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Abstract

We study a family of population game dynamics under which each revising agent
randomly selects a set of strategies according to a given test-set rule; tests each strategy
in this set a fixed number of times, with each play of each strategy being against a
newly drawn opponent; and chooses the strategy whose total payoff was highest,
breaking ties according to a given tie-breaking rule. These dynamics need not respect
dominance and related properties except as the number of trials become large. Strict
Nash equilibria are rest points but need not be stable. We provide a variety of sufficient
conditions for stability and for instability, and illustrate their use through a range of
applications from the literature. JEL classification numbers: C72, C73.

1. Introduction

By assuming that agents apply simple myopic rules to update their strategies, evolu-
tionary game dynamics provide a counterpoint to traditional approaches to prediction in
games based on equilibrium knowledge assumptions. To focus on dynamics that only
impose mild informational demands on the agents, one can model explicitly how agents
obtain information through individual random matches and use this information to de-
cide which strategy to play. For instance, Helbing (1992) and Schlag (1998) show that
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if agents” decisions are based on single matches rather than complete matching, propor-
tional imitation rules lead aggregate behavior to follow the classical replicator dynamic
of Taylor and Jonker (1978).

Two distinct approaches based on optimization rather than imitation have also been
analyzed. In the approach closer to traditional economic modeling, agents use information
from samples of opponents play to form point estimates of the population distribution
of actions, and then play a best response to this estimate (Sandholm (2001), Kosfeld et al.
(2002), Kreindler and Young (2013), Oyama et al. (2015)). An approach using weaker
assumptions about agents’ capacities was pioneered by Osborne and Rubinstein (1998)
and Sethi (2000). Here a revising agent tests each candidate strategy in random matches
against distinct draws of opponents, and then selects the one that earned the highest total
payoff during testing. This approach does not assume that agents know the payoffs of
the game they are playing, or even that they know they are playing a game; only payoff
experiences count.

This paper introduces a general formulation of these best experienced payoff (BEP) dynam-
ics, allowing variation in which candidate strategies agents contemplate, in the number of
trials of each such strategy, and in tie-breaking rules. While the resulting dynamics have
complicated functional forms, we find that they are surprisingly susceptible to analysis.

We show that if revising agents do not consider all available strategies as candidates
for revision, then the rest points of BEP dynamics can include not only strictly domi-
nated strategies, as Osborne and Rubinstein (1998) observe, but even strategies that are
guaranteed to perform worse than a given alternative strategy even if opponents choose
different responses to each. We also show that strictly dominant strategies are globally
asymptotically stable when the number of trials of each tested strategy is large enough.
Surprisingly, the latter conclusion is not obvious, but instead requires precise estimates of
the likely outcomes of samples at population states in the vicinity of the equilibrium.

The remainder of the paper concerns the instability and stability of strict equilibria.
Under the assumption that revising agents know the current state, strict equilibria are
stable under very weak assumptions (Sandholm (2014)). But Sethi (2000) shows that
under dynamics based on testing each strategy exactly once, strict equilibria need not be
stable. His sufficient condition for instability in two-player games, requires that every
nonequilibrium strategy i supports invasion of at least two nonequilibrium strategies j
and k, in that the presence of strategy i in a match makes both j and k outperform the
equilibrium strategy.!

1Sethi (2000) shows that in games with more than two players, it is enough that every nonequilibrium
strategy supports invasion by one other nonequilibrium strategy—see Section 5.1 below.



Here we obtain instability results for a considerably more general class of dynamics,
and in doing so we identify two qualitatively new sources of instability. First, we show
that instability can be driven by the introduction of “spoiler” strategies, whose presence in
matches causes the equilibrium strategy to earn a lower payoff than does the second-best
response to the equilibrium. Second, we show that instability can be generated not only by
the concerted action of all opposing strategies, but by any smaller group of nonequilibrium
strategies that through both support and spoiling are mutually supportive of invasion.
We complement these analyses with sufficient conditions for stability of strict equilibrium,
and we illustrate the wide applicability of our conditions through a range of applications.

Our analyses of local stability all originate from a simple observation. While the
general formulas for best experienced payoff dynamics are daunting (see Section 2.3), the
behavior of the dynamics near strict equilibria is driven by terms of at most first order in
the fractions playing nonequilibrium strategies. This greatly reduces the number of terms
relevant to the stability analysis, allowing us to derive our sufficient conditions by direct
manipulation and by applying basic results from linear algebra. Specifically, our main
instability result is an application of Perron’s theorem to the dynamics’ Jacobian matrices,
and our stability results rely on direct bounds on the flows of agents between strategies
and on basic conditions for diagonalizability.

There are some questions about BEP dynamics—the computation of all rest points
for a given instance of the dynamics in a given game, and the evaluation of stability
of interior rest points—that are not susceptible to the approaches we follow here. In a
companion paper, Sandholm et al. (2019), we show how Grdbner bases and other tools
from computational algebra, along with approximation results from linear algebra, can be
used to answer such questions. We combine these techniques with exact and numerical
analyses to provide a complete account of the behavior of BEP dynamics in the Centipede
game (Rosenthal (1981)).

As noted above, BEP dynamics have their origins in the work of Osborne and Ru-
binstein (1998) and Sethi (2000). Osborne and Rubinstein (1998) introduce the notion of
S(k) equilibrium to describe stationary behavior among “procedurally rational” agents.
This equilibrium concept corresponds to the rest points of the BEP dynamic under which
agents test all strategies, subject each to k trials, and break ties via uniform randomization.
They present many examples, and show that the limits of S(k) equilibria as k grows large
are Nash equilibria. Building on this work, Sethi (2000) introduces the corresponding
specification of BEP dynamics, focusing on the case in which strategies are tested once.
Sethi (2000) shows that both dominant strategy equilibria and strict equilibria can be
repellors under these dynamics, and that dominated strategies can be played in stable
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equilibria. He also provides a sufficient condition for repulsion from strict equilibria that
includes one restriction on payoffs for each nonequilibrium strategy (see Section 5.1).2

Our analysis generalizes the work of Sethi (2000) in various respects. First, by account-
ing for the effects of spoilers, our sufficient condition for repulsion applies to a larger
class of games than that of Sethi (2000). Second, using an analysis of eigenvalues, we
obtain conditions under which a strict equilibrium is unstable but not necessarily a repel-
lor. Third, we provide new sufficient conditions for instability, including one that only
requires mutual reinforcement by small sets of invading strategies. Finally, our results
hold for the general class of BEP dynamics rather than just the basic instance considered
by Sethi (2000).

Procedurally rational agents and their associated equilibria have been used in a va-
riety of applications, including trust and delegation of control (Rowthorn and Sethi
(2008)), market entry (Chmura and Giith (2011)), use of common-pool resources (Cardenas
et al. (2015)), contributions to public goods (Mantilla et al. (2019)), ultimatum bargaining
(Migkisz and Ramsza (2013)), and the Traveler’s Dilemma (Berkemer (2008)). As we will
show, the general instability and stability criteria we develop here provide a simple and
unified way of deriving many of the results that these papers derive individually, as well
as several new results.

Our study of best experienced payoff dynamics also contributes to a literature on
the aggregate consequences of decision rules that restrict attention to small numbers
of alternative strategies. For instance, Berger and Hofbauer (2006) and Hofbauer and
Sandholm (2011) show that strictly dominated strategies need not be eliminated when
revising agents consider limited numbers of alternatives, as under the BNN (Brown and
von Neumann (1950)) and Smith (1984) dynamics: a strictly dominated strategy may
achieve the second-best payoff at many states, and so may survive when agents do not
always evaluate every strategy. Our analysis of dominated strategies accords with these
results. Zusai (2018) introduces a general class of optimizing dynamics that converge
globally to Nash equilibrium in contractive games (Hofbauer and Sandholm (2009)),
providing a general argument for convergence that allows the set of candidate strategies
to be random and incomplete. In a similar spirit, our analysis shows that the instability of
strict equilibria is partially robust to the incompleteness of the set of candidate strategies;
however, we show that smaller consideration sets must be paired with stronger restrictions
on payoffs for instability to be assured.

The remainder of the paper is organized as follows. Section 2 introduces the family
of best experienced payoff dynamics. Section 3 evaluates properties of their rest points.

2Ramsza (2005) also provides a sufficient condition for stability of strict Nash equilibria.
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Section 4 presents elimination and survival results connected to dominance and related
notions. Section 5 presents sufficient conditions for the stability and instability of strict
equilibria. Section 6 concludes. The appendix presents basic definitions from dynamical
systems, provides proofs of most of the results in the paper, and analyzes examples that
are not covered by our general results.

2. Best experienced payoff dynamics

2.1 Single-population matching in symmetric games

We consider a unit-mass population of agents who are matched to play a symmetric
p-player normal form game G = {5, U}. This game is defined by a strategy setS = {1,...,n},
and a payoff function U: S¥ — R, where U(i; ji, ..., j,_) represents the payoff obtained by
a strategy i player whose opponents play strategies jy, ..., j,_. Our symmetry assumption
requires that the value of U not depend on the ordering of the last p_ = p — 1 arguments.
When n = 2, we sometimes write U;; instead of U(i; j).

Aggregate behavior in the population is described by a population state x in the simplex
X = {x € R}: Y,sx; = 1}, with x; representing the fraction of agents in the population
using strategy i € S. When describing revision protocols, we also use X to represent the set
of mixed strategies. The standard basis vector ¢; € X represents the pure (monomorphic)
state at which all agents play strategy i.

2.2 Revision protocols and evolutionary dynamics

We define evolutionary game dynamics by specifying microfoundations in terms of
revision protocols.’> At each moment in time, each agent has a strategy he uses when
matched to play game G. Agents occasionally receive opportunities to switch strategies
according to independent rate 1 Poisson processes. An agent who receives an opportunity
considers switching to a new strategy, making his decision by applying a revision protocol.

Formally, a revision protocol is a map o: R x X — X®, where the X before the arrow
represents the set of population states, and the X after the arrow represents the set of
mixed strategies. For any payoff function U and population state x € X, a revision
protocol returns a matrix o(U, x) of conditional switch probabilities, where o0;;(U, x) is the
probability that an agent playing strategy i € S who receives a revision opportunity
switches to strategy j € S.

3See Bjornerstedt and Weibull (1996), Weibull (1995), Sandholm (2010a,b), and Izquierdo et al. (2019).
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Well-known results of Benaim and Weibull (2003) show that the behavior of a large but
finite population following the procedure above is closely approximated by the solution of
the associated mean dynamic, a differential equation which describes the expected motion
of the population from each state:

(1) %= Z xjoi(Ux)—x forallie€s.
j€S

Since revision opportunities are assigned to agents randomly, there is an outflow from
each strategy i proportional to its current level of use, accounting for the —x; term in
(1). To generate inflow into i, an agent playing some strategy j must receive a revision
opportunity, and applying his revision protocol must lead him to play strategy i; this leads
to the initial term in (1).

2.3 Best experienced payoff protocols and dynamics

We now introduce the classes of revision protocols and dynamics we study in this
paper. A best experienced payoff protocol is defined by a triple (7, x, ) consisting of a
test-set rule T = (T;)ics, @ number of trials x, and a tie-breaking rule p = (B;)ics. The triple
(7, x, B) defines a revision protocol in the following way. When an agent currently using
strategy i € S receives an opportunity to switch strategies, he draws a set of strategies
T C S to test according to the distribution 7; on the power set of S. He then plays each
strategy in T in k random matches against members of the opposing population. He thus
engages in |T|x random matches in total, facing newly drawn sets of p_ opponents during
each. The agent then selects the strategy in T that earned him the highest total payoff,
breaking ties according to rule g.

Proceeding more formally, let §; = {T € S: i € T, |T| > 2} comprise the subsets of S that
include strategy i and at least one other strategy. We define a test-set distribution t; used
by a strategy i € S player to be a probability distribution on ;. Osborne and Rubinstein
(1998), Sethi (2000), and subsequent papers have focused on the test-all rule, defined by
T?H(S) = 1. Here we consider a generalization of test-all that we call test-a, under which
the revising agent tests his current strategy and « — 1 strategies chosen at random from
the n — 1 that remain:
n—1

-1
1) forall T € S; with |T| = a.

(2) 7 (T) = (

The key consequence of using test-a rules is that revising agents may wind up not consid-
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ering strategies that perform well at the current state, just as in the classical BNN (Brown
and von Neumann (1950)) and Smith (1984) dynamics.* The opposite extreme from 72!,
under which revising agents test just a = 2 strategies, will be called test-two, and denoted
™°. Most of our results extend to protocols in which « is itself random, and some require
still less structure—see Section 6 below.

A tie-breaking rule for strategy i € S, denoted ;, is a function that for each vector 7 of
realized payoffs and each set of tested strategies T € §; specifies the probability §;;(mt, T) of
adopting strategy j € 5.° Since agents are payoff maximizers, B;;(7t, T) may only be positive
if j € argmax, _; x. If there is a unique optimal strategy in T, it is chosen with probability
one; in general, B;.(1, T) is a probability distribution on S whose support is contained in
argmax,_; . In normal form games, tie-breaking rules only matter in nongeneric cases.

Osborne and Rubinstein (1998) and Sethi (2000) use the uniform-if-tie rule, defined by

(3) pij(m, T) =

if j € argmax 7.

#(argmaxkeT Tik) keT

The tie-breaking rules we find most natural are stick-if-tie rules, which always select the
agent’s current strategy if it is among the optimal tested strategies:

4) Bii(, T) =1 whenever i € argmax 7.

keT
Condition (4) completely determines ; under test-set rule t™°. One full specification
for games with many strategies uses uniform tie breaking whenever the agent’s current
strategy is not optimal:

1 if i = j € argmax, ;. 1,
(5) By(m, T)={ | e

Trgmaxr ] if i ¢ argmax,_; 71; and j € argmax,_; 7.

In applications in which the ordering on strategies is meaningful, agents may use tie-
breakers that account for this ordering. For instance, the min-if-tie rule favors strategies
with smaller indices:

(6) Bij(r, T) =1 if j = min (argmax nk).
keT

“For revision protocols based on random consideration sets and exact best responses, see Zusai (2018).

For now the notation 7 is a placeholder; it will be defined in equation (7b). The values assigned to
components of 7t corresponding to strategies outside of T are irrelevant, and f;;(r, T) = 0 whenever j ¢ T.

®In extensive form games and in BEP dynamics with « > 1, it is common for different strategies to earn
the same payoffs, giving tie-breaking rules greater importance; see Sandholm et al. (2019).
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In what follows, we denote the uniform-if-tie rule (3), the stick-if-tie rule (5), and the
min-if-tie rule (6) by g, pstick, and p™in, respectively.

At last, given a collection (7%, k, ), we define the corresponding best experienced payoff
protocol as follows:

(7a)  oyUx) =) THT)

4

Y [ny‘l<k>')5ij<n“<m>, T)

TeS; meMr \ keS
(7b) where n,g(m) = Z Uk; miae, ..., mgy ) forallk € T.
=1

The interior sum in (7a) is taken over all match assignments in the set Mr = {m | m: T X
{1,...,p-} x{1,...,x} — S}; when the agent tests strategy k for the {th time, m, is the
strategy of the gth of his p- = p — 1 opponents. The exponent [m (k)| is the cardinality
of the inverse image of strategy k under the match assignment m. One can verify that
(7) is the formal expression for the procedure described at the start of this section. That
every test of a strategy occurs against an independently drawn opponent is captured by
the product in parentheses in expression (7a). This feature of BEP protocols plays a basic
role in our analysis.

Inserting (7) into the mean dynamic equation (1) yields the best experienced payoff
dynamic defined by 7%, «, and p, called the BEP(t%, x, ) dynamic for short:

(8) =) (Z HOIDY (H xznuk») Bji(n(m), T) ) -,
with ! (m) defined in (7b).

j€S TeS; meMr \ keS
When each tested strategy is played exactly once, best experienced payoff dynam-

ics only depend on ordinal properties of payoffs. If in addition the underlying normal
form game has two players, the formulas for specific instances of the dynamics are rela-
tively simple. Using 1[] to denote the indicator function, and writing U;; for U(; j), the
BEP(7?!, 1, gmi") dynamic is expressed as

9) X = Z (H xm[] 1[1’ = min (argmax llkmk)l - Xj.
m:S—S \ (€S kes

Here the fact that an agent’s choice probabilities do not depend on his current strategy
leads to a particularly compact expression.
For its part, the BEP(t™°, 1, 1) dynamic is written as
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1
n-—1

(10) X = Z X X (i [ Uje = Upe] + x5 [ U > Upe]) — x4

h#i (k)eSXS

The first term in parentheses captures the case in which the revising agent is a strategy i
player who continues to play strategy i, while the second term captures the case in which
the revising agent is a strategy h # i player who switches to strategy i. The stick-if-tie rule
requires that different payoff inequalities be applied in these two cases.

The definitions above generalize those of the models studied by Osborne and Rubin-
stein (1998) and Sethi (2000). Specifically, the rest points of the BEP(7!, x, ") dynamic
are Osborne and Rubinstein’s (1998) S(k) equilibria (with k = x), and Sethi’s (2000) analysis
concerns the corresponding BEP(7?!, 1, g'"f) dynamic. The examples and analyses in the
sections to come display both differences and commonalities in the predictions generated
by different BEP dynamics.

3. Rest points

We start our analysis by deriving some basic properties of rest points of BEP dynamics.
First we have an immediate observation about pure and strict Nash equilibria. The
observation shows that BEP dynamics agree with traditional analyses of games in one
basic sense, and highlights an important feature of stick-if-tie rules.

Observation 3.1. Strict equilibria are rest points under all BEP dynamics. Pure equilibria are
rest points under any BEP(t*, x, B) dynamic for which f is a stick-if-tie rule (4).

In the second claim, the restriction to stick-if-tie rules ensures that indifferent agents do not
switch to alternate best responses at equilibria that are pure but not strict. By definition,
other tie-breaking rules do not possess this property.

Next we present a result on the limiting behavior of sequences of rest points of BEP
dynamics as the number of trials grows large: for any specification of BEP dynamics,
limits of such sequences are Nash equilibria.

Proposition 3.2. Fix Tand 3, and let (x*)}7, be a convergent sequence of rest points of BEP(t*, x, )
dynamics for game G. Then the limit x* of this sequence is a Nash equilibrium of G.

Proposition 3.2 generalizes Proposition 4 of Osborne and Rubinstein (1998), which

all %, gunif) dynamic. The main novelty in Proposition 3.2 is its allowance

concerns the BEP(t
for more general test set rules under which revising agents may have no optimal strategies
in their test sets. To account for this, the proof of Proposition 3.2 shows that for large «,

agents rarely switch to strategies that lower their expected payoffs at the current state, and
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then uses this fact to argue that the mass that rest point x* places on suboptimal strategies
must be close to zero.

We conclude this section with an example that illustrates how predictions of play may
differ among different specifications of BEP dynamics, and that motivates the stability
analyses of strict equilibria in Section 5.

Example 3.1. Consider the following game, which can be viewed as a stylized model of
Bertrand competition with a price floor:

2 4 4
Uu=10 3 6
0 05

Osborne and Rubinstein (1998) prove that the only rest point of BEP(7!, 1, i) is the
strict equilibrium e; (Figure 1(i)). This conclusion is sensitive both to the choice of the

test-set rule !

and of the number of trials x = 1. If agents instead test two strategies, or
if they apply 77! but test strategies in the test set twice, we obtain dynamics under which
the strict equilibrium e, is unstable, and which instead possess stable interior rest points

(Figures 1(ii) and 1(iii)).”

1 1 1
2 3 2 3 2 @3

(i) BEP(z*, 1, g (i) BEP(7*°, 1, gnif) (iii) BEP(72l!, 2, gunif)

Figure 1: Bertrand competition under different BEP dynamics.

"In the figures, colors represent speed of motion: red is fastest, blue is slowest. All figures in this paper
were created using EvoDyn3s (Izquierdo et al. (2018)), which also performs exact computations of rest
points and exact linearization analyses.
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4. Global elimination and convergence results

4.1 Overwhelmed and overwhelming strategies

Under best experienced payoff protocols, a revising agent faces different opponents
when testing each of his own strategies. This leads him to make payoff comparisons that
do not arise in traditional game-theoretic analyses, which are generally based on best
responses to fixed beliefs.® Thus what is required under BEP protocols for a strategy to
“always be better” than another is more than the usual dominance relation.

With this motivation, we say that strategy i overwhelms strategy j in game G = {S, U}
it UG ky, ..., k,) > U(j; 1, ... ¢, ) for all choices of ky,...k,_ € Sand ¢y,...£,_ € S. This
condition ensures that even if strategies i and j are tested against distinct sets of opponents,
strategy i always earns a higher payoff. Likewise, we say that strategy s € S is overwhelming
if it overwhelms all other strategies.

Surprisingly, overwhelmed strategies need not be eliminated under BEP dynamics.

Example 4.1. In the game

-

Il
NN R
NN e
o N R

strategy 1 is overwhelmed by strategy 2. Even so, Figure 2 shows that under the
BEP(7™°, 1, gu"f) dynamic, the unique rest point x* = (0.049,0.662,0.289) has strategy
1 being used by a positive fraction of the population.

The intuition behind the survival of strategy 1 is straightforward. Strategy 3 is “weakly
overwhelmed” by strategy 2. But since both strategies get the same payoff against strategy
2 and since tie-breaking is uniform, strategy 3 is not eliminated. Once strategy 3 maintains
a presence in the population, so does strategy 1, since an agent who tests strategy 3 against
an opponent who plays strategy 3 will always choose the other strategy in his test set, be
it strategy 2 or strategy 1.

It can be shown that strategy 1 is played with positive probability in any rest point of
any BEP(t™°, x, B*"if) dynamic, regardless of the choice of k. Proposition 3.2 implies that
the presence of strategy 1 at any rest point will tend to 0 as the number of trials x goes to
infinity. &

$Maxmin play in zero-sum games is an obvious exception to this rule.
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Figure 2: Survival of an overwhelmed strategy under the BEP(7*°, 1, g'"if) dynamic.

The following simple proposition shows that overwhelmed strategies are eliminated
by BEP dynamics that use the test-all rule,” and that overwhelming strategies are globally
asymptotically stable under any test-set rule. The proof of the latter result must account
for the fact that the overwhelming strategy need not be present in a revising agent’s
randomly-determined test set.

Proposition 4.1. (i) Suppose that strategy j is overwhelmed. Then the set {x € X: x; = 0} is

globally asymptotically stable under all BEP(7!

, %, B) dynamics.
(if) Suppose that strategy i is overwhelming. Then state e; is globally asymptotically stable

under all BEP(t%, x, ) dynamics.

Proof. For part (i), the 72! rule ensures that revising agents always test both strategy j
and the strategy i that overwhelms it, implying that no revising agent ever chooses j. It
follows that x; = —x;, which implies the result.

For part (ii), if a revising player is not playing i, he tests this strategy with at least

probability -L- (the probability it is tested under 7™*°), and if he is playing i, he tests it for

n—1
sure. Since i is overwhelming, it performs best whenever it is tested. These observations
and the definition (1) of the dynamics imply that

%2 (i + L1 -x)) - x = 25 (1 - x).

The last expression is positive when x; < 1, implying the result. |

9See Osborne and Rubinstein (1998, Proposition 3) for a related result.
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4.2 Dominated and dominant strategies

Because agents using BEP protocols may face different opponents when testing dif-
ferent strategies, domination has limited predictive power under BEP dynamics, at least
when the number of trials is small.

Example 4.2. Consider the following public good contribution game from Osborne and
Rubinstein (1998) (see also Sethi (2000) and Mantilla et al. (2019)) in which each unit of
effort has a cost of ¢ = 4 but confers a benefit of b = 3 on both players.

(11) U=|-1 2 5

Clearly, choosing zero effort is a strictly dominant strategy. Game (11) is used by Osborne
and Rubinstein (1998) to show that strictly dominated strategies can be used in rest
points of the BEP(7?!}, 1, ") dynamic, and by Sethi (2000) to show that dominant-strategy
equilibria can be unstable and that rest points using strictly dominated strategies can be
stable (cf. Figure 3(i)). Both of these conclusions depend on strategies being tested only
once: see Figure 3(ii) and Proposition 4.3 below. We analyze the stability of equilibrium
in a general class of public good contribution games in Examples 5.1 and 5.4. &

Hx=1 (i) k=4

Figure 3: A public good provision game under BEP(7!, x, ") for x = 1 and x = 4.

Before presenting the elimination result, we first indicate limitations on how much
weight strictly dominated strategies may receive at rest points of BEP dynamics.
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Proposition 4.2. Suppose that strategy i strictly dominates strategy j. Under any BEP(t*, x, )
dynamic, all rest points x* satisfy x; > x7.

The proof of Proposition 4.2 creates pairs of match assignments in which the matches
assigned to strategies i and j are reversed. This device allows us to take advantage of the
dominance relation between i and j, once we state the conditions for strategies i and j to be
at rest in a form that does not refer to self-switches (e.g., decisions by i players to continue
playing strategy i). Proposition 4.2 builds on Proposition 2 of Osborne and Rubinstein
(1998), which establishes the analogous comparison for weakly dominant strategies under
BEP(7?!, x, B*f) dynamics. This conclusion for weakly dominated strategies is sensitive
to the tie-breaking rule.

Example 4.3. Consider a game U in which all payoffs are 0, and suppose that test sets
are determined using a test-a rule. Under uniform tie-breaking, the unique rest point is
x* = (%,...,1), agreeing with the conclusion of the proposition. But under any stick-if-tie
rule (4), all states are rest points, and under min-if-tie (6), only state ¢; is a rest point. 4

With a large enough number of trials, the empirical distributions of opponents” play
that an agent faces when testing each of his strategies should each be close to the current
population state. This should lead the agent not to choose a dominated strategy when
the dominating strategy is available. We next develop this intuition into a global stability
result. Paralleling Proposition 4.1, the elimination result for dominated strategies is only

all

proved for the 7" rule, while the selection result for dominant strategies is proved for

general test-set rules.

Proposition 4.3. (i) Suppose that strategy j is strictly dominated. Then for each ¢ > 0, the
set {x € X: x; < &} is globally asymptotically stable under BEP(t*", x, B) dynamics for all

large enough numbers of trials «x.
(if) Suppose that strategy s is strictly dominant. Then state e, is globally asymptotically stable

under BEP(1%, x, B) dynamics for all large enough numbers of trials x.

The proof of part (i) shows that for x large enough, the proportion of agents playing
a strictly dominated strategy decreases monotonically until it is used by less than an ¢
fraction of the population. For a strictly dominant strategy s, Proposition 5.7 below shows
that state e; is locally asymptotically stable once « is large enough. Combining these two
facts is not enough to conclude that e; is globally stable for large enough numbers of
trials, since in principle, the basins of attraction of e, could become arbitrarily small as
k grows large. To complete the proof of part (ii), we use results from large deviations
theory (Dembo and Zeitouni (1998)) to obtain precise upper bounds on the probabilities
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of unrepresentative results during testing when x; is small. Doing so enables us to show
that the rate of inflow into strategy s due to revising players choosing it always exceeds
the rate of outflow of —x,.

5. Instability and stability of strict equilibria

Sethi (2000) shows that a strict symmetric equilibrium s of a normal form game can
be stable or unstable under BEP(7?!, 1, i) dynamics, and provides a sufficient condition
for instability. In this section, we introduce new sufficient conditions for instability and
stability of strict equilibrium for general BEP(7, x, ) dynamics.

All of our analyses build on a simple observation about the behavior of BEP dynamics
near strict equilibria, versions of which underlie all existing stability analyses. If s is a
strict equilibrium, the polynomial form of the dynamics (8) implies that in a neighborhood
of the state x,, match assignments m (see (7)) can be ranked in probability by the number
of matches against opponents who do not use strategy s. If all opponents use s, then the
strict equilibrium s earns the best experienced payoff. Thus in generic cases, local stability
can be determined from the consequences of match assignments in which exactly one
match out of the ap_x in total is against an opponent who plays a strategy besides s. The
analyses to follow come down to accounting for the consequences of such assignments.

With this motivation, we introduce notation needed to state the results to come:

(12) us = U(;s,s, ...,s), Ujs = Kllils,
K

uyis = Ui j,s, ..., 8), Vllis

(K — 1)uils + ul-U,S.

In words, u;s is the payoff to playing i when all opponents play the equilibrium strategy
s, and u;;s is the payoff to playing i when all but one opponent plays the equilibrium
strategy s, with the remaining opponent playing j. Likewise, v} is the total payoff in x
trials from always playing i against opponents playing s, and s 18 the total payoff to
i in «k trials when all but one opponent in all trials play s, with the remaining opponent
playing j.

Our instability and stability conditions are based on two kinds of inequalities, each
representing a distinct contribution to the destabilization of strict equilibrium s. We call
strategy j # s a supporter of invasion by strategy i # s if
(13) oh. >0k

ilj,s sls*
Thus j supports invasion by strategy i if over the course of « trials, strategy i earns a higher
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total payoff than s if i has one match that includes an opponent playing j, with all other
opponents of i and s being s players. In short, a supporter of invasion works by increasing
the payoffs of some invading strategy.
We call strategy j # s a spoiler that benefits strategy t # s if

(14) vy is < Vys-
Thus j is a spoiler if when one of strategy s’s matches includes an opponent playing j
(with all remaining opponents playing s), the total payoff that s earns in its matches is
lower than that of another strategy that only faces s. Put differently, a spoiler works by
decreasing the payoffs of the strict equilibrium strategy. If a spoiler works to its own
benefit, in that t = j in (14), then we describe j as spiteful. In this case, j enables itself
to outperform s by reducing the payoff that s achieves. The fact that spiteful behavior
can influence equilibrium outcomes in finite-player strategic interactions is well known
in other contexts; see Schaffer (1988), Bergin and Bernhardt (2004), and the references
therein.

5.1 Repulsion

To start, we extend work of Sethi (2000) providing a sufficient condition for a strict
equilibrium e, to be a repellor under BEP dynamics, meaning that all solutions of (8) from
initial conditions near e, lead away from e;.

Proposition 5.1. Let s beastrict equilibrium, let t € argmax,, u;s, and consider any BEP(t%, x, )
dynamic. Then state e, is a repellor if

(15) p_K[Z 1o}, <05, ] +1[0%,, < vfls]] >1 forall j #s.
i#s

Corollary 5.2. If we define

Ujlis — Ugls us_u',s
(16) & = min max {max{ U i },{ ! il }},

J#s #s | Usls — Ujs Usls — Uys

then state e is a repellor ifp = 2and x € {2,...,&}, or ifp > 2and x € {1,...,R}.

The sufficient condition (15) for e to be a repellor comprises an inequality for each
strategy j # s. The condition adds up the number of strategies i that j supports as an
invader, and adds an additional unit if j is a spoiler. If p = 2 and x = 1, a total of 2 implies
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repulsion; in all other cases, a total of 1 is enough. Corollary 5.2 is obtained by rewriting
(15) in terms of the payoffs of the original normal form game.

Sethi’s (2000) conditions for an inferior and a twice inferior strict equilibrium only
consider the initial sum in (15).° Proposition 5.1 generalizes the instability results in Sethi
(2000) for the BEP(7?!, 1, gunif) case to other BEP dynamics and to any number of trials,
and also identifies spoilers as a novel source of instability.

Following Sethi’s (2000) analysis, the proof of Proposition 5.1 argues that under condi-
tion (15), the growth rate %, of strategy s is negative in a neighborhood of the equilibrium
es. As suggested above, the fact that few agents use other strategies means that terms in
X, that are of more than linear order in such strategies are of negligible magnitude, letting
us focus on revision opportunities and match assignments with exactly one agent playing
a strategy other than s. By accounting for all of the ways that supporters and spoilers can
reduce x;, we show that condition (15) leads to a lower bound on X that is linear in xs.

Example 5.1. Consider a p-player public good contribution game in which the allowable
contributions are i € {0,1,...,n — 1}, n > 2, and where each unit of contribution costs the
contributing player c and provides a benefit of b < ¢ to all players. Payoffs are thus given

by

p_
(17) UGs i, jp) =b Y g + (b =i,

g=1

Since c > b, contributing zero units is a strictly dominant strategy.

Evidently u;;o = bj+ (b —c)i and UZ.T].’O =bj+x(b-c)i. Thusif x < C%, then Vo > 0 =175,
foralli > 0, so the sufficient condition for repulsion (15) holds when p_«x > 2, thatis, when
there are more than two players or at least two trials.

With two players and one trial, observe thatif ; < %, then u;;0 > 0 = ugp when j > i >0
and when (i, j) = (2,1). Thus if n > 3, then for each j # 0 the sum in (15) is at least 2, again
implying that equilibrium ey is a repellor under any BEP(7¢, 1, ) dynamic.

For the case of the BEP(7?!, 1, ﬁu“if) dynamic, the conclusions about repulsion above
can be obtained using Sethi’s (2000) inferiority conditions. The novelty from applying
Proposition 5.1 here is that repulsion is established for dynamics based on any test-a rule

(2), any number of trials x, and any tiebreaking rule . #

While stability in Example 5.1 relies on support of profitable invasions by other strate-
gies, Proposition 5.1 also shows that BEP dynamics can select against strict equilibria

19Strict equilibrium s is inferior if Y. 1[uj;s > ugs] > 0 for all j # s, and twice inferior if this sum always
exceeds 1. Sethi (2000) proves that under the BEP(7%!,1, ﬁ““if ) dynamic, an inferior equilibrium is unstable
if p > 2, and a twice inferior equilibrium is unstable if p > 2.
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that instead admit spiteful deviations. For a simple result to this effect, we call strict
equilibrium s uniformly susceptible to spite if

(18) Ujs > Ugyis forall 1 #s.
jl lj J

In words, (18) says that each strategy j does better as a unilateral deviation from equilib-
rium s than s does in a match that includes a single j player.

Corollary 5.3. Suppose G has more than two players. If the strict equilibrium s of G is uniformly
susceptible to spite, then state e is a repellor under all BEP(t“, 1, B) dynamics.

Proof. By condition (18), uy;s < ujis < uys < ugs, implying that € > 1 in Corollary 5.2. O

Example 5.2. Consider a p > 2 player, n = 2 strategy public good contribution game in
which contributing is a strictly dominant strategy: specifically, contributing costs the
contributor ¢ but benefits all players b > c. If strategy 1 represents contributing to the
public good and strategy 2 represents not contributing, then payoffs are given by

u(l;j1/-~'/jp_) = |{£7 jq = 1}|b+ (b—C),
U(Z,' jlz-- -/jp_) = Hq jq =1}|D.

Clearly, strategy 1 is strictly dominant. But since uop = (p —1)b > (p — 1)b — ¢ = uipa,
Corollary 5.3 implies that state e; is a repellor when x = 1. In fact, Proposition 5.1 implies
that e; is a repellor for numbers of trials « up to

Flzu—uuzﬂ:{(P—l)b—((P—l)b—C)}:{ c }
(pb—c) — ((p — 1)b) b—c|

U — Uzp

5.2 Instability

In order to provide a condition ensuring that a strict equilibrium repels solutions from
all initial conditions, Proposition 5.1 imposes conditions on support and spoiling by all
alternative strategies. If our primary interest is in instability rather than repulsion—
in particular, if it is enough that solutions from most (rather than all) nearby initial
conditions move away from the equilibrium—then intuition suggests that restrictions
involving smaller numbers of strategies whose presences are mutually reinforcing might
be sufficient for this conclusion.

Proposition 5.4 verifies that the intuition above is correct, providing conditions under
which invasions by a mutually reinforcing group of strategies will succeed.
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Proposition 5.4. Let s be a strict equilibrium, let S, = argmax, ujs, and let t € S,. Under any
BEP(1%, x, ) dynamic, state e is linearly unstable if either of these conditions hold:
(i) For some nonempty | C S\ {s},

a—-1 .
19)  poxo— Y o, >Nl > 1 forallic].
jel

(if) For some nonempty | C S\ {s},

Zl[vzus gl + 1[S2 € J11[og, < v ][> 1 forall je;

i€]

(20) p-x

Corollary 5.5. Strict equilibrium e, is linearly unstable under any BEP(t%, x, ) dynamic if

1) p_KZ (1[UJUS ol ]+ 1[5, = (I, <0} ])> 1 forsome j #s.

Proposition 5.4 tells us that given any set | C S\ {s}, we can establish that ¢, is unstable
by showing that each invading strategy j € ] provides an adequate combination of support
of invasion and spoiling in favor of strategies that are themselves in |. Sufficient condition
(19) focuses on the lowest total benefit obtained by any of the invading strategies from
the presence of other strategies in the invading group. Sufficient condition (20) focuses
instead on the lowest total benefit provided by an invading strategy to other members of
the group, accounting both for support and for spoiling. Corollary 5.5 highlights the case
of a lone invader.

The proof of Proposition 5.4 uses Perron’s theorem to show that under condition (19)
or (20), the Jacobian matrix of any BEP(7¢, «, ) dynamic at equilibrium state e; has a
positive eigenvalue, implying instability. Specifically, consider the “inflow Jacobian” of
the dynamic, by which we mean the contribution to the Jacobian of the inflow terms in
(1). (The “outflow Jacobian” is —I, the negative of the identity matrix.) The conditions of
the proposition each imply that the submatrix of the inflow Jacobian corresponding to the
set of invading strategies | has Perron eigenvalue greater than 1. Then the monotonicity
of the Perron eigenvalue of a nonnegative matrix in the values of its components implies
that the full inflow Jacobian, which is a nonnegative matrix, also has Perron eigenvalue
greater than 1. Therefore, the complete Jacobian matrix has a positive eigenvalue; this
eigenvalue is associated with a nonnegative eigenvector that represents the proportions
of strategies in a self-reinforcing invasion.

1 To be more precise, this is true even after a dimension reduction that eliminates the x; component of the
state: see equations (54), (55), and (52).
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Corollary 5.6 provides a number of sufficient conditions for instability stated directly
in terms of the payoff matrix of the underlying normal form game. The conditions
are sufficient when revising agents test more than half of the available strategies—more
precisely, under the assumption that a > [5]+ 1. All conditions are easily derived from
condition (20). The (a) conditions only reflect support of invasions, while the (b) conditions
also account for spoiling.

Corollary 5.6. Let s be a strict equilibrium. The following conditions are sufficient for linear
instability of state e; under BEP(1%, x, B) dynamics with a > [5] + 1.

(i.a) x> 2 and k¥ < MaXiss {%1

ab)xzzszzﬁmeKs[%gfl

(ii.a) x =1, p > 2, and maXzs Ujjs > Ugs.

(ii.b) kx=1,p>2,5 ={j}, and ujps > ugjs

(iii.a) « =1, p =2, and min{u;;, w;j, u;, uj;} > ugs for some pair of distinct strategies i, j # s.
(iii.b) x =1,p =2, 5 ={j}, ujs > ugs, and ujjs > ugs

Example 5.3. The Traveler’s Dilemma (Basu (1994)) is a normal form analogue of the
Centipede game (Rosenthal (1981)) in which the unique rationalizable strategy earns the
players far less than many other strategy profiles. Payoffs in the n-strategy Traveler’s
Dilemma are

i+2 ifi<j
UG, j)=4i  ifi=j

j—2 ifi>j,
or, in matrix form,
1 33 3 3
-1 2 4 4 4
-1 03 5 5
(22)
-1 01 4
oo n+1
-1 01 ... n-3 n

Strategy 1 is the unique Nash equilibrium and the unique rationalizable strategy. Berke-
mer (2008) shows that under the BEP(7?!, %, ﬁ“mf) dynamic, state e; is stable when is n odd

and x > ntl

”Zil, and that it is unstable when 7 is odd and x = =-.

We consider the stability of e; under any BEP(7%, «, f) dynamic witha > [5]+1. If x = 1,
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Corollary 5.6(iii.a) implies that e; is unstable if n > 5: choosing i = n —1 and j = n leads to
min{u;;, wij, wji, ujib =n—3 >1=uy. If instead 2 < x < | 7], then Corollary 5.6(i.a) implies
that e is unstable for 2 < x < | 2]: this follows because max#l[%] = [#‘_11)] =[5 =
[5]. In Section 5.4 we consider stability in Traveler’s Dilemmas with larger numbers of

trials. &

5.3 Stability

We now provide some sufficient conditions for a strict equilibrium to be stable. One
can write down more general conditions for stability, but the ones we focus on are simple,
and enough to complete the analyses of some of our earlier examples.

Proposition 5.7 is our first sufficient condition. It requires that no strategy supports
invasion of the strict equilibrium or is a spoiler against the strict equilibrium. The proof
of the proposition shows that under this condition, the growth rate of x; must be positive
at states close to es.

Proposition 5.7. Let s be a strict equilibrium. Then state e, is asymptotically stable under any
BEP(7*, x, ) dynamic if

(23) vk >0l

K
55 > Ullis and v

slj,s

> v foralli,j#s.

ils

The immediate Corollary 5.8 provides sufficient conditions for stability in terms of
payoffs in the normal form game and the number of trials «.

Corollary 5.8. State e; is asymptotically stable under any BEP(t%, x, B) dynamic if

(24) Ugs > Ujjs and Ugjs > uys forall i, j # s.
or if
maXizs Ujjjs — Usls
K > k' = max dalas +2 and
i#s Ugls — Ujjs
(25) . .
Uijls — MINjzg Ugjs Usls — MIN jzs Us)js
K > k* = max ! Pl+2= ! Pl
i#s Ugls — Ujjs Usls — MaXizs Ujls

In particular, any strict equilibrium of any game is asymptotically stable under any BEP(t, x, B)
dynamics with « large enough.

The prospects for stability of a strict equilibrium s are best when agents use the test-

all

all rule 7, which ensures that agents currently experimenting with other strategies
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always consider strategy s itself during subsequent testing and revision. Because of this,
considerably fewer inequalities from (23) must hold for stability to be ensured: compare
the quantifier in condition (26) to that in (23).

Proposition 5.9. Let s be a strict symmetric Nash equilibrium. Then state e; is asymptotically
stable under any BEP(tY, x, B) dynamic if

(26) Ugs > Uy and vy, > vy foralli, j# s withi > j.
Corollary 5.10. State e, is asymptotically stable under any BEP(t", x, B) dynamic if
maXizs, j<i Uu; s — Ug|s
(27) K > k1, = max SRRl 142 and x > ?
- i#s Ugjs — Ujjs -

Of course, stability only requires conditions (26) and (27) to hold after some relabelling of
the strategies.

Condition (26) requires that no strategy j # s supports or acts as a spoiler in favor
of itself or any higher-numbered strategy. For intuition about why this condition is
sufficient, suppose for convenience that s = 1. Condition (26) with i = n ensures that
strategy n cannot invade on its own. Condition (26) with i = n — 1 says that strategy n — 1
only benefits from the presence of strategy 1, and so it in turn cannot invade. Continuing
in this vein shows that no strategy down through strategy 2 is able to invade. Formally,
the proof of Proposition 5.9 shows that under condition (26), the Jacobian of BEP(7%!, «, )
dynamics at state e; is upper triangular with all diagonal elements equal to —1, which
implies asymptotic stability.

Example 5.4. In Example 5.1, we showed that in the public good contribution game (17),
when either p > 2 or ¥ > 2, the zero-contribution equilibrium ¢, is a repellor under
BEP(t%, k, B) dynamics when the number of trials « is less than C%b Proposition 5.9 implies
that if instead x > -, then equilibrium ¢, is asymptotically stable under BEP(t, x, B)
dynamics. Recall that payoffs from « trials in game (17) satisfy U:.T].,O =bj+x(b—-c)i. It
follows easily from this that vj, > iio foralli > j > 0, and that Ugjo > 0 > 0} for all

i, j # 0, and so that stability condition (26) holds. &

We conclude this section with a simple stability result for two-player normal form

all

games under BEP(7%", 1, f) dynamics.

Proposition 5.11. Let s be a strict Nash equilibrium of the two-player symmetric game G = {S, U}.
(i) IfUs > U foralli,j # s, then the growth rate of strategy s under BEP(t", 1, B) dynamics
is nonnegative at all states in X, so state e; is Lyapunov stable.
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(it) If in addition to (i) we have Us; > min{U;;, U} for all i,j # s, then the growth rate of
strategy s is positive whenever x, € (0,1), so state e, is almost globally asymptotically
stable.

(iii) If in addition to (i) strategy s is strictly dominant, then state e, is globally asymptotically
stable.

The strict inequalities in (ii) can be replaced by weak inequalities under ™ or B, and all
inequalities can be replaced by weak inequalities under ™" if s = 1.

Example 5.5. Studying a family of two-player public good contribution games, Mantilla
etal. (2019) show that if full contribution is a dominant strategy, it is globally stable under
the BEP(7?!, 1, g*if) dynamic. Analogously, suppose that in the public good contribution
game (17) from Example 5.1, there are two players, and that the per-player benefit b of
contributing exceeds the contribution cost c. Then choosing the maximum contribution
is strictly dominant for each player, and each player’s payoffs are maximized when both
choose this contribution level. Thus Proposition 5.11(iii) implies that the maximal contri-
bution is globally asymptotically stable under BEP(7%!, 1, ) dynamics. In fact, the proof
of Proposition 5.11(iii) builds directly on the analysis of Mantilla et al. (2019).1> &

As another application of our results, we now show that the stability of a strict equi-
librium need not be monotonic in the number of trials «.

all

Example 5.6. Consider evolution under the BEP(7%!}, %, ") dynamic in the game below:

6 1 1
Uu=14 0 0
200

Proposition 5.11(iii) implies that strict equilibrium e; is globally asymptotically stable
when « = 1 (Figure 4(i)), Corollary 5.2 implies that e; is unstable for 2 < x < I'%i'l =2
(Figure 4(ii)), and Corollary 5.8 implies that e; is asymptotically stable when « is at least
=11+ 2 = 3 (Figure 4(iii)).

The intuition behind this nonmonotonicity is as follows: When « = 1, the presence of
a small number of agents playing the spiteful strategy 2 does not place it in enough tests
of strategy 1 to render e; unstable. If we increase « to 2, the appearance of strategy 2 in a
test of strategy 1 becomes twice as likely, which is sufficient to make e; unstable. But once
k = 3, strategy 2 is very unlikely to appear in more than one-third of the trials in which

strategy 1 is tested, and this again is not enough to render ¢; unstable. &

2We thank an anonymous referee for suggesting this example.
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Hx=1 (i) k=2 (iii)) k =3

all

Figure 4: Nonmonotonicity of stability under BEP(7?!, x, %) dynamics.

5.4 Examples

The foregoing results are enough to establish the stability and instability of strict
equilibria in many examples. In instances where they are not enough—for instance, in
cases where the details of the tie-breaking rules matter—one can directly compute the
Jacobian of the dynamics (8) at the equilibrium to assess stability (see Lemma A.3 in
Appendix A.3). Sometimes, as in Section 5.2, one can use Perron’s theorem to establish
instability without actually calculating the eigenvalues of the Jacobian; alternatively, as in
Section 5.3, one can show without calculation all eigenvalues of the Jacobian are negative.
When these approaches are not applicable, one can explicitly compute the eigenvalues
in order to establish stability or instability. We illustrate these ideas in the examples that
follow.

Example5.7. In Example 5.3, we used Corollary 5.6 to show that in the Traveler’s Dilemma
(22) with n > 5, the strict equilibrium e; is unstable under BEP(7%, k, ) dynamics with a >

[51+1and 1 < x < [7]. On the other hand, Corollary 5.8 implies that e, is asymptotically

stable under any BEP(7%, x, f) dynamic with x > L%J +2 = [5] +2. Under test-all,
Corollary 5.10 gives us the improved lower bound x > L%J +2 = [5]+ 1. Thus for

test-all, the only undecided cases are those with x = ”zil (and hence n odd). What is
special about this case is that the payoff from x rounds of playing strategy 1 against itself
is the same as the payoff from playing strategy n ¥ — 1 times against strategy 1 and once
against itself. (That is, v}, = 51(-1) + n = 2 = 0¥ ) Because of this, stability depends
on the tie-breaking rule f: rules that favor the incumbent strategy 1 will support stability
compared to those that do not. In Appendix A.3 we use linearization to show that when

n+1

x = M1, ¢ is asymptotically stable under *i* and g™, but unstable under " for n > 5.

4

Example 5.8. Consider BEP(7?!, x, *if) dynamics in 123 Coordination:
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(28) U =

o O -
S N O
W o O

All pure strategies of this game are strict equilibria. Since Us; is the highest payoff and
Us; > U for i, j # 3, Proposition 5.11(ii) implies that when x = 1, the equilibrium state e; is
almost globally asymptotically stable, and so that states e¢; and e, are unstable (Figure 5(i)).
Corollary 5.8 implies that states e; and e, are asymptotically stable when x > 2, and that
state e; is asymptotically stable when x > | 3= | +2 = 4 (Figure 5(iii)). Corollary 5.6 implies
that e, is unstable when x = [3=17 = 2. In Appendix A.3 we use linearization to show that
for x = 3, e; is unstable under ", but asymptotically stable under g and g™in. ¢

()x=1 (i) k =2 (iii) x = 4

Figure 5: 123 Coordination under BEP(7%!, «, ﬁ““if), for different values of .

6. Concluding remarks

Building on the work of Osborne and Rubinstein (1998) and Sethi (2000), we defined
the family of best experienced payoff dynamics, under which revising agents test each
strategy from a random candidate set x times and choose the strategy from the set that
earned the highest total payoffs. We developed results on the elimination of overwhelmed
and dominated strategies for large numbers of trials, introduced sufficient conditions for
the instability and stability of strict equilibrium, and illustrated the use of these results in
a range of applications.

We conclude with a few comments on the generality of the analysis. While we have
defined the dynamics (8) using a fixed test-set size a and a fixed number of trials x of each
tested strategy, neither of these assumptions is necessary for our results. We call the test
set rule T symmetric if feasible test sets with the same cardinality have the same probability
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under 7. One such example is the rule test-q, g € (0,1], under which each alternate
strategy is chosen independently with probability g to be in the test set. We can likewise
define dynamics under which the number of trials x of each tested strategy is drawn
from a finite-support distribution on the positive integers. What makes these extensions
tractable is the fact that symmetric test-set rules and random numbers of trials generate
convex combinations of the original dynamics (8). It turns out that the analyses leading
to our main results are “closed under convex combinations”, so that their conclusions
extend immediately to the class of dynamics defined here."

Some of the techniques employed in this paper to establish stability and instability of
equilibrium have broader applicability. BEP dynamics are mean dynamics of the form

(1) %= ) xoiUx)-x forallies.

j€S

where the conditional switch rates o ;;(U, x) are polynomials with nonnegative coefficients.
Thus the inflow Jacobian of (1) (i.e., the Jacobian corresponding to the initial sum in (1))
also has nonnegative coefficients. In Section 5.2, this fact allowed us to establish sufficient
conditions for instability using Perron’s theorem. Clearly, the same approach is applicable
for other dynamics based on random sampling, including, for example, the sampling best
response dynamics of Oyama et al. (2015). This phenomenon is actually quite general:
in Appendix A.2, we argue that linearizations at pure rest points of dynamics of form
(1) always have this property, and so are always candidates for analysis using Perron’s
theorem. Likewise, the methods from computational algebra that we employ in our com-
panion paper, Sandholm et al. (2019), are applicable beyond the class of best experienced
payoff dynamics studied here.

A. Appendix

A.1 Background from dynamical systems

Consider a C! differential equation ¥ = V(x) defined on X whose forward solutions
(x(t))i=0 do not leave X. State x* is a rest point if V(x*) = 0, so that the unique solution
starting from x™ is stationary.

Let Y C X be closed and connected. The set Y is Lyapunov stable if for every neigh-
borhood O C X of Y, there exists a neighborhood O’ C X of Y such that every forward

13A number of our results do not even require symmetry of the test-set rule, but instead hold under any
test-set rule that puts a lower bound on the probabilities with which each strategy is tested. These include
the results in Sections 3, 4 (except Proposition 4.2) and 5.3 in which a specific test-set rule is not specified.
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solution that starts in O’ is contained in O. If Y is not Lyapunov stable it is unstable, and
it is repelling if there is a neighborhood O C X of Y such that solutions from all initial
conditions in O \ Y leave O. A minimal repelling set is called a repellor.

A rest point x™ is linearly unstable if the Jacobian DV(x*) of V at x™ has an eigenvector
in the tangent space TX = {z € R": } ;z; = 0} whose eigenvalue has positive real part.
If in addition x* is hyperbolic, in that all eigenvalues corresponding to eigenvectors in
TX have nonzero real part, then the Hartman-Grobman theorem implies that there is a
neighborhood of O of x* such that solutions starting from almost all initial conditions in
O move away from x* at an exponential rate.

The set Y is attracting if there is a neighborhood O C X of Y such that all solutions
that start in O converge to Y. A set that is Lyapunov stable and attracting is asymptotically
stable; a minimal asymptotically stable set is called an attractor. In this case, the maximal
(relatively) open set of states from which solutions converge to Y is called the basin of Y. If
the basin of Y contains int(X), we call Y almost globally asymptotically stable; if it is X itself,
we call Y globally asymptotically stable.

The Lipschitz function L: O — [c, o) is a strict Lyapunov function for set Y C O if
L7Yc) = Y, and if its time derivative L(x) = VL(x)'V(x) is negative on O \ Y. Standard
results imply that if such a function exists, then Y is asymptotically stable.! If L is a strict
Lyapunov function for Y with domain X, then Y is globally asymptotically stable.

A.2 Proofs

Proof of Proposition 3.2.
To start, recall that in the normal form game G = {S, U} the expected payoff to strategy
i at state x € X takes the usual multilinear form:

p-1
Uw= Y, [H xij Uy, ..., jpa).

(jrrjp-pes?t \E=1

Next we state a slight generalization of the weak law of large numbers.

Lemma A.1. For each k, let (XF), be iid. with E(XX}) = u* and Var(XF) < 6% < co. If

limy—,eo u¥ = p, then Xt = 1

k r P
P = i X > pask — oo,

Proof. Let ¢ > 0 be arbitrary. Then for some k, |ux — u| < 5 for all k > k. Chebyshev’s
inequality and the triangle inequality imply that for such k, Var(X¥) > P(IX} — puf| > ¢) ¢ >
P(XE — ul > £)c?, and so P(IX} — ul > §) < 2 which vanishes as k grows large. |

—_ kCZI

4See, e.g., Sandholm (2010b, Appendix 7.B).
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Taking a subsequence if necessary, let (x*)*_, be a sequence of BEP(7, x, ) equilibria
that converges to x*. For each x, let (];f}.m) withi €S, je(l,...,p-1}, m € {1,...,x}
be a collection of i.i.d. multinomial(x*) random variables whose realizations represent the
strategies of opponents faced during testing. An agent’s payoff during his mth test of
strategy i € T is U(i|]

K,m ]K,m
i1 7 dipa1

Lemma A.1 implies that the realized average payoff during « tests of action i converges

), a random variable with expectation U;(x*). Thus
in probability to U;(x™):

i1 ip-1

(29) %Z UGs", ..., " )5 Ux*) as k — .
m=1

Next, let 0* be a BEP(7¢, , ) protocol as defined in (7), and fori,j € T C S, let
m*l
(B0) o UxXT) = )] (H X “‘”} Bij(m (m), T)
meMr \ keS

be the probability under (7) that a revising agent playing strategy i who uses test set T
chooses strategy j at state x. Then (29) implies thatif j ¢ argmax, . U(x”), then a;.;.(u, x*|T)
vanishes as k grows large. It follows that if U(x*) > U;(x*), then

(U, x7) = Z 7 (T) o;,(U, x*|T) = 0 as k — oo.
TeS;

Thus if S is the set of optimal strategies at x* and i € S*, we have

(31) lim Z of (U x*) = 1.
keS*

Since x* is a rest point of the BEP(7%, «, ) dynamic (8), the total growth rate of strategies
in S* at state x* is zero. Thus

0=)" [Z xS (U, x) - x;]

keS* \ jes
— K K K K K K K
@ =Y (Zaik(u,x) Y Y |- Y
ieS* keS* j&s* keS* keS*

Equation (31) says that the sum in parentheses in (32) converges to 1, implying that in
the limit the first and third terms of (32) cancel. The definition (7) of ¢* implies that for
each j ¢ S¥, the sum in brackets converges to a limit greater than < under any test-a rule.
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Altogether, this implies that

E xi=1lm Yy x¥=0,
] x5 ]
jas* jas*

Since x* puts no mass on suboptimal strategies, it is a Nash equilibrium. m]

Proof of Proposition 4.2. The inflow into strategy i at state x under (8) is

(3) ) mou(Ux)=) x| Y TT) Y Pl fiu(n(m), T) |, where

hes hes TeS, meMr
(33b) P(mlx) = H A" O and
keS
(33¢) milm) = Y Ul mia, .., My o)
=1

are the probability of match assignment m € Mr and the total payoff to strategy k during
the relevant matches in m, respectively. The second sum in (33a) is taken over §;, the set
of subsets of S containing strategies 1 and i. The notations §; and $;; used below are
defined similarly.

Fix a test set T € S,;j. For a match assignment m € My for this test set, define the match
assignment 771 by

m it ifk = i,
(34) Mgge = mige  ifk =,

Mge otherwise.

That is, 71 switches the strategies faced under m when testing i and j. Then by construction
and by strict dominance,

UuG; mi,e) = U 1mj,.,c) > U(f; 1, ¢),

where m;,.. = (Mi1e, ..., Mip1e). (33¢) then implies that 7(m) > 71;.’[(7?1), which in turn
implies that

(35) Bui(rt'(m), T) > Buj(n"' (), T) forallh €T.

Also, since m and 11 are permutations of one another, (33b) implies that P(m|x) = P(rf|x).
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Combining this fact with (35) and considering all T in $;;, we have

(36) Y. (D) Y Pnl) puu(m(m), Ty 2 Y T(T) Y P(lx) iy (7), T).

T€Snij meMr TESyj meMr

Now consider a test set T'in S, \ Spij. Let T = TU{j}\{i}, and for each m € T definesir € T
by (34) (noting that the middle case of (34) never occurs). Then the fact that 7;(T) = 7} (T)

and a minor variation on the argument above shows that

(37) Y, ) Y Ponk) Bt om), Ty = Y wi(T) Y POk) iy ), T).

TEShiN\Snij meMr TeSiiN\Snij meMy

Combining (36) and (37) with (33a) and (33b), we conclude that
(38) 0i(U, x) 2 04j(U, x) forallx € Xand h # i, j.
Using similar arguments, one can also show that

(39) (U, x) > op(U,x) forallx € Xand h # i, j, and
(40) oji(U,x) > 0;;(U, x) for all x € X.

Now let y be a rest point of (8). Then equating inflows and ouflows shows that

yjoi(U y) + Z vko(U, v) = yioii(U y) + v Z oi(U,y) and

ki, j ki,
yioi (U, y) + Z vrok(U y) = yjoi(U, y) + y; Z (U, y).
Py Py

Subtracting and rearranging yields

(41) Z Yk (Uki(u/ y) —oxi(U, y))

k#i,j

=2 (}/iUz’j(U, y) —you, y)) +|yi Z o, y) = y; Z oix(U y) |-

k#i,j k#i,j

(38) implies that the left-hand side of (41) is nonnegative, which along with (39) and (40)
implies that y; > y;. O

Proof of Proposition 4.3. For part (i), suppose that strategy jis strictly dominated by strategy
i: Ui(x) > Uj(x) for all x € X. The weak law of large numbers implies that as x grows large,
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the realized average payoffs during « tests of each k at state x converges in probability
to Uk(x) (ct. (29)). Moreover, since the variance in realized payoffs can be bounded over
x € X, the proof of the weak law (cf. Lemma A.1) implies that for each ¢ > 0 there is a
x such that for all x € X and x > x, the probability is at most ¢ that the total realized
payoff from « trials of j exceeds the total realized payoff from « trials of i. Hence, letting
o* denote a BEP(7?!, x, B) protocol (7), we have that the probability oy;(U, x) that a revising
k player chooses j is at most ¢ when x > k. Thus when x > x, definition (1) of the dynamic
implies that

X]‘ = Zxkakj(ll,x) —Xj <¢e-— Xj.
keS

The last expression is negative when x; > ¢, implying that L(x) = max{x;, ¢} is a strict
global Lyapunov function for the set {x € X: x; < ¢}.

For part (ii), let i be the strictly dominant strategy. Mimicking the argument above
shows that for each ¢ > 0 there is a k such that for all x € X and «x > x, the probability is at
least 1 — ¢ that the total realized payoff from « trials of strategy i exceeds the total realized
payoff from « trials of strategy j for all j # i. Since under any test-a rule, strategy i is in
the test set with probability greater than 1, and with probability 1 if the revising agent is
currently playing it, we find that for « > x,

(42) X = Z xxoki (U, x) — x;

keS

> Z %Xk(l - 8) + x;(1 - €) —X;

k#i
= %(1 — xi)(l — 8) — EX;
=l[1-e) -1+ m-Dex],

ne
1+(n-1)e"

Since e; is a strict equilibrium, there is a b > 0 such that Ui(x) > U;(y) for all j # i

and so ¥; is positive whenever x; < 1 —

whenever x; and y; exceed 1—b. The proof of part (ii) follows from the previous argument,

with & > 0 chosen small enough that - < %, and the following lemma.

Lemma A.2. Under any BEP(1°, x, ) dynamic with « sufficiently large and at any state x € X
with x; € [1 - 3b, 1), we have %; > 0.

Proof. By the choice of b, a revising agent with strategy i in his test set will choose strategy
i if when testing each strategy j in his test set, the fraction of those encountered playing
strategies other than i is at most b. Then a necessary condition for his choosing some
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other strategy is that there be a strategy in his test set for which this fraction exceeds b.
Thus, letting Q;(x) denote the probability that when testing a given strategy, the fraction
of those of those encountered playing strategies other than i exceeds b, defining o*}?l.( U, x|T)
as in (30), and using the fact that the probability of the union of events is at most the sum
of the events’ probabilities, we have

(43) 1= o(UAT) < nQy(x).
Now let x_; = }..; x;, and suppose that

(44) Qi(x) < Lx_.

If (44) holds, then by equations (8) and (43), the growth rate of strategy i satisfies

X > Z —x](l —nQ, (%)) + x;(1 —nQ,(x)) —x; > (1 — —x_ xi).

J#L

The last expression is positive when x; € (0, 1).

To show that (44) holds when x_; € (0, %b], we use a large deviations bound. The
proof of Cramér’s theorem, along with the fact that the Cramér transforms of binomial
distributions are relative entropy functions (see Dembo and Zeitouni (1998, Theorem 2.2.3
and Exercise 2.2.23)), imply that

Qi (x) < 2exp (—x (blog (L) + (1 - b) log (L ))).
Some rearranging shows that to establish (44), it is enough to prove that
(45) 20 (x_)* b~ exp (—x(1 - b) log (L)) < 1.

Since x_; € (0, 3b], the the LHS of (45) is at most

xb—1 xkb-1
2n? (g) b~ exp(~x(1 — b) log(1 — b)) < 2n*b™" ( ) exp(kb)

W =

= 6n’b7! (

) — 0 asx — oo.

(JJI('D

The inequality follows from the fact that the function f(z) = —(1 — z) log(1 — z) satisfies
f(b) <b(since f(0) =0, f'(0) =1, f’"(z) <0on[0,1)). O

We prove the results from Section 5.3 before returning to those from Sections 5.1 and
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5.2.

Proof of Proposition 5.7. Write the law of motion (1) for strategy s as

(46) %= ) xopUx) —x ) oyl ),

j#s j#s
where the conditional switch rates are given by

Y [H x';”k"]ﬁﬁ(n”<m>, T)

meMrt \ keS

(7a)  oyUx) =) THT)

T€51'

and (7b).
Write x_s = Y,

j#s

xj. To understand the behavior of the dynamics in a neighborhood

of e;, we can focus on terms of the polynomial (46) that are of order no greater than 1

in x_;. In particular, we need only look at terms of (46) in which there is at most one

xj, j # s of order 1, with the remaining terms for nonequilibrium strategies having order

0. In the initial sum in (46), because of the initial x;, the only such terms (i) have agents

only playing s in the match assignment m (implying that the revising agent chooses s). In

the last expression of (46), there are two kinds of such terms: (i) as above; (ii) those that

have exactly one opponent playing k # s in a match in m. Defining S;; as in the proof of

Proposition 4.2, we can express (46) as follows:

(47)  w= )y ) M B, T = )Y e gy, T)

j#s TeSjs j#s TeSs

=Y Y @Y pal™ 0 Y ol T |+ O,

j#s TESs k+#s teT

where

u K d

() = v}y, = Ky an
_— )

(48) (), = Ups = Klis ifh#¢,

sket/h =3 el

Vhs = (K = Dups + uppes ifh =2¢.

The first two sums in (47) correspond to case (i) above. Since s is uniquely optimal in

7l we can rewrite (47) as

—-33—



(49) % = Z X Z ()"

j¢5 T€5j5
YN Y poed Y pinlg, D + O(-)?).
TeSs j#s k#s eT

The first term on the right-hand side of (49) is atleast ;cx_sxlsﬂp ", where T = minj. Y. S T;?‘(T) >

0. To prove that X; > 0 when x_; # 0 is small, we show that the second term in (49) is 0
by showing that ﬁss(nu”‘ T)=1forall T € S, k # s, and ¢ € T. For this to be true, it

s, k@t’
is sufficient that Ve > Vs for all k, £ # s (to cover cases in which ¢ # s) and Vsks > Ul
(for £ = s). (The first cases also require Vys > Upis for h # s; this is true because s is a

strict equilibrium.) These are precisely the conditions assumed in (23). Thus %, > 0 when
x_s # 0 is small, proving the proposition. m]

Proof of Proposition 5.9. Write the law of motion X = V(x) (1) as

(500 Viw) =) xoiUx) —x,

jes

where the conditional switch rates are given by (7a) and (7b). Write x_; = }_ .., x;. Assume

j#5
from this point forward that i # s. ]
As in the previous proof, we can focus on terms of the sum in (50) that are of order no
greater than 1 in x_;. There are two sorts of such terms: (i) those that have agents only
playing s in the match assignment m; (ii) those in which the revising agent plays s and
that have exactly one opponent playing k # s in a match in m. Noting that in the first case,
a revising agent playing s will continue to play s (since s will be in his test set), we can

express (50) as follows:

(51) Vit = ) Y ) xpnt, T)

jiS TGSJ'
a Tlp-x
+ Z 74(T) Z p_icx P Z Bai(Tthaer T)| = Xi + O((x5)),
TeSsi k#s CeT
with ngk@ , defined in (48).

Since (e;)x = 0 for k # s, it follows from (51) that

aV;

(52) e

(e5) = 0.
Focusing on the case of 7, note that f;(nY, S) = 0 for i # s, implying that the first term
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in (51) is zero, and note that ﬁsi(ngk@f, S) can only be positive if £ = i or £ = s. Combining

these two facts with (51), we find that under 7%,

Vi) = poce Y i (Bl g S) + il S)) — X + O((x-)?),

k+#s

and hence

(53) ‘;—Z(es) = p_k (Bl g S) + Bui(mill 0, $)) —1[j =] for j #s.
Assumption (26) ensures the terms in parentheses in (53) are 0 when i # s is not less than
j. Thus 3—:}?(65) = 0 when i # s is greater than j, and ‘;—‘2(65) =-1.

To complete the proof, we change the state space of the dynamic * = V(x) from
the simplex X to the set Y = {y € R"!: Y,y; < 1} by leaving off the sth component
of both x and V(x) but retaining the labels of the remaining coordinates: that is, x
V1, Yse1, Ysais oo, Yn) = (X1,..., X521, X541, - - ., X)".  The transformed dynamic can be
expressed as 7 = W(y), where

(54) Wl(y) = Vi (]/1/ ceor Ys-1, 1- Z#s YirYs+1s- -+ yn) .

and the equilibrium x = ¢; is sent to y = 0. Thus the Jacobian of the transformed dynamic
at the transformed rest point 0 has components

W, Vi Y,
(55) a_y]-(o) = 8x-(65)

] — 8—xs(€s), l,] #sS.

Combining (55) with our previous arguments shows that %—‘;V]_"(O) = 0 when j # iis less than

i and that %—Vy\f"(O) = —1. Thus DW(0) is an upper diagonal matrix with all diagonal elements
equal to —1. Therefore all eigenvalues of DW(0) are —1, and so 0 is asymptotically stable

under y = W(y), which implies in turn that ¢, is asymptotically stable under x = V(x). O

Proof of Proposition 5.11. For part (i), note that since Uy > Uj; for all i, j # s, any match
assignment r in which the revising agent tests s against an opponent playing s will lead
to him to choose s. Since such r have total probability x,, we have

X = Zx]-a]-s(u,x) — X5 > ij xs — X5 = 0.
j€S j€S
Turning to part (ii), let x be a state with x; € (0,1). Then there is a j* # s such that
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xj > 0. By assumption, for each i # s, either U, > U;s or U+ > U;j». Let R C T \ {s} be
the set of strategies i for which the first inequality holds. Consider the match result r € S"
defined by r; = s fori € R and r; = j* for i ¢ R. Then match result r leads a revising agent
to choose s. The definition of 7' and (7) then imply that

Xs = Z x;0s(U, x) — x;

j€s
n=IR| R
> Z Xj (xs + (x,) ') — X,
j€S
_ M-IR R
— xj* | I(xs)l |
>0,

completing the proof.
For part (iii), following the proof of (i), we obtain

Xy = ijajs(le) — X > Zx]- X5 + Zx;’ — X5 = Zx7
jes jes j#s j#s

where the terms X7 correspond to the probability of match assignments such that the
revising agent tests each of his n strategies against an agent playing strategy j # s, leading
to the choice of the dominant strategy s. It follows then that x;, > 0 if x; < 1, proving the
result. O

Proof of Proposition 5.1. Writing

Xs = Z xj0s(U, x) — x; Z os;(U, x)

j#s j#s

and using the logic from the proof of Proposition 5.7, we express X as follows:

(56) Vi@ =) % ) DA B, 1) = )Y wd (M gyl )

j#s TES; j#s TeS;
Tlp-
=Y Y Y poed Y e, D + O,
j#s TeSs k#s teT

The first two terms correspond to cases in which all agents in the match assignment play
s. Since after such an assignment the revising agent chooses s, (56) simplifies to
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57) Xs = Z X; Z T?(T)xlsTlp_K

j¢5 T€5j5
YN Y poed Y pinlg, D + O(-)?).
TeSs j#s k#s eT

Define §¢ = {T € S:s € T, |T| = a} and define 5]?; analogously. Then using the facts
that 7§(T) = (") 'and Sl = ("-3), we obtain

. a — 1 K n— — _K

to= - ) )G [Z pocal e Y iy, T) |+ O((-:P)
TeSe j#s k#s teT

0( 1 K _ — _K
(58) < —1 lsTlp X—s — Z Z(g—%) ! Z P—lesﬂp XiPst (nsL,lk@ff T)
{#s Tejs"; k#s
=Y Y el Y Bu(mlg, T) + O((x-0)?).
TeSy: TNS#2 k#s teTNS;

The upper bound (58) is obtained by considering two cases: (i) for some £ # sin T, ¢
is matched once against some k # s; and (ii) test set T contains at least one second-best
strategy t € S,, and when tested s is matched once against some k # s. In case (i) we also
use the fact that changing a test result for strategy ¢ # s cannot cause strategy j # ¢,s to
have the best test result.

The third term in (58) (with the minus sign excluded) is smallest when S, = {t} is a
singleton, so that its initial sum is over T in §3. Thus, again using the fact that ISS"]‘.I = ("3

]] + O((x=5)*)-

The assumption of the proposition is that for each k # s the expression in brackets exceeds

we obtain

-1 K
(59) xs < 1 |T|P ( X_s — P—K [Z Xk {Z 1[’Usls < v[lk,s] + l[vslk,s < vtls]

k#s {#s

p —. We conclude that for some ¢ > 0, X; < —cx_s + O((x—;)*), proving the proposition. O

Proof of Corollary 5.2. Rewrite condition (15) as

zl]s_ sls
(60) p- K[Z [K 1< -

Ugls — uslj,s
usls - utls

+1[K 1< D>1forallj¢s,

is s

Definition (16) of & ensures that this inequality holds for k¥ < &, completing the proof of
the proposition. m]
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Proof of Proposition 5.4. Let X = V(x) be the law of motion for the BEP dynamic, and define
V*(x) by V(x) = V*(x) — diag(x). Let ] € S \ {s}. Taking the derivative of (51) at x = e¢; and
dropping some nonnegative terms, we obtain for all i, j # s that

avl+ a u a u

Fo )= Y @B, T) + Y 1w (Dpr Y pu(nlin, T)

TeS; TeSsi teT
(61) > pic ) 1T (Bl g T) + e, T))
TeSs
> 0.

To prove part (i), we use the facts that T?(T) = ("1)?!and |5f§ | = ("23) to bound the
submatrix row sums of DV*(x):

an a-—1 » « .
(62) Z T @2 K= Z 1o}, > v8] foralli#s.
j€l j€J
Now define the change of coordinates W of V as in (54), and define W*(x) by W(x) =
W*(x) — diag(x). Equations (52) and (55) imply that
+ +

aWfo v, >0 foralli,j
8yj()_8xj(65)_ oralli,j#s.

Equation (62) and condition (19) from the proposition imply that (after rearranging indices)
the square block of DW*(0) corresponding to | has minimum row sum greater than 1.
Therefore, since all entries of DIW*(0) are nonnegative, Horn and Johnson (1985, Theorem
8.1.22) implies that the matrix in R"*"-D consisting of block DW*(0) and three zero
blocks has spectral radius greater than 1, and the monotonicity of the spectral radius
in matrix entries (Horn and Johnson (1985, Theorem 8.1.18)) then implies that DW*(0)
itself has spectral radius greater than 1. A standard extension of Perron’s Theorem (Horn
and Johnson (1985, Theorem 8.3.1)) implies that the spectral radius of DW*(0) is an
eigenvalue of DW*(x) corresponding to a nonnegative eigenvector. We thus conclude that
DW(0) = DW*(0)—Ihas a positive eigenvalue corresponding to a nonnegative eigenvector.
We conclude that 0is unstable under y = W(y), and hence that ¢, is unstable under x = V(x).

To prove part (ii), we must bound the submatrix column sum of DV (e;). To do so note
as in the proof of Proposition 5.1 that the probability under test-a of choosing a test set

in S that contains at least one element ¢ of S, is smallest when S, is a singleton, in which

u

s,j@s” and

case the probability is 2=1. If such a test set is chosen, the realized payoffs are 7

Vs < Uy @ revising agent will chose some strategy in S,. From this and equation (61) it
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follows that

a o ‘= 1 Y 105, > o]+ Y 1D Y g, T)]

i€] i€] TesSs i€]
= p_K z|]s sls +1[5, < ] (— 1[vsl]s < Zﬂtcls])]
i€]
(63) Zl[% 2> O]+ 1S, € N[t < ;S]] forall j #s.
i€]

Equation (63) and condition (20) from the proposition imply that the square block of
DW*(0) corresponding to | has minimum row sum greater than 1. The reminder of the
proof is identical to that of part (i). O

Proof of Corollary 5.6. For & > [4]+ 1 we have 4= > 1, and then condition (20) in Proposi-
tion 5.4 implies that for ¥ > 1, and for ¥ = 1if p_ > 1, a sufficient condition for instability

is either that there is some strategy i # s with v}, - > v],
i,s sls

or that S, = {j} and vj, > vys.
Parts (i) and (ii) follow directly from these conditions and the relation (12) between total
payoffs and matrix payoffs. Part (iii.a) follows from (20) from setting | = {i, j}, and part
(iii.b) in the second case follows from (20) from setting | = {j} when S, = {j}. O

Argument that components of the inflow Jacobian of the reduced dynamics at a pure rest point are
nonnegative (Section 6). At pure rest point e;, after dimension reduction (see (54) and (55)),
the partial derivatives of the inflow terms of system (1) are

do;

8W V+ d0s;
(64) (0) (65) - (es) = (Gji(u/ es) + (LI/ s)) (Gsi(u es) + (LI/ s))

Since e, is a rest point, we must have o (U, e;) = 0, and hence ‘9‘7“ (LI es) = 0 (since (e5); = 0)

%‘Z (U, es) < 0 (since (e;)s = 1). Thus (64) is nonnegative.

and

A.3 Analyses of examples

We describe the Jacobian at rest point e, after dropping the sth coordinate of the state,
changing from x = V(x) to = W(y) as in equation (54), so that the rest point ¢; is sent to
y = 0 and the Jacobian of W is described by (55). To specify the Jacobian of W at 0, we let
S, = argmax_ uys be the set of strategies that earn the second-best payoff at e;.

Lemma A.3.
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(i) The Jacobian DW(0) for BEP(t!, x, ™) dynamics has components
y P

p-x 1[v l|]s>U;<|S]—1[j:i] ifi #minS,andi>s,
(65) %(O) _px 1[v" Vs 2 v;s] -1[j =1] ifi #minS,andi<s,
9y, poc(1lof,, > o8 1+ 10of, > 05, 1) - 10j =il ifi=minSandi>s,

p K( [ 1|]s = sls] + 1[vzls - v:lj,sD - 1[] = 1] Zfl

min S, and i < s.

(ii) The Jacobian DW(0) for the BEP(t?!, x, B59) dynamic has components

IW; o JP¥ 1oy, > i ] -1[j =] ifigS,,
ay] P- K(l[vlljs > g1+ |52|1[UZIS s|]s]) 1[] =] lfl € 5.

sls

(iii) The Jacobian DW(0) for the BEP(7?!, 1, ) dynamic has components

(1[%5 of ]+ 1o, = o, ) 1[j =] ifigs,
AL . ~
ay]( ) - (l[vﬂ]s sls] + 1[ 1|]s Z]sls
+ oy, > o5 1+ gigdloy, = of, 1) -1l =il ifies,.

Proof. We only prove part (i); the proofs of parts (i) and (iii) are similar. The BEP(7?!, x, gmin)
dynamic is expressed as

(66) X =Vix) = Z (H xlkml(k)l] 1[1 min (argmax U (m))l

meMg \_keS keS

where Mg = {m | m: Sx{1,...,p_} x{1,...,x} — S}.

Now suppose that i # s, and consider the partial derivatives of V; at the equilibrium
state e;. Since the match assignment in which all opponents play s leads the indicator
function in (66) to equal 0, the only summands in (66) whose partial derivatives at state
x = es can be nonzero are those in which |m™'(s)] = np_x — 1. There are two types of
match assignments that can lead to nonzero derivatives in (66). In the first, one of the p_«x
opponents when strategy i is tested plays strategy j # s, and the remaining opponents
play s. Strategy i is best for such match assignments if U;les > vfls, so in this case, these
match assignments contribute p_x (i.e., the corresponding number of summands in (66))
to 24 7 Yi(e,). This contribution also occurs if v*. = v*_and i < s, in which case i beats s under

ilj,s sls
the ﬁmm tiebreaker. In the second type of match assignment, i = min Sy, one of the p_x
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opponents when strategy s is tested plays strategy j # s, and the remaining opponents

play s. Strategy i is best for such match assignments if vj > (orifof =0%. andi<s),

|]s t|s slj,s

contributing p_x to %(es) in this case. Accounting for these and for the —x; term in (66)
and then using (55), we obtain (65). O

Analysis of Example 5.7.
Here we analyze the stability of the strict equilibrium state e; of the Traveler’s Dilemma
(22) under BEP(7?!, k, B) dynamics with n odd and x = 2. For x = 2l and 1 < j < i, the

only total payoff v" = (x—1)u; +u;; which is not smaller than vy, = @ isvr, =15 1( +n=

2= Accordmg to Lemma A.3, this leads to an upper trlangular Jacobian with all

2
diagonal elements equal to —1 except possibly the last one, awn

(0) Since the diagonal
elements are the eigenvalues of the matrix, the stability of e is determmed by the sign of
aw,l 5(0). For gf we obtai ) = 22, 50 ¢ is unstable for odd n > 5. For gt and g™

we obtain &W” £(0) = -1,s0¢ is asymptotically stable.

Analysis of Example 5.8
Here we analyze the stability of the strict equilibrium state e; of game (28) under
BEP(7?!, «, p) dynamics for x = 3. The matrix 03, with elements vf]. = 2uj + uy, is

111 1
®=2-10 0 0|+]0
0 0 0) (o

S N O
W o O
I
S O W
S NN DN
LW oN

By Lemma A.3 and the fact that v3, = 3, the Jacobian for the BEP(7*", 3, *f) dynamic is

0 0 10 -1 0
m0=30 s _a)-(o 3)-(0 )

so the strict equilibrium e, is unstable. For the BEP(7?!,3, g™i") and BEP(z7?!, 3, pstick)
dynamics, the Jacobian is

W(O):3-[0 0)_(1 o):[—1 0],
0 0] |0 1 0 -1

so e; is asymptotically stable.
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