
UNIVERSIDAD DE VALLADOLID

ESCUELA TÉCNICA SUPERIOR

INGENIEROS DE TELECOMUNICACIÓN

TRABAJO FIN DE MÁSTER

MÁSTER UNIVERSITARIO EN INVESTIGACIÓN

EN TECNOLOGÍAS DE LA INFORMACIÓN Y LAS COMUNICACIONES

Improving the Perfomance of a Pointer-Based,
Speculative Parallelization Scheme

Autor:

D. Álvaro Estébanez López

Tutores:

Dr. D. Diego R. Llanos Ferraris
Dr. D. Arturo González Escribano

Valladolid, 19 de Julio de 2013

TÍTULO: Improving the Perfomance of a Pointer-
Based, Speculative Parallelization Scheme

AUTOR: D. Álvaro Estébanez López
TUTORES: Dr. D. Diego R. Llanos Ferraris

Dr. D. Arturo González Escribano
DEPARTAMENTO: Informática (ATC, CCIA, LSI)

Tribunal
PRESIDENTE: Dr. D. Jesus María Vegas Hernández
VOCAL: Dr. D. Joaquín Adiego Rodríguez
SECRETARIO: Dr. D. David Escudero Mancebo
FECHA: 19 de Julio de 2013
CALIFICACIÓN:

Resumen del TFM
La paralelización especulativa es una técnica que intenta extraer paralelismo de los

bucles no paralelizables en tiempo de compilación. La idea subyacente es ejecutar el
código de forma optimista mientras un subsistema comprueba que no se viole la semántica
secuencial. Han sido muchos los trabajos realizados en este campo, sin embargo, no
conocemos ninguno que fuese capaz de paralelizar aplicaciones que utilizasen aritmética
de punteros. En un trabajo previo del autor de esta memoria, se desarrolló una librería
software capaz de soportar este tipo de aplicaciones. No obstante, el software desarrollado
sufría de una limitación muy importante: el tiempo de ejecución de las versiones paralelas
era mayor que el de las versiones secuenciales. A lo largo de este Trabajo de Fin de
Máster, se aborda esta limitación, encontrando y corrigiendo las razones de esta falta de
eficiencia, y situando el trabajo realizado en perspectiva, dentro de las contribuciones
mundiales en este ámbito.

Los resultados experimentales obtenidos con aplicaciones reales nos permiten afirmar
que estas limitaciones han sido solventadas, ya que obtenemos speedups de hasta de un
1.61×. Así, con la nueva versión de la librería se han llegado a obtener mejoras de hasta
el 421.4% respecto al tiempo de ejecución generado por la versión original de la librería
especulativa.

Palabras clave
Paralelización especulativa, Paralelismo.

iii

iv

Abstract
Speculative parallelization is a technique that tries to extract parallelism of those that

can not be parallelized at compile time. The underlying idea is to optimistically execute
the code in parallel, while a subsystem checks that sequential semantics have not been
violated. There exists many researchs in this field, however, to the best of our knowledge,
there are not any solution that allows to effectively parallelize those applications that use
pointer arithmetic. In a previous work, the author of this Master Thesis developed a
software library that allows the parallelization of this kind of applications. Nevertheless,
the software developed has an important limitation: Execution time of the parallelized
versions was higher than the sequential one. Along this Master Thesis, this limitation
is addressed, finding and solving the reasons of this lack of efficiency and putting the
author’s own work in perspective with respect to international contributions in the field.

Experimental results obtained with real applications allow us to affirm that this limi-
tation has been overcome since we have achieve speedups of 1.61×. In this way, the new
library version has improved the execution time with respect to original version of the
library in a 421.4%.

Keywords
Thread-level Speculation, Parallelism.

Agradecimientos

A lo largo de la realización de mi Trabajo de Fin de Máster he recibido una gran apoyo
de las personas de mi alrededor. Con este pequeño texto me gustaría agradecerles toda la
ayuda recibida.

Primero, en el ámbito más académico, me gustaría dar las gracias a los miembros
del grupo Trasgo de la UVa. Me gustaría hacer especial mención de Diego R. Llanos para
agradecerle todas las recomendaciones que me ha dado, sus consejos me han servido tanto
para el desarrollo de este Trabajo de Fin de Máster, como en el ámbito personal, gracias a
él he podido mejorar intentando superarme cada día.

Pero por otro lado, en el desarrollo de un proyecto más o menos duradero, no todo son
ayudas sobre temas estrictamente académicos, es necesario también otro tipo de apoyo.
En este aspecto, primero me gustaría recordar a Pilar López, mi madre y la mejor persona
que conozco. A ella le debo todo lo soy, donde he llegado, y donde llegaré. Gracias por
enseñarme que con empeño y trabajo duro se pueden sacar las cosas adelante. Tampoco
quisiera olvidarme de Juan Cruz Estébanez, mi hermano, que sin querer tantas cosas me
ha enseñado. Asimismo quiero agradecer a mi novia, Tania Alonso, los ratos que me ha
animado, aguantado, y aconsejado. Además no podría dejar de mencionar a mis abuelos
Marcelo López y Priscila Alonso, por toda su ayuda a lo largo de mi vida. Gracias por lo
que me habéis dado, siempre os estaré agradecido. Me gustaría agradecer también a los
demás familiares y amigos que aún sin una cita textual, también han estado a mi lado.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 3

1.1.1 Modifications in original source code of programs 8
1.1.2 Summary . 9

1.2 Previous works of the research group . 9
1.3 Research question . 10
1.4 Objectives . 10
1.5 Document structure . 11

2 State of the Art 13
2.1 Origins of the speculative parallelization 14
2.2 Software-based TLS tools . 15
2.3 Hardware-based TLS tools . 16
2.4 TLS combined with other parallelism techniques 17
2.5 TLS classification . 18
2.6 Applications behaviour under speculative parallelization 18
2.7 Design choices in TLS . 19
2.8 TLS as a help to manual parallelization 21

2.8.1 Automatic speculative library 22
2.9 TLS to GPU . 22

3 Original speculative library 23
3.1 Architecture of this speculative engine 26

3.1.1 Auxiliary data structures . 27
3.2 Speculative load operations . 29

3.2.1 Early Squashing . 31
3.3 Speculative store operations . 31
3.4 Results commitment . 34
3.5 Optimizations . 34
3.6 Reduction operations . 37

3.6.1 Sum reduction . 37
3.6.2 Maximum reduction . 38

3.7 Initialization functions of the engine . 39
3.8 Use of the engine and variable settings 39
3.9 An example of use of this library . 40

3.9.1 Sequential application . 40

vii

viii CONTENTS

3.9.2 Speculative Parallelization of the sequential application 42
3.9.3 Resume . 45

4 New speculative library 47
4.1 Introduction . 48
4.2 Data structures . 48
4.3 Speculative load . 50
4.4 Speculative store . 53
4.5 Partial commit operation . 58
4.6 Initialization functions of the engine . 58
4.7 Use of the engine and variable settings 65
4.8 An example of use of this library . 65

4.8.1 Speculative Parallelization of the example 66

5 Performance limitations and proposed solutions 69
5.1 Locating bottlenecks in the TLS engine 71
5.2 Reducing operating system calls . 72

5.2.1 Implementation details . 73
5.3 Commit optimization . 76
5.4 Hash structure: Version Copy in Three Dimensions 77

5.4.1 Changes needed in the Indirection Matrix 78
5.5 Final structure of the speculative library 79

5.5.1 Implementation details . 79

6 Experimental evaluation 81
6.1 Benchmarks description . 83

6.1.1 Real-world benchmarks . 83
6.1.2 Synthetic benchmarks . 87

6.2 Experimental results . 88
6.2.1 Experimental environment . 88
6.2.2 Engine version analyzed . 88
6.2.3 Real-world benchmarks evaluation 88
6.2.4 Synthetic benchmarks evaluation 92

6.3 General evaluation of the results . 97

7 Conclusions and future work 99
7.1 Summary . 101
7.2 Conclusions . 101
7.3 Future work . 102
7.4 Publications . 102

A CD-Rom contents 103

List of Figures

1.1 Loop without dependences within data of its iterations. 4
1.2 Loop with dependences within data of its iterations. 4
1.3 Example that shows private and shared variables 5
1.4 Example of speculative parallelization. 8

3.1 Loop with a RAW dependence . 24
3.2 Example of speculative load and store operations 25
3.3 Example of speculative execution of a loop and summary of operations

carried out by a runtime TLS library . 25
3.4 Block size comparison . 26
3.5 Main elements of the original speculative engine 28
3.6 States of the Access Matrix . 28
3.7 Original architecture of the speculative engine. 29
3.8 Load operation example. 30
3.9 First speculative store example . 32
3.10 Second speculative store example . 33
3.11 Speculative store operation example. 33
3.12 Commit operation . 35
3.13 View of the use of the Global Exposed Load vector. 35
3.14 View of the use of the Indirection Matrix vector. 36
3.15 The whole original speculative . 37

4.1 Data structures of our new speculative library. 49
4.2 State transition diagram for speculative data. 49
4.3 Speculative load example (1/2) . 51
4.4 Speculative load example (2/2) . 52
4.5 Speculative store example (1/3) . 54
4.6 Speculative store example (2/3) . 55
4.7 Speculative store example (3/3) . 56
4.8 Speculative commit example (1/6) . 59
4.9 Speculative commit example (2/6) . 60
4.10 Speculative commit example (3/6) . 61
4.11 Speculative commit example (4/6) . 62
4.12 Speculative commit example (5/6) . 63
4.13 Speculative commit example (6/6) . 64

ix

x LIST OF FIGURES

5.1 Optimization 1: Reducing operating system calls example (1/2) 74
5.2 Optimization 1: Reducing operating system calls example (2/2) 75
5.3 Optimization 2: Structures with the Indirection Matrix 76
5.4 Optimization 3: Structures with three dimensions. 77
5.5 Optimization 3: Structures with three dimensions, another point of view. . 77
5.6 Structure of the speculative library after include all the optimizations. . . 80

6.1 Minimum enclosing circle defined by three points. 84
6.2 Convex hull of a set of points. 85
6.3 Two different triangulations with the same set of points. 85
6.4 Delaunay triangulation of a set of 6 points 86
6.5 Delaunay triangulation of a set of 100 points. 86
6.6 Synthetic benchmarks used: (a) Complete; (b) Tough; (c) Fast. 87
6.7 Speed-up obtained after executing 2D-MEC with the speculative library. . 89
6.8 Speed-up obtained after executing 2D-Hull with the speculative library

with the Square input set. 91
6.9 Speed-up obtained after executing 2D-Hull with the speculative library

with the Kuzmin input set. 92
6.10 Speed-up obtained after executing Delaunay triangulation with the spec-

ulative library with the input set of 100 000 points. 93
6.11 Speed-up obtained after executing Delaunay triangulation with the spec-

ulative library with the input set of 1 000 000 points. 94
6.12 Speed-up obtained after executing complete synthetic example with the

speculative library. 96
6.13 Speed-up obtained after executing tough synthetic example with the spec-

ulative library. 96
6.14 Speed-up obtained after executing fast synthetic example with the specu-

lative library. 98

List of Tables

1.1 Timing of the loop with the values of the variable at each instant of time. . 8

6.1 Experimental results after the execution of the application that calculates
the minimum enclosing circle of a set of points at Geopar server. The
sequential time obtained was 0.633 seconds. 89

6.2 Experimental results after execute the application that calculates the con-
vex hull of a square-shaped input set at Geopar server. The sequential
time obtained was 2.120 seconds. 90

6.3 Experimental results after execute the application that calculates the con-
vex hull of a disc-shaped input set that follows a kuzmin distribution at
Geopar server. The sequential time obtained was 1.652 seconds. 91

6.4 Experimental results after execute the application that calculates Delau-
nay triangulation of an input set of 100 000 points at Geopar server. The
sequential time obtained was 1.801 seconds. 93

6.5 Experimental results after execute the application that calculates Delau-
nay triangulation of an input set of 1 000 000 points at Geopar server. The
sequential time obtained was 21.946 seconds. 94

6.6 Experimental results after execute the complete synthetic application at
Geopar server. The sequential time obtained was 0.605 seconds. 95

6.7 Experimental results after execute the tough synthetic application at Geopar
server. The sequential time obtained was 0.031 seconds. 95

6.8 Experimental results after execute the fast synthetic application at Geopar
server. The sequential time obtained was 4.467 seconds. 97

xi

xii LIST OF TABLES

Chapter 1

Introduction

A lo largo de la historia de los procesadores siempre se ha deseado
obtener velocidades mayores para obtener mejores tiempos de respuesta. Sin
embargo, en la actualidad existen límites que no pueden ser sobrepasados, y
por tanto, tenemos que recurrir a que varios procesadores se repartan tarea
para actuar como si fuesen uno más rápido, es decir, que trabajen de forma
paralela. Este trabajo trata sobre la paralelización especulativa, un tipo de
paralelismo que asume, de forma optimista, que todos los bucles son parale-
lizables, es decir, que cada iteración de un bucle se puede realizar concurren-
temente. Por tanto, este tipo de paralelización se centra en los casos que no
se pueden paralelizar en tiempo de compilación porque presentan dependen-
cias entre los datos. Así, esta técnica reparte las iteraciones entre los proce-
sadores disponibles, y monitoriza que no se produzcan violaciones de depen-
dencia entre los datos. Si esto ocurre descarta los resultados fraudulentos y
reinicia dicha ejecución. Podemos considerar que aparece una violación de
dependencia cuando se obtiene un dato diferente del que se obtendría en una
ejecución secuencial. Por tanto, para llevar a cabo este tipo de ejecución
necesitamos un mecanismo hardware o software que vigile las dependencias
entre iteraciones.

Este tipo de paralelización necesita una serie de modificaciones en el
código original de los programas que permitan (a) distribuir bloques de ite-
raciones entre los procesadores, (b) obtener o escribir los valores adecuados
de las variables que presenten dependencias a través de las correspondientes
funciones, y (c) consolidar los resultados al final de las ejecuciones, es decir,
que la versión final de las variables tenga los datos que la ejecución secuen-
cial impondría.

A lo largo del capítulo, además de introducir la paralelización especula-
tiva, se proporciona la descripción de varios trabajos previos realizados por
el grupo de investigación entre los que cabe destacar “Desarrollo de un mo-
tor de paralelización especulativa con soporte para aritmética de punteros”,
un trabajo realizado como Trabajo de Find de Grado, donde se elaboró un
esquema basado en software que posibilita la paralelización especulativa ex-
tendiendo la funcionalidad de los motores existentes. Sin embargo, ésta libr-
ería de software especulativo, tenía más funcionalidad, pero sus tiempos de
ejecución no eran buenos, es decir, no se producía ganancia de las versiones

1

2 CHAPTER 1. INTRODUCTION

paralelas, respecto a las secuenciales.
Por tanto, este Trabajo de Fin de Máster (TFM) pretende responder a la

pregunta de investigación: “¿Es posible mejorar la versión actual del mo-
tor de paralelización especulativa para obtener mejoras del rendimiento en
alguna de las aplicaciones disponibles?”

Hecha la pregunta, cabe mencionar los objetivos del TFM entre los que
podemos destacar: (a) Mejorar el rendimiento actual del motor especulativo
para conseguir resultados mejores que los obtenidos para las versiones se-
cuenciales, y (b) Extender la base de aplicaciones en las que probar dicho
motor.

Por último, describiremos la estructura que seguirá este informe: el capí-
tulo 2 describe el Estado del Arte en el campo de la paralelización especu-
lativa. Los capítulos 3 y 4 son una extensión del Estado del Arte, ya que
contienen una descripción más exhaustiva de los principales trabajos de in-
vestigación sobre los que se basa este TFM. El capítulo 5 muestra cómo se
localizaron los cuellos de botella existentes en la arquitectura de paraleliza-
ción especulativa existente, así como las mejoras aplicadas para solventar-
los. El capítulo 6 contiene una descripción de los resultados experimentales,
así como de los benchmarks utilizados. Por último, el capítulo 7 concluye
este TFM e introduce alguna de las posibles vías de continuación del mismo.

1.1. MOTIVATION 3

During processor history, higher speeds have been desired in order to get better re-
sponse times. However, there exists some limits that can not be exceeded, and then we
have to distribute tasks along several processors that act as if they were one.

1.1 Motivation

Since the first microchip (called 40041) was issued by IntelTM in 1971 computing ma-
chines have suffered several modifications. Nowadays, speed of the processors is achiev-
ing very high levels, however, exists an implicit need to increase it. Due to technology
advances, we are beginning to reach barriers that can not be overcome, such as speed
of light. Chips are becoming more and more sophisticated. Moreover, they are full of
transistors and heat dissipation is becoming a big problem: If heat levels are too high,
processors may not work properly.

In this context computers with more than one processor have emerged. There are some
advantages with the use of multiprocessor computers, such as the possibility of decreasing
heat centralization in a single point by separating the calculations through processors. In
this way heat may have distinct points of generation and will not be condensed in a single
point. Other advantage is related to the limits imposed by speed of light, that could be
mitigated if several chips work concurrently to achieve the same issue. Those reasons
lead to multiprocessor machines.

On the other hand, we need programs whose instructions may be executed at the same
time to achieve high speed ups, i.e., programs whose instructions do not have to be ex-
ecuted sequentially. To determine this point es tedious because we need to take into
account many factors to avoid synchronization errors. Nowadays there exist some spe-
cific languages to develop this tasks, and also extensions to sequentially languages and
function libraries. But some knowledge about underlying hardware and about the prob-
lem to be parallelized is needed, in addition to have the mentioned libraries installed. In
addition, it will not be useful to develop software to specific architectures because it will
not be portable to other machines. So, the best way to parallelize a source code is allow-
ing compilers to do this task. At the present time, there exists some compilers that may
parallelize a code, nevertheless its parallelization is not the best possible because current
compilers use a conservative mode to parallelize some algorithm. The main reason of this
fact, is the existence of dependence violations within program data. An algorithm should
have independent instructions to allow its concurrent execution, nevertheless, to deliver a
prediction is not that simple. So, in fact, if compilers have the slightest suspicion of the
existence of a dependence violation, they do not create parallel codes. Figure 1.1 shows
a loop without dependence violations: All the instructions are independent, so, compiler
may directly order its parallel execution. On the other hand, Figure 1.2 contains a loop
that may produce some dependence violations. Suppose that the value of k is not known
at compile time. Assuming k=5, if the parallel execution of the loop calculates iteration
i(i=5) before iteration i-2(i-2=3), access to v[i-2] (v[i-2]=v[3]) may return an
outdated value, breaking sequential semantics. The only way to guarantee a correct be-
havior would be to serialize the execution of iterations i − 2(i − 2 = 3) and i(i = 5), a

1The microchip 4004 had about 2300 transistors and a frequency of 104 KHz

4 CHAPTER 1. INTRODUCTION

do i=1, 9

 v[i] = f(v[i])

end do v[3] = f(v[3])

v[2] = f(v[2])

v[1] = f(v[1])

v[9] = f(v[9])

v[8] = f(v[8])

v[7] = f(v[7])

v[6] = f(v[6])

v[5] = f(v[5])

v[4] = f(v[4])

Thread 1 Thread 2 Thread 3
Original source code

(iterations 1 to 3) (iterations 4 to 6) (iterations 7 to 9)

Parallel execution

Figure 1.1: Loop without dependences within data of its iterations.

v[3] = f(v[3])

v[2] = f(v[2])

v[1] = f(v[1])

v[9] = f(v[9])

v[8] = f(v[8])

v[7] = f(v[7])

v[6] = f(v[6])

v[5] = f(v[3])

v[4] = f(v[4]) v[i] = f(v[i])

do i=1,9

 if (i == k) then

 v[i] = f(v[i-2])

 else

 end if

end do

Thread 1 Thread 2 Thread 3

Original source code Parallel execution

(iterations 1 to 3, k=5) (iterations 4 to 6, k=5) (iterations 7 to 9, k=5)

Figure 1.2: Loop with dependences within data of its iterations.

difficult task in the general case. Note that if the dependence did not cross thread bound-
aries (for example, with k = 6), the compiler could parallelize the loop.

Reader at this time may believe that there are some codes that can not be parallelized
at compile time, and, in fact, is not misguided at all. However, in spite of the fact that
compiler can not create parallel code in many cases, exists some tools that allow this task.
Some of those methods are inspector-executor and speculative parallelization.

Inspector-executor

This technique [49] allows to parallelize loops that could not be parallelized by a compiler.
It is based on the existence of an inspector loop extracted from the original loop whose
goal is to find data dependences among data from the iterations of the loop. The set of
iterations that depends on each other are assigned to the same processor, in order to ensure
its execution in the correct sequence. Hence, loops that may be executed in parallel will
be produced.

The use of this method is advised if the processing time of the inspector loop is quite
lesser than the execution time of the original loop. However, we should include an ex-
haustive analysis of data dependences that, in many cases, will be impossible, because it
may need input data, or it uses pointer variables, etc. For these reasons, this technique
has not be very studied, and can be considered overcome. So, we are going to center our
efforts in the other method: speculative parallelization.

Speculative parallelization

Speculative parallelization [28, 29, 34], also called Thread-Level Speculation [10, 11,
16, 52, 57, 69, 70] or Optimistic Parallelization [48], aims to automatically extract loop-
and task-level parallelism when a compile-time dependence analysis can not guarantee

1.1. MOTIVATION 5

1 for (i=0; i <100; i++)
2 {
3 localVar = sharedVarA + sharedVarB ;
4 sharedVarA = i∗ localVar ;
5 }

Figure 1.3: Language C example that shows private and shared variables. localVar is a
private variable, in order that is first written, to be read later. However, sharedVarA and
sharedVarB are shared variables. In this way, sharedVarB is only read and do not produce
dependence violations. On the other hand, shareVarA is read and written, and will produce
some dependence violations.

that a given sequential code is safely parallelizable. Speculative parallelization procedure
assumes that sequential code can be optimistically executed in parallel, and relies on a
runtime monitor to ensure that no dependence violations are produced. A dependence
violation appears when a given thread produces a datum that has already been consumed
by a successor in the original sequential order. In this case, the results calculated so far by
the successor (called the offending thread) are not valid and should be discarded, and then,
this thread is restarted with the correct values. Obviously, some time is lost stopping and
re-starting threads, so, the less dependence violations, the better results are obtained, and
of course, the more parallel is the loop, the better the results produced with this technique.

The monitoring system may be implemented in hardware or software. While hardware
mechanisms do not need changes in the code and do not add overheads to speculative ex-
ecution, they require changes in the processors and/or the cache subsystems (see e.g. [13,
39]). On the other hand, systems based on software requires to change the original source
code of the loop including some instructions that manage the execution and control possi-
bly dependence violations that take place. Despite the fact of these instructions involve a
performance overhead, software-based speculative parallelization can be implemented in
current shared-memory systems without any hardware changes.

On the other hand, we need to distinguish between shared and private variables to
locate those variables that may cause a dependence violation. An example is shown at
Figure 1.3.

Private variables are those whose values are modified at each iteration. Those variables
are intended to be used only in the same iteration, that is, the values of those variables are
assigned, and read, in the same iteration, and are not used beyond them.

On the other hand, shared variables contain values used in some different iterations
during execution time. Therefore, if all variables of the loop are private, we can say that
loop is parallelizable. However, if all of them are shared variables, it does not mean that
dependence violations will always arise. This situation may appear if a value is modified
in a determined iteration and is required in one of the following iterations. At this context,
a wrong value of the variable may be obtained because of the lack of security with the
execution in the correct order, i.e., as the sequential order pattern. If a thread has to read
the value of a shared variable, it must read the most recently value of it. In the case
of needing to write over a shared variable, it should be considered whether any of the

6 CHAPTER 1. INTRODUCTION

following threads have used this value, and in that case, it can be said that a dependence
violation arise because a wrong value has been obtained.

There are three types of dependence violations:

1. Write-after-write (WAW): This kind of dependence violation is found when
a variable, whose value has been modified in a previous iteration, is written. At
this context, we can not ensure that the correct value will be obtained at the end
of the execution. Let us see an example written in language C to have a better
understanding of this situation.

1 for (i=0;i <4;i++)
2 {
3 if (i==1)
4 localVar = 4;
5 if (i==3)
6 localVar = 7;
7 }

In the example described, the localVar variable is written twice, once in iteration
2, and another one in iteration 4. In a sequential code, value obtained at the end
of the loop in localVar would be 7; however, if we suppose that are available two
processors, we do not know whether iteration 2 is executed before iteration 4, and,
therefore can not be ensured that the value of localVar at the end of the loop is 7
(the value would be erroneously 4).

2. Write-after-read (WAR): This kind of dependence violation is found when a
local variable that has been read previously, is going to be written with a new value.
Therefore, can not be ensure that the correct value of the variable has been read. Let
us see an example again.

1 // Suppose that at the beginning
2 // localVarA == 3
3 for (i=0;i <4;i++)
4 {
5 if (i==1)
6 localVarB = localVarA ;
7 if (i==3)
8 localVarA = 5;
9 }

There is a read of the variable localVarA in iteration 2. It can also be observed
that the same variable is written in iteration 4. In a sequential code, the value of
localVarA at the end of the loop would be 5, and the value of localVarB would
be 3. But if we suppose that are two processors available, iterations 1 and 2 are
assigned to the first one, and iterations 3 and 4 are assigned to the other processor.
We can not know if iteration 2 is executed before iteration 4, and then we can
not ensure that the value of localVarB at the end of the loop is 3. This situation

1.1. MOTIVATION 7

happens because iteration 4 could be executed before iteration 2, and the value of
the variable localVarB would be 5 at the end.

3. Read-after-write (RAW): This is the most dangerous kind of dependence viola-
tion. This error occurs whenever a shared variable is written with a value that would
be read by any of the successor threads. When this situation happens, the value read
by any of the threads will be wrong. Let us explain this case with the help of an
example written in language C:

1 // Suppose that at the beginning ...
2 // sv [1] = 0;
3 // LocalVar = 1;
4 for (i=0;i <3;i++)
5 {
6 localVar = sv [1];
7 sv [1] = 20;
8 if (i==1)
9 {

10 sv [1] = 10;
11 }
12 }

To describe an error situation, suppose that there are three processors, and each one
manages a thread. Each thread is going to execute an iteration, namely, thread 1,
iteration 0; thread 2, iteration 1; and thread 3, iteration 2. If we execute that code
sequentially, values obtained would be localVar = 10 and sv[1] = 20. Never-
theless, with the parallel execution, those values would not be necessarily obtained.
Suppose that at instant t1 the first instruction of threads 1 and 2 is executed, so
localVar version of each thread should be 0. After that, at instant t2 the following
instruction of thread 1 is executed, then sv[1] = 20. Once completed, at instant
t3 the first instruction of thread 3 is executed , and the error takes place: localVar
version of thread 3, the final version in a sequential execution, would be 20 instead
of 10. Moreover, if we suppose that at instant t4 the next instruction of the thread
3 is executed, the value of sv[1] would be 20. And if, at that instant t5 the last
instruction of thread 2 is executed, sv[1] would be 10. At the end of the execution,
the values of variables would be localVar = 20 or localVar = 0, and sv[1] =
10. All those operations are resumed in the Table 1.1.

Dependence violations described are not irresolvable, to correct them is needed an
exhaustive control of the accesses to shared variables, in order to if one of the threads
uses a wrong value, will discard it. To get this target, each thread works with its own
shared data version, so, each thread modifies its own version of the shared variable, not
the global shared variable. When a thread ends the chunk of iterations that have just been
executed, it may, or may not, have appeared some dependence violations.

If there were not any errors (no dependence violations appear), results would be saved
in the global shared variable. This operation is known as commit. On the other hand, if
data managed by any of the threads were wrong, all the wrong threads must discard those

8 CHAPTER 1. INTRODUCTION

Thread 1 Thread 2 Thread 3
Instant localV ar sv[1] localV ar sv[1] localV ar sv[1]
t1 0 0 0 0 1 0
t2 0 20 0 20 1 20
t3 0 20 0 20 20 20
t4 0 20 0 20 20 20
t5 0 10 0 10 20 10

Table 1.1: Timing of the loop with the values of the variable at each instant of time.

v[3] = f(v[3])

v[2] = f(v[2])

v[1] = f(v[1])

v[9] = f(v[9])

v[8] = f(v[8])

v[7] = f(v[7])

v[6] = f(v[6])

v[5] = f(v[3])

v[4] = f(v[4])

v[6] = f(v[6])

v[5] = f(v[3])

v[4] = f(v[4])

v[9] = f(v[9])

v[8] = f(v[8])

v[7] = f(v[7])

 v[i] = f(v[i])

do i=1,9

 if (i == k) then

 v[i] = f(v[i-2])

 else

 end if

end do

Thread 1 Thread 2 Thread 3

2 2

3

1

Original source code

(iterations 1 to 3, k=5) (iterations 4 to 6, k=5) (iterations 7 to 9, k=5)

Speculative parallel exection

Figure 1.4: Speculative parallelization starts the parallel execution of the loop, while a
control system tracks the execution to detect cross-thread dependence violations. If such
a violation occurs, (1) speculative parallelization stops the consumer thread and all threads
that execute subsequent blocks, (2) discards its partial results, and (3) restarts the threads
to consume the correct values.

actual values and start those executions again. The situation described is called a squash
operation. If any thread is squashed, all the following threads must be discarded too. This
process is needed because when a thread read a value do not always use its own local
value, but it may consult the previous threads copies, and then, it may consume a wrong
value from a squashed thread. An example of this situations can be found at Figure 1.4.
Of course, this stop-and-restart process spends some time, so, the more dependence vio-
lations appear, the worst results will be obtained with this technique.

1.1.1 Modifications in original source code of programs
Software speculative parallelization systems should modify the original source code of
the original application at compile time. Some functions are needed to achieve this goal:

• Distribution of chunks of consecutive iterations: Iterations should be distributed
along all available threads that take part over speculative execution. It can be done
with different strategies: Distribute iteration chunks with a constant size; adapting
them to the characteristics of each application; or dynamically deciding the size of
the next chunk to launch.

• Speculative load and store operations: Each thread has its own version of the shared
variables, so all read and write operations on shared variables should be replaced

1.2. PREVIOUS WORKS OF THE RESEARCH GROUP 9

with library functions that also should check that no dependence violations appears.

• Results commitment: At the end of a successful execution of a chunk of iterations,
a function should be called to commit the produced results, and to request a new
chunk of consecutive iterations.

1.1.2 Summary
Speculative parallelization is an execution time technique that lets to extract parallelism
from sequential codes that can not be analyzed at compile time. The results obtained up
to date shows that it can accelerate some sequential codes. However, its scope is reduced
by some unsolved questions. These limitations and the fact that automatic parallelism
can not take advantage of all the knowledge of programmers about inherently parallel
solutions, provoke that nowadays to design and implement parallel programs natively is
indispensable to take advantage of the characteristics of parallel systems.

1.2 Previous works of the research group
One of the main research interests of the Trasgo group is related to speculative paral-
lelization. The group has already developed a runtime library (known as “engine”) that
implements the functions needed to handle speculative parallelization. In this context, let
us see some of the works developed by the Trasgo group:

• Toward Efficient and Robust Software Speculative Parallelization on Multiproces-
sors [10]. This article contains information about how speculative parallelization
technique helps applications to obtain better performance. We can see a software
description that implements this technique. The main characteristics of the pro-
posed scheme are a sliding window mechanism, a synchronization policy that re-
laxes the requirements of critical sections, and data structures that support the ex-
ecutions. With applications that do not have too much dependence violations, the
authors show that speedups of 71% against sequential versions can be achieved.
Along the document the fundamentals of speculative parallelization are described,
what dependence violations are, and what operations should implement a specu-
lative parallelization software. At the end, they execute several applications with
some dependence violations, to check the new software efficiency, with a complete
study of the times produced by each operation.

• Design Space Exploration of a Software Speculative Parallelization Scheme [11].
This document is an extension of the article described above. In this work, the
authors test some applications that generate more dependence violations than the
applications seen at [10].

• New Scheduling Strategies for Randomized Incremental Algorithms in the Context
of Speculative Parallelization [56]. This article focuses on how iterations should
be scheduled to improve performance of speculative parallelization schemas. It
focuses on the incremental randomized algorithms, a kind of applications that is not

10 CHAPTER 1. INTRODUCTION

easy to parallelize. It introduces the reader to the development of MESETA [55],
a scheduling mechanism that takes into account the probability of occurrence of a
dependence violation to determine the chunk of iterations to assign.

• Ejecución paralela de algoritmos incrementales aleatorizados [35]. This article ex-
plores randomized incremental algorithms in more detail. These algorithms have a
clear benefit in runtime in the context of Computational Geometry. To achieve a
demonstration of this hypothesis, the paper gives two examples: The calculation of
the convex hull, and the minimum enclosing circle (MEC) problem. Tests performed
with these applications shows that exists a significant acceleration of parallel run-
time against sequential versions.

• Paralelización especulativa de un algoritmo para el menor círculo contenedor [25].
This work shows how speculative parallelization was used to speed up the MEC
problem. It contains a review of the main variables of the software used to perform
this parallelization, and some experimental results.

• Desarrollo de un motor de paralelización especulativa con soporte para aritmética
de punteros [23]. This paper explains the basis of the implementation that attempts
to solve the limitations of the software seen in [10, 11]. We can find a survey
of some possible implementations to solve the problem. After that, discuss why
they have chosen one of the implementations, instead of the other solutions, and
offer some implementation details. Finally, they show some experimental results.
However, all of these results are slower than the corresponding sequential execution.
To mitigate this issue is the main goal of our work.

1.3 Research question
The main problem related to the current version of the speculative library is its lack of
performance. Hence the main purpose of this master thesis is to improve its performance:

Is it possible to improve current version of the speculative library in
order to obtain speedups in any of the available applications?

It is mandatory to try to improve the performance of the last version developed, be-
cause at this time the speculative versions of the applications are slower than sequential
versions, and these results imply that we have a powerful tool without any practice appli-
cation.

1.4 Objectives
The main objectives of this Master thesis are the following:

• The main problem to solve is the lack of performance of the current engine. Actu-
ally, speculative parallelization of the applications with the engine does not produce
benefits, i.e., the execution time of parallel versions is worse than time of sequential

1.5. DOCUMENT STRUCTURE 11

versions, so, at the moment this engine es not very useful. Therefore at this project
we will research how this library could be improved.

• Another part of the work is to use the speculative library with more applications, to
have more experimental results.

1.5 Document structure
This work is structured as follows: Chapter 2 describes the related work in the area of
speculative parallelization. In this way, we analyze proposals and then extract conclusions
in order to classify them how could they be automatically parallelized or not. Also, a depth
description of the solution purposed by Cintra and Llanos is provided, since it is the work
that leads to the new speculative library described in Chapter 3.

Chapter 4 introduces the new speculative library developed in previous works. The
main structures that compose this new architecture are described. Furthermore, some
details of how the schema works are provided, i.e., descriptions of the main operations
that implements this schema.

Chapter 5 shows how we have located the main bottlenecks of the speculative library,
and also describes three optimizations developed in order to improve the performance of
this speculative architecture.

Chapter 6 contains the experimental evaluation carried out. Specifically, it contains a
description of the benchmarks used to develop the experimental results. The experimental
results obtained are also shown. At the end of this chapter, a brief evaluation of the results
is given.

Chapter 7 resumes this Master thesis, explores the conclusions achieved after its re-
alization, presents some future work, and cite the publications generated so far by this
research topic.

Finally, Appendix A describes the content of the CD-ROM attached to this document.

12 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art
La descripción del Estado del Arte es uno de los puntos más relevantes de

un TFM. Este capítulo resume algunas de las soluciones existentes para lle-
var a cabo la paralelización especulativa de aplicaciones. Para ello comen-
zamos hablando de los artículo donde primero se comenzó a hablar de esta
técnica de paralelización, entre los que cabe destacar [16, 39, 57, 69, 70, 71].

Más tarde introduciremos algunos de los sistemas que implementan esta
técnica a través de software, [10, 11, 23, 24, 26, 27, 46, 68, 73, 74, 75, 76, 82].

La siguiente sección muestra algunas de las soluciones basadas en modi-
ficaciones en el hardware subyacente de las máquinas: [6, 13, 37, 38, 61, 72]

Existen técnicas de paralelismo que se basan en la combinación de varias
existentes. Así destacamos [33, 40, 47, 58, 66, 77] como artículos que com-
binan la paralelización especulativa con otras técnicas para lograr mejores
tiempos de ejecución.

En [45] encontramos una clasificación de los tipos de paralelización es-
peculativa, según las técnicas que se empleen. Los mismos autores propor-
cionan una descripción del comportamiento de la paralelización especulativa
con uno de los benchmarks más utilizados: SPEC CPU2006 [44].

Por otro lado, en [11, 28, 30, 83] encontramos algunas de las decisiones
de diseño a la hora de elaborar una librería con soporte para especulación.
El trabajo [29] introduce cómo podrían tratarse las excepciones en aplica-
ciones especulativas

También cabe mencionar algunas de las soluciones actuales para parale-
lizar aplicaciones, que van desde librerías con directivas [63], hasta compi-
ladores automáticos o semiautomáticos que paralelizan un código secuencial
especulativamente [4, 5, 80], así como sistemas que detectan los bucles que
podrían beneficiarse de la paralelización especulativa [19, 20, 21].

Finalmente, en uno de los trabajos más recientes mencionados, se resume
una solución que aplica las técnicas de paralelización especulativa al con-
texto de las GPUs [85].

13

14 CHAPTER 2. STATE OF THE ART

Thread-level speculation (TLS) is an aggressive parallelization technique that is ap-
plied to regions of code that, although contain a good amount of parallelism, can not be
proven at compile time, to preserve the sequential semantics under parallel execution.
This chapter reviews several software thread-level speculation solutions.

2.1 Origins of the speculative parallelization
Runtime speculative parallelization in software was introduced in the LRPD test. In [69,
70], Rauchwerger and Padua propose the use of LRPD tests in conjunction with spec-
ulative parallelization of loops, with support for backtracking and re-execution of the
loop serially if the run-time test fails. Applying this method on parallel loops, they show
that it usually leads to superior performance relative to the inspector-based method. The
proposal speculatively executes a loop as a DOALL and apply a fully parallel data depen-
dence test to determine if it had any cross-iteration dependences. For a given loop, the
LRPD test is performed on each shared variable whose references can produce a depen-
dence violation by creating corresponding shadow arrays to track read and write accesses.
These shadow arrays are explored at the end of the parallel execution of the loop to detect
if a dependence violation has appeared. In that case, the execution fails and the loop is
re-executed sequentially. Otherwise, the loop has been executed in parallel successfully.
Before checking the validity at run-time the loop is transformed through privatization and
reduction parallelization.

Later, Gupta and Nim in [57] proposed a set of new run-time tests for speculative
parallelization of loops that defy parallelization based on static analysis alone. On their
paper they present a method for speculative array privatization that is more efficient than
previous methods, and does not require rolling back the computation in case the variable
is found not to be privatizable. Also, they present a technique that enables early detec-
tion of loop-carried dependences, and another one that detects a hazard to parallelization
immediately after it occurs.

In [39] Hammond, Willey and Olukotun purpose a software/hardware scheme that
includes a hardware support for data speculation on memory accesses that makes the par-
allelization of C programs. Their approach divides programs into threads and distributes
the resulting threads among processors in the chip multiprocessor. Their hardware support
is a speculation coprocessor which helps execute a set of software speculation exception
handlers.

Rundberg and Stenström at their work [71] applied in software many of the ideas of
hardware-based speculative parallelization. They contribute with a design of a software-
based speculation system that reduces the overhead of the current schemes. First, name
dependences are resolved by dynamically renaming data at run time. Second, the over-
head of restoring system state is greatly reduced by (i) reducing the amount of state to
commit and by (ii) supporting parallel implementations of the commit phase. Third,
some true data dependence violations are avoided by supporting lazy forwarding with-
out the need for enforcing synchronizations between a pair of conflicting threads. Finally,
true data dependence violations are detected when they happen which can cut the cost
of mis-speculations. In their approach, loads and stores whose addresses can not be dis-
ambiguated statically are associated three tasks: To aid in dependence resolution and

2.2. SOFTWARE-BASED TLS TOOLS 15

violation detection, all data structures that could suffer a dependence violation are asso-
ciated with a support data structure. Also, each speculative instruction is augmented with
checking code that detects data dependence violations dynamically. Finally, it remembers
the execution order to reflects sequential semantics.

In the paper of Dang and Rauchwerger [16] a technique to extract the maximum avail-
able parallelism from a partially parallel loop is presented. This solution removes the
limitations of previous techniques, i.e., it explains an extension of LRPD test (called Re-
cursive LRPD test) that can be applied to any loop and requires less memory overhead.
They propose to transform a partially parallel loop into a sequence of fully parallel loops.
At each stage, they speculatively execute all remaining iterations in parallel and the LRPD
test is applied to detect the potential dependences. All correctly executed iterations (those
before the first detected dependence) are committed. On the other hand, those iterations
that previously caused dependence violations now not have to be re-executed sequen-
tially because authors affirm that only iterations larger or equal to the earliest sink of any
dependence arc need to be re-executed, so only the remained of the work needs to be re-
executed, as opposed to the original LRPD test. They re-apply the LRPD test recursively
on the remaining processors, until all processors have correctly finished their work.

2.2 Software-based TLS tools
Cintra and Llanos [10] contribute with an scheme with an aggressive sliding window, with
checks for data dependence violations on speculative stores with reduced synchronization
constraints, and with fine-tuned data structures. At [11], the same authors perform a more
complete evaluation of that scheme. This architecture of speculative parallelization is
described in depth in Chapter 3.

An improvement of the mentioned architecture would be found in the paper of Tineo,
Cintra and Llanos [76]. This is the most similar approach to the one developed in our
previous work [23, 24]. In this poster, the authors introduces a pointer-based schema,
i.e., a TLS support that allow the use of pointer-addressed references based on the use of
several “heap” structures that keep data information.

Ramaseshan and Mueller in [68] describe their own software approximation. They are
centered on the parallelization of scientific codes that tend to be dominated by regular and
predictable access patterns.

Jang and Lim [82] show an architecture description specially designed to scalar ap-
plications. Also contains the design of a specific compiler specially implemented to the
mentioned architecture. So, it combines hardware and software approximations. The ar-
chitecture is composed by two cores: One to execute the main program thread, and the
other to execute speculative threads. Threads of each processor have their own regis-
ters. On the other hand, the compiler developed only selects those loops that are likely to
improve delivered performance.

Kelsey, Bai, Ding and Zhang developed a system called FastTrack that performs an
unsafe optimization of sequential code [46], i.e., they created a software system that man-
ages speculative parallelization. Specifically, their programming interface enables pro-
gramming by suggestions, so, user can suggest faster implementations based on partial
knowledge about a program and its usage. They divide code in two branches, the fast

16 CHAPTER 2. STATE OF THE ART

track and the normal track, and programmers can change between both tracks when they
want.

In 2008, Tian, Feng, Nagarajan and Gupta in [74] proposed the Copy-or-Discard
(CorD) execution model, in which the state of speculative parallel threads is maintained
separately from the non-speculative computation state. If speculation is successful, the
results of the speculative computation are committed by copying them into the non-
speculative state. If misspeculation is detected, no costly state recovery mechanisms are
needed as the speculative state can be simply discarded. Some years later, Tian, Feng
and Gupta developed mechanisms that enable CorD to efficiently supports speculative
execution of programs that operate on heap based linked dynamic data structures. Their
are described in [73]. In particular, they proposed a copy-on-write scheme which limits
the copying to only those nodes in the dynamic data structure that are modified by the
speculative computation. When a speculative thread writes to a node in a dynamic data
structure for the first time, the node is copied into speculative state. If a speculative thread
only reads a node in the non-speculative state, it is allowed to directly access the node
from the non-speculative state.

Another work of Tian, Lin, Feng and Gupta is [75]. In this paper they developed an
approach for incremental recovery in which, instead of discarding all of the results and
re-executing the speculative computation in its entirety, the computation is restarted from
the earliest point at which a mis-speculation causing value is read. With those advances
the cost of recovery is reduced as only part of the computation is re-executed, and, since
recovery takes less time, the likelihood of future mis-speculations is reduced. The main
idea to decouple the space allocation from thread creation is to create a new subspace
when a speculate value is first read.

Feng, Gupta and Neamtiu developed a system that deals with efficient parallelization
of hybrid loops in [26], that is, those loops that contain a mix of computation and I/O op-
erations. They tried to get that purpose by applying DOALL parallelism to hybrid loops
by breaking the cross-iteration dependences caused by I/O operations. Authors developed
a support to enable speculative parallelization of hybrid loops by performing some mod-
ifications to the code. To effectively parallelize hybrid loops they developed techniques
for reducing bus contention, specifically, they proposed the use of helper threading.

An adaptive approach for speculative loop execution that handles nested loops has
been recently proposed [27].

2.3 Hardware-based TLS tools
Several hardware implementations have been developed to support TLS. The major change
that has to be done in a conventional processor is the addition of some auxiliary registers
that manages speculation.

Speculative Versioning Cache is the system proposed by Gopal et al. in [37]. This
approach supports speculative execution of applications through the use of a cache-based
architecture. Hence, each processor has its own cache to prevent bottlenecks.

Steffan et al. in [72] propose a hardware TLS approach whose goals are (a) handle
arbitrary memory access patterns, because they affirm that previous works only could use
array references; and (b) provide a scalable architecture, i.e., a system usable for all the

2.4. TLS COMBINED WITH OTHER PARALLELISM TECHNIQUES 17

processors of the time.
Cintra, Martínez and Torrellas [13] designed and evaluated a scheme for scalable spec-

ulative parallelization that requires relatively simple hardware and is efficiently integrated
next to the cache coherence protocol of a conventional NUMA (Non-Uniform Memory
Access) multiprocessor. They have taken a hierarchical approach that largely abstracts
away the internals of the node architecture. In particular, they were able to utilize a self-
contained speculative chip multiprocessor as building block, with minimal additions to
interface with the rest of the system. The integration of speculative chip multiprocessors
into scalable systems seemed to offer great potential. Their scheme include a multi-ported
table called MDT that records speculative accesses to data. Specifically, as memory lines
are being accessed, the MDT allocates a Load and Store bit per word in the line and per
processor. Later, when another processor loads a word, the Store bits are used to identify
the most updated version among the predecessors. When a store operation is performed,
both bits are used to detect premature loads by successor threads. Another architecture
specially designed to support TLS requirements and manage dependences can be found
in the work of Barroso et al. [6].

The Hydra chip multiprocessor (CMP) [38, 61] was the Stanford hardware approxi-
mation. Several researches have been developed with this architecture, for example, in
[62], Prabhu and Olukotun use it to perform a manual TLS parallelization of SPEC2000
benchmarks. With this work they affirm that TLS support should be added to future
CMPs.

Nowadays, Intel’s Haswell processor support Hardware lock elision, a hardware mech-
anism that enable to execute on parallel sequential codes with the use of transactions. To
achieve this task, this new processor introduces two transactional synchronization exten-
sions to the x86 architecture [2]. In spite of the recently launch, several approaches have
subjected some improvements to this extensions, such as Afek et al. in [3].

2.4 TLS combined with other parallelism techniques
Hammond et al. affirm that in cluster systems, most of the conventional speculative
schemas guarantee only single-threaded atomicity [40]. Therefore, Garzaran et al. af-
firm in [33] that TLS can not always improve the speedup obtained.

Nowadays, some solutions based on combine parallelization models with others are
developed. Many solutions use transactional memory (TM) model combined with oth-
ers. TM is based on dividing code into transactions and then execute them in parallel.
This technique shares most of the semantics of TLS, however in TM threads do not have
to maintain an order. In this context, Vachharajani et al. [77] introduce Multi-threaded
Transactions (MTXs), where speculative work done in different pipeline stages, i.e., by
different threads, can be committed together. In this work, its authors designed a solution
based on changes to the cache coherence protocol. Raman et al. in [66], propose an-
other idea to support the mentioned combined parallelism with TM that uses a hardware
with cache-coherent shared memory. In addition, Mehrara et al. [58] describe STMLite,
a software transactional memory model modified to support speculative parallelization.
Furthermore, Kim et al. in [47], combine pipeline parallelism, speculative pipeline paral-
lelism (a technique that requires MTX), and TLS.

18 CHAPTER 2. STATE OF THE ART

In [86], Zhao, Wu and Shen proposed the use of probabilistic analysis into the de-
sign of speculation schemes. In particular, they focused on applications that are based in
Finite-State Machine. Authors affirm that this type of applications have the most preva-
lent dependences among all programs, however they show that the obstacles for effective
speculation can be much better handled with rigor. They developed a probabilistic model
to formulate the relations between speculative executions and the properties of the target
computation and inputs. Based on the formulation, they proposed two model-based spec-
ulation schemes that automatically customize themselves with the best configurations for
a given Finite-State Machine and its inputs.

2.5 TLS classification
In [45], Kejariwal et al. classify TLS into three different types: (1) control speculation,
(2) data dependence speculation, and (3) data values speculation. These types are not
disjoint, and their basis could be combined to achieve better results.

Control speculation (CS) applies speculation to some of the loops with conditionals.
Each iteration detects its execution path and then they are mapped on to different threads.
In this kind of TLS a thread detects a control violation when it is not executed at all.
[64] is an example of this speculation because Puiggali et al. tried to predict conditional
branches that would be followed without knowledge about all the variables implied in the
condition.

Second, data dependence speculation (DDS) leads with those loops that have inter-
thread memory dependences. In these cases values are optimistically predicted and dis-
carded if they fail.

Finally, data value speculation (DVS) predicts at run-time the result of instructions
before they are executed. This point of view performs a value prediction. This approx-
imation is based on the idea that values of the iterations to execute are predicted to be
executed and avoid squashes. For example, Raman et al. in [67], describe a prediction-
based TLS software that predicts values of nearer iterations without specify the iteration
where a value will be token. The main disadvantage of these approximations is that in
general, for applications loops with irregular memory accesses and complex control flow,
they do not obtain good predictions.

2.6 Applications behaviour under speculative paralleliza-
tion

Kejariwal et al. perform an analysis of the thread speculation using the benchmark SPEC
CPU2006 [44] and affirm that the use of TLS with these benchmarks has no benefit.
Hertzberg and Olukotun [41] also uses these benchmarks to present its technique based
on speculate over running applications to extract parallelism called Runtime Automatic
Speculative Parallelization (RASP).

Exists some out-of-order engines that try to extract parallelism of sequential programs
with the use of a look-ahead guide that examine “future instructions” of the program to
examine them and then perform a parallel execution. However, several times the guide

2.7. DESIGN CHOICES IN TLS 19

itself is the main bottleneck of the program. In [32] Garg et al. use TLS to avoid some of
the mentioned overheads.

2.7 Design choices in TLS
The main designs choices that can be done in a TLS system are well described by Yiapanis
et al. in [83]. There are several ways to implement a TLS, and the choice depends on the
target applications:

• Concurrency control: This term refers to how are the conflicts treated when they
are detected. We can locate two different types:

– Pessimistic Concurrency Control: With this approach when a conflict is de-
tected, it must be resolved immediately. Speculative threads only can access
to their own locations and an underlying system checks for dependence viola-
tions.

– Optimistic Concurrency Control: With this approach speculative threads can
access to the same location at the same time, and conflicts are detected and
resolved in a later stage.

Yiapanis et al. [83] affirm that Optimistic Concurrency Control is normally better
than the other approach when conflicts are expected to be rare.

• Version Management: To maintain A TLS system, some additional data have to be
managed to preserve the semantics. So, this term refers to the way that data versions
are managed by the TLS system. We can distinguish two kind of approaches:

– Lazy Version Management: Threads that use this idea maintain their own local
copy of the data managed, therefore, when a load or store operation is per-
formed only the local version is changed. So, if a conflict is detected, only the
local version of the thread that are in conflict has to be discarded, instead of
the reference version in memory.

– Eager Version Management: In this context, threads modify directly reference
version in memory. So a buffer (called undo log in the literature) that records
old values is needed to support rollback operations.

• Conflict Detection: This concept refers to how strict will be the system at time to
locate dependence violations. Again, there are two types of conflict detection:

– Lazy Conflict Detection: This approach avoids the need of check for conflict
on every access. This task is delayed to a later stage before the commit opera-
tion.

– Eager Conflict Detection: This approach looks for conflicts on every access to
avoid wasting time in operations performed when a conflict has happened.

• Scheduling: This term refers to how the loop is partitioned and assigned to threads
in a speculative execution. There are two ideas:

20 CHAPTER 2. STATE OF THE ART

– Static scheduling: Iterations are uniformly distributed along threads and chunks
are assigned to them statically.

– Dynamic scheduling: Here, chunks are set with a different number of itera-
tions, and are assigned at threads at runtime.

An additional type is described by Cintra and Llanos in [11] that distributes chunks
of iterations along slots of a sliding window.

• Squashing alternatives: This concept, addressed by Garcia-Yaguez et al. in [28,
30], refers to the fact that when a dependence violation is located, thread should be
discarded. Some approaches discard threads that consumed the wrong value, and
some other all successor threads. The possible behaviours that could arise are:

– Stops parallel execution: The first solutions simply discard the speculation
when a violation appears and restart the loop serially. With this approach only
those loops that do not have inter-dependences could be benefited.

– Inclusive squashing: This approach stops and restarts the first thread that man-
ages the wrong value and all its successors.

– Exclusive squashing: Only offending threads and those successors that have
consumed any value generated by them are discarded and restarted. In [28]
García, Llanos and González-Escribano describe a software-based solution
that purposes an exclusive squashing mechanism, where only offending threads
and all their successors that have consumed any value generated by them are
discarded. Their solution is based on solution mentioned in [10, 11], and
for their purpose have handled a list that contains dependences between pro-
ducer and consumer threads. Experimental results shows that this solution
usually improves execution times of the previous version of the speculative
parallelization engine used.

– Perfect squashing: Discard offended threads and those successors that have
consumed any wrong value. This is clearly the best approach, however, to the
best of our knowledge, there are not any implementations of it, mainly because
an in-depth analysis should be performed to detect the wrong values, and this
operation is too costly.

A more in depth description would be found at [28, 30, 83].
Besides this, the main contributions located at [83] are (a) the introduction of a new

structure that optimize memory overheads of classical approaches based on the idea of
mapping every user-accessed address into an array of integers using a hash function, (b)
the implementation of a speculative library with the mentioned structure based on a Ea-
ger Version Management design called MiniTLS, and (c) another implementation based
on Lazy Version Management design called Later that uses a combination of inspector-
executor [49] and LPD [16, 69, 70] techniques. Experimental results are compared to the
speculative tool developed by Oancea et al. [60], a system whose main design principle
is to decrease overheads of speculative operations.

Finally, [29] presents an speculative architecture that manages exceptions that would
appear within speculative executions.

2.8. TLS AS A HELP TO MANUAL PARALLELIZATION 21

2.8 TLS as a help to manual parallelization

In order to avoid making speculative codes, that were slower than the original sequen-
tial codes, some researches have proposed techniques to predict overheads of speculative
parallelization. For example, the work developed by Dou and Cintra in [20] contains a
compiler that can be used to estimate the overheads and expected resulting performance
gains, or losses. Later, in [21], the same authors give a more detailed and optimized
version of this work.

Ding et al. [19] propose a software-based TLS system to help in the manual par-
allelization of applications. The system requires from the programmer to mark “possi-
bly parallel regions” (PPR) in the application to be parallelized. The system relies on a
so-called “tournament” model, with different threads cooperating to execute the region
speculatively, while an additional thread runs the same code sequentially. If a single
dependence arises, speculation fails entirely and the sequential execution results is used
instead. The usefulness of this system is based on the assumption that the code chosen
by the programmer will likely not present any dependencies. An improvement to this
scheme is described in [43], Ke et al. propose a system that rely on dependence hints
provided by the programmer to allow explicit data communication between threads, thus
reducing runtime dependence violations. Xekalakis, Ioannou and Cintra in [81], propose a
model that combines different techniques such as thread-level speculation, helper threads
and run-ahead execution, in order to dynamically choose at runtime the most appropriate
combination.

Zhang et al. [84] describe continuous speculation, a new technique whose mainly
objective is to achieve that no processor are not busy, i.e., each thread will have always a
task to do. For that purpose it uses speculation based on process to achieve parallelization
of large sequential codes. Its solution uses a sliding window and a group classification to
ensure correct order of the task. To get information about the possibly parallel regions of
a sequential code, it uses BOP, the tool described in [19].

Some authors have focused on provide assistance to those programmers that extract
TLS of the applications. For example, [4, 5, 80] show tools that make an analysis of
the codes to give information about the best loop to be speculative parallelized. More
specifically, Wu, Kejariwal and Caşcaval developed a compiler that set a serie of labels
that allow the design of a profiler to ease the detection of dependence at run-time [80].
Aldea in [4, 5] describes a different process that use XML capabilities to achieve the best
possible degree of parallelism. The main goal of this work is to achieve an automatic spec-
ulative parallelization of applications. In this paper, a software is described that divides
process, mainly in several steps: First, a loop that is able to be parallelized is located, then
a tool (based on Cetus compiler) generates an XML tree based on the internal represen-
tation of the source code. After that, another tool called Loopest is used to perform an
analysis on variables usage and loops to augment the XML tree with the code needed for
speculative execution. Finally, the resulting XML tree is translated back to C code using
another tool called Sirius.

Another type of compilers and helper tools for TLS cited by Wu et al. in [80] are [22,
42, 51, 65, 78]. Another type of dependence profiler has been designed by Chen et al. and
could be found at [9].

22 CHAPTER 2. STATE OF THE ART

2.8.1 Automatic speculative library
There are also libraries that perform speculative parallelization directly, such as in [63],
where Prabhu, Ramalingam and Vaswani have developed some directives and operations
to allow programmers to make their own speculative programs. Authors proposed two lan-
guage constructs, called speculative composition and speculative iteration to enable pro-
grammers to declaratively express speculative parallelism in programs. They presented a
formal operational semantics for the language to define the notion of a correct specula-
tive execution as one that is equivalent to a non-speculative execution. Using mentioned
semantics, they described a set of conditions under which such rollback can be avoided
with the corresponding time reduction.

2.9 TLS to GPU
Nowadays, parallelism applied to GPUs is one of the major ways of research in that
field because the possibility of use many more processors. This fact makes that apply
speculative techniques to that kind of parallelism is, at least, desirable. Liu, Eisenbeis and
Gaudiot discusse how TLS could be correctly used in the parallelism of GPU [50]. In this
way, in a recent approach, Zhang et al. introduces a new library based on sliding windows
that support TLS in GPUs [85]. To the best of our knowledge, this is the first schema that
implements this techniques, and for that purpose, authors have adopted their software with
ideas of the classical solutions that are expected to have a better behaviour over GPUs, for
example, using a hybrid dependence checking, or a parallel commit scheme.

Chapter 3

Original speculative library
La librería software de paralelización especulativa usada como base se

describe en [10, 11]. Por tanto, y con el objetivo de clarificar la visión acerca
del motor de paralelización especulativa descrito, se facilita una introduc-
ción y una descripción de su funcionamiento. Se mencionarán las limita-
ciones que conlleva el uso de este software: (a) debemos conocer las itera-
ciones del bucle sobre el que se especulará, (b) no se trabajará con aritmética
de punteros, y (c) no se utilizará memoria dinámica. Por otra parte esa li-
brería obliga a realizar una clasificación manual de las variables, ya que el
modelo se basa en la librería de paralelización OpenMP [1].

Además cabe mencionar que la estructura sobre la que se basa el fun-
cionamiento de este motor especulativo es una ventana deslizante cuyos slots
son asignados a threads que ejecutan sus iteraciones.

Por último, también cabe decir que el uso de esta librería conlleva que se
cambien manualmente todas las lecturas sobre variables especulativas por
la función “specload”, y todas las escrituras por la función “specstore”.
Adicionalmente para consolidar los datos, debemos establecer una llamada
a la función “threadend”.

Otra de las funcionalidades descritas es la paralelización de las llamadas
operaciones de reducción como por ejemplo el cálculo del máximo; o las
funciones de inicialización del sistema.

23

24 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

1 for (i=1; i <5; i++)
2 {
3 LocalVar1 = SV[x];
4 SV[x] = LocalVar2 ;
5 }

Figure 3.1: Example where appear a RAW dependence. This type of loop may cause
dependence violations in parallel executions.

Software-based speculative parallelization libraries aim to achieve a concurrent exe-
cution of the loops with cross-dependences in their iterations. The library that is going to
be introduced here was the origin of our work, so, it is worthwhile to describe it in depth.

This engine [10, 11, 53, 54] is based on a set of function libraries that allows the
speculative execution of a loop. It is a work-in-progress that requires the programmer to
add additional code to parallelize it. This process is expected to be automatic in the near
future [4, 5].

In this way, let us see an example of the speculative execution of a loop with the
mentioned tool. Our example is based on loop of the Figure 3.1 with four iterations.
Suppose that our system has enough processors to execute a single iteration in each one.
At this time could be mentioned that thread of the lesser iteration is called non-speculative
thread, and thread of the highest iteration is called most-speculative (these concepts would
be deeper exposed throughout this chapter).

Each thread has its own version of shared data, so, if each thread commits its results
with no order, some incoherences at the end of loop execution may appear. Therefore,
each thread should commit its data in order.

To have a better understanding of this system, an example of the execution of a loop its
shown at Figure 3.2. This figure shows a possible parallel execution of the loop depicted
in the example of the Figure 3.1. All operations are done maintaining sequential semantic
until instant t10. At this moment, thread three modifies the value that belongs to the
shared vector SV [X] used at t7 by thread four, promoting that results from thread four
calculated so far are discarded.

To avoid undesirable failures some modifications in original source code are needed.
Those modifications are depicted at Figure 3.3, and are the following.

• Load operations over speculative variables are replaced with a function that recov-
ers most recently value, that is, the most updated value of the variable.

• Store operations over speculative variables are replaced with a function that stores
the value and detect sporadic dependence violations.

• Each thread executes a commitment of calculated data at the end of the execu-
tion of its chunk of iterations. Also, this operation should assign a new chunk of
iterations to be executed.

However, this version of the engine has got some requirements:

25

Figure 3.2: In each speculative load operation is searched the most updated version of
SV [X], consulting previous threads until arrive to non-speculative thread. At each spec-
ulative store operation is checked if any following thread have used a wrong value, and
then, if is appropriated its execution is discarded.

t5

t8

t10

LocalVar1 = SV[x]

SV[x] = LocalVar2

t6
t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

t2

t4

t6

LocalVar1 = SV[x]

SV[x] = LocalVar2

(c) In−order commit of data from successfully−finished threads

t0

t1

t3 SV[x] = LocalVar2

Time

LocalVar1 = SV[x]

Thread 1 (non spec)

(iteration 1, x = 1) (iteration 2, x = 1)

Thread 2

(iteration 3, x = 2)

Thread 3 Thread 4 (most−spec)

(iteration 4, x = 2)

Reference

copy of

sv[2]

(Time t4: Thread 2 forwards updated value for sv[1] from thread 1)

(Time t3: thread 1 detects no dependence violations)

(Time t6: thread 1 detects no dependence violations)

(Time t8: Thread 3 forwards value of sv[2] from reference copy)

(Time t7: Thread 4 forwards value of sv[2] from reference copy)

(Time t10: Thread 3 detects violation: thread 4 squashed)

(b) Speculative loads with most−recent value forwarding

(a) Speculative stores plus detection of dependence violations

Figure 3.3: On the one hand, speculative store operations perform data reviews looking
for matches with data of its successors. On the other hand, speculative load operations try
to find the datum on demand in the previous threads, i.e., look for this datum in the lesser
speculative threads. Commit operation should be performed maintaining the sequential
semantic.

26 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

Total
time

Total
time

(a) (b)

Figure 3.4: Block comparison: (a) Chunks with a few iterations, and (b) chunks with
some more iterations.

• Analyzed loop should have a number of iterations known before its execution.

• Analyzed loop must not work with pointer arithmetic.

• Inside analyzed loop can not be used dynamic memory.

Once accomplished those premises, a manual, previous analysis of the execution of
the loop classifying all the available variables is required. In this way, the user labels a
variable as private when it is always stored before its use in the same iteration. Label
of shared variable is given to those variables that are always loaded. Rest of variables,
labeled as speculative, are in risk to suffer a dependence violation.

In addition to the mentioned requirements (modify the mentioned operations and per-
form a variable classification), some changes are needed in the original loop structure.
Suppose that the loop to be parallelized has N iterations and P processors are available
to perform the execution. Parallelization begins by replacing original loop with a doall
from 1 to P , and then each processor is assigned with a chunk of consecutive iterations.
When a thread ends its chunk, calls a function that assign a new one. When no more
chunks could be assigned, and all threads end their execution, could be said that execu-
tion is ended.

The last point referred to the original speculative library is about the size of blocks
of iterations. In this way, and in spite of wasting more time with the assignation of new
blocks, is highly recommended to use blocks of few iterations. If we use blocks of many
iterations, the global execution of the program would be delayed, as it can be seen in
Figure 3.4.

3.1 Architecture of this speculative engine

This speculative schema aims to avoid dependence violations with the use of several data
structures.

3.1. ARCHITECTURE OF THIS SPECULATIVE ENGINE 27

3.1.1 Auxiliary data structures
A data structure is needed to save thread states. To that purpose, a sliding window is
used with a similar, or higher, size than the number of processors, i.e., if we have W
slots and P processors W ≥ P . Each slot contains its own data version because each
thread should have its own version of speculative data, so, each thread needs a vector to
save and commit, or discard, its data. In this sense, a global vector where perform the final
commitment of data after the execution is needed too. At least as much vectors as available
processors should exist, i.e., it should be W auxiliary vectors besides an additional global
vector: W + 1 vectors with M items (where M is the number of speculative variables).

Each slot of the mentioned sliding window has a state that holds the current situation
of this slot. State possible values are the following:

• FREE: Slot is free and could be assigned to a thread. At the beginning all slots of
the sliding window are free.

• RUNNING: Slot is busy, that is, executing some iterations.

• PENDING_SQUASH: This value appears when a wrong value is detected by a thread
in one of its speculative variables, and therefore execution of this thread should be
discarded.

• SQUASHED: Slot is busy by a thread that should start its execution again because a
dependence violation has been detected.

• DONE: Slot has successfully ended its execution.

Sliding window allows to assign consecutive threads until complete P available pro-
cessors, when those P slots start their execution (RUN state). When a thread finishes its
execution, the window is moved to the right, therefore, window should also contain two
indicators: An indicator to the non-speculative slot, and another to the most-speculative
one. The structures that have been described are depicted at Figure 3.5.

We have seen that each slot is assigned to a processor, and has associated a version
of speculative variables. Moreover, threads should know the state of each speculative
variable, that is, if that variable has been loaded, modified, etc. So, each slot has an
Access Matrix with M positions. Each position of this matrix contains the state of each
variable version. Available states are the following:

• NotAcc: The element has not been accessed by this thread. This the initial state of
each element.

• ExpLd: Exposed Loaded, the thread has read the value of the variable of this ele-
ment.

• Update: The thread has modified value of the variable of this element.

• ElUp: This state appears when a thread that loaded the value of the variable, modi-
fies this value.

• RedAdd: A reduction operation in the sum of this element has been applied.

28 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

Thread 1 Thread 2

1 2 3 4

1

2

3

structure

...

M

User data

Version copies

RUN

1 2 3

FREE

4most_specnon_spec

Window

1 2 RUN FREE

Figure 3.5: Main elements of the original speculative engine

Exposed

Loaded

Exposed

Loaded and

Updated

Not

Accessed

Spec

Reduction

Spec

Reduction

Spec Store

Updated

Spec Load Spec Load

Spec StoreSpec LoadSpec Store

Spec LoadSpec Store

RedOp

Figure 3.6: Evolution of the possible states that each element could achieve in the Access
Matrix

3.2. SPECULATIVE LOAD OPERATIONS 29

1 2 3 4

1

2

3

structure

...

M

AM AM AM AM

1

2

3
Structures
Access

...

M NotAcc

NotAcc

NotAcc

User data
Version copies

RUN

1 2 3

FREE

4most_specnon_spec

Window

1 2 RUN FREE

NotAccNotAcc

NotAcc

NotAcc NotAcc

Figure 3.7: Original architecture of the speculative engine.

• RedMax: A reduction operation in the maximum of this element has been applied.

Figure 3.6 shows a automata whose states are those that could be stored in the elements
of the Access Matrix. These states evolve through load or store operations.

A scheme of architecture described is shown at Figure 3.7.

3.2 Speculative load operations
At compile time, when a speculative variable is going to be read, this instruction should
be replaced following the next way:

LocalVar = maincopy[index]
⇓

specload(index, current, LocalVar, maincopy, myIVtail)

Arguments have the following meaning:

1. index: Element position in the speculative vector.

2. current: Slot number assigned.

3. LocalVar: Variable where loaded datum would be stored.

4. maincopy: Shared data structure where the element is read of the position index.

30 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

1 2 3 4

1

2

3

structure

...

M

AM AM AM AM

1

2

3

Structures

Access

...

M NotAcc NotAcc

User data

Version copies

RUN

1 2 3

FREE

4most_specnon_spec

Window

1 2 RUN FREE

NotAccNotAcc

NotAcc

NotAcc NotAcc

ExpLd
1

2
3

4

5

NotAcc

5

Figure 3.8: Load operation example.

5. myIVtail: last element accessed by the indirection vector (this structure is de-
scribed where the commit operation is, in one of the following subsections).

Let us explain this operation with a generic example: Suppose that thread N needs to
load a speculative value.

1. Thread consults the value of the position of the variable in its Access Matrix to
obtain the most updated value. If that value is NotAcc, thread has not an own copy,
therefore it searches in the structures of the previous threads.

2. This thread searches the value of the variable in the N-1 thread structures.

3. If no previous thread has used this value, thread N would load reference value, and
store it in its data version. On the other hand, if one of the threads explored have
used this datum, it would be loaded.

4. After that, the corresponding value of the Access Matrix is updated to ExpLd.

Now, let us see the mentioned operations applied to a concrete example. To do so,
we will use Figure 3.8. Suppose that thread 2 should execute the following instruction:
LocalV ar = SV [2].

1. Thread 2 needs element 2, however, it has not its own copy.

3.3. SPECULATIVE STORE OPERATIONS 31

2. Datum is searched in predecessors’ structures.

3. Thread 1 has not used this datum.

4. No predecessor has used this datum: Thread 2 loads reference value.

5. Reference value is stored in the corresponding version of the thread 2 and the state
of this element is updated to ExpLd (Exposed Loaded) in its Access Matrix, com-
pleting instruction LocalV ar = SV [2].

3.2.1 Early Squashing
Load operations executed by this library will be optimized to improve the performance
of applications. This optimization is called Early Squashing and consist on perform a
squash operation before the end of the chunk of iterations. To understand this operation,
let us suppose that an application performs a specstore (store operation described at the
following subsection), this operation checks the slots of the following threads. If a depen-
dence violation is located, the slots are changed to the SQUASHED state, but its execution
continues, until the end of the iterations. In contrast, if Early Squashing operation is in-
troduced and during an execution a specload operation appears, thread involved checks
its state and if it is SQUASHED, a negative value is returned and specload call ends. With
this optimization less time is lost with the execution of unnecessary instructions, because
SQUASHED state implies that executions results are discarded. Therefore when load opera-
tions are performed in an application should be checked LocalVar value in order to know
if it is equal to -1, and in that case, Early Squashing operation will cause a “jump” until
the part of the code where thread end the execution of its block.

3.3 Speculative store operations
Store operations are also replaced at compile time with a function call similarly to load
operations previously described:

maincopy[index] = LocalVar
⇓

specstore(index, current, LocalVar, myIVtail)

Arguments have the following meaning:

1. index: Element position in the speculative vector.

2. current: Slot number assigned.

3. LocalVar: Variable that contains the datum that would be stored in the speculative
vector.

4. maincopy: Shared data structure where the element is read of the position index.

5. myIVtail: last element accessed by the indirection vector (this structure is de-
scribed where the commit operation is, in one of the following sections).

32 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

1 2 3 4

1

2

3

structure

...

M

AM AM AM AM

1

2

3
Structures
Access

...

M NotAcc NotAcc

User data
Version copies

RUN

1 2 3

FREE

4most_specnon_spec

Window

1 2 RUN FREE

NotAccNotAcc

NotAcc

NotAcc

ExpLd

Mod

Figure 3.9: Speculative store operation description where successor threads have not used
the datum to modify.

Let us expose this operation with a generic example: Suppose that thread N needs to
store a datum into a speculative value.

1. Thread that performs this operation, modifies index value of the position of its own
version vector.

2. The corresponding value of the Access Matrix is updated. Therefore if the previous
state was Not Accessed, it is changed to Updated. On the other hand, if the previ-
ous state was Exposed Loaded, it is changed to Exposed Loaded and Updated
(ElUp).

3. This thread checks if any successor threads have used an old value of this datum
consulting their Access Matrices.

(a) If no successor thread has used this value, (see Figure 3.9) this operation ends.

(b) If one of the threads explored have used an old, and consequently, wrong value
of the datum (see Figure 3.10):

i. Execution of the thread that has consumed the wrong value and all of its
successors, are stopped.

ii. State of these threads is changed from RUNNING to SQUASHED.
iii. Execution of all threads with SQUASHED state is retried, but now old values

are updated.

To get a better understanding of described operation, let’s see a concrete example
using Figure 3.11. Suppose that thread 1 executes SV [2] = LocalV ar:

3.3. SPECULATIVE STORE OPERATIONS 33

SQUASHED

1 2 3 4

1

2

3

structure

...

M

AM AM AM AM

1

2

3
Structures
Access

...

M NotAcc NotAcc

User data
Version copies

1 2 3

FREE

4most_specnon_spec

Window

1 2 RUN FREE

NotAccNotAcc

NotAcc

ExpLd

Mod

Mod

Figure 3.10: Speculative store operation description where successor threads have used
the datum to modify, and consequently should be retried.

SQUASHED

1 2 3 4

1

2

3

structure

...

M

AM AM AM AM

1

2

3

Structures

Access

...

M NotAcc NotAcc

User data

Version copies

1 2 3

FREE

4most_specnon_spec

Window

1 2 RUN FREE

NotAccNotAcc

NotAcc

ExpLd

Mod

Mod
NotAcc

1

2

3

4

4

Figure 3.11: Speculative store operation example.

34 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

1. First of all, store is performed.

2. Element state was NotAcc, so is changed to Mod (if it was ExpLd would be changed
to ExpLdMod).

3. Now, should be checked if a successor thread has used an old version of this datum:
This situation occurs.

4. Thread that consumed the wrong datum and all its successor executions are stopped.

5. Thread 2 execution is retried, therefore, speculative load operation will load the
correct value.

Speculative store operations affect only to local version of the threads, so, global vec-
tor is only changed when a commit operation is performed.

3.4 Results commitment
When the execution of a block of iterations ends, the state of the thread is changed to
DONE and the function that handles commit operations is called. Tasks performed by this
operation are copy values from local copies to global copy. Furthermore, function still
handles the assignation of the following chunk of iterations.

When a thread ends, commit operation copies modified values from its own version
(see Figure 3.12) to the global structure. Then the state of the slot is changed to FREE. If
this is the first thread, non-spec pointer is augmented. Finally, the thread whose block
has ended, is assigned to the next free slot, and then most-spec pointer is also aug-
mented. Therefore, non-speculative thread changes its status from this position to the
most-speculative one.

Function that implements this operation will be described in the section that introduces
the optimizations performed to the commit operation.

3.5 Optimizations
Speculative load, and commit operations could be improved in the following way:

• Speculative load optimization: When a thread performs a speculative load oper-
ation all the versions of its predecessors should be checked in order to looking for
the value to load. However, in the most general case data consulted by the thread
have not been previously used, that is, thread should load reference value to com-
plete the load operation. In order to avoid a unnecessary read of all the variables of
predecessors, an auxiliary vector called Global Exposed Load is added. This vector
is used to indicate if a variable has been used before, and then, when a load or store
operation is performed, this vector should be updated. See Figure 3.13.

• Commit optimization: When a commit operation is performed all the local ele-
ments of the vector should be checked. This implies to check both modified, and

3.5. OPTIMIZATIONS 35

1 2 3 4

1

2

3

structure

...

M

AM AM AM AM

1

2

3
Structures
Access

...

M NotAcc NotAcc

User data
Version copies

1 2 3

FREE

4most_specnon_spec

Window

1 2 DONE FREE

NotAccNotAcc

NotAcc

ExpLd

Mod

Mod

RUN

Figure 3.12: Commit operation description. Only the modified values are copied to the
local version.

NotAcc NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

...

Version copies

1 2 3 4 W

Window

...
1 2 3 4 Wnon_spec most_spec

4 RUN RUN RUN FREE

GlExpLd

F

T

1

2

3

structure

...

M

...
AM AM AM AM AM

1

2

3
Structures
Access

...

M NotAcc

User data

RUN1

NotAcc NotAcc Mod

Mod

NotAccNotAcc

NotAcc

NotAcc ExpLd

F

T

Figure 3.13: View of the use of the Global Exposed Load vector.

36 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

NotAcc NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

tail 2

...

Version copies

1 2 3 4 W

Window

...
1 2 3 4 Wnon_spec most_spec

4 RUN RUN RUN FREE

T

GlExpLd

F

F

1

2

3

structure

...

F

...

M

...3 M

AM AM AM AM AMIM IM IM IM

1

2

3

IM

1

ExpLd

Structures
Access

...

M

...

NotAcc

tail 1 tail 0 tail 2 tail 0

User data

DONE1

NotAcc NotAcc Mod

Mod

NotAcc

NotAcc 2

3

Mod

Mod

Figure 3.14: View of the use of the Indirection Matrix vector.

unmodified elements. We can improve this operation with the use of a list that
will contain modified elements. This list, called Indirection Matrix, will be imple-
mented by each thread and will save the position of the element used. Moreover,
each thread will implement a variable called tail that will indicate the last item of
the Indirection Matrix used in order to iterate it easier. At this moment, to commit
all the values is only necessary to copy the elements of this list, instead of all local
version values of the thread. Figure 3.14 shows the application of this structure.

The function that implements commit operation is called threadend and has the
following arguments:

threadend(current, retflag, maincopy, myIVtail)

With the following meaning:

1. current: Slot number assigned.

2. retflag: Return value of the function. It is used to take into account if are
available any more blocks. Values returned could be of two types: JOBTODO
or JOBDONE. If returns JOBTODO, there are more blocks to be executed. On the
other hand if the value is JOBDONE, all the iteration blocks that form the loop
have been already assigned.

3. maincopy: shared data structure where data will be committed.

4. myIVtail: last busy element of the indirection matrix.

Figure 3.15 reflects the final version of this speculative engine with all the imple-
mented structures.

3.6. REDUCTION OPERATIONS 37

NotAcc NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

...

Version copies

1 2 3 4 W

Window

...
1 2 3 4 Wnon_spec most_spec

4 RUN RUN RUN FREE

T

GlExpLd

F

F

1

2

3

structure

...

F

...

M

...
AM AM AM AM AM

1

2

3

ExpLd

Structures
Access

...

M NotAcc

User data

DONE1

NotAcc NotAcc Mod

Mod

NotAcc

NotAcc

Mod

Mod

3 M

IM IM IM IMIM

1

...
tail 1 tail 0 tail 2 tail 0

2

3

tail 2

...

Figure 3.15: Speculative engine completed with all the auxiliary structures.

3.6 Reduction operations

Some operations can not be parallelized because of the own nature of the instruction.
Nevertheless, in these situations, some kind of operations could be transformed in order
to be able to parallelize them. When one of these cases appear, it is said that the operation
can be reduced. For example, sum and calculation of the maximum operations can be
reduced.

3.6.1 Sum reduction

Imagine that the loop to be parallelized contains sum operation in the following way:

matrix(i) = matrix(i) + value

This type of operation needs a sum operation over all the iterations of the loop. This
sum operation will modify element i value of the matrix, therefore if we want to par-
allelize it, too many dependence violations could be produced. The main reason of this
is related to the fact that iteration that modifies matrix(i) value needs the value of the
previous iteration, i.e., J iteration needs to know matrix(i) value in the J-1 iteration to
update the value.

In order to solve this problem, a reduction operation is performed in the following
way:

matrix(i) = matrix(i) + valor1 + valor2 + ... + valorK

In this way, instead of sum a quantity each iteration, all sums are performed at the
same time in order to avoid dependence violations. This operation is known as specadd:

38 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

matrix(i) = matrix(i) + value
⇓

specadd(index, current, value, myIVtail)

Where arguments have the following meaning:

1. index: Position of the element in the speculative vector where the sum will be
performed.

2. current: Slot number assigned.

3. value: Quantity to sum at each iteration.

4. myIVtail: last busy element of the indirection matrix.

This operation affects the commit operation. Now, local versions accumulate quanti-
ties at each iteration, so, if thread should execute N iterations, when all of them end the
value will be N*value. At this moment, the commit operation instead of modifies the
reference value, performs a sum of N*value each time that is called. In this way, final
results are correct at the end of the operation.

3.6.2 Maximum reduction
Let us suppose that loop to be parallelized contains a calculation of the maximum opera-
tion in the following way:

IF matrix(i) < value THEN
matrix(i) = value

or:

matrix(i) = MAX(matrix(i),value)

This kind of operation can not be parallelized because dependence violations would
appear continuously (as in the previous operation example). But, in the same way of the
sum operation viewed, this operation could be reduced obtaining the following instruc-
tions:

matrix(i) = MAX(matrix(i),value1,value2,...,valueK)

At the beginning, calculation of the maximum was performed to two values, neverthe-
less, now is calculated over all possible quantities. This transformation allows paralleliza-
tion. Function that implements this operation is the following:

matrix(i) = MAX(matrix(i),valor)
⇓

specmax(index, current, value, myIVtail)

Where arguments have the following meaning:

1. index: Position of the element in the speculative vector where the sum will be
performed.

2. current: Slot number assigned.

3.7. INITIALIZATION FUNCTIONS OF THE ENGINE 39

3. value: Quantity where maximum is calculated.

4. myIVtail: last busy element of the indirection matrix.

This function works as follows: each thread calculate the maximum of the values of
its corresponding chunk of threads. When a thread ends its execution and data should be
committed, the maximum value obtained by all the threads is compared to the maximum
value of the global reference vector. If value is higher than it, is copied in the correspond-
ing position, in the other case, no operation is done.

3.7 Initialization functions of the engine
A previous step should be taken into account before add parallel instructions into the code.
It is mandatory to initialize data structures of the engine before perform any operation.
Two functions are used to perform this initialization:

• specinit: This function should assign the static, or dynamic, block size that slots
will use.

• specstart: This function should initialize non-speculative and most-speculative point-
ers, and states of the sliding window to the FREE state. This operation initializes Ac-
cess and Indirection matrices, those variables associated to Indirection matrix, and
Global Exposed Load vector. Furthermore, the limit value of iterations is assigned
at execution time with the use of the single integer argument that use this function:
specstart(int iterations).

3.8 Use of the engine and variable settings
At this moment, data structures that form speculative engine, and operations that im-
plements are already described, so we can use it. However, some variables should be
mentioned in order to complete the introduction to this library:

• threads: Indicate available threads to execute the problem.

• wsize: Window size, that is, the number of slots.

• blk: When block size is static, this variable implements this size, specifically, the
number of iterations that form blocks.

• shared_size: Size of shared data structure where load and store operations would be
performed.

• cur_upper_size: Maximum number of iterations of the loop to be parallelized.

• max_upper_size: Similar to cur_upper_size.

40 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

Once implemented the values of these constants, some modifications over the original
code can be performed in order to achieve the speculative version. First of all, we have to
include the file that contain mentioned variables and OpenMP library (omp_lib.h). After
that, both operations to initialize data are called: specinit and specstart(int iterations).
Also another OpenMP specific function is called: omp_set_num_threads(int threads), in
order to indicate to the OpenMP library the number of threads that will be used. Finally,
we should classify variables into two types: private or shared; this is one of the require-
ments of OpenMP[1, 8, 15]. Some variables used inside speculative library are always
classified in the same way:

• Private: value, linear, current, tid, retflag, tidaux, flag, my_IV_tail, nonSpeculative.

• Shared: wheel_ns, wheel_ms, shadow, AV, IV, IV_tail, gELV, wheel, wheel_ol,
upper_limit, varblock, jmpbuf, endLoop, endReturn.

In this point, speculative parallelization of the loop could be implemented using OpenMP
directives. To perform load, store, and reduction operations over speculative variables
should be replaced original instructions with the functions described along this chapter.

Finally, when the execution of a thread ends, commit operation is performed with the
use of the threadend function, and this thread checks if there are any more blocks to be
executed.

3.9 An example of use of this library
A step by step example developed in C language is going to be shown in order to know
how to use the described engine to speculative parallelize an application. The application
of the example only will have a single speculative load, and a single speculative store
operations.

3.9.1 Sequential application
The code shown below is the sequential version of the application:

1 // Synthetic application written in C //
2 // Requirements: input values should be higher than 0 //
3

4 #include <stdio.h>
5 #include <stdlib.h>
6 #include "myexamplevariables.h"
7

8 int main()
9 {

10

11 // Local variables
12 // P indicates current iteration , Q indicates vector index
13

14 int P, Q, aux , i;
15 FILE *file;
16 int sum=0;
17

18 // Open and read the file
19

20 if ((file = fopen("rand1000000.in", "r")) == NULL)

3.9. AN EXAMPLE OF USE OF THIS LIBRARY 41

21 {
22 printf ("Error opening the file \n ");
23 exit (0);
24 }
25 else
26 {
27 fscanf(file , "%d", &aux);
28 for (i = 0 ; i < MAX ; i++)
29 {
30 vector[i] = aux;
31 fscanf(file , "%d", &aux);
32 }
33 fclose (file);
34 }
35

36 // myexamplecode: debug
37 // for (i = 0; i < MAX; i++)
38 // printf ("%d\n", vector[i]);
39 // myexamplecode: end debug
40

41 // Loop can not be parallelized because the index of
42 // the elements of the vector written depends on the
43 // input values of the file
44 // THIS IS THE DESIRED SITUATION
45 // LET’S START
46

47 for (P = 1 ; P <= NITER ; P++)
48 {
49 // Loop code
50

51 Q = P % (MAX+1);
52

53 aux = vector[Q-1];
54

55 Q = (4* aux)%(MAX +1);
56

57 vector[Q-1] = aux;
58

59 } // END for
60

61 printf(" Vector results \n");
62 for (i = 0; i < MAX; i++)
63 sum = sum + vector[i];
64 printf("%d\n",sum);
65 }

First of all, a specific application that produces some random numbers have been
developed, and a file that contains a million of random numbers is produced. In the code
shown above, from line 18 to 34, file is read and random numbers are obtained. In spite
of the fact that numbers are random, input file will always be the same, therefore, similar
experimental results will be obtained, achieving a deterministic version of this application.
Numbers of the file should be higher than 0 because they are used as the indices of a vector.

Once the file is read, and their data are stored at vector variable, main loop starts
with NITER iterations, from line 47 to 59. Now, an element of the vector is read (line 53)
and another one is written (line 57). Q variable stores the index of the element to be load
or stored:

• In the case of load operation, Q value is equal to the remainder between current
iteration and the maximum size of the vector, plus one.

• In the case of store operation Q value is equal to the remainder between value load
multiplied by four and the maximum size of the vector, plus one.

42 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

Q value is unknown at compile time because it depends on the value read from the
input file. Therefore, compiler can not guarantee concurrent execution of some iterations
without errors, so, loop is not parallelized. In this kind of situations is when the described
engine is useful, because a solution to those problems that conventional compilers can not
parallelize is provided, and this algorithm is a perfect example.

Finally, from line 61 to 65 is checked if the calculated data are correct by summing
vector elements.

It is interesting to describe the meaning of the variables used in the synthetic appli-
cation, before start the explanation of the process followed to speculative parallelize this
code:

• NITER: The number of iterations of the loop.

• MAX: Vector size.

• aux: Used to store value of an element of the vector.

• Q: Used to save index of the vector.

• P: It indicates current iteration of the loop.

• sum: It stores the sum of the elements of the vector at the end of the execution. It is
used only to check the results.

3.9.2 Speculative Parallelization of the sequential application
In order to speculatively parallelize a sequential code there exist some questions that have
to be answered:

• ¿What lines should be parallelized? First of all, it is necessary to know what are
the lines of the code that can be parallelized. In this example is a simple step
because there is a single loop. In the case of there exist several loops, all of them
could be parallelized if they are not nested. Also, it is recommended that loop to be
parallelized has a high number of iterations in order to extract a high performance.
Good performance is not the objective of the example shown, it is to show how
could an application be parallelized.

In the case of nested loops only one of the loops can be parallelized: the outermost,
the innermost, or any of the intermediate loops.

• Which are the speculative variables? With this question we refer to those shared va-
riables of the loop that can induce dependence violations during parallel execution
of the loop. In this case, four variables are use inside the loop: P,Q,aux and vector.
The first three variables modify their values at the beginning of the loop, before
they were used. Therefore, they do not induce dependences and can be considered
private variables. On the other hand, the fourth variable is shared by all iterations of
the loop. If while iteration i was writing position k of the vector, the iteration i-1
was reading the same position k, a dependence violation arises. So, the speculative
variable is vector.

3.9. AN EXAMPLE OF USE OF THIS LIBRARY 43

• Which is the size of the speculative variable? Once known which is the speculative
variable, its size should be known. To do so a file called myexamplevariables.h
has been implemented.

1 // This file includes all common variables of the example
2

3 // Constants
4 // Vector size and number of iterations
5 #define MAX 100
6 #define NITER 1000000
7

8 // Data structures
9 int vector[MAX];

vector size is MAX, specifically 100.

Once answered these three questions, the modification of the sequential application
can be started. First of all, we have to add some files in the application path:

• speccode-vXX.c. It contains the speculative engine code in its XX version.

• variables.h. This file has some configuration parameters that depends on the ap-
plication to parallelize. Size of the loop, and size of the speculative variables are
examples of data contained by this file. So, the following modifications should be
performed to this file:

12 // number of threads to be used
13 #define threads 2
14 // window size
15 #define wsize threads *2
16 // blocking factor
17 #define blk 1000
18

19 // Application -dependant settings follow
20

21 #define shared_size 100
22 #define cur_upper_limit 1000000
23 #define max_upper_limit 1000000

threads variable indicates the number of threads available. The sliding window
slots are indicated by wsize. If the block size of iterations is statically assigned,
blk will indicate the number of iterations of each chunk. The size of the speculative
variables is indicated by shared_size variable. In our example, we work with
a single variable (vector) with a size of 100. The total number of iterations to
execute is indicated by cur_upper_limit, in this case, this value is similar to
NITER. Finally, max_upper_limit has the same value as cur_upper_limit.

Once configured parameters of the engine, original code is modified. First the follow-
ing two headers should be added to the example file example-vBRA09.c:

9 // speccode: OpenMP header file included
10 #include <omp.h>

44 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

13 // speccode: Main header file with all common variables
14 #include "specEngine.h"

The next step is to add another line to initialize the engine structures:

27 // speccode_ Initializing structures
28 specinit ();

Before the beginning of the loop, the following lines are inserted. They are related
with the use of OpenMP (except specstart(NITER) function that belongs to speculative
library):

60 // speccode: OMP threading directive
61 omp_set_num_threads(threads);
62 // speccode: initializing speculation structures
63 specstart(NITER);

70 // Beginning of the parallel part
71 // speccode: Speculative loop

74 #pragma omp parallel default(none) \
75 private(aux , Q, P, value , linear , \
76 current , tid , retflag , my_IV_tail , nonSpeculative) \
77 shared(vector , wheel_ns , wheel_ms , shadow , \
78 AV , IV , IV_tail , gELV , wheel , wheel_ol , \
79 upper_limit , varblock , jmpbuf , endLoop , endReturn)
80 {
81

82 #pragma omp for \
83 schedule(static)

Line 61 indicates the number of threads to be used in parallel. Lone 63 initializes
speculative engine structures.

Line 74 is an OpenMP directive. It is used to mark the start of the for loop to be
parallelized. From line 74 to 79 clauses of directive parallel for are found. In the
line 74, default(none) indicates to OpenMP libary that classification of variables will
be performed manually. Most of variables classified are used by the engine, with the
exception of P, Q, aux and vector, but this variables have been already explained: The
first three are private variables, while the last one is shared. Finally, line 83 indicates that
the size of the chunks of iterations used will be static.

The following instruction:

47 for (P=1 ; P<= NITER ; P++)

is replaced by:

84 // for (P=1 ; P<=NITER ; P++)
85 initLoopSpecEngine(vector ,P,1,1);

In this context, a loop will be executed in parallel with P as index, from value 1. The
last parameter is used to identify the loop.

3.9. AN EXAMPLE OF USE OF THIS LIBRARY 45

The following step is search all the lines where speculative variable appear. In this
way, vector is used in lines 53 and 57 of sequential code. The first one is a load operation,
therefore, is replaced by specload function:

75 // ***
76 // speccode: speculative load. Original line:
77 // aux = vector[Q-1];
78 linear = (Q-1);
79 if(specload(linear , current , &value , (int *) vector , &my_IV_tail) == -1)
80 earlySquash (1);
81 aux = value;
82 // ***

Previous section contains the description of the arguments of the function. Specif-
ically, speculative structure vector and index Q should be indicated in order to show
which item is going to be used. To do so, linear variable is used (previously assigned
with Q-1). Also, the specload function checks if a situation of early squashing appears,
in which case, execution of this chunk of iterations is retried.

Second use of the vector variable is to be written. So, it should be replaced by the
function specstore:

86 // ***
87 // speccode: speculative store. Original line:
88 // vector[Q-1] = aux;
89 linear = (Q-1);
90 value = aux;
91 specstore(linear , current , value , &my_IV_tail);
92 // ***

Previous section contains the description of the arguments of the function. Specif-
ically, speculative structure vector and index Q should be indicated in order to show
which item is going to be used. To do so, linear variable is used (previously assigned
with Q-1). Also, the value to be stored is passed, in this case aux. Following the same
direction than linear variable, and to ease the implementation, this variable is replaced
by the auxiliary variable value.

Once replaced all load and store operations by their corresponding library functions,
an additional line should be added in the end of the loop:

109 endLoopSpecEngine(vector ,P,NITER ,1,1);

In this point, application has been parallelized with the use of the speculative library
described. Now, we only have to compile the code and execute it.

3.9.3 Resume
Steps performed to speculatively parallelize an application can be resumed in:

1. Identify the loop to be parallelized and its number of iterations.

2. Identify speculative variables and their size.

3. Configure the file variables.h with the number of iterations and the size of spec-
ulative variables.

46 CHAPTER 3. ORIGINAL SPECULATIVE LIBRARY

4. Add the headers of OpenMP and of the speculative library.

5. Initialize the structures of the engine and state private and shared variables of the
loop with the use of the OpenMP directives.

6. Introduce an initial sentence at the beginning of the speculative loop.

7. Replace load and store operations of the speculative variables with specload and
specstore functions respectively.

8. Introduce a final sentence in the end of the speculative loop.

Chapter 4

New speculative library

En este capítulo se describe un motor de paralelización especulativa de-
sarrollado por el autor como Trabajo de Fin de Grado [23], y que permite
solventar las limitaciones del motor descrito en el capítulo anterior.

Este motor también basa su ejecución en una ventana deslizante, y utiliza
elementos software para especular sobre códigos secuenciales. Al igual que
la librería de Cintra y Llanos [10] ya descrita, este motor deja en manos de
OpenMP la resolución de los detalles internos relativos al paralelismo, por
tanto, se deben clasificar las variables antes de la ejecución del bucle.

También se describen las nuevas estructuras de datos que se utilizarán,
principalmente, una matriz para cada slot de la ventana deslizante, donde se
almacenarán las variables sobre las que se especule: su dirección, tamaño,
su estado, etc.

Además se dará una descripción de la nueva implementación de las ope-
raciones de lectura, escritura y consolidación especulativas, adaptadas al
nuevo tipo de estructuras de datos con los que tendrán que trabajar.

En el capítulo siguiente se expondrán las limitaciones de este motor en
términos de rendimiento y su solución, que son el objeto de este trabajo.

47

48 CHAPTER 4. NEW SPECULATIVE LIBRARY

4.1 Introduction
We have developed a new TLS runtime library that supports the speculative execution of
for loops. The library architecture follows the same design principles of the speculative
parallelization library developed by Cintra and Llanos [10, 11]. In order to understand
our solution, a brief description of that proposal is needed.

Cintra and Llanos [10, 11] developed a runtime library that uses a sliding window
mechanism that allows the parallel execution of W consecutive chunks of iterations. Each
time the non-speculative thread finishes, a partial commit takes place; the thread executing
the following chunk becomes the new, non-speculative thread; and the window advances,
allowing the execution of new chunks of iterations.

Despite its good performance figures, the runtime library developed by Cintra and
Llanos suffers from severe limitations:

• Their library requires that all speculative variables were packed in a single, one-
dimensional vector before the start of the speculative loop. At this way, we should
modify the original source code of the applications introducing some lines to define
a new structure that save all the speculative variables. Moreover, this library can be
used only with vectors or matrix, do not support more complex structures.

• All speculative variables should share a single data type. In fact, sharing a single,
one-dimensional vector to save all the variables implies that all of them should be
from a single data type: char, int, double, etc.

• Speculative variables can only be accessed by name inside the loop (no references
by addresses or pointers were allowed).

• This runtime library creates W version copies of the entire speculative data struc-
ture, being W the size of the sliding window being used, instead of just keeping
version copies of the data elements recently accessed.

Our new thread-level speculative runtime library removes all these limitations. It al-
lows to speculatively access variables of any data type, both by name or by address, and
managing the space needed for version copies on demand. In this chapter we will briefly
show the general architecture of the library.

4.2 Data structures
The data structures needed by the new speculative library are depicted in Figure 4.1. The
sliding window mechanism is implemented by a matrix with W window slots (four in the
figure). Each slot acts as a “blackboard” used to handle the speculative execution of a
particular chunk of iterations. Two global variables, non-spec and most-spec, indicates
the slot assigned to the execution of the non-speculative and most-speculative chunks of
iterations at the moment. The STATE field indicates the state of the execution being carried
out in each slot.

The figure represents the parallel execution of a loop. The loop has been divided
into three chunks of iterations, and it will executed in parallel using three threads. It is

4.2. DATA STRUCTURES 49

1

Non−spec window slot

3

Most−spec window slot

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

18.997

b1

9

a1

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

7

a3 b3

25.8

&a 1 EXPLD

MOD&b 4 &b3

&a3

18.997

b2 c2

128.215 7

a2

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

8&c ELUP&c2

&b 4 EXPLD&b2

&a 1 &a2 MOD

Running Done Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User−labeled

&a

&b &b1 MOD

EXPLD&a11

4

Version copy data structures

Slot 1 Slot 2 Slot 3 Slot 4

Figure 4.1: Data structures of our new speculative library.

Exp. Loaded and Updated

(ELUP)

Exposed Loaded

(EXPLD)

Not Accessed

Modified

(MOD)

store

load

store

Spec.

Spec.

Spec.

Spec. load

Spec. load

Spec. load

Figure 4.2: State transition diagram for speculative data.

50 CHAPTER 4. NEW SPECULATIVE LIBRARY

very important to understand that there is not a fixed association between threads and
slots. Whenever a thread is assigned a new chunk of iteration, it is also assigned the
corresponding slot to work in. This allows to maintain an order relationship among the
chunks being executed.

In our example, thread working in slot 1 is executing the non-speculative chunk of
iterations (as indicated by its RUNNING state); the following chunk has been already exe-
cuted and its data has been left there to be committed after the non-spec chunk finishes
(since it is in DONE state), while the last one, the most-speculative chunk launched so far,
is also RUNNING. In other words, the thread in charge of the second chunk has already
finished, while the non-spec and most-spec threads are working. If more chunks were
pending, the freed thread would be assigned the following chunk, starting its execution
in slot 4. Slot 2 can not be re-used yet, because the execution of chunk 2 left changes to
speculative variables that are yet to be committed. As we will see in Section 4.5, when the
non-speculative thread working in slot 1 finishes, it will commit its results and the results
stored in all subsequent DONE slots, since commits should be carried out in order. After
that, in our example, the non-spec pointer will be advanced to slot 3 to reflect the new
situation.

In addition to its STATE, each slot points to a data structure that holds the version
copies of the data being speculatively accessed. Figure 4.1 represents a situation where
the programmer used three speculative variables. At a given moment, the thread executing
the non-speculative chunk has speculatively accessed variables a and b. Each row of
the version copy data structure keeps the information needed to manage the access to a
different speculative variable. The first column indicates the address of the original
variable, known as the reference copy. The second one indicates the data size. The third
one indicates the address of the local copy of this variable associated to this window slot.
Finally, the fourth column indicates the state associated to this local copy. Once accessed
by a thread, the version copies of the speculative data can be in three different states:
Exposed Loaded, indicating that the thread has forwarded its value from a predecessor
or from the main copy; Modified, indicating that the thread has written to that variable
without having consumed its original value; and Exposed Loaded and Updated, where a
thread has first forwarded the value for a variable and has later modified it. The transition
diagram for these states is shown in Figure 4.2.

Figure 4.1 represents a situation where the thread working in slot 1 has performed
a speculative load from variable a (obtaining its value from the reference copy) and a
speculative store to variable b. Regarding a, the figure shows that thread working in slots
3 has forwarded its value. With respect to variable b, the information in the figure shows
that b was overwritten both by threads working in slots 1 and 3.

4.3 Speculative load
The interface of specload() is as follows:

specload(UCHAR* addr, UINT size, UINT chunk_number, UCHAR* value)

Arguments have the following meaning:

1. addr: Is the address of the speculative variable.

4.3. SPECULATIVE LOAD 51

1

Non-spec window slot

3

Most-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

7

a3 b3

25.8

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

c2

128.215

Slot 1 Slot 2 Slot 3 Slot 4

Running Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

Running

Version copy data structures

(a)

1

Non-spec window slot

3

Most-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

7

a3 b3

25.8

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

c2

128.215

Slot 1 Slot 2 Slot 3 Slot 4

Running Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

Running

Version copy data structures

Value
not

found

1.1 ¿b?

1.2 ¿b?

(b)

Figure 4.3: Speculative load example (1/2). (a) Initial values of the example. (b) Thread
working in slot 2 scans its version copy to find the value.

52 CHAPTER 4. NEW SPECULATIVE LIBRARY

1

Non-spec window slot

3

Most-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

7

a3 b3

25.8

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

c2

128.215

Slot 1 Slot 2 Slot 3 Slot 4

Running Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

Running

Version copy data structures

2.1 Predecessor
version copy

is located

2.2 ¿b?

2.3 ¿b?

Predecessor
stored this

value

(c)

1

Non-spec window slot

3

Most-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

7

a3 b3

25.8

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

c2

128.21518.997

b2

Slot 1 Slot 2 Slot 3 Slot 4

Running Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

3.1 b's value
is copied

3.2 A new row
is added

(d)

Figure 4.4: Speculative load example (2/2). (c) Thread working in slot 2 goes to its
predecessor version copy data structure and scans it in order to find a value for b. (d) After
storing a copy of b’s value, thread working in slot 2 adds a new row to its version copy
data structure.

4.4. SPECULATIVE STORE 53

2. size: Is the size of the variable.

3. chunk_number: Is the number of the chunk being executed (needed to infer the slot
being used).

4. value: Is a pointer to a place to store the datum requested

Recall that specload() should return the most up-to-date value available for the spec-
ulative variable. Figures 4.3 and 4.4 show how the speculative load works. Suppose that
the thread working in slot 2 has only accessed to variable c so far (as is described in Fig-
ure 4.3(a)), and then it calls specload(&b, sizeof(b), 2, &value) to obtain a value
for b. The sequence of events is the following:

1. Thread working in slot 2 scans its version copy data structure to check whether a
value for b has been already stored there. As long as the only speculative variable
accessed so far is c, this search produces no results (see Figure 4.3(b)).

2. Our thread goes to its predecessor version copy data structure and scans it in order
to find a value for b. Its predecessor has stored a value for it, so our thread copies
its value to a new location (see Figure 4.4(c)). Note that, if no value for b were
found there, our thread would have gone to its predecessor, until the non-speculative
thread were found. If no predecessor had used the value, our thread would get the
value from the reference copy.

3. After storing a copy of b’s value, thread working in slot 2 adds a new row to its
version copy data structure, storing the address of b, its data size, the address of the
version copy of b being managed by the thread, and the new state for this version
copy, EXPLD (see Figure 4.4(d)).

The call to specload() finishes returning the value 18.997 in the address indicated by its
fourth parameter.

This operation also support early squashing (see Section 3.2.1).

4.4 Speculative store
specstore(UCHAR* addr, UINT size, UINT chunk_number, UCHAR* value)

Arguments have the following meaning:

1. addr: Is the address of the speculative variable.

2. size: Is the size of the variable.

3. chunk_number: Is the number of the chunk being executed (needed to infer the slot
being used).

4. value: Is a pointer to the value to be stored.

54 CHAPTER 4. NEW SPECULATIVE LIBRARY

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

FreeRunning

Most-spec window slot

3

(a)

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

FreeRunning

Most-spec window slot

3

A.1 ¿a?

Value
not

found

A.3 ¿a?

A.2 ¿a?

(b)

Figure 4.5: Speculative store example (1/3). (a) Initial values of the example. (b) Thread
working in slot 2 scans its version copy to find the value.

4.4. SPECULATIVE STORE 55

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2
B. A local copy
of a is created

C. A new row
is added

(c)

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

D.1 The successor
version copy

is located
D.2 ¿a?

D.3 ¿a?

E. Successor
loaded this

value

(d)

Figure 4.6: Speculative store example (2/3). (c) After creating a local copy of a, thread
working in slot 2 adds a new row to its version copy data structure. (d) Thread working
in slot 2 should check whether any successor has consumed an outdated value.In our
example, the search finds out that thread working in Slot 3 has consumed an incorrect
value for a.

56 CHAPTER 4. NEW SPECULATIVE LIBRARY

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

SQUASHED
F. Current
state is

changed

(e)

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

Free

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

G. most-spec
slot is

changed

Squashed

2

(f)

Figure 4.7: Speculative store example (3/3). (e) Thread working in slot 3 should be
squashed. To do so, thread working in slot 2 changes the state of slot 3 from RUNNING to
SQUASHED. (f) Thread working in slot 2 marks itself as the most-speculative thread, since
data stored in association with slot 3 is not longer valid.

4.4. SPECULATIVE STORE 57

As it can be observed, the interface of specstore() is the same as specload(), but in
this case the last parameter is a pointer to the value to be stored. Recall that specstore()
should not only store the new value, but also check whether a successor has consumed an
outdated value for it.

Figures 4.5, 4.6 and 4.7 show the sequence of events related to a speculative store.
Suppose that the thread working in slot 2 executes specstore(&a, sizeof(a), 2,
&temp), where temp holds the value 7. The sequence of events is the following, tak-
ing into account that initial values are depicted in Figure 4.5(a):

A. Thread working in slot 2 searches for a local version copy of a. At this moment,
only copies of c and b are stored in its version copy data structure, so the search
produces no results (see Figure 4.5(b)). If a were found, this thread would update
its status according to the state diagram of Figure 4.2, and it would proceed to step
D.

B. Thread working in slot 2 creates a local copy of a, storing value 7 on it. (see
Figure 4.6(c))

C. A new row is added to the version copy data structure, with a pointer to a, its
size, the pointer to the local copy and the status, that will be MOD in this case (see
Figure 4.2). All these operations will be seen in Figure 4.6(c).

D. After storing the value locally, thread working in slot 2 should check whether any
successor has consumed an outdated value. To do so, our thread would scan (in
increasing order of speculativeness) for any successor slot that holds a copy of a in
EXPLD or ELUP state. These states would indicate that the successor has used the
value. (see Figure 4.6(d))

E. In our example, the search finds out that thread working in Slot 3 has consumed an
incorrect value for a (see Figure 4.6(d)). If no dependence violation was detected,
the call to specstore() would finish here.

F. A dependence violation has been detected. Thread working in slot 3 should be
squashed. To do so, thread working in slot 2 changes the state of slot 3 from
RUNNING to SQUASHED (see Figure 4.7(e)). Since all threads check their own state
at the beginning of each specload() and specstore() call, thread working in
slot 3 will eventually discover that it has been squashed, and will execute a call to
commit_or_discard() to be assigned a new chunk (possibly the same) and start
the process again.

G. Finally, thread working in slot 2 marks itself as the most-speculative thread, since
data stored in association with slot 3 is not longer valid (see Figure 4.7(f)). The
most-spec pointer will be advanced later by the thread that will receive the task of
re-executing chunk 3.

If, after these events, thread working in slot 2 finishes its execution, while threads
associated to slot 1 and 3 are still working, we arrive to the situation shown in (see Fig-
ure 4.1). Note that, at that point, the thread working in slot 3 has already been re-started
and it has forwarded the most up-to-date value for a (that is, 7) from slot 2.

58 CHAPTER 4. NEW SPECULATIVE LIBRARY

4.5 Partial commit operation
The partial commit operation is exclusively carried out by the non-speculative thread.
Every time a thread executes commit_or_discard(), it first checks if it has not been
squashed and if is the non-speculative. If the thread is speculative, the slot is left to be
committed by the non-spec thread.

As in the case of previous operations, let us examine an example case: Suppose that
we are in the situation depicted in Figure 4.8(a), and the thread working in slot 2 finishes.

I At this time, thread working in slot 2 should change its state in order to show other
threads that its chunk of iterations have been executed, and should be committed(see
Figure 4.8(b)). However, this could only be performed by the non-speculative
thread.

II After that, the non-spec thread working in slot 1 finishes, therefore begins to com-
mit all of its values. Operations performed to carry out this task are depicted in
Figures 4.9(c) and 4.9(d). For example, b element should be committed, so it copies
the content of b1 into b.

III When no more elements are available, i.e., after committing the version copy data
structure associated to slot 1, it changes its state to FREE. (see Figure 4.10(e)).

IV Then this thread checks if any successor thread has finished its execution. In our ex-
ample the thread working in slot 2 has finished, so its elements must be committed.
(see Figure 4.10(f)).

V Elements of the slot 2 are committed following the order depicted in Figures 4.11(g),
4.11(h) and 4.12(i).

VI When no more elements are available, the state associated to thread working in
slot 2 is changed to FREE. (see Figure 4.12(j)).

VII The state of the thread working in the next slot is not DONE, then, commit operation
could be finished. Nevertheless, non-spec pointer should be advanced to this slot 3.
(see Figure 4.13(k)).

After these operations the situation depicted in Figure 4.13(l) is achieved. In this way,
version copies of slots committed are not entirely reset until another chunk of iterations is
assigned to them, and change its state to RUNNING.

It is interesting to note that each thread only writes on its local version copy data
structure, so no critical sections are needed to protect them. The only critical section used
protects the sliding window data structure, where a thread can overwrite another thread’s
state.

4.6 Initialization functions of the engine
This speculative library uses some data structures that should be initialized before the
execution of any speculative code. In this way, the two functions introduced in Section 3.7
have been re-used, but now they have a little bit different behaviour:

4.6. INITIALIZATION FUNCTIONS OF THE ENGINE 59

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

(a)

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Done
I. Current

state should
be changed

(b)

Figure 4.8: Speculative commit example (1/6). (a) Initial values of the example.
(b) Thread working in slot 2 finishes its chunk of iterations.

60 CHAPTER 4. NEW SPECULATIVE LIBRARY

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

Free

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Done

Running
II.1 This element

should be
committed

II.2 Local value
is located

II.3 Local value
is stored

in reference

Running
9

(c)

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Done

II.4 This element
should be
committed

II.5 Local value
is located

II.6 Local value
is stored

in reference

18.997

(d)

Figure 4.9: Speculative commit example (2/6). (c) Non-speculative thread finishes its
execution so its elements start to be committed. (d) The next value of the non-speculative
thread is committed.

4.6. INITIALIZATION FUNCTIONS OF THE ENGINE 61

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

STATE

Pointer to version copy

Sliding window
float bchar a

double c

9

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Done

III.1 No more
elements

18.997
Running

Free
III.2 Current
state should
be changed

(e)

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

STATE

Pointer to version copy

Sliding window
float bchar a

double c

9

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Done18.997

IV. This
slot should

be committed
Free

(f)

Figure 4.10: Speculative commit example (3/6). (e) No more elements are located in the
version copy of the non-speculative slot, so thread working in slot 1 changes its state from
RUNNING to FREE. (f) After change its own state, thread working in slot non-speculative,
checks if successor slots could be committed, i.e., if their states are DONE.

62 CHAPTER 4. NEW SPECULATIVE LIBRARY

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9

32.88

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Done

V.1 This element
should be
committed

V.2 Local value
is stored

18.997

V.3 Local value
is stored

in reference

128.215

(g)

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Done

V.4 This element
should be
committed

V.5 Local value
is located

18.997

V.6 Local value
is stored

in reference

128.215

18.997

(h)

Figure 4.11: Speculative commit example (4/6). (g) Thread working in slot non-
speculative starts to commit elements from slot 2 because its state was DONE. (h) The
next element from slot 2 is committed.

4.6. INITIALIZATION FUNCTIONS OF THE ENGINE 63

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Done

V.7 This element
should be
committed

V.8 Local value
is located

18.997

V.9 Local value
is stored

in reference

128.215

7

(i)

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Done
18.997

128.215

VI.1 No more
elements

Free
VI.2 Current
state should
be changed

(j)

Figure 4.12: Speculative commit example (5/6). (i) The last element from slot 2 is com-
mitted. (j) There are not more elements to commit, so, the state of this slot is changed
from DONE to FREE.

64 CHAPTER 4. NEW SPECULATIVE LIBRARY

1

Non-spec window slot

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Free18.997

128.215

3

Non-spec window slot

VII. Non-spec
slot should
be changed

(k)

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

18.997

b1

9

a1

9

a3 b3

25.8

18.997

b2 c2

128.215

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9

speculative

variables

User-labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Version copy data structures

FreeRunning

Most-spec window slot

3

&a 1 &a2 MOD

7

a2

Free18.997

128.215

3

Non-spec window slot

(l)

Figure 4.13: Speculative commit example (6/6). (k) No more slots could be committed,
therefore, pointer to non-speculative slot is updated. (l) Final situation.

4.7. USE OF THE ENGINE AND VARIABLE SETTINGS 65

• specinit: This function should assign the static, or dynamic, block size that slots will
use, and allocates memory needed by dynamic data structures used by this library.

• specstart: This function should initialize non-speculative and most-speculative point-
ers, states of the sliding window to the FREE state, and assigns the limit value of iter-
ations at run-time with the use of the single integer argument that use this function:
specstart(int iterations).

4.7 Use of the engine and variable settings
In a similar way than the previous engine, this library should implements some variables:

• threads: Indicate available threads to execute the problem.

• wsize: Window size, that is, the number of slots.

• blk: When block size is static, this variable implements this size, specifically, the
number of iterations that form blocks.

• maxiter: Maximum number of iterations of the loop to be parallelized.

Once implemented the values of these constants, some changes should be applied
in the original code: We should include OpenMP library, call initialization functions
(specinit and specstart(int iterations)), set the number of threads to be used (with the
function omp_set_num_threads(int threads)) and classify variables into two types: pri-
vate or shared; this is one of the requirements of OpenMP[1, 8, 15].

Standard variables to be classified are less than in the previous version (see Sec-
tion 3.8):

• Private: current, tid, retflag.

• Shared: wheel_ns, wheel_ms, wheel, upper_limit, varblock.

Speculative parallelization of the loop could be implemented using OpenMP direc-
tives. To perform load, store, and reduction operations over speculative variables should
be replaced original instructions with the functions described along this chapter.

Finally, when the execution of a thread ends, partial commit operation is performed
with the use of the threadend function, and this thread checks if there are any more blocks
to be executed.

4.8 An example of use of this library
An example developed in C language is going to be shown in order to know how to use the
described engine to speculative parallelize an application. The application of the example
will be the same of the described in the previous chapter, in Section 3.9. So in this case
the sequential code is omitted (see Section 3.9.1).

66 CHAPTER 4. NEW SPECULATIVE LIBRARY

4.8.1 Speculative Parallelization of the example
This new version of the library has only a few interface differences with the previous
one. So, only the main operations will be detailed, specifically, specload and specstore
operations. However a briefly resume of the first steps is described below (For more
information see Section 3.9.2):

1. Additional, headers and internal variables are defined.

2. A call to specinit() initializes the runtime speculative library. This is required
only once for the entire application.

3. Before the loop, the omp_get_num_threads() function is called to obtain the num-
ber of available threads.

4. A specstart() function is called to initialize the execution of the following paral-
lel loop.

5. All variables labeled are labeled as private or shared.

6. The original loop structure is replaced with a parallel for loop with just “threads”
iterations. This launches the number of desired threads.

7. A while(true) loop ensures that each thread repeatedly requires a chunk of itera-
tions from the original loop to be processed. If no chunks are left, a break statement
exits this loop and the end of the thread is reached.

8. Inside the loop, each thread receives the index of the first iteration of its assigned
chunk and proceeds with the original loop body.

Now, all the lines where speculative variable appear should be modified. The first load
operation (see line 53 of sequential application in Section 3.9.1) is replaced by specload
function:

// ***
// speccode: speculative load. Original line:
// aux = vector[Q-1];
// linear = (Q-1);
// if(specload(linear , current , &value , (int *) vector , &my_IV_tail) == -1)

if (specload ((unsigned char *) &(vector[Q-1]), sizeof (vector[Q-1]), current ,
(unsigned char *) &value) == -1)
earlySquash (1);

aux = value;
// ***

The code shown above contains old, and new, specload calls, in order to have a better
understanding of the differences between the two functions. For example, now, linear
variable is not used because the address of the variable is directly passed. This function
recovers the most up-to-date value for this variable. The exact behavior of specload()
has been described in Section 4.3. The value is stored in a private, temporal location.

The second operation related to speculative variables is a store in the line 57 of the
sequential application (see Section 3.9.1):

4.8. AN EXAMPLE OF USE OF THIS LIBRARY 67

// ***
// speccode: speculative store. Original line:
// vector[Q-1] = aux;
// linear = (Q-1);

value = aux;
// specstore(linear , current , value , &my_IV_tail);

specstore ((unsigned char *) &(vector[Q-1]), sizeof (vector[Q-1]), current , (
unsigned char *) &value);

// ***

In the same way than the previous load operation, two versions of the function have
been exposed. The new specstore function stores the value in a local version copy and
then checks whether a successor has already consumed an outdated value of vector[Q-1].
If so, the offending thread and some or all of its successors (depending on the squash
policy being defined [30]) are squashed. This function has been described in depth in
Section 4.4.

Finally, let us resume the remaining changes that should be applied to the original
code:

10. Once finished the original loop body, a call to commit_or_discard_data() checks
whether the thread has been squashed or not. If a squash operation was issued by
a predecessor, local copies of speculative data will be discarded. If the thread has
not been squashed and it is the not-spec one, a partial commit will occur. Partial
commits have been described in Section 4.5.

11. After finishing their tasks related to the current chunk, all threads check whether
there are no pending chunks to be executed. If there is no pending work, threads
leave the while loop.

When all threads have exited the while(true) loop, the end of the parallel section has
been reached and (despite the number of needed attempts) all chunks of iterations have
been successfully executed, and their results committed to the speculative variables.

68 CHAPTER 4. NEW SPECULATIVE LIBRARY

Chapter 5

Performance limitations and proposed
solutions

La librería de paralelización especulativa descrita en el capítulo anterior
soporta la inmensa mayoría de las aplicaciones secuenciales, sin embargo,
en la actualidad sus tiempos de ejecución son muy deficientes, llegando a
superar los obtenidos por las aplicaciones en una ejecución secuencial, por
tanto, su funcionalidad sería nula.

Para localizar los principales cuellos de botella de nuestro nuevo motor
especulativo, por una parte, se ha medido a través de llamadas al sistema el
tiempo de ejecución de las operaciones especulativas implicadas en la ejecu-
ción, obteniendo que las operaciones de lectura y escritura especulativas son
los principales cuellos de botella del sistema. Por otra parte, se han repetido
las medidas con la ayuda del profiler VTune Amplifier XE 2011 y el uso de
ICC, obteniendo el tiempo de cada operación, pero evitando así las llamadas
al sistema. En ambos casos las conclusiones fueron similares, es decir, el
sistema perdía mucho tiempo en las operaciones de lectura y escritura espe-
culativas. Se dedujo que el recorrido secuencial de las variables que utiliza
cada slot para especular era el principal problema, y por tanto, se optó por
aplicar tres posibles mejoras al sistema actual.

La primera de ellas se basa en reducir las llamadas al sistema operativo.
En el sistema original, cada operación de escritura o lectura que accedía a
una variable que no hubiera sido utilizada previamente, requería una primera
llamada al sistema para reservar memoria, y otra posterior para liberarla.
Con la ayuda de un vector auxiliar, conseguimos evitar esta reducción del
rendimiento.

Otra mejora aplicada a la consolidación de los datos es el uso de un
vector que almacene qué variables, de las utilizadas, han sido modificadas.
Con esto conseguimos que sólo estas variables sean consolidadas, sin necesi-
dad de revisar variables que sólo hayan sido leídas. Para lograr esto, se ha
utilizado un vector por cada slot de la ventana deslizante.

Por último, la tercera de las mejoras consiste en una estructura tridimen-
sional para almacenar los datos y conseguir reducir los tiempos de acceso
a las copias locales de los datos. Para ello se sustituye la matriz de datos

69

70 CHAPTER 5. PERFORMANCE LIMITATIONS AND PROPOSED SOLUTIONS

de cada slot, donde se almacenaba la copia local, por una matriz tridimen-
sional, donde la dimensión adicional sea una dirección hash a las variables
utilizadas.

5.1. LOCATING BOTTLENECKS IN THE TLS ENGINE 71

5.1 Locating bottlenecks in the TLS engine

In order to find the bottlenecks that our speculative engine have, we examined the source
code in detail to extract some ideas of the tasks that require more time.

The main problem we have located is related with one of the new functionalities im-
plemented. One of the main advantages of our new speculative parallelization library is
that each thread only allocates the memory needed to store local copies of the data being
speculatively accessed. This design decision comes at the cost of longer times to find the
most-up-to-date value in speculative loads, and longer times to detect dependence viola-
tions in speculative stores, since both operations should traverse all the values accessed by
all the predecessors and successors, respectively. Being T the number of threads, in [10],
this operation was in T × O(1) = O(T), since all the memory needed to any data that
might be accessed was allocated in advance. In our scheme, being N the number of data
elements stored locally, the search is done in T ×O(N) = O(TN).

In order to search for some results that endorse our theories, we implemented some
auxiliary structures to store time measurements of all the functions involved in the execu-
tion. We can take a view in the following code:

// time vectors
double time_specload [threads];
double time_specstore [threads];
double time_threadend [threads];
double time_commit [threads];

The vectors shown above save the time spent in the main speculative operations carried
out by each thread. With their help, we can collect information about the average time that
each function spent. In addition, we have included some code in the functions to perform
the measures. In the following example, we can see the additional code implemented in
the specload() function:

At the beginning of the function ...
#ifdef TIME_SPECLOAD

double time_ini , time_end ;
int id = omp_get_thread_num ();
time_ini = get_time ();

#endif
...
At the end of the function ...
#ifdef TIME_SPECLOAD

time_end = get_time ();
time_specload [id] += (time_end − time_ini);

#endif

Where get_time() is a function that returns the current time in microseconds. As we
can see, we have used an #IFDEF clause, in this way, we can measure a single function,
or all of them in the same execution. This parameters allow us to get only the interesting
values of each experiment. Experimental results show us that the main bottlenecks were in

72 CHAPTER 5. PERFORMANCE LIMITATIONS AND PROPOSED SOLUTIONS

the specload() and specstore() functions, thus reinforcing our initial guess that to traverse
all the values of predecessors, or successors, respectively, was the main bottleneck.

However, we decided to perform a tighter measures because of the lack of the use
of time counters, due to multitasking issues. Therefore, we perform a deeper analy-
sis using ICC (Intel C compiler). This compiler allows to profile the function’s time
just by modifying the compilation flags of the application. To do so, we added the flag
-profile-functions

However, one of the disadvantages that presents this software is that the use of OpenMP
with profiling functions is not allowed. Therefore we could use this measurement strategy
only in experiments with a single thread. Nevertheless, this requirement was acceptable
because it allowed us to extract a measure of the most time-consuming functions of the
software.

In this way, we needed to install the VTune Amplifier XE 2011 to be able to understand
the acquired results (some XML files produced after executing the application with the
mentioned compilation flag). Once installed, and executed, we could see that results were
similar than those obtained with the calls to the get_time() function. So, it becomes clear
that the best way to improve the performance of the speculative parallelization library was
to reduce runtime of specload() and specstore() functions.

Some of the main ideas developed to enhance the performance of these functions are
described below. However, for simplicity we will not give all the internal details, such as,
instructions reordering or changes in the kind of the iterator loops.

5.2 Reducing operating system calls
One of the problems detected was the excessive number of calls to the malloc() and free()
functions. To better understanding why, we will use an example. Suppose that a thread
executes one of the main speculative functions, i.e., specload() or specstore(). In this
context, thread searches in its matrix for the address of the datum being accessed. Imagine
that the datum has not been used yet, so it should be added to the matrix. In this process
of attaching the new data to the matrix of the thread, we have to allocate some memory to
store the local copy of this datum, therefore, the malloc() function should be called. The
reader can better follow this example with the help of Figures 4.3 and 4.4 (specload), or
in Figures 4.5, 4.6 and 4.7 (specstore) depicted in Chapter 4.

On the other hand, there is also need to free all the reserved memory, therefore, threads
call free() to free the memory occupied by all the values used by them when they are going
to reuse the slot of the sliding window. Data are not freed when a slot reaches the FREE
state. Instead, data are freed to run a different chunk of iterations when a new thread is
assigned to a new slot, becoming a RUN slot. Therefore, to perform this operation, all the
values should be freed one by one.

Obviously, these operations spend much time because they are called very frequently.
We devised that all of these operations could be changed by the implementation of a
container for all the data used by each thread. Hence, a new dynamic vector was developed
that allows to avoid almost all malloc() and free() operations: Local Version Data.

This new vector is needed by all the available threads. We have to perform an initial
call to the malloc() function to allocate the memory of the vector of each thread, in the

5.2. REDUCING OPERATING SYSTEM CALLS 73

same way, a final free() call is used to free the memory allocated. In this way, we only
have to call malloc() again if the vector is full, i.e., if all the space reserved to store data
has been used, and this occurs rarely. This solution greatly improves the performance
observed.

5.2.1 Implementation details

The new structure modifies the basic structures of the architecture: Initially we had an
structure with four entries, where one of them was a pointer to the local copy of the
datum. Instead, the new approximation manages an offset for each datum. In this way,
each datum will be stored in the Local Version Data vector in the position pointed by
its offset, from this position to the same position plus the size of the datum, i.e., each
position of the vector would store a byte, so, a datum that require four bytes to be stored
would need four positions in the vector.

Also, each slot of the sliding window requires an additional pointer to the actual offset
of its vector. Hence, the sliding window is augmented with another element to indicate
the first free position of this new vector.

This ideas will be better understood by the use of a graphical example. Figure 5.1(a)
shows the new structures that have to be implemented, and the initial values used in our
example. In this way, suppose that a single thread is in execution (to avoid an unnec-
essarily complex situation) and it has managed two data, c and b, with a size of 8 and
4 respectively. So, taking into account that this library is implemented in C language
(vectors begin at 0 position), actual offset of this thread will be 12.

On the other hand, Figure 5.1(b), and Figures 5.2(c) and (d) show how a new data
would be added to the version copy of a slot. At that moment, a new data is modified in
the context of this thread: a, with a size of 1. As it can be seen, this datum has not been
used yet (see Figure 5.1(b)). Therefore should be added.

First of all, datum is stored in the new Local Version Data vector. After storing
a copy of a’s value, thread working in slot 1 adds a new row to its version copy data
structure, storing the address of a, its data size, the offset where is stored the version
copy of a being managed by the thread, and the new state for this version copy, MOD (see
Figure 5.2(c)).

Finally, we should update the value of the first free position in the Version Data
vector, in this case, we should augment this value by one: 12+1 = 13 (see Figure 5.2(d)).

Regarding free() operations, threads of the primary solution needs to access sequen-
tially to all the elements of its version copy, to free separately each datum, and finally to
mark the first position as free. However, with the new version of the library, it is only
needed to set to 0 the first free position in the vector of local data, thus making the first
position of the version copy as free.

Therefore, this optimization avoids a sequential access to the elements of the version
copy of the threads. Specifically, being T the number of threads, and N the number of data
elements stored locally, this operation was initially in T×O(N) = O(TN). With the new
scheme the free is done in T × O(1) = O(T), so, this optimization should theoretically
improve the experimental results.

74 CHAPTER 5. PERFORMANCE LIMITATIONS AND PROPOSED SOLUTIONS

1

Non-spec window slot

b'c'

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

STATE

Pointer to version copy

Sliding window
float b

double c

23.4

32.88

speculative

variables

User-labeled

8&c ELUP0

&b 4 EXPLD8

Free

Version copy data structures

Free

Most-spec window slot

1

Running Free

Pointer to local version data

vector

Local version data structures

Actual first free position

12

128.215

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

18.997

(a)

1

Non-spec window slot

b'c'

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

STATE

Pointer to version copy

Sliding window
float b

double c

23.4

32.88

speculative

variables

User-labeled

8&c ELUP0

&b 4 EXPLD8

Free

Version copy data structures

Free

Most-spec window slot

1

Running Free

Pointer to local version data

vector

Local version data structures

Actual first free position

12

128.215

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

char a

9

1.1 ¿a?

Value
not

found

1.3 ¿a?

1.2 ¿a?

18.997

(b)

Figure 5.1: Optimization 1: Reducing operating system calls example (1/2). (a) Initial
values of the example with the new data structures of this optimization of the speculative
library. (b) Thread working in slot 1 scans its version copy to find the value.

5.2. REDUCING OPERATING SYSTEM CALLS 75

1

Non-spec window slot

b'c'

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

STATE

Pointer to version copy

Sliding window
float b

double c

23.4

32.88

speculative

variables

User-labeled

8&c ELUP0

&b 4 EXPLD8

Free

Version copy data structures

Free

Most-spec window slot

1

Running Free

Pointer to local version data

vector

Local version data structures

Actual first free position

12

128.215

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

char a

9

a'

7

2.1 A local copy
of a is created

&a 1 12 MOD 2.2 A new row
is added

18.997

(c)

1

Non-spec window slot

b'c'

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

STATE

Pointer to version copy

Sliding window
float b

double c

23.4

32.88

speculative

variables

User-labeled

8&c ELUP0

&b 4 EXPLD8

Free

Version copy data structures

Free

Most-spec window slot

1

Running Free

Pointer to local version data

vector

Local version data structures

Actual first free position

12

128.215

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

char a

9

a'

7&a 1 12 MOD

13

3. First free
position is
updated

18.997

(d)

Figure 5.2: Optimization 1: Reducing operating system calls example (2/2). (c) After
creating a local copy of a in its vector of local copies, thread working in slot 1 adds a new
row to its version copy data structure. (d) After storing a copy of a’s value, thread working
in slot 1 augment the indicator to the first position free in the vector of local copies.

76 CHAPTER 5. PERFORMANCE LIMITATIONS AND PROPOSED SOLUTIONS

1

Non-spec window slot

b'c'

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

STATE

Pointer to version copy

Sliding window
float b

double c

23.4

32.88

speculative

variables

User-labeled

8&c ELUP0

&b 4 EXPLD8

Free

Version copy data structures

Free

Most-spec window slot

1

Running Free

Pointer to local version data

vector

Local version data structures

Actual first free position

128.215

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

char a

9

a'

7&a 1 12 MOD

13tail 2

Indirection Matrix

1

3

18.997

1

2

3

Figure 5.3: Optimization 2: Structures with the Indirection Matrix

5.3 Commit optimization

Commit operations in the original library required to check all the local elements accessed
by the thread, both modified, and unmodified items.

So, in addition to the other modifications, we performed an optimization inspired in
the work described in [10, 11], an Indirection Matrix. This matrix aims to optimize
commit operations because it will be used to store a list of updated elements, in order to
only commit them.

With this solution, each thread will have its own vector of modified items, i.e., posi-
tions of this vector will point to the position of the updated item. Moreover, a new pointer
will be added, specifically, a tail pointer that will point out the position of the last modified
item of the Indirection Matrix. This new variable will ease the addition of new elements
to the vector. Now, to perform the commit operation it is only needed to copy the elements
of this list.

Figure 5.3 shows this new structures in the general architecture, including the opti-
mization of the vector with the local data. In the situation depicted in the example, imag-
ine that thread finishes the execution of its chunk of iterations, as long as the thread is the
non-spec one, it will begin to commit its elements. Therefore, it scans its Indirection
Matrix to locate those variables in ELUP or MOD state. In our example, c has been loaded
and updated, and a has been modified so it copies the content of a’ into a, and the content
of c’ into c. In this way, the attempt of committing the content of b is avoided, unlike
what happened in the original solution (see Figures 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13).

5.4. HASH STRUCTURE: VERSION COPY IN THREE DIMENSIONS 77

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

8&c ELUP0

&b 4 EXPLD8

Version copy data structures
vector

&a 1 12 MOD

1

2

3

M

0

1

X-1

2

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

vector

1

2

3

M

8&c ELUP0

&a 1 12 MOD

&b 4 EXPLD8

2

3

2

0

0

X-1

3D Version copy data structures

Figure 5.4: Optimization 3: Structures with three dimensions.

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

Version copy data structures of hash X-1
vector

&a 1 12 MOD1

2

3

M

0

1

X-1

2

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

8&c ELUP0

&b 4 EXPLD8

vector

1

2

3

M

Version copy data structures of hash 0

Hash list

Figure 5.5: Optimization 3: Structures with three dimensions, another point of view.

5.4 Hash structure: Version Copy in Three Dimensions
We should not forget that the main bottleneck comes from the sequential checks per-
formed during specload() and specstore() functions, where each element should be in-
spected to be compared with one of the arguments, to detect if it has been used before, or
to get the most updated value of it.

One way to speed up these searches is to switch to a different data structure to hold
local version copies of data. Instead of using a single table per thread as version copy data
structure, we have developed an alternative structure with X tables. Before accessing the
data, a module operation on the address of the user-defined speculative variable obtains
a hash H , in the range 0 . . . (X − 1). This hash is used to look into the Hth tables of all
predecessors and successors, effectively speeding up the search by an average factor of H
without increasing the time needed to add a new row to the corresponding table, leading
to O(T.N

H
) search times.

Figure 5.4 shows the new version copy structure in three dimensions with an example.
Suppose that the previous version copy of a thread has the values depicted on the left of
the figure. With the new structure in three dimensions, this version copy is transformed

78 CHAPTER 5. PERFORMANCE LIMITATIONS AND PROPOSED SOLUTIONS

into the structure shown on the right of the picture, supposing that the hash of c and b
is 0, and the hash of a is X-1. Also, the first value of each hash row that has not been
previously used, is marked as void. The same occurs with the third position (depth) of the
0 hash position, and the second position (depth) of the X-1 hash position.

In the practice, these ideas have been implemented with the mentioned third dimen-
sional structure but, in order to have a better understanding of this optimization, another
point of view could be used: Imagine the structure with three dimensions as if exists a
vector with H positions where each one of them have H pointers to H version copy struc-
tures, i.e., instead of using a version copy for each slot, use H version copies for each slot.
This idea, conceptually similar to the one explained in the previous paragraph and the
same example that is shown in Figure 5.4, is depicted in Figure 5.5.

The concepts introduced by the first optimization continues being correct, so, a sin-
gle local version data structure is used by each slot. In this way, variables used in
Figures 5.4 and 5.5 preserve the same offset values in the version without the third opti-
mization and in the new version.

On the other hand, the second optimization, that is, include an Indirection Matrix
to the schema, can not be used without the application of some modifications to allow that
the mentioned matrix has the same functionality than the previous one. The following
subsection introduces the modifications performed.

5.4.1 Changes needed in the Indirection Matrix

As we stated in the previous paragraphs the new version of the speculative parallelization
library uses an additional dimension to improve performance. Therefore, the Indirection
Matrix also needs to add an additional dimension to its structure, because in the previous
version of the scheme a single version copy was managed by each slot. Consequently,
if no changes were performed in the mentioned matrix, each position of the Indirection
Matrix will point to a single version copy instead of taking into account existing H
version copies. On the other hand, perform changes in the basis of the indirection
matrix by including the hash position H instead of the position of the datum in the version
copy is not desirable because a hash position will point to several data, and updating one
of them, its position would be added. By extension of this operation, all the row would
be added, including those data from the row that have not been modified. So, in this way
unmodified data would be committed.

Another problem detected if we follow this approximation is that the same row will
be attached several times in the same column of the mentioned matrix. This case will be
better understood by the use of an example. Suppose that a thread update a datum from
the hash position 30, that points to the address 5 000 of the memory. In order to follow the
semantics of the specstore() operation, this thread will add the datum to its matrix in the
30th hash position. Finally, this hash position is added to the Indirection Matrix, and the
pointer to the last data of this matrix is augmented. On the other hand, suppose that in the
next operation, the same thread update another datum, with the same hash, 30, but now,
the address pointed is, for example, 6 000. Then the datum will be added to the matrix of
the thread, and then, erroneously the hash position of this datum, 30, is attached again to
the Indirection Matrix.

5.5. FINAL STRUCTURE OF THE SPECULATIVE LIBRARY 79

Hence, we should attach a new dimension to the mentioned Indirection Matrix in order
to avoid this kind of errors. This implementation will allow to only commit the elements
of the hash position that have been used, instead of all of them. In this way, each one of
the version copies used will have its own indirection matrix, and the process of adding
a datum to this matrix is similar than the previous method, with the only difference that
now, H hash positions are used to obtain the third dimension of this new indirection cube.

By extension, it is needed to add a new dimension to the tail position of the indirection
matrix because each H hash position of the structure has its own number of modified items.

5.5 Final structure of the speculative library
Figure 5.6 shows the scheme with all the modifications performed.

5.5.1 Implementation details
In order to take advantage of two and three-dimensional matrix solutions we decided to
keep both types through the use of a compilation flag, namely MOTOR_2D or MOTOR_3D.

80 CHAPTER 5. PERFORMANCE LIMITATIONS AND PROPOSED SOLUTIONS

1

Non-spec window slot

b'c'

Slot 1 Slot 2 Slot 3 Slot 4

STATE

Pointer to version copy

Sliding window
float b

double c

23.4

32.88

speculative

variables

User-labeled

Free Free

Most-spec window slot

1

Running Free

Pointer to local version data

Local version data structure

First free position

128.215

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

char a

9

a'

7

13

tailIndirection Matrix

2

18.997

0

1

X-1

2

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

vector

1

2

3

M

8&c EXPLD0

&a 1 12 MOD

&b 4 ELUP8

2

3

2

0

0

X-1

3D Version copy data structure

0

1

X-1

2

1

1

0

0

1

*

*

#

#

Figure 5.6: Structure of the speculative library after include all the optimizations.

Chapter 6

Experimental evaluation

Para saber si las optimizaciones aplicadas a la librería de paraleliza-
ción especulativa conducen a beneficios en el tiempo de ejecución se han
desarrollado varios experimentos comparando los resultados obtenidos con
la versión original disponible, respecto a las desarrolladas tras realizar las
optimizaciones. Para ello se han utilizado dos tipos de benchmarks: aplica-
ciones utilizadas en el mundo real, y aplicaciones sintéticas para probar el
motor.

La aplicaciones reales son un subconjunto de algoritmos incrementales
aleatorios e incluyen el cierre convexo, el cálculo del menor círculo contene-
dor y la triangulación de Delaunay, para un conjunto de puntos bidimen-
sional en los tres casos.

Por otro lado, hemos utilizado tres aplicaciones sintéticas: la primera de
ellas, denominada ‘complete’, nos permite probar el uso de diferentes tipos
de datos en la misma aplicación, así como a estructuras de datos complejas.
La segunda de ellas, denominada ‘tough’, provoca un gran número de vio-
laciones de dependencia. Por último, la aplicación ‘fast’ es un benchmark
diseñado para generar ejecuciones mucho más rápidas que las versiones se-
cuenciales.

Los resultados experimentales para el cálculo del menor círculo contene-
dor muestran que, en el servidor empleado, las ejecuciones con la versión del
sistema que genera los mejores tiempos de ejecución, a partir de 12 proce-
sadores generarán tiempos mejores que los de la versión secuencial, con
un speedup de 1.14×. Además, en dicha versión, obtenemos resultados un
27.8% mejores que en la versión original.

Para el cálculo del cierre convexo, hemos utilizado dos conjuntos de datos
diferentes. Así, se han obtenido diferentes resultados según el conjunto de
datos empleado. Con el primero de ellos, un conjunto de puntos que dis-
tribuidos en forma de cuadrado, y en la versión que mejores resultados pro-
duce, hemos obtenido un speedup del 1.05× respecto a la versión secuencial.
Sin embargo, la ganancia respecto a la versión original de la librería es mu-
cho más elevada con una mejora del 421.4%. Con el segundo conjunto de
datos estudiado, se obtienen speedups en la mejor de las versiones de hasta
el 1.61× respecto a la versión secuencial, con una ganancia respecto a la

81

82 CHAPTER 6. EXPERIMENTAL EVALUATION

versión original del motor del 314.7%.
Para la triangulación de Delaunay hemos empleado dos conjuntos de

datos, uno de 100 000 puntos, y otro de 1 000 000. Los resultados de la ver-
sión secuencial son siempre mejores que los de la paralela para ambos con-
juntos de datos. La ganancia obtenida respecto a las versiones originales han
sido del 23.7% para el conjunto de datos de 100 000 puntos, y del 42.6% para
el otro. Además, esta aplicación nos permitió detectar errores en la librería,
ya que algunas ejecuciones con un cierto número de procesadores, provoca-
ban errores en la versión original. Sin embargo, estos errores han sido en su
mayoría resueltos en la versión más reciente del motor especulativo, como se
refleja en las tablas de resultados.

En cuanto a las aplicaciones sintéticas, cabe mencionar que lo que se
busca con ellas no es tanto reflejar el tiempo de ejecución, como comprobar
la solidez de nuestra solución. En este sentido, tanto las versiones ‘com-
plete’, como ‘tough’ fueron exitosas ya que se ejecutaron correctamente. Por
otro lado, la aplicación ‘fast’, además de no contener errores, genera eje-
cuciones más rápidas a partir de 2 procesadores en todas las versiones del
motor, llegando a alcanzar, para la versión que mejores resultados genera,
con 16 procesadores, una ganancia del 15.6× respecto a la versión secuen-
cial. La ganancia de la versión actual respecto la original es mínima para
esta aplicación, concretamente, un 1.2%.

6.1. BENCHMARKS DESCRIPTION 83

6.1 Benchmarks description
To test the speculative library, we have used both real-world and synthetic benchmarks. In
order to obtain a better understanding of the experimental results, both of them are going
to be explained.

6.1.1 Real-world benchmarks
First of all, we will briefly review a kind of algorithms called randomized incremental
algorithms, because all the benchmarks tested in our experiments are included in this
category.

Randomized incremental algorithms have been studied in depth in the context of Com-
putational Geometry and Optimization. Their use have allowed the development of sim-
ple, easy-of-implement and efficient algorithms that solve several problems. For exam-
ple, line segment intersection, Voronoi diagrams, triangulations of simple polygons, linear
programming and many others.

In its most general formulation, the input set of a randomized incremental algorithm
is a set of elements (can or can not be points) that are subjected to some operations to
obtain a certain output. In these algorithms, generally a loop iterates over all the ele-
ments that are inserted following a random order. The execution of two iterations in two
different processors simultaneously requires that no dependences exist between results
calculated in the first iteration and values needed by the second iteration. These kind
of algorithms present a common dependence pattern between the iterations of the loop
(the following section describes in depth this question) independently of the problem to
solve. Informally, it could be said that at the beginning of the execution, many of the
inserted elements modify the solution that is being calculated iteration by iteration. How-
ever, as the execution progresses, less dependences appear, i.e., less elements modify the
solution. Regarding complexity analysis, the expected complexity of a randomized incre-
mental algorithms would normally be much lower than the complexity found in the worst
case. Speculative parallelization is the most effective technique to execute in parallel this
dependences distribution.

Problems addressed to obtain experimental results are:

• Welzl algorithm to calculate the “2-dimensional Minimum Enclosing Circle” prob-
lem (2D-Mec).

• Clarkson et al. algorithm to calculate the “2-dimensional Convex Hull” problem
(2D-Hull).

• Jump-and-Walk strategy to calculate the “2-dimensional Delaunay Triangulation”
problem (2D-DT).

Minimum enclosing circle

The 2D-MEC problem consists in finding the smallest circle that encloses a set of points.
We have parallelized the randomized incremental approach due to Welzl [79], that solves
the problem in linear time. This algorithm starts with a circle of radius equal to zero

84 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.1: Minimum enclosing circle defined by three points.

located in the center of the search space. If a point lies outside the current solution, the
algorithm defines a new circle that uses this point as one of its frontiers. It is interesting to
note that points that laid inside the old solution may laid outside the new one. Therefore,
all points should be processed again to check if the new circle encloses them. The solution
can be defined by two or three points, and the algorithm is composed of three nested
loops. We have speculatively parallelized the innermost loop, that consumes 45% of the
total execution time.

Figure 6.1 shows an example of the minimum enclosing circle of a given input set.

Convex hull

The 2D-Hull problem solves the computation of the convex hull (smallest enclosing poly-
gon) of a set of points in the plane. We have parallelized Clarkson et al. [14] implemen-
tation [12, 36, 18]. The algorithm starts with a triangle composed by the first three points
and adds points in an incremental way. If the point lies inside the current solution, it will
be discarded. Otherwise, the new convex hull is computed. Note that any change to the
solution found so far generates a dependence violation, because other successor threads
may have been used the old enclosing polygon to process the points assigned to them.

Figure 6.2 shows an example of the convex hull of a given input set.

Delaunay triangulation

A triangulation is a subdivision of an area or plane polygon into a set of triangles, taking
into account that each side of the triangle is shared by two adjacent triangles. Analogously
a triangulation of a two-dimensional set of points is defined as a convex hull partition into
triangles. The structure is a maximal family of disjoint interior triangles whose vertices
are points of the set. Of course, there are not points located inside the triangles. Figure 6.3
shows that a single data set could generate different triangulations.

Delaunay triangulation [31] applied to a two-dimensional set of points affirms that a
network of triangles is a Delaunay triangulation if all the circumcircles of all the triangles
of the network are empty, i.e., the circumcircle of each triangle of the network contains

6.1. BENCHMARKS DESCRIPTION 85

Figure 6.2: Convex hull of a set of points.

Figure 6.3: Two different triangulations with the same set of points.

86 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.4: Delaunay triangulation of a set of points: Circumcircles of triangles shown do
not contain any point inside them.

Figure 6.5: Delaunay triangulation of a set of 100 points.

no other vertices that those three that define the triangle. This condition ensures that the
interior angles of the triangles are as large as possible and the length of the sides of the
triangles is minimal. See Figure 6.4.

In this case, the randomized incremental construction of the Delaunay triangulation
will be addressed by using Jump-and-Walk strategy, introduced by Mücke, Zhu et al. [59,
17]. This strategy uses a number of points, called anchors, whose containing triangles
are known. The algorithm finds the closest anchor to the point to be inserted (the jump
phase), and then transverses the current triangulation until the triangle that contains the
point to be inserted is found (the walk phase). After this location step, the algorithm
divides this triangle into three new triangles, and them updates the surrounding edges to
keep the Delaunay properties.

Figure 6.5 shows an example of the Delaunay triangulation of a given input set that
contains 100 points.

6.1. BENCHMARKS DESCRIPTION 87
C00: #define NITER 6000 T00: #define NITER 1000000, MAX 100 F00: #define NITER 30000
C01: int array[MAX], array2[MAX]; T01: int array[MAX]; F01: int array[MAX];
C02: struct card{ int field; }; ... F02: int i,j,k;
C03: struct card p1 = {3}, p2 = {99999}, p3 = {11111}; T02: #pragma omp parallel default(none) \ F03: int spec1=0, spec2=0;
C04: char aux_char = ’a’; T03: private(P) \ F04: int iter1, iter2;
C05: double aux_double = 3.435; T04: speculative(array) ...
C06: int i, j; T05: for (P = 0 ; P < NITER ; P++) { F06: #pragma omp parallel default(none) \

... T06: Q = P % (MAX) + 1; F07: private(i,k) shared(array,iter1,iter2) \
C07: #pragma omp parallel for default(none) \ T07: aux = array[Q-1]; F08: speculative(spec1,spec2)
C08: private(i,j) shared(array1,p2) \ T08: Q = (4 * aux) % (MAX) + 1; F09: for (i = 0 ; i < NITER ; i++) {
C09: speculative(p1,p3,aux_char,aux_double,array2) T09: array[Q-1] = aux; F10: if (i == iter1) j = spec1;
C10: for (i = 0 ; i < NITER ; i++) { T10: } F11: if (i == iter2) j = spec2;
C11: for (j = 0 ; j < NITER ; j++) { F12: for (k = 0; k<array[i%MAX]+j; k++) {
C12: if (i <= 1000) p1.field = array[i%4] + j; F13: if (k >= 29900)
C13: else array2[i%4] = p1.field; F14: spec1 = (k + array[(i+k)%MAX]) \
C14: if (i > 2000) aux_char = i%20 + 48 + aux_char%48; % NITER;
C15: else aux_char = i%20 + array[i%4]%10 + 48; F15: if (k <= 200) spec2 = array[i%MAX];
C16: if (i > 1500) F16: }
C17: aux_double = array[i%4]/(i+1) + aux_double; F17: if (i == NITER-1) spec1 = spec2;
C18: else array2[i%4] = (int) (aux_double / i*j) + \ F18: }

(array2[(i+j)%4] +i*j)%1234545;
C19: if (i*j > 10000) p1 = p2; else p3 = p1;
C20: }
C21: }

(a) (b) (c)

Figure 6.6: Synthetic benchmarks used: (a) Complete; (b) Tough; (c) Fast.

6.1.2 Synthetic benchmarks

Figure 6.6 shows the code of the three synthetic benchmarks used to perform the evalua-
tion of our speculative library: Complete, Tough and Fast.

Complete

The Complete benchmark, shown in Figure 6.6(a), aims to concurrently test the most
useful features of our solution, including (1) speculative access of data with different
sizes, and (2) speculative access to data structures. While executing this loop in parallel,
all the iterations lead to dependence violation.

Tough

The Tough benchmark, depicted in Figure 6.6(b), was designed to heavily test the robust-
ness of our solution and of the underlying consistency protocol used. All of its iterations
perform a load and a store on the same speculative data structure, with almost no compu-
tational load on private variables. This situation adversely affects performance, although
the number of dependence violations during parallel execution is relatively small (4.46%).

Fast

The Fast benchmark, shown in Figure 6.6(c), has been designed to test the efficiency of the
speculative scheduling mechanism. In this benchmark, only one of the 30 000 iterations
(0.003%) lead to a dependence violation. Note that this single dependence is enough to
prevent the compile-time parallelization of this loop.

88 CHAPTER 6. EXPERIMENTAL EVALUATION

6.2 Experimental results

6.2.1 Experimental environment
Experiments were carried out on an Intel S7000FC4URE server, equipped with four quad-
core Intel Xeon MPE7310 processors at 1.6GHz and 32GB of RAM. The system runs
Ubuntu Linux operating system. All threads had exclusive access to the processors during
the execution of the experiments, and we used wall-clock times in our measurements. We
have used gcc 4.6.2 for all applications, with -O4 optimization level. Times shown in
the following sections represent the time spent in the execution of the parallelized loop
for each application. The time needed to read the input set and the time needed to output
the results have not been taken into account.

To achieve a better measure of runtime in all the applications we have used the average
runtime of three executions all over experiments performed.

6.2.2 Engine version analyzed
Some different versions have been implemented in the process of development of the
speculative library. The main versions developed are:

• Original version (v-40): This is considered the initial version of the library, that is,
the version without any optimizations.

• Indirection Matrix Version (v-43): This version implements one of the described
optimizations, the Indirection Matrix.

• Version without system calls (v-45a): This version incorporates the Indirection
Matrix, and a second optimization, it removes all malloc() and free() functions re-
lated to memory allocation of local variables of the threads. During the development
of this version we have encountered and fixed several issues that made versions v-40
and v-43 to crash when executing several benchmarks.

• Three-dimensional Version (v-45b): The last version used implements Indirection
Matrices, removes all the functions mentioned in the previous point, and imple-
ments a three-dimensional structure in order to avoid the sequential access to all the
local elements of the threads.

To obtain more information about the mentioned optimizations see Chapter 5.

6.2.3 Real-world benchmarks evaluation
Minimum enclosing circle

The set of points used to execute this application consists on 10 000 000 points. The block
size used to perform the experiments with this application is 950 iterations per block.

With these experiments the two-dimensional structure produces the best results be-
cause this application does not use a big number of speculative variables, and then, it is
not necessary to add a memory overload in the execution. So, speedups obtained with the
three-dimensional version are too poor. Table 6.1 and Figure 6.7 show the results.

6.2. EXPERIMENTAL RESULTS 89

Number Speed-up Speed-up Speed-up Speed-up
of threads v-40 v-43 v-45a v-45b

1 0.084 0.081 0.118 0.116
2 0.166 0.162 0.229 0.213
4 0.272 0.309 0.432 0.310
6 0.451 0.447 0.606 0.331
8 0.565 0.536 0.699 0.288

10 0.646 0.656 0.869 0.282
12 0.736 0.730 1.038 0.292
14 0.820 0.818 1.092 0.283
16 0.892 0.839 1.140 0.288

Table 6.1: Experimental results after the execution of the application that calculates the
minimum enclosing circle of a set of points at Geopar server. The sequential time obtained
was 0.633 seconds.

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Processors

Minimum enclosing circle app speedup, Geopar

v-40
v-43

v-45a
v-45b

Figure 6.7: Speed-up obtained after executing 2D-MEC with the speculative library.

90 CHAPTER 6. EXPERIMENTAL EVALUATION

Convex hull

In this case, two different set of points have been used, but all of them have 10 000 000
points, and then we obtain two results with this application. The block size used by this
application has been different with each input set.

The three-dimensional structure produces the best results with both input sets. This
application uses a big number of speculative variables, so sequential accesses to all of
them was a big bottleneck. In this way, other versions have to perform accesses element
by element, and their results are worse than the three-dimensional version (v-45b).

The two different input sets are described below, and the results obtained for each one
are shown:

• Square.in: Contains a uniformly-distributed, square-shaped set of points. The
block size used to perform the experiments with this input set has been of 4 000
iterations per block. Table 6.2 shows the experimental results of the application
with this input set, and Figure 6.8 resumes the results obtained with this input set.

Number Speed-up Speed-up Speed-up Speed-up
of threads v-40 v-43 v-45a v-45b

1 0.021 0.021 0.032 0.100
2 0.040 0.041 0.061 0.191
4 0.077 0.079 0.118 0.353
6 0.111 0.114 0.171 0.510
8 0.143 0.145 0.219 0.645

10 0.172 0.176 0.264 0.775
12 0.200 0.203 0.307 0.876
14 0.225 0.228 0.348 0.981
16 0.248 0.252 0.382 1.045

Table 6.2: Experimental results after execute the application that calculates the convex
hull of a square-shaped input set at Geopar server. The sequential time obtained was
2.120 seconds.

• Kuzmin.in: Contains a uniformly-distributed, disc-shaped set of points that follows
a Kuzmin distribution. The block size used to perform the experiments with this
input set has been of 11 000 iterations per block. Table 6.3 shows the experimental
results of the application with this input set, and Figure 6.9 resumes the results
obtained with this input set.

Delaunay triangulation

With this application have been used two set of points with a different number of points.
Specifically we have used 1 000 000 of points to test the speculative library, and then a
subset of this that consists on 100 000 points. Block size used by this application is 1
iteration per block in both types of execution.

6.2. EXPERIMENTAL RESULTS 91

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Processors

2D-Hull app Speedup, Geopar

v-40
v-43

v-45a
v-45b

Figure 6.8: Speed-up obtained after executing 2D-Hull with the speculative library with
the Square input set.

Number Speed-up Speed-up Speed-up Speed-up
of threads v-40 v-43 v-45a v-45b

1 0.035 0.036 0.051 0.117
2 0.070 0.071 0.101 0.231
4 0.137 0.141 0.200 0.450
6 0.204 0.208 0.297 0.661
8 0.269 0.273 0.392 0.870

10 0.332 0.340 0.488 1.069
12 0.393 0.403 0.575 1.255
14 0.452 0.463 0.666 1.443
16 0.511 0.524 0.754 1.608

Table 6.3: Experimental results after execute the application that calculates the convex
hull of a disc-shaped input set that follows a kuzmin distribution at Geopar server. The
sequential time obtained was 1.652 seconds.

92 CHAPTER 6. EXPERIMENTAL EVALUATION

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Processors

2D-Hull app Speedup, Geopar

v-40
v-43

v-45a
v-45b

Figure 6.9: Speed-up obtained after executing 2D-Hull with the speculative library with
the Kuzmin input set.

Here the two-dimensional structure produces the best results. This application uses a
lot of speculative variables, however, its use is not synchronous, and then there are not
many variables in use at the same time. However, there are not any version that leads to
speedups higher than 1×.

Results obtained with the smallest input set used with this application are shown at
Table 6.4. A resume of this results can be found at Figure 6.10.

Results obtained with the other input set used with this application are shown at Ta-
ble 6.5. A resume of this results can be found at Figure 6.11.

6.2.4 Synthetic benchmarks evaluation
We have used the following synthetic examples in order to obtain some conclusions about
the speculative library:

• Complete to use several different structures.

• Tough to induce many dependence violations, thus forcing the runtime library.

• Fast to obtain a high speed-up.

Complete

To execute this application we have use a set of points of 4 points and a block size of 500
iterations per block.

Table 6.6 shows the experimental results. In this table it can be seen that the speedup
obtained is extremely poor. However, the main goal of the use of this kind of application

6.2. EXPERIMENTAL RESULTS 93

Number Speed-up Speed-up Speed-up Speed-up
of threads v-40 v-43 v-45a v-45b

1 0.354 0.356 0.450 0.408
2 0.449 0.431 0.559 0.582
4 0.509 0.487 0.611 0.347
6 0.564 0.484 0.612 0.292
8 0.508 0.466 0.604 0.258

10 0.528 0.505 0.643 0.248
12 0.528 0.513 0.653 0.239
14 0.526 0.503 0.646 0.230
16 − − 0.625 0.219

Table 6.4: Experimental results after execute the application that calculates Delaunay
triangulation of an input set of 100 000 points at Geopar server. The sequential time
obtained was 1.801 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Processors

Delaunay triangulation app Speedup, Geopar

v-40
v-43

v-45a
v-45b

Figure 6.10: Speed-up obtained after executing Delaunay triangulation with the specula-
tive library with the input set of 100 000 points.

94 CHAPTER 6. EXPERIMENTAL EVALUATION

Number Speed-up Speed-up Speed-up Speed-up
of threads v-40 v-43 v-45a v-45b

1 0.292 0.287 0.362 0.399
2 0.341 0.337 0.493 0.470
4 0.383 0.375 0.480 0.423
6 0.394 0.349 0.510 0.331
8 0.378 0.361 0.517 0.291

10 0.397 − 0.540 0.278
12 − − 0.552 0.270
14 − − 0.566 0.257
16 − − 0.557 −

Table 6.5: Experimental results after execute the application that calculates Delaunay
triangulation of an input set of 1 000 000 points at Geopar server. The sequential time
obtained was 21.946 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Processors

Delaunay triangulation app Speedup, Geopar

v-40
v-43

v-45a
v-45b

Figure 6.11: Speed-up obtained after executing Delaunay triangulation with the specula-
tive library with the input set of 1 000 000 points.

6.2. EXPERIMENTAL RESULTS 95

is achieved: The parallel execution finishes successfully. Figure 6.12 depict the speed-up
obtained with this application.

Number Speed-up Speed-up Speed-up Speed-up
of threads v-40 v-43 v-45a v-45b

1 0.040 0.036 0.047 0.045
2 0.013 0.012 0.012 0.028
4 0.013 0.012 0.014 0.017
6 0.013 0.013 0.015 0.015
8 0.013 0.013 0.014 0.013

10 0.013 0.012 0.013 0.014
12 0.014 0.011 0.014 0.014
14 0.012 0.012 0.013 0.014
16 0.013 0.011 0.013 0.013

Table 6.6: Experimental results after execute the complete synthetic application at Geopar
server. The sequential time obtained was 0.605 seconds.

Tough

To execute this application we have use a set of points of 100 points. Also, a block size of
100 iterations per block has been used.

Table 6.7 shows the experimental results. This table shows that the speedup obtained
continues being very low. However, the main goal of the use of this kind of application is
achieved: The parallel execution finishes successfully.

Number Speed-up Speed-up Speed-up Speed-up
of threads v-40 v-43 v-45a v-45b

1 0.074 0.071 0.108 0.129
2 0.040 0.037 0.050 0.095
4 0.020 0.019 0.025 0.022
6 0.016 0.015 0.021 0.019
8 0.015 0.013 0.019 0.016

10 0.013 0.012 0.017 0.013
12 0.011 0.010 0.015 0.013
14 0.010 0.009 0.014 0.011
16 0.009 0.008 0.012 0.010

Table 6.7: Experimental results after execute the tough synthetic application at Geopar
server. The sequential time obtained was 0.031 seconds.

Figure 6.13 depicts the speed-up obtained with this application.

96 CHAPTER 6. EXPERIMENTAL EVALUATION

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Processors

Synthetic complete app speedup, Geopar

v-40
v-43

v-45a
v-45b

Figure 6.12: Speed-up obtained after executing complete synthetic example with the spec-
ulative library.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Processors

Synthetic tough app speedup, Geopar

v-40
v-43

v-45a
v-45b

Figure 6.13: Speed-up obtained after executing tough synthetic example with the specu-
lative library.

6.3. GENERAL EVALUATION OF THE RESULTS 97

Fast

To execute this application we have use a set of points of 4 points. Furthermore, a block
size of 500 iterations per block has been used.

This application produces the best results with the two-dimensional structure of the
library, that is, the version v-45a.

In Table 6.8 can be found the experimental results obtained. Results of all versions
show that this benchmark produces speedups higher than 1× with all the executions that
use more than one processor. The parallel execution of this benchmark with 16 processors
leads to a 15.16× speedup with the version v-45a. The obtained efficiency, 94.75% for 16
threads, indicates that the overhead due to the speculative scheduling mechanism itself is
negligible.

Number Speed-up Speed-up Speed-up Speed-up
of threads v-40 v-43 v-45a v-45b

1 1.000 0.992 1.005 1.009
2 2.987 2.704 3.016 3.138
4 5.488 5.035 5.800 5.803
6 7.763 8.037 9.126 9.083
8 9.195 8.555 10.007 9.998

10 10.553 10.354 12.883 12.543
12 12.525 11.402 14.574 14.627
14 13.902 12.513 15.128 15.126
16 14.981 13.587 15.161 14.833

Table 6.8: Experimental results after execute the fast synthetic application at Geopar
server. The sequential time obtained was 4.467 seconds.

Figure 6.14 depicts the speed-up obtained with this application.

6.3 General evaluation of the results

Experimental results in terms of execution time clearly show that the improvements ap-
plied to the library have a direct repercussion on performance. All applications have better
execution times than those obtained in the previous version [23]. In this way,

However, results continue being worse than those achieved by Cintra and Llanos in its
purpose [10]. We could highlight the following reasons of this:

• One of the main problems is the inherent complexity that entails this development:
New library works correctly, however, we are comparing the performance of a rel-
atively new software, with another that have been developed, maintained and opti-
mized during more than ten years. So, it is easy to think that this new speculative
library could be substantially improved.

98 CHAPTER 6. EXPERIMENTAL EVALUATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Processors

Synthetic fast app speedup, Geopar

v-40
v-43

v-45a
v-45b

Figure 6.14: Speed-up obtained after executing fast synthetic example with the speculative
library.

• Second, unlike Cintra and Llanos solution, new speculative engine is designed to
execute speculatively the general case over random structures, not over a particular
case. Consequently, we have lost performance over specific cases.

Chapter 7

Conclusions and future work

El trabajo presentado ha consistido en las siguientes fases:

1. Se ha introducido la paralelización especulativa, describiendo el Estado
del Arte, tanto en lo que respecta al trabajo realizado por grupos de
todo el mundo como a las contribuciones del grupo Trasgo.

2. Para poner en perspectiva el trabajo realizado, se ha detallado:

(a) El funcionamiento del motor base de ejecución especulativa desa-
rrollado por Cintra y Llanos.

(b) El funcionamiento de un nuevo motor que soluciona las principales
limitaciones del anterior, y que fue desarrollado por el autor de este
Trabajo de Fin de Máster en su anterior Trabajo de Fin de Grado.

3. Gracias en parte al estudio del Estado del Arte, se han localizado los
principales cuellos de botella en el motor mencionado anteriormente, y
se han enumerado soluciones que podrían mejorar su rendimiento.

4. Se han implementado dichas mejoras en el motor.

5. Se han obtenido resultados experimentales que constatan las mejoras
producidas por las optimizaciones descritas.

Tras la finalización de este trabajo podemos afirmar que:

• El análisis del Estado del Arte nos permite concluir que el uso de técni-
cas de paralelización especulativa, aún teniendo en cuenta las mejoras
introducidas, no produce mejoras en el rendimiento de las aplicaciones
secuenciales si el número de violaciones de dependencias es demasiado
alto. Por el contrario, si hay pocas dependencias, la paralelización es-
peculativa generalmente producirá buenos resultados.

• Se ha confirmado que los principales cuellos de botella se producían
debido a los accesos secuenciales a las matrices de datos locales pro-
ducidos por cada llamada a las operaciones de lectura y escritura es-
peculativas.

• Optimizaciones como la reducción de llamadas al sistema para reservar
y liberar memoria, o la sustitución de estructuras de datos para evitar

99

100 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

el recorrido secuencial de elementos, conllevan mejoras reales en los
tiempos de ejecución.

• El trabajo realizado ha dado lugar a que la nueva versión del motor
especulativo permita la ejecución de aplicaciones en paralelo más ráp-
idamente que sus correspondientes ejecuciones secuenciales.

• Pese a las mejoras introducidas, el motor original de Cintra y Llanos,
aunque no dispone de las funcionalidades requeridas para ser puesto en
producción, sigue siendo más rápido que el nuestro, aunque confiamos
en alcanzar su rendimiento en un futuro próximo.

Como principales vías para la continuación de este TFM podríamos destacar:
aplicar técnicas de squash exclusivo, mejorar aún más las estructuras de
datos utilizadas para optimizar los recorridos, implementar operaciones de
reducción, optimizar la memoria empleada por el motor, exportar la librería
a un entorno de GPUs o aplicar técnicas de predicción de valores. Todo
esto tiene como objetivo explotar al máximo las posibilidades de paraleli-
zar aplicaciones que a priori no podrían paralelizarse, y obtener tiempos de
ejecución mucho menores.

Finalmente, cabe decir que este trabajo forma parte de un artículo cientí-
fico denominado “OpenMP meets TLS”, enviado el día 17 de julio de 2013 al
congreso ASPLOS (Architectural Support for Programming Languages and
Operating Systems), considerado el congreso más importante del mundo en
este ámbito, y calificado según la escala CORE 2008 como A*.

7.1. SUMMARY 101

7.1 Summary
The work carried out in this Master Thesis consists in the following topics:

1. We have presented the field of speculative parallelization of applications, showing
the State of the Art, not only with respect to the work of the main research groups,
but also showing the contributions of the Trasgo research group. This allowed us to
put our own work in the field in a wider perspective.

2. In order to gain perspective of the work carried out in this Master Thesis:

(a) We have described the behavior of the original, speculative parallelization en-
gine developed by Cintra and Llanos in 2003.

(b) We have shown the behavior of the new speculative engine that overcomes the
limitations of the former one, developed by the author of this Master Thesis
as part of his B.Sc. Thesis in 2012.

3. The main disadvantage of this speculative library was its poor performance. Thanks
in part to the related work, we have isolated the main bottlenecks of our system, and
we found solutions that we expected to improve the library performance.

4. We have implemented these solutions in the library.

5. The experimental results obtained, both with real-world and synthetic applications,
show the correctness of the solutions proposed.

7.2 Conclusions
As the main conclusions of this Master Thesis we can say that:

• The study of the State of the Art led us to the conclusion that the use of speculative
parallelization techniques, even taking into account the improvements introduced
in this work, does not always lead to a better performance, in particular when the
number of dependence violations issued at runtime is high.

• We have correctly predicted that the main bottlenecks of the system was due to the
sequential accesses to local data structures, provoked by calls to the speculative load
and store operations.

• Optimizations such as the reduction in the number of memory management system
calls, and the replacement of data structures to avoid their sequential traversing,
lead to real improvements in the execution time.

• Finally, the work carried out during this Master Thesis leads to a new version of
the speculative parallelization library that effectively speeds up the running time of
sequential applications.

• Despite of the work carried out so far, the original Cintra and Llanos’ library is
still faster, although we are confident in being able to reach that figures in the near
future.

102 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.3 Future work
The future work is related to add to our system some of the techniques described in the
State of the Art, and create new ones. In particular:

• One of the best optimizations applied to the original speculative library was the
incorporation of exclusive squashing techniques. The original squash implementa-
tion, called inclusive squashing, consists on discarding the offending thread and all
its successors. Exclusive squashing, on the other hand, only discards threads that
have consumed “polluted” data [28].

• To optimize the store of the pointer addresses. Right now, addresses are stored with
the use of integers with a size of 4 or 8 bytes. With this new optimization, if an
address value is higher than pointer size, it would be stored. On the other hand, if
the size do not achieve the pointer size, it would directly save the datum.

• Original architecture supports sum and calculation of the maximum operations,
however these improvements are not applied to the new engine.

• Apply some of the ideas located in [85] to achieve an architecture that supports
GPU-TLS and pointer-based applications.

• Another possible way to improve the actual library will be the implement a “value
prediction” in the same way that Raman et al. did in [67].

• Use the structure described in [83] to decrease memory overheads of the current
library.

7.4 Publications
• Álvaro Estébanez, Diego R. Llanos, Arturo González-Escribano. Desarrollo de un

motor de paralelización especulativa con soporte para aritmética de punteros. In
Proceedings of the XXIII Jornadas de Paralelismo, Elche, September 2012. Pub-
lished.

• Sergio Aldea, Álvaro Estébanez, Diego R. Llanos, Arturo González-Escribano.
OpenMP meets TLS. In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
ASPLOS 19, Salt Lake City, Utah, March 2014. Submitted

Appendix A

CD-Rom contents

En este apéndice se recoge el contenido del CD adjunto a la documentación.

This appendix serves to describes contents of the digital support attached to this doc-
umentation. The CD-ROM are structure in several directories:

• Memoria: It contains a PDF copy of this documentation.

103

104 APPENDIX A. CD-ROM CONTENTS

Bibliography

[1] OpenMP specification, version 4.0. http://www.openmp.org/mp-
documents/OpenMP_4.0_RC2.pdf.

[2] Intel architecture set extensions programming reference.
http://software.intel.com/file/36945, 2013.

[3] Yehuda Afek, Amir Levy, and Adam Morrison. Programming with hardware lock
elision. In Proceedings of the 18th ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPoPP ’13, pages 295–296, New York, NY, USA,
2013. ACM.

[4] Sergio Aldea, Diego R. Llanos Ferraris, and Arturo González-Escribano. Extend-
ing a source-to-source compiler with xml capabilities. In Proceedings of the XXI
Jornadas de Paralelismo, Valencia, Spain, September 2010.

[5] Sergio Aldea, Diego R. Llanos Ferraris, and Arturo González-Escribano. Towards a
compiler framework for thread-level speculation. In PDP, pages 267–271, 2011.

[6] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas
Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese.
Piranha: a scalable architecture based on single-chip multiprocessing. In Procee-
dings of the 27th annual international symposium on Computer architecture, ISCA
’00, pages 282–293, New York, NY, USA, 2000. ACM.

[7] Mikael Berndtsson, Jörgen Hansson, Björn Olsson, and Björn Lundell. Thesis
Projects, A Guide for Students in Computer Science and Information Systems.
Springer, 2nd edition, October 2007. ISBN 978-1848000087.

[8] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, and Jeff
McDonald. Parallel Programming in OpenMP. Morgan Kaufmann, 1 edition, Oc-
tober 2000.

[9] Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu, and Pen-Chung Yew. Data de-
pendence profiling for speculative optimizations. In Evelyn Duesterwald, editor,
Compiler Construction, volume 2985 of Lecture Notes in Computer Science, pages
57–72. Springer Berlin Heidelberg, 2004.

[10] Marcelo Cintra and Diego R. Llanos. Toward efficient and robust software specula-
tive parallelization on multiprocessors. In Proceedings of the SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), June 2003.

105

106 BIBLIOGRAPHY

[11] Marcelo Cintra and Diego R. Llanos. Design space exploration of a software specu-
lative parallelization scheme. IEEE Trans. on Paral. and Distr. Systems, 16(6):562–
576, June 2005.

[12] Marcelo Cintra, Diego R. Llanos, and Belén Palop. Speculative parallelization of a
randomized incremental Convex Hull algorithm. In ICCSA 2004: Proc. Intl. Conf.
on Computer Science and its Applications, pages 188–197, Perugia, Italy, May 2004.
Springer-Verlag LNCS 3045, ISSN 0302-9743.

[13] Marcelo Cintra, José F. Martínez, and Josep Torrellas. Architectural support for
scalable speculative parallelization in shared-memory multiprocessors. In Proc. of
the 27th intl. symp. on Computer architecture (ISCA), pages 256–264, June 2000.

[14] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental
constructions. Comput. Geom. Theory Appl., 3(4):185–212, 1993.

[15] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API
for shared-memory programming. IEEE Computational Science & Engineering,
5(1):46–55, March 1998.

[16] Francis Dang, Hoo Yu, and Lawrence Rauchwerger. The R-LRPD Test: Speculative
Parallelization of Partially Parallel Loops. In Proc. of the 16th International Parallel
and Distributed Processing Symposium (IPDPS ’02), April 2002.

[17] L. Devroye, E. P. Mücke, and Binhai Zhu. A note on point location in delaunay
triangulations of random points. Algorithmica, 22(4):477–482, 1998.

[18] Pedro Díaz, Diego R. Llanos, and Belén Palop. Parallelizing 2D-convex hulls on
clusters: Sorting matters. In Proc. XV Jornadas de Paralelismo, pages 247–252,
Almería, Spain, September 2004. ISBN 84-8240-714-7.

[19] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang
Zhang. Software behavior oriented parallelization. In Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and implementation, PLDI
’07, pages 223–234, New York, NY, USA, 2007. ACM.

[20] Jialin Dou and Marcelo Cintra. Compiler estimation of load imbalance overhead
in speculative parallelization. In Proceedings of the 13th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’04, pages 203–214,
Washington, DC, USA, 2004. IEEE Computer Society.

[21] Jialin Dou and Marcelo Cintra. A compiler cost model for speculative paralleliza-
tion. ACM Trans. Archit. Code Optim., 4(2), June 2007.

[22] Zhao-Hui Du, Chu-Cheow Lim, Xiao-Feng Li, Chen Yang, Qingyu Zhao, and Tin-
Fook Ngai. A cost-driven compilation framework for speculative parallelization of
sequential programs. In Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation, PLDI ’04, pages 71–81, New
York, NY, USA, 2004. ACM.

BIBLIOGRAPHY 107

[23] Álvaro Estébanez López, Diego R. Llanos, and Arturo González-Escribano. De-
sarrollo de un motor de paralelización especulativa con soporte para aritmética de
punteros. Trabajo de fin de grado, Universidad de Valladolid, July 2012.

[24] Álvaro Estébanez López, Diego R. Llanos, and Arturo González-Escribano. De-
sarrollo de un motor de paralelización especulativa con soporte para aritmética de
punteros. In Proceedings of the XXIII Jornadas de Paralelismo, Elche, Alicante,
Spain, September 2012.

[25] Álvaro Estébanez López, Diego R. Llanos, and Arturo González-Escribano. Parale-
lización especulativa de un algoritmo para el menor círculo contenedor. Proyecto de
fin de carrera, Universidad de Valladolid, September 2011.

[26] Min Feng, Rajiv Gupta, and Iulian Neamtiu. Effective parallelization of loops in the
presence of i/o operations. In Proceedings of the 33rd ACM SIGPLAN conference
on Programming Language Design and Implementation, PLDI ’12, pages 487–498,
New York, NY, USA, 2012. ACM.

[27] Lin Gao, Lian Li, Jingling Xue, and Pen-Chung Yew. Seed: A statically-greedy and
dynamically-adaptive approach for speculative loop execution. IEEE Transactions
on Computers, 62(5):1004–1016, 2013.

[28] Álvaro García-Yágüez, Diego R. Llanos, and Arturo González-Escribano. Exclusive
squashing for thread-level speculation. In Proceedings of the 20th international
symposium on High performance distributed computing, HPDC ’11, pages 275–276,
New York, NY, USA, 2011. ACM.

[29] Alvaro Garcia-Yaguez, Diego R. Llanos, and Arturo Gonzalez-Escribano. Robust
thread-level speculation. In Proceedings of the 2011 18th International Conference
on High Performance Computing, HIPC ’11, pages 1–11, Washington, DC, USA,
2011. IEEE Computer Society.

[30] Alvaro Garcia-Yaguez, Diego R. Llanos, and Arturo Gonzalez-Escribano. Squash-
ing alternatives for software-based speculative parallelization. IEEE Transactions
on Computers, 99(PrePrints):1, 2013.

[31] Alvaro Garcia-Yaguez, Diego R. Llanos, David Orden, and Belen Palop. Paraleliza-
ción especulativa de la triangulación de delaunay. In Proc. XX Jornadas de Parale-
lismo, A Coruña, Spain, September 2009.

[32] Alok Garg, Raj Parihar, and Michael C. Huang. Speculative parallelization in decou-
pled look-ahead. In Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques, PACT ’11, pages 413–423, Washington,
DC, USA, 2011. IEEE Computer Society.

[33] María Jesús Garzarán, Milos Prvulovic, José María Llabería, Víctor Viñals,
Lawrence Rauchwerger, and Josep Torrellas. Tradeoffs in buffering speculative
memory state for thread-level speculation in multiprocessors. ACM Trans. Archit.
Code Optim., 2(3):247–279, September 2005.

108 BIBLIOGRAPHY

[34] Arturo González-Escribano and Diego R. Llanos. Paralelización especulativa y sus
alternativas. Actas XVIII Jornadas de Paralelismo, 2007.

[35] Arturo González-Escribano, Diego R. Llanos, David Orden, and Belén Palop. Eje-
cución paralela de algoritmos incrementales aleatorizados. In Francisco Santos and
David Orden, editors, Proc. XI Encuentros de Geometría Computacional, pages 79–
86, Santander, Spain, June 2005. ISBN 84-8102-963-7.

[36] Arturo González-Escribano, Diego R. Llanos, David Orden, and Belén Palop. Par-
allelization alternatives and their performance for the convex hull problem. Applied
Mathematical Modelling, special issue on Parallel and Vector Processing in Science
and Engineering, 30(7):563–577, July 2006. ISSN 0307-904X.

[37] S. Gopal, T. N. Vijaykumar, J.E. Smith, and G.S. Sohi. Speculative versioning cache.
In High-Performance Computer Architecture, 1998. Proceedings., 1998 Fourth In-
ternational Symposium on, pages 195–205, 1998.

[38] Lance Hammond, Benedict A. Hubbert, Michael Siu, Manohar K. Prabhu, Michael
Chen, and Kunle Olukotun. The stanford hydra cmp. IEEE Micro, 20(2):71–84,
March 2000.

[39] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for
a chip multiprocessor. In Proc. of the 8th Intl. Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 58–69, 1998.

[40] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,
Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle
Olukotun. Transactional memory coherence and consistency. In Proceedings of the
31st annual international symposium on Computer architecture, ISCA ’04, pages
102–, Washington, DC, USA, 2004. IEEE Computer Society.

[41] Ben Hertzberg and Kunle Olukotun. Runtime automatic speculative paralleliza-
tion. In Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’11, pages 64–73, Washington, DC, USA,
2011. IEEE Computer Society.

[42] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Min-cut program de-
composition for thread-level speculation. In Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and implementation, PLDI ’04,
pages 59–70, New York, NY, USA, 2004. ACM.

[43] Chuanle Ke, Lei Liu, Chao Zhang, Tongxin Bai, Brian Jacobs, and Chen Ding. Safe
parallel programming using dynamic dependence hints. In OOPSLA’11 Procee-
dings, pages 243–258. ACM, 2011.

[44] Arun Kejariwal, Xinmin Tian, Milind Girkar, Wei Li, Sergey Kozhukhov, Utpal
Banerjee, Alexander Nicolau, Alexander V. Veidenbaum, and Constantine D. Poly-
chronopoulos. Tight analysis of the performance potential of thread speculation
using spec cpu 2006. In Proceedings of the 12th ACM SIGPLAN symposium on

BIBLIOGRAPHY 109

Principles and practice of parallel programming, PPoPP ’07, pages 215–225, New
York, NY, USA, 2007. ACM.

[45] Arun Kejariwal, Xinmin Tian, Wei Li, Milind Girkar, Sergey Kozhukhov, Hideki
Saito, Utpal Banerjee, Alexandru Nicolau, Alexander V. Veidenbaum, and Constan-
tine D. Polychronopoulos. On the performance potential of different types of specu-
lative thread-level parallelism: The dl version of this paper includes corrections that
were not made available in the printed proceedings. In Proceedings of the 20th an-
nual international conference on Supercomputing, ICS ’06, pages 24–, New York,
NY, USA, 2006. ACM.

[46] K. Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. Fast track: A software
system for speculative program optimization. In Code Generation and Optimization,
2009. CGO 2009. International Symposium on, pages 157 –168, march 2009.

[47] Hanjun Kim, Arun Raman, Feng Liu, Jae W. Lee, and David I. August. Scalable
speculative parallelization on commodity clusters. In Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’43,
pages 3–14, Washington, DC, USA, 2010. IEEE Computer Society.

[48] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L. Paul Chew. Optimistic parallelism requires abstractions. In PLDI 2007
Proceedings, pages 211–222. ACM, 2007.

[49] Shun-Tak Leung and John Zahorjan. Improving the performance of runtime paral-
lelization. In Proceedings of the fourth ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPOPP ’93, pages 83–91, New York, NY,
USA, 1993. ACM.

[50] Shaoshan Liu, C. Eisenbeis, and J.-L. Gaudiot. Speculative execution on gpu: An
exploratory study. In Parallel Processing (ICPP), 2010 39th International Confer-
ence on, pages 453–461, 2010.

[51] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau, and
Josep Torrellas. Posh: a tls compiler that exploits program structure. In Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’06, pages 158–167, New York, NY, USA, 2006. ACM.

[52] Diego R. Llanos. Thread–level speculative parallelization. In P. Alberigo, G. Er-
bacci, and F. Garofalo, editors, Science and Supercomputing in Europe, 2004 Annual
Report, pages 211–213. CINECA, Italy, 2005. ISBN 88-86037-15-5.

[53] Diego R. Llanos. Introducción a las técnicas de ejecución especulativa. In Procee-
dings of speculative parallelization at running time (UVa), October 2008.

[54] Diego R. Llanos. Un modelo software de ejecución especulativa. In Proceedings of
speculative parallelization at running time (UVa), October 2008.

110 BIBLIOGRAPHY

[55] Diego R. Llanos, David Orden, and Belén Palop. Meseta: A new scheduling strategy
for speculative parallelization of randomized incremental algorithms. In Proc. 2005
ICPP Workshops (HPSEC-05), pages 121–128, Oslo, Norway, June 2005. ISBN
0-7695-2381-1, IEEE Press.

[56] Diego R. Llanos, David Orden, and Belén Palop. New scheduling strategies for ran-
domized incremental algorithms in the context of speculative parallelization. IEEE
Transactions on Computers, 56(6):839–852, 2007.

[57] M. Gupta and R. Nim. Techniques for speculative run-time parallelization of loops.
Supercomputing, November 1998.

[58] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing sequen-
tial applications on commodity hardware using a low-cost software transactional
memory. In Proceedings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’09, pages 166–176, New York, NY,
USA, 2009. ACM.

[59] Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast randomized point location without
preprocessing in two- and three-dimensional delaunay triangulations. In IN PROC.
12TH ANNU. ACM SYMPOS. COMPUT. GEOM, pages 274–283, 1996.

[60] Cosmin E. Oancea, Alan Mycroft, and Tim Harris. A lightweight in-place imple-
mentation for software thread-level speculation. In Proceedings of the twenty-first
annual symposium on Parallelism in algorithms and architectures, SPAA ’09, pages
223–232, New York, NY, USA, 2009. ACM.

[61] Kunle Olukotun, Lance Hammond, and Mark Willey. Improving the performance
of speculatively parallel applications on the hydra cmp. In Proceedings of the 13th
international conference on Supercomputing, ICS ’99, pages 21–30, New York, NY,
USA, 1999. ACM.

[62] Manohar K. Prabhu and Kunle Olukotun. Exposing speculative thread parallelism
in spec2000. In Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’05, pages 142–152, New York, NY,
USA, 2005. ACM.

[63] Prakash Prabhu, Ganesan Ramalingam, and Kapil Vaswani. Safe programmable
speculative parallelism. In Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’10, pages 50–61, New
York, NY, USA, 2010. ACM.

[64] Joan Puiggali, Boleslaw K Szymanski, Teo Jové, and Jose L Marzo. Dynamic branch
speculation in a speculative parallelization architecture for computer clusters. Con-
currency and Computation: Practice and Experience, 2012.

[65] Carlos García Quiñones, Carlos Madriles, Jesús Sánchez, Pedro Marcuello, Antonio
González, and Dean M. Tullsen. Mitosis compiler: an infrastructure for speculative

BIBLIOGRAPHY 111

threading based on pre-computation slices. In Proceedings of the 2005 ACM SIG-
PLAN conference on Programming language design and implementation, PLDI ’05,
pages 269–279, New York, NY, USA, 2005. ACM.

[66] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and David I. Au-
gust. Speculative parallelization using software multi-threaded transactions. In Pro-
ceedings of the fifteenth edition of ASPLOS on Architectural support for program-
ming languages and operating systems, ASPLOS XV, pages 65–76, New York, NY,
USA, 2010. ACM.

[67] Easwaran Raman, Neil Vahharajani, Ram Rangan, and David I. August. Spice:
speculative parallel iteration chunk execution. In Proceedings of the 6th annual
IEEE/ACM international symposium on Code generation and optimization, CGO
’08, pages 175–184, New York, NY, USA, 2008. ACM.

[68] Ravi Ramaseshan and Frank Mueller. Toward thread-level speculation for coarse-
grained parallelism of regular access patterns. In Workshop on Programmability
Issues for Multi-Core Computers, page 12, 2008.

[69] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-time paralleliza-
tion of loops with privatization and reduction parallelization. IEEE Transactions on
Parallel and Distributed Systems, 10(2):160–180, 1999.

[70] Lawrence Rauchwerger and David Padua. The lrpd test: speculative run-time paral-
lelization of loops with privatization and reduction parallelization. SIGPLAN Not.,
30(6):218–232, June 1995.

[71] Peter Rundberg and Per Stenström. Low-Cost Thread-Level Data Dependence Spec-
ulation on Multiprocessors. In Workshop on Scalable Shared Memory Multiproces-
sors, June 2000.

[72] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry.
A scalable approach to thread-level speculation. In Proceedings of the 27th annual
international symposium on Computer architecture, ISCA ’00, pages 1–12, New
York, NY, USA, 2000. ACM.

[73] Chen Tian, Min Feng, and Rajiv Gupta. Supporting speculative parallelization in
the presence of dynamic data structures. In Proceedings of the 2010 ACM SIGPLAN
conference on Programming language design and implementation, PLDI ’10, New
York, NY, USA, 2010. ACM.

[74] Chen Tian, Min Feng, Vijay Nagarajan, and Rajiv Gupta. Copy or discard execution
model for speculative parallelization on multicores. In Proceedings of the 41st an-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO 41, pages
330–341, Washington, DC, USA, 2008. IEEE Computer Society.

[75] Chen Tian, Changhui Lin, Min Feng, and Rajiv Gupta. Enhanced speculative paral-
lelization via incremental recovery. In Proceedings of the 16th ACM symposium on
Principles and practice of parallel programming, PPoPP ’11, pages 189–200, New
York, NY, USA, 2011. ACM.

112 BIBLIOGRAPHY

[76] Adrián Tineo, Marcelo Cintra, and Diego R. Llanos. Speculative parallelization of
pointer-based applications. In Poster of the Transactional Access Meeting 2007,
TAM 07, Bologna, Italy, June 2007.

[77] Neil Amar Vachharajani. Intelligent speculation for pipelined multithreading. PhD
thesis, Princeton, NJ, USA, 2008. AAI3338698.

[78] Christoph von Praun, Luis Ceze, and Calin Caşcaval. Implicit parallelism with or-
dered transactions. In Proceedings of the 12th ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, PPoPP ’07, pages 79–89, New York,
NY, USA, 2007. ACM.

[79] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New results and new
trends in computer science, volume 555 of Lecture notes in computer science, pages
359–370. Springer-Verlag, 1991.

[80] Peng Wu, Arun Kejariwal, and Călin Caşcaval. Languages and compilers for par-
allel computing. chapter Compiler-Driven Dependence Profiling to Guide Program
Parallelization, pages 232–248. Springer-Verlag, Berlin, Heidelberg, 2008.

[81] Polychronis Xekalakis, Nikolas Ioannou, and Marcelo Cintra. Combining thread
level speculation helper threads and runahead execution. In ICS 2009 Proceedings,
pages 410–420. ACM, 2009.

[82] Chen Yang and Chu-Cheow Lim. Speculative parallel threading architecture and
compilation. In Proceedings of the 2005 International Conference on Parallel Pro-
cessing Workshops, ICPPW ’05, pages 285–294, Washington, DC, USA, 2005.
IEEE Computer Society.

[83] Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown, and Mikel Luján. Opti-
mizing software runtime systems for speculative parallelization. ACM Trans. Archit.
Code Optim., 9(4):39:1–39:27, January 2013.

[84] Chao Zhang, Chen Ding, Xiaoming Gu, Kirk Kelsey, Tongxin Bai, and Xiaobing
Feng. Continuous speculative program parallelization in software. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’10, pages 335–336, New York, NY, USA, 2010. ACM.

[85] Chenggang Zhang, Guodong Han, and Cho-Li Wang. Gpu-tls: An efficient runtime
for speculative loop parallelization on gpus. In Cluster, Cloud and Grid Comput-
ing (CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 120–127,
2013.

[86] Zhijia Zhao, Bo Wu, and Xipeng Shen. Speculative parallelization needs rigor:
probabilistic analysis for optimal speculation of finite-state machine applications.
In Proceedings of the 21st international conference on Parallel architectures and
compilation techniques, PACT ’12, pages 433–434, New York, NY, USA, 2012.
ACM.

