checking) of real-time system (11).
The objective of this tool is to model a system using timed automata, simulate it and then verify
properties on it. Timed automata are finite state machines with time (clocks). A system consists
of a network of processes that are composed of locations. Transitions between these locations
define how the system behaves. The simulation step consists of running the system interactively
to check that it works as intended. Then, we can ask the verifier to check reachability properties.

This tool, at this moment, is in version 4.0, but there is also a version 4.1 that is in develop-
ment, which includes an SMC extension. This last version is what will be used.

3.2.1 UPPAAL 4.0

UPPAAL is based on timed automata, that is a finite state machine with clocks. The clocks are
the way to handle time. It is continuous and the clocks measure time progress, which means
that, in each transition, a clock will increment its value in 1 (with some exceptions explained
below). It is allowed to test the value of a clock or to reset it. Time will progress globally at the
same pace for the whole system.

A system in UPPAAL is composed of concurrent processes, which are modelled as an au-
tomaton. This automaton has a set of locations. Transitions are used to change location. To
control when to take a transition, it is possible to have a guard and a synchronization. A guard
is a condition on the variables and the clocks saying when the transition is enabled. When a
transition is taken, two actions are possible: assignment of variables or reset the clocks.

Figure 3.2: Example of a UPPAAL model (11)

Locations

There are different kinds of locations of UPPAAL (9):

3.2. IMPLEMENTATION MEANS 15

• Normal locations (with or without invariants).

• Urgent locations: This kind of locations freeze time. It means that time is not allowed
to pass. They are marked by a U inside the circle.

• Committed locations: These locations also freeze time, but also, the next transition
must involve an edge from one of the committed locations. They are useful for creating
atomic sequences and for encoding synchronization between more than two components.
They are marked by a C inside the circle.

There is also one (and only one) initial state. It is marked by a double circle.

Figure 3.3: Example of a normal, urgent and committed states

3.2.2 UPPAAL 4.1 (SMC)

The modelling formalism of UPPAAL SMC is based on a stochastic interpretation and extension
of the timed automata formalism used in the classical model checking version of UPPAAL.(2)
For individual timed automata components, the stochastic interpretation replaces the non-
deterministic choices between multiple enabled transitions by probabilistic choices. Similarly,
the non-deterministic choices of time delays are defined by probability distributions, which at
the component level are given either uniform distributions in cases with time-bounded delays or
exponential distributions in cases of unbounded delays.

Figure 3.4: Example of a stochastic timed automata (2)

16 CHAPTER 3. SELECTION OF IMPLEMENTATION AREAS AND MEANS

A model in UPPAAL SMC consists of a network of interacting stochastic timed automata. It
is assumed that these components are input-enabled, deterministic and non-zero. These compo-
nents communicate via broadcast channels and shared variables to generate networks of stochastic
timed automata. The communication is restricted to broadcast synchronizations to keep a clean
semantics of only non-blocked components which are racing against each other with their corre-
sponding local distribution.

3.2.3 Other versions

UPPAAL TIGA

UPPAAL TIGA is an extension of UPPAAL and it implements the first efficient on-the-fly
algorithm for solving games based on timed game automata with respect to reachability and
safety properties. Though timed games for long have been known to be decidable there has until
now been a lack of efficient and truly on-the-fly algorithms for their analysis (10).
The algorithm is a symbolic extension of the on-the-fly algorithm suggested by Liu & Smolka
for linear-time model-checking of finite-state systems. Being on-the-fly, the symbolic algorithm
may terminate long before having explored the entire state-space. Also, the individual steps
of the algorithm are carried out efficiently by the use of so-called zones as the underlying data
structure. The tool implements various optimizations of the basic symbolic algorithm, as well as
methods for obtaining time-optimal winning strategies (for reachability games).

UPPAAL Stratego

UPPAAL Stratego is a novel tool which facilitates the generation, optimization, comparison as
well as consequence and performance exploration of strategies for stochastic priced timed games
in a user-friendly manner. The tool allows for efficient and flexible “strategy-space” exploration
before adaptation in a final implementation by maintaining strategies as first-class objects in the
model-checking query language.(1)

Chapter 4

Proposed solutions

4.1 Approximate logical multiplier

Two models have been created for this implementation. The first one shows a more graphical
way of how these logical systems work using transitions between different states. The second one
uses transitions and functions.

4.1.1 Gate Network approach

With this implementation, the circuits shown in pictures 3.1a and 3.1b will be built. To do that,
a model of each logic gate has been simulated. 4 random inputs will be generated randomly.
Then, the outputs for the accuracy and approximate multiplier will be calculated by a series of
comparisons and transitions using these gates. Finally, if these outputs are identical, the result
of the approximate multiplier is correct. Otherwise, it is not. These will be checked the number
of times the user wants, and, in the end, the number of successes will be count.

Global variables

• count (integer): Number of times that the system has calculated the outputs.

• success (integer): Number of times that the outputs of the approximate multiplier are
the same as the three less significant output of the accurate multiplier.

• input(array of integer): Store the inputs that the system will use to calculate the outputs.

• C0,C1,C2,D0,E0,E1 (integers): Auxiliary variables used in the process of the calculation
of the outputs.

• Out3ac,Out2ac,Out1ac,Out0ac (integers): Outputs of the accurate multiplier.

• Out2ap,Out1ap,Out0ap (integers): Outputs of the approximate multiplier.

• Different broadcast channels used to send and receive signals between each gate.

17

18 CHAPTER 4. PROPOSED SOLUTIONS

Templates

Main This template has one parameter: loops. It says the number of times that the system
will calculate the possible outputs. Random inputs are selected using a normal distribution
N(0,1). First, 4 different random numbers are generated using this distribution and stored in a
local array of integers RandomV. These numbers have the same probability of being positive or
negative: Pr(X<=0) = Pr(X>0) = 0.5. So, if the number generated is negative, the number
assigned for the corresponding position of input will be 0, and if it is positive, it will be 1. This
is calculated by the function setValues(). Then, a signal will be sent to another template so it can
start calculating the outputs for the accuracy and approximate multiplier. Finally, when these
outputs are given back, they are compared by the function check(), except the most significant
bit of the accurate model because it doesn’t have any pair to compare with. If all are the same,
one unit will be added to the variable success. Then, if the system has done its last iteration
(seeing if count is equal to loops), it will finish. Else, the process will start again.
A clock t is added to the model, so an iteration will be done depending on the delay that it
shows in the first state.

Figure 4.1: Main template

AND This template simulate the behaviour of an AND gate. It has 5 arguments:

• chanInput (broadcast channel): Channel that receives the signal so it can start working.

• input1 and input2 (integers): Inputs from which the output want to be got.

• output (integer): Output obtained from the transitions.

• chanOutput (broadcast channel): Send the signal so another template can start working.

In an AND gate, the only possibility that the output is 1 is that both inputs are also 1. So, when
the signal of chanInput is received, two comparisons are established. The first one is that, if the
value of the first input is 0, the output will be 0 and the signal for chanOutput will be activated.
In case that it is 1, it is moved to an intermediate state where the second input intervenes. If
it is also 1, then the output will be 1. Otherwise, it will be 0. Then, there is a transition to an
auxiliary state aux and another one to the initial state, sending the signal chanOutput to the
next template.

4.1. APPROXIMATE LOGICAL MULTIPLIER 19

Figure 4.2: AND template

XOR Like the AND template, this shows how the XOR gate works. This kind of gate returns
1 if both inputs are different, and 0 if are the same. It has the same 5 arguments of the
last template, but its functionality is different. Once chanInput receive the signed, the first
comparison is done. if the first input is 0, we go to an intermediate state, and if is 1, we go to
another intermediate state. For both states, if the second input is equal to the first one, then
the output will be 0, otherwise, it will be 1. Then, a transition to an auxiliary state is done and
another one to the initial state. The signal of chanOutput will be sent in this last transition.

Figure 4.3: XOR template

OR This template has only 4 arguments because it is only used at the end of the simulation, so
it doesn’t have chanOutput. This kind of gates returns 1 if some of its inputs are 1, 0 in another
case. Like the other templates, we start receiving the signal in chanInput. If the first output is
1, the value 1 is given to the output. If not, the second input is compared. If it is 1, the output
will be 1, and if it is 0, the output will be 0. Then, as the other templates, a transition is done
to an auxiliary state and going back to the first state.

20 CHAPTER 4. PROPOSED SOLUTIONS

Figure 4.4: OR template

Finally, in the system declarations section, the different gates that encompass each circuit are
declared. As it has been explained before, the accurate multiplier has 6 AND and 2 XOR gates,
and the approximate multiplier has 4 AND and 1 OR gates.

Figure 4.5: Declarations of the accurate multiplier

Figure 4.6: Declarations of the approximate multiplier

4.1.2 Truth Table approach

This implementation is more focused on programming using functions, and no so much is tran-
sitions as the first implementation was. It is based in the search for the corresponding output
in the truth tables (3.1 and 3.2) depending on the inputs selected. With it, you can check all

4.1. APPROXIMATE LOGICAL MULTIPLIER 21

possible values of the outputs and also analyze with which frequency the approximate multiplier
fails.
In total, there are 4 templates. 2 of them are used to update the values of the outputs for the
accurate and approximate multipliers respectively, the third establishes the inputs in a sorted
way so all the possible outputs can be seen clearly, and the fourth generate random numbers for
the inputs.

Global variables

• update (broadcast channel): Allows the system to generate the outputs once the inputs
have been established.

• bits and bits aprox (boolean arrays): They have length 8 and 7 respectively. Positions
0, 1, 2 and 3 of each array represents the inputs, and positions 4, 5, 6 and 7 (This last one
only for the array bits) represents the obtained outputs.

• bitsCovered (Integer): Represents the number of possibilities that have been used when
only the different possibilities are wanted to be seen.

• equalBits (Integer): Establish if the outputs of the approximate multiplier are the same
as the obtained by the accurate multiplier.

• errorRate and finalErrorRate (doubles): The first one stores the error rate at every
moment of the simulation, and the second one only at the end.

• The truth tables of both multipliers are defined as a two-dimensional array, with dimension
2N INPUTS×(N INPUTS+N OUTPUTS), where N INPUTS and N OUTPUTS represents the number
of inputs and outputs respectively.

Figure 4.7: Truth table declaration of the accurate logical multiplier

22 CHAPTER 4. PROPOSED SOLUTIONS

Templates

Template set inputs This template has 5 parameters: a0,a1,b0,b1,integers, that represent
the positions that the inputs will be stored in the array, and dly, integer, that represents the
period of time used by a set of inputs and outputs.
The local variables are a clock x,input, integer, used to update the inputs, and a boolean array
inCoverSet used to check if the simulation should end.
The functions created for this template are:

• update bits(): Update the values of bits depending if the actual value of input is divisible
or not by a number (1 for the less significant input, 2 for the second, 4 for the third and 8
for the most significant one).

• update bits aprox(): Copy the values of the inputs of bits (First 4 registers) into bits aprox

so comparisons can be done.

• update input(): Call the two functions mentioned before, establish the value true to
inCoverSet[input] and add 1 to input.

• check(): Check if the outputs of both multipliers are the same, and set a value to equalBits

depending on it.

• error(): Calculates the error rate committed at a specific time of the simulation.

• inCovered(): Check if all possible states have been analyzed. This is done seeing if all the
registers of inCoverSet have the value true.

Template set inputs random It is similar to the previous one, but with some differences,
because this template is used to generate n random inputs. It has the same arguments of
set input, but with one more: loops, integer, that specifies the number of times that inputs
will be generated.
As local variables, there are a clock x, an integer count that will be a counter and a boolean
stop that will tell if the simulation has to finish.
There are the same functions of the first template, but changing some definitions. There will be
commented only the ones which are different, omitting the others:

• update bits(): It generates random inputs. It uses a normal distribution to do it, as in
the first implementation. 4 random numbers are generated with a distribution N(0,1),
that have the same probability of being positive or negative. In case that the number is
negative, the input will be 0, otherwise will be 1.

• inCovered(): Check if the counter count is equal to the number of inputs that wanted to
be generated, established by loops. If it is, then stop will be set with true.

• update input(): Calls update bits() and update bits aprox(), increase the value of count 1
unit and calls inCovered()

4.1. APPROXIMATE LOGICAL MULTIPLIER 23

Figure 4.8: set inputs and set inputs random template

Both templates have the same states and transitions, but, as it has been commented before, the
functions they have are different.

Template outputs acc This template has as parameters a0,a1,b1,b0, that represents the
positions of the array bits where the inputs will be stored, y0,y1,y2,y3, that establish the
positions of the same vector where the outputs will be, a two-dimensional boolean vector ttbl

that references the truth table of the accurate multiplier, and an integer dly that set the de-
lay between the different calculation of the outputs. As a unique local variable, there is a clock x.

output acc only has one function, bin2dec(), that gets the binary values of the entries and
returns a decimal number.

Figure 4.9: outputs acc template

Template outputs aprox This last template is similar to the last one. It has the same param-
eters, but in this case there is not y3, because only 3 outputs are obtained, a0,a1,b0,b1,y0,y1
now set the positions of inputs and outputs in the vector bits aprox and ttbl references the
truth table of the approximate multiplier. It also has one local variable, the clock x, and the
function bin2dec().

24 CHAPTER 4. PROPOSED SOLUTIONS

Figure 4.10: outputs aprox template

How it works

First, the simulation starts on the template set inputs or set inputs random, depending on
if it is wanted to obtain all possible outputs or n random outputs. The initial state is get. A
transition to the state apply is done. On it, the signal of the channel update is activated, which
will allow the templates outputs acc and outputs aprox to do the first transition. Also, the
function update inputs() is called to update the inputs.
With the inputs updated, the templates outputs acc and outputs aprox will start working. In
them, the outputs will be calculated, referencing the inputs to the respective truth table.
Once the outputs are obtained, there will be a transition to the state wait. In that transition, the
system will check if the outputs of both multipliers are the same and it will calculate the error
rate in that moment of the simulation.In wait, there will be checked if all possible combinations
of inputs have been obtained (in the case of set inputs) or if the number of desired outputs
have been obtained (in the case of set inputs random). There are two possibilities:

• If the condition is not met, there will be a transition to the initial state when the delay
time has been reached.

• If the condition is reached, a transition to the state done. finalErrorRate will be set with
the current error rate and the simulation finish.

These are some possible results obtained with this implementation:

Figure 4.11: Simulation with get inputs

4.2. DRAM MEMORY 25

Figure 4.12: Simulation with get inputs aprox

In these implementations, more study cases could be added, such as generate inputs until the
x% of outputs have been obtained, till an energy consumption level have been reached, etc.

4.2 DRAM memory

With this implementation, the functioning of a dynamic random access memory is wanted to be
simulated, but on a small scale. Its objective is to show the different error rates that the cells
have depending on the time of refresh that will be predetermined.

There are 4 templates. The first one only works as a switch, to start the simulation. The
second is the one that simulates the behaviour of a cell memory, where the voltages and the dif-
ferent outputs are calculated. The third one represents the refresh circuit, used to give electrical
power to the cells. The last one is used to do the tests, writing on the cells.

Global variables

• VCC MAX (double): Maximum voltage that a cell can have.

• V TRESH (double): Threshold from which, if the voltage is higher than this value, the local
value of the cell will be 1. Otherwise, it will be 0.

• N ROWS and N COLS (integers): Number of rows and columns that the memory will have.

• tRow and tCol (type definitions): Range of rows and columns, defined between 0 and
N ROWS-1/N COLS-1.

• uint8 (type definition): Set a range between 0 and 28 − 1, so, [0,255].

• tRefresh (integer): Time that have to pass so the voltage of the memory fresh is refreshed.

• row2Refresh (tRow): Number of the row that have to be refreshed.

• blockCnt (integer in range [0,N COLS]): Number of columns blocked. If it is 0, the bank is
unlocked.

26 CHAPTER 4. PROPOSED SOLUTIONS

• cVolt (array of double[tRow][tCol]): Voltages of each memory cell.

• cBit (array of double[tRow][tCol]): Logical real value of each memory cell.

• eBit (array of double[tRow][tCol]): Logical expected value of each memory cell.

• fail (array of double[tRow][tCol]): Number of fails that have been committed in each
memory cell.

• loop (array of double[tRow][tCol]): Number of times that have been checked if there is a
fail.

• errorRate (array of double[tRow][tCol]): Error rate of each memory cell.

• rowBuf (array of boolean[tCol]): Row buffer, one per bank.

• bit2rw (array of boolean[tCol]): Bit that will be read of written in each column.

• pwrUp (broadcast channel): Activates the system.

• rActivate (array of bradcast channels [tRow]): Activates a row.

• cOp (broadcast channel): Signal to write, read or refresh over bank’s buffer columns.

Global functions

• loadRBuf(tCol r) : Activates bank’s row r if the voltage of the column is higher than the
threshold.

• write8(uint8 data): Writes data into the corresponding cells.

Templates

Template powerUp This template doesn’t have local variables or parameters. It just acti-
vates the signal pwrUp so the memory cells can start working.

Figure 4.13: powerUp template

Template mCell N ROWS × N COLS memory cells are created with this template. It has as
parameters tRow r and tCol c, representing the row and the column where the memory cell is.
Like local variables, it has two clocks. t0 counts the time till a writing or reading operation is
done and t1 counts the time till a memory cell is discharged.This template has 4 functions:

• pwrUp init(): Set the voltage of the cell in 0.

• targetV(bool r): It is used to charge the voltage of the cell. Returns the maximum voltage
if an operation is been doing at that moment, otherwise returns 0.

4.2. DRAM MEMORY 27

• updateLogicValue(): Set the expected logical value of the cell.

• calcError(): Calculates the error rate of the cell.

Figure 4.14: mCell template

Template mRefresh It doesn’t have local variables or parameters. This template, when the
time of refresh set by tRefresh has come, tells the memory cell that has to recharge its voltage.

Figure 4.15: mRefresh template

Template test It is used to write values in different cells. Its aspect can change depending on
the tests that wanted to be done. This is an example of writing in the second, third, and fourth
cell of the first row.

28 CHAPTER 4. PROPOSED SOLUTIONS

Figure 4.16: test template

How it works

First, the cells that want to be written are chosen. To write on some cells, it is needed to wait
that all the columns are unblocked. Then the row where it is wanted to write is activated and
the signal of cOp is sent. The function write8 is used, having as parameters the data that is
wanted to be written separated by +, being 1 if the first cell is wanted to be written, 2 if it is
the second, 4 if it is the third, ..., 2n−1 for the nth cell. Then, the pwrUp signal is sent in the
powerUp template to the N ROWS ×N COLS mCell templates. In this template, each cell is
initialized with voltage 0 (cVolt[r][c] = 0), so it will wait in the state inactive till the row
activation signal rActivate[r] is received. Then, the column is blocked and a transition is done
to the state active. There, the cell has to wait again till the signal cOp to access to the state
operation. Then, 3 options are possible, depending on the type of operation that will be done,
specified in the array bCop[c]:

• bCop[c] = RD: Means that a reading will be done, so the content of rowBuf[c] will be
copied to bit2rw[c].

• bCop[c] = WR: The operation will be a writing. The content of bit2rw[c] will be copied
to rowBuf[c].

• bCop[c] = RF: There will be a refresh. No further operations are needed.

In these 3 cases, there will be a transition to the state precharge. There, the cell is recharged
with the maximum voltage set by VCC MAX. Then, there will be a transition to done, where the
real and expected logical value (cBit[c] and eBit[c]) will be set with the value of rowBuf[c].
Finally, the cell goes back to the state inactive, unblocking the column. In the next iteration,
the voltage is higher than 0, so it will be discharging slowly, and also updating the expected
logical value and calculating the error rate at that moment, till the moment that other operation
will be done.
Lastly, the mRefresh template is used to refresh the model when is needed. The time of refresh
is set by the variable trefresh. When that time comes, it is checked that all columns are
unblocked. Then, the row that has to be refresh is activated and the operation RF is set in
the array bCop[row2Refresh]. Finally, the cOp signal is sent to the mCell template to do the

4.2. DRAM MEMORY 29

corresponding operation.
This is an example of the voltage, real logical value and expected logical value of a cell:

Figure 4.17: DRAM simulation example

In this plot, we can see that a writing is done when time is 50, and it has finished in 103
approximately. The time of refresh is set in 40. Both logical values, the real and the expected,
are 1 when there is voltage in the cell. The voltage decrease with time, but when time is around
80, the voltage increase again. That is because 80 coincide with the time that the cell has to
refresh.

30 CHAPTER 4. PROPOSED SOLUTIONS

Chapter 5

Conclusions

In this thesis, I have designed and developed three approximate computing system models:
Two logical multipliers using two different approaches and a Dynamic Random Access Memory
(DRAM). These models have been created using UPPAAL SMC. It has been a really useful tool,
that allows building the models in an intuitive way.

Various versions of the models were created during the process, and some problems have also
occurred. One of these problems that I had to manage with was the set of time, that made the
creation of the models more difficult than I thought at the beginning.This was my first time using
this program and I had a hard time getting used to it, so I took more time than expected in
learning the basics and some advances methods. First I started reading the specifications of the
tool and doing some easy examples. Then I created more difficult sequences till I could finally
do the implementations that I have presented in this thesis.

Some other implementations could be done, such as change the number of inputs of the logical
multipliers or improve the functionality of the DRAM system. These tasks can be done in the
future.

Executing these programs, I will get some data that will be used in my Statistics Bachelor’s
thesis (6) to see its behaviour and check if approximate computer systems have any advantages
over the accurate ones.

31

32 CHAPTER 5. CONCLUSIONS

Bibliography

[1] David, A.; Gjøl, P.; Larsen, K. G.; et al.: UPPAAL STRATEGO. 2015. [Online; visited
11.02.2020].
Retrieved from: https://link.springer.com/chapter/10.1007%

2F978-3-662-46681-0_16

[2] David, A.; Larsen, K. G.; Legay, A.; et al.: UPPAAL SMC tutorial. 2015. [Online; visited
11.02.2020].
Retrieved from: https://doi.org/10.1007/s10009-014-0361-y

[3] Emerging Computing Technology Laboratory at SJTU: Approximate Computing. [Online;
visited 11.02.2020].
Retrieved from: http://umji.sjtu.edu.cn/~wkqian/research.html

[4] Kugler, L.: Is ’good enough’ computing good enough? 2015. [Online; visited 11.02.2020].
Retrieved from: https://cacm.acm.org/magazines/2015/5/

186012-is-good-enough-computing-good-enough/fulltext

[5] PowerData: Big Data: ¿En qué consiste? Su importancia, desaf́ıos y gobernabilidad. [On-
line; visited 11.02.2020].
Retrieved from: https://www.powerdata.es/big-data

[6] Pérez, S.: Statistical Model Checking in Approximate Computing Systems. 2020.

[7] Sampson, A.: Hardware and Software for Approximate Computing. 2015. [Online; visited
11.02.2020].
Retrieved from: https://digital.lib.washington.edu/researchworks/bitstream/

handle/1773/33693/Sampson_washington_0250E_14938.pdf?sequence=1

[8] UPPAAL: [Online; visited 11.02.2020].
Retrieved from: www.uppaal.org

[9] UPPAAL: Locations. [Online; visited 11.02.2020].
Retrieved from: http://www.it.uu.se/research/group/darts/uppaal/help.php?file=
System_Descriptions/Locations.shtml

[10] UPPAAL: UPPAAL TIGA. [Online; visited 11.02.2020].
Retrieved from: http://people.cs.aau.dk/~adavid/tiga/index.html

[11] UPPAAL: UPPAAL 4.0: Small Tutorial. 2009. [Online; visited 11.02.2020].
Retrieved from: http://www.it.uu.se/research/group/darts/uppaal/small_

tutorial.pdf

33

https://link.springer.com/chapter/10.1007%2F978-3-662-46681-0_16
https://link.springer.com/chapter/10.1007%2F978-3-662-46681-0_16
https://doi.org/10.1007/s10009-014-0361-y
http://umji.sjtu.edu.cn/~wkqian/research.html
https://cacm.acm.org/magazines/2015/5/186012-is-good-enough-computing-good-enough/fulltext
https://cacm.acm.org/magazines/2015/5/186012-is-good-enough-computing-good-enough/fulltext
https://www.powerdata.es/big-data
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/33693/Sampson_washington_0250E_14938.pdf?sequence=1
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/33693/Sampson_washington_0250E_14938.pdf?sequence=1
www.uppaal.org
http://www.it.uu.se/research/group/darts/uppaal/help.php?file=System_Descriptions/Locations.shtml
http://www.it.uu.se/research/group/darts/uppaal/help.php?file=System_Descriptions/Locations.shtml
http://people.cs.aau.dk/~adavid/tiga/index.html
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf

34 BIBLIOGRAPHY

[12] Wikipedia: Approximate computing. [Online; visited 11.02.2020].
Retrieved from: https://en.wikipedia.org/wiki/Approximate_computing

[13] Wikipedia: DRAM. [Online; visited 11.02.2020].
Retrieved from: https://es.wikipedia.org/wiki/DRAM

[14] Wikipedia: Dynamic Random Access Memory. [Online; visited 11.02.2020].
Retrieved from: https://en.wikipedia.org/wiki/Dynamic_random-access_memory

[15] Yoon, A.: Understanding Memory. 2018. [Online; visited 11.02.2020].
Retrieved from: https://semiengineering.com/whats-really-happening-inside-memory/

https://en.wikipedia.org/wiki/Approximate_computing
https://es.wikipedia.org/wiki/DRAM
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://semiengineering.com/whats-really-happening-inside-memory/

	Introduction and objectives
	Background: Approximate Computing
	Selection of Implementation Areas and Means
	Implementation Areas
	Approximate logical multiplier
	DRAM memory

	Implementation Means
	UPPAAL 4.0
	UPPAAL 4.1 (SMC)
	Other versions

	Proposed solutions
	Approximate logical multiplier
	Gate Network approach
	Truth Table approach

	DRAM memory

	Conclusions

