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Abstract

An explainable machine learning model is a requirement for trust. Without
it the human operator cannot form a correct mental model and will distrust
and reject the machine learning model. Nobody will ever trust a system
which exhibit an apparent erratic behaviour.

The development of eXplainable AI (XAI) techniques try to uncover how
a model works internally and the reasons why they make some predictions
and not others. But the ultimate objective is to use these techniques to
guide the training and deployment of fair automated decision systems that
support human agency and are beneficial to humanity.

In addition, automated decision systems based on Machine Learning
models are being used for an increasingly number of purposes. However,
the use of black-box models and massive quantities of data to train them
make the deployed models inscrutable. Consequently, predictions made by
systems integrating these models might provoke rejection by their users
when they made seemingly arbitrary predictions. Moreover, the risk is com-
pounded by the use of models in high-risk environments or in situations
when the predictions might have serious consequences.

Keywords— eXplainable Artififical Intelligence (XAI), Human-Caused Fires
(HCFs)
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Chapter 1

Objectives and structure

1.1 Objective

The objective of this work is the appraisal of different XAI techniques using
a case of study.

The case of study consists in building predictive models of the burnt area
caused by Human-Caused Fires (HCFs) in continental Portugal. I have chose
this case of study as its presents a real problem with severe repercussions.
Although this increases greatly the difficulty of the present work the reward
is also larger, even if it ends in failure.

I have focused the case of study on the mainland territory of the Republic
of Portugal, one of the most ravaged regions by HCFs. Moreover, climate
change spells a grim outlook for the future with an increase in the occurrence
and the scale of devastation of HCFs.

To explore the XAI techniques I will train two regression models. For one
of the models I am going to use a black-box algorithm, Gradient Boosting
Machines (GBM) [Fri00]. Whereas, for the other I am going to use a glass-
box model, Generalised Linear Models (GLM) [Cra14]. Training two models
allows me use XAI in their comparison.

To build the HCFs model I am going to use explanatory variables from
the following categories:

• Weather factors

• Physiography variables

• Fuel risk factors

• Human factors

Weather factors and physiography variables shape the spatio-temporal
patterns influencing HCFs. while, fuel risk factors and human factors serve
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as proxy for human activity, and HCFs are caused directly or indirectly by
people.

Also, I am going to use Major Habitat Types (MHTs) to stratify the
data as factors influencing the occurrence of wildfires vary between MHTs.

1.2 Project lifecycle

The high-level stages and its composing tasks are inspired by the CRISP-DM
and Team Data Science Process (TDSP) (especially the later):

Figure 1.1: Project lifecycle high-level stages and its composing tasks
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1.3 Document structure
This work is composed by the following parts and chapters:

Chapter 1: Objectives and structure The present chapter. It is a de-
scription of the objectives of this work and the use, the different sec-
tions composing it, the outline of the plan followed, and the personal
involved and tools used in its development.

Part I – State of the art of XAI Review of recent development in the
field of XAI

Chapter 2: On eXplainable AI (XAI) Introduction to the field
of XAI, the problems it tries to address and approaches to tackle
them. I also introduce some definitions commonly used in the
field.

Part II – Case of study: Predicting burnt area caused by HCFs Case
of study development from business understanding to modelling

Chapter 3: Human-Caused Fires (HCFs) Introduction to the use
case that I have chosen as vehicle to survey the field of XAI by
applying some of its proposed techniques to it. I begin by pre-
senting a general vision of the problem to end by focusing on the
zone of study, the mainland of the Republic of Portugal.

Chapter 4: Data acquisition Description of the different data sets
indicating for each one the area of the problem that try to cover,
its source, and the process of acquisition.

Chapter 5: Data pre-processing Description of the process em-
ployed to prepare the raw data so it can be easily consumed in
later stages. Some of the actions I take in this phase are: ex-
tracting the part of the raw data relevant to the use case (as
most of the datasets cover extensions bigger the zone of study),
putting the data in a format easily consumed ()as tabular data
in CSV files or in a GIS database), conversion raw variables, nor-
malisation of GIS data into a common Spatial Reference System,
etc.

Chapter 6: Data exploration Summary of the data exploration pro-
cess for each of the data sets selected as candidates to be used in
the building of the different models. I use statistical and graphical
techniques to profile the different data set.

Chapter 7: Feature engineering Creation of the features from the
raw data by handling outliers that could be present in the data,
dealing with missing data, assigning the correct data types to
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the variables, and applying transformation to convert raw data
variables in features that would be used in the building of the
machine-learning models.

Chapter 8: Modelling This chapter contains the presentation of
the feature selection strategy and process that takes as input
all the features I created in the previous chapter and the building
and tunning of the machine-learning models.

Part III – Application of Explainable AI techniques to the case of study
Appraisal of some XAI techniques in the context of the case of study.

Chapter 9: Explainable AI at model level Application of differ-
ent XAI techniques used to explain a model as a whole by analysing
its performance and quality of its predictions, and how the dif-
ferent features influences model’s predictions.

Chapter 10: Explainable AI at instance level Application of dif-
ferent XAI techniques used to explain individual predictions to
the models built trying to understand how they yield a predic-
tion for a specific observation trying to understand the effects and
influence of the features on the prediction.

Part IV – Conclusions conclusions I have reached while working in this
project and possible future directions.

Chapter 11: Conclusions, and a look to the future Presentation
of the conclusions I have reached after the development of this
project and possible future directions that could be taken taking
all I have learnt.

1.4 Personnel and roles
It is not meaningful to describe the personnel working in this project since
this is a one-man effort. However, I am going to detail the different roles
needed to carry out this project.

The list of roles is:

• Business owner, defines the business problem to be solved

• Business analyst, defines the feasibility of the project and setting its
requirements

• Solution architect, organises the development

• Data analyst, acquires the needed data and interprets the data

• Data scientist, modelling
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The lack of a domain expert is a big handicap in any project. To partly
alleviate the problem, I will take advantage of the large number of resources,
such as articles, available about the selected use case.

1.5 Plan
The plan and its phases are built by adapting two data science methodolo-
gies:

• CRoss-InduStry Process for Data Mining (CRISP-DM) [Sma20]

• Team Data Science Process (TDSP) by Microsoft [Mic20]

A short description of both methods can be found in Appendix A.
Both models allow the customisation of its different phases and activities

to a project. In our case the main phases and their goals are:

1. Business understanding

(a) Objectives definition
(b) Case study exploration

2. Data acquisition

(a) Data sources identification
(b) Data acquisition
(c) Data pre-processing

3. Data exploration

4. Modelling

(a) Feature engineering
(b) Model training and tuning

5. Evaluation

(a) Evaluation using XAI techniques at model level
(b) Evaluation using XAI techniques at instance level

6. Delivery

(a) Project hand-off

Due to the iterative nature of both methodologies the different phases
overlap with each other.
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1.6 Infrastructure and resources
The list of hardware and software resources used to carry out the project is:

• Hardware: MacBook Pro MacBook Pro (2017 13-inch)

– 3.1 GHz Intel Core i5
– 8 GB 2133 MHz LPDDR3)
– macOS 10.14.6

• Data storage

– PostgreSQL 12.1 [Pos19b] with the PostGIS 3.0.0 [Pos19a] exter-
nal extension

• GIS software

– QGIS 3.10 [QGI20]
– GDAL/OGR 2.4.4 [GDA]
– PROJ 6.3.0 [PRO]

• Model building and evaluation

– RStudio 1.2.5033 [RSt19]
– R 3.6.1 [R C19]
– H2O 3.30.0.1 [H2O20]
– DALEX 1.2.0 [Bie20a]

• Documentation

– Bookdown [Xie20a]
– knitr [Xie20b]
– R Markdown [Xie20c]
– MacTeX [Mac20]

• R packages

– data.table 1.12.8 [Dow19]
– funModeling 1.9.3 [Cas19]
– lubridate 1.7.8 [Spi20]
– magrittr 1.5 [Mil14]
– sf 0.9-2 [Peb20]
– tidync 0.2.3 [Sum19b]
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– ncmeta 0.2.0 [Sum19a]
– tidyr 1.0.2 [Wic20d]
– dplyr 0.8.5 [Wic20a]
– raster 3.1-5 [Hij20]
– ggplot2 3.3.0 [Wic20b]
– scales 1.1.0 [Wic19]
– patchwork 1.0.0 [Lin19]
– MASS 7.3-51.5 [Rip19]
– colorspace 1.4-1 [Zei19]
– reshape2 1.4.4 [Wic20c]
– ggcorrplot 0.1.3 [Kas19]
– minerva 1.5.8 [Fil19]
– ingredients 1.2.0 [Bie20b]

• Support software

– Git 2.21 [Git20]
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Part I
State of the art of XAI

In this part I am going to review the recent ideas and methods of XAI. It
is a field currently ongoing a fast evolution with a large number of articles
and new methods appearing in recent times due to the increasing use of
automated decision system.
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Chapter 2

On eXplainable AI (XAI)

2.1 The need of XAI

The widespread adoption of automated decision-making systems across large
parts of society is raising questions on human agency and liability [Wag19].
We cannot be comfortable by blindly accepting the decision of an automated
system without any understanding of its rationale. To hold accountable
and trust automated decision-making systems detailed explanations of its
decisions are necessary.

The ability to explain the why behind our decisions to another person is
an important aspect of social interaction between humans. Moreover, it is
seen as a prerequisite for establishing a relationship based on trust.

Hence, for a human to trust an automated decision-making system it
must be explainable, and to be explainable it must be interpretable so a
human can understand why the system makes a decision, and not another.

[SWM17] cites as the most important arguments in favour of eXplainable
Artificial Intelligence (XAI) the following:

• Verification of the predictions made by a system

• Location and improvement of the weakness of a system

• Distil knowledge from the system

• Legal compliance

2.2 Human agency over automated systems

One of the key factors necessary to a human-centric approach to AI is ensur-
ing that a human is part of the decision and control loop [She00]. According
to [RM16], human agency over an automated decision-making system is
enhanced when:
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• The system is predictable, reliable, and transparent

• A human can assess whether the system is fulfilling its goals

• A human can act in a timely fashion

• There is accountability of actions (and inactions)

Predictability and reliability are the primary metrics by which human
measure whether a system is working correctly. However, predictability of
the decisions made by any system depends on understanding the context
where it operates.

Transparency means that a human can question the system whether it
is working towards its goal inside the constraints placed upon it. Hence, the
system must provide enough feedback to its human operator, so the latter
is sufficiently aware of its internal processes.

Predictability, reliability, and transparency augment human agency over
an automated system but they do not guarantee control over it, which de-
pends on understanding the outcomes being sought and the environment
where the system operates. Furthermore, the goals and environment are
produced by and exists in a large socio-political system, and we must recog-
nise that the degree of autonomy of a system is not only technical product
but also a political one.

Even when an automated system has been designed to operate faster
than human capacity, the human operator has still been able to take timely
action instead of becoming only a witness.

Accountability serves as the basis upon which build the framework of
expectations and responsibilities regulating the operation of an automated
system by a human operator. The framework should also incorporate the
ethical standards and sanctions guiding the goals and operation of the sys-
tem by its human operator.

From these characteristics that enhance human agency over an auto-
mated system emerge the following limitations [Sch18]:

• Cognitive limitations

• Epistemic limitations

• Temporal limitations

Cognitive limitations arise from the two types of reasoning used by hu-
mans to make decisions:

• Deliberate (conscious and slow) reasoning, used for decisions of con-
siderable weight

• Automatic (unconscious and fast) reasoning, used to routine events

12
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Figure 2.1: XAI Psychological Model of Explanation [Gun19]

Automatic reasoning is the default option, but it gives way to deliberate
reasoning in novel situations and when a task requires active attention. It is
also the default option when a human interacts with an automated system.
Furthermore, the threshold to override automatic reasoning and the trust
put on the automated system will increase with the speed and autonomy
exhibit by it. As a result, human agency is diminished.

Some of the characteristics of automated reasoning makes it dangerous
when we must make important decisions [Sha18]:

• Neglects ambiguity and suppresses doubt, it jumps to conclusions with-
out searching for alternative interpretations

• Infers and invent causes and intentions, it links fragments of informa-
tion to invent causal stories

• Is biased to believe and confirm, it favours uncritical acceptance bias

• Focuses on existing evidence and ignores absent evidence, it builds
stories without consideration of missing information creating a false
feeling of confidence

The reliance on systems trained on massive and highly processed quan-
tities of data obscures data provenance and diminishes the epistemological
understanding of the human operator. This problem is compounded by the
use of intrinsically impenetrable black-box Machine Learning (ML) models.

Speed is one of the main allures of autonomous systems. However, as
the time horizon available to the human operator to act shrinks it also does
human agency over the system.
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These limitations together with regulatory grey areas where laws regu-
lating automated systems are not applied if there is a human implicated have
produced “quasi-automated” system where the operator only task is to bear
witness to the operation of the system without possibility of intervention.

[Wag19] suggest a series of criteria to define when is more likely the
“quasi automation” of a system:

• Low amount of time assigned to the operator, so there is little or no
time for intervention

• Low degree of qualification of the operator, so they cannot exert any
meaningful control

• Great amount of legal liability assigned to the operator, so they serve
as a scapegoat

• Low level of support received by the operator, so there is no need to
support operators taking high-stakes decisions

• Great level of adaptation by the operator to the system, since the
system is not designed with an operator in mind

• Small volume of information available to the operator, since they do
not have to make the decision

• Little authority by the operator to change the outcome of the system,
so they cannot change the decision of the system

However, regulation must acknowledge that neither human nor systems
are autonomous agents and consider the socio-technological environment in
which they developed their activity.

Placing all the blame in the operator or the system promotes the use
of humans as scapegoats put in charge of fully automated system to evade
limitations and safeguards imposed by the legal system.

Instead, regulators should focus on organisational behaviours and pro-
cedures that led to breaking laws and violating rights.

2.3 Responsible AI

The widespread use of AI has raised concerns about potential problems
related to discrimination, interpretability, transparency, liability, and mali-
cious use.

[Benjamins2019] presents a series of AI principles on how it should be
developed and used so it respects human rights and makes society more
inclusive. These principles are:
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• Fair AI ensuring fair results and avoiding discriminating against peo-
ple based on race, ethnic origin, religion, gender, sexual orientation,
disability, or any other personal condition.

• Transparent AI explicitly describing the personal and non-personal
data used and its purpose.

• Explainable AI enabling a certain level of understanding of the deci-
sions of an AI system by generating explanations on how it reached
that decisions and no others.

• Human-centric AI meaning that it should be at the service of society
and always under human control.

• Privacy and security by design during the whole life cycle.

The General Data Protection Regulation (GDPR) [Eur16] deals with
how data is collected and stored. However, “Article 22: Automated individ-
ual decision-making, including profiling” aims to enshrine these AI principles
into law:

Article 22

Automated individual decision-making, including profiling

1. The data subject shall have the right not to be subject to
a decision based solely on automated processing, including
profiling, which produces legal effects concerning him or her
or similarly significantly affects him or her.

2. Paragraph 1 shall not apply if the decision:

(a) is necessary for entering into, or performance of, a con-
tract between the data subject and a data controller;

(b) is authorised by Union or Member State law to which
the controller is subject and which also lays down suit-
able measures to safeguard the data subject’s rights
and freedoms and legitimate interests; or

(c) is based on the data subject’s explicit consent.

3. In the cases referred to in points (a) and (c) of paragraph
2, the data controller shall implement suitable measures to
safeguard the data subject’s rights and freedoms and legit-
imate interests, at least the right to obtain human inter-
vention on the part of the controller, to express his or her
point of view and to contest the decision.
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4. Decisions referred to in paragraph 2 shall not be based
on special categories of personal data referred to in Arti-
cle 9(1), unless point (a) or (g) of Article 9(2) applies and
suitable measures to safeguard the data subject’s rights and
freedoms and legitimate interests are in place.

The GDPR in Article 4 defines the following key terms:

• Personal data is “any information relating to an identified or identifi-
able natural person”

• Data subject is the natural person to whom data relates

• Processing is “any operation or set of operations which is performed on
personal data or on sets of personal data, whether or not by automated
means”

• Profiling is “any form of automated processing of personal data con-
sisting of the use of personal data to evaluate certain personal aspects
relating to a natural person”

Thus, profiling is the subset of processing when this is automated, and
its purpose is evaluation.

The regulation pays attention to profiling aimed at analysing or predict-
ing a natural person behaviour, movements or location, economic situation,
health, performance at work, personal preferences, and interests. It prohibits
any decision based solely on automated processing that can significantly af-
fect a natural person (albeit with some exceptions).

Although some claim that big data is neutral, it depends on data col-
lected that might show traces of inequality, exclusion, or other kinds of
discrimination as it reflects the population that generates it. Furthermore,
it does not matter how objective is the ML algorithm or how accurate is the
model if the data contains patterns of discrimination so it the decisions of
the model.

The legislation puts the onus on the data processor to guarantee that
the data using to build models is not discriminatory. However, this poses a
challenge as data sets become increasing complex, large, and processed.

The GDPR in Articles 13 and 14 state that a person has the right to
“meaningful information about the logic involved” in profiling of their data.
This demand for transparency in automated decision-making faces three
barriers [Bur16]:

• Intentional concealment by the data processor

• Gaps in technical literacy by the data subject

• No meaningful human-readable explanations

16



2.4 Explainability and interpretability

Explainable models output produce both predictions and insights about
what caused their decisions. All explainable models are interpretable, but
not all interpretable models are explainable [Gil+19].

Interpretability is a passive characteristic of a model that describes how
intelligible it is to a human. Explainability is an active characteristic of
a model that describes the actions taken to clarify its internal process
[Bar+19].

An explanation can be evaluated according to its interpretability or to
its completeness. Interpretability measures the degree to which humans
can understand the internals of an automated system. It depends on the
cognition, knowledge, and biases of humans. Completeness measures the
accuracy of the description of how a system operates.

It is difficult to achieve interpretability and completeness at the same
time. The most complete (i.e., accurate) explanations are usually hard to
interpret. And, the most interpretable explanations are usually incomplete
(i.e., not accurate).

However, and causing confusion, interpretability and explainability are
often used interchangeably or conflated with another concepts. Some com-
mon terms included in the literature of XAI are [Bar+19]:

• Understandability (or also intelligibility) is the characteristic of a model
that makes it understandable to a human without the need to explain
its internal processes and structures. In other works that a human
has a functional understanding of a model without needed to posses a
low-level mechanistic or algorithmic understanding of it.

• Comprehensibility is the ability of an ML algorithm to represent knowl-
edge in a way that makes it understandable by human. However,
different stakeholders (those who do the comprehending) might have
different requirements and abilities, so representations are often spe-
cific to certain stakeholders. Also, comprehensibility is not a goal but
a tool used to reach one and decide whether it is appropriate to the
problem.

• Interpretability is the ability to explain or provide meaning under-
standable by humans.

• Explainability is the characteristic of a model that makes it functioning
clear and easy to understand.

• Transparency is the characteristic of a model of being understandable.
In other words, understanding the variables included in the model and
the interaction between them.

17



This lack of agreement on the terms and definitions in the XAI field is
one of the obstacles in the search for a unifying theory of explainability that
serves as a guide for every XAI system.

Another challenge lies in the fairness and ethics of the models where
XAI could be used as a diagnostic tool to assess their internal process.
Furthermore, it can also help with the reproducibility of models beyond the
simple sharing of data and result.

However, the ultimate challenge faced by XAI is to provide explanations
accessible for non-technical stakeholders such as police-makers, legislators,
and the public in general. This scenario is the consequence of the increasing
presence of automated systems and a necessity with the introduction of
future regulations anticipated by the “right to explanation” laws proposed
by the European Union [Ham+20].

And, involving non-technical people from other fields would allow to
create multi disciplinary teams improving the development and appraisal of
models.

2.5 Approaches to explainability

[DSB17] proposes the following classification of automated decision-making
systems based on explainability:

• Opaque systems: the mapping of inputs to outputs is invisible such as
models based on black-box algorithms.

• Interpretable systems: the mapping of inputs to outputs is visible
so a human can examine the model such as linear regression where
the importance of each feature can be interpreted by comparing the
covariate weights.

• Comprehensible systems: they emit symbols (words or graphics) that
allow a human to interpret and comprehend the mapping of inputs to
outputs.

The difference between interpretable systems and comprehensible sys-
tems is that the former require the transparency of the underlying algo-
rithms (i.e., glass-box models), and the later can be opaque (i.e., black-box
models) but emit symbols that a human can reason over.

As stated in [Rud19], the often repeated and in many times unchallenged
claim that more complex models are more accurate is false. Even though,
it is true that more complex models are usually more flexible, thus allowing
the approximation of more complex functions. Furthermore, it is when the
function is complex and the data badly structured or of lower quality when
there is a trade-off between interpretability and performance.
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[Hol+17] and [Lip17] propose the following classification of approaches
to explainability:

• Ante-hoc (or transparent) models, that intrinsically incorporate ex-
plainability. This approach is limited to algorithms with low complex-
ity such as linear regression or decision trees, in contrast to others like
artificial neural networks whose complexity renders them opaque.

• Post-hoc explanations, that explain predictions (e.g., Local Interpretable
Model-Agnostic Explanations, LIME). This approach extracts infor-
mation from already trained model and does not depend on how the
algorithm used to build the model works, treating it as a black-box.

Models are transparent when:

• A human comprehends the whole model at the same time. How-
ever, given the cognitive capacity of human beings a sufficiently high-
dimensional linear model or unwieldy decision rule list cannot be con-
sidered simple.

• Each of its parts (i.e., inputs, hyperparameters and calculations) admit
an intuitive explanation. This requirement disqualifies models with
heavily pre-processed or anonymous features.

Post-hoc explanations extracts information from trained models so they
can be used to interpret opaque models.
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Part II
Case of study: Predicting burnt

area caused by human-caused fires

The case of study involves developing a regression model to predict the burnt
area caused by human-caused fires (HCFs) in continental Portugal. The case
of study consists on the following high-level stages:

• Business understanding

• Data understanding

• Modelling
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Chapter 3

Human-Caused Fires (HCFs)

3.1 Extent and causes

Forest disturbances are the environmental fluctuations and destructive events
that disturb forest health and/or structure and/or change the resources or
the physical environment at any spatial or temporal scale [FU06]. Healthy
forests disturbances caused by agents such as fire, insect pests and diseases
are an integral part of the ecosystem.

.

Figure 3.1: Count of observed fire occurrence readings from combined
MODIS and ATSR remote sensing products from 1996 to 2007 [Mor+12]

However, the growth of human population leads to a conversion of nat-
ural vegetation to agricultural and pastoral systems, alongside the develop-
ment of supporting infrastructure (e.g., roads). This transformation totally
changes the fire regime, the natural frequency and seasonality of fire.

Moreover, catastrophic disturbances can cause profound impacts on for-
est ecosystems and adversely affect biodiversity, livelihoods, and climate.
Therefore, an accurate assessment of the size and scope of forest distur-
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bances is critical for monitoring the ecosystem, especially in the face of
changing climatic conditions.

The Food and Agriculture Organization of the United Nations (FAO)
aggregates information on forest disturbances in its periodic Global Forest
Resources Assessment (FRA). Data from its report of 2015 covering the ten-
year period from 2003 to 2012 showed that > 90% of the total land area
and > 99% of the total forest area suffered fire disturbances [Lie+15]. An
average of 341 million hectares (2.6%) of all land area was burned annually
with 67 million hectares (1.7%) corresponded to forests. Moreover, total
land and forest area burned over this period exhibit a decreasing trend.

By climatic domain, the largest area of land and forest burned was in
the tropics, where more than 290 million hectares of land burned annually
(between 79% and 91%) with over 53 million hectares were in forest land.
This is cause of great concern, as tropical forests are home to more than half
the biological diversity on Earth and support the livelihoods of hundreds of
millions of people. Furthermore, tropical forests are extremely important
for maintaining local and global weather and climate.

The largest area of land burned was in Africa with over 213 million
hectares annually. And, of this amount, nearly 17 million hectares were
in forest land. Also, nearly all of the land burned in North and Central
America (total 5 million hectares) and Europe (total 3 million hectares) was
forest land. The largest area of land burned was in Africa with over 213
million hectares annually. And, of this amount, nearly 17 million hectares
were in forest land. Also, nearly all of the land burned in North and Central
America (total 5 million hectares) and Europe (total 3 million hectares) was
forest land.

By income category, indicate that the smallest area of land burned an-
nually corresponds to high-income countries, 38 million hectares which ap-
proximately 13 million hectares were forest land.

Worldwide, people causes most fires, in the Mediterranean region the
estimated proportion is 95% [FU07]. These fires are usually termed as
“human-caused fires” (HCFs) and they encompass intentional and uninten-
tional human actions, power lines and machinery. In opposition of “natural”
fires that are caused by lightning or local phenomena such as volcanic erup-
tions or earthquakes.

The list of human-induced causes includes land clearing and other agri-
cultural activities, maintenance of grasslands for livestock management, ex-
traction of non-wood forest products, industrial development, resettlement,
hunting, negligence, and arson [FU07]. The movement in recent years of
people from rural areas to cities have resulted in worse fire management and
increased fuel levels in rural areas, and consequently an increase in the risk
and severity of fires.

The damage caused by fires common to most regions worldwide include
environmental damages (e.g., forest degradation, soil erosion, loss of biolog-
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ical diversity, …), effects on the climate through the emission of greenhouse
gases, the loss of lives and the impact on livelihoods, especially in rural and
poor regions.

3.2 Fire Management
Fire prevention depends on the country but usually it targets people since
they are the main cause of fires. Also, most countries have laws regulating
the how and when setting fires, and fire prevention programmes. But, few
of them have the capacity to enforce the laws or effectively manage the
programmes.

Many countries, especially in the Mediterranean regions, implement mea-
sures to reduce fuel levels through controlled burnings or grazing. And, early
warning systems are increasingly being used to anticipate periods of high
risk. However, in other countries there is a neglect of prevention measures
where most of the budget goes to suppression activities.

The suppression of fires starts with their detection through early warning
systems or increasingly the use of satellite and aerial surveillance. Once a
fire its detected, it is extinguished primarily by ground-based forces often
reinforced by aerial units used for suppression and transport of ground forces.

Fire management responsibility varies from country to country often
divided between two trends in institutional arrangements:

• The forest service is the sole responsible for fire prevention and control

• The forest service is only responsible for fire prevention and the fire
service takes over the suppression role

The second arrangement represent a focus more on crisis-response than
on prevention and management. A cause is the increasing urbanization of
certain regions and consequently a lower community-participation. Also,
the bigger number of agencies involved in fire activities might become a
constraint due to a higher cost of integration and coordination of their ef-
forts.

At the transnational level, a main area of collaboration is the research
and development of technologies for fire management. Furthermore, the de-
velopment of early warning systems has become especially urgent in prepa-
ration to deal with the effects of climate change on fire regimes across the
world.

3.3 Fire patterns and risk factors
Historical knowledge of the conditions during wildfires is important in the
case of HCFs that show identifiable spatial and temporal patterns [Cos17].
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Spatial patterns are caused by physiography and socio-economic factors and
temporal ones are caused by the climate. The identification of these patterns
jump-started the interest in developing models, both binary occurrence and
numerical, of HCFs occurrence since 1950. Fire occurrence modelling tries
to identify the biotic and abiotic factors contributing to fire ignition.

Even though fire occurrence may differ seasonally there is an identifiable
seasonal pattern. Whereas in some regions there is a high peak of fire
occurrence in summer, others show two peaks in early winter and summer.
After ignition fires grows being its size constrained by topography, available
fuels, wind, and the suppression efforts.

Fire risk depends on the presence of ignition sources and environmental
conditions. The later can be divided into two groups:

• Temporal factors: based on weather

• Spatial factors: derived from physiography, land cover / use, human-
derived (e.g., distance to nearest settlement)

The weather factors are included in models through variables such as
high and mean temperatures, precipitation, relative humidity, evapotran-
spiration, and insolation.

It is common to use indexes that estimate the moisture content caused
by weather on diverse types of fuels and in the soil layers. The most-well
known is the Canadian Forest Fire Weather Index (FWI) System [Nat]. It
consists of six indicators accounting for the effects of fuel moisture and wind
on fire behaviour. Its indicators are divided in the fuel moisture codes and
the fire behaviour indices. The former rate the moisture content of different
types of fuel, and the later rate different characteristics of fire.

Physiography variables considered are elevation and slope. HCFs risk
increases with decreases in elevation and slope as they tend to occur in
lowlands and gentle slopes where population tends to live.

Human factors are included in models since HCFs are caused directly
or indirectly by people. Moreover, landscape structure is the result of the
interaction between human and natural processes. Socio-economic activities
influence in the number and distribution of human presence. Accessibility
through roads or tracks is associated with an increase in fire occurrence, as is
proximity to high populated areas. Also, proximity to agricultural activities
or outdoor recreational areas increases the risk of fire.

Major Habitat Types (MHTs) [Ols+01] are used in many works to ge-
ographically stratify the area of study. MHTs are characterised by climate
and influence the importance of other risk factors since the type and distri-
bution of vegetation is characteristic of each MHTs.
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3.4 Wildfires in Portugal
Portugal is a country especially impacted by wildfires. It is one of the
countries with one of the highest fire risks in Europe. In the decadal average
increased from under 75,000 ha during the 1980s’, to 100,000 ha in the 1990s’,
to over 150,000 ha since 2000 [BH18]. The upwards trend continued until
2017 when severe drought, heat waves, massive oceans of flammable forests
and scrublands, and the Hurricane Ophelia in mid-October came together
in a “perfect storm” situation when 520,000 ha burned, and 120 lives were
lost [Tur+19].

The causes of why Portugal has found itself in this situation are [BH18]:

• A high percentage of unmanaged forest lands

• An increase in the amount and extent of fuel loads

• A high number of human-caused ignitions during high risk periods

• An increase of periods of hot and dry weather that both lengthen
and increase the severity of critical periods for extreme fire caused by
climate change

Particular to Portugal is a highly variable annual burn area pattern
denominated by [Per+05] as the “asymmetric nature of fire size distribution”
with alternating years of higher highs and lower lows that puts an extreme
stress on the environment.

.

Figure 3.2: Inter-annual variability of area burnt by NUTS II region in
continental Portugal

Climate models paint a grim situation in the coming years, particularly
for Portugal and other southern European countries. Hotter years with lower
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precipitations have become normal and this trend shows no sign of abating
in the short-term future contributing to the increase in number and severity
of wildfires.
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Chapter 4

Data acquisition

In this section I am going to describe the different datasets and their sources
that I am going to use in the case study. Although I am going to only include
a short description of each dataset, the complete metadata can be found in
the Appendix B.

The decision to use these specific datasets and not other was driven
primarily by availability of sources that covered the different aspects deemed
important by the literature in modelling human-caused fires (HCFs).

I am going include a summary of each dataset that I am going to use
and the motivation of its inclusion:

• Human-Caused Fires (HCFs) in Portugal from 2011 to 2015. Fires
have been a scourge for the Mediterranean countries, especially for
Portugal and Spain with a climate that contributes to its occurrence.

• Major Habitat Types (MHTs). Used in many studies to stratify the
data since the factors contributing to the occurrence of wildfires vary
from one habitat to another.

• Weather factors. A major factor influencing the occurrence of wildfires
together with the physiography.

– Meteorological data from 2011 to 2015. As climate patterns shape
the temporal patterns exhibit by wildfires.

– Forest Fire Weather Index (FWI) data from 2011 to 2015. De-
rived from meteorological data, it is widely used to model the risk
of wildfires and in predictive models.

• Physiography. A major factor influencing the occurrence of wildfires
together with weather factors. Different elevations and slopes deter-
mine the vegetation that exists in one are and, as a result, the fuel
load available for wildfires.
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– Elevation
– Slope

• Fuel risk factors through the land cover in continental Portugal. One
of the factors used as proxy for human activity that influences the
occurrence of human-caused fires (HCFs).

• Human factors. Factors used to model locations favoured by people
that deliberately or not ignite fires.

– Distance to nearest road
– Distance to nearest build-up area

4.1 Human-Caused Fires (HCFs)

To cover the explanatory variable, that is Human-Caused Fires in Portugal,
I am going to use the historical fire data from the website Central de Dados1

covering the period from 1980 to 2015. The website also mirrors all its data
in its repository on GitHub2.

The format of the downloadable files is Comma-Separated Values (CSV)
with one file per year. Even though not all files contain the same variables
the necessary subset I need for this project is common to the files belonging
to the period of study selected, 2011–2015.

The original source of the data is the Instituto da Conversão da Na-
tureza e Florestas (ICFN) [Rep20] of the Portugal Republic government.
The following changes have been made to the original data set:

• Use of the ISO-86013 (YYYY-MM-DD) for the dates

• Harmonisation of column names

• Deletion of unnecessary columns

• Deletion of quote characters

• Deletion of empty hour field from the dates

• Unification of hour and minute columns into a single column

• Deletion of NULL values

• Unification of end-of-line format
1http://centraldedados.pt
2https://github.com/centraldedados/
3https://www.iso.org/iso-8601-date-and-time-format.html
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• Use of UTF-8 to encode the files

From all the variables included in the dataset I am going to select the
following:

• x: easting coordinate expressed using EPSG:20790 [Kloa] in meters

• y: northing coordinate expressed using EPSG:20790 [Kloa] in meters

• data_alerta: date of fire detection

• area_total: total area burned (in hectares)

Additionally, I am going to use to filter the raw data set two more vari-
ables to discriminate between natural and human-caused fires:

• falso_alarme: whether the fire was a false alarm

• tipo_causa: classification of the source of the fire

4.2 Major Habitat Types (MHTs)

Many studies use MHTs to stratify the data [Cos17]. The source of the
MHTs data is the Global Map of Terrestrial Ecoregions determining Major
Habitat Types (MHTs) [Olson2001], which can be downloaded from the web
of the World Wildlife Fund (WWF)4.

Ecoregions can serve as a framework for analysing biodiversity patterns,
assessing conservation priorities, and directing effort and support.

The originator of the data set is the WWF and in its 2.0 version from
2004 (this is an update to version 1.0 which was completed in 2001).

The data is publicly available as a compressed file (in the ZIP format)
containing one vector data set encoded using ESRI Shapefiles format. It
contains the ecoregions and biomes covering the entire world.

The data set divides the world into 827 terrestrial ecoregions nested
within two higher-order classifications: 14 biomes and 8 biogeographic realms.
Together, these nested classification levels provide a framework for compar-
ison among units.

Furthermore, it has been demonstrated that the fire risk factors and their
importance change between MHTs [Cos17].

The ecoregions are categorised within 14 biomes and eight biogeographic
realms:

4https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world

31

https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world


.

Figure 4.1: Biomes and biogeographic realms of the world

Nested inside the biomes are subdivided into 867 distinct terrestrial
ecoregions:

.

Figure 4.2: Terrestial ecoregions of the world

From all the variables included in the dataset I am going to use the
biomes to stratify the data. The biomes are represented by two variables:

• a geometry, in this case multipolygons

• a number encoding to which one of the 14 biomes belongs the geometry

4.3 Weather factors

4.3.1 Meteorological data

Meteorological variables influence physical combustion requirements. High
mean and maximum temperatures, low precipitation, and low relative hu-
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midity are some of the meteorological conditions favouring the occurrence
of fire. However, annual (or event larger) weather patterns also influence
the number of fires.

I have chosen as the source for the meteorological data the gridded agro-
meteorological data published by the Monitoring Agricultural Resources
(MARS) [Eur15] project for data gathering used in the implementation of
the EU’s Common Agricultural Policy (CAP). Weather monitoring is part of
the crop monitoring and yield forecasting activity within the AGRI4CAST
/ MARS4CAST (i.e., Agricultura forecast / MARS forecast) project.

The data is published as part of the AGRI4CAST data by the MARS4CAST
project through its data portal5. It is published as files split by geographical
cover as files using the CSV format.

It contains meteorological parameters from weather stations interpolated
on a 25×25 km grid. Meteorological data are available on a daily basis from
1975 to the last calendar year completed, covering the EU Member States,
neighbouring European countries, and the Mediterranean countries.

.

Figure 4.3: AGRI4CAST grid with location of observations

I am going to include all the variables in the data set:

• TEMPERATURE_MAX: Maximum air temperature (°C)

• TEMPERATURE_AVG: Mean air temperature (°C)

• WINDSPEED: Mean daily wind speed at 10m (m/s)
5https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
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• VAPOURPRESSURE: Vapour pressure (hPa)

• PRECIPITATION: Sum of precipitation (mm/day)

• RADIATION: Total global radiation (KJ/m2/day)

To combine the variables with the other data I am going to use the
following variables form the data set:

• LONGITUDE: easting coordinate expressed using EPSG:4326 [Klob]
(decimal degrees)

• LATITUDE: northing coordinate expressed using EPSG:4326 [Klob]
(decimal degrees)

• DAY: date of the observation

To access and download the data you need to create and account in the
service. Once you have created and logged in, the data can be selected and
downloaded as a single file using the CSV format.

4.3.2 Canadian Forest Fire Weather Index (FWI)

The Canadian Forest Fire Weather Index (FWI) System rates fire danger.
It consists of six indicators accounting for the effects of fuel moisture and
wind on fire behaviour [Nat].

The FWI indicators are divided in the fuel moisture codes and the fire
behaviour indices. The former rate the moisture content of different types
of fuel, and the later rate different characteristics of fire.

The fuel moisture codes are [Gro87]:

• Fine Fuel Moisture Code (FFMC): It rates the moisture content of
litter and other cured fine fuels. And, it is an indicator of the relative
ease of ignition and the flammability of fine fuel. Its value range is
[0, 10]

• Duff Moisture Code (DMC): It rates the average moisture content of
loosely compacted organic layers of moderate depth. And, it gives an
indication of fuel consumption in moderate duff layers and medium-
size woody material. Its value range is [0,+∞)

• Drought Code (DC): It rates the average moisture content of deep,
compact organic layers. And, it is a useful indicator of seasonal
drought effects on forest fuels and the amount of smouldering in deep
duff layers and large logs. Its value range is [0,+∞)

34



.

Figure 4.4: Forest floor fuels by fuel moisture codes of the FWI system

The fire behaviour indices are:

• Initial Spread Index (ISI): It rates the expected rate of fire spread. It
combines the effects of wind and the FFMC on rate of spread without
the influence of variable quantities of fuel. Its value range is [0,+∞)

• Build-Up Index (BUI): It rates the total amount of fuel available for
combustion. It combines the DMC and the DC. Its value range is
[0,+∞)

• Fire Weather Index (FWI): It rates fire intensity. It combines the
Initial Spread Index and the Build-Up Index. It is suitable as a general
index of fire danger. Its value range is [0,+∞)

The interdependency between the meteorological variables and the in-
dices is:

.

Figure 4.5: Structure of the Canadian Forest Fire Weather Index System
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I have chosen as the source for the FWI data the Fire danger indices
historical data from the Copernicus Emergency Management Service, part
of the Copernicus Programme6. The data set is produced by the Copernicus
Emergency Management Service for the European Forest Fire Information
System (EFFIS).

Copernicus is a European programme for monitoring the Earth. Data
is collected by Earth observation satellites and combined with observation
data from sensor networks on the Earth’s surface. Once collected the data
is processed, providing reliable and up-to-date information within six the-
matic areas. These areas are: land, marine, atmosphere, climate change,
emergency management and security.

The FWI indices from this data calculated using weather forecast from
historical simulations provided by ECMWF ERA5 reanalysis combining
model data and a set of quality-controlled observations.

The data sets span from 1979 to the present with global coverage.
Opening an account is necessary to download the data. Once logged into

the system you can select which of the indices to download and the time
span.

The downloaded data consists of one compressed file (using the ZIP
format) per index containing one file for each day (one data point per day
per index) covering the whole surface of the Earth with an spatial resolution
of the data is a grid of 0.25◦ × 0.25◦ encoded using the NetCDF format.

.

Figure 4.6: Subset of the Copernicus FWI grid covering continental Portugal

6https://www.copernicus.eu/en
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4.4 Physiography

4.4.1 Elevation

Usually, HCFs occurrence increases as elevation (and slope) decreases. As
altitude increases the vegetation loading and temperature decrease (aver-
age variation of −0.65◦/100m), thus rendering difficult the ignition of fire
[Seb+08].

Also, HCFS tend to occur in low elevation and gentle slopes where pop-
ulation tend to cluster, making physiography variables a proxy for human
activity. However, this depends on the activity, fires related to pastures and
forests are in the mountain areas [Cos17].

The source of the elevation data is the EU-DEM v1.0 (there is a newer
1.1 version, but it has not been validated yet).

EU-DEM is a digital surface model (DSM) of 39 countries of the Eu-
ropean Economic Area (EEA). It is a hybrid product based on the Shuttle
Radar Topography Mission (SRTM)7 [Far+07] and the Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER)8 global Dig-
ital Elevation Model (DEM) data fused by a weighted averaging approach.
The SRTM was carried out in 2000. But the data was released in 2014.

The ASTER mission is a cooperative effort between the National Aero-
nautics and Space Administration (NASA) and Japan’s Ministry of Econ-
omy Trade and Industry (METI), with the collaboration of scientific and
industry organizations in both countries.

The EU-DEM is available online through the Copernicus Land Monitor-
ing Service (CLMS), part of the Copernicus Programme.

Copernicus is a European programme for monitoring the Earth. Data
is collected by Earth observation satellites and combined with observation
data from sensor networks on the Earth’s surface. Once collected the data
is processed, providing reliable and up-to-date information within six the-
matic areas. These areas are: land, marine, atmosphere, climate change,
emergency management and security.

The downloadable data are single band raster with values relating to the
actual elevation. The dataset is encoded as GeoTIFF with LZW compression
(1000 × 1000 km tiles) or DEFLATE compression (European mosaics as
single files).

For this project, I downloaded two tiles covering the whole continental
territory of Portugal. The data download for each tile is a single compressed
file (in the ZIP format) containing the tile together with another two files:
one containing metadata (in the XML format), and other overview file (in
the OVR format) containing the image pyramids. The overview file allows
to view the images quickly and efficiently at a variety of scales.

7https://www2.jpl.nasa.gov/srtm/
8https://asterweb.jpl.nasa.gov/index.asp
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The tiles are single band rasters with values relating to the actual eleva-
tion encoded as GeoTIFF with LZW compression (1000× 1000 km tiles).

.

Figure 4.7: DEM tiles covering continental Portugal

4.4.2 Slope

Usually, HCFs occurrence increases as slope (and elevation) decreases. As
slope increases the vegetation loading and temperature decrease, thus ren-
dering difficult the ignition of fire [Seb+08].

Also, HCFS tend to occur in low elevation and gentle slopes where pop-
ulation tend to cluster, making physiography variables a proxy for human
activity. However, this depends on the activity, arson and negligence fires
occur most often in flat or moderate slopes [Cos17].

The slope data set is a product derived from EU-DEM version 1.0. It
is created by projecting the DEM data onto an Inspire compliant grid of 25
meters resolution and computing a slope raster.

This product can be downloaded in both full European coverage as by
1000 × 1000 km tiles. All products are provided as GeoTIFF in 25 meters
resolution.

For this project, I downloaded two tiles covering the whole continental
territory of Portugal. The data download for each tile is a single compressed
file (in the ZIP format) containing the tile together with a PDF document
explaining the conversion between the values in the values in the data and
the slope in degrees.

The tiles are single band rasters with values relating to the actual slope
encoded as GeoTIFF with LZW compression (1000× 1000 km).
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Figure 4.8: Slope tiles covering continental Portugal

4.5 Fuel risk factors

4.5.1 Land cover

Human activities have a high importance in assessing the risk of fire occur-
rence, especially for HCFs where humans are the direct or indirect cause
[Vas+08]. To cover the interaction between socioeconomic activities in the
natural and anthropogenic environment I am going to use land cover data.
In particular, the CORINE Land Cover (CLC) data from 2018.

Furthermore, the landscape composition and its interaction with fire
weather directly influences fire occurrence [MCM17].

The CORINE Land Cover (CLC) inventory was initiated in 1985 (ref-
erence year 1990). Updates have been produced in 2000, 2006, 2012, and
2018. It consists of an inventory of land cover in 44 classes. CLC uses a
Minimum Mapping Unit (MMU) of 25 hectares (ha) for areal phenomena
and a minimum width of 100 m for linear phenomena.

The time series is complemented by change layers, which highlight changes
in land cover with an MMU of 5 ha. Different MMUs mean that the change
layer has higher resolution than the status layer. Due to differences in MMUs
the difference between two status layers will not equal to the corresponding
CLC-Changes layer.

The Eionet network National Reference Centres Land Cover (NRC/LC)
is producing the national CLC databases, which are coordinated and inte-
grated by EEA. CLC is produced by most countries by visual interpretation
of high-resolution satellite imagery. In a few countries semi-automatic so-
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Figure 4.9: CORINE Land Cover centred over the Iberian Peninsula

lutions are applied, using national in-situ data, satellite image processing,
GIS integration and generalisation.

The 2012 version of CLC was the first one embedding the CLC time
series in the Copernicus programme, thus ensuring sustainable funding for
the future. The 2018 version also funded by Copernicus was produced in
less than 1 year.

The land classification used by CLC mixes land cover and land use cat-
egories [FCW05]. Land cover is the physical material at the surface of the
earth. It is determined by direct observation. Whereas land use is the
description of how people use the land. It requires socio-economic interpre-
tation of the activities that take place on that surface.

The CORINE level 1 categories are:

id Description Category
1 Artificial areas Cover
2 Agricultural areas Cover
3 Forest and semi-natural areas Cover
4 Wetlands Cover
5 Water bodies Cover

Table 4.1: CLC level 1
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I am going to use the CORINE level 3 categories, both land cover and
land use. The categories from class 1 of level 1 are:

id Description Category
111 Continuous urban fabric Cover
112 Discontinuous urban fabric Cover
121 Industrial or commercial units Use
122 Road and rail networks and associated land Use
123 Port areas Use
124 Airports Use
131 Mineral extraction sites Use
132 Dump sites Use
133 Construction sites Use
141 Green urban areas Cover
142 Sport and leisure facilities Use

Table 4.2: CLC level 3 corresponding to level 1 class “Artificial areas”

The categories from class 2 of level 1 are:

id Description Category
211 Non-irrigated arable land Use
212 Permanently irrigated land Use
213 Rice fields Use
221 Vineyards Use
222 Fruit trees and berry plantations Use
223 Olive groves Use
231 Pastures Use
241 Annual crops associated with permanent crops Use
242 Complex cultivation patterns Use
243 Land principally occupied by agriculture,

with significant areas of natural vegetation
Use

244 Agro-forestry areas Use

Table 4.3: CLC level 3 corresponding to level 1 class “Agricultural areas”
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The categories from class 3 of level 1 are:

id Description Category
311 Broad-leaved forest Cover
312 Coniferous forest Cover
313 Mixed forest Cover
321 Natural grassland Cover
322 Moors and heathland Cover
323 Sclerophyllous vegetation Cover
324 Transitional woodland-scrub Cover
331 Beaches, dunes, sands Cover
332 Bare rocks Cover
333 Sparsely vegetated areas Cover
334 Burnt areas Cover
335 Glaciers Cover

Table 4.4: CLC level 3 corresponding to level 1 class “Forest and semi-
natural areas”

The categories from class 4 of level 1 are:

id Description Category
411 Inland marshes Cover
412 Peat bogs Cover
421 Salt marshes Cover
422 Salines Cover
423 Intertidal flats Cover

Table 4.5: CLC level 3 corresponding to level 1 class “Wetlands”

The categories from class 5 of level 1 are:

id Description Category
511 Water courses Cover
512 Water bodies Cover
521 Coastal lagoons Cover
522 Estuaries Cover
523 Sea and ocean Cover

Table 4.6: CLC level 3 corresponding to level 1 class “Water bodies”

The CLC data is available through the Copernicus Land Monitoring Ser-
vice, part of the Copernicus Programme in three formats: as a 100 meter
2018 raster, using the GeoTiff format, as an ESRI Geodatabase, and as a
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SQLite database [SQL20], using the GeoPackage format that can be opened
with the QGIS software, a free and open-source cross-platform desktop ge-
ographic information system (GIS) application.

I downloaded the GeoTiff raster. In addition, I also downloaded a docu-
ment describing the CORINE Land Cover nomenclature from the technical
library of the Copernicus Land Monitoring Service website9.

4.6 Human factors

4.6.1 Distance to nearest road

Proximity to roads is associated with an increase in HCFs occurrence as
more than half of them start along roads since arsonists or careless people
use them [ZLS16]. To cover the distance to nearest road I am going to use
data from OpenStreetMap.

I am going to download the data through Geofabrik10, a consulting and
software development German company. It offers excerpts of the Open-
StreetMap database per country. Geofabrik updates the data sets daily and
I am going to use the one extracted on the 12th of April of 2020.

For some countries as is the case for Portugal, it also offers prepared
datasets containing subsets of the data (e.g., ways, buildings, etc.) per
country as Esri Shapefiles. The data is available as a single file.

4.6.2 Distance to nearest building

HCFs occur most often near settlements [YHS08]. To cover the distance to
nearest building I am going to use data from OpenStreetMap.

As with the road infrasctructure data, I am going to download the pre-
pared data set from Geofabrik updated on the 12th of April of 2020.

(a) Road network detail (b) Buildings

Figure 4.10: Human factors data from OpenStreetMap

9https://land.copernicus.eu/user-corner/technical-library
10https://www.geofabrik.de/
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Chapter 5

Data pre-processing

In this section I am going to describe the pre-processing done to the acquired
data. The objective of the different pre-processing tasks is to prepare the
data to be easily consumed in later stages.

The data comes from different sources and has to be made compatible
before tackling any data analysis task. Furthermore, even multiple datasets
from a single provider can present compatibility problems that make crossing
the data for analysis a necessary first step.

At a high level, the tasks performed in this chapter are:

• Filter out data not in the spatial (mainland Portugal territory) and
temporal (period from 2011 to 2015) frame of interest

• Normalise the Spatial Reference Systems (SRS) into EPSG:4326

• Converting the raw data from sensors into a more usable form

I am going to output all datasets into tabular form (as a series of values
each associated with an observation and a variable).

5.1 Human-Caused Fires (HCFs)
The raw fire data is segregated in a file per year so the first step I take is to
combine all files into a single data set. Then, I am going to keep only the
HCFs identified by the following conditions:

• the value of the field tipo_causa is either “Intencional” for “Negli-
gente”), and

• the value of the field falso_alarme is zero

After these two steps, the number of fires by year are:
From all the variables included in the dataset I am going to select the

following:
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Year Fires HCFs
2011 35,941 12,759
2012 30,740 12,479
2013 27,372 10,357
2014 11,387 3,642
2015 23,175 9,037
Total 128,615 48,274

Table 5.1: Total number of fires and its human caused-fires subset in conti-
nental Portugal by year

• x: easting coordinate

• y: northing coordinate

• data_alerta: date when the fire was detected

• area_total: area burnt by the fire (in hectares)

Both coordinates are expressed in meters using the EPSG:20790 Coor-
dinate Reference System (CRS) [Kloa].

Checking the health of the data set only find small number of problematic
cases:

Variable Frequency of zeros Percentage of zeros
x 8 0.02
y 8 0.02
data_alerta 0 0.00
area_total 333 0.69

Table 5.2: Frequency of zero values in the fire data set

The data set has no missing or infinity values.
The zeros in the location data (variables “x” and “y”) are an error

since the projected bounds of the CRS used to encode them (EPSG:20790,
which covers continental Portugal) are (78230.9913, 5969.3725, 372846.5568,
577613.4152)1.

Moreover, checking the rest of observations against the bounding box of
the CRS reveal 6 more observations out of the extent.

Given that the total of observations is a small percentage (< 1%) I am
going to drop them.

I will also drop the fires with burnt area equal to 0 as they are also a
small percentage (< 1%) and ascribable to an input error or a value so small
that could have been lost in the ingestion of the data.

1https://spatialreference.org/ref/epsg/lisbon-lisbonportuguese-national-grid/
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I am going to convert the CRS of the coordinates from EPSG:20790 to
EPSG:4326 as preparation when I combine all data sets.

After pre-processing the source data I have a fire data set with 47,927
observations and 4 variables.

5.2 Major Habitat Types (MHTs)

I am going to use the biomes in the ecoregions data set (“BIOME” attribute)
to stratify the other data so I can build a model per biome.

There are only two biomes in continental Portugal

• Temperate broadleaf & mixed forests (“BIOME” attribute equal to 4)

• Mediterranean forests, woodlands & scrub (“BIOME” attribute equal
to 12)

.

Figure 5.1: Biomes in continental Portugal

The “Temperate broadleaf & mixed forests” biome only covers a small
patch in the north-west part corner of the country. The rest corresponds to
the “Mediterranean forests, woodlands & scrub” biome.

5.3 Weather factors

5.3.1 Meteorological data

The raw meteorological data is stored in a single file using the CSV format.
It contains the following variables:
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• LATITUDE: latitude coordinate

• LONGITUDE: longitude coordinate

• DAY: date of the observation

• TEMPERATURE_MAX: Maximum air temperature (°C)

• TEMPERATURE_AVG: Mean air temperature (°C)

• WINDSPEED: Mean daily wind speed at 10m (m/s)

• VAPOURPRESSURE: Vapour pressure (hPa)

• PRECIPITATION: Sum of precipitation (mm/day)

• RADIATION: Total global radiation (KJ/m2/day)

The latitude and longitude coordinates are expressed in decimal degrees
using the EPSG:4326[Klob] CRS.

The raw data contains 345,114 observations from 189 meteorological sta-
tions covering the period from 2011 to 2015. This period corresponds to
1,826 days (2012 was a leap year), so:

(365 ∗ 4 + 366) ∗ 189 = 345, 114

Checking the health of the data set only find small number of problematic
cases:

Variable Frequency of zeros Percentage of zeros
LATITUDE 0 0.00
LONGITUDE 0 0.00
DAY 0 0.00
TEMPERATURE_MAX 2 0.00
TEMPERATURE_AVG 23 0.01
WINDSPEED 51 0.01
VAPOURPRESSURE 0 0.00
PRECIPITATION 239,360 69.36
RADIATION 0 0.00

Table 5.3: Frequency of zero values in the meteorological data set

For temperature data is normal to have variables with observations
whose values are equal or less than zero. However, checking the values
of the two variables measuring temperatures I find 17 (0.005% of the total)
observations where the average temperature is equal to the maximum tem-
perature. This means days where the temperature was constant during the
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whole day. Because the percentage of bad observations is so low, I am going
to discard them.

The number of zeros for the precipitation variable is high, a 69.36% of
all observations. Seems that the variable will be of no use in the training of
a model. However, I am not going to discard it yet until I make more tests
after a deeper exploration.

After pre-processing the source data, I have a meteorological data set
with 345,097 observations and 9 variables.

5.3.2 Canadian Forest Fire Weather Index System

The raw FWI data is stored in a file per index using the NetCDF format.
Each file contains data for one of the following indicators:

• Fine Fuel Moisture Code (FFMC)

• Duff Moisture Code (DMC)

• Drought Code (DC)

• Initial Spread Index (ISI)

• Build-Up Index (BUI)

• Fire Weather Index (FWI)

The raw files data sets span from 1979 to the present with global cover-
age. Therefore, I am going to filter the raw data and only keep the data for
the period of study (2011 to 2015) and located inside the bounding box of
EPSG:20790. After filtering the data, the data set contains 505,802 obser-
vations per indicator.

Checking the health of all the data sets I find that none of them contains
missing or infinity values. Some of them contain observations with values
equal to 0:

• DMC with 4 observations

• DC with 68 observations

• BUI with 598 observations

These indices can take 0 values as their range is [0,+∞). Therefore, I
am not going to do anything more with the data.
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5.4 Physiography

5.4.1 Elevation

I am going to generate an elevation data set by extracting the data from
the locations of the fires in the HCFs data set since the rasters are big and
compressed making any manipulation computationally costly.

I am going to generate the data set by:

1. Extracting the data separately from the rasters containing the eleva-
tion data

2. Combining the elevation data into a single elevation data set

5.4.2 Slope

I am going to generate a slope data set by extracting the data from the
locations of the fires in the HCFs data set since the rasters are big and
compressed making any manipulation computationally costly.

I am going to generate the data set by:

1. Extracting the data separately from both rasters

2. Combining the elevation data into a single slope data set

As a last step pre-processing the combined slope data I am going to
convert the values from the original digital number (DN, a digital number
in remote sensing is the value assigned to a pixel in a raster) to the degrees
off the horizontal of the surface tangent.

The conversion formula can be found in the product webpage on the
Copernicus Land Monitoring Service2. It is:

slope = arcsin

(
DN

250

)
× 180

π

Graphically, the conversion function is:

2https://land.copernicus.eu/imagery-in-situ/eu-dem/
eu-dem-v1-0-and-derived-products/slope
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Figure 5.2: Slope conversion curve from DN to decimal degrees over the
horizontal

And, the correspondence of some values is:

DN Slope (degrees)
0 90

25 84.26
50 78.46
75 72.54

100 66.42
125 60
150 53.13
175 45.57
200 36.87
225 25.84
250 0

Table 5.4: Examples of correspondence between the slope as a DN and in
decimal degrees over the horizontal
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5.5 Fuel risk factors

5.5.1 Land cover

I am going to generate a land cover data set by extracting the level 3
CORINE data from the locations of the fires in the HCFs data set since
the rasters are big and compressed making any manipulation computation-
ally costly.

Unlike both physiography data sources, the land cover data is contained
in a single raster.

5.6 Human factors

5.6.1 Distance to nearest road

OpenStreetMap classifies as highways [Opea]:

A highway in OpenStreetMap is any road, route, way, or thor-
oughfare on land which connects one location to another and
has been paved or otherwise improved to allow travel by some
conveyance, including motorised vehicles, cyclists, pedestrians,
horse riders, and others.

I am going to consider in this work only the main, link and access roads
since they are the main ways used by people to move and the OpenStreetMap
data contains a large number of non-main highways with diverse degrees of
quality and completeness.

The main highways are identified in the OpenStreetMap ontology by one
of the following values [Opeb]:

• motorway

• motorway_link

• trunk

• trunk_link

• primary

• primary_link

• secondary

• secondary_link

• tertiary
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• tertiary_link

• service

5.6.2 Distance to nearest building

I am not going to pre-process the buildings’ data since the quality of the
data is not as diverse as it is in the case of the road infrastructure data.
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Chapter 6

Data exploration

I am going to describe the data exploration for the whole dataset that I have
used trying to understand the data and its characteristics using descriptive
statistical and graphical techniques.

The objective of the exploration is to audit the acquired data and gather
enough information to process the data so its fit for modelling.

Because, carrying the data exploration process involves the systematic
application of multiple techniques to the dataset and the acquired data
contains a relatively large number of variables, I am going to describe first
which techniques I have used, and second to which variables I have applied
them, and a summary of the exploration results.

As I have indicated before, multiple studies that use MHTs to stratify
the data [Cos17], and it has been demonstrated that fire risk factors and
their importance change between MHTs. Therefore, the biome, as a proxy
for the spatial distribution of the data, together with the time dimension,
the data belongs to the period from 2011 to 2015, are two possible directions
when exploring the data.

I am going to proceed in this way trying to focus the narrative of the
data exploration and avoid a long and detailed description of the exploration
that would have a detrimental effect on the exposition of this step of the
work.

The detailed data exploration is still included in this report but relegated
to Appendix C: Detailed data exploration.

6.1 High-level view of a variable by biome

To explore the absolute and relative frequency distribution of a variable
grouped by biome I am going to use contingency tables and optionally bar
plots. This provides a high-level view of the relation of a variable with the
biome.

I have applied this analysis to the following variables:
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• Human-caused fires (HCFs)

– Burnt area

• Fuel risk factors

– Land cover

From the exploration of these variables is important to highlight that
the number of fires and burnt area is almost evenly distributed by biome:

Biome Count Burnt area
Temperate Broadleaf &
Mixed Forests

21,590 45.05% 127,331.6 40.55%

Mediterranean Forests,
Woodlands & Scrub

26,337 54.95% 186,691.9 59.45%

Total 47,927 100% 314,023.6 100%

Table 6.1: Burnt area observations by biome

And, graphically:

.

Figure 6.1: HCFs count and burnt area (ha) by biome

Also, the land cover contains 42 different categories for the whole dataset,
but only a small number of them contain more than 10% observations.
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For the Mediterranean Forests, Woodlands & Scrub biome, that contains
the 42 categories, those with more than 10% of the observations are:

id Description Frequency Percentage
242 Complex cultivation patterns 5,400 20.50%
112 Discontinuous urban fabric 3,304 12.55%
243 Land principally occupied by

agriculture, with significant
areas of natural vegetation

2,914 11.06%

Table 6.2: CLC level 3 categories with more than 10% of observations in
Mediterranean Forests, Woodlands & Scrub biome

For the Temperate Broadleaf & Mixed Forests biome, that contains only
37 categories, those with more than 10% of the observations are:

id Description Frequency Percentage
241 Annual crops associated

with permanent crops
4,008 18.56%

112 Discontinuous urban fabric 3,272 15.16%
242 Complex cultivation patterns 3,086 14.29%
243 Land principally occupied by

agriculture, with significant
areas of natural vegetation

3,086 14.29%

Table 6.3: CLC level 3 categories with more than 10% of observations in
Temperate Broadleaf & Mixed Forests biome

There are a large number of categories represented but most of them with
low cardinality. Thus, the variability and noise might become a problem
building a model.

6.2 High-level view of a variable by temporal unit

To explore the absolute and relative frequency distribution of a variable by
temporal unit (year or month), I am going to use contingency tables and
line plots. This provides a high-level view of the temporal trend of a variable
with the biome.

I have applied this analysis only to a single variable:

• Human-caused fires (HCFs)

– Burnt area
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What I have found is that the number of fires in 2014 is low and it
has been identified in the literature as one of the “lower lows” years in the
complex multi-year temporal pattern of fires in continental Portugal:

Figure 6.2: Total and grouped by biome yearly count of HCFs in the period
2011–2015

6.3 Shape of variable’s distribution by biome

To judge whether there are differences between the distribution of a variable
conditioned by the biome I am going to use summary statistics that include:
the median and the mean, the first and third quartiles, the minimum and
maximum values, and the standard deviation; together with density plots
(a sort of smoothed histogram). This provides a view of the shape of a
distribution (its spread, the location of its absolute and local maximum and
minimum values, its symmetry or skew, and its uniformity).

To complete the numerical data, I am going to use density plots plot-
ting the overlapping distributions of the same variable for each biome, using
transparency to highlight were the distributions match and where exist dif-
ferences. Also, with the same objective, I am going to use a second variant
comparing the distribution of a variable by biome against the overall distri-
bution of that variable, again using transparency to highlight the differences.

I decided to use density plots over histograms due to the former not
being affected by the number of bins used in their construction. The use of
a wrong bin value would make the distribution of the resulting histogram
misleading.

I have applied this analysis to the following variables:
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• Human-caused fires (HCFs)

– Burnt area
– Coordinates (x and y)

• Meteorological data

– Maximum air temperature
– Average air temperature
– Mean daily wind speed at 10m
– Vapour pressure
– Sum of precipitation
– Total global radiation

• Canadian Forest Fire Weather Index (FWI)

– FFMC
– DMC
– DC
– ISI
– BUI
– FWI

• Physiography

– Elevation
– Slope

• Human factors

– Distance to nearest road
– Distance to nearest building

Exploring the elevation I found that there are values less than zero:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

-1.50 157.73 294.11 350.23 487.07 1,517.43

Mediterranean Forests,
Woodlands & Scrub

-2.50 91.76 273.37 340.54 560.50 1,835.37

Table 6.4: Statistical summary of elevation by biome

There are 41 HCFs with negative elevation. They all located along the
coast and are plausible but others are located in the sea or estuaries of rivers:
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(a) All (b) Detail

Figure 6.3: HCFs with elevation less than zero

Hence, I going to remove the fires with negative elevation when I prepare
the data for modelling.

There is also 56 HCFs with zero elevation, but these HCFs in the coast
are plausible so I am going to do nothing.

6.4 Shape of variable’s distribution by biome and
temporal unit

To explore the differences between the distribution of a variable grouped
by biome and temporal unit I am going to use overlapping density plots by
biome with one overlapping pair per year, and with all the years stacked so
comparisons between years can be drawn.

I have applied this analysis to the following variables:

• Meteorological data

– Vapour pressure
– Total global radiation

• Canadian Forest Fire Weather Index (FWI)

– FFMC

• Physiography

– Elevation

However, I did not found anything noteworthy.
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6.5 Distribution of skewed variables
To ascertain whether a skewed variable follows a log-normal or power distri-
bution I am going to use empirical cumulative distribution function (ECDF)
plots.

I have applied this analysis to the following variables:

• Human-caused fires (HCFs)

– Burnt area

• Meteorological data

– Sum of precipitation

What I have found for both variables is that they follow log-normal
distribution, not a power one, as it is made evident in the descending ECDF
plot with logarithmic x an y axes. The distribution of a variable following a
power law would appear as a straight line, and this is not the case for any
of the two.

For the burnt area the plot is:

Figure 6.4: Burnt area descending ECDF using logarithmic scale

And, for the precipitation is:
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Figure 6.5: Precipitation descending ECDF using logarithmic scale

Portugal is amongst the sunniest areas in Europe. The annual precipi-
tation varies from amounts to 1,450 mm in Braga and 1,100 millimetres in
Porto, while it drops to around 700 mm in Lisbon, and to about 500 mm
(20 in) in Algarve.

The observations with a value equal to zero by biome are:

Biome Precipitation = 0 Precipitation > 0

Temperate Broadleaf &
Mixed Forests

19,562 40.82% 2,028 4.23%

Mediterranean Forests,
Woodlands & Scrub

23,749 49.55% 2,588 5.40%

Table 6.5: Count of observations by biome with and without precipitation

The percentage of zeros is so high by biome that I am going to drop the
variable as too much observations with zero will affect the quality of the
model.

6.6 Spread and outliers of a variable

To explore the spread (dispersion), skewness and possible occurrence of out-
liers of multiple distributions of a quantitative variable by biome or temporal
unit at once I am going to use box-and-whisker plots. They provide a way
to detect the shift of a variable among distributions. To help understand
the spread of a variable values I am going to superimpose to the box-and-
whisker plots the scatter plot of the variable observation. To ameliorate
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the problem caused by observations occluding other and masking where the
values of the distribution are more concentrated I am going to add jitter
and transparency to the points.

I have applied this analysis to the following variables:

• Human-caused fires (HCFs)

– Coordinates (x and y)

• Meteorological data

– Maximum air temperature

– Average air temperature

– Mean daily wind speed at 10m

– Vapour pressure

– Total global radiation

• Canadian Forest Fire Weather Index (FWI)

– FFMC

– DMC

– DC

– ISI

– BUI

– FWI

• Physiography

– Elevation

– Slope

• Human factors

– Distance to nearest road

– Distance to nearest building

From all the variables I am going to highlight the analysis of the slope.
The spread of the variable is not uniform due to the how its value is stored in
the raw data (as a Digital Number measure by a satellite), and its conversion
into degrees over the horizontal:
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Figure 6.6: Boxplots by biome of slope

6.7 Geospatial distribution of a variable
To explore the geospatial distribution of a variable I am going to use maps
using the EPSG:4326 coordinate reference system and consisting of a layer
containing the points indicating the geospatial locations of the variable ob-
servations.

I have applied this analysis to only a single variable:

• Major Habitat Types (MHTs)

And, I have found that the biome “Temperate Broadleaf & Mixed Forests”
has suffered a larger number of fires in proportion to its extension, thus re-
vealing a stark difference between the northern and southern halves of the
territory:

(a) All (b) By biome

Figure 6.7: Location of the HCFs in period 2011–2015
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Chapter 7

Feature engineering

I am going to combine in this section the data preparation and feature
engineering stages combining all the steps necessary to prepare the data, so
it fits the selected model:

• Treating outliers

• Reducing high cardinality in categorical variables

• Assigning the correct data types for each variable (some algorithms
only work with certain data types)

• Handling missing data

• Creating new variables

I am going to summarise the feature engineering process and left the
detailed account of the steps and results to the Appendix D

7.1 Handling outliers

I am going to handle the outliers found on the data sets considering that in
some cases whether a value is abnormal is a matter of perspective.

Also, I am going to try to make the least modifications possible to the
data since each change distorts the data and may introduce bias.

For each variable I am going to try 3 methods to detect and treat outliers:

• Bottom/Top x%, based on percentiles. Common values are 0.5%, 1%,
1.5%, 3%, among others.

• Tukey, based on the quartiles. It considers outliers all values outside
of the interval [Q1 − 3IQR, Q3 + 3IQR] [Tuk81].
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• Hampel, based on the median and median absolute deviation (MAD)
values. It considers outliers all values outside of the interval [median−
k ∗ MAD,median + k ∗ MAD] [Ham74].

To visualise graphically the outliers, I am going to use box-and-whisker
plots with the outliers depicted as points beyond the whiskers.

To visualise the skewness, before and after removing the outliers, I am
going to use different metrics of central tendency and skewness together
with density plots marked with lines depicting the location of percentiles
(the threshold value indicating a percentage of the observations of the dis-
tribution).

Given the data exploration already make I probe the following variables
looking for outliers:

• Human-caused fires (HCFs)

– Burnt area

• Meteorological data

– Maximum air temperature
– Average air temperature
– Mean daily wind speed at 10m
– Vapour pressure
– Total global radiation

• Canadian Forest Fire Weather Index (FWI)

– FFMC
– DMC
– DC
– ISI
– BUI
– FWI

• Physiography

– Elevation
– Slope

• Human factors

– Distance to nearest road
– Distance to nearest building
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To treat the outliers, I have choose to clip a feature by assigning all
observations flagged as outliers the value of the threshold separating those
observations from the rest. Therefore, clipping the feature values instead of
removing the observations as the size of the dataset is small and I do not
want to reduce its size even more. This is also a especially good strategy
when faced with extreme outliers.

7.1.1 Human-caused fires (HCFs): Burnt area

As I saw in the data exploration phase, the burnt area is a highly skewed
variable. Thus, to detect outliers I have used the following configuration for
each method:

• Bottom/Top method for only the top 5%

• Tukey method

• Hampel method using k = 3

Their application flags the following number and percentage of observa-
tions as outliers:

Method Outliers Percentage
Bottom / Top 1,091 5.05%
Tukey 2,036 9.43%
Hampel 6,512 30.16%

Table 7.1: Flagged outliers in burnt area

The skewness of this variable was evident by how the standard deviation
was large compared to the mean, as reflected in the variation coefficient
and kurtosis value. After removing the observations flagged as outliers, all
metrics have been reduced:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 5.90 85.62 14.52 45.11 2,710.31
Bottom / Top 0.69 1.41 2.03 3.34 15.79
Tukey 0.44 0.74 1.68 2.23 7.63
Hampel 0.10 0.14 1.37 1.71 4.83

Table 7.2: Skewness metrics before and after imputing outliers in burnt area

And, comparing graphically the observations flagged as outliers in the
original variable and all methods:
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Figure 7.1: Boxplots before and after imputing outliers in burnt area

And, comparing only the result of the three methods:

Figure 7.2: Boxplots after imputing outliers in burnt area

The distribution of the new variables is still skewed but with a much
smaller tail.

I will use the Bottom/Top method that imputes the least number of ob-
servations while at the same time reducing the skewness of the distribution.
The density plot for the burnt area treated with the Bottom/Top method
is:
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Figure 7.3: Density plot of burnt area after applying the Bottom / Top
method

To conclude this section, I want to comment on the nature of the obser-
vations flagged as outliers for the burnt area. They are not true outliers but
large wildfires that in the last years have become more common and larger.
Their study can reveal insights into the conditions that make them more
prevalent and so dangerous. However, this goal is beyond the scope of this
work and I do not have the domain knowledge necessary to embark in their
study.

Although some models, such as gradient-boosting machines (GBM), tend
to tolerate outliers better, “noise” may still affect their performance and
results. So, when comparing multiple algorithms this steps can be necessary
to level the playing field to make a fairer comparison.

For these reasons I have decided to ultimately flag and treat these ob-
servations as if they were outliers.

7.1.2 Human factors: distance to closest road

As I saw in the data exploration phase, the distance to closest road is skewed
variable with a tall to the right. Thus, to detect outliers I have used the
following configuration for each method:

• Bottom/Top method for 5% of the top data

• Tukey method

• Hampel method using k = 3
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With the number and percentage of observations flagged as outliers be-
ing:

Method Outliers Percentage
Bottom / Top 1,080 5.00%
Tukey 599 2.77%
Hampel 2,272 10.52%

Table 7.3: Flagged outliers in distance to nearest road

The difference before with the long right tail and how the skewness of
the distribution is reduced after is visible in the box plots:

Figure 7.4: Box plots before and after imputing outliers in distance to near-
est road

I am going to use the Tukey method to impute the outliers to clip the
feature as it has the lowest impact with the result being similar to the
Bottom/Top method that flag the double of observations as outliers but do
not improve the skewness indicators by a significant margin:
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Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 347.38 447.68 1.29 2.96 16.13
Bottom / Top 270.50 272.33 1.01 1.42 4.50
Tukey 296.02 316.91 1.07 1.65 5.46
Hampel 224.67 204.47 0.91 1.09 3.43

Table 7.4: Skewness metrics before and after imputing outliers in distance
to nearest road

This low improvement is also visible in the box plot:

Figure 7.5: Box plots after imputing outliers in distance to nearest road

7.1.3 Human factors: distance to closest building

As I saw in the data exploration phase, the burnt area is a skewed variable
with a tail to the right. So, I am going to detect the outliers with using the
following configuration for each method:

• Bottom/Top method for 5% of the top data

• Tukey method

• Hampel method using k = 3

And obtaining the following results:
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Method Outliers Percentage
Bottom / Top 1,084 5.02%
Tukey 230 1.07%
Hampel 1,394 6.46%

Table 7.5: Flagged outliers in distance to nearest building

I am going to impute the outliers using the Tukey method as it has the
lowest impact and the improvement of the skewness indicators is enough,
with the value of the mean and the standard deviation becoming more bal-
anced:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 748.96 859.41 1.15 2.28 10.77
Bottom / Top 610.08 583.14 0.96 1.04 3.24
Tukey 703.12 735.50 1.05 1.50 5.19
Hampel 583.88 547.56 0.94 0.95 2.95

Table 7.6: Skewness metrics before and after imputing outliers in distance
to nearest building

With the reduction of outliers visible in the box plot:

Figure 7.6: Boxplots before and after imputing outliers in distance to nearest
building
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7.2 Handling data types
The non-numerical variables are data_alerta, and land_cover. In the case
of data_alerta I will not apply any transformation since I am going to use
data_alerta indirectly through a new variable generated from it.

For the land_cover variable I am going to transform it using one-hot en-
coding so I can use it with machine-learning algorithms that do not support
this type of variables.

But before, due to the variable having only 4 categories with more than
10% of the observations and to avoid the danger of a noisy variable and
overfitting I am going to swap the CORINE Land Cover level 3 classification
for the corresponding CORINE Land Cover level 2.

After converting the categories, the frequencies and percentages ordered
by their frequency are:

Category Frequency Percentage
Heterogeneous agricultural areas 10,180 47.15%
Urban fabric 3.434 15.91%
Scrub and/or herbaceous
vegetation associations

2,943 13.63%

Forest 2,720 12.60%
Arable land 1,191 5.52%
... ... ...

Table 7.7: Topmost CLC level 2 categories by number of observations

There is now a category that concentrates the 47.15% of all observations,
“Heterogeneous agricultural areas.” And, only 4 categories have more than
6% of the observations each one and approximately 90% of a total of 14
categories

The reduction from the codification using CLC level 3 has improved but
there is still not satisfactory. To finish I am going to aggregate all categories
less than a 6% of the observations that represent approximately 10% of
all observations. However, the new category will still be the one with less
observations.

The final categories are:
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Category Frequency Percentage
Heterogeneous agricultural areas 10,180 47.15%
Urban fabric 3.434 15.91%
Scrub and/or herbaceous
vegetation associations

2,943 13.63%

Forest 2,720 12.60%
Other 2,313 10.71%

Table 7.8: CLC level 2 categories by number of observations after grouping
smaller ones

There all only 5 categories, all with al least 10% of the observations.
However, now the situation can be dangerous by having less variability and
existing the possibility of underfitting.

7.3 Transformations
I am going to drop the variable biome after selecting the data for a single
biome to build the models.

Apart from that, the only transformation I am going to perform is to
generate a new variable indicating the day of the year, called yday. This
new variable may help to capture the fact that early spring and summer are
the two periods of the year where the human-caused fires (HCFs) tend to
more prevalent.
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Chapter 8

Modelling

In this section I am going to build two models using different algorithms,
GBM and GLM. The steps I am going to follow are:

1. Select the features to include in the models using a filter method

2. Tuning the models’ hyperparameters and training them

To select which features to include I am going to use a metric based
on Information Theory trying to discover which features show a greater
relationship with the target variable, the area burnt by a human-caused
fire.

To train the models I am going to use part of the data, the train dataset,
and use it to tune the models’ hyperparameters. The rest of the data, the
test dataset, will only be used in measuring the performance of the trained
models and the application of the eXplainable AI techniques.

Splitting the dataset allow us to measure its performance on data that
a model has not seen in training and avoid that it can learn the data so
it generalises better with new data and avoid overtraining. For the same
reason I am going to use the cross validation technique with 5 folds.

I continue to tune the hyperparameters and traing models until conver-
gence happens. that is, until the new model performance is no better than
the previous one.

The steps in the modelling process are:
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Figure 8.1: Modelling steps

8.1 Algorithms

I am going to train two models using a black-box algorithm, Gradient Boost-
ing Machines (GBM) [Fri00], and a glass-box one, Generalised Linear Mod-
els (GLM) [Cra14]. I selected these algorithms becuase I wanted to use and
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compare a black-box model against a glass-box model.
For the black-box model I chose GBM becuase it has show a good per-

formance in many areas of application and in many instances. Also, its
training is fast, compared to another algorithms.

For the glass-box model I chose GLM )that is used with variables fol-
lowing a log-normal distribution as is the case with the burnt area.

8.2 Feature selection strategies

In feature selection, a learning algorithm must consider the problem and
select on which features put its focus, while ignoring the rest. However, this
is a problem because the optimal and most relevant features might be not
the same that minimise the prediction error [KJ97].

A classification of feature selection methods based on how the selection
and learning algorithm steps interact is [Naq11]:

• Filter methods, that analyse the intrinsic properties of the features
while ignoring the interaction with the algorithm

• Wrapper methods, that uses a learning algorithm as a “black box”
function score different feature subsets

• Embedded methods, that selection is a step in the model training

Figure 8.2: Differences between feature selection methods [Tad+19]

Filter methods does not interact with the learning algorithms, as a result,
they do not intrinsically include the assumptions of the algorithm. However,
this also means that the models trained with the features selected usually
have a lower performance that others where the feature selection used a
wrapped method.
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8.3 Feature selection metrics
I have considered the use of the following methods to select the features:

• Variable importance ranking

• Functional relationship

• Non-linear correlation

• Linear correlation

As the variable importance ranking score, I have considered the informa-
tion gain ratio metric. Its value is the ratio of the information gain (of each
variable with respect to the response variable) to the intrinsic information
value (of each variable) [Qui86].

As the functional relationship metric, I have considered the Maximal In-
formation Coefficient (MIC), part of the Maximal Information-based Non-
parametric Exploration (MIME) family [Res+11].

The value of the MIC metric indicates whether there is a functional
relationship between two variables base on the mutual information. It goes
from 0 to 1, with 0 being no correlation and 1 highest correlation.

Figure 8.3: Relationships between variables characterised by R2 and MIC
values

As the non-linear relationship metric, I have considered the MICR2
(MIC − R2) metric, also part of the Maximal Information-based Nonpara-
metric Exploration (MIME).

The value of the MICR2 metric indicate whether there is a non-linear
relationship between two variables. It is calculated by subtracting R2 to the
MIC metric. It values goes from 0 to 1. A high value indicates a non-linear
relationship since a high R2 indicates a linear relationship.

And, as the linear correlation metric, I have considered the Pearson
correlation coefficient [Cra14].
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8.4 Strategy followed
The objective is to finish the process with a set of features lowly correlated
between them, but highly correlated to the target variable.

I decided on using a filter method using Information Theory metrics to
avoid using a machine-learning algorithm that could introduce bias in the
selection process since each algorithm sees the features in a different way,
that leads to algorithms giving different importance to the same feature.

Moreover, this difference on assigning importance also leads to make
more difficult to use surrogate interpretable models to try to understand
black-box models.

As I am going to train two models using different algorithms I consider
that using a filter method might make the selection process fairer.

For metrics I have selected two metrics based on Information Theory:

• the Information Gain Ratio

• the Maximal Information Coefficient (MIC)

For the Information Gain Ratio, features with a high value exhibit a
stronger relationship with the target variable that those with lower ones.
And, features with low MIC values between them exhibit a weak functional
relationship (linear or not, does not matter).

The steps in the process are:

1. Calculate metrics: the two metrics an be calculated in parallel follow-
ing the following two groups of the steps:

(a) Calculate Information Gain Ratio

And:

(a) Calculate Maximal Information Coefficient (MIC)
(b) Identify groups

2. Select feature and drop it

The Information Gain Ratio establishes a ranking of the features in re-
lation to the target variable. Whereas the MIC value identifies groups of
variables functionally related.

With this information I select a feature with low Information Gain Ratio
with the target variable, but highly functionally related to other features.

I iterate the procedure until the selected features show the desired char-
acteristics or dropping further features leave the data with too few ones.
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8.5 Selection of features
I am going to describe the steps in feature selection process and what features
were drop in each one.

8.5.1 Starting point

The initial variable importance ranking is:

Variable Information gain ratio
ISI 0.3727
FWI 0.3727
DC 0.3727
BUI 0.3727
DMC 0.3727
FFMC 0.3725
x 0.3659
y 0.3659
Distance to closest road 0.3634
Distance to closest building 0.3634
Elevation 0.3632
Radiation 0.3395
Vapour pressure 0.2546
Day of year 0.1723
Maximum temperature 0.1665
Average temperature 0.1624
Wind speed 0.1216
Slope 0.1008
Land cover (CLC level 2) 0.0939

Table 8.1: Initial variable importance ranking by information gain ratio

The functional relationships plot using the MIC metric is:
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Figure 8.4: MIC matrix for whole modelling data set

Groups of mutually related features can be identified in the functional
relationships plot. There is one relating the FWI indicators:

Figure 8.5: MIC matrix detail of FWI indicators

There are also the two temperature features that have a strong relation-
ship between them, and a fair relationship with the FWI indicators:
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Figure 8.6: MIC matrix detail of FWI indicators and temperature variables

Moreover, the vapour pressure and radiation features can also be in-
cluded, albeit with a weaker relationship. Thus, this group includes all the
weather factors (i.e., meteorological and FWI features) except wind speed:

Figure 8.7: MIC matrix detail of weather factors (except for wind speed)

There is another group relating the coordinates, physiography, and hu-
man factors features:
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Figure 8.8: MIC matrix detail of coordinates, physiography, and human
factors

To finish, the day of year variable that has a strong relationship with
many other variables:

Figure 8.9: MIC matrix detail of day of year

8.5.2 Temperature features

The two temperature variables have a strong relationship, so I am going to
remove the average temperature since it has a lower information gain ratio,
0.1624 versus 0.1665. The relative ranking and scores does not change:
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Figure 8.10: MIC matrix after dropping average temperature

8.5.3 Day of year

The day of year variable has a strong or fair relationship with every weather
factor because of temporal patterns in the climate. Also, it occupies a low
position in the ranking of variables by information gain ratio, immediately
before the maximum temperature with a score of 0.1723.

The functional relationships plot using the MIC metric are (the relative
ranking and scores does not change):

Figure 8.11: MIC matrix after dropping day of year
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8.5.4 Coordinates, physiography, and human factors

I am going to drop the slope feature as it has the second-to-last score of all
features. Also, I am going to drop the coordinate features since they have
a strong relationship between them and all other physiography and human
factor features.

The functional relationships plot using the MIC metric are (the relative
ranking and scores does not change):

Figure 8.12: MIC matrix after dropping the coordinates and slope features

8.5.5 Canadian Forest Fire Weather Index (FWI) System

The indicators in the Canadian Forest Fire Weather Index (FWI) System
have a strong relationship between them because of how they are calculated:

• They are calculated from weather factors: temperature, wind, relative
humidity, and rain; and the indicators from previous days.

• BUI is calculated by combining DMC and DC.

• FWI is calculated by combining ISI and BUI.

Therefore, I am going to drop the indicators dependant on others, BUI
and FWI:
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Figure 8.13: Dropped FWI indicators calculated from the other ones

The functional relationships plot using the MIC metric are (the relative
ranking and scores does not change):

Figure 8.14: MIC matrix after dropping the BUI and FWI indicators

8.5.6 Maximum temperature

The maximum temperature has a fair relationship with the Canadian For-
est Fire Weather Index (FWI) System indicators and the meteorological
variables except for wind speed, and a low information gain ratio value.
Therefore, I am going to drop it.
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The functional relationships plot using the MIC metric are (the relative
ranking and scores does not change):

Figure 8.15: MIC matrix after dropping the maximum temperature

8.5.7 Preparing the data for modelling

Although there are still issues in the data set and further feature selection
can be done, I am going to use this data set for modelling.

Thus, the final information gain ratio ranking is:

Variable Information gain ratio
ISI 0.3727
DC 0.3727
DMC 0.3727
FFMC 0.3725
Distance to closest road 0.3634
Distance to closest building 0.3634
Elevation 0.3632
Radiation 0.3395
Vapour pressure 0.2546
Wind speed 0.1216
Land cover (CLC level 2) 0.0939

Table 8.2: Final variable importance ranking by information gain ratio
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As a last preparatory step, I am going to split the data into train and
test data sets using a 80 / 20 ratio. I am employing this ration because is
commonly used and there is nothing that requires taking another course of
action such, for example, and imbalanced dataset.

8.6 GBM model training
I am going to tune the hyperparameters performing a cartesian search. I am
going to set up the search to stop after 5 rounds in a row where the RMSE
metric does not improve by 0.001. The RMSE metrics will be measure using
the training dataset, leaving the tetst dataset untouched.

The hyperparameters included in the grid are:

• How many trees to make.

• How deep each tree is allowed to grow.

• Learning rate, lower takes longer and requires a higher number of trees
and take more time to train but give a better model.

The number of trees and their depth control the complexity of the model.
Other hyperparameters not included in the grid are:

• Learning rate annealing, the factor to scale the learning rate after each
tree is trained. It allows to have a high starting learning rate that then
gets gradually lower as more trees are trained.

• Column and row sampling rates, they might improve generalisation
(and lower error on the test set).

The rest of the hyperparameters are left with their default values.
Also, I am going to use cross-validation with 5 folds using the training

dataset (80% of the original dataset).

8.6.1 GBM baseline

Before tuning the model, I am going to train one with the default hyperpa-
rameters to establish a baseline.

The values for the explicitly set hyperparameters, through the grid or
directly, are:

• Number of trees = 50

• Maximum depth = 5

• Learning rate = 0.1
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• Learning rate annealing = 1.0

• Column sampling rate = 1.0

• Row sampling rate = 1.0

The RMSE value is 2.223.

8.6.2 Tune #1

The values for the hyperparameters in the grid are:

• Number of trees = {20, 50, 100, 500, 1000}

• Maximum depth = {3, 5, 9}

• Learning rate = {0.001, 0.01, 0.1}

The values for the hyperparameters of the best model are:

• Number of trees = 1000

• Maximum depth = 5

• Learning rate = 0.1

The RMSE value is 2.161.

8.6.3 Tune #2

The values for the hyperparameters in the grid are:

• Number of trees = {1000, 1125, 1250}

• Maximum depth = {5, 7, 10}

• Learning rate = {0.01, 0.1, 1}

The values for the hyperparameters of the best model are:

• Number of trees = 1000

• Maximum depth = 5

• Learning rate = 0.1

The RMSE value is 2.161.
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8.6.4 Tune #3

The values for the hyperparameters in the grid are:

• Number of trees = {900, 1000, 1100}

• Maximum depth = {3, 5, 7}

• Learning rate = {0.05, 0.1, 0.5}

The values for the hyperparameters of the best model are:

• Number of trees = 900

• Maximum depth = 5

• Learning rate = 0.05

The RMSE value is 2.226.

8.6.5 Tune #4

The values for the hyperparameters in the grid are:

• Number of trees = {800, 900, 1000}

• Maximum depth = {4, 5, 6}

• Learning rate = {0.01, 0.05, 0.1}

The values for the hyperparameters of the best model are:

• Number of trees = 1000

• Maximum depth = 6

• Learning rate = 0.05

The RMSE value is 2.166.

8.6.6 Tune #5

The values for the hyperparameters in the grid are:

• Number of trees = {950, 1000, 1050}

• Maximum depth = {5, 6, 7}

• Learning rate = {0.025, 0.05, 0.075}
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The values for the hyperparameters of the best model are:

• Number of trees = 950

• Maximum depth = 6

• Learning rate = 0.05

The RMSE value is 2.166.

8.6.7 Tune #6

The values for the hyperparameters in the grid are:

• Number of trees = {925, 950, 975}

• Maximum depth = {5, 6, 7}

• Learning rate = {0.025, 0.05, 0.075}

The values for the hyperparameters of the best model are:

• Number of trees = 925

• Maximum depth = 6

• Learning rate = 0.05

The RMSE value is 2.163.
I am going to accept the best model of this tune iteration as the final

GBM model.

8.7 GLM model training
I am going to train GLM models for the Poisson and Negative Binomial
families.

I am going to tune the hyperparameters performing a cartesian search
with a grid using the training dataset, leaving the tetst dataset untouched..

The grid will include the following parameters:

• Elastic net regularisation

• Regularization strength

And, hyperparameters not included in the grid are:

• Maximum number of iterations (passes over data) = 1000 (default is
50)

The rest hyperparameters are left with their default values. Note that
the GLM model standardise numeric columns by default.

Also, I am going to use cross-validation with 5 folds using the training
dataset (80% of the original dataset).
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8.7.1 GLM baseline

Before tuning the model, I am going to train one with the default hyperpa-
rameters to establish a baseline for each of the families.

The default values are:

• Elastic net regularisation = 0.5

• Lambda = 0.001

• Maximum number of iterations (passes over data) = 50

The default link function for both families is log().
The performance metrics are:

• RMSEPoisson = 2.363

• RMSENegative Binomial = 2.363

8.7.2 Tune Negative Binomial

The values for the hyperparameters in the grid are:

• Elastic net regularisation = {0, 0.5, 1}

The values for the hyperparameters of the best model are:

• Lambda = 0.266

And, its performance metric is RMSENegative Binomial = 2.410 (calculated
using only the training dataset).

8.7.3 Tune Poisson

The values for the hyperparameters in the grid are:

• Elastic net regularisation = {0, 0.5, 1}

The values for the hyperparameters of the best model are:

• Lambda = 0.005

And, its performance metric is RMSEPoisson = 2.363 (calculated using
only the training dataset). I am going to accept this as the final GLM model
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8.8 Summary of the training results
To end this chapter I am going to summarise the hyperparameters set and
train error per final model, together with the (common) features included
in both of them:

Model Features Hyperparameters Train error

GBM

ISI Number of trees = 925

RMSE = 2.163

DC Maximum depth = 6
DMC Learning rate = 0.05
FFMC Learning rate annealing = 0.99
Distance to closes road Column sampling rate = 0.8
Distance to closes building Row sampling rate = 0.8

GLM

Elevation

RMSE = 2.363
Radiation Error structure: Poisson
Vapour pressure
Wind speed Lambda = 0.005
Land cover (CLC lavel 2)
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Part III
Application of Explainable AI
techniques to the case of study

Appraisal of some XAI techniques in the context of the case of study with
two types of techniques, applicable at model-level and at instance-level.

• At model level: how and why the models make predictions taking into
account the whole dataset.

• At instance level: how and why the models make their predictions for
specific instances.
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Chapter 9

Explainable AI at model
level

I am going to describe and apply different techniques for exploration and
explanation at model level for the whole data set which are used to try to
understand how a model’s predictions perform overall.

Techniques at model level can provide insights into the quality of the
predictions for a population, assuming the observations used to build the
model form a representative sample of the population.

Explainer techniques at model level focus on:

• Model’s performance: how good is the model, explored in section 9.1

• Feature’s importance: which features and how much contribute to the
model’s prediction, objective of section 9.2

• Feature’s effect: how a feature influences the model’s predictions,
demonstrated in section 9.3.

• Model’s fit: how different are the predictions from the real values,
treated in section 9.4.

For the case study I am going to apply different techniques to the models
predicting the size of burnt area, their overall performance and how its
features influence on the predictions.

9.1 Assessing the quality of a model
Model performance measures can be applied for several purposes:

• Model evaluation: we want to answer the question of how good is
the model, that is, how reliable are its predictions and how are the
expected errors (in frequency and size).
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• Model comparison: we want to choose the more performant model
between various candidates.

• Model performance on new data: we want to evaluate a model in
production when applied to new data to know whether its performance
has worsened.

The metric used to measure the performance of a model depends on the
response variable type (continuous, categorical, binary, ...). Most metrics
are based on the comparison of expected and predicted values.

The response variable of the case study, the burnt area (in hectares) of
a human-caused fire (HCF) is a continuous one. A common metric is the
mean-square error (MSE), that is the sum of the squared difference between
observed and predicted values:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

Since the MSE is on a different scale than the response variable, another
popular metric is root-mean-squared-error (RMSE):

RMSE =
√

MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2

Another popular metric given the sensitivity of MSE to outliers is the
median absolute deviation (MAD):

MAD = median (|Yi −median (Yi)|)

All kind of metrics highlight a different aspect of a model or have some
shortcoming. Hence, it is customary to use present multiple metrics at the
same time. The ones I am going to use are the RMSE and the MAD,
and I am going to use the observations from the test set (the 20% of all
observations) that I reserved and not used to train the models.

The metrics for the GBM model are:

• RMSEGBM = 2.366

• MADGBM = 0.818

And, for the GLM model are:

• RMSEGLM = 2.402

• MADGLM = 0.849
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The global performance difference between the two models is small even
after the much longer tuning procedure for the GBM model. Moreover, the
values for both models are high to the burnt area values. It might indicate
a problem with the selected features.

9.2 Feature’s importance
Evaluation of a feature importance can yield insights into:

• Model simplification: features with little importance to a model can
lead to discard those features and an increase in the performance of
the model.

• Model exploration: comparing features in account of their importance
when building a model may help discover correlations between features
that may be helpful in improving the final model. They allow to peek
into the inner workings of black-box models that otherwise will be
beyond our reach and know how the model see the features.

• Validation of domain knowledge: the ranking of features based on
their importance may help into appraise a model based on the domain
knowledge.

• Generation of new knowledge: by identifying the most important fea-
tures may lead to new insights into how the features factor to affect
the target variable and discovering new mechanisms unbeknown to us.

In this chapter I am going to evaluate global and model-agnostic methods
that allow to make contrastive comparison between models, as for example
between a glass-box model and a black-box model that can use quite different
internal structures and algorithms. Thus, I am going to leave out model-
specific methods that could be more precise.

When we find that a feature ranks high when comparing its assigned
importance by different types of algorithms, we can mark the feature as
candidate to be associated with the target variable. But further studies
have to be taken before we can conclude that a correlation between the
variables exists.

Moreover, we must take into account that different types of machine
learning algorithms can see the features in very different ways assigning a
larger importance to different features while at the same time performing
both well. And also, we have to be alert to the fact that the presence or
not of other features can affect the relationship so adding or removing them
might change the interaction between other features and the target variable.

This is also the case we can find when using a surrogate glass-box model
to interpret a black-box model trained in the same data but using the pre-
dictions of the black-box model as target variable.
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Beyond comparing multiple machine-learning algorithms, when we apply
this type of techniques to a black-box model we can reveal how it sees
the features. This is something can is easily done with glass-box models
such as linear models that encode the importance of the variables in the
weights assigned by them to the different features. But it is not possible
with black-box models, leaving us blind to the inner workings of the model
what features, part of the problem domain, it sees as relevant.

The method described in [FRD19] is based on measuring the changes in
the fitness of a model when perturbations are introduced in the value of a
subset of features. The more important a variable, the larger the reduction
in fitness of the model. The perturbations introduced are simply the change
of the value of the features of the model (e.g., permuting the values of a
feature).

In the case study with a continuous variable, the burnt area in hectares
of a human-caused fire, we measure the fitness of both model using the
RMSE as loss (error) metric, and how it changes in when the values of the
features changes. Thus, the larger the variation in the error as measured by
the RMSE, the more important the feature.

The variable importance of the models is:

Figure 9.1: Variable importance for the GBM and GLM models

The different models assign different importance to different metrics, as is
evident in the different size of the bars for the same feature. Even though,
both algorithms seem to assign a high importance to the same group of
features:

• Elevation

• Vapour pressure
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• ISI

• Land cover

• DMC

Therefore, I can conclude that this group of features are the most impor-
tant to consider for the prediction of the burnt area by a human-caused fire.
Also, this ranking is strikingly different from the one calculated by using the
information gain ratio.

However, the perturbations introduced by the method are random in
nature so we will get different results depending on the perturbations intro-
duced as it is evident in the following figure:

Figure 9.2: Variable importance for the GBM and GLM models

Although the most important variables remain the same, there have been
a change of the relative position in the least important ones.

The method can also be applied in the training or test steps that usually
use different partition of the data, and different datasets can lead to different
variable’s importance rankings. Although, it will serve to open a window
on what are the variables that an algorithm consider the most important in
training, and what are the (possibly different) ones that are more important
in making a prediction in the test step, or in production.

To conclude, we can gain valuable insight on how a model sees the
features but always considering the sampling variability and randomness
present in the method. Furthermore, the different representations conse-
quence of the randomness of the method together with our own expectations
can shape our thoughts without ourselves being aware.
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9.3 Effects of features in the average prediction
Measuring the effect that a feature has on a prediction helps in understand-
ing the relation between model response and model prediction by summaris-
ing the effect of changes on a feature have on the predictions of the model.

In a glass-box model you know the effect of changes on the inputs by
examining the importance of the features. For example, in a trained linear
regression model with a numerical feature with weight βj , increasing the
value of that feature in one unit changes the estimated output by the value
of its weight, when all other features remain the same.

But this is not possible in a black-box model where the connection be-
tween the inputs and the outcome of the model is clouded by the own nature
of the model.

A technique that tries to reveal this connection between inputs and the
outcome is Partial Dependence (PD) profiles (or plots), that measure the
effect that a explanatory variable has on a model prediction. They show
how the model prediction as a function of a explanatory variable of interest.
For example, it can show us whether the relationship between the target
and a feature is linear, monotonic or more complex

PD profiles can also be used to explore the local stability of the predic-
tions, that is, how much the predictions change in the face of changes in the
feature values. A stable model will change slightly or not at all so in the
face of changes in the input, the model will make the same predictions that
would have done if the changes were not present. This can be a sign of model
will show a good performance on new, unseen data (good generalisation).

9.3.1 Partial Dependence (PD) profiles

PD profiles (or plots) where introduced in [Fri00]. They plot the prediction
of a model as function of a selected feature when all others all held constant.

The partial dependence function for regression is defined as [Mol20]:

f̂xS (xS) = ExC

[
f̂(xS , xC)

]
=

∫
f̂(xS , xC)dP(xC)

With xS being the feature to plot in the PD profile and xC the rest
present in the model f̂ .

The partial function f̂xS is estimated by calculating averages from the
data or sample:

f̂xS (xS) =
1

n

n∑
i=1

f̂(xS , x
(i)
C )

For binary classification models, the PD profile shows the predicted prob-
ability for a certain class for different values of the feature of interest. With
multi-class classification, a line per class can be plotted.
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For example, the PD profile for a cervical cancer classification model and
features age and years taking hormonal contraceptives is:

Figure 9.3: PD profile for selected features of cervical cancer classification
model

The PD profile shows that for the age the probability of developing
cancer is low before reaching 40 years and increases after. While that, for
the contraceptives feature it shows that the probability increases with more
years taking the contraceptives, especially after 10 years of use [Mol20].

A disadvantage of PD profiles is that holding other features constant
can be impossible in the case of existing correlated features in the data and
hiding the relationship. This results from the fact that a PD profile show us
the average effect of the feature in the predictions of the model using Ceteris
Paribus (CP) profiles.

CP profiles is a technique that tries to understand how a single feature
affects predictions when all other features all left unchanged (Ceteris paribus
is a Latin phrase meaning “other things held constant”), and allowing us
to explore the influence of features on the target variable but focusing on a
single feature at a time.

For example, in the case of the cervical cancer model example plotting
the PD profiles for individual instances for the age feature shows a more
complex relationship:
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Figure 9.4: PD profiles for the age feature and individual instances

For most women the pattern is consistent with the one show by the PD
profile, but for those women with a high probability of developing cancer
from an early age the predicted probability doesn’t change with age.

For the case study, the comparison of the PD profile against CP profile
for the DC feature is):

Figure 9.5: Contrasting PD profile and CP profile of DC feature

(Note the difference in scale of the plots).
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In the case of the DC indicator, it seems that there are no interactions
and the PD profile summarises the average effect the DC feature has on the
prediction (i.e., the predicted value as a function of the DC feature value).

However, this not happens with all features in the model as happens
with the radiation feature:

Figure 9.6: Contrasting PD profile and CP profile of radiation feature

Even though some of the observations have a similar shape, there is no
clear shared pattern visible. Therefore, we can conclude that there is a more
complex relation between the feature and the predictions

9.3.2 Local dependence and accumulated local profiles

To avoid the problem of PD plots with correlated featured [AZ19] introduced
Accumulated Local Effects plots that avoid this problem.

The problem of PD plots stems from having to extrapolate in regions
where there are no observations, and the uncertainty introduced by the new
hypothetical values, especially the further the new data point from the data
envelope. The extrapolation occurs because the marginal distribution is less
concentrated that the conditional distribution, due to the strong dependence
between variables:
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Figure 9.7: Differences between marginal and conditional distributions
[AZ19]

For the case study, comparing the PD profile against the local depen-
dence and accumulated local profiles for the distance to closest road feature:

Figure 9.8: Comparison of different dependence profiles to check for corre-
lations between features

The local dependence profile (i.e., the red line) is steeper than the others
due to the correlation of the feature with others. However, the accumulated
local profile (i.e., the blue line) removes the effects of the correlation and
being parallel to the partial dependence profile (i.e., the green line) means
that the effects on the model area additive for the distance to closest road
feature.

Therefore, we can use this technique to detect features with complex
relations to the predictions of the model that some models can have an
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easier time capturing.

9.3.3 Clustered PD profiles

Clustered PD profiles are another option when there are correlations between
features. When there are no interactions PD profiles are parallel and offer
a good summary of a feature. But if not, there are not parallel, making
difficult to discern patterns between the effect of a feature and the value of
the prediction. Moreover, this also indicates that the PD is hiding a complex
relationship and not offering a faithful summary of the relationship of the
effect of a feature and the predictions of the model.

Clustered PD tries to find clusters of similar observations whose PD pro-
files represent that subset of the data. Thus, it can helps us to detect clusters
of observations for which a feature has a similar effect on the predictions and
indicating patterns in the data that can help us gain new knowledge about
the input data or validating domain knowledge.

For the case study, the clustered PD profile for FFMC indicator is:

Figure 9.9: Clustered PD profile for FFMC indicator

In the following example, the FFMC feature shows three groups that
diverge for high values of the feature in how much the predicted value in-
creases with the value of FFMC. This might indicate groups of observations
where the HCFs are ignited by litter and other cured fine fuels since FFMC
is an indicator of the ease of ignition and the flammability of fine fuel.

This way by revealing the connection between features and predictions,
the clustered PD profile for the FFMC indicator has help us detect the cause
of ignition for a group of observations that can lead to detect the conditions
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making this kind of human-caused fires more dominant than other fires
caused by other sources of ignition.

9.3.4 Grouped PD profiles

Grouped PD profiles are another option when there are correlations between
features. When a feature of interest is correlated with a categorical one, a
valid approach is to explore the PD profiles of the feature of interest grouped
by the values of the categorical feature and investigate whether the grouped
observations follow an identifiable pattern.

In the following example, the DC feature PD profiles does not change
when we segregate the observations by the land cover categorical feature:

Figure 9.10: Clustered PD profiles for the DC feature

In this case, the technique indicates us that the land cover feature doesn’t
influence the effect of the DC feature over the predictions, thus indicating
that there seems to be no correlation between them.

9.3.5 Contrastive PD profiles

PD profiles can also be used to compare different models trained on the
same data set.

For the case study , the comparison between the PD profiles for the
vapour pressure feature between the GBM and GLM is:
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Figure 9.11: PD profiles for the GBM and GLM models for the vapour
pressure feature

The biggest differences between the models is largest at the edges re-
vealing the different nature of the models, with GBM being a more flexible
model than GLM.

9.4 Residuals
The study of residuals in statistical modelling is generally the first method
taught to explore the predictions of a model since they can show us what
aspects of a data set have not been captured by the model. Usually graphical
techniques are used in the study of residuals.
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Chapter 10

Explainable AI at instance
level

I am going to describe and apply different techniques for exploration and
explanation of model predictions at for a single observation. This level
exploration is well suited to how people think using examples and analogies.

Techniques at instance level can provide insights into how a makes a
prediction for a single observation so we can:

• Local feature’s importance: which features and how much contribute
to the outcome of a single prediction, demonstrated in section 10.2.

• Feature’s effect on a single prediction: how predictions change in re-
sponse to changes in the value of the features, treated in section 10.3

• Local model fitness: what is causing erroneous predictions, not ex-
plored in this work.

For the case study I am going to apply different techniques to three
observations used to predict the size of burnt area, two of them sampled from
the test data and another not present neither on the training nor the test
data (a synthetic instance). The feature values for the selected observations
can be found at section 10.1.

10.1 Instances of interest
For studying techniques at instance level, I am going to select two instances
from the test split. The first, together with the observed value and the
prediction of the GBM model, is:
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Variable Value
Wind speed (m/s) 3.5
Vapour pressure (hPa) 8.43
Radiation (KJ/m2/day) 13,586
FFMC 86.35609
DMC 21.02484
DC 19.77554
ISI 5.681571
Elevation (meters) 459.3532
Land cover Heterogeneous agricultural areas
Distance to closest road (meters) 8.704325
Distance to closest building (meters) 469.2773
Burnt area (ha) 1.7
Prediction (ha) 1.832

Table 10.1: Variable and prediction values of first instance of interest

Also, I am going to include a what-if instance by taking the first instance
selected and change the value of one of the features to simulate a what-if
scenario to test how the model behaves in the face of the modification. For
this example, I am going to change the value of the FFMC indicator from
86.35609 to 96.35609:

Variable Value
Wind speed (m/s) 3.5
Vapour pressure (hPa) 8.43
Radiation (KJ/m2/day) 13,586
FFMC 96.35609
DMC 21.02484
DC 19.77554
ISI 5.681571
Elevation (meters) 459.3532
Land cover Heterogeneous agricultural areas
Distance to closest road (meters) 8.704325
Distance to closest building (meters) 469.2773
Burnt area (ha) 1.7
Prediction (ha) 1.832

Table 10.2: Variable and prediction values of what-if instance
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10.2 Local feature importance

Techniques that focus on local feature importance allow us to dissect a pre-
diction into parts, with each one linked to specific features. Hence, applying
these techniques to black-box models allows us to discover the inner work-
ings of the model and know which features where judged relevant by it to
make a prediction for a specific observation.

Examples of these techniques are:

• Break-down (BD) plots [SB18]

• Shapley Additive Explanations (SHAP) [SK10]

• Local Interpretable Model-agnostic Explanations (LIME) [RSG16]

10.2.1 Explanation of the technique

The underlying idea to BD plots is to calculate the contribution of a feature
to the prediction made by the model as the changes in the prediction while
maintaining fixed the other features. This idea is summarised in [SB18]
with the following figures that apply the algorithm to a logistic regression
model trying to predict which employees will leave a company using the HR
analytics synthetic dataset from:

Figure 10.1: Conditional distributions of predictions when a feature is main-
tained fixed

The violin plots summarize the conditional distributions of the predic-
tions (whose value is indicated by the x-axis), and the red dot the average
of the predictions for all input data. The thin black lines in show how in-
dividual predictions change after the feature indicated in the y-axis is fixed
at the indicated value.
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The BD plot summaries the previous figure with the prediction of the
model in the first row and the red dot indicating the beginning and end of
each rectangle, whose width indicates the size of the contribution):

Figure 10.2: BD plot for a single instance of the HR analytics model

In this specific case, all features have a positive or zero contribution
to the prediction. But, the bigger contributions to the prediction are the
result of the last evaluation and the average number of hours worked by the
employee. Other features with a big impact are the extent of time that the
employee has been working for the company and the number of projects in
which he or she participates.

The disadvantage of BD plots is that in the presence of interactions
between features (non-additive models), the algorithm used to generate the
BD plots is sensible to the ordering of features chosen so the data produced
can lead to erroneous conclusions on the contribution of the different features
to the prediction of interest.

This effect is patent in the following example of the application of differ-
ent random orderings to a synthetic instance on a Random Forest model used
to predict the probability of survival in the widely known Titanic dataset.
Each subplot corresponds to a random ordering that conditions the value of
the features’ contribution:
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Figure 10.3: BD plots for ten random orderings of features

The dark blue bar in the last row of each BD plot indicate the value of
the prediction that is 0.422 and equal in all plots.

The value and sign of the contributions to the probability of survival
(red bars indicate a negative contribution, whereas green ones indicate a
positive contribution) depend on the ordering with differences between the
plots.

The values of the synthetic instance are indicated in the labels of the
y-axis of each plot. The red bars indicate a negative contribution to the
probability of survival, the green ones indicate a positive contribution.

A technique to assess the local importance of features to a model’s predic-
tion that tries to address this problem of the dependency of the explanatory
covariates in the presence of interactions is SHapley Additive exPlanations
(SHAP) [SK10]. The strategy it used to achieve its objective is averaging
the value of a feature’s contribution over all (or a large number of) possible
orderings.

It is based on Shapely values [Sha53] originally developed for selecting
between different lines of action in semi-cooperative games in which either a
negotiation among the n players determines their actions or else an arbitrator
specifies them.

Continuing with the example of the Titanic dataset, the SHAP values
for the same instance are:
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Figure 10.4: SHAP values for synthetic instance and random forest model
trained in the Titatnic dataset

The probability assigned by the model to the instance is of 0.422. The
plot indicates that the bigger contributions to this score are:

• The age: most of the survivors were children and women

• The class: most of the survivors travelled in first class

• The gender: the person was male so its a factor against his survival
since a large part of the survivors were women

The bars indicate the average contributions for random orderings. Red
(negative contribution) and green bars (positive contribution) present the
averages. Box-plots (in dark blue) summarise the distribution of contribu-
tions for each feature across all the orderings.

This way the technique has validates the knowledge over the distribu-
tion of people that survived the sinking of the Titanic indicating a model
with good performance and allowing us to explain how the model assigns a
prediction to specific instances.

However, as with many XAI methods, there might be problems when
there is strong correlation between features.

10.2.2 Application to the case study

The result of applying the SHAP values calculated from several randomly
selected observations (25 in this case) for the first instance is:
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Figure 10.5: Shapely values for the instance #1

The prediction made by the model has a value of 1.832 ha. The model
attributes the biggest contribution to the vapour pressure. Such high value
indicates that the content of water molecules in the atmosphere acts as a
filter that blocks part of the sun radiation dulling its effect.

The second biggest contribution is assigned to the DC index that has a
low value for this specific instance. Its value together with the also low value
for the DMC index and the value of the vapour pressure indicate a fire typical
of those that occur on springtime. This is confirmed by the high value of
the FFMC index, which has a small negative contribution to the prediction.
However, the fires in Spring are usually wind-driven but the value of the
wind speed in the data is the daily average for the station covering the grid
square where the fire occurred, so we can not make a conclusion.

The typical relative values of the FFMC, DMC and DC indexes for fires
on different periods of the year can be seen in the following figure that depicts
them for the zone of the Hogatza river zone in Alaska (U.S.A.) [Nat20]. The
values of the indexes and the times of year will change as they need to be
adjusted for the local conditions, but the relative relations and patterns will
hold:
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Figure 10.6: FFMC, DMC and DC indexes across the year in the Hogatza
river zone in Alaska

The SHAP values of the what-if instance, which increases the value of
the FFMC indicator from that of the first instance, is:

Figure 10.7: Shapely values for the what-if instance with distribution of
values

This time the model assigns the biggest contributions again to the vapour
pressure and the DC index. However, the FFMC index that for the SHAP
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values of the first instance has a small negative contribution now has become
the third biggest contributor with a positive contribution. In the light of
the changes, the model seems to make a stronger case for a springtime fire.

10.3 Effects of features in a prediction

Techniques focusing on analysing the effect of features in a prediction mea-
sure how changes in features cause changes in the prediction. Hence, these
techniques allow us to perform sensitivity analysis and measure the change
of the predicted value when the features change. For example, with a model
the survival probability of cancer patients, the technique would answer the
question of how their survival would change if the treatment is changed.

These techniques also allow us to perform local stability tests that would
make possible for us to answer what feature changes cause a prediction to
change. For example, applying them to a model classifying bank transac-
tions as fraudulent would allow us to answer what changes would flip the
prediction of the model and highlighting what it considers to flag a transac-
tion as fraudulent. This can lead to the development of adversarial instances
that belong to fraudulent transactions, but the model would not catch.

In addition, these techniques can also be used to perform what-if analysis
on individual instances that allows us to understand a model by exploring
the influence of different features on the predictions, one feature at a time.
A technique that is used to perform this kind of task is Ceteris paribus (CP)
profiles. It explores the local curvature of the model response surface using
conditional predictions, that is, exploring the effect of changes on a feature
has on the prediction while fixing the rest.

The CP profiles for the selected instance using the GBM model are:
The point in each CP profile curve is the actual value of the feature.
The CP profiles of most features remain flat indicating that a change on

their values would not affect the value of the prediction. It is only for the
ISI and elevation features that the prediction changes, and in both cases, it
will increase as the value of the features also increases.

The values of the first instance seem to indicate a typical spring time fire
that are usually wind drive so the influence of the ISI is an index integrating
the fuel moisture for fine dead fuels and surface wind speed to estimate the
fire spread potential seems plausible. This is reinforced by the high value of
the FFMC feature that measures the content of fine dead fuels.

However, human-caused fires usually occur in low elevations and their
occurrence decrease with altitude since at higher altitudes vegetation and
temperature decrease and rendering more difficult the ignition of fire. Hence,
the CP profile indicate an instance that requires further investigation.

The CP profiles show us how the prediction will change in response to
change in the features, but they fail to show us which ones have the bigger
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Figure 10.8: CP profiles for all the features and the first selected observation

impact. To do the method used the concept of oscillations of CP profiles.
For features with that has little influence on the prediction the CP profile

plot is flat, so the values at any point of the curve are close to the actual
value of the feature, indicated by the point in the curve of the plot. But,
for features with a high influence on the prediction, the difference between
the actual value and the points of the curve will vary wildly.

Therefore, the influence of a feature can be calculated by summing the
difference of each value across the curve with the actual value of the feature.

For the case study, the rank of features by influence for the CP profiles
of the previous figure are:

Since mostly CP profiles are flat except for those of the elevation and
vapour pressure features, these two features rank the highest. However, the
rank allows us to know which feature has relatively higher effect, elevation
in this case, something that cannot be done simply by visual inspection.

The drawback of this method, as with many others, it is that the presence
of correlated features can led to misleading results.
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Figure 10.9: CP oscillations for the GBM model and the first observation
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Part IV
Conclusions

In this part I describe the conclusions I have reached while working in this
project and possible future directions recapping all I have learnt on the
course of working on this project.
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Chapter 11

Conclusions, and a look to
the future

Machine learning is a powerful tool and is our duty that it is used ethically to
bring benefits for society. Every other course of action would be a dereliction
of duty. We cannot afford to be passive witness or defer responsibility of
our contributions as AI establishes itself reaching further and deeper in more
applications.

Recently, there has been an increase in the number of articles and initia-
tives spearheading the use of XAI, first by developing mathematically-sound
metrics and a corpus of good practices, and then deploying them in produc-
tion. However, there is still a long way to go due to the lack of agreement in
basic concepts and the fast-growing number of metrics and tools that are a
normal sign of new fields. Moreover, the ratification of legislation requiring
the explainability of all deployed models might become the catalyst for an
explosion of activity and interest in the XAI field.

Nowadays, the use of XAI technique to made models interpretable re-
quires a high degree of expertise in Statistics (and Machine Learning), with-
out forgetting domain knowledge. Without the former, trying to extract
meaningful explanations from XAI metrics can lead to making the wrong
conclusions, especially in the case of presenting them graphically. And, the
importance of domain knowledge is compounded by the nuance of figuring
out how to interpret the explanations.

But it has been the lack or domain knowledge that has become a huge
handicap in the realisation of the present work. I did not anticipate that
the study of wildfires is the confluence of so many diverse disciplines such as
ecology, physics, or sociology. The consequence has been that the poor qual-
ity of the predictive models, and the difficulty of using the XAI techniques
to their full potential. Furthermore, my lack of a deeper statistical and
mathematical knowledge has been another impediment to fully understand
some of the techniques. Nonetheless, data science projects are multidisci-

125



plinary affairs, in contrast to the somehow contrived framework that governs
projects like this one.

Another obstacle in the realisation of this project has been the large
number of new things that I have to learnt, albeit this has been self-inflicted:

• The domain knowledge required by a use case that I have little knowl-
edge of. Before tackling this work I did not know much about wildfires.
The multidisciplinary character of this field was a surprise and made
more difficult the project (e.g., in judging the more relevant variables
to include in the model). Moreover, local conditions and context have
a strong influence in the causes and factors influencing wildfires.

• Picking out a programming language (and libraries) in which I have
only an experience of no more than three months at the beginning of
the project

• A new ML library

• The learning algorithms (GLM and GBM) unbeknown to me

In addition, the realisation of this work while working a full-time job put
me under a considerable strain. Regardless of so many difficulties, this has
been a fulfilling project.

Out of the project for lack of more time I have left some tasks:

• Use of a larger data set covering a larger span of time given the com-
plexity of the HCFs pattern in mainland Portugal.

• The analysis of the spatio-temporal patterns present in the occurrence
of HCFs due the influence of climate and physiography.

• Improve the current model by using a different set of features that can
be some of the ones that I have available but discard or new ones.

• Use of different learning algorithms such as XGBoost or deep neural
networks.

• Reappraisal of the XAI techniques used.

• • Use of XAI techniques such as prototypes and criticisms that can
be used to describe data distributions. The former are observations
that are representative of all data whereas the later are observations
not well represented by the prototypes.

126



Appendices

127





Appendix A

Methodologies

A.1 CRISP-DM

CRISP-DM is a methodology that provides a structured approach to plan-
ning a data mining project [Sma20].

The phases of the model are:

Figure A.1: Phases of CRISP-DM Methodology

129



This model is an idealised sequence of events and does not try to capture
all possible routes through the data mining process. In practice many of the
tasks can be performed in a different order and it will often be necessary to
backtrack to previous tasks and repeat certain actions:

Figure A.2: CRISP-DM Tasks and Outputs

The goals and outputs of the different phases are:

1. 1. Business understanding: The goal is to understand what you want
to accomplish from a business perspective and uncover important fac-
tors that could influence the outcome of the project. The desired
outputs are:

(a) Description of the objectives
(b) Project plan
(c) Business success criteria

2. Data understanding: The goal is to acquire the data listed in the
project resources and profile it. The desired outputs are:

(a) Data exploration report
(b) Data quality report

3. Data preparation: The goal is to prepare the data for modelling. The
single desired outputs is:
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(a) Data suitable for modelling

4. Modelling: The goal is to prepare the data for modelling. The desired
outputs are:

(a) Model description
(b) Trained model

5. Evaluation: The goal is to assess the degree to which the model meets
your business objectives. The desired outputs are:

(a) Model assessment
(b) Improved model (if necessary)

6. Deployment: The goals is to determine a strategy for their deployment
and release the model in production. The desired outputs are:

(a) Deployment plan
(b) Monitoring and maintenance plan
(c) Final report

A.2 Team Data Science Process (TDSP)
TDSP is an agile, iterative data science methodology to deliver predictive
analytics solutions and intelligent applications efficiently [Mic20].

Its key components are:

• A data science lifecycle definition

• A standardised project structure

• Infrastructure and resources for data science projects

• Tools and utilities for project execution
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The major stages of its lifecycle that projects typically execute, often
iteratively, are:

Figure A.3: Team Data Science Process lifecycle

The goals and outputs of each phase are:

1. Business understanding: The goals are to specify the key targets met-
rics used determine the success of the project and to identify the rele-
vant data sources. The outputs are:

• Charter document
• Data sources description
• Data dictionary

2. Data acquisition and understanding: The goals are to produce a clean,
high-quality data set and define the solution architecture. The outputs
are:

• Data quality report
• Solution architecture

3. Modelling: The goals are to determine the optimal data features and
train the model. The outputs are:

• Feature sets
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• Model report

4. Deployment: The goal is to deploy the model with a data pipeline to
the production environment for final user acceptance. The outputs
are:

• System status dashboard
• Final modelling report with deployment details
• Final solution architecture document

5. Customer acceptance: The goal is to finalise project deliverables.
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Appendix B

Metadata

In this appendix I am going to describe the metadata of the data sets used.
The summary of different data sets is:

• Human-Caused Fires (HCFs)

– Fire occurrence in Portugal from 2011 to 2015

• Major Habitat Types (MHTs)

– Ecoregions in mainland Portugal

• Weather factors

– Meteorological data from 2011 to 2015

– Forest Fire Weather Index (FWI) data from 2011 to 2015

• Physiography

– Elevation

– Slope

• Fuel risk factors

– Land cover in mainland Portugal

• Human factors

– Distance to nearest road

– Distance to nearest building
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B.1 Human-Caused Fires (HCFs)
The data set is split by year with each year having all or some of the following
variables:

• ano: year

• codigo_sgif: code given by the Sistema de Gestão de Informação de
Incêndios Florestais (SGIF)

• codigo_anpc: code given by the Autoridade Nacional de Proteção
Civil (ANPC)

• tipo: type of fire

• distrito: administrative division

• concelho: administrative division

• freguesia: administrative division

• local: municipality

• ine: code given by the Instituto Nacional de Estatística (INE)

• x: easting coordinate expressed using EPSG:20790 in meters

• y: northing coordinate expressed using EPSG:20790 in meters

• lat: latitude expressed using EPSG:4326 in degree-minute-second units

• lon: longitude expressed using EPSG:4326 in degree-minute-second
units

• data_alerta: date of fire detection

• hora_alerta: hour of fire detection

• data_extincao: date of fire extinction

• hora_extincao: hour of fire extinction

• data_primeira_intervencao: date of first firefighting effort

• hora_primeira_intervencao: hour of first firefighting effort

• fonte_alerta: source of the fire warning

• nut: Nomeclatura de Unidades Territoriais (NUT)

• area_povoamento: size of urban area burned (in hectares)
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• area_mato: size of shrubland area burned (in hectares)

• area_agricola: size of agricultural area burned (in hectares)

• area_pov_mato: size of urban + shrubland area burned (in hectares)

• area_total: total area burned (in hectares)

• reacendimento: whether the fire was caused by reignition of an extin-
guished fire

• queimada: whether the fire was caused by pasture renovation or stub-
ble burning

• falso_alarme: whether the fire was a false alarm

• fogacho: whether the fire affected to an area of less than 1 hectare

• incendio: whether the fire affected to an area equal or greater than 1
hectare

• agricola: whether the fire was an agricultural one

• perimetro: perimeter of the area burned (in meters)

• aps: no description available

• causa: source of the fire

• tipo_causa: classification of the source of the fire

• regiao_prof: identifier of the region in the Programas Regionais de
Ordenamento Florestal (PROF)

• ugf: no description available

B.2 Major Habitat Types (MHTs)
The geographic extent of the data, given by its bounding coordinates using
EPSG:4326, is:

• West Bounding Coordinate: -179.999989

• East Bounding Coordinate: 179.999989

• North Bounding Coordinate: 83.623125

• South Bounding Coordinate: -89.891973

Horizontal Coordinate System Definition:
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• Geographic:

– Latitude Resolution: 0.000001
– Longitude Resolution: 0.000001
– Geographic Coordinate Units: Decimal degrees

• Geodetic Model:

– Horizontal Datum Name: D_WGS_1984
– Ellipsoid Name: WGS_1984
– Semi-major Axis: 6378137.000000
– Denominator of Flattening Ratio: 298.257224

Vertical Coordinate System Definition:

• Altitude Resolution: 0.000010

• Altitude Encoding Method: Explicit elevation coordinate included
with horizontal coordinates

Entity Information:

• Entity Type Label: wwf_terr_ecos

• Entity Type Definition: WWF’s Terrestrial Ecoregions of the World

• Entity Type Definition Source: http://www.worldwildlife.org/ecoregions/
attributes.htm

Attribute Information:

• OBJECTID: internal unique feature number.

• Shape: coordinates defining the geometry of features.

• AREA: area of each individual polygon in square kilometers. The
attribute area_km2 is a sum of this field for each ecoregion.

• PERIMETER: perimeter.

• ECO_NAME: ecoregion name.

• REALM: biogeographical realm. It can take one of the following val-
ues:

– AA: Australasia.
– AN: Antarctic
– AT: Afrotropics
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– IM: IndoMalay
– NA: Nearctic
– NT: Neotropics
– OC: Oceania
– PA: Palearctic

• BIOME: biome. It can take one of the following values:

– 1: tropical & subtropical moist broadleaf forests
– 2: tropical & subtropical dry broadleaf forests
– 3: tropical & subtropical coniferous forests
– 4: temperate broadleaf & mixed forests
– 5: temperate conifer forests
– 6: boreal forests / taiga
– 7: tropical & subtropical grasslands, savannas & shrublands
– 8: temperate grasslands, savannas & shrublands
– 9: flooded grasslands & savannas
– 10: montane grasslands & shrublands
– 11: tundra
– 12: mediterranean forests, woodlands & scrub
– 13: deserts & xeric shrublands
– 14: mangroves

• ECO_NUM: unique number for each ecoregion within each biome
nested within each realm.

• ECO_ID: number created by combining REALM, BIOME, and ECO_NUM,
thus creating a unique numeric ID for each ecoregion.

• ECO_SYM: ecoregion symbol (used to display the map in Esri ArcInfo)

• eco_code: alphanumeric code that is similar to ECO_ID but a little
easier to interpret. The first 2 characters (letters) are the realm the
ecoregion is in. The 2nd 2 characters are the biome and the last 2
characters are the ecoregion number.

• GBL_STAT: global status. A 30-year prediction of future conserva-
tion status given current conservation status and trajectories. It can
take one of the following values:

– 1: CRITICAL OR ENDANGERED
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– 2: VULNERABLE
– 3: RELATIVELY STABLE OR INTACT

• G200_NUM: Global 200 number. The Global 200 is the list of ecore-
gions identified by WWF as priorities for conservation.

• G200_BIOME: Global 200 biome. The biome of the Global 200 re-
gion that the ecoregion is a component of. Occasionally a Global 200
region is made up of ecoregions of different biomes. In this case, for
an specific ecoregion, the ‘G200_BIOME‘ may be different from the
original biome. For a description of each Global 200 biome (1-14), see
the attribute BIOME.

• FID‘: internal unique feature number.

• G200_STAT‘: Global 200 conservation status. It can take one of the
following values: • 1: CRITICAL OR ENDANGERED • 2: VUL-
NERABLE • 3: RELATIVELY STABLE OR INTACT

• Shape_Area: area of feature in internal units squared.

• area_km2: area of the Ecoregion in kilometers squared.

• G200_REGIO: Global 200 name

• Shape_Leng: shape length.

B.3 Weather factors

B.3.1 Meteorological data

The metadata of the data set is:

• Version: 2.0

• Date published: 14/01/2019

• Creator: Directorate D - Sustainable resources / Unit 05 - Food secu-
rity

• Publisher: FOODSECURITY-MARS4CAST

• Grid spatial projection: Lambert azimuthal equal area

• Grid EPSG code: 3035

• Grid resolution: 25 km

• Period: 01/01/1975–31/12/2018
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• Time resolution: 1 day

• Indicators:

– Maximum air temperature (°C)
– Minimum air temperature (°C)
– Mean air temperature (°C)
– Mean daily wind speed at 10m (m/s)
– Vapour pressure (hPa)
– Sum of precipitation (mm/day)
– Potential evaporation from a free water surface (mm/day)
– Potential evapotranspiration from a crop canopy (mm/day)
– Potential evaporation from a moist bare soil surface (mm/day)
– Total global radiation (KJ/m2/day)
– Snow depth (cm)

B.3.2 Canadian Forest Fire Weather Index (FWI)

File naming convention:

ECMWF_FWI_FWI_19790524_1200_spread_v3.1_con.nc PRO-
DUCER_MODEL_[VARIABLE_VARIABLE]_DATE_TIME_FC-
TYPE_Version_Dataset.nc

1. Producer:

(a) ECMWF

2. Model:

(a) FWI
(b) MARK5
(c) NFDRS

3. Variable (some variables have _ in name):

(a) FWI Variables : FWI, BUI, DANGER_RISK,DC,DMC,ISI,FFMC.DSR
(b) MARK5 Variables: KBDI,DF,ROS,FDI
(c) NFDRS Variables: SC,ERC,BI,IC

4. Date:

(a) Date of the Reanalysis
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5. Time:

(a) Time of the Reanalysis

6. Fctype:

(a) Hr: Reanalysis, ERA5 Reanalysis Short Model at 0.25 Degrees
(b) En: Ensemble Members, ERA5 Reanalysis ensemble at 0.50 De-

grees
(c) Spread: Ensemble Spread at 0.50 Degrees
(d) Mean: Ensemble Mean at 0.50 Degrees

7. Version:

(a) 3.0:
(b) 3.1: Updated smoothing of data and Drought Coefficients

8. Dataset:

(a) Con: Consolidated ERA5 Data (2-3 Month Lag behind real time)
(b) Int: Intermediate ERA5 Data (up to 5 days lag behind real time,

product could differ when quality checks and consolidation oc-
curs)

The metadata of the data set is:

• Data type: gridded

• Horizonal coverage: Global Land

• Horizontal resolution Reanalysis: 0.25°x0.25°

• Temporal coverage: 1979 to present

• Temporal resolution: Daily

• File format: NetCDF

• Update frequency: Monthly

• Consolidated Dataset: Based upon the Officially released ERA5 Re-
analysis

• Version: 3.1

• Release date: 2019

• Date of Initialisation of Intermediate Dataset: 20190831
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• Start Date (Consolidated): 19790103

• End Date (Consolidated): On going

• Fire weather index:

– Numerical rating of fire intensity. It is suitable as a general index
of fire danger

– Numerical rating

• Initial Spread Index

– Numerical rating of the expected rate of fire spread
– Numerical rating

• Build-up Index

– Numerical rating of the total amount of fuel available for com-
bustion

– Numerical rating

• Drought Code

– Numerical rating of the average moisture content of deep, com-
pact organic layers

– Numerical rating

• Duff Moisture Code

– Numerical rating of the average moisture content of loosely com-
pacted organic layers of moderate depth

– Numerical rating

• Fine Fuel Moisture Code

– Numerical rating of the moisture content of litter and other cured
fine fuels.

– Numerical rating

B.4 Physiography

B.4.1 Elevation

The metadata of the EU-DEM v1.0 is:

• Bounding box:
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– West bounding coordinate: -10.61982
– East bounding coordinate: 44.82124
– North bounding coordinate: 71.18545
– South bounding coordinate: 34.56192

• Coordinate reference system: EPSG:3035 (ETRS89, LAEA)

• Temporal extent: 2000

• Date of publication: Apr 20, 2016

• Lineage: The EU-DEM v1.0 is derived from an automated data fu-
sion process using SRTM and ASTER GDEM digital surface model
(DSM) data. Intermap’s NEXTMap Europe dataset is utilized to re-
move any consistent horizontal bias in the GDEM data. The EU-DEM
v1.0 is edited to ensure that water features are adequately represented
and consistent with the hydrography layer. Residual clouds within
the GDEM data are identified and removed same as suspect data ex-
tremely differing from the SRTM data. All EU-DEM tiles are edited
interactively in a 3D stereo environment. The editing is restricted to
the hydrographical features and pits and bumps. In areas above 60
degrees North, the EU-DEM generation process is supported by other
DEM data sources provided by the JRC. Water features are flattened
(oceans, lakes) and stepped (rivers) based on the hydrography data.
The spatial reference system is geographic, lat/lon with horizontal da-
tum ETRS89, ellipsoid GRS80 and vertical datum EVRS2000 with
geoid EGG08.

• Spatial resolution: 25 m

• Specification: Commission Regulation (EU) No 1089/2010 of 23 Novem-
ber 2010 implementing Directive 2007/2/EC of the European Parlia-
ment and of the Council as regards interoperability of spatial data sets
and services, Date of publication: 2010-12-08.

B.4.2 Slope

The metadata of the slope data derived from EU-DEM v1.0 is:

• Bounding box:

– West bounding coordinate: -10.61982
– East bounding coordinate: 44.82124
– North bounding coordinate: 71.18545
– South bounding coordinate: 34.56192
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• Coordinate reference system: EPSG:3035 (ETRS89, LAEA)

• Temporal extent: 2000

• Date of publication: Apr 20, 2016

• Lineage: The EU-DEM v1.0 is derived from an automated data fu-
sion process using SRTM and ASTER GDEM digital surface model
(DSM) data. Intermap’s NEXTMap Europe dataset is utilized to re-
move any consistent horizontal bias in the GDEM data. The EU-DEM
v1.0 is edited to ensure that water features are adequately represented
and consistent with the hydrography layer. Residual clouds within
the GDEM data are identified and removed same as suspect data ex-
tremely differing from the SRTM data. All EU-DEM tiles are edited
interactively in a 3D stereo environment. The editing is restricted to
the hydrographical features and pits and bumps. In areas above 60
degress North, the EU-DEM generation process is supported by other
DEM data sources provided by the JRC. Water features are flattened
(oceans, lakes) and stepped (rivers) based on the hydrography data.
The spatial reference system is geographic, lat/lon with horizontal da-
tum ETRS89, ellipsoid GRS80 and vertical datum EVRS2000 with
geoid EGG08. The slope dataset has been created from the EU-DEM
projected to ETRS89/ETRS-LAEA.

• Spatial resolution: 25 m

• Specification: Commission Regulation (EU) No 1089/2010 of 23 Novem-
ber 2010 implementing Directive 2007/2/EC of the European Parlia-
ment and of the Council as regards interoperability of spatial data sets
and services, Date of publication: 2010-12-08.

B.5 Fuel risk factors

B.5.1 Land cover

The metadata of CLC 2018 is:

• Bounding Box:

– Region 1:
∗ West = -31.561261
∗ East = 44.820775
∗ North = 71.409109
∗ South = 27.405827

– Region 2:
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∗ West = -61.906047
∗ East = -60.905616
∗ North = 16.607552
∗ South = 15.736333

– Region 3:
∗ West = -54.268239
∗ East = -51.621253
∗ North = 5.851958
∗ South = 3.772692

– Region 4:
∗ West = -61.326095
∗ East = -60.711516
∗ North = 14.970484
∗ South = 14.29692

– Region 5:
∗ West = 44.927382
∗ East = 45.390135
∗ North = -12.546691
∗ South = -13.089579

– Region 6:
∗ West = 55.114983
∗ East = 55.935919
∗ North = -20.77811
∗ South = -21.482245

xs

• Coordinate Reference System: EPSG:3035 (ETRS89, LAEA)

• Temporal extent: 2017-2018

• Date of publication: Jun 14, 2019

• Spatial resolution: Minimum Mapping Unit (MMU): 25 ha

• Conformity: Commission Regulation (EU) No 1089/2010 of 23 Novem-
ber 2010 implementing Directive 2007/2/EC of the European Parlia-
ment and of the Council as regards interoperability of spatial data sets
and services, Date of publication: 2010-12-08.

• Responsible party: European Environment Agency (EEA) under the
framework of the Copernicus programme - copernicus@eea.europa.eu.
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The lineage of the CLC Version 20 is: Vector CLC database was provided
by National Teams within original CLC1990, CLC2000 update, CLC2006
update, CLC2012 update and CLC2018 update projects. All features in
original vector database were classified and digitised based on satellite im-
ages with 100 m positional accuracy (according to CLC specifications) and
25 ha minimum mapping unit into the standardized CLC nomenclature (44
CLC classes).

European Corine Land Cover seamless DBs represent the final prod-
uct of European data integration. The process of data integration started
when national deliveries have been accepted and the Database Acceptance
Report (DBTA) delivered. Delivered national data were produced in lo-
cal national systems of all participating countries. Each national Coordi-
nate Reference System (CRS) definition had to be known precisely together
with its geometric relationship to a standard system in order to accurately
transfer all national data into a standard European coordinate reference -
ETRS89/LAEA1052. Mostly, the process itself was carried out by global
equation-based transformation to ETRS89 (e.g. seven-parameters Bursa-
Wolf methods). The accuracy of a particular transformation ranges from
centimetres to meters depending on the method and the quality and num-
ber of control points available to define the transformation parameters, but,
in any case, the accuracy is far above the actual CLC data resolution (for
more details see the DBTA reports for particular country). National data,
when transformed into the common European reference, are introduced into
tiled pan-European structure and as final step seamless dataset is produced.

In order to achieve production of the real seamless European database,
the integration step includes also harmonization of database along coun-
try borders. It consists from edge-matching of land cover polygons from
the national databases across national borders done by a verification / re-
interpretation of the satellite images in the border regions (2 km wide strip
along borders). The satellite images from IMAGE2000. CLC1990, CHA9000
and CLC2000 database were harmonized this way, but the order to prior-
ity was as following: CLC2000, both geometric and thematic adaptations
of all polygons in a 2 km strip along national boundary lines; CHA9000
database to ensure that changes in CLC2000 are consistent with the change
database; corrected CLC90 (if provided by the MS); corrections were fo-
cused to geometric adaptations in semi-automatical way based on CLC00
and CHA00 databases. Border harmonization step has been skipped for
CHA0006, CHA0612, CLC2012 and clc2018 datasets. Simplified border har-
monization step for CLC2006 dataset has been created for these countries:
CH, NO, XK, TR, IE.

A simplified border matching has been applied:

• < 25 ha polygons are NOT systematically removed (see next bullet).

• Sliver-like polygons (area < cca. 5 ha - soft limit) are generalised to
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largest or thematically most similar neighbour.

• CLC-code differences in polygons along two sides of the border are
NOT changed

Only polygons with area <= 0,1ha were eliminated in CHA0006, CHA0612,
CHA1218, CLC2012 and for CLC2018 datasets and CLC2006 dataset (be-
sides the above-mentioned cases) and in parts newly added in campaigns
2006 and 2012 too.

File name is a combination of campaign year, reference year, inventory
year and release version.

General file name format:

[Mapping_Campaign]_[CLC_Reference_Year]_[Created_Inven-
tory_Year]_[Version]

Stable version example with file name CLC2006_CLC2000_V2018_20
means:

• CLC2006_ That the file came from the 2006 mapping campaign (the
file content was last modified in this campaign)

• _CLC2000_ That the file captures Land Cover mapping results for
2000 reference year

• _V2018_ That this file comes from a delivery created in 2018 inven-
tory year

• _20 That this is the final stable version

Beta-version example with file name CLC2006_CLC2000_V2018_20b2
means:

• CLC2006_ That the file came from the 2006 mapping campaign (the
file content was last modified in this campaign)

• _CLC2000_ That the file captures Land Cover mapping results for
2000 reference year

• _V2018_ That this file comes from a delivery created in 2018 inven-
tory year

• _20b2 That this is the second beta-version

Data type changed from uint8 to uint16 for status rasters in 2018 release.
Some artificial lines (dividing polygons with the same code) can be still

present in database due to technical constraints of current ArcGIS technol-
ogy, but has no impact for dataset contents and can be dissolved for data
extracts.
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B.6 Human factors

B.6.1 Distance to nearest road

The metadata of Geofabrik Esri Shapefiles from OpenStreetMap containing
roads and paths is:

• Encoding: UTF-8

• Geometry: Line (MultiLineString)

• CRS: EPSG:4326 - WGS 84 – Geographic

• Extent:

– -31.2665834999999994, 32.6332820000000012
– -6.1748000999999997, 42.2029769000000030
– Unit: degrees

• Feature count: 950,238

• Attributes:

– id
∗ VARCHAR (4 Bytes)
∗ Id of this feature. Unique in this layer.

– osm_id
∗ VARCHAR (10)
∗ OSM Id taken from the Id of this feature (node_id, way_id,

or relation_id) in the OSM database. In case several features
in the OSM database are joined into one feature, this is one
of the Ids. This Id is not necessarily unique because one OSM
object can result in several geometry objects.
Also note that when doing shape file exports, this will be
exported as a VARCHAR type since shape files don’t support
long integers.

– code
∗ SMALLINT (2 Bytes)
∗ 4 digit code (between 1000 and 9999) defining the feature

class. The first one or two digits define the layer, the last
two or three digits the class inside a layer.

– fclass
∗ VARCHAR(40)
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∗ Class name of this feature. This does not add any informa-
tion that is not already in the “code” field but it is better
readable.

– name
∗ VARCHAR(100)
∗ Name of this feature, like a street or place name. If the name

in OSM contains obviously wrong data such as “fixme” or
“none”, it will be empty.

– ref
∗ VARCHAR(20)
∗ Reference number of this road (‘A 5’, ‘L 605’,...)

– oneway
∗ VARCHAR(1)
∗ Is this a oneway road? “F” means that only driving in di-

rection of the linestring is allowed. “T” means that only the
opposite direction is allowed. “B” (default value) means that
both directions are ok.

– maxspeed
∗ SMALLINT
∗ Max allowed speed in km/h

– layer
∗ SMALLINT
∗ Relative layering of roads (-5, ..., 0, ..., 5)

– bridge
∗ VARCHAR(1)
∗ Is this road on a bridge? (“T” = true, “F” = false)

– tunnel
∗ VARCHAR(1)
∗ Is this road in a tunnel? (“T” = true, “F” = false)

B.6.2 Distance to nearest building

The metadata of Geofabrik Esri Shapefiles from OpenStreetMap containing
buildings is:

• Encoding: UTF-8

• Geometry: Line (MultiLineString)

• CRS: EPSG:4326 - WGS 84 – Geographic
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• Extent:

– -31.2661017000000001, 32.5132367000000002
– -6.1857366000000003, 42.1595287999999968
– Unit: degrees

• Feature count: 976,014

• Attributes:

– id
∗ VARCHAR (4 Bytes)
∗ Id of this feature. Unique in this layer.

– osm_id
∗ VARCHAR (10)
∗ OSM Id taken from the Id of this feature (node_id, way_id,

or relation_id) in the OSM database. In case several features
in the OSM database are joined into one feature, this is one
of the Ids. This Id is not necessarily unique because one OSM
object can result in several geometry objects.
Also note that when doing shape file exports, this will be
exported as a VARCHAR type since shape files don’t support
long integers.

– code
∗ SMALLINT (2 Bytes)
∗ 4 digit code (between 1000 and 9999) defining the feature

class. The first one or two digits define the layer, the last
two or three digits the class inside a layer.

– fclass
∗ VARCHAR(40)
∗ Class name of this feature. This does not add any informa-

tion that is not already in the “code” field but it is better
readable.

– name
∗ VARCHAR(100)
∗ Name of this feature, like a street or place name. If the name

in OSM contains obviously wrong data such as “fixme” or
“none”, it will be empty.

– type
∗ VARCHAR(20)
∗ The type of building, if specified in OSM; otherwise empty.
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Appendix C

Detailed data exploration

In this appendix I am going to include the complete data exploration.
I am going to se descriptive statistical techniques (numerical and graph-

ical) to explore and audit the data to judge its usefulness for building
machine-learning models to predict the burnt area by human-caused fires
(HCFs). Also, as the data is georeferenced I also going to use GIS tech-
niques to explore and process the data.

Because fire risk factors and their importance change between MHTs
[Cos17], I am going to use them to stratify the data. This course of action
is used in multiple studies about wildfires.

It is necessary to mention that all data references the location of the fires
and the coordinates are encoded using EPSG:4326 in decimal degrees.

C.1 High-level view of a variable by biome
To explore this aspect of the data I am going to use contingency tables and
optionally bar plots to explore a variable grouped by biome.

C.1.1 Human-caused fires (HCFs): burnt area

The total number of observations and the burnt area by biome are:

Biome Count Burnt area
Temperate Broadleaf &
Mixed Forests

21,590 45.05% 127,331.6 40.55%

Mediterranean Forests,
Woodlands & Scrub

26,337 54.95% 186,691.9 59.45%

Total 47,927 100% 314,023.6 100%

Table C.1: Burnt area observations by biome
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Graphically is, the count is:

.

Figure C.1: HCFs count by biome

And, the burnt area is:

.

Figure C.2: Burnt area by biome

The count and burnt area is larger on the Mediterranean Forests, Wood-
lands & Scrub biome than on the Mediterranean Forests, Woodlands &
Scrub one, but the difference is small and both metrics are almost evenly
distributed between biomes.
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C.1.2 Fuel risk factors: land cover

The HCFs are in 42 different land cover categories. However only 4 of them
have a number of observations larger than the 10% of the total:

id Description Frequency Percentage
242 Complex cultivation patterns 8,486 17.71%
112 Discontinuous urban fabric 6,576 13.72%
243 Land principally occupied by

agriculture, with significant
areas of natural vegetation

6,000 12.52%

241 Annual crops associated
with permanent crops

5,943 12.40%

Table C.2: CLC level 3 categories with more than 10% of observations

And the topmost categories by biome, beginning with the Temperate
Broadleaf & Mixed Forests one are:

id Description Frequency Percentage
241 Annual crops associated

with permanent crops
4,008 18.56%

112 Discontinuous urban fabric 3,272 15.16%
242 Complex cultivation patterns 3,086 14.29%
243 Land principally occupied by

agriculture, with significant
areas of natural vegetation

3,086 14.29%

Table C.3: CLC level 3 categories with more than 10% of observations in
Temperate Broadleaf & Mixed Forests biome

While that for the Mediterranean Forests, Woodlands & Scrub biome
are:

id Description Frequency Percentage
242 Complex cultivation patterns 5,400 20.50%
112 Discontinuous urban fabric 3,304 12.55%
243 Land principally occupied by

agriculture, with significant
areas of natural vegetation

2,914 11.06%

Table C.4: CLC level 3 categories with more than 10% of observations in
Mediterranean Forests, Woodlands & Scrub biome

There are a large number of categories represented but most of them with
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low cardinality. Thus, the variability and noise might become a problem
building a model.

C.2 High-level view of a variable by temporal unit
To explore this aspect of the data I am going to use contingency tables and
line plots to explore the distribution of a variable by temporal unit (year or
month).

C.2.1 Human-caused fires (HCFs): burnt area

The total count of HCFs and burnt area by year is:

Year Count Burnt area
2011 12,466 26.01% 56,718.20 18.06%
2012 12,430 25.94% 93,765.88 29.86%
2013 10,355 21.61% 10,7005.39 34.08%
2014 3,641 7.60% 13,795.27 4.39%
2015 9,035 18.85% 42,738.82 13.61%
Total 47,927 100% 314,023.6 100%

Table C.5: HCFs count and burnt area by biome and year

If we count by biome and year, beginning with the Temperate Broadleaf
& Mixed Forests biome we have:

Year Count Burnt area (ha)
2011 6,008 19,378.28
2012 5,295 22,766.03
2013 5,416 65,078.67
2014 1,089 2,478.625
2015 3,782 17,629.99

Table C.6: Count and burnt area on Temperate Broadleaf & Mixed Forests
biome by year

And, continuing with the Mediterranean Forests, Woodlands & Scrub
one we have:
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Year Count Burnt area (ha)
2011 6,458 37,339.92
2012 7,135 70,999.85
2013 4,939 41,926.71
2014 2,552 11,316.643
2015 5,253 25,108.825

Table C.7: Count and burnt area on Mediterranean Forests, Woodlands &
Scrub biome by year

Graphically, beginning with the yearly count:

Figure C.3: Yearly count of HCFs in the period 2011–2015: total and by
biome

And, the yearly burnt area:
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Figure C.4: Yearly burnt area in the period 2011–2015: total and by biome

The same data but with monthly granularity for the count of HCFs:

Figure C.5: HCFs count by month in the period 2011–2015: total and by
biome

And, for the burnt area:
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Figure C.6: HCFs burnt area by month in the period 2011–2015: total and
by biome

The two periods of the year with higher occurrence of fires, early spring
and all all summer (sometimes extending to early autumn), are visible in
the plots.

Superimposing the count by year to check for possible seasonal patterns:

Figure C.7: HCFs occurrence monthly trend by year

And, the burnt area by month:
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Figure C.8: HCFs burnt area monthly trend by year

It is evident for the data that the period of maximum fire occurrence
happens on late summer or early autumn depending on the year. Even
though, in some years there is another period of high fire occurrence on
early spring.

This is consistent with the literature that describes the seasonal patterns
of fires in Portugal shaping a extraordinarily complex multi-year pattern
with “high highs” and “low lows” years, with the year 2014 identifiable as
one of the “low lows” ones. However, the period of study is too short to
appreciate the pattern.

Also, the virulence of HCFs is greater on the summer months.

C.3 Shape of variable’s distribution by biome

To explore this aspect of the data I am going to use summary statistics
metrics (median and the mean, the first and third quartiles, the minimum
and maximum values, and the standard deviation) together with density
plots (instead of histograms) of a variable grouped by biome.

C.3.1 Human-caused fires (HCFs): burnt area

The statistical summary of the burnt area is:

Min. Q1 Median Mean Q3 Max.
0.00 0.01 0.10 6.55 0.90 24,843.00

Table C.8: Statistical summary of burnt area variable
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With its standard deviation being 139.03.
The minimum for the variable is not zero but 0.00001 (zero values where

eliminated in the data pre-processing step). Also, the maximum value cor-
responds to one of the largest wildfires in the history of Portugal1.

The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.00 0.02 0.10 5.90 1.00 6,853.50

Mediterranean Forests,
Woodlands & Scrub

0.00 0.01 0.10 7.09 0.78 24,843.00

Table C.9: Statistical summary of burnt area variable by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

85.62

Mediterranean Forests,
Woodlands & Scrub

170.77

Table C.10: Standard deviation of burnt area variable by biome

Its evident the influence of the large wildfire in the summary statistics.

C.3.2 Human-caused fires (HCFs): coordinates (x and y)

The coordinates are described by the x (i.e, longitude) and y (i.e., latitude)
variables using the EPSG:4326 Coordinate Reference System (CRS) in dec-
imal degrees.

The summary statistics for the x and y variables are:

Variable Min. Q1 Median Mean Q3 Max.
Longitude -9.48 -8.52 -8.20 -8.11 -7.75 -6.21
Latitude 37.02 40.15 41.03 40.66 41.45 42.15

Table C.11: Statistical summary of x and y variables

The overall density plot and by biome beginning with the x variable:

1Incêndio do Algarve foi o segundo maior de sempre em Portugal
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Figure C.9: Density plots by biome of x against overall distribution

And, y:

Figure C.10: Density plots by biome of y against overall distribution

The differences on the density plot originate in the following circum-
stances:

• The number of HCFs is close to being evenly distributed between
biomes with 45.05% for the “Temperate Broadleaf & Mixed Forests”
biome and 54.95% for the “Mediterranean Forests, Woodlands & Scrub”
one.
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• The “Temperate Broadleaf & Mixed Forests” occupying a much smaller
area in the northern half of continental Portugal as can be seen in the
Figure 5.1.

C.3.3 Meteorological data: maximum air temperature

The statistical summary of the maximum air temperature is:

Min. Q1 Median Mean Q3 Max.
2.70 21.10 25.30 25.09 29.80 41.80

Table C.12: Statistical summary of maximum temperature

With its standard deviation being 6.34.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

2.80 20.60 24.50 24.37 29.00 39.80

Mediterranean Forests,
Woodlands & Scrub

2.70 21.60 26.00 25.68 30.40 41.80

Table C.13: Statistical summary of maximum temperature by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

6.12

Mediterranean Forests,
Woodlands & Scrub

6.47

Table C.14: Standard deviation of maximum temperature by biome

And, graphically the overall density plot and by biome:
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Figure C.11: Density plots by biome against overall distribution of maximum
temperature

In contrast to the average air temperature, the distribution of the max-
imum air temperature by biome is strikingly similar.

C.3.4 Meteorological data: average air temperature

The statistical summary of the average air temperature is:

Min. Q1 Median Mean Q3 Max.
-2.00 15.60 19.60 18.78 22.60 34.00

Table C.15: Statistical summary of average temperature variable

With its standard deviation being 5.47.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

-0.60 14.90 18.90 18.10 21.90 32.20

Mediterranean Forests,
Woodlands & Scrub

-2.00 16.20 20.30 19.34 23.10 34.00

Table C.16: Statistical summary of average temperature variable by biome

With the standard deviation by biome is:
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Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

27.84

Mediterranean Forests,
Woodlands & Scrub

30.87

Table C.17: Standard deviation of average temperature variable by biome

And, graphically the overall density plot and by biome:

Figure C.12: Density plots by biome against overall distribution of average
temperature

The distribution of the average temperature by biome is similar con the
exception of smaller values in the case of the “Temperate Broadleaf & Mixed
Forests” biome that is situated in the colder half of the territory.

C.3.5 Meteorological data: mean daily wind speed at 10ms

The wind speed variable in this data set represents the mean daily wind
speed at 10 meters in meters/second. Its statistical summary is:

Min. Q1 Median Mean Q3 Max.
0.00 1.80 2.50 2.74 3.40 10.00

Table C.18: Statistical summary of wind speed

With its standard deviation being 1.26.
The same summary but by biome is:
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Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.00 1.80 2.30 2.51 3.00 10.10

Mediterranean Forests,
Woodlands & Scrub

0.20 1.90 2.70 2.93 3.70 10.80

Table C.19: Statistical summary of wind speed by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

1.06

Mediterranean Forests,
Woodlands & Scrub

1.37

Table C.20: Standard deviation of wind speed by biome

And, graphically the overall density plot and by biome:

Figure C.13: Density plots by biome against overall distribution of wind
speed

The data distribution for each biome is similar with consistently smaller
values in the case of the Temperate Broadleaf & Mixed Forests biome.

C.3.6 Meteorological data: vapour pressure

Vapour pressure is one way of measuring the humidity of the air. It is
supplied to the atmosphere by evaporation of water from oceans, lakes, wet
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land surfaces or from vegetation (transpiration). Its statistical summary is:

Min. Q1 Median Mean Q3 Max.
2.51 9.45 12.63 12.32 15.30 23.76

Table C.21: Statistical summary of vapour pressure

With its standard deviation being 3.85.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

2.70 9.09 12.34 12.05 15.07 22.34

Mediterranean Forests,
Woodlands & Scrub

2.51 9.74 12.87 12.54 15.50 23.76

Table C.22: Statistical summary of vapour pressure by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

3.75

Mediterranean Forests,
Woodlands & Scrub

3.91

Table C.23: Standard deviation of vapour pressure by biome

And, graphically the overall density plot and by biome:
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Figure C.14: Density plots by biome against overall distribution of vapour
pressure

The distribution of the variable by biome is similar with the Temperate
Broadleaf & Mixed Forests experiencing evenly distributed values across its
whole range but with a peak in the upper half part of the distribution that
ultimately shapes the distribution.

C.3.7 Meteorological data: sum of precipitation

The statistical summary of the precipitation feature, measured in millime-
tres, is:

Min. Q1 Median Mean Q3 Max.
0.00 0.00 0.00 0.41 0.00 113.00

Table C.24: Statistical summary of precipitation

With its standard deviation being 3.28.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.00 0.00 0.00 0.39 0.00 113.00

Mediterranean Forests,
Woodlands & Scrub

0.00 0.00 0.00 0.41 0.00 81.00

Table C.25: Statistical summary of precipitation by biome

With the standard deviation by biome is:
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Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

3.49

Mediterranean Forests,
Woodlands & Scrub

3.11

Table C.26: Standard devitation of precipitation by biome

It evident from the data that the distribution is highly skewed.

C.3.8 Meteorological data: total global radiation

The statistical summary of the total global radiation measured in KJ/m2/day
is:

Min. Q1 Median Mean Q3 Max.
1,500 16,525 21,800 21,480 26,823 35,761

Table C.27: Statistical summary of radiation

With its standard deviation being 6,461.29.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

2,400 16,200 21,163 20,904 25,800 35,511

Mediterranean Forests,
Woodlands & Scrub

1,500 16,831 22,500 21,820.55 27,503 35,761

Table C.28: Statistical summary of radiation by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

6,253.34

Mediterranean Forests,
Woodlands & Scrub

6,598.40

Table C.29: Standard deviation of radiation by biome

And, graphically the overall density plot and by biome:
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Figure C.15: Density plots by biome against overall distribution of radiation

The distribution is similar, but there are two distinctive peaks in the
“Mediterranean Forests, Woodlands & Scrub” biome one whereas the Tem-
perate Broadleaf & Mixed Forests biome distribution shows more uniform,
albeit lower, values.

C.3.9 Canadian Forest Fire Weather Index (FWI): FFMC

The statistical summary of FFMC that is unitless is:

Min. Q1 Median Mean Q3 Max.
6.09 86.37 89.53 88.43 92.07 98.47

Table C.30: Statistical summary of FFMC

With its standard deviation being 6.11.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

18.72 86.22 89.07 88.00 91.43 96.46

Mediterranean Forests,
Woodlands & Scrub

6.09 86.54 89.97 88.78 92.55 98.47

Table C.31: Statistical summary of FFMC by biome

With the standard deviation by biome is:
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Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

5.85

Mediterranean Forests,
Woodlands & Scrub

6.30

Table C.32: Standard deviation of FFMC by biome

And, graphically the overall density plot and by biome:

Figure C.16: Density plots by biome against overall distribution of FFMC

The distribution for each biome is similar with high values for the HCFs,
but also a high tail towards zero.

C.3.10 Canadian Forest Fire Weather Index (FWI): DMC

The statistical summary of DMC that is unitless is:

Min. Q1 Median Mean Q3 Max.
0.07 28.03 76.01 87.93 123.31 702.01

Table C.33: Statistical summary of DMC

With its standard deviation being 74.57.
The same summary but by biome is:
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Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.20 24.04 58.71 69.06 103.66 347.43

Mediterranean Forests,
Woodlands & Scrub

0.07 34.32 91.17 103.40 142.77 702.01

Table C.34: Statistical summary of DMC by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

52.32

Mediterranean Forests,
Woodlands & Scrub

85.69

Table C.35: Standard deviation of DMC by biome

And, graphically the overall density plot and by biome:

Figure C.17: Density plots by biome against overall distribution of DMC

Even though the distribution in each biome is similar, in the Temperate
Broadleaf & Mixed Forests biome the values concentrate in the lower end.

Whereas, in the Mediterranean Forests, Woodlands & Scrub biome there
is a significant larger variability with extreme values. Moreover, its maxi-
mum value almost doubles the one in the other biome.
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C.3.11 Canadian Forest Fire Weather Index (FWI): DC

DC, which is unitless, represents the moisture content of deep (approxi-
mately 10–20 cm deep), compact organic layers with a lag of 52 days. Its
statistical summary is:

Min. Q1 Median Mean Q3 Max.
0.44 48.87 205.04 202.52 319.15 760.15

Table C.36: Statistical summary of DC

With its standard deviation being 147.71.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.44 33.69 159.00 165.57 281.38 513.48

Mediterranean Forests,
Woodlands & Scrub

0.56 83.08 241.53 232.82 353.76 760.15

Table C.37: Statistical summary of DC by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

130.95

Mediterranean Forests,
Woodlands & Scrub

153.65

Table C.38: Standard deviation of DC by biome

And, graphically the overall density plot and by biome:
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Figure C.18: Density plots by biome against overall distribution of DC

The shape of both distributions is similar. Each one seems like the
combination of other two distributions, one closer to zero and another in
the other side of their range. This bimodality indicates a divide between
HCFs driven by long draughts indicated by high values of DC and other
HCFs driven by another causes.

C.3.12 Canadian Forest Fire Weather Index (FWI): ISI

The statistical summary of ISI that is unitless is:

Min. Q1 Median Mean Q3 Max.
0.00 4.93 7.28 7.72 9.87 34.46

Table C.39: Statistical summary of ISI

With its standard deviation being 3.92.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.00 4.61 6.58 6.85 8.78 24.68

Mediterranean Forests,
Woodlands & Scrub

0.00 5.30 7.99 8.44 10.88 34.46

Table C.40: Statistical summary of ISI by biome

With the standard deviation by biome is:
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Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

3.14

Mediterranean Forests,
Woodlands & Scrub

4.33

Table C.41: Standard deviation of ISI by biome

And, graphically the overall density plot and by biome:

Figure C.19: Density plots by biome against overall distribution of ISI

The distributions are fairly similar with lower values on average in the
case of the “Temperate Broadleaf & Mixed Forests” biome.

C.3.13 Canadian Forest Fire Weather Index (FWI): BUI

BUI, which is unitless, indicates the total amount of fuel available for com-
bustion by a moving flame front. Although BUI is a weighted combination
of the DMC and DC indicators, with the former having a bigger influence
on the final value. For example, a DMC value of zero always results in a
BUI value of zero regardless of what the DC value is. But, the influence of
DC increases with the value of DMC.

Its statistical summary is:

Min. Q1 Median Mean Q3 Max.
0.11 29.93 84.44 92.04 130.20 685.90

Table C.42: Statistical summary of BUI
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With its standard deviation being 74.25.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.24 24.56 65.05 72.34 109.72 344.37

Mediterranean Forests,
Woodlands & Scrub

0.11 38.46 100.16 108.18 149.13 685.90

Table C.43: Statistical summary of BUI by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

53.29

Mediterranean Forests,
Woodlands & Scrub

84.42

Table C.44: Standard deviation of BUI by biome

And, graphically the overall density plot and by biome:

Figure C.20: Density plots by biome against overall distribution of BUI

The shape of the distributions makes evident that BUI is a combination
of the DMC and DC indicators.
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C.3.14 Canadian Forest Fire Weather Index (FWI): FWI

The statistical summary of FWI that is unitless is:

Min. Q1 Median Mean Q3 Max.
0.00 10.13 22.41 22.62 32.95 84.78

Table C.45: Statistical summary of FWI

With its standard deviation being 14.00.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.00 8.39 18.51 19.13 28.61 64.06

Mediterranean Forests,
Woodlands & Scrub

0.00 12.41 26.08 25.48 36.22 84.78

Table C.46: Statistical summary of FWI by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

11.95

Mediterranean Forests,
Woodlands & Scrub

14.88

Table C.47: Standard deviation of FWI by biome

And, graphically the overall density plot and by biome:
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Figure C.21: Density plots by biome against overall distribution of FWI

The FWI is a combination of ISI and BUI representing the fire intensity
by combining the rate of fire spread with the amount of fuel being consumed.
Therefore, it shows patterns seen on other Forest Fire Weather Indicators:

C.3.15 Physiography: elevation

The elevation of continental Portugal goes from the lowest point 0 at the
coast to e point of highest elevation of continental Portugal is Torre lo-
cated in Serra da Estrela with 1,993 meters above sea level. And, the mean
elevation of Portugal is 372 meters.

The statistical summary of the elevation above sea level in meters is:

Min. Q1 Median Mean Q3 Max.
-2.50 120.40 286.20 344.90 528.00 1,835.37

Table C.48: Statistical summary of elevation

With its standard deviation being 265.22.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

-1.50 157.73 294.11 350.23 487.07 1,517.43

Mediterranean Forests,
Woodlands & Scrub

-2.50 91.76 273.37 340.54 560.50 1,835.37

Table C.49: Statistical summary of elevation by biome
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With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

256.66

Mediterranean Forests,
Woodlands & Scrub

271.97

Table C.50: Standard devaition of elevation by biome

There are 41 HCFs with negative elevation. They all located along the
coast and are plausible but others are located in the sea or estuaries of rivers:

(a) All (b) Detail

Figure C.22: HCFs with elevation less than zero

Hence, I going to remove the fires with negative elevation when I prepare
the data for modelling.

There is also 56 HCFs with zero elevation, but these HCFs in the coast
are plausible so I am going to do nothing.

Continuing, the density plot by biome against the overall distribution is:
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Figure C.23: Density plots by biome against overall distribution of elevation

The “Mediterranean Forests, Woodlands & Scrub” biome cover a more
diverse landscape and this is reflected in the density plot with a large number
of fires occurring at low elevations and a smaller number at higher elevation.

However, in the “Temperate Broadleaf & Mixed Forests” biome the fire
occurrence is concentrated in lower elevations, but not so low than in the
other biome.

C.3.16 Physiography: slope

The statistical summary of the slope measured in degrees from the horizon-
tal:

Min. Q1 Median Mean Q3 Max.
0.00 0.00 5.13 6.18 8.89 70.12

Table C.51: Statistical summary of slope

With its standard deviation being 5.92.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.00 5.13 7.25 7.62 11.48 37.25

Mediterranean Forests,
Woodlands & Scrub

0.00 0.00 5.13 5.01 7.25 70.12

Table C.52: Statistical summary of slope by biome
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With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

5.95

Mediterranean Forests,
Woodlands & Scrub

5.64

Table C.53: Standard deviation of slope by biome

And, graphically the overall density plot and by biome:

Figure C.24: Density plots by biome against overall distribution of slope

There is a gap in the density plot in the overall distribution and in each
one for the biomes. Its origin is on the original data: how the variable is
measured in the first place; and augmented by the conversion to decimal
degrees. It is easier to appreciate by analysing its spread using box plots.

Also, HCFs in the “Mediterranean Forests, Woodlands & Scrub” occur
on gentler slopes.

C.3.17 Human factors: distance to nearest road

The statistical summary of the distance to the nearest main road is:

Min. Q1 Median Mean Q3 Max.
0.01 70.06 209.54 410.13 506.77 6,826.63

Table C.54: Statistical summary of distance to nearest road by biome
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With its standard deviation being 570.15.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.02 70.70 192.76 347.38 436.13 5,023.38

Mediterranean Forests,
Woodlands & Scrub

0.01 74.18 225.12 461.56 579.51 6,862.63

Table C.55: Statistical summary of distance to nearest road by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

447.68

Mediterranean Forests,
Woodlands & Scrub

649.16

Table C.56: Standard deviation of distance to nearest road by biome

And, graphically the overall density plot and by biome:

Figure C.25: Density plots by biome against overall distribution of distance
to nearest road

Most HCFs happen close to a road, that allow easy access.
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C.3.18 Human factors: distance to nearest building

The statistical summary of the distance to the nearest build-up area is:

Min. Q1 Median Mean Q3 Max.
0.00 148.40 545.70 896.10 1,288.50 7,923.68

Table C.57: Statistical summary of distance to nearest building

With its standard deviation being 1,016.79.
The same summary but by biome is:

Biome Min. Q1 Median Mean Q3 Max.
Temperate Broadleaf &
Mixed Forests

0.00 131.19 469.28 748.96 1,080.42 7,889.37

Mediterranean Forests,
Woodlands & Scrub

0.00 163.34 634.18 1,016.66 1,501.96 7,923.68

Table C.58: Statistical summary of distance to nearest building by biome

With the standard deviation by biome is:

Biome Standard deviation
Temperate Broadleaf &
Mixed Forests

859.41

Mediterranean Forests,
Woodlands & Scrub

1,115.21

Table C.59: Standard deviation of distance to nearest building by biome

And, graphically the overall density plot and by biome:
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Figure C.26: Density plots by biome against overall distribution of distance
to nearest building

Most HCFs happen close to a build-up areas where humans, who are the
direct or indirect cause of HCFs, live.

C.4 Shape of variable’s distribution by biome and
temporal unit

To explore this aspect of the data I am going to use stacked density plots of
a variable grouped by year and for each year overlapping density plots by
biome

C.4.1 Meteorological data: vapour pressure

Looking at the distribution of the vapour pressure variable by biome and
year shows a marked disparity between years and biomes. Low values indi-
cate drier conditions that affect the content of moisture in the soil. Whereas
high values are characteristic of the heat waves occurring in the summer:
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Figure C.27: Density plots by biome and year of vapour pressure

This is different from what we can see when visualising the ungrouped
distribution of the variable.

C.4.2 Meteorological data: total global radiation

The distribution of the radiation grouped by year and biome shows a large
variability in the range of values and especially between biomes:

Figure C.28: Density plots by biome and year of radiation

Solar radiation has a strong impact on creating the conditions suitable for
the occurrence of fire. However, without considering the slope of the terrain
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and the average of radiation for a past period (e.g., monthly average) prior
to the fire instead of a daily measurement does not appear to have much
significance in the prediction of HCFs.

C.4.3 Physiography: elevation

The distribution of the elevation grouped by year and biome shows some
variability in the case of the “Temperate Broadleaf & Mixed Forests” biome,
but nothing that merits further investigation:

Figure C.29: Density plots by biome and year of elevation

C.5 Distribution of skewed variables
To explore this aspect of the data I am going to use empirical cumulative
distribution function (ECDF) plots to ascertain whether a skewed variable
follows a log-normal or power distribution so I know what transformation
to apply to a variable.

C.5.1 Human-caused fires (HCFs): burnt area

It is evident from the statistics summary of the variable that the distribution
is highly skewed. The empirical cumulative distribution function (ECDF)
shows an almost vertical rise at 0:
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Figure C.30: Burnt area ECDF

Now the question is if it follows a log-normal or power distribution. First,
I am going to apply a log (area) transformation. The density plot is:

Figure C.31: Density plot of transformed burnt area

And, the empirical cumulative distribution of the transformed variable
is:
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Figure C.32: ECDF of transformed burnt area

To check whether this distribution is not a power law, I plot it as a
descending ECDF with logarithmic x and y axes. In this visualization, a
power law appears as a perfect straight line. And, this is not the case:

Figure C.33: Burnt area descending ECDF using logarithmic scale

C.5.2 Meteorological data: sum of precipitation

As is evident from the statistical summary of the variable, the distribution
is highly skewed containing a large amount of days with human-caused fires
()HCFs) happening but with no (or almost) rain.
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Portugal is amongst the sunniest areas in Europe. The annual precipi-
tation varies from amounts to 1,450 mm in Braga and 1,100 millimetres in
Porto, while it drops to around 700 mm in Lisbon, and to about 500 mm
(20 in) in Algarve.

The empirical cumulative distribution function (ECDF) shows a step rise
at 0:

Figure C.34: ECDF of precipitation

Now the question is if it follows a log-normal or power distribution. First,
I am going to apply a log(precipitation) transformation.

The density plot is fo the transformed variable is:
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Figure C.35: Density plot of transformed precipitation

And, the empirical cumulative distribution of the transformed variable
is:

Figure C.36: ECDF of transformed precipitation

To check whether this distribution is not a power law, I plot it as a
descending ECDF with logarithmic x and y axes. In this visualization, a
power law appears as a perfect straight line. And, this is not the case:
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Figure C.37: Precipitation descending ECDF using logarithmic scale

C.6 Spread and outliers of a variable

To explore this aspect of the data I am going to use box-and-whisker plots
to check the spread and symmetry of a variable distribution.

C.6.1 Human-caused fires (HCFs): coordinates (x and y)

The difference in the geospatial location and area covered by each biome
shows as differentes in the spread of each of the coordinate variables, x (i.e.,
longitude) and y (i.e., latitude):

(a) x (longitude) (b) y (latitude)

Figure C.38: Boxplot of x and y

When the box plot is grouped by biome the, the observations beyond
the whiskers (that could be considered outliers) disappear:
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(a) x (longitude) (b) y (latitude)

Figure C.39: Boxplot of x and y by biome

C.6.2 Meteorological data: maximum air temperature

The “Temperate Broadleaf & Mixed Forests” biome shows slightly smaller
values on average as we can see in the boxplot:

Figure C.40: Boxplot of maximum temperature by biome

Except that there is a lower number of outliers corresponding to low
temperatures, the maximum temperatures grouped by year repeats the same
patterns as the average temperatures, (low) outliers in each year and a
greater range variability and more extreme values in 2012 than the rest of
years:
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Figure C.41: Boxplot of maximum temperature by year

The similarity is also found when the data is grouped by month:

Figure C.42: Boxplot of maximum temperatures by month

The range of maximum temperatures across the year is wide. Moreover,
the values in are consistently high temperatures in the summer.

The ocean exerts a great influence in the weather of continental Portugal.
It shelters the land from cold winds and night frosts which are exceedingly
rare and never intense. Summer lasts from June to mid-September, it is
milder on the northern half on the country than the south. Also, the coastal
areas are colder than the interior since they are exposed to ocean winds.
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Hence, the hotter part of the territory is the interior south. While the
north is colder and rainfall more frequent and abundant.

C.6.3 Meteorological data: average air temperature

The spread is similar with smaller values in the case of the “Temperate
Broadleaf & Mixed Forests” biome situated in the colder half of the territory:

Figure C.43: Boxplot of average temperature by biome

There is a large number of outliers corresponding to low temperatures:

Figure C.44: Boxplot of average temperature by year
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This pattern repeats all years except in 2012. However, grouping the
data by month results in the range of average temperatures across the year
is large with consistent high temperatures in its “extended” Summer that
lasts from June to October:

Figure C.45: Boxplot of average temperature by month

The annual average temperature in continental Portugal varies from
12–13 °C in the mountainous interior north to 17–18 °C in the south (in
general the south is warmer and drier than the north).

Extreme temperatures occur in the mountains in the interior North and
Centre of the country in winter, where they may fall below −10 °C, and in
south-eastern parts in the summer, sometimes exceeding 45 °C.

The values are greater than expected but we are calculating the statistics
from a small sample, so some deviation can be expected. But there is also the
matter of a high variability and the long Summer which can be a consequence
of climate change with hotter years.

C.6.4 Meteorological data: mean daily wind speed at 10ms

The data distribution for each biome is similar with consistently small values
in the case of the Temperate Broadleaf & Mixed Forests biome:
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Figure C.46: Boxplot by biome of wind speed

The wind speed data is also consistent in all years of the period of study:

Figure C.47: Boxplot by year of wind speed

C.6.5 Meteorological data: vapour pressure

The distribution by biome is similar but the values of the Temperate Broadleaf
& Mixed Forests more concentrated.
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Looking at the distribution grouped by year, the values of the year 2014
stands out):

Figure C.48: Boxplot by year of vapour pressure

Although, the data grouped by biome shows that the distribution is
similar between them:

Figure C.49: Boxplot by biome of vapour pressure

And, grouped by month the data shows the variability typical of mete-
orological data:
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Figure C.50: Boxplot by month of vapour pressure

C.6.6 Meteorological data: total global radiation

The distribution grouped by year shows that the spread for all years is similar
with the lower amount of data for the year 2014 patent by the number of
superimposed points in the figure:

Figure C.51: Boxplot by year of radiation

And, grouped by month the data shows the typical variation of the
amount of insolation across the year:
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Figure C.52: Boxplot by month of radiation

C.6.7 Canadian Forest Fire Weather Index (FWI): FFMC

The distribution for each biome is similar with high values for the HCFs,
but also a high towards zero. Moreover, this pattern persists across ever
year:

Figure C.53: Boxplot by year of FFMC

And, every month:
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Figure C.54: Boxplot by month of FFMC

There are lower values in average for the winter months than other pe-
riod since FFMC is calculated from meteorological variables (temperature,
relative humidity, wind, and rain).

But, except for the outliers, the values are high indicating an easy igni-
tion and high flammability of fine fuels the days of occurrence of HCFs.

C.6.8 Canadian Forest Fire Weather Index (FWI): DMC

The spread of values in the Mediterranean Forests, Woodlands & Scrub
biome shows a larger variability with extreme upper values. Moreover, its
maximum value almost doubles the one in the other biome.
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Figure C.55: Boxplots by biome of DMC

There are higher values in average for the summer months since this
index represents moisture conditions for the equivalent of 15-day lag indi-
cating fires driven by lower moisture content in loosely compacted organic
layers of moderate depth:

Figure C.56: Boxplots by month of DMC

C.6.9 Canadian Forest Fire Weather Index (FWI): DC

The Mediterranean Forests, Woodlands & Scrub biome is climatological
more diverse. The FWI metrics are calculated from meteorological data so
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its values are more spread and reaching higher maximum values than the
other biome:

Figure C.57: Boxplots by biome and year of DC

C.6.10 Canadian Forest Fire Weather Index (FWI): ISI

The values for the Temperate Broadleaf & Mixed Forests are on average
lower than the other biome but both show outliers in the upper range:

Figure C.58: Boxplots by biome and year of ISI

The median and average values of the indicator can be classified as mod-
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erate, but the values above 15–20 can be considered extreme (the threshold
values depend on local conditions).

C.6.11 Canadian Forest Fire Weather Index (FWI): BUI

The BUI metric shows higher values on average on the summer months as
with other FWI metrics, which are calculated from meteorological data, with
the outliers visible for those months standing out:

Figure C.59: Boxplots by month of BUI

C.6.12 Canadian Forest Fire Weather Index (FWI): FWI

The patterns already indicated for other variables of the Canadian Forest
Fire Weather Index:

• showing higher values on average on the summer months

• values in from the Mediterranean Forests, Woodlands & Scrub biome
being more spread and reaching higher maximum values

held also for the FWI metric:
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Figure C.60: Boxplots by month of FWI

Values above 30–40 can be considered extreme (the graduation is subject
to local conditions), as those reached in the summer and early spring in
continental Portugal in both biomes:

Figure C.61: Boxplots by biome and year of FWI

C.6.13 Physiography: elevation

The “Mediterranean Forests, Woodlands & Scrub” biome cover a more di-
verse landscape and this is reflected in the density plot with a large number
of fires occurring at low elevations and a smaller number at higher elevation.
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However, fire occurrence in the Temperate Broadleaf & Mixed Forests
biome is concentrated in lower elevations, but not so low than in the other
biome.

The distribution of the elevation of HCFs occurrence does not change so
much across all the period of study:

Figure C.62: Boxplots by year of elevation

C.6.14 Physiography: slope

The density plot of the slope distribution for the overall distribution and
in the one for each biome there are huge gaps for the same values. This is
a consequence of the way the value is encoded in the original data (digital
numbers from the satellite sensor) and converted to decimal degrees:
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Figure C.63: Boxplots by biome of slope

However, HCFs in the “Mediterranean Forests, Woodlands & Scrub”
occur on gentler slopes.

C.6.15 Human factors: distance to nearest road

While most HCFs happen close to a road, which allows easy access, there
are a high number of outliers:

(a) Grouped by year (b) Grouped by month

Figure C.64: Boxplots by year and by month of distance to nearest road

C.6.16 Human factors: distance to nearest building

While most HCFs happen close to a build-up area, where humans that are
the direct or indirect cause of HCFs live, there are a high number of outliers:
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(a) Grouped by year (b) Grouped by month

Figure C.65: Boxplots by year and by month of distance to nearest building

C.7 Geospatial distribution of a variable

To explore this aspect of the data I am going to use maps (using using the
EPSG:4326) to explore the geospatial distribution of a variable.

C.7.1 Major Habitat Types (MHTs)

The area occupied by each ecoregion, as can be seen in the Figure 5.1, in
squared kilometres is:

Biome Area (Km2)
Temperate Broadleaf &
Mixed Forests

79,823.58 15.81%

Mediterranean Forests,
Woodlands & Scrub

42,5214.23 84.19%

Table C.60: Biome area in continental Portugal

And, visualising the location of the fires using transparency to make
evident the concentration of fires:

(a) All (b) By biome

Figure C.66: Location of the HCFs in period 2011–2015
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Moreover, the total number of observations and the burnt area by biome,
which are:

Biome Count Burnt area (ha)
Temperate Broadleaf &
Mixed Forests

21,590 45.05% 127,331.6 40.55%

Mediterranean Forests,
Woodlands & Scrub

26,337 854.95% 186,691.9 59.45%

Total 47,927 100% 314,023.6 100 %

Table C.61: HCFs count and burnt area by biome

And again, visualising the location of the fires using transparency to
make evident the concentration of fires but by year:

(a) All (b) By biome

Figure C.67: Location of HCFs by year in period 2011–2015

The plots reveal that the biome Temperate Broadleaf & Mixed Forests
has suffered a larger number of fires in proportion to its extension revealing
a stark difference between the northern and southern halves of the territory.
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Appendix D

Feature engineering

This appendix contains the detailed feature engineering step that is sum-
marised in the Chapter 7.

I am going to combine in this section the data preparation and feature
engineering stages combining all the steps necessary to prepare the data, so
it fits the selected model:

• Treating outliers

• Reducing high cardinality in categorical variables

• Assigning the correct data types for each variable (some algorithms
only work with certain data types)

• Handling missing data

• Creating new variables

D.1 Handling outliers
I am going to handle the outliers found on the data sets considering that in
some cases whether a value is abnormal is a matter of perspective.

Also, I am going to try to make the least modifications possible to the
data since each change distorts the data and may introduce bias.

For each variable I am going to try 3 methods to detect and treat outliers:

• Bottom/Top x%, based on percentiles. Common values are 0.5%, 1%,
1.5%, 3%, among others.

• Tukey, based on the quartiles. It considers outliers all values outside
of the interval [Q1 − 3IQR, Q3 + 3IQR] [Tuk81].

• Hampel, based on the median and median absolute deviation (MAD)
values. It considers outliers all values outside of the interval [median−
k ∗ MAD,median + k ∗ MAD] [Ham74].
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To handle the outliers I am going to use feature clipping, that is, to set
the values of the observation for the affected feature to the threshold value
that the chosen method has decided separates the abnormal values from the
rest.

D.1.1 Human-caused fires (HCFs)

Burnt area

I am only going to check the burnt area (i.e., area_total) variable since there
makes no sense to check for outliers the location variables.

As I saw in the data exploration phase, the burnt area is a highly skewed
variable. This is also evident in how the values of the standard deviation is
much higher than the mean:

Mean 5.90
Standard deviation 85.62
Coefficient of variation 14.52
Skewness 45.11
Kurtosis 2,710.31
1st percentile 0.0002
5st percentile 0.002
25st percentile 0.02
50st percentile 0.1
75st percentile 1
95st percentile 10
99st percentile 82.06
IQR 82.06
Range with 80% observations [0.005, 3.5]

Range with 98% observations [0.0002, 82.06]

Table D.1: Central and skewness metrics of burnt area

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for only the top 5%

• Tukey method

• Hampel method using k = 3

The number and percentage of flagged outliers is:
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Method Outliers Percentage
Bottom / Top 1,091 5.05%
Tukey 2,036 9.43%
Hampel 6,512 30.16%

Table D.2: Flagged outliers in burnt area

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 5.90 85.62 14.52 45.11 2,710.31
Bottom / Top 0.69 1.41 2.03 3.34 15.79
Tukey 0.44 0.74 1.68 2.23 7.63
Hampel 0.10 0.14 1.37 1.71 4.83

Table D.3: Skewness metrics before and after imputing outliers in burnt
area

With the range covering the 95% of the values is:

Original [0.001, 26]

Bottom / Top [0.001, 5.27]

Tukey [0.001, 3.00]

Hampel [0.0005, 0.5]

Table D.4: Intervals covering 95% of observation before and after imputing
outliers in burnt area

Before the standard deviation was large compared to the mean, as re-
flected in the variation coefficient and kurtosis value. After, both methods
have reduced all the metrics.

Comparing graphically the outliers in the original variable and all meth-
ods:
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Figure D.1: Box plots before and after imputing outliers in burnt area

And, comparing only the result of the three methods:

Figure D.2: Box plots after imputing outliers in burnt area

The distribution of the new variables is still skewed but with a much
smaller tail.

I will use the Bottom/Top method that imputes the least number of ob-
servations while at the same time reducing the skewness of the distribution.
The density plot for the burnt area treated with the Bottom/Top method
is:
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Figure D.3: Density plot of burnt area after applying the Bottom / Top
method

D.1.2 Weather factors: meteorological data

Average temperature

As seen in the data exploration phase, average temperature is not a skewed
variable. Although there are some observations with extreme low values to
the rest. This is evident in the low coefficient of variation and the percentiles:
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Mean 18.10
Standard deviation 5.28
Coefficient of variation 0.29
Skewness -0.51
Kurtosis 2.97
1st percentile 4.7
5st percentile 8.24
25st percentile 14.9
50st percentile 18.9
75st percentile 21.9
95st percentile 25.7
99st percentile 28.5
IQR 7
Range with 80% observations [4.7, 28.5]

Range with 98% observations [10.3, 24.2]

Table D.5: Central and skewness metrics of average temperature

The density plot marking the 0.5th, 5th, 95th, 99.5th percentiles is:

Figure D.4: Density plot of average temperature with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for a 1% of the data split between top and bottom

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 232 1.07%
Tukey 0 0%
Hampel 179 0.83%

Table D.6: Flagged outliers in average temperature

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 18.10 5.28 0.29 -0.51 2.97
Bottom / Top 18.12 5.09 0.28 -0.50 2.73
Tukey 19.10 5.28 0.29 -0.51 2.97
Hampel 18.23 5.10 0.28 -0.41 2.76

Table D.7: Skewness metrics before and after imputing outliers in average
temperature

And, the range covering the 99% of the values is:

Original [3.4, 29.5]

Bottom / Top [4.8, 28.42]

Tukey [3.4, 29.5]

Hampel [5.4, 29.5]

Table D.8: Intervals covering 99% of observation before and after imputing
outliers in average temperature

Because the percentage of flagged outliers is so low and the skewness
indicators does not improve significantly, I am not going to treat any values
of this variable as outliers and modify it.

Maximum temperature

As seen in the data exploration phase, average temperature is not a skewed
variable. Although there are some observations with extreme low values to
the rest. This is evident in the low coefficient of variation and the percentiles:

215



Mean 24.37
Standard deviation 6.12
Coefficient of variation 0.25
Skewness -0.25
Kurtosis 2.67
1st percentile 10
5st percentile 13.7
25st percentile 20.6
50st percentile 24.5
75st percentile 29
95st percentile 33.8
99st percentile 37
IQR 8.4
Range with 80% observations [15.6, 32]

Range with 98% observations [10, 37]

Table D.9: Central and skewness metrics of maximum temperature

The density plot marking the 0.5th, 5th, 95th, 99.5th percentiles is:

Figure D.5: Density plot of maximum temperature with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for a 1% of the data split between top and bottom

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 231 1.07%
Tukey 0 0%
Hampel 12 0.06%

Table D.10: Flagged outliers in maximum temperature

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 24.37 6.12 0.25 -0.25 2.67
Bottom / Top 5.93 0.24 -0.22 -0.50 2.49
Tukey 24.37 6.12 0.25 -0.25 2.67
Hampel 24.38 6.10 0.25 -0.24 2.64

Table D.11: Skewness metrics before and after imputing outliers in maxi-
mum temperature

And, the range covering the 99% of the values is:

Original [8.4, 37.7]

Bottom / Top [10.0, 36.9]

Tukey [8.4, 37.7]

Hampel [8.69, 37.7]

Table D.12: Intervals covering 99% of observation before and after imputing
outliers in maximum temperature

Because the number of flagger outliers is so low and the skewness indi-
cators does not improve significantly, I am not going to treat any values of
this variable as an outliers and modify it.

Wind speed

As I saw in the data exploration phase, the wind speed has a small tail on
the right, but it is not a highly skewed variable. Although, there are some
observations with extreme low values to the rest. This is evident in the low
coefficient of variation and the percentiles:
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Mean 2.51
Standard deviation 1.06
Coefficient of variation 0.41
Skewness 1.32
Kurtosis 6.37
1st percentile 0.8
5st percentile 1.2
25st percentile 1.8
50st percentile 2.3
75st percentile 3
95st percentile 4.5
99st percentile 6
IQR 1.2
Range with 80% observations [1.4, 3.9]

Range with 98% observations [0.8, 6]

Table D.13: Central and skewness metrics of wind speed

The density plot marking the 0.5th, 5th, 95th, 99.5th percentiles is:

Figure D.6: Density plot of wind speed with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for a 1% of the data split between top and bottom

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 249 1.15%
Tukey 103 0.48%
Hampel 665 3.08%

Table D.14: Flagged outliers in wind speed

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 2.51 1.06 0.43 1.32 6.37
Bottom / Top 2.49 0.98 0.39 0.99 4.10
Tukey 2.48 1.00 0.40 0.96 4.18
Hampel 2.40 0.88 0.36 0.54 2.97

Table D.15: Skewness metrics before and after imputing outliers in wind
speed

And, the range covering the 99% of the values is:

Original [0.6, 6.5]

Bottom / Top [0.8, 5.9]

Tukey [0.6, 6.0]

Hampel [0.6, 4.8]

Table D.16: Intervals covering 99% of observation before and after imputing
outliers in wind speed

Because the number of flagged outliers is so low and the skewness indi-
cators does not improve significantly, I am not going to treat any values of
this variable as an outliers and modify it.

Vapour pressure

As I saw in the data exploration phase, the wind speed has a small tail on
the right, but it is not a highly skewed variable. Although, there are some
observations with extreme low values to the rest. This is evident in the low
coefficient of variation and the percentiles:
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Mean 12.05
Standard deviation 3.75
Coefficient of variation 0.31
Skewness -0.15
Kurtosis 2.17
1st percentile 4.20
5st percentile 5.91
25st percentile 9.09
50st percentile 12.34
75st percentile 15.07
95st percentile 17.77
99st percentile 19.18
IQR 5.98
Range with 80% observations [6.79, 16.84]

Range with 98% observations [4.20, 19.18]

Table D.17: Central and skewness metrics of vapour pressure

The density plot marking the 0.5th, 5th, 95th, 99.5th percentiles is:

Figure D.7: Density plot of Vapour pressure with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for a 1% of the data split between top and bottom

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 220 1.02%
Tukey 0 0%
Hampel 0 0%

Table D.18: Flagged outliers in vapour pressure

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 12.51 3.75 0.31 -0.15 2.17
Bottom / Top 12.51 3.67 0.31 -0.15 2.10
Tukey 12.51 3.75 0.31 -0.15 2.17
Hampel 12.51 3.75 0.31 -0.15 2.17

Table D.19: Skewness metrics before and after imputing outliers in vapour
pressure

And, the range covering the 99% of the values is:

Original [3.67, 19.71]

Bottom / Top [4.20, 19.18]

Tukey [3.67, 19.71]

Hampel [3.67, 19.71]

Table D.20: Intervals covering 99% of observation before and after imputing
outliers in vapour pressure

Since only the Bottom/Top method detects outliers and this method will
always flags as outliers the prescribed percentage, I am not going to apply
any transformation to this variable.

Radiation

As I saw in the data exploration phase, the radiation is not a skewed variable.
This is also evident in how the values of the standard deviation is much
higher than the mean:
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Mean 20,904.13
Standard deviation 6,253.34
Coefficient of variation 0.30
Skewness -0.19
Kurtosis 2.35
1st percentile 6,925
5st percentile 10,262
25st percentile 16,200
50st percentile 21,163
75st percentile 25,800
95st percentile 30,632.5
99st percentile 32,300
IQR 7
Range with 80% observations [10.3, 24.2]

Range with 98% observations [4.7, 28.5]

Table D.21: Central and skewness metrics of radiation

The density plot marking the 0.5th, 5th, 95th, 99.5th percentiles is:

Figure D.8: Density plot of radiation with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for a 1% of the data split between top and bottom

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 111 0.51%
Tukey 0 0%
Hampel 0 0%

Table D.22: Flagged outliers in radiation

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 20,904.13 6,253.34 0.30 -0.19 2.35
Bottom / Top 20,904.13 6,253.34 -0.21 -0.15 2.33
Tukey 20,904.13 6,253.34 0.30 -0.19 2.35
Hampel 20,904.13 6,253.34 0.30 -0.19 2.35

Table D.23: Skewness metrics before and after imputing outliers in radiation

And, the range covering the 99% of the values is:

Original [5, 650, 32, 660]

Bottom / Top [5, 650, 32, 660]

Tukey [5, 650, 32, 660]

Hampel [5, 650, 32, 660]

Table D.24: Intervals covering 99% of observation before and after imputing
outliers in radiation

Since only the Bottom/Top method detects outliers and this method will
always flags as outliers the prescribed percentage, I am not going to apply
any transformation to this variable.

D.1.3 Weather factors: Canadian Forest Fire Weather Index
(FWI) System

Fine Fuel Moisture Code (FFMC)

As I saw in the data exploration phase, the FFMC is has a tail towards the
left. This is evident in the percentiles value:
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Mean 88.00
Standard deviation 5.85
Coefficient of variation 0.07
Skewness -3.65
Kurtosis 24.89
1st percentile 62.35
5st percentile 79.31
25st percentile 86.22
50st percentile 89.07
75st percentile 91.43
95st percentile 93.60
99st percentile 94.79
IQR 7
Range with 80% observations [83.33, 92.91]

Range with 98% observations [62.35, 94.79]

Table D.25: Central and skewness metrics of FFMC

The density plot marking the 1th, 5th, 95th, 99th percentiles is:

Figure D.9: Density plot of FFMC with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for the 2% of the observations split between the
bottom and top

• Tukey method
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• Hampel method using k = 3

The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 431 2.00%
Tukey 421 1.95%
Hampel 868 4.02%

Table D.26: Flagged outliers in FFMC

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 88.00 5.85 0.07 -3.65 24.89
Bottom / Top 4.44 0.05 -1.90 -0.15 9.13
Tukey 88.59 3.92 0.04 -1.16 5.20
Hampel 88.88 3.39 0.04 -0.56 3.08

Table D.27: Skewness metrics before and after imputing outliers in FFMC

And, the range covering the 98% of the values is:

Original [62.35, 94.79]

Bottom / Top [70.80, 94.36]

Tukey [75.09, 94.82]

Hampel [79.23, 94..84]

Table D.28: Intervals covering 98% of observation before and after imputing
outliers in FFMC

Because the percentage of flagged outliers is so low and the skewness
indicators, even although they improve, are not band to begin with, I am
not going to treat any values of this variable as outliers and modify it.

Duff Moisture Code (DMC)

As I saw in the data exploration phase, the DMC has a small tail on the
right, but it is not a highly skewed variable. However, the value of the
standard deviation is the 75.76% of the mean:
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Mean 69.06
Standard deviation 52.32
Coefficient of variation 0.76
Skewness 0.87
Kurtosis 3.38
1st percentile 3.43
5st percentile 8.17
25st percentile 24.04
50st percentile 58.71
75st percentile 103.66
95st percentile 169.30
99st percentile 209.88
IQR 79.62
Range with 80% observations [12.48, 141.271]

Range with 98% observations [3.43, 209.88]

Table D.29: Central and skewness metrics of DMC

The density plot marking the 95th, 99th, 99.5th percentiles is:

Figure D.10: Density plot of DMC with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for 1% of the top data

• Tukey method
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• Hampel method using k = 3

The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 233 1.08%
Tukey 2 0.01%
Hampel 89 0.41%

Table D.30: Flagged outliers in DMC

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 69.06 52.32 0.76 0.87 3.38
Bottom / Top 49.56 0.74 0.69 -0.15 2.62
Tukey 69.03 52.26 0.76 0.86 3.32
Hampel 68.26 50.87 0.75 0.75 2.78

Table D.31: Skewness metrics before and after imputing outliers in DMC

And, the range covering the 99% of the values is:

Original [2.63, 222.98]

Bottom / Top [2.63, 202.33]

Tukey [2.63, 221.60]

Hampel [2.63, 212.24]

Table D.32: Intervals covering 99% of observation before and after imputing
outliers in DMC

Because the percentage of flagged outliers is so low except for the Bot-
tom/Top method, I am not going to treat any values of this variable as
outliers and modify it.

Drought Code (DC)

As I saw in the data exploration phase, the DC is not a skewed variable.
However, the value of the standard deviation is the 79.09% of the mean:
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Mean 165.57
Standard deviation 130.95
Coefficient of variation 0.79
Skewness 0.30
Kurtosis 1.76
1st percentile 4.14
5st percentile 10.03
25st percentile 33.69
50st percentile 159.00
75st percentile 281.38
95st percentile 375.15
99st percentile 440.57
IQR 247.69
Range with 80% observations [16.62, 342.23]

Range with 98% observations [4.14, 440.57]

Table D.33: Central and skewness metrics of DC

The density plot marking the 95th, 99th, 99.5th percentiles is:

Figure D.11: Density plot of DC with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for 1% of the top data

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 217 1.01%
Tukey 0 0%
Hampel 0 0%

Table D.34: Flagged outliers in DC

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 165.57 130.95 0.79 0.30 1.72
Bottom / Top 162.64 128.31 0.27 -0.15 1.64
Tukey 165.57 130.95 0.79 0.30 1.72
Hampel 165.57 130.95 0.79 0.30 1.72

Table D.35: Skewness metrics before and after imputing outliers in DC

And, the range covering the 99% of the values is:

Original [3.14, 451.16]

Bottom / Top [3.14, 429.07]

Tukey [3.14, 451.16]

Hampel [3.14, 451.16]

Table D.36: Intervals covering 99% of observation before and after imputing
outliers in DC

Because the percentage of flagged outliers is so low except for the Bot-
tom/Top method, I am not going to treat any values of this variable as
outliers and modify it.

Initial Spread Index (ISI)

As I saw in the data exploration phase, the ISI is not a skewed variable:
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Mean 6.85
Standard deviation 3.14
Coefficient of variation 0.46
Skewness 0.59
Kurtosis 3.80
1st percentile 0.83
5st percentile 2.20
25st percentile 4.61
50st percentile 6.58
75st percentile 8.78
95st percentile 12.32
99st percentile 15.33
IQR 4.17
Range with 80% observations [3.02, 10.94]

Range with 98% observations [0.82, 15.33]

Table D.37: Central and skewness metrics of ISI

The density plot marking the 95th, 99th, 99.5th percentiles is:

Figure D.12: Density plot of ISI with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for 1% of the top data

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 215 1.01%
Tukey 15 0.07%
Hampel 170 0.79%

Table D.38: Flagged outliers in ISI

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 6.85 3.14 0.46 0.59 3.80
Bottom / Top 6.74 2.95 0.44 0.28 2.70
Tukey 6.84 3.11 0.45 0.51 3.39
Hampel 6.76 2.98 0.44 0.31 2.76

Table D.39: Skewness metrics before and after imputing outliers in ISI

And, the range covering the 99% of the values is:

Original [0.53, 16.72]

Bottom / Top [0.53, 14.62]

Tukey [0.53, 16.65]

Hampel [0.53, 14.94]

Table D.40: Intervals covering 99% of observation before and after imputing
outliers in ISI

Because the percentage of flagged outliers are so low, I am not going to
treat any values of this variable as outliers and modify it.

Buildup Index (BUI)

As I saw in the data exploration phase, the BUI has a small tail on the right,
but it is not a highly skewed variable. However, the value of the standard
deviation is the 73.67% of the mean:
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Mean 72.34
Standard deviation 53.29
Coefficient of variation 0.74
Skewness 0.71
Kurtosis 3.00
1st percentile 3.17
5st percentile 8.07
25st percentile 24.56
50st percentile 65.05
75st percentile 109.72
95st percentile 171.04
99st percentile 209.06
IQR 85.16
Range with 80% observations [12.55, 143.43]

Range with 98% observations [3.17, 209.06]

Table D.41: Central and skewness metrics of BUI

The density plot marking the 95th, 99th, 99.5th percentiles is:

Figure D.13: Density plot of BUI with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for 1% of the top data

• Tukey method
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• Hampel method using k = 3

The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 234 1.08%
Tukey 0 0%
Hampel 44 0.20%

Table D.42: Flagged outliers in BUI

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 72.34 53.29 0.74 0.71 3.00
Bottom / Top 70.58 50.75 0.72 0.55 2.35
Tukey 72.34 53.29 0.74 0.71 3.00
Hampel 71.89 52.42 0.73 0.62 2.57

Table D.43: Skewness metrics before and after imputing outliers in BUI

And, the range covering the 99% of the values is:

Original [2.33, 222.26]

Bottom / Top [2.33, 202.11]

Tukey [2.33, 222.26]

Hampel [2.33, 216.10]

Table D.44: Intervals covering 99% of observation before and after imputing
outliers in BUI

Because the percentage of flagged outliers is so low, I am not going to
treat any values of this variable as outliers and modify it.

Fire Weather Index (FWI)

As I saw in the data exploration phase, the FWI is not a skewed variable:
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Mean 19.13
Standard deviation 11.95
Coefficient of variation 0.62
Skewness 0.30
Kurtosis 2.15
1st percentile 0.55
5st percentile 2.38
25st percentile 8.39
50st percentile 18.51
75st percentile 28.61
95st percentile 38.66
99st percentile 45.58
IQR 20.22
Range with 80% observations [4.24, 35.16]

Range with 98% observations [0.55, 45.58]

Table D.45: Central and skewness metrics of FWI

The density plot marking the 95th, 99th, 99.5th percentiles is:

Figure D.14: Density plot of IFWI with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for 1% of the top data

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 220 1.02%
Tukey 0 0%
Hampel 5 0.02%

Table D.46: Flagged outliers in FWI

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 19.13 11.95 0.62 0.30 2.15
Bottom / Top 18.81 11.57 0.62 0.20 1.88
Tukey 19.13 11.95 0.62 0.30 2.15
Hampel 19.12 11.93 0.62 0.29 2.12

Table D.47: Skewness metrics before and after imputing outliers in FWI

And, the range covering the 99% of the values is:

Original [0.32, 48.22]

Bottom / Top [0.32, 43.96]

Tukey [0.32, 48.22]

Hampel [0.32, 47.96]

Table D.48: Intervals covering 99% of observation before and after imputing
outliers in FWI

Because the percentage of flagged outliers are so low, I am not going to
treat any values of this variable as outliers and modify it.

D.1.4 Physiography

Elevation

As I saw in the data exploration phase, the elevation is not a skewed variable.
However, the value of the standard deviation is the 73.28% of the mean:
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Mean 350.23
Standard deviation 256.66
Coefficient of variation 0.73
Skewness 0.94
Kurtosis 3.36
1st percentile 5.52
5st percentile 31.43
25st percentile 157.73
50st percentile 294.11
75st percentile 487.07
95st percentile 897.36
99st percentile 1,032.59
IQR 329.34
Range with 80% observations [61.13, 746.58]

Range with 98% observations [5.52, 1, 032.59]

Table D.49: Central and skewness metrics of elevation

The density plot marking the 95th, 99th, 99.5th percentiles is:

Figure D.15: Density plot of elevation with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for 1% of the top data

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 216 1.00%
Tukey 1 0%
Hampel 370 1.71%

Table D.50: Flagged outliers in elevation

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 350.23 256.66 0.73 0.94 3.36
Bottom / Top 342.36 245.46 0.72 0.84 3.03
Tukey 350.18 256.54 0.73 0.94 3.34
Hampel 337.49 239.59 0.71 0.82 2.99

Table D.51: Skewness metrics before and after imputing outliers in elevation

And, the range covering the 99% of the values is:

Original [2.60, 1, 097.86]

Bottom / Top [2.60, 1, 001.92]

Tukey [2.60, 1, 097.86]

Hampel [2.60, 979.68]

Table D.52: Intervals covering 99% of observation before and after imputing
outliers in elevation

Because the percentage of flagged outliers are so low, I am not going to
treat any values of this variable as outliers and modify it.

Slope

As I saw in the data exploration phase, the BUI has a small tail on the right,
but it is not a highly skewed variable. However, the value of the standard
deviation is the 78.03% of the mean:
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Mean 7.62
Standard deviation 5.94
Coefficient of variation 0.78
Skewness 0.64
Kurtosis 3.36
1st percentile 0
5st percentile 0
25st percentile 5.13
50st percentile 72.5
75st percentile 11.48
95st percentile 18.56
99st percentile 24.77
IQR 6.35
Range with 80% observations [0, 15.42]

Range with 98% observations [0, 24.77]

Table D.53: Central and skewness metrics of slope

The density plot marking the 95th, 99th, 99.5th percentiles is:

Figure D.16: Sensity plot of slope with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for 1% of the top data

• Tukey method
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• Hampel method using k = 3

The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 217 1.01%
Tukey 19 0.09%
Hampel 525 2.43%

Table D.54: Flagged outliers in slope

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 7.62 5.95 0.78 0.64 3.36
Bottom / Top 7.43 5.64 0.76 0.43 2.69
Tukey 7.60 5.90 0.78 0.59 3.15
Hampel 7.20 5.37 0.75 0.29 2.37

Table D.55: Skewness metrics before and after imputing outliers in slope

And, the range covering the 99% of the values is:

Original [0.00, 25.84]

Bottom / Top [0.00, 23.07]

Tukey [0.00, 25.84]

Hampel [0.00, 19.95]

Table D.56: Intervals covering 99% of observation before and after imputing
outliers in slope

Because the percentage of flagged outliers are so low, I am not going to
treat any values of this variable as outliers and modify it.

D.1.5 Human factors

Distance to closest road

As I saw in the data exploration phase, the distance to closest road is skewed
variable with a tail to the right. This is also evident in how the value of the
standard deviation is higher than the mean:
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Mean 347.38
Standard deviation 447.67
Coefficient of variation 1.29
Skewness 2.96
Kurtosis 16.13
1st percentile 1.55
5st percentile 8.90
25st percentile 70.70
50st percentile 192.76
75st percentile 436.13
95st percentile 1,233.49
99st percentile 2,143.69
IQR 365.43
Range with 80% observations [21.31, 868.34]

Range with 98% observations [1.55, 2, 143.69]

Table D.57: Central and skewness metrics of distance to closest road

The density plot marking the 95th, 99th, 99.5th percentiles is:

Figure D.17: Density plot of distance to closest road with marked percentiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for 5% of the top data

• Tukey method

• Hampel method using k = 3
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The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 1,080 5.00%
Tukey 599 2.77%
Hampel 2,272 10.52%

Table D.58: Flagged outliers in distance to nearest road

And, the skewness indicators before and after are:

Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 347.38 447.68 1.29 2.96 16.13
Bottom / Top 270.50 272.33 1.01 1.42 4.50
Tukey 296.02 316.91 1.07 1.65 5.46
Hampel 224.67 204.47 0.91 1.09 3.43

Table D.59: Skewness metrics before and after imputing outliers in distance
to nearest road

And, the range covering the 95% of the values is:

Original [4.71, 1, 602.11]

Bottom / Top [4.35, 1, 040.75]

Tukey [4.56, 1, 208.85]

Hampel [4, 01, 739.73]

Table D.60: Intervals covering 99% of observation before and after imputing
outliers in distance to nearest road

Before the standard deviation was large compared to the mean. After,
both methods have reduced all the metrics.

Comparing graphically the outliers in original variable and all methods:
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Figure D.18: Box plots before and after imputing outliers in distance to
nearest road

And, comparing only the result of the three methods:

Figure D.19: Box plots after imputing outliers in distance to nearest road

The distribution of the new variables is still skewed but with a much
smaller tail. I will use the Tukey method that imputes the least number
of observations of all methods but still offers a good improvement of the
skewness indicators.

The density plot for the distance to the closest road treated with the
Tukey method is:
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Figure D.20: Density plot of distance to closest road after applying the
Tukey method

Distance to closest building

As I saw in the data exploration phase, the burnt area is a highly skewed
variable. This is also evident in how the values of the standard deviation is
much higher than the mean:

Mean 748.96
Standard deviation 859.41
Coefficient of variation 1.15
Skewness 2.28
Kurtosis 10.77
1st percentile 0
5st percentile 9.54
25st percentile 131.19
50st percentile 469.28
75st percentile 1,080.42
95st percentile 2,427/14
99st percentile 3.964.60
IQR 949.23
Range with 80% observations [29.52, 1, 775.96]

Range with 98% observations [0, 3, 964.60]

Table D.61: Central and skewness metrics of distance to closest building

The density plot marking the 95th, 99th, 99.5th percentiles is:
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Figure D.21: Distance to nearest building density plot with marked per-
centiles

I am going to detect the outliers with the using the following configura-
tion for each method:

• Bottom/Top method for 5% of the top data

• Tukey method

• Hampel method using k = 3

The number and percentage of flagged outliers are:

Method Outliers Percentage
Bottom / Top 1,084 5.02%
Tukey 230 1.07%
Hampel 1,394 6.46%

Table D.62: Flagged outliers in distance to nearest building

And, the skewness indicators before and after are:
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Method Mean Standard
deviation

Coefficient &
of variation

Skewness Kurtosis

Original 748.96 859.41 1.15 2.28 10.77
Bottom / Top 610.08 583.14 0.96 1.04 3.24
Tukey 703.12 735.50 1.05 1.50 5.19
Hampel 583.88 547.56 0.94 0.95 2.95

Table D.63: Skewness metrics before and after imputing outliers in distance
to nearest building

And, the range covering the 95% of the values is:

Original [2.40, 3, 014.66]

Bottom / Top [2.20, 2, 046.08]

Tukey [2.40, 2, 712.13]

Hampel [2.17, 1, 893.56]

Table D.64: Intervals covering 99% of observation before and after imputing
outliers in distance to nearest building

Before the standard deviation was large compared to the mean, as re-
flected in the variation coefficient and kurtosis value. After, both methods
have reduced all the metrics.

Comparing graphically the outliers in the original variable and all meth-
ods:

Figure D.22: Box plots before and after imputing outliers in distance to
nearest building
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And, comparing only the result of the three methods:

Figure D.23: Box plots after imputing outliers in distance to nearest building

The distribution of the new variables is still skewed but with a much
smaller tail.

I will use the Tukey method that imputes the least number of obser-
vations of all methods but still offers a good improvement of the skewness
indicators.

The density plot for the distance to closest building treated with the
Tukey method:

The non-numerical variables are data_alerta, and land_cover. In the
case of data_alerta I will not apply any transformation since I am going to
use data_alerta indirectly through a new variable generated from it.

For the land_cover variable I am going to transform it using one-hot en-
coding so I can use it with machine-learning algorithms that do not support
this type of variables.

But before, due to the variable having only 4 categories with more than
10% of the observations and to avoid the danger of a noisy variable and
overfitting I am going to swap the CORINE Land Cover level 3 classification
for the corresponding CORINE Land Cover level 2.

After converting the categories, the frequencies and percentages ordered
by their frequency are:

There is now a category that concentrates the 47.15% of all observations,
“Heterogeneous agricultural areas.” And, only 4 categories have more than
6% of the observations each one and approximately 90% of a total of 14
categories

The reduction from the codification using CLC level 3 has improved but
there is still not satisfactory. To finish I am going to aggregate all categories
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Figure D.24: Density plot of distance to closest building after applying the
Tukey method

Category Frequency Percentage
Heterogeneous agricultural areas 10,180 47.15%
Urban fabric 3.434 15.91%
Scrub and/or herbaceous
vegetation associations

2,943 13.63%

Forest 2,720 12.60%
Arable land 1,191 5.52%
... ... ...

Table D.65: Topmost CLC level 2 categories by number of observations

less than a 6% of the observations that represent approximately 10% of
all observations. However, the new category will still be the one with less
observations.

The final categories are:
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Category Frequency Percentage
Heterogeneous agricultural areas 10,180 47.15%
Urban fabric 3.434 15.91%
Scrub and/or herbaceous
vegetation associations

2,943 13.63%

Forest 2,720 12.60%
Other 2,313 10.71%

Table D.66: CLC level 2 categories by number of observations after grouping
smaller ones

There all only 5 categories, all with al least 10% of the observations.
However, now the situation can be dangerous by having less variability and
existing the possibility of underfitting.

D.2 Transformations
I am going to drop the variable biome after selecting the data for a single
biome to build the models.

Apart from that, the only transformation I am going to perform is to
generate a new variable indicating the day of the year, called yday. This
new variable may help to capture the fact that early spring and summer are
the two periods of the year where the human-caused fires (HCFs) tend to
more prevalent.
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