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Summary

This paper is motivated by applications in oscillatory systems where

researchers are typically interested in discovering components of those sys-

tems that display rhythmic temporal patterns. The contributions of the paper

are twofold. First, a methodology is developed based on a circular signal

plus error model that is de�ned using order restrictions. This mathematical

formulation of rhythmicity is simple, easily interpretable and very �exible,

with the latter property derived from the non-parametric formulation of the

signal. Second, we address various commonly encountered problems in the

analysis of oscillatory systems data. Speci�cally, we propose a methodology

for (a) detecting rhythmic signals in an oscillatory system, (b) estimating the

unknown sampling time which occurs when tissues are obtained from subjects

whose time of death is unknown. The proposed methodology is computation-

ally e�cient, outperforms the existing methods and is broadly applicable to

address a wide range of questions related to oscillatory systems.
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1 INTRODUCTION

Locomotor activity, blood pressure or body temperature are just a few of the physiological and biological phenomena
exhibiting rhythmic or oscillatory processes in nature. Such oscillatory systems contain one or more components
that display periodic or rhythmic patterns over each observed period. For example, genes (i.e. the components)
participating in a circadian clock often display a rhythmic pattern of expression as shown in Figure 1. The study
of such components with temporal rhythmic patterns, and how these patterns change under di�erent conditions, is
called chronobiology.1,2,3,4 Chronobiology has been an active area of research during the past two decades, with major
impact on treating cardiovascular disorders like hypertension,5 detecting genes associated with neurodegenerative
disorders6 or depression,7 and improving the e�ectiveness of cancer treatments.8 For instance, Haus9 demonstrated
that the timing of radiation according to host and/or tumour rhythms improves the toxic/therapeutic ratio of the
treatment. These and other �ndings in biomedical sciences have increased interest in chronobiological experiments,
particularly in identifying and/or characterizing rhythmic processes.
Although this article is motivated by gene expression studies associated with circadian clock, the proposed

methodology is very general and is broadly applicable to other oscillatory systems such as the cell-cycle,10,11 the
endocrinology,12 vascular processes,13 etc. In fact, there is considerable interest in pharmacology, psychiatry and other
areas of medical sciences to discover genes belonging to oscillatory systems that have rhythmic temporal expression.



2 Larriba et al

Time

G
en

e 
ex

pr
es

si
on

10.0

10.2

10.4

10.6

10.8

Eif4b

FIGURE 1 Observed gene expression (blue dots) along 24 hours for gene Eif4b. Green line represents the underlying
estimated rhythmic signal

From a statistical point of view, the modelling of chronobiological rhythms in biomedical sciences is a challenge
because, unlike the time course �nancial data in the stock market or heart rate data in intensive care units, the density
of time points is generally low14,15 and the number of periods of data is usually very small.16,17 For these reasons,
standard time series or Fourier models are not convenient.18,19,20 Another challenge with these chronobiological
data is that not all components display the same pattern of expression over time.21,22,23 Despite this heterogeneity,
rhythmic patterns of components of an oscillatory system usually display up-down-up patterns. Yet, it is important
to note that in many cases the shape is not exactly sinusoidal or even symmetric. Figure 1 shows an example of these
up-down-up asymmetric rhythmic patterns. Models based on parametric functions of time, such as Cosinor,24,3, have
been proposed in chronobiology to model these patterns.25 However, these parametric functions are too rigid, as
other patterns (e.g. asymmetric ones) frequently appear in biological systems. The �rst statistical problem to solve in
this context is to determine if the observed pattern is rhythmic or not. There are a wide variety of procedures in the
literature to detect rhythmicity including, among others, those based on autocorrelation26; cosine curve-�tting10,27,3

or Fourier analysis.28 Some non-parametric methods such as JTK_Cycle29 (JTK) and RAIN,21 that use Jonckheere-
Terpstra test and the Kendall's tau correlation, have also been proposed in the literature. However, these approaches
do not detect asymmetric rhythmic patterns properly. Recently, Larriba et al22 designed an algorithm that successfully
identify and classify circadian clock gene expression patterns. This latter approach can be considered as a precursor
to the methods we present here.
A fundamental assumption made in the above discussion is that the time corresponding to each biological sample is

known or can be ascertained. However, in many instances, such as when dealing with samples obtained from human
cadavers6 or human organ biopsies,30,31 the timing, i.e. the exact time corresponding to each biological sample may
be unknown. In such cases, one needs to �rst estimate or determine the time associated with each sample before
investigating rhythmicity.
There are, to our knowledge, two main procedures in the literature to cope with this problem of timing estimation,

namely Oscope32 and CYCLOPS.33 Both procedures present limitations and do not address the problem in a gen-
eral context. Oscope, is speci�cally designed to recover cell cycle dynamic in single cell RNA-Seq experiments and
works on the single transcript level, so that it is computationally intensive and highly sensitive to the inter-subject
variability, inherent in human experiments. CYCLOPS is based on developing neural networks from the �rst eigen-
vectors (called eigengenes) from a singular value decomposition (SVD) analysis. Notice that eigengenes suggest the
fundamental (gene) expression patterns across the samples, which in turn represent a biological theme if the data
are well organized,34,35 see Figure S1 in the Supporting Information. CYCLOPS overcomes the drawbacks in Oscope
but su�ers form its own weaknesses. First one is that the data should cover the entire periods, a downside in human
studies, since target population must be substantially increased to �ll in under-represented times of the day. Second,
it uses additional information, such as gene rhythmicity evolutionary information, that it not always available. Third,
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the optimization problem solved is quite far, mathematically speaking, from a close-�tting formulation. And fourth,
in a neural network framework (which is like a black box), it is di�cult to assess the in�uence of outliers, due to
biological or sample noise, or of other artifacts of the data.
In this paper, we develop a general methodology, based on Order Restricte Inference (ORI), that solves the two main

questions of rhythmic pattern detection and timing estimation commented above besides addressing other scienti�c
questions related to oscillatory systems. In Section 2 we introduce a (circular) signal plus error model which is the
basis of the methodology, we develop estimation and testing procedures that can be used to solve the problem of
rhythmic pattern detection and the interesting question arising in real practice of the estimation of peaks. Also in this
Section, a solution to the problem of timing estimation under the framework of circular signal models is proposed
reformulating the statistical problem as that of deriving the optimal circular order. Section 3 is devoted to simulation
experiments that illustrates the good performance of the new solutions by comparing them to those provided with
alternative approaches, while Section 4 shows the results obtained using several real data sets. Finally, concluding
remarks are provided in Section 5.

2 METHODS

The key of our methodology is the de�nition of what we call circular signals. A circular signal can be graphically
mapped as a function displaying a temporal up-down-up pattern. Such patterns are commonly seen in biological
rhythmic processes as in cell-cycle and the circadian clock (see Figure 1). This up-down-up pattern over a discrete
number of values can be described using mathematical inequalities that establish order restrictions among those
values. We refer to these signals as circular, since periodic events in the Euclidean space can be mapped as circular
processes in the Circular space.36 Moreover, circular signals can be equivalently formulated both in the Euclidean as
well as in the Circular space (see Section 2 in the Supporting Information).
For simplicity of exposition, throughout this paper we shall use the term �gene� to describe the response variable

of interest and the term �gene expression� for the outcome.

2.1 Circular signal model

For each gene, suppose its expression is obtained at time points ti, i = 1, . . . , n in each of the p periods of data, with
T being the length of each period. In our set-up both p and T are known. Let Xij be the observed data collected
at time point ti, i = 1, . . . , n, within the jth period, Xj = (X1j , . . . , Xnj)

′
denote the vector of data at the n time

points in the jth period j = 1, . . . , p and Y = (X1., . . . , Xn.)
′
, where Xi. denotes the average of data collected at

time point ti across the p periods, for i = 1, . . . , n. We assume that, for each given time point ti, the data collected
across p periods has same expected value, that the covariance matrix of Xj is a diagonal matrix, and that the period
samples are independent from one another. Independence, is a reasonable assumption in many applications if p is not
too large. Thus, we assume that, for each j = 1, . . . , p, the data satisfy the following signal plus error model:

Xj = µ+ εj , (1)

where the signal term µ has an up-down-up shape which is de�ned more precisely below. For convenience, we shall
refer to the signal as circular signal and it should not be confused that the components of µ are angular parameters.
These values are points in the Euclidean space that have a rhythmic pattern as shown in Figure 2. It is important to
notice that no distributional assumption is needed for the results obtained below unless otherwise stated in the text.
Denote L = arg min

i=1,...,n
µi and U = arg max

i=1,...,n
µi, the indices on the time point vector for which the signal reaches its

minimum and maximum respectively. Common signal shapes in chronobiology describe up-down-up patterns, that
is, the signal monotonically increases up to µU , and then decrease up to µL before increasing again so that these
indices are usually unique. A typical pattern is provided in the left hand panel of Figure 2. However, as illustrated in
this work, the real data exhibit more irregular patterns, such as those in Figure 1 and Figure S2 in the Supporting
Information. Notice that L > U or L < U is not usually known to the analyst. Without loss of generality we assume
that L > U and we maintain in the rest of the paper, while in practise both options are tested.
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Now we provide the Euclidean space representation of the up-down-up signals (µ) and their equivalent circular
ordered representation (φ) in the Circular space. Proposition 1 (Supporting Information) checks that these two
representations are equivalent using a transformation TLU between the Euclidean and Circular spaces. One may refer
to Section 2 in the Supporting Information for full details. Given this equivalence, for convenience, we refer to both
representations as circular signals.
A signal µ in the Euclidean space is said to be up-down-up i� µ ∈ C =

⋃
LU CLU , where L,U ∈ {1, . . . , n},

CLU = {µ ∈ Rn : µ1 ≤ · · · ≤ µU ≥ · · · ≥ µL ≤ · · · ≤ µn ≤ µ1}.
A signal φ in the Circular space is said to be circular ordered i� φ ∈ Co = {φ ∈ [0, 2π)n : φ1 � · · · � φn � φ1}

where � can be read as �is followed by". φ it is said to follow the circular order o.

FIGURE 2 Equivalent formulation of circular signal with L > U . Left: Euclidean space. Right: Circular space.

The equivalence between circular signal in the Euclidean space and circular signal on the unit circle is illustrated
in Figure 2. The utility of the equivalence of the two formulations to solve the problem of temporal order estimation
is discussed in Section 2.4. Moreover, other methodological strategies will arise from the equivalence. Some of them
are described in the Discussion Section.

2.2 Circular signal estimation

We propose solution to the following mean squares optimization problem as estimator of the circular signal:

Y ? = arg min
Z∈C

n∑
i=1

(Yi − Zi)2. (2)

The vector Y ? is called the Isotonic Regression (IR) of Y with respect to C with equal weights. If variances are
unequal then we use weighted least squares where the weights are inverse of variances at each time point. The IR
estimator is a step function, with sets of consecutive components for which the estimator takes the same value, called
level sets. See Robertson et al37 for applications and algorithms to solve IR problems.
Note that the order de�ned by C is not a closed convex cone but a union of closed convex cones (recall that

C =
⋃
LU CLU ). Consequently the derivation of Y ? is non-trivial for C, unlike when the cone of interest is a closed

convex cone, see Robertson et al.37

In order to derive the IR estimator de�ned in (2), we have designed a computationally e�cient algorithm based on
theoretical results on the IR estimator. Both the algorithm and the theoretical results are given in Section 3 of the
Supporting Information.
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Implicit in the estimation of µ ∈ C, is the problem of estimating tU and tL, the times at which the peak and
the trough occur. In the case of genes with periodic expression, these peak time points correspond to the biolog-
ical/functional activity of the genes. Point estimators for tU and tL can be immediately derived from the point
estimation of the indices U and L obtained in Algorithm 1, given in Subsection 3.2 in the Supporting Information.

2.3 Inference for circular signal normal models

In chronobiology it is reasonable to assume that the random errors εj , j = 1, 2, . . . , p, are independently and normally
distributed and that the variability in the random errors are not dependent on the value of the signal. Thus, we
assume that the variances are homoscedastic. It is well-known that, under this assumption, IR yields the maximum
likelihood estimator (MLE) of the corresponding parameter.37,38 Therefore, in this case Y ? as de�ned in (2), is the
MLE of the circular signal µ.
In particular, under the assumption of normality, it is straightforward to obtain con�dence intervals for tU and tL

using standard parametric bootstrap.39 Subsections 3.1 and 4.1 below compare the performance of this approach with
Cosinor, an extended methodology to model rhythms in chronobiology, in simulations and real data, respectively.

Testing circular signals

We formulate the problem of identifying circadian genes using the following testing problem:

H0 : µ1 = · · · = µn (�at signal) (3)

H1 : µ ∈ C (circular signal).

Detection of rhythmic signals has been considered in the literature by several authors2,29,21 as a testing problem.
In Larriba et al22, the authors even classi�ed signals into one of four di�erent patterns.
As remarked in Section 2.2, it is important to recognize that (3) is not a standard testing problem. Again, the

standard ORI theory is not applicable directly because C =
⋃
LU CLU in (3) is not a convex cone.37,38 In fact, the

non-convexity issue arises even in the case of simpler alternative hypotheses such as the umbrella order where the
location of the peak (or trough) is unknown, i.e. µ1 ≤ · · · ≤ µr ≥ · · · ≥ µn with r unknown.40,41,42 For this reason,
as done in the case of umbrella alternative, we consider a two-step approach. First, we estimate L and U by L? and
U? using the IR algorithm (see Subsection 3.2 in the Supporting Information) and we de�ne the testing problem
assuming L and U are known. This way, we do not propagate the uncertainty estimates associated with L? and U?

when dealing with Type 1 errors associated with the proposed methodology. Thus, the hypothesis testing problem of
interest is formulated as follows:

H0 : µ1 = · · · = µn (�at signal) (4)

H1 : µ ∈ CLU (circular signal. L, U known).

We test the above hypotheses using the conditional test based on the likelihood ratio (LR) statistic. The use of
conditional tests is not new, see Bartholomew,43 Menéndez and Salvador44 and Fernández et al45 among others. It
is basically a conditional version of the classical LR test for the above hypotheses where the critical value depends
upon the number of level sets m used to derive Y ?. The conditional test is computationally simple and often more
powerful for interesting alternatives than the LR test (see the above references).
The conditional α−level test is given by:

Reject H0 if R ≥ c(m),

where the LR statistic is given by R =
n∑
i=1

ωi(Y
?
i −Y )2, Y = (

n∑
i=1

ωiYi)/
n∑
i=1

ωi and c(m) is chosen so that Pr(χ2
m−1 ≥

c(m)) = α. Recall that in this work we are assuming that ωi = p
σ2 and that σ2 is assumed initially known.

In the case σ2 unknown, the R statistic changes and includes an estimator of σ2. The new statistic has a beta
distribution with parameters ((m − 1)/2, (2n − m)/2) so that percentiles coming from that distribution are used,
instead of the ones from χ2

m−1, in the determination of the critical value. See Robertson et al37 pages 69-70.
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The performance of the above conditional test is compared with JTK, a well known method used in chronobiology
to detect rhytmic patterns.46,47 In Section 3.1 both methods are compared using synthetic data and in Section 4.1
using real data.

2.4 Temporal order estimation

As noted earlier, in some applications, time points at which samples were obtained may be unknown. For example,
when dealing with autopsy data, the time of death of a set of patients is usually unknown. Yet, using data from those
patients, chronobiologists are interested in determining the temporal order among samples (patients' time of death)
regarding gene expression data. This section provides a mathematical solution to the problem of temporal order
estimation by deriving the optimal circular order among the time point indices of an observed data set. Note that, in
a second stage, this method can be combined with the one developed in Subsection 2.3 to identify rhythmic genes.
The proposed methodology provides a biologically interpretable solution and overcomes some of the shortcomings of
recently introduced CYCLOPS methodology. We shall evaluate the performance of the two methods using measures
based on mean squared error (MSE).
Suppose Y k = (Y k1 , . . . , Y

k
n )

′
represents the (gene expression) data corresponding to the kth gene, k = 1, . . . ,K

and D = {Y k}Kk=1 denotes set of all data vectors from the K genes.
Let Π be the set of all possible circular orderings of all indices S = {1, . . . , n} around a unit circle. Notice that for

each circular order o ∈ Π, there is a circular signal model so that µ ∈ Co. For a given circular order o ∈ Π, we de�ne
a measure of the distance between o and D as follows:

d(o,D) =

K∑
k=1

n∑
i=1

νk
(
Y ki − Y ?ko,i

)2
, (5)

where Y ?k
o = (Y ?ko,i )ni=1 denotes the IR of Y k

o = (Y ko,i)
n
i=1 under the circular signal model that generates o, and νk

denotes the weight associated with the kth element in the data set. For instance, when the experiments are subject
to di�erent variability, then νk = 1

σ2
k
.

The problem of determining the temporal order among the specimens using the gene expression data is to solve
the following optimization problem:

arg min
o∈Π

d(o,D). (6)

The above problem (6) is a NP-hard problem,48 since the unknown order is one among #Π = (n−1)! possible orders.
An optimization problem that resembles (6) is formulated in Barragán et al,49 although in this latter case the

statistical problem is one de�ned in a Circular space.
We obtain an approximate solution to the optimization problem (6) by formulating it as a traveling salesman

problem (TSP) as follows. The data on gene k are represented by a weighted directed graph where the nodes represent
the items (or points) to be ordered. Each pair of nodes (i, j) is connected by an edge of length Lkij that represents
the intensity of the relationship or the distance between i to j in gene k. The information is aggregated resulting in
a matrix L of aggregated edge lengths, Lij =

∑K
k=1 δkL

k
ij . Some details on the choice of the weights are given below.

In the problem at hand, if Lij measures the temporal distance between the data at time points ti and tj , then we

propose to use the L1 distance for the expression values, Lij =
K∑
k=1

δk|Y ki − Y kj | for i, j ∈ S. Let the binary matrix

Γ, satisfying restrictions (i) and (ii) below, represent a tour that goes exactly once through all nodes in the graph,
starting and ending at the same node with Γij = 1 i� the edge (i, j) is active in the tour.
There is an obvious one to one relationship between Γ and orders o among the set of indices S. Therefore, the

problem of �nding a circular order using the representation of an aggregated directed graph, de�ned by L, is reduced
to �nding a tour that goes exactly once through all nodes in the graph, starting and ending at the same node. The
tour that minimizes the total length is the solution of the well-known TSP which, in our case, is mathematically
formulated as follows,

Γ̂ = arg min
Γ

∑
ij

ΓijLij (7)

restricted to
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(i) Γij , is a doubly stochastic matrix,

(ii)
∑
i,j∈V

Γij ≤ |V | − 1 ∀V ⊂ S, |V | > 1.

We conducted several heuristic procedures to provide a set of approximate solutions for the tour Γ̂ de�ned in (7).
Among those tours, we choose the one (ô) that minimizes (5). One may refer to Subsection 4.1 in the Supporting
Information for a detailed description of the temporal order estimation methodology including a �owchart.
The above optimization algorithm is �exible as di�erent weights can be chosen. For example, in the case of gene

expression data, information regarding rhythmicity of a set of genes is often available, for instance because they are
known to be rhythmic in other organs or species so that the weights can be assigned accordingly. Moreover, the above
procedure can be combined with a previous SVD on the initial data matrix D, as in CYCLOPS, using only the �rst
eigengenes proposed in Ana� et al.33

In Subsections 3.2 and 4.2, we compare the performances of ORI and CYCLOPS approaches when determining
the temporal orders among time points for simulations and real data, respectively.

Validation measures

We de�ne several measures of agreement between a circular order and a data set based on IR. Relative e�ciency
rates (RRE) are similar to measures used in linear regression and also resemble those proposed in Ana� et al.33 The
measure compares the total sum of squared errors of a given order (o), that may correspond to a linear or a circular
(up-down-up) relationship, in reconstructing characteristic expression patterns, relative to the total sum of errors as
follows:

RRET (o) =

∑K
k=1 SREt(o,Y

k)∑K
k=1 SREt(·,Y

k)
, (8)

where, SREt(·,Y k) =
n∑
i=1

(
Y k
i −Y k

Y k
i

)2

;Y k = 1
n

∑n
i=1 Yi

k, SREt(o,Y
k) =

n∑
i=1

(
Y k
i −Y

?k
o,i

Y k
i

)2

and Y ?k
o is the IR of Y k

under the circular signal model that generates the order o for k = 1, . . . ,K.
RRE is a positive measure of the percentage of variability not explained by order o. Smaller values of the RRE

measure indicate that the order generates estimators that are closer to the observed values suggesting a more reliable
order reconstruction.
On the other hand, for experiments where the real timing is known, a measure of concordance (CRE) between the

real order and the circular order o is de�ned as follows:

CRET (o,REAL) =

∑n
k=1 SREt(o,Y

?k
REAL)∑n

k=1 SREt(·,Y
?k
REAL)

. (9)

Again, notice that smaller values of the CRE measure indicates a higher concordance among the real timing and the
circular orders considered.

3 SIMULATIONS

We generate a data set combining four signal shapes that represent real gene expression patterns, called Cosine,

Cosine Two, Asymmetric and Flat (see Section 5 in the Supporting Information for full pattern de�nitions). The
�rst three ones represent patterns from rhythmic genes and the Flat pattern represents non-rhythmic genes. A data
set with 15, 000 genes is generated, 20% corresponding to rhythmic patterns (1, 000 genes from each of the three
rhythmic signals) and the rest to non-rhythmic patterns, imitating real scenarios. Corresponding to each pattern,
we simulate data Xj = (X1j , . . . , Xnj)

′
for n = 24 time points and j = 1, 2 periods using the simulated data set

equation Xj ∼ N24(µ, σ2I) where σ2 is �xed to be 1, so that Y ∼ N24(µ, σ
2

2 I). The values of µ are chosen so
as to represent the four di�erent signal shapes considered. Moreover, following Wu et al50 and Larriba et al22, in
this simulation study we sampled every hour for 2 full days (denoted by 1h/2 days), phase shift (tU ) is chosen
from an uniform distribution in [0, 24), and a median amplitude level of 2.5 is also �xed. We performed exhaustive
simulations using a wide range of values of error variance, phase angles and amplitudes. Since the conclusions were
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similar to the ones summarized here, we do not present those results in the paper. More details on the simulation
design are given in Section 5 in the Supporting Information.

3.1 Results for circular signal inference

First, we consider the estimation of µ, tU , and tL. In this case, we compare ORI with Cosinor, in terms of the MSE
of the estimators. We drive con�dence intervals (CI) using parametric bootstrap.39 For these simulations we have
computed 500 percentile con�dence intervals. Each of these intervals is based on 200 bootstrap replications. Since
data periodicity is 24 hours, we computed MSE taking into account the equivalence 0 ≡ 24 hours.
Table 1 illustrates the average MSE for ORI and Cosinor estimators for the signal (µ) and for peak and troughs

times (tU , tL) for each of the three simulated rhythmic patterns. For each of these three patterns, the average MSE
is computed over the corresponding genes in the 15, 000 genes data set. Apart from the case when the data are
generated according to Cosine function, which is the underlying assumption in the Cosinor model, in all other cases,
ORI outperforms Cosinor by having smaller MSE (see Table 1). Notice that, although Cosinor gives very good �ts for
the Cosine function, this methodology is unable to give reasonable �ts for data coming from models, as the Cosine
Two pattern, that deviate slightly from that function.50 This fact is quite important in practice where the Cosine
model will not hold perfectly in almost any case.
In Table 2, we also compared the procedures in terms of estimated coverage probabilities of 95% con�dence intervals.

As expected, neither procedure does a good job of achieving the nominal 95% level for all patterns. However, between
the two procedures, ORI performs substantially better by getting coverage probability closer to the true level of 95%.
On the other hand Cosinor performs disastrously when the the underlying model is not Cosine shaped function. In
fact, in some cases, the coverage probability of Cosinor can be as low as zero.

TABLE 1 Mean MSE for µ, tU and tL

Cosine Cosine Two Asymmetric
ORI Cosinor ORI Cosinor ORI Cosinor

µ 0.32 0.06 0.32 0.84 0.23 1.77
tU 2.10 0.08 1.30 4.15 0.07 1.80
tL 2.25 0.08 1.26 4.11 12.12 25.07

TABLE 2 95 % CI bootstrap coverage percentages (average lengths)

Cosine Cosine Two Asymmetric
ORI Cosinor ORI Cosinor ORI Cosinor

tU 91 (3.16) 100 (0.68) 92 (2.46) 0 (0.75) 100 (0.44) 71 (2.01)
tL 93 (3.20) 100 (0.69) 94 (2.36) 0 (0.76) 88 (4.19) 0 (2.00)

We compared the performance of ORI with the commonly used JTK procedure for testing hypotheses regarding
rhythmicity of a gene. Since hypotheses regarding a large number of genes is being performed, to control for false
discovery rate (FDR) we applied the Benjamini-Hochberg (BH) procedure. In Table 3 we provide the FDR as well
as the false negative rate (FNR), i.e. a gene with a rhytmic pattern is declared to be non-rhytmic. We performed
simulations at nominal FDR α = 0.01.
ORI controlled both the false discovery rate (FDR) and the false negative rate (FNR) for di�erent patterns of true

signal (Table 3). JTK algorithm fails to detect Asymmetric signal patterns with FNR =0.956, while ORI works well
in that, although it has a slightly higher FDR value for Flat pattern than expected (0.025 instead 0.01).
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TABLE 3 FNR and FDR comparisons at nominal level of α = 0.01.

False Negative Rate False Discovery Rate

Cosine Cosine Two Asymmetric Flat
ORI JTK ORI JTK ORI JTK ORI JTK

0.000 0.000 0.000 0.000 0.000 0.956 0.025 0.000

3.2 Results for temporal order estimation

In this section we consider the problem of temporal order estimation. We compare the performance of 4 di�erent
methods for estimating the true temporal order. In addition to ORI methodology described earlier, we consider the
recently developed neural network based methodology called CYCLOPS.33 This methodology performs a reduction of
dimensionality of the full gene expression data using those eigengenes34 that contribute to 85% of the total variability.
The third methodology, that we denote as SVD85%+ORI, is a variation to ORI methodology where we apply ORI on
the same 85% CYCLOPS eigengenes. The fourth method we consider is LINEAR which temporally orders the data
using the �rst eigengene.
The above four methods are compared in terms of RRE and CRE described in Section 2.4. As for the data

sets considered the true temporal order among samples is known, as a measure of comparison, we computed these
two metrics for the true real order (REAL). Notice that for these cases, CRE is obviously zero. In (8) and (9) we
de�ned these agreement (RRE) and concordance measures (CRE) for the orders derived from the full data set. Since
CYCLOPS and SVD85%+ORI are based on the �rst eigengenes gathering for 85% of the variability of the full data
set, we also considered, for comparison purposes, similar measures based on these eigengenes, denoted as RRE85%

and CRE85%. These measures are fully detailed in Subsection 4.2 of the Supporting Information.
Figure 3 shows that the �rst eigengene from the simulated data set captures well the rhythm, i.e. the fundamental

expression pattern across samples. This fact is revealed by the high RRE values for LINEAR ordering in comparison
with circular counterparts (see Table 4) which suggests the existence of a temporal order in this simulated data set.
The reconstruction of the temporal order is much better using ORI or SVD85%+ORI than using CYCLOPS as the
latter gives the worst RRE and CRE values in all sets considered, as it is shown in Table 4. In particular, the CRE
value is around three times higher for CYCLOPS than for the ORI based solutions. The good performance of ORI
and SVD85%+ORI approaches is also illustrated graphically in Figure S3 in the Supporting Information, where the
pattern of di�erent simulated rhythmic genes are plotted under four di�erent orders.

TABLE 4 RRE and CRE values for the entire simulated data set and for the set of the �rst eigengenes accounting
for 85% of data variability

Measure REAL LINEAR ORI SVD85%+ORI CYCLOPS
RRET 0.1971 0.6653 0.1965 0.1986 0.2520
RRE85% 0.1104 0.5197 0.1048 0.0970 0.1626
CRET 0.0000 0.0453 0.0491 0.1471
CRE85% 0.0000 0.0242 0.0406 0.1309

4 REAL DATA APPLICATION

We apply the ORI methodology to four well-known data sets in chronobiology, see Hughes et al,29 Thaben and
Westermark21 and Larriba et al,22 which are available online at NCBI GEO, (http://www.ncbi.nlm.nih.gov/geo/).
The mouse liver and pituitary gland as well as the NIH3T3 cell lines data consisted of 45,101 genes each, whereas
the U2OS human cell lines data consisted of 32,321 genes. Each data had 48 time points representing two periods
of data, i.e. a sampling frequency of 1 h/2 days. As in simulation study, results for circular signal estimation and
detection, and for temporal order estimation are compared with Cosinor, JTK and CYCLOPS, respectively.

http://www.ncbi.nlm.nih.gov/geo/
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REAL Order ORI Order SVD85 + ORI Order CYCLOPS Order

FIGURE 3 First eigengene from the simulated data set, plotted under REAL, ORI, SVD85%+ORI and CYCLOPS
orders.

4.1 Results for circular signal inference

First, we illustrate that the IR estimator of circular signals proposed in Section 2.2 is �exible enough to capture the
pattern heterogeneity usually exhibited by circadian data bases. As an example, three rhythmic genes from mouse
liver,51 namely Gys2, Uri1 and Iqgap2 with di�erent rhythmic patterns are shown in Figure 4. This �gure compares
ORI and Cosinor methodology and, besides the good �t provided by IR, it also exposes how di�erences in signal and
peak time estimators increase as patterns become more asymmetric.

MSE=0.0919

MSE=0.1822

Gys2

MSE=0.0372

MSE=0.1812

Uri1

MSE=0.0354

MSE=0.2706

Iqgap2

Data ORI Cosinor

FIGURE 4 ORI (green) and Cosinor (red) model-�ttings and MSE values for three di�erent gene expression data
(blue) called Gys2 (left), Uri1 (middle) and Iqgap2(right).

Now, we compare the results of ORI and JTK in the four mentioned data sets. In Table 5 we can see that for each
of the data sets, there is a signi�cant number of genes which are identi�ed as rhythmic by ORI, but declared as non
rhythmic by JTK, e.g. 5095 in mouse liver. Yet, according to the simulation study JTK, tends to have a higher FNR
than our procedure (see results for the Asymmetric pattern in Table 3). To illustrate this fact, Figure 5 displays
speci�c gene expression examples, among those 5095 genes in mouse liver, that are declared as non rhythmic by JTK
despite that they present a clear rhythmic pattern.

4.2 Results for temporal order estimation

Here, we investigate the performance of the temporal order estimation in these four real data sets, assuming that the
order is unknown. As in simulations, we consider the REAL, LINEAR, ORI, SVD85%+ORI and CYCLOPS orders.
For each data set, RRE and CRE measures are computed following the lines described in the simulation study.
Table 6 shows the results for the di�erent methods considered in the four data sets. In all cases the existence of a

temporal order is supported by the low values of RRE for the circular orders compared with the linear counterparts.
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TABLE 5 Rhythmic and non-rhythmic joint gene detection for ORI vs JTK in the four data sets considered
(α = 0.01)

ORI JTK

Rhythmic Non-rhythmic
Liver Rhythmic 3952 5095

Non-rhythmic 1046 35008

Pituitary Rhythmic 602 2589
Non-rhythmic 115 41795

NIH3T3 Rhythmic 35 1318
Non-rhythmic 12 43736

U2OS Rhythmic 30 823
Non-rhythmic 3 31465

Gosr2 Arfgap3 Gfpt1

Tsc22d1 Ik Zfp324

FIGURE 5 Some examples of rhythmic circadian genes in mouse liver according to ORI, which are detected as
non-rhythmic by JTK (α = 0.01).

However, there are di�erences among the data sets due to the di�erent noise levels in each of them. In mouse liver
the RRE values are much smaller than in the other data sets, as it is known that liver is a tissue with a marked
presence of circadian genes.52 As a result, the �rst eigengene in mouse liver (see row 1 of Figure 6) captures the
rhythmicity in the data very well. The reconstruction of the temporal order is quite good under ORI and CYCLOPS,
being SVD85%+ORI the one giving the best concordance with the REAL order. On the other hand, pituitary exhibits
a high level of noise. Consequently, unlike the other data sets, the �rst eigengene does not display a rhythmic pattern
and no strong conclusions on order estimation can be obtained. Finally, the other two data sets (NIH3T3 and U2OS
cell lines) exhibit a moderate-high noise level. The �rst eigengene, in spite of not having a clear periodic pattern
exhibits rhythmic characteristics (see rows 3 and 4 in Figure 6). Again, ORI methods outperform CYCLOPS in terms
of RRE and CRE measures. Additionally, Figures S4, S5, S6 and S7 in the Supporting Information show examples
of speci�c genes in these four data sets plotted under the REAL, LINEAR, SVD85%+ORI and CYCLOPS orders.
For all these examples, except for row 3 in Figure S5, where noise impairs diagnosis, SVD85%+ORI provides a more
reliable order reconstruction than CYCLOPS does.

5 DISCUSSION

In this paper we introduce a general framework for describing and discovering rhythmic patterns of expression for
oscillatory data. The proposed methodology provides solutions to a wide range of problems associated with the analysis
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TABLE 6 RRE and CRE (RRET and CRET ) values for the entire data set and for the set of the �rst eigengenes
accounting for 85% (RRE85% and CRE85%) of data variability computed across �ve and three di�erent orders
respectively

Measure REAL LINEAR ORI SVD85%+ORI CYCLOPS

Liver

RRET 0.2758 0.7636 0.2640 0.2678 0.2633

RRE85% 0.1869 0.6254 0.1894 0.1851 0.1982
CRET 0.0000 0.1021 0.0896 0.1489
CRE85% 0.0000 0.0733 0.0528 0.1039

Pituitary

RRET 0.4507 0.7284 0.2804 0.2990 0.4433
RRE85% 0.4456 0.6148 0.2674 0.2523 0.4336
CRET 0.0000 0.6557 0.6272 0.4273

CRE85% 0.0000 0.7564 0.7303 0.7372

NIH3T3

RRET 0.3911 0.8030 0.3323 0.3367 0.4070
RRE85% 0.3405 0.6451 0.2763 0.2597 0.3895
CRET 0.0000 0.3289 0.3438 0.4334
CRE85% 0.0000 0.4127 0.4495 0.4723

U2OS

RRET 0.4698 0.8231 0.4468 0.4525 0.4670
RRE85% 0.4127 0.7768 0.3794 0.3646 0.4259
CRET 0.0000 0.4892 0.5168 0.6009
CRE85% 0.0000 0.4615 0.4535 0.5884
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REAL Order ORI Order SVD85 + ORI Order CYCLOPS Order

REAL Order ORI Order SVD85 + ORI Order CYCLOPS Order 

REAL Order  ORI Order  SVD85 + ORI Order  CYCLOPS Order  

REAL Order   ORI Order   SVD85 + ORI Order   CYCLOPS Order   

FIGURE 6 First eigengene from each of the four data sets plotted using four di�erent orders. First row is for the
mouse liver, second for mouse pituitary, third for cell lines NIH3T3 and fourth for cell lines U2OS

of rhythmic data such as rhythmicity detection, order reconstruction and peak time estimation, outperforming the
available methods in literature. In particular, for signal estimation, ORI outperforms one component Fourier methods
(Cosinor) and it does not su�er from drawbacks that appear in multicomponent Fourier methods that may yield
estimated signals with multiple local maxima. As a result, ORI provides accurate peak and signal estimators which
could be crucial for a more reliable solution of the problem, especially when the associated signal is asymmetric. For
instance, Iqgap2 (right panel in Figure 4) is a rhythmic gene with a markedly asymmetric gene expression pattern
involved in ovarian cancer detection.53
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There are several advantages in using the proposed methodology. First of all, the methodology is simple to describe
and use. Thus applied researchers will not be intimidated by complicated theory or formulas. Secondly, we demonstrate
the equivalence between the order in the Euclidean and Circular space. As a consequence, it is easy to translate
between the two spaces and obtain better insights to the problems. Moreover, the methodology is very �exible. The
formulation does not require a rigid mathematical function to describe a rhythmic pattern. It is all done through
mathematical inequalities. Rigorous mathematical formulation, which allows a deeper study of the methodology and
its properties is another advantage of the methodology. We also want to stress that, as shown in simulations and
real data cases, the developed methodology outperforms other recently developed ones such as JTK for rhythmicity
detection and CYCLOPS for temporal order reconstruction. Finally, ORI methodology is computationally e�cient
solving all the rhythmicity problems described in this work and it is broadly applicable to other di�erent oscillatory
systems.
The methodology developed in this work does not consider other shapes or patterns that may appear in di�erent

applications. Furthermore, in the present paper we have not considered any covariates and adjacent time points are
assumed to be independent since serial correlation is embedded by the (up-down-up) signal shape. In the future, we
plan to extend our ORI based methodology to deal with other patterns, covariates, as well as possible serial time
correlation using ideas from Follmann and Proschan.54

There are several challenges with chronobiological data that require further development of methodology. For
example, for the timing estimation problem, in some instances the investigator may know a priori about the time of
sampling for some subset of points. In such cases, the route of the traveling salesman may be constrained by those
�xed time points. Moreover, in many real cases, as in human biopsies, samples are almost exclusively obtained during
the day, see Ana� et al,33 so that data are not recorded on the entire period. Our methodology would work perfectly
for those cases while CYCLOPS (and other proposals in the literature) do not. Another interesting aspect is that our
methods are not a�ected if the data points are not equispaced.
Finally, we have developed an R code to perform all the analysis exposed here that can be obtained from the

authors upon request.
For all of these reasons and chances of future developments, we have promising expectations about the ORI

methodology for being favorably received by biologists.
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Figure S7. Rhythmic circadian genes 7893966, Itga5 and Atp6v0c from U2OS plotted under REAL, LINEAR,
SVD85%+ORI and CYCLOPS orders.
Figure S8. Temporal order estimation �owchart.
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