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Abstract: Fuzzy logic presentsmany potential applications formodelling and simulation. In particular, this pa-
per analyses one of the most popular fuzzy logic techniques: Mamdani systems. Mamdani systems can look
particularly appealing because they are designed to incorporate expert knowledge in the form of IF-THEN rules
expressed in natural language. While this is an attractive feature for modelling and simulating social and other
complex systems, its actual application presents important caveats. This paper studies the potential use of
Mamdani systems to explore the logical consequences of a model based on IF-THEN rules via simulation. We
show that in the best-case scenario aMamdani systemprovides a function that complies with its generating set
of IF-THEN rules, which is a di�erent exercise from that of finding the relation or consequences implied by those
rules. In general, the logical consequences of a set of rules cannot be captured by a single function. Further-
more, the consequences of an IF-THEN rule in a Mamdani system can be very di�erent from the consequences
of that same rule in a system governed by the most basic principles of logical deductive inference. Thus, care
must be taken when applying this tool to study “the consequences” of a set of hypothesis. Previous analyses
have typically focused on particular steps of theMamdani process, while herewe present a holistic assessment
of this technique for (deductive) simulation purposes.
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Introduction

1.1 Fuzzy logic can be traced to Lo�i Zadeh’s 1965 seminal paper titled “Fuzzy Sets” (Zadeh 1965). Since then, the
theory of fuzzy sets has been successfully applied in a wide range of fields, but – contrary to its creator’s ini-
tial expectations – most applications are found outside the boundaries of the Social Sciences. In Zadeh’s own
words: “When I wrotemy 1965 paper, I expected that fuzzy set theorywould be applied primarily in the realmof
human sciences. Contrary tomyexpectation, fuzzy set theory and fuzzy logic are applied in themain in physical
and engineering sciences” (Arfi 2010, foreword).

1.2 Theuse of fuzzy set theory in the Social Sciences is certainly notwidespread, but ever since the early pioneering
proposals (see e.g. Cio�i-Revilla 1981; Smithson 2012) there has been a constant interest in potential applica-
tions of fuzzy logic for social modelling and simulation (Arfi 2010; Ragin & Pennings 2005). Nowadays one can
find several noteworthy examples in the field of social simulation and related domains (Denize et al. 2012; Dyk-
stra et al. 2015; Fleischmann 2005; Fort & Pèrez 2005; Góngora y Moreno & Gutierrez-Garcia 2017; Hassan et al.
2007, 2010, 2011; Lee et al. 2013, 2014; Olaru & Smith 2005; Sabater et al. 2006), and various proposals have
been made to apply fuzzy logic in di�erent social contexts (see e.g. Power 2009; Neumann et al. 2011). There
is also a NetLogo (Wilensky 1999) extension developed to facilitate the implementation of fuzzy approaches in
agent-based simulations (Izquierdo et al. 2015), already being used in social simulation studies (Anand et al.
2017). More generally, a wide range of computer tools have been developed over the past years to make use of
fuzzy logic in modelling, simulation and decision making, and many general computing environments such as
MatLab implement popular fuzzy methods, like the so-called “Mamdani fuzzy inference” (MATLAB 2016).

1.3 This widespread availability of ready-to-use so�ware, the willingness of a community eager to apply new tools
to the analysis of complex systems, and the apparent simplicity of the basic principles of fuzzy logic have led
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to a situation in which any scholar can nowadays build and use a simple fuzzy logic model in amatter of hours.
This observation naturally constitutes a positive advancement in many aspects, but it also means that there is
a potential risk of misapplying the theory and/or misusing the tools.

1.4 This paper focuses on the use of Mamdani inference, which is one of the most popular techniques in applied
fuzzy logic. Mamdani inference is mainly used in fuzzy control (Driankov et al. 1996), but has also been applied
in various other fields such as management and finance (Bojadziev 2007; Bodenhofer et al. 2012), economics
(Stojić 2012; West & Linster 2003), risk assessment (Darbra et al. 2008; Nait-Said et al. 2008), and even for mea-
suring the quality of education (Valdés-Pasarón et al. 2011).

1.5 In this paper we assess the usefulness of Mamdani systems for modelling, simulation and decision making.
To achieve this end, we put together and synthesise several results already known in the field of fuzzy logic,
and illustrate them with examples purposefully designed for our objectives. Our assessment is intended to be
accessible to researchers who may not be experts in the field of fuzzy logic but are interested in exploring the
possibilities of this particular fuzzy technique, with a focus on social simulation.

1.6 Mamdani systems have proven to be a very useful tool for function approximation and control (Cao et al. 2001)
– an aspect that does o�er interesting potential applications in the social sciences too-, so we will not discuss
that aspect here; in this paper we analyse their potential usefulness as a tool for logical deductive inference to
study, via simulation, the consequences and behaviour of a model defined by means of IF-THEN rules.

1.7 Mamdani systems are most o�en classified as a form of Approximate Reasoning, which has been defined as
“the process or processes by which a possible imprecise conclusion is deduced from a collection of imprecise
premises” (Pal & Mandal 1991). This categorization, together with the fact that the core component of a Mam-
dani system is a set of IF-THEN rules, can easily mislead one to believe that Mamdani systems can provide the
logical implications of the set of rules used to build them, even if only approximately. Without pointing at any
particular example, it is not di�icult to find cases in the literature that seem to be taking this assumption for
granted, either implicitly or explicitly. Specifically, one might be tempted to believe that in a Mamdani system
the joint truth of the premises guarantees the truth of the conclusions. In logics that admit degrees of partial
truth, this expectation would read that if the inputs of the system are true to some degree (i.e., they satisfy the
antecedents of the rules to some extent), then the outputs of the system should also be true to at least the same
degree (i.e., they should satisfy the consequentsof the rules toat least the sameextent). This fallacious interpre-
tation of Mamdani systems as truth-preserving inference machines is certainly – and fortunately – not shared
by everyone, but is reasonably widespread and does permeatemany simulation applications of the technique.

1.8 To be clear, Mamdani systems are not truth-preserving in the sense stated above; they can lead to very di�erent
results fromthoseobtained if the IF-THEN rules embeddedwithinare interpretedasproper logical implications.
This fact has alreadybeenwell established in the specialized literature of fuzzy logic – as the quote below shows
– but, arguably, it does not seem to be so conspicuous in many practical applications of the technique.

1.9 [The inference rule used by Mamdani systems] “is not a logical inference, i.e., a procedure aiming at the deriva-
tion of new facts from some other known ones using formal deduction rules. No logical implication is inside
and thus, no modus ponens proceeds.” (Klawonna & Novák 1996).

1.10 This paper illustrates through several examples why the Mamdani method is not appropriate to explore the
logical deductive consequences of a set of IF-THEN implication premises. More technical discussions of some
of the aspects that we illustrate in this paper can also be found in the literature (Bodenhofer et al. 2007; Dubois
& Prade 1996; Hájek 1998; Klawonna & Novák 1996; Novák 1994).

1.11 The remaining of this paper is structured as follows. Section 2 introduces Mamdani systems and section 3 dis-
cusses their usefulness for modelling and simulation. The main objective of Section 3 is to show and illustrate
withexampleswhyMamdani systemsarenotaproper tool toexplore the logical consequencesof IF-THENrules;
thus, they are not useful to explore the behaviour of a model defined by IF-THEN implication rules. Finally, in
Section 4 we present the conclusions of the paper.

Mamdani Fuzzy Systems

2.1 Mamdani fuzzy systems were originally designed to imitate the performance of human operators in charge of
controlling certain industrial processes (Mamdani 1974, 1976, 1977; Mamdani & Assilian 1975). The aim was to
summarize the operator’s experience into a set of (linguistic) IF-THEN rules that could be used by a machine
to automatically control the process. Specifically, using such a set of IF-THEN rules, a Mamdani fuzzy system
defines a function f which generates numerical outputs y = f(x) from (usually numerical) input valuesx. Here
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wepresent a reduced and simplified exposition of themethod. For amore complete and detailed presentation,
the reader is referred to Sections 11.4.1 and 11.4.2 in Zimmermann (2001) or Section 11.4 and Chapter 12 in Klir &
Yuan (1995).

2.2 Mamdani systems are composed of IF-THEN rules of the form “IF X is A THEN Y is B”, such as “IF PRESSURE is
HIGH THEN VOLUME is LOW”. The IF part “X is A” is called the antecedent of the rule, and the THEN part “Y is B”
is called the consequent of the rule.

2.3 For simplicity in the exposition of the method and the examples, let us assume thatX and Y (PRESSURE and
VOLUME respectively in the example above) are numerical variables defined on real intervals. The examples
we provide can be easily adapted to other input and output spaces, multiple inputs, or fuzzy inputs. Thus,
henceforth variableX is assumed to be defined in a real interval that we call the input interval, whilst variable
Y is assumed to be defined in a real interval that we call the output interval. Let us use lower-case letters x and
y to denote specific values of the variablesX and Y respectively.

2.4 The symbolsA andB (HIGH and LOW respectively in the example above) denote linguistic terms that aremod-
eledas fuzzy setsdefinedon the input andoutput intervals respectively. Fuzzy setA is definedbyamembership
function µA that assigns a real value µA(x) between 0 and 1 to each element x in the input interval. The value
µA(x) is called the degree of membership of element x in fuzzy setA, and can be interpreted as the extent to
which element x belongs to fuzzy set A. If the fuzzy set A represents a certain concept (i.e. “HIGH”), µA(x)
can also be interpreted as the truth value of the proposition “XisA” wheneverX = x (e.g. the truth value of
“PRESSURE is HIGH” whenever PRESSURE= x), represented as TruthValue(XisA|X = x). Likewise, fuzzy set B
is defined by amembership function µB that assigns a real value µB(y) between 0 and 1 to each real value y in
the output interval.

2.5 Most o�en Mamdani systems are composed of several IF-THEN rules. Naturally, each of the rules (which we
index with subscript k) may use di�erent fuzzy setsAk andBk. The antecedents and consequents can also be
combined propositions that include the logical connectives AND or OR. A standard Mamdani system uses the
following operations to compute the truth value of combined propositions:

TruthValue(X isC ORX isD|X = x) =

max(TruthValue(X isC|X = x), TruthValue(X isD|X = x)) = max(µC(x), µD(x))

TruthValue(X isC ANDX isD|X = x) =

min(TruthValue(X isC|X = x), TruthValue(X isD|X = x)) = min(µC(x), µD(x))

The logical negation is implemented in a standard Mamdani system as follows:

TruthValue(X is NOTA|X = x) = 1− TruthV alue(X isA|X = x) = 1− µA(x)

2.6 Leaving aside a possible fuzzification step, which is not relevant for our discussion, the algorithm that a Mam-
dani systemuses to compute a numerical output y fromanumerical inputX = x, given a set of rules “IFXisAk

THEN Y isBk”, consists of the following steps:

2.7 M1. - Compute the degrees of consistency between observations (inputs) and antecedents of each rule.
In this step we evaluate the extent to which the antecedent of each IF-THEN rule is satisfied for a given input.
The degree of consistency between an input or observationX = x and an antecedent “XisA” is simply the
degree of membership of x in the fuzzy set A, i.e. µA(x). The result of this step is a number µAk(x) for each
rule “IFXisAk THEN Y isBk” (i.e. the degree of consistency between the input and each rule’s antecedent). If
µAk(x) > 0 the corresponding rule k is said to be “fired”.

2.8 M2. - Truncate the fuzzy set in the consequent of each rule. The result of this step for each rule “IFXisAk

THEN Y isBk” is the fuzzy setBk truncated at the level µAk(x), i.e., a set µoutput k|x such that

µoutput k|x(y|x) = min(µBk(y), µAk(x))

2.9 M3. - Aggregate all the truncated fuzzy sets. In this step the truncated fuzzy sets corresponding to each fired
rule are aggregated to provide one single fuzzy set µMamdani|x defined by the membership function

µMamdani|x(y) = max
k

[µoutput k|x(y)] = max
k

[min(µBk(y), µAk(x))]

2.10 The equation above clearly shows why Mamdani fuzzy systems are sometimes called max-min fuzzy systems.
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2.11 M4. -Defuzzify theaggregated fuzzyset. Thedefuzzificationstep transforms theaggregated fuzzy setµMamdani|x
intoonesinglecrispnumber. StandardMamdani systemsuse theCentreofGravity (COG)defuzzificationmethod.
This method returns the projection (on the horizontal axis) of the centre of gravity of the area under the mem-
bership functionµMamdani|x. If some input value is such that no rule is fired, the centre of gravity forµMamdani|x
cannot be calculated. In that case, some default output value can be considered, or the system can be read-
justed to avoid that situation (e.g. by modifying the fuzzy setsAk, or by including new rules).

2.12 Given that the defuzzification step has a large influence on the final function that the system provides, we will
also consider here two other alternative defuzzification methods (Van Leekwijck & Kerre 1999): i) First of Max-
ima. This method returns the smallest value of y for which the membership function µMamdani|x attains its
maximum value. ii) Last of Maxima. This method returns the greatest value of y for which the membership
function µMamdani|x attains its maximum value.

Modelling Using Mamdani Fuzzy Systems

3.1 We consider two di�erent potential objectives whenmodelling with Mamdani fuzzy systems: a) Modelling with
the purpose of defining, capturing or reproducing some input-output function. b) Modelling with the purpose
of exploring the logical consequences of an IF-THEN rule or of a set of IF-THEN rules.

3.2 As to the first objective, Mamdani systems have proven to be a very useful tool for defining or approximating
functions based on IF-THEN rules, and they have been quite successful on practical applications, mainly in the
field of control systems (Driankov et al. 1996; Thirumoorthi & Yadaiah 2015; Zimmermann 2001). Some of the
appealing features of Mamdani systems for this purpose are: i) Flexibility: Mamdani-type fuzzy controllers are
universal fuzzy controllers (Cao et al. 2001). ii) They provide a natural framework to include expert knowledge
in the form of linguistic rules (Cordón et al. 2001). iii) Local adaptability: it is possible to define rules that are
fired only at some specific regions of the input space. This allows for local adaptations of the working function
on those particular regions without modifying the function outside those regions (Mamdani 1994).

3.3 Henceforth we will focus our discussion on the second potential objective of modelling with IF-THEN rules,
namely exploring the behaviour or consequences of a model which is characterized by a set of IF-THEN rules.
Our objective is to illustrate and explain why Mamdani systems are dangerous tools for that purpose. To that
end, we will first discuss the e�ect of IF-THEN rules in Mamdani systems. We are interested in the total input-
outpute�ect. Thus, even thoughwewill sometimes refer to the intermediate stepswhere the fuzzyconsequents
of each IF-THEN rule are truncated, wewill always be considering the final input-output e�ect of a rule a�er the
system has gone through all its steps, including aggregation and defuzzification. This tactic complements the
approach usually followed in fuzzy logic, which has typically focused on the study of each individual step of the
process in isolation. By contrast, here we study the properties of the final function provided by the Mamdani
system as a whole, treating its inner intermediate steps as black boxes.

3.4 Thus, the question is whether an IF-THEN rule of the form “IF XisA THEN Y isB” in a Mamdani system im-
poses the same kind of input-output relation that one could expect if the rulewere to be interpreted as a logical
implication. Specifically, given the rule “IF XisA THEN Y isB”, and interpreting µA(x) as the truth value of
proposition “XisA” whenever X = x, we aim to find out whether providing any input x with high degree
of membership in A (high µA(x)) guarantees that its corresponding output y(x) will have a high degree of
membership inB (high µB(y(x))), which we consider to be the relation that one would expect if the rule were
interpreted as a logical implication.

3.5 More precisely, consider aMamdani systemwith the rule “IFXisA THENY isB”. This systemdefines a function
y that assigns a unique output value y(x) to each input value x. We aim to determine whether the presence of
the rule “IFXisA THEN Y isB” in the system guarantees that the constraint µB(y(x)) ≥ µA(x) is satisfied for
all inputs x, either strictly or approximately in some sense1. Considering that the implication connective a→ c
tries to quantify the degree bywhich the consequent c is at least as true as the antecedent a (Hájek 1998; Smets
& Magrez 1987), we will refer to the previous condition as the logical-implication interpretation of the rule “IF
XisA THEN Y isB”.

3.6 Wewill start by discussing systemswith a single rule, and thenwewill discuss systemswithmore rules. It must
be said beforehand that Mamdani systems with only one rule are generally not used. The reason is that each
individual rule in a Mamdani system is intended to shape the final function somewhat locally, i.e. individual
rules modify the input-output relation on specific regions of the input space without necessarily altering the
relation onother regions (i.e. thosewhere the rule does not apply) (Bodenhofer et al. 2007). Thus, a systemwith
a single rule will usually leave the input-output relationship undefined where the rule is not fired, and, even if
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fired, one single rule will usually fail to capture any minimally complex association. Nonetheless, discussing
systems with a single rule will be instructive because they are simple and, at the same time, su�icient to show
thedi�erencebetween theMamdani e�ects and the logical-implicatione�ectsof an IF-THEN rule. Furthermore,
since single-rule systems lack the aggregation step, their analysis provides a neater understanding of the other
steps of the Mamdani process (most notably the defuzzification step, which is pivotal in our arguments).

Single-rule systems

3.7 In this section we study a standard Mamdani system with one single rule “IFXisA THEN Y isB”. This system
defines a function y which, given an input x, produces an output y(x). It is shown below that the function y
provided by the Mamdani system does not necessarily satisfy the constraint µB(y(x)) ≥ µA(x) for all inputs x
(i.e. the logical-implication interpretation of the rule), neither precisely nor approximately, even in those cases
in which there does exist one or multiple functions that do satisfy the constraint.

3.8 In order to work with a concrete example let us suppose thatX and Y take real values in the interval [0, 10],
and let us consider the rule “IFX is large THEN Y is large”, where the fuzzy set “large” is defined in the interval
[0, 10] by the membership function µlarge(z) = 0.1 z for both variablesX and Y (Figure 1).

3.9 Wediscuss the following question: Is aMamdani systemaproper tool to explore the logical consequences of an
IF-THEN rule about the variables in the system? To this end, first we consider the di�erence between the logical
consequences of the rule and one of the logically consistent outputs.

Figure 1: Membership function of the fuzzy set ‘large”

3.10 Suppose that we assume that a Mamdani systemwill provide the input-output relationship implied by the rule
“IFX is large THEN Y is large”. Note that there is already some a priori impossibility result in the response to
this question, because in general a logical IF-THEN rule does not define any specific function (which is what a
Mamdani system will return), but it only rules out some input-output value combinations (in crisp logic, those
combinations which make the antecedent TRUE and the consequent FALSE). Any specific function will nec-
essarily leave out any other alternative functions that may be equally compatible with the logical rule. If we
consider that the functions compatible with the rule “IFX is large THEN Y is large” are those functions f such
that µlarge(f(x)) ≥ µlarge(x) for all inputs x, then it is clear that there are many possible functions compatible
with the rule. In fact, any function such that f(x) ≥ x for all inputsx in the range [0, 10]will do (for instance, the
constant function defined by f(x) = 10, or any of the functions represented in Figure 2). Any function “drawn”
above the dashed diagonal lines in Figure 2 would be compatible with this rule.
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Figure 2: Rule-compatible functions. Di�erent functions f fully compatible with the rule “IFX is large THEN Y
is large” in the sense that they satisfy the constraint µlarge(f(x)) ≥ µlarge(x).

3.11 Note the risks of considering any of the rule-compatible functions represented in Figure 2 as if it were “the”
logical consequent function of the IF-THEN rule, or as if it were characterizing the logical implication of the IF-
THEN rule. Any system that provides a function as the result of an IF-THEN rule should be suspicious in the
sense that it is probably making many additional assumptions about the input-output relationship than just
those corresponding to the logical-implication interpretation of the IF-THEN rule.

3.12 To illustrate this point further, consider for instance the crisp rule “IFX ≤ 2 THEN Y ≥ 8”. Note that looking
for “the logical consequent function” derived from this rule is something that does notmakemuch sense. What
output value should such a theoretical function provide for an input value x = 1? The constraint “IFX ≤ 2
THEN Y ≥ 8” indicates that certain output values are not allowed, but it does not specify what “the” output
value should be.

3.13 In general, choosing one particular value that is consistent with a rule is a very di�erent exercise from that of
exploring the logical consequences of the rule. Suppose, for instance, that the evidence of a murder scene
indicates that the killer was a dog. An inspector who takes the first dog he sees and delivers it as the murderer
is providing an output (i.e. the dog as the killer) that is consistent with the evidence, but taking that particular
dog as the murderer can hardly be called “the logical consequence” of the evidence.

3.14 Going back to our example with the rule “IFX is large THEN Y is large”, we already know that there are infinite
functions f that satisfy the constraint µlarge(f(x)) ≥ µlarge(x) for all inputs x. However, a standard Mamdani
system (with COG defuzzification) with the rule “IF X is large THEN Y is large” provides the function y rep-
resented in Figure 3, which, for a large range of input values, is not compatible with the logical-implication
interpretation of the rule, i.e., it is not even one of the infinite possible functions that do satisfy the constraint
µlarge(y(x)) ≥ µlarge(x).

JASSS, 21(3) 2, 2018 http://jasss.soc.surrey.ac.uk/21/3/2.html Doi: 10.18564/jasss.3444



Figure 3: Mamdani function. Representation of the function generated by aMamdani systemwith the rule “IFX
is large THENY is large”. The points below the dashed diagonal do not satisfy the logical implication constraint
µlarge(y(x)) ≥ µlarge(x).

3.15 It must be noted here that, in the single rule case, a Mamdani-like system with one of the so-called maxima
defuzzification methods (Van Leekwijck & Kerre 1999) such as First of Maxima or Last of Maxima, instead of
Centre of Gravity, would provide one of the (possibly many, if they exist2) functions y satisfying the constraint
µB(y(x)) ≥ µA(x) for all inputs x3. However, each defuzzification method has advantages and drawbacks
(Hellendoorn & Thomas 1993; Klir & Yuan 1995; Van Leekwijck & Kerre 1999; Ross 2010; Zimmermann 2001). The
maximamethods are usually considered to be better candidates for fuzzy reasoning systems, while the Centre
of Gravitymethod and other areamethods exhibit the property of continuity, whichmakes themmore suitable
for fuzzy controllers (Van Leekwijck & Kerre 1999).

3.16 In short, for a standard Mamdani systemwe arrive at the following result:

3.17 Caveat 1: The function y produced by a standard Mamdani system with rule “IFX is A THEN Y isB” does not
necessarily satisfy the constraint µB(y(x)) ≥ µA(x) for all inputs x, even if there exist functions that do satisfy
the constraint.

3.18 The following example will illustrate that a standardMamdani systemwith rule “IFX isA then Y isB”may not
comply with the logical-implication interpretation of its rule at all, i.e. not even in the approximate sense that
any input xwith highmembership inA – highµA(x) – should guarantee an output y(x)with highmembership
inB – high µB(y(x)).

3.19 Let us consider the rule “IFX is large THENY is NOTabout five”, where the fuzzy set ‘about five” is defined in the
interval [0, 10] as shown in Figure 4 and the fuzzy set ‘NOT about five” is defined by the membership function
µNOT about five(y) = 1− µabout five(y).

Figure 4: Membership functions for the fuzzy sets “About five” (le�) and “NOT about five” (right).

3.20 Considering that the consequent fuzzy set “NOT about five” is defined by a membership function that is sym-
metric around y = 5, the output of a Mamdani systemwith the rule “IFX is large THEN Y is NOT about five” for
any input valuex that fires the rule is precisely y(x) = 5, i.e., the very value that does not satisfy the consequent
of the rule to any degree.

3.21 The purpose of the previous example is to show that, in a Mamdani system with the rule “IF X is A THEN Y
isB”, an input xmay satisfy the antecedent to a large or even total degree (µA(x) = 1) but its corresponding
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output y(x)maynot satisfy the consequent to any degreewhatsoever (µB(y(x)) = 0). We candraw two impor-
tant lessons from this observation. The first lesson is that there are Mamdani systems for which the constraint
µB(y(x)) ≥ µA(x) (i.e. the logical-implication interpretation of the rule) is as far from being valid as it can
possibly be, at least for some inputs. Thus, we can state that, in general, Mamdani systems do not necessarily
satisfy the logical-implication interpretation of their rules, neither precisely nor approximately. Specifically, we
can issue the following two caveats, which could be considered the fuzzy extensions of Caveat 1.

3.22 Caveat 2. In a standard Mamdani system with rule “IF X is A THEN Y is B”, an input x with high degree of
membership inA (high µA(x)) does not guarantee an output y(x)with high degree of membership inB (high
µB(y(x))).

3.23 Caveat 3. In a standard Mamdani system with rule “IFX isA THEN Y isB”, the observation of an output y(x)
with low degree of membership inB (low µB(y(x))) does not guarantee that its corresponding input(s) x have
low degree of membership inA (low µA(x)).

3.24 The second lesson we can draw from the example is that neither the rule of inference modus ponens (which
allows inferring that the consequent will be true whenever the antecedent is true) nor the rule of inference
modus tollens (which allows inferring that the antecedent is false whenever we observe that the consequent is
false) can be safely appliedwhen dealingwithMamdani systems. In other words, in Mamdani systemswith one
rule of the form “If Antecedent THEN Consequent”:

a) If the Antecedent is fully true, it cannot be inferred that the Consequentmust be true; the Consequent could
be completely false (i.e.modus ponens does not apply).

b) If the Consequent is fully false, it cannot be inferred that the Antecedentmust be false; the Antecedent could
be completely true (i.e.modus tollens does not apply).

3.25 Basically, Mamdani systems include information about the function that one wants to obtain using the same
languageof logical implications, but the real e�ect of an “IFX isATHENY isB” rule over the obtained function
can be very di�erent from its expected e�ect if it is understood as a logical implication.

3.26 In summary, aMamdani systemwith a single rule “IFX isATHENY isB” provides a function y in the support of
the antecedent which, depending on the defuzzificationmethod, will be one of the (possibly infinite) functions
f that satisfies the logical implication constraint (i.e. µB(f(x)) ≥ µA(x) for all inputsx), or a function that does
not even meet that condition, neither exactly nor approximately, even if there are available functions that do
satisfy the condition. In either case, it seems clear that these systems do not constitute a proper tool to explore
the logical consequences of an IF-THEN implication premise.

3.27 Naturally, this general result does not preclude the fact that, in certain particular cases or under additional
constraints, the outputs provided by a Mamdani system may “make sense” when the rules are interpreted as
logical implications. Some scholars have studied conditions underwhich these systems can bemore amenable
to admit some “interpretability”, although the word “interpretability” is o�en used in an intuitive and informal
sense (Alonso & Magdalena 2011; Alonso et al. 2009; Cordón 2011; Jin 2003; Moraga 2012). The definition and
measure of interpretability is an active current trend of research in the field (Alonso et al. 2015).

3.28 In the following section we discuss the multi-rule case, where – regardless of the defuzzification method – the
logical implication constraint (i.e. µBk(y(x)) ≥ µAk(x) for all inputs x) is not guaranteed for every rule in the
system, not even in those cases in which there exist functions that do satisfy all such constraints. This is due to
the way aggregation is carried out in a Mamdani system.

Systems withmultiple rules

3.29 Consider a Mamdani systemwith the following two rules:

IFX is approximately less than three THEN Y is greater than five

IFX is approximately less than two THEN Y is about nine

3.30 Where the fuzzy sets “approximately less than three”, “greater than five”, “approximately less than two” and
“about nine” are represented in Figure 5. What output could we expect from this system for low input values,
e.g. for x less than one?

3.31 It seems clear that any input x ≤ 1 satisfies completely the antecedents of both rules, so if we interpret the
rules as two logical implications, and we want the output to satisfy both rules completely, the corresponding
output value should be y = 9. In contrast, a Mamdani system provides an output value y = 7.47.
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Figure 5: Mamdani process. The input value, the truncated output fuzzy sets for each rule and the final output
of the system are represented.

3.32 Let us consider the aggregation step, represented in Figure 5. Given that forx ≤ 1 the antecedents of both rules
are satisfied completely, the result of the first rule is precisely the fuzzy set “greater than five” and the result
of the second rule is the fuzzy set “about nine” (see Figure 5). The use of the function MAX as an aggregation
method inMamdani systems provides in this case an output that coincideswith the fuzzy set “greater than five”
and loses the information in “about nine”.

3.33 Naturally, the reason is that the aggregation step in a Mamdani system is not intended to produce outputs that
satisfy all the IF-THEN implication rules. In some cases (e.g. if a maxima defuzzification method such as First
of Maxima or Last of Maxima is used), the Mamdani system will provide an output in accordance with at least
one of the IF-THEN rules that the input fires (assuming that at least one rule is fired), i.e., an output value y(x)
such that µBk(y(x)) ≥ µAk(x) for some rule “IFX isAk THEN Y isBk”; however, that very output y(x) could
be simultaneously violating the constraints imposed by the other rules. That is indeed the case in our example:
for an input x = 1, the First of Maxima defuzzification method provides y(1) = 6, and the Last of Maxima
defuzzification method provides y(1) = 10. Both values satisfy µB(y(1)) = 1 ≥ µA(1) = 1 for the rule “IF
X is approximately less than three THEN Y is greater than five”, but none of them satisfies the corresponding
relation for the rule “IFX is approximately less than two THEN Y is about nine”. In fact, with both methods the
input satisfies the antecedent of this latter rule completely, but the output does not satisfy the corresponding
consequent of the rule to any degree whatsoever (µAbout9(y(1)) = 0 < µ∼LessThan2(1) = 1).

3.34 If the COG defuzzification method is used, the selected output can be interpreted as a compromise or interpo-
lated value between output regions (fuzzy sets), but that interpolated value may not itself belong to any of the
regions, i.e., it may not satisfy any of the logical-implication constraints to any degree at all.

3.35 In short, it is clear then that the MAX aggregationmethod of Mamdani systems is not consistent with a conjunc-
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tive interpretation of the set of IF-THEN rules. In fact, a rule such as

IFX is outlier THEN Y is very small OR Y is very large

is equivalent in a Mamdani system (using the MAX function for logical OR) to the set of rules:

IFX is outlier THEN Y is very small

IFX is outlier THEN Y is very large

3.36 So the e�ect of a set of rules in a Mamdani system is disjunctive rather than conjunctive (Dubois & Prade 1996).
Incidentally, in this example, for an input x with a high degree of membership in the fuzzy set “outlier”, the
output of a Mamdani system with the COG defuzzification method would be an interpolation or compromise
between the “very small” and “very large” regions, and the result of this compromise will likely not belong to
any of the extreme regions, i.e., it may not satisfy the consequent of any rule to any degree.

3.37 Thus, we summarize this point in the following caveat.
Caveat 4. In a standard Mamdani system with several rules of the form “IFX isAk THEN Y isBk”, an input x
that complieswith the antecedents of all the rules to a great extent (highµAk(x) for all k)may lead to an output
y which does not satisfy the consequent of any of the rules to any extent (low µBk(y(x)) for all k).

3.38 A crucial consequence of the MAX aggregation method is that IF-THEN rules in a Mamdani system have e�ects
on the final output of the system that cannot be analyzed independently of other IF-THEN rules that may be
fired simultaneously in the system.

3.39 Finally, it should be noted here that, as indicated for single-rule systems, one could consider additional con-
straints on the definitions of the fuzzy sets and on the rule base to try to avoid the type of e�ects that we have
discussedhere, and thus attempt tomake the systemmore amenable to somenotionof interpretability (Alonso
et al. 2009; Cordón 2011; Jin 2003). Nonetheless, in the absence of such e�orts, it is clear that regarding Mam-
dani systems as truth-preserving inferencemachines – even if only approximately – is certainly not appropriate.

Conclusions

4.1 This paper discusses the usefulness of Mamdani fuzzy systems for modelling, simulation and decisionmaking.
We have considered two di�erent objectives of the modelling process. The first objective is the approximation
or definition of a function using information in the form of linguistic IF-THEN rules. The second objective is the
exploration of the logical implications of a model defined by a set of IF-THEN rules that express some causality
or relation between two (or more) variablesX and Y .

4.2 As to the first objective, it is clear that Mamdani systems have proven successful for function approximation in
many practical applications (Azzini et al. 2008; Behnamian 2015; Elragal 2014; Shankar et al. 2015; Yang et al.
2015), especially in fuzzy control. Their success is mainly derived from two characteristics that are very conve-
nient for this objective: Mamdani systems are universal approximators and can include knowledge in the form
of linguistic rules that can be used for local fine-tuning.

4.3 By contrast, the use of Mamdani systems for the second objective stated above is questionable (Klawonna &
Novák 1996). The bottom line is that a Mamdani systemwith a rule “IFX isA THEN Y isB” can generally fail to
assign outputs with high membership inB to inputs with high membership inA. This failure is a consequence
of two operations that take place within Mamdani systems: defuzzification and aggregation.

4.4 The COG defuzzification method used in standard Mamdani systems does not guarantee that the output will
satisfy the consequent of an IF-THEN rule to at least the same degree that the input satisfies the antecedent. In
fact, in the general case, it does not guarantee that the output will satisfy the consequent to any degree at all,
regardless of howmuch the input satisfies the antecedent.

4.5 As for the aggregation of rules, the MAX operator used in standard Mamdani systems does not permit an in-
terpretation of the IF-THEN rules as independent implication constraints which must be simultaneously (i.e.
conjunctively) satisfied – either completely or, in some sense, to the highest possible common degree. This
method aggregates the output sets of each fired rule as if they were disjunctive rules; if the rules are under-
stood as constraints on the output values, this means that some of the constraints, even if fired, may not be
e�ective at all. As a consequence, an individual rule, however sharp or restrictive it may be when interpreted
as an implication constraint, may not actually impose any actual constraint or have any e�ect whatsoever on
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the output of the Mamdani system (see Sections 3.28-3.34). This can certainly generate some confusion, either
when trying to interpret the set of rules of a Mamdani system or when trying to incorporate expert or previous
knowledge in the system: “The almost systematic use of conjunction-based representations, since Mamdani’s
earlyworks, includingSugeno’s fuzzy ruleswithprecise conclusions, is surprising fromthepoint of viewof logic:
conjunction-based rules do not fit with the usual meaning of rules in expert systems” (Dubois & Prade 1996).

4.6 It must be noted here that other fuzzy-logic-based approaches to function approximation with IF-THEN rules
are possible (Hájek 1998, 2010; Jones et al. 2009; Klawonna & Novák 1996), and that some of these approaches
would obtain a) one of the functions that do satisfy all the IF-THEN rule implication constraints (in the sense
µBk(y(x)) ≥ µAk(x) for all rules k) whenever such functions exist, or b) one of the functions that best satisfy
the implication constraints according to some criteria, whenever complete satisfaction is not possible. This
approach, based on fuzzy rules interpreted as logical implications, has been termed deductive interpretation
(Bodenhofer et al. 2007) or implication-basedmodel (Dubois & Prade 1996).

4.7 In more general terms, one should always be wary of interpreting methods that produce functions (i.e., cor-
respondences that assign one unique output value to each input value) from IF-THEN rules, as if they were
providing the logical consequences of the rules. If by “the logical consequences of the rules” we understand
the set of values y(x) that for a given input x, are consistent with the IF-THEN rules as logical implications
(i.e. those values y(x) that satisfy µBk(y(x)) ≥ µAk(x) for all rules k either strictly or approximately in some
sense) then, inmost cases, the set of consistent values will not define a unique function, and any system that in
such cases provides a particular input-output function will possibly bemaking – either implicitly or explicitly –
strong assumptions about the behaviour of the system beyond those embedded in the IF-THEN rules and the
membership functions. This important aspect of the function-approximation techniques is o�en ignored in the
literature on fuzzy control and approximate reasoning: “Various books explaining fuzzy control, written by non-
logicians, su�er by logicalmismatch causedby the fact that "fuzzy IF-THEN rules" are presented as implications
but then used to construct a fuzzy relation having little to dowith any implication, at least at first glance” (Hájek
1998).

4.8 As Novák (2012) indicates about the function-approximation approach, “This method of interpretation of fuzzy
IF-THEN rules is very convenientwhenweneedanice tool for theapproximationof functionsbut it is less conve-
nient as amodel of human reasoning”. Suchmodels can also be very sensitive to apparently irrelevant choices
in the fuzzy inference process, particularly those pertaining to the defuzzification method.

4.9 To conclude, suppose that we use a Mamdani-like system to simulate and explore the behaviour of a model
defined by a set of IF-THEN rules. If by consistency of an outcome we understand that the outcome satisfies
the consequents of the rules to at least the same degree as its corresponding input satisfies the antecedents,
then any simulation based on IF-THEN rules andon this type ofmethods that obtain functions from ruleswill be
providing, in the best-case scenario – for instance, if deductive inference (Bodenhofer et al. 2007) is used –, just
one of the (possibly many and possibly very di�erent) outcomes that are consistent – or in some sense most
consistent – with the IF-THEN rules; in the worst-case scenario, which may happen for instance if a Mamdani
approach is used, it will be providing an outcome that may not belong to the set of most-consistent outcomes
and which in fact may even be highly inconsistent with the rules.

4.10 Obtaining a unique output from observations and rules can be a potentially desired objective of a logical pro-
cess, but the selection of that unique output should not be based on arbitrary steps. SherlockHolmes famously
stated: “It is an old maxim of mine that when you have excluded the impossible, whatever remains, however
improbable,must be the truth.” (Doyle 1892). Note that the key to finding the explanationor the consequenceof
the evidence is not choosing one particular explanation that is consistent – or, in some sense, the most consis-
tent –with the currently available facts, but eliminating alternative explanations that have not been eliminated
yet, a process which may require the acquisition of new evidence. Whenever the available evidence points to
a broad set of possible culprits of a crime, it is di�icult to think that Holmes would be happy by just choosing
any of them as the culprit. If a witness indicates that the criminal “was tall”, the statement “his height is 2 me-
ters” might be considered one of the most consistent statements with relation to the evidence, but it seems
very unsatisfactory andmisleading to say that it would be the logical consequence of the testimony. In a sense,
defuzzification, or choosing one particular value from a set of possible values plays this role of selecting one
particular culprit when the evidence equally points to many ones, or when it has little discriminatory power
among them. Defuzzification is needed if one is looking for a unique output value corresponding to an input
value but, as Leekwijck and Kerre indicate (Van Leekwijck & Kerre 1999), “the whole concept of defuzzication is
completely opposite to the main purpose of fuzzy set theory namely the extension of crisp concepts and theo-
ries”.

4.11 We conclude this assessment with a few practical take-away messages. Suppose that you are considering a
Mamdani system to capture the decision procedure of some agent in your model:
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1. If the decision procedure is originally characterised by logical IF-THEN rules, i.e., if those rules are the
axioms or primitives that define the decision procedure of the agent, then, Mamdani systems are not a
safe tool to explore the expected logical consequences of those rules: without further validation, they
may not provide what one could expect according to almost any sensible interpretation of those rules.

2. However, if the decision function of an agent, understood as an inputs-output relationship, is known (or
if there is enough data), Mamdani systems can be safely used to approximate and “store” that function.
Note that this is a function-approximation approach (basedon adjusting data points), in contrastwith the
deductive approach (based on obtaining the logical consequences of the rules).

3. If some degree of interpretability or logical link between IF-THEN rules and outputs in a Mamdani system
is desired, one should consider additional constraints to those required by a standard Mamdani system,
or alternative fuzzy-logic techniques that try to preserve interpretability to a greater degree (Bodenhofer
et al. 2007).
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Notes

1If for a given input x there is no possible output value y(x) such that µB(y(x)) ≥ µA(x), we can check
whether the obtained output is one of the values in the output range that minimize µA(x)− µB(y(x)).

2If the fuzzy setB in the consequent of the IF-THEN rule is normal, i.e., if there is some value y∗ (possibly not
unique) such that µB(y

∗) = 1, then it is clear that there exist functions, such as the constant functions defined
by y(x) = y∗, which do satisfy the constraint µB(y(x)) ≥ µA(x) for all inputs x.

3One could also consider additional constraints in the desired functions, such as continuity, or the prop-
erty that the greater the degree of satisfaction of the antecedent, the greater the degree of satisfaction of the
consequent: µA(x1) > µA(x0)→ µB(y(x1)) > µB(y(x0)) for all inputs x0, x1.
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