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Isotonic boosting classification rules

Abstract In many real classification problems a monotone relation between
some predictors and the classes may be assumed when higher (or lower) values
of those predictors are related to higher levels of the response. In this paper,
we propose new boosting algorithms, based on LogitBoost, that incorporate
this isotonicity information, yielding more accurate and easily interpretable
rules. These algorithms are based on theoretical developments that consider
isotonic regression. We show the good performance of these procedures not
only on simulations, but also on real data sets coming from two very different
contexts, namely cancer diagnostic and failure of induction motors.

Keywords Classification · Boosting · LogitBoost · Additive models ·
Isotonic regression · TMP.

Mathematics Subject Classification (2010) 62H30

1 Introduction

The classical problem of classifying observations in one of K groups using
a rule defined from a sample of observations for which the true group is
known (training sample) is known as supervised classification. This problem
has been receiving a lot of attention in the last decades due to its appli-
cability in a very wide range of problems in different scientific fields such
as economy, engineering, medicine or molecular biology. In fact, it could be
said that the problem can appear in any scientific field. As a consequence,
many methods and techniques to build classification rules have been devel-
oped, from the classic linear or quadratic rules to the more recent K Nearest
Neighbors (KNN), Support Vector Machines (SVM) or decision trees. Even
more recently, methods based on so-called weak classifiers (Schapire, 1990)
have been developed and a family of procedures called boosting procedures
has been defined.

In practice, it is quite frequent to have some a priori knowledge on mono-
tone relations among the predictors and the response groups. For example,
in a cancer trial, it may be known that higher values of a predictor are as-
sociated with more advanced stages of the illness (Conde et al., 2012). One
way of representing this information is to include order restrictions among
the means of the predictors in the groups. This scheme allows to define rules
(Fernández et al., 2006; Conde et al., 2012) that improve the performance of
linear discriminant rules. Bootstrap estimators of the performance of these
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rules have been provided in Conde et al. (2013) and the rules have been
implemented in the R package dawai presented in Conde et al. (2015).

There are some other procedures where isotonicity has been considered to
define classification procedures, or regression models that can be adapted for
classification. In Auh and Sampson (2006) a logistic rule is defined isotonizing
the boundaries of the original rule. Ghosh (2007) proposes a semiparametric
regression model, first smoothing and then isotonizing the components, to
evaluate biomarkers, while Meyer (2013) considers a more general semipara-
metric additive constrained regression model with more efficient estimation
and inferential procedures. Another approach is that of Hofner et al. (2016),
where a unified framework to incorporate restrictions for univariate and bi-
variate effects estimates using P-splines is proposed. Finally, Pya and Wood
(2014) considers a penalized spline method for generalized shape-restricted
(under monotonicity and concavity) additive models and Chen and Samworth
(2016) proposes a non-parametric estimator of the additive components un-
der the same setting. The problem of building isotonic classification rules has
also attracted the attention of the machine learning community where it is
known as monotonic ordinal classification. Many of the procedures developed
from that area of research require that the training data set satisfies the
monotonicity relationships and others consider preprocessing algorithms to
“monotonize” the data set. See Cano and Garćıa (2017); Cano et al. (2019)
and references therein for a complete overview of these procedures and how
they work. Here, we will define procedures that neither need any prepro-
cessing of the training data nor are obtained modifying a previous rule to
obtain monotonicity. Their performance properties will come from the direct
incorporation of monotonicity in their design.

The purpose of this paper is to develop isotonic boosting algorithms yield-
ing classification rules that satisfy the monotone relations between the pre-
dictors and the response. Boosting algorithms are widely used nowadays.
They are a family of iterative procedures that combine simple rules that
may perform slightly better than random, to build an ensemble where the
performance of the simple members is improved (“boosted”). Among these
algorithms, we have decided to select LogitBoost (Friedman et al., 2000) as
starting procedure in the development of our algorithms for the following rea-
sons. In that paper, the authors explain the performance of AdaBoost, the
first boosting algorithm of practical use (Freund and Schapire, 1996, 1997),
considering the algorithm as a stage-wise descent procedure in an exponential
loss function. In the same paper, they also design LogitBoost replacing the
loss function by a logistic loss function, so that the binomial log-likelihood is
directly optimized. This leads to changes in the weights assigned to misclas-
sified observations in such a way that the misclassified observations that are
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further from the boundaries are given in LogitBoost a smaller weight. Con-
sequently, the procedure is less sensitive to outliers and noise than AdaBoost
(Dietterich, 2000; McDonald et al., 2003) and we expect it to perform better
in monotonic classification problems.

In this paper we develop two isotonic boosting procedures for binary clas-
sification based on LogitBoost, yielding rules that follow the known mono-
tone relations in the problem at hand and are therefore more easily inter-
pretable and efficient. The first procedure, that we call Simple Isotonic Log-
itBoost (SILB), selects in each step the variable that best fits the appropriate
weighted regression problem taking isotonicity into account where needed. In
the second, Multiple Isotonic LogitBoost (MILB), the whole problem is re-
fitted in each step, so that all predictors change their role in the rule in each
step, also considering isotonicity where needed.

Moreover, multiclass rules are also developed in this paper. Instead of de-
composing this problem in multiple binary problems, which makes more diffi-
cult the consideration of isotonicity, we develop theoretical results that allow
us to define procedures for the multinomial log-likelihood, based on two ordi-
nal logistic models, namely the adjacent categories model and the cumulative
probabilities model (see Agresti, 2010). For these two models again we de-
velop simple and multiple isotonic LogitBoost algorithms that, following the
previous notation, we call Adjacent-categories Simple Isotonic LogitBoost
(ASILB), Adjacent-categories Multiple Isotonic LogitBoost (AMILB), Cu-
mulative probabilities Simple Isotonic LogitBoost (CSILB) and Cumulative
probabilities Multiple Isotonic LogitBoost (CMILB).

The layout of the paper is as follows. In Section 2 we recall the LogitBoost
algorithm and present the new boosting algorithms developed from it, both
for the binary and multiclass problems. We devote Section 3 to simulation
studies showing that the new rules perform better than other up-to-date
procedures in different scenarios. In Section 4 the results for two real data
problems are presented. Finally, the discussion and future developments are
exposed in Section 5.

2 Isotonic Boosting classification rules

Let us consider K ≥ 2 classes and a training sample {(xi, yi), i = 1, . . . , n},
where xi is a d-dimensional vector of predictors and yi ∈ {1, . . . , K} the
variable identifying the class. The aim is to classify a new observation x into
one of the K classes.

Moreover we assume that it is known that higher values of some of the
predictors are associated to higher values of the class variable y (monotone
increasing) and that higher values of other predictor variables are associated
with lower values of y (monotone decreasing). We denote as I the set of
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indexes of the former set of predictors and as D the set of indexes of the
latter one. Obviously, I ∪D ⊆ {1, . . . , d}.

2.1 Binary classification rules

Here, we develop two new boosting algorithms based on LogitBoost that
incorporate the known monotonicity information between the predictors and
the response. Let us define y∗i = yi − 1 ∈ {0, 1}, i = 1, . . . , n and p(x) =
p(y∗ = 1|x). For the two-class problem LogitBoost is based on the logistic
model:

log
p(x)

1− p(x)
= F (x). (1)

The general version of a LogitBoost procedure considers F (x) =
∑M

m=1 fm(x)
where M is the number of iterations of the procedure and fm(x) are the func-
tions obtained in each iteration. In the most common versions of LogitBoost,
each fm(x) function depends on a single predictor. These univariate functions
make it easier to incorporate the isotonicity restrictions. For our first isotonic
procedure, SILB, in model (1) we consider F (x) =

∑M
m=1 fm(xjm), while for

MILB in (1) we consider F (x) =
∑d

j=1 fj(xj) where d is the number of pre-
dictors. In both cases, we impose that fm(xs) or fj(xs) is monotone increasing
if s ∈ I or decreasing if s ∈ D. These constraints imply that higher values
of variables in I are associated with higher values of p(x), i.e. of y, and that
higher values of variables in D are associated with lower values of p(x), i.e.
of y.

Let us begin recalling the LogitBoost algorithm:

LogitBoost

1. Start with weights wi = 1/n, i = 1, . . . , n, F (x) = 0 and probability esti-
mates p(xi) = 1

2 for i = 1, . . . , n.
2. Repeat for m = 1, . . . ,M :

(a) Compute wi = p(xi)(1− p(xi)), zi = y∗i−p(xi)
wi

, i = 1, . . . , n.

(b) Fit fm(x) by a weighted least-squares regression of zi to xi using weights
wi.

(c) Update F (x) = F (x) + fm(x) and p(x) = 1
1+e−F (x) .

3. Classify in class 0 if p(x) < 0.5, in class 1 if p(x) ≥ 0.5.

Although fm(x) in 2(b) can be obtained using any weighted least-squares
regression method, Friedman et al. (2000) uses 2 and 8 terminal node re-
gression trees when comparing the performances of LogitBoost and other
algorithms. For simplicity, we will use 2 terminal node trees (stumps) when
comparing the performances. If stumps are used, only one predictor variable
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is incorporated in each fm(x). In this way we can reformulate the algorithm
to incorporate the additional ordering information.

Next, two isotonic algorithms are proposed. We first present SILB, an algo-
rithm based on LogitBoost, with 2(b) modified to incorporate the additional
information as follows. For those variables j for which an monotonicity re-
striction holds (i.e. j ∈ I ∪D) a weighted isotonic regression, using the well
known PAVA algorithm (Barlow et al., 1972; Robertson et al., 1988), is fitted
instead of the usual weighted regression stump. Then, as usual, we choose for
fm(x) the variable yielding the best weighted least squares fit among all.

Simple Isotonic LogitBoost (SILB)

1. Start with weights wi = 1/n, i = 1, . . . , n, F (x) = 0 and probability esti-
mates p(xi) = 1

2 for i = 1, . . . , n.
2. Repeat M times:

(a) Compute wi = p(xi)(1− p(xi)), zi = y∗i−p(xi)
wi

, i = 1, . . . , n.

(b) Repeat for j = 1, . . . , d:
– If j ∈ I ∪D, fit a weighted isotonic regression fj(x) of zi to xij using

weights wi.
– If j /∈ I∪D, fit a 2 terminal node regression stump fj(x) by weighted

least-squares of zi to xij using weights wi.

(c) Consider h = arg minj∈{1,...,d}
n∑
i=1

wi(zi − fj(xij))2, and update

F (x) = F (x) + fh(xh) and p(x) = 1
1+e−F (x) .

3. Classify in class 0 if p(x) < 0.5, in class 1 if p(x) ≥ 0.5.

As in LogitBoost, the performance of the algorithm is expected to improve
with the number of iterations M , although Mease and Wyner (2008) suggests
that LogitBoost can also be prone to overfitting if M is large enough, which
could as well happen with SILB.

Now we present MILB. This algorithm is also based on LogitBoost but in
this case in each step we fit the whole model using a backfitting algorithm
(Härdle and Hall, 1993) and considering weighted isotonic regression where
needed. In LogitBoost (and subsequently in SILB), each new value of F (x)
was the sum of the old value of F (x) plus the weighted expectation of the
Newton step (see Friedman et al., 2000). For this algorithm, as in Hastie and
Tibshirani (2006), each new value of F (x) is the weighted expectation of the
sum of the old value of F (x) plus the Newton step.

Multiple Isotonic LogitBoost (MILB)
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1. Start with weights wi = 1/n, i = 1, . . . , n, F (x) = 0 and probability esti-
mates p(xi) = 1

2 for i = 1, . . . , n.
2. Repeat until convergence:

(a) Compute wi = p(xi)(1− p(xi)), zi = F (xi) + y∗i−p(xi)
wi

, i = 1, . . . , n.

(b) Using the backfitting algorithm, fit an additive weighted regression F (x) =∑d
j=1 fj(xj) of zi to xi with weights wi with fj(x) being the isotonic re-

gression if j ∈ I ∪D, or the linear regression if j /∈ I ∪D, j = 1, . . . , d.
(c) Update p(x) = 1

1+e−F (x) .
3. Classify in class 0 if p(x) < 0.5, in class 1 if p(x) ≥ 0.5.

Notice that, as F (x) is now the addition of a fixed number of d terms,
overfitting is not expected to appear.

2.2 Multiclass classification

Let us denote pk(x) = P (y = k|x), y∗k = I[y=k], k = 1, . . . , K, and I and D
as in Section 2.1. The most common way of tackling multiclass classification
problems is to split the problem in multiple binary problems. Among the
several ways of doing this, the most common (Allwein et al., 2000; Holmes
et al., 2002) are: One-against-rest, where K binary classifications for each
class against all others are considered, and One-against-one, which considers
every pair of classes and performs

(
K
2

)
binary classifications. However, direct

multiclass procedures that fit a single model can also be used. They exhibit a
performance comparable to (if not better than) those of these multiple binary
problems strategies, and are more appropriate for the incorporation of the
information about monotone relationships since they allow considering the
full monotonicity existing among all the classes and not only the pairwise
order. For these reasons, in this paper we will consider multiclass procedures
instead of combinations of binary ones.

Moreover, models such as the baseline category model (see Agresti, 2002)
where each category is compared with a baseline are not appropriate to in-
corporate monotone relationships among the categories. In our setting, the
response variable is ordinal and models where this characteristic is taken into
account should be considered. The two most widely used models for ordinal
responses are the cumulative logit and the adjacent-categories logit models
(Agresti, 2010).

The adjacent-categories logit model is

log
pk(x)

pk−1(x)
= Fk(x), for k = 2, . . . , K, (2)
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while the cumulative logit model is

log

∑K
i=k pi(x)∑k−1
i=1 pi(x)

= Fk(x), for k = 2, . . . , K. (3)

It is known (see Agresti, 2010, p.70) that the cumulative logit model (3)
has structural problems as the cumulative probabilities may be out of order
at some setting of the predictors. To avoid this problem we will adopt, as
in the above reference, the parallelism restriction for this model and assume
that, in this case, Fk(x) = αk + F (x), k = 2, . . . , K.

The choice between these models is an interesting question that has been
considered not only in Agresti (2010) but also in more recent books as Fuller-
ton and Xu (2016). There are some technical reasons for preferring each
model. For example, in the cumulative probabilities model the sample size
used for fitting each equation does not change among equations, while the
adjacent categories model belongs to the exponential family. However, ac-
cording to the above-mentioned authors and from a practical point of view,
the main reason for choosing among the models is the probability of inter-
est in the problem. If the individual response categories are of substantive
interest (as, for example, with Likert scales) the adjacent categories model
is recommended, while the cumulative probabilities model is preferred when
these cumulative probabilities are of interest. For these reasons, both models
have been used in health research (Marshall, 1999; Fullerton and Anderson,
2013), cumulative probabilities models in, among many other, studies about
worker attachment (Halaby, 1986) or attitudes towards science (Gauchat,
2011), and adjacent categories models in, for example, occupational mobility
(Sobel et al., 1998) or credit scoring (Masters, 1982).

Now, we develop our isotonic multiclass boosting procedures. We start with
the adjacent-categories model (2). For this model the constraints imply that
the higher the values of variables in I the greater the pk(x) with respect to
pk−1(x), and the higher the values of variables in D the lower the pk(x) with
respect to pk−1(x), so that high values of variables in I are associated with
high values of y and high values of variables in D are associated with low
values of y. As in the binary case, we propose two procedures for this model.
These proposals require the development of theoretical results that can be
found in Appendix A.1.

Our first proposal for this model is the ASILB procedure, where we assume
that Fk(x) =

∑M
m=1 fkm(xjkm), imposing fkm(x) to be isotonic if jkm ∈ I ∪D

and we add terms fitting the new quasi-Newton steps according to the re-
sults in Appendix A.1. The reason to use quasi-Newton steps instead of full
Newton steps in this case is the use of stumps when the predictor j /∈ I ∪D.
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Adjacent-categories Simple Isotonic LogitBoost (ASILB)

1. Start with Fk(x) = 0, k = 1, . . . , K, and pk(x) = 1
K , k = 1, . . . , K.

2. Repeat M times:
(a) Let Wi be a diagonal (K − 1) × (K − 1) matrix, where each diagonal

element is Wikk = (
∑K

j=k pj(xi))(1 −
∑K

j=k pj(xi)), 2 ≤ k ≤ K. Define

also vector Si with Sik =
∑K

j=k(y
∗
ij−pj(xi)) for 2 ≤ k ≤ K and compute

zi = W−1
i Si, i = 1, . . . , n.

(b) For k = 2, . . . , K :
Repeat for j = 1, . . . , d:
– If j ∈ I ∪D, fit a weighted isotonic regression fj(x) of zik to xij using

weights Wikk.
– If j /∈ I∪D, fit a 2 terminal node regression stump fj(x) by weighted

least-squares of zik to xij using weights Wikk.

Consider h = arg minj∈{1,...,d}
n∑
i=1

Wikk(zik−fj(xij))2, and update Fk(x) =

Fk(x) + fh(xh).

(c) Update pk(x) =
exp(

∑k
j=1 Fj(x))∑K

k=1 exp(
∑k

j=1 Fj(x))
, k = 1, . . . , K.

3. Classify in class h = arg maxk∈{1,...,K}pk(x).

For our second proposal for model (2), AMILB, we assume that Fk(x) =∑d
j=1 fkj(xj), imposing fkj(x) to be isotonic if jkm ∈ I ∪D. As in MILB, we

fit the whole model in each iteration using a backfitting algorithm and the re-
sults obtained in Appendix A.1. In this case, instead of using a quasi-Newton
step, as in ASILB, we use the full Newton step, since in this algorithm we
consider linear or isotonic regression for which non-diagonal weights can be
easily included. For this reason in this algorithm the weight matrix is not
diagonal.

Adjacent-categories Multiple Isotonic LogitBoost (AMILB)

1. Start with Fk(x) = 0, k = 1, . . . , K, and pk(x) = 1
K , k = 1, . . . , K. Let

F(x) = [F2(x), . . . , FK(x)]′.
2. Repeat until convergence:

(a) Let Wi be a (K − 1)× (K − 1) matrix, where each element is:

Wikm =

{
(
∑K

j=m pj(xi))(1− (
∑K

j=k pj(xi)), if m ≥ k

(
∑K

j=k pj(xi))(1− (
∑K

j=m pj(xi)), if m < k

for 2 ≤ k,m ≤ K, and for i = 1, . . . , n compute zi = F(xi) + W−1
i Si

with Si the vector defined in step 2(a) of the ASILB algorithm .
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(b) Using the backfitting algorithm, fit an additive weighted regression F(x) =∑d
j=1 fj(xj) of zi to xi with weights matrices Wi, where fj(x) is the iso-

tonic regression if j ∈ I ∪ D or the linear regression if j /∈ I ∪ D,
j = 1, . . . , d.

(c) Update pk(x) =
exp(

∑k
j=1 Fj(x))∑K

k=1 exp(
∑k

j=1 Fj(x))
, k = 1, . . . , K.

3. Classify in class h = arg maxk∈{1,...,K}pk(x).

Now, we consider the cumulative model (3) and describe the corresponding
CSILB and CMILB algorithms. In this case, due to the parallelism assump-
tion, we have a single function F (x) but we additionally have to estimate
the αk, k = 2, . . . , K parameters. For this reason the algorithms are more
involved. Their theoretical justification can be found at Appendix A.2.

Cumulative probabilities Simple Isotonic LogistBoost (CSILB)

1. Start with F (x) = 0 and pk(x) = 1
K , k = 1, . . . , K, so that αk = − log k−1

K−k+1 , k =

2, . . . , K. Denote as α = (α2, . . . , αK)′ and let γk(x) =
∑K

j=k pj(x), k =
1, . . . , K with γK+1(x) = 0.

2. Repeat M times:
(a) Compute wi =

∑K
k=1 y

∗
k,i[γk(xi)(1 − γk(xi)) + γk+1(xi)(1 − γk+1(xi))],

si =
∑K

k=1 y
∗
k,i[1− γk(xi)− γk+1(xi)], i = 1, . . . , n and zi = w−1

i si.
(b) Repeat for j = 1, . . . , d:

– If j ∈ I ∪D, fit a weighted isotonic regression fj(x) of zi to xij using
weights wi.

– If j /∈ I∪D, fit a 2 terminal node regression stump fj(x) by weighted
least-squares of zi to xij using weights wi.

Consider h = arg minj∈{1,...,d}
n∑
i=1

wi(zi − fj(xij))2, and update F (x) =

F (x) + fh(xh).
(c) Consider the K − 1 dimensional score vector S = (sk) defined in (4)

and the (K − 1) × (K − 1) Hessian matrix H defined in (5) to (7) in
Appendix A.2. Compute α = α−H−1S.

(d) Update γk(x) = exp(αk+F (x))
1+exp(αk+F (x)) for k = 2, . . . , K, and pk(x) = γk(x) −

γk+1(x) for k = 1, . . . , K.
3. Classify in class h = arg maxk∈{1,...,K}pk(x).

Finally, we present the corresponding CMILB algorithm also based on the
results developed at Appendix A.2. In this case the algorithm is more similar
to CSILB than what happened for model (2).
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Cumulative probabilities Multiple Isotonic LogistBoost (CMILB)

1. As in CSILB, start with F (x) = 0 and pk(x) = 1
K , k = 1, . . . , K, so that

αk = − log k−1
K−k+1 , k = 2, . . . , K. Let γk(x) =

∑K
j=k pj(x), k = 1, . . . , K,

and γK+1(x) = 0.
2. Repeat until convergence:

(a) Compute wi and si as in CSILB step 2(a) and let zi = F (xi) + w−1
i si.

(b) Using the backfitting algorithm, fit an additive weighted regression F (x) =∑d
j=1 fj(xj) of zi to xi with weights wi with fj(x) being the isotonic re-

gression if j ∈ I ∪D, or the linear regression if j /∈ I ∪D, j = 1, . . . , d.
(c) Perform same computations as in CSILB step 2(c).
(d) Update γk(x) and pk(x) as in CSILB step 2(d).

3. Classify in class h = arg maxk∈{1,...,K}pk(x).

It can be checked that the multiclass simple LogitBoost rules (ASILB and
CSILB) and the multiclass multiple LogitBoost rules (AMILB and CMILB)
defined in this subsection coincide, respectively, in the case K = 2 with the
corresponding SILB and MILB two class rules defined in the subsection 2.1.

2.3 Rules implementation in R

We have developed an R (R Core Team, 2018) package, called isoboost
(Conde et al., 2020) and available from the Comprehensive R Archive Net-
work (CRAN), which provides the functions asilb, csilb, amilb and cmilb
implementing the correspoding procedures developed in this paper.

These functions depend on the R packages rpart (Therneau and Atkinson,
2019) for performing weighted regression trees with functions rpart and pre-
dict.rpart, Iso (Turner, 2019) for performing isotonic regression with function
pava, and isotone (De Leeuw et al., 2009) for performing weighted isotonic
regression with function gpava.

3 Simulation study

In this section we present the results of the simulation studies we have per-
formed to evaluate the behavior of the new proposed methods. The full set of
methods used in the simulation study can be found in Table 1 and the R code
used to perform them is contained in the Supplementary material section of
the paper.

These methods include not only standard up-to-date procedures such as
LDA, logistic regression random forest, SVM or Logitboost, but also methods
that account for monotonicity such as restricted LDA (Conde et al., 2012) or
the monotone version of XGBoost (Chen and Guestrin, 2016), which is one
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of the procedures more widely used nowadays. The R packages considered
for these procedures are as follows. MASS (Venables, 2002) has been used for
performing LDA, nnet (Venables, 2002) for performing LOGIT, randomFor-
est (Liaw and Wiener, 2002) for performing RF, e1071 (Meyer et al., 2019)
for performing SVM, caTools (Tuszynski, 2019) for performing LGB, dawai
(Conde et al., 2015) for performing RLDA, and xgboost (Chen et al., 2019)
for performing MONOXGB.

Method Acronym
Linear discriminant analysis LDA
Logistic regression LOGIT
Random forest RF
Support vector machines SVM
Logitboost LGB
Restricted linear discriminant analysis RLDA
Monotone extreme gradiesnt boosting MONOXGB
Adjacent-categories Simple Isotonic LogitBoost ASILB
Adjacent-categories Multiple Isotonic LogitBoost AMILB
Cumulative probabilities Simple Isotonic LogistBoost CSILB
Cumulative probabilities Multiple Isotonic LogistBoost CMILB

Table 1: Methods used in the simulations and their acronyms.

To compare the results from the procedures considered we have used sev-
eral performance criteria. First, we have considered the total misclassification
probability (TMP), i.e. the percentage of misclassified observations, which is
equivalent to using a 0-1 loss and is the most commonly used performance
measure. We have also considered the mean absolute error (MAE). MAE is
a performance measure frequently used (see Cano et al., 2019) when evalu-
ating monotone procedures as it also takes into account the “distance” be-
tween the observed and predicted values of the response. It is computed as
MAE = 1

n

∑n
i=1 |yi − ŷi|, where ŷi is the predicted class for observation i. Ob-

viously, MAE equals TMP in the binary case. The third performance measure
we have considered is the well-known area under the ROC curve (AUC). The
multiclass version of this measure is defined in Hand and Till (2001). Notice
that, while lower values of TMP and MAE indicate a better performance of
the rule, the opposite happens for AUC.

Two different schemes of simulations designed following the lines consid-
ered in other related papers are considered. The first one is based on the ad-
jacent categories model (2), while, for the second, a model where the means
of the predictors in the groups follow a known order is considered. Table 2
shows the characteristics of each of these two schemes. Notice that, in each
scheme, we generate a total of 100 datasets for each combination of number
of classes K and predictors d.

The first scheme of simulations is based on model (2) instead of on the
cumulative logit model (3) since the former is more flexible, not requiring
the parallelism between the Fj(x) functions. The functions considered are
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Scheme 1 Scheme 2
# classes K 2, 3, 5 2, 3, 5
# predictors d 5, 10 5, 10
# training samples 100 100
Training sample size n 20K 10K, 20K
Test sample size 50K 50K
Distribution of predictors Xi ∼ U(−1, 1) Xi ∼ U(−1, 1) + 0.2h
Response Y ∼Mult(1, (p1(x), . . . , pK(x))) Y = h

with pk(x) =
exp(

∑k
j=1 Fj(x))∑K

k=1
exp(

∑k
j=1 Fj(x))

Table 2: Conditions of the simulations. The Fj functions are given in Table 3.

given in Table 3. Different monotone increasing additive functions in x (poly-
nomial, logarithmic, exponential) have been included. Simulations schemes
similar to this one can be found, for example, in Bühlmann (2012); Chen and
Samworth (2016); Dettling and Bühlmann (2003); Friedman et al. (2000).
For the predictors in this scheme we have generated d-dimensional vectors x
from a U(−1, 1)d distribution. For the response we consider the Fj(x) func-
tions and compute pk(x) for k = 1, . . . , K (see Table 2). Then, we generate
a single observation from a multinomial distribution with probability vector
(p1(xi), . . . , pK(xi)) and take Y as the index where the observation appears.

The mean results obtained with the three performance measures considered
(TMP, MAE and AUC) are qualitatively similar and, for this reason, in the
main text we only detail the TMP results while the full numerical values of
the three measures are given in Appendix A.3 to improve the readability of
the paper. The TMP results for the first simulations scheme are shown in
Figure 1. Figure 1 shows, especially for K = 2 and K = 5, that the rules that
incorporate additional information (ASILB, AMILB, CSILB, CMILB and
RLDA) outperform not only the rules that do not account for this information
(RF, SVM, LogitBoost, logistic regression and LDA) but also MONOXGB.
We can also see that rules CSILB and CMILB perform as well as ASILB
and AMILB although the cumulative logit model (3) under which the former
algorithms were developed is not the one used for the simulations.

For the second set of simulations, uniform distributions for the predictors,
as in Fang and Meinshausen (2012) or Bühlmann (2012), have been con-

K j FK,1j FK,2j

2 2
∑3
i=1 x

3
i +

∑5
i=4

(
ex

3
i − 1

) ∑3
i=1 x

5
i +

∑5
i=4

(
1

1+e
−x3

i
− 0.5

)
3 2 F 2,1

2 + 0.15 F 2,2
2 + 0.15

3
∑3
i=1 log(xi + 1) +

∑5
i=4 x

5
i + 0.25

∑3
i=1 log(xi + 1) +

∑5
i=4 x

3
i + 0.3

5 2 F 2,1
2 + 0.55 F 2,2

2 + 0.35

3 F 3,1
3 + 0.85 F 2,2

2 + 0.8

4
∑5
i=1 x

2
i − 0.2 F 5,1

4

5 ex
3
1 − 1 + 1

1+e
−x3

2
− 0.5 + log(x3 + 1) + x34 + x55 − 0.5 F 5,1

5

Table 3: Values of the two sets (s = 1, 2) of Fj functions considered in the first scheme of simulations under model (2), for

different values of K and d = 5. For d = 10, FK,sj (x1, . . . , x10) = FK,sj (x1, . . . , x5) + FK,sj (x6, . . . , x10).
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Fig. 1: TMP for the first simulation scheme for different classification rules, number of groups K, predictors d and functions F .

sidered. Independent U(−1, 1) + 0.2h distributions are used to generate the
predictors Xj, j = 1, . . . , d for observations in class Y = h, representing a
simple order among the means all d predictors with respect to the K classes.
Full details are given in Table 2.

As in the first scheme, the results with the three performance measures
are qualitatively similar and we only detail here the mean TMP results while
we include the full numerical mean results for all measures in Appendix A.3.
The mean TMP results obtained in this second set of simulations are shown
in Figure 2.

We can see that the rules defined in this paper outperform clearly again
the ones that do not take into account the additional information present in
the data, and that they also improve over RLDA and MONOXGB, which are
rules that take into account the monotonicity information available on the
order of the means. In fact, under this scheme the new defined rules improve
over RLDA more than they did for the first scheme where the difference with
the new rules was smaller.
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Fig. 2: TMP for different classification rules, number of groups k, predictors d and training sample sizes n, for the second
simulation scheme.

4 Real data examples

In this section we evaluate the performance of the new rules in two problems
we have encountered in our statistical practice. The first appears in a med-
ical context where we were trying to find a non-invasive diagnostic kit for
bladder cancer. In the second, we were considering an interesting industrial
engineering problem, namely the diagnostic of electrical induction motors.

4.1 Bladder cancer diagnostic

The correct diagnostic and classification of cancer patients in the appropriate
class is essential to provide them with the correct treatment. It is also very
relevant that this diagnostic can be done with a procedure as non-invasive
as possible. These were the main motivations of the work that we developed
with Proteomika S.L. and Laboratorios SALVAT S.A. as industrial and phar-
maceutical partners. In that work we tried to build diagnostic kit for several
types of cancer. The bladder cancer data, already considered in Conde et al.
(2012), is analyzed here. Neither the values nor the names of the predictors
considered are given for confidential issues.
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The patients were initially classified in 5 classes. The first level is the
control level (patients that did not have the illness) and the other four levels
are Ta, T1G1, T1G3 and T2, corresponding to increasingly advanced levels
of illness. As a first step, a pilot study with a moderate number of patients
was developed previous to a possible larger scale multicenter study. First,
we received a 141 patient dataset that we consider as training set and later
on a second sample of 149 different patients that we will use as test set
was provided. As the sample sizes in some groups were small compared with
those of the others, and according to our partners, we decided to merge
the initial 5 levels in 3 groups, namely the control group, the Ta+T1G1
group and the T1G3+T2 group. Also according to information given by our
partners we decided to consider 5 proteins as predictors. The mean values
of each of these proteins were expected to increase with the illness level.
The performance results for the test set obtained with the different methods
considered throughout the paper appear in Table 4 with the best results
marked in bold.

Measure LDA RLDA RF SVM LOGIT LGB MONOXGB ASILB AMILB CSILB CMILB
TMP .617 .409 .738 .805 .785 .758 .785 .403 .356.356.356 .362 .362
MAE .732 .510 .846 .799 .913 1.044 .980 .490 .443 .463 .436
AUC .527 .718 .478 .582 .510 .446 .510 .706 .721 .717 .717

Table 4: Performance for the different procedures for the bladder cancer test dataset.

The results for RLDA, ASILB, AMILB, CSILB and CMILB, that take
into account the order restrictions are much better than the rest. The main
reason is that some of the predictors did not verify the restrictions in the
training set. Therefore, we can see that these new methods are able to cope
with a ‘bad’ training sample and obtain reasonable results without dropping
any observations or manipulating the original data in that sample. This does
not happen with MONOXGB. We can also see that the new methods also
outperform RLDA.

4.2 Diagnostic of electrical induction motors

Electrical induction motors are widely used in industry. In fact, as Garcia-
Escudero et al. (2017) points out, it is estimated that these motors account
for 80% of energy converted in trade and industry. For this reason, and for
the losses that a possible unexpected shutdown might yield, it is important
to be able to detect possible failures in these machines as early as possible.

There are many techniques to diagnose a faulty motor, see Choudhary et
al. (2019) and references therein. The most widespread is based on the spec-
tral analysis of the stator current and is usually known as Motor Current
Signature Analysis. The underlying principle is that motor faults cause an
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asymmetry that is reflected as additional harmonics in the current spectrum.
Therefore, side bands around the main frequency are considered and ampli-
tudes of these side bands around odd harmonics are measured as predictors
of damage severity of the motor. Lower values of the amplitudes are expected
to be related to higher levels of damage severity (see Figure 3 for a graphic
description of these variables). Four condition states were considered with
state 1 corresponding to an undamaged motor, state 2 to a motor with an
incipient fault, state 3 with a moderately damaged motor and state 4 with a
severely damaged motor.

Fig. 3: Graphic representation of the predictors variables for the motor diagnostic example.

Here, we consider a sample of 280 motor observations, for which the real
motor state was known, that were recorded at the Electrical Engineering
Department laboratory of the Universidad de Valladolid. The distribution
of these observations among the different groups appears in Table 5. Three
variables, namely the amplitudes of the first lower and upper side bands
around harmonic 1 and the first lower side band around harmonic 5 are the
predictors. Three different classifications problems are solved. The first one
considers the four different states, the second considers three states, joining
states 2 and 3, and in the third the problem is to classify in group 1 vs the
rest of groups. The second problem is interesting from the industrial point
of view since in this case we are distinguishing healthy and incipiently or
moderately damaged motors from those in a state that may cause operative
problems. In the third undamaged motors are distinguished from those with
any kind of damage. As no test sample is available here, the TMP estimators
are obtained using 10-fold crossvalidation. The code used for performing this
analysis is contained in the Supplementary material section of the article
while the data can be found in the isoboost (Conde et al., 2020) package.

The results for these three classification problems appear in Table 6. We
can see again that the methods proposed in this paper perform very well in
this case and that the best result is obtained with one of these new methods.
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Group Observations
State 1 (Undamaged) 83
State 2 (Incipient fault) 67
State 3 (Moderate damage) 70
State 4 (Severe damage) 60

Table 5: Number of observations in each group for the motor diagnostic example.

In this case the isotonic boosting methods perform much better than RLDA
which in turn yields same results than LDA. This happens when the training
sample fulfills the isotonicity restrictions imposed. Therefore, we can see that
the new isotonic methods proposed here improve even when the training
sample verifies the restrictions. We can also see that, in this example, the
unrestricted methods perform well from the AUC point of view and that
some of them perform slightly better than the monotone methods.

Scheme Measure LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB
4 classes TMP .179 .179 .143 .143 .143 .151 .146 .136.136.136 .146 .164 .143

MAE .179 .179 .143 .143 .143 .152 .161 .146 .146 .164 .143
AUC .966 .966 .972 .971 .976 .958 .966 .970 .963 .953 .960

3 classes TMP .232 .232 .143 .136 .143 .133 .125 .125 .121 .139 .114.114.114
MAE .232 .232 .143 .136 .143 .133 .125 .125 .121 .139 .114.114.114
AUC .946 .946 .967 .964 .968 .953 .957 .958 .963 .957 .961

2 classes TMP .129 .129 .043 .043 .046 .043 .046 .036.036.036 .036.036.036
AUC .967 .967 .995.995.995 .974 .987 .990 .985 .990 .993

Table 6: Performance for the different procedures and classification problems for the induction motor data.

5 Discussion

In this paper, classification problems in scenarios where there are monotone
relationships among predictors and classes are considered, and the idea of
using isotonic regression, instead of standard regression, in boosting classifi-
cation rules, is exploited.

From a methodological point of view, the specific contribution of this paper
is the definition of novel rules developed for binary and multiclass classifica-
tion problems. Theoretical results that endorse the classification rules based
on maximum likelihood estimation are developed and simulations results,
performed under different scenarios, validate the rules.

From a practical point of view, two real problems in different contexts
have been efficiently solved using the new rules. In the first one, where can-
cer patients are classified in different diagnostic groups, a deficient training
sample that does not verify the expected monotone relationships is available,
so that standard procedures yield very high misclassification errors. In this
case, the incorporation of the isotonicity information is compulsory, not only
to get more efficient results but also to obtain meaningful ones. The new
rules reduce the error rates between 33% and 66%. In the second case, that
deals with the diagnostic of induction motors, the training sample fulfills the
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expected monotone relationships and the error rates are quite low. Also in
this case the new rules manage to reduce the error rates significantly.

The question of computational efficiency and scalability of statistical pro-
cedures is also interesting nowadays. We have performed a study recording
the time consumed by the procedures considered in the paper in the simula-
tions and we have found that the new procedures have a behavior similar to
the other ones considered when the sample size of the dataset or the num-
ber of predictors is increased. When the number of classes increases we have
found that CSILB and CMILB are also competitive when compared with
previously existent procedures and more efficient than ASILB and AMILB.

Future developments that involve the procedures exposed here will include
new ways of expressing the additional information, the incorporation of other
type of additional information, such as concavity, and the consideration of
other methodology, for example isotonic regression splines, in the design of
the rules.
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A Appendix

A.1 Theoretical justification for algorithms under the adjacent categories model

Let x ∈ Rd, y ∈ {1, . . . ,K}, y∗k = I[y=k], k = 1, . . . ,K and assume the adjacent probabilities model (2). Denote further
F1(x) = 0, so the a posteriori probabilities are:

pk(x) =
exp(

∑k
j=1 Fj(x))∑K

k=1 exp(
∑k
j=1 Fj(x))

, k = 1, . . . ,K.

Now, the expected log-likelihood is:

El(F2, . . . , FK) = E

 K∑
k=2

y∗k

 k∑
j=2

Fj(x)

− log

1 +

K∑
k=2

exp

 k∑
j=2

Fj(x)

 .
Conditioning on x, the score vector S(x) = (sk(x)) for the population Newton algorithm is:

sk(x) =
∂El(F2(x), . . . , FK(x))

∂Fk(x)
= E

 K∑
j=k

(y∗j − pj(x))

∣∣∣∣∣∣x
 , k = 2, . . . ,K.

The Hessian is a (K − 1)× (K − 1) matrix, H(x) = (Hkm(x)), 2 ≤ k,m ≤ K, where each element Hkm(x) is:

Hkm(x) =
∂2El(F2(x), . . . , FK(x))

∂Fk(x)∂Fm(x)
=

{
−(
∑K
j=m pj(x))(1−

∑K
j=k pj(x)), m ≥ k

−(
∑K
j=k pj(x))(1−

∑K
j=m pj(x)), m < k

If W(x) = −diag(H(x)), a quasi-Newton update for the ASILB algorithm is:F2(x)
...

FK(x)

←
F2(x)

...
FK(x)

+ EW
(
W−1(x)s(x)

∣∣x) .
The full Newton update, which is implemented in the AMILB algorithm, is:F2(x)

...
FK(x)

← EH


F2(x)

...
FK(x)

−H−1(x)s(x)

∣∣∣∣∣∣∣x


A.2 Theoretical justification for algorithms under the cumulative probabilities model

In this case we have to update the function F (x) and the parameters αk, k = 2, . . . ,K. We will perform a “two step” update,
first on F (x) and then on the α parameters.

Let us denote γk(x) =
∑K
j=k pj(x), k = 1, . . . ,K, and assume the cumulative probabilities model (3). For this model

γk(x) =
exp(αk + F (x))

1 + exp(αk + F (x))
, k = 2, . . . ,K,

with γ1(x) = 1 and γK+1(x) = 0.

First, we perform the F (x) update. Here, as in the previous model, we consider a single observation as this step is used for
updating the weights and the values to be adjusted. The expected log-likelihood is:

El(F ) = E

(
K∑
k=1

y∗k log(γk(x)− γk+1(x))

)
.

Conditioning on x, the first and second derivatives for the population Newton algorithm are:

∂El(F (x))

∂F (x)
= E

(
K∑
k=1

y∗k[1− γk(x)− γk+1(x)]

∣∣∣∣∣x
)
,

and

w(x) = −
∂2El(F (x))

∂F (x)2
= E

(
K∑
k=1

y∗k[γk(x)(1− γk(x)) + γk+1(x)(1− γk+1(x))]

∣∣∣∣∣x
)
,

so that the Newton update for F (x) is

F (x)← EH

(
F (x) +

1

w(x)

∂El(F (x))

∂F (x)

∣∣∣∣x) .
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As for the parameters αk, k = 2, . . . ,K, let us denote α = (α2, . . . , αK)′. Now, we use all the xi observations as in this case
we are going to perform a Newton step for updating the α’s which do not depend on x. Then, the log-likelihood is:

l(α) =

n∑
i=1

K∑
k=1

y∗k,i log(γk(xi)− γk+1(xi)).

The score for the Newton algorithm S = (s2, . . . , sK)′ is:

sk =
∂l(α)

∂αk
=

n∑
i=1

(
y∗k,i

pk(xi)
−

y∗k−1,i

pk−1(xi)

)
γk(xi)(1− γk(xi)), k = 2, . . . ,K. (4)

And the Hessian is a tri-diagonal symmetric (K−1)× (K−1) matrix H = (Hkm) with Hkm =
∂2l(α)
∂αk∂αm

, for 2 ≤ k,m ≤ K,

such that

Hkk = −
n∑
i=1

γk(xi)(1− γk(xi))

[
y∗k

p2k(xi)
(p2k(xi) + γk+1(xi)(1− γk+1(xi)))

+
y∗k−1

p2k−1(xi)
(p2k−1(xi) + γk−1(xi)(1− γk−1(xi)))

]
(5)

Hk,k−1 = Hk−1,k =

n∑
i=1

y∗k−1,i

p2k−1(xi))
γk(xi)(1− γk(xi))γk−1(xi)(1− γk−1(xi)) (6)

Hkm = Hmk = 0 otherwise. (7)

In these conditions the Newton update is α← α−H−1S.

A.3 Full numerical results for the simulations performed

This subsection contains the Tables showing the full numerical mean results for TMP, MAE and AUC for the two sets of
simulations. In Tables 7, 8 and 9 appear the results for the first set of simulations performed under model 2 for the different F
functions appearing in Table 3. Tables 10, 11 and 12 contain the mean results for the simulations performed under the uniform
order-restricted predictors scheme. In all cases the best results appear in bold. Notice that there are no results for CSILB and
CMILB when K = 2 as in that case those algorithms coincide with ASILB and AMILB. For this case the TMP and MAE
values also coincide. They are given in both tables for completeness.

F K d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB
1 2 5 .4087 .3975 .4176 .4162 .4086 .4454 .4376 .3835 .3925
1 2 10 .4547 .4354 .4660 .4850 .4532 .4714 .4719 .4277 .4334
2 2 5 .3758 .3654 .4127 .4279 .3822 .4485 .4233 .3679 .3675
2 2 10 .4262 .4358 .4754 .4621 .4288 .4677 .4739 .4188 .3990
1 3 5 .4933 .4823 .5259 .5416 .4940 .5433 .5573 .4843 .4808 .4872 .4936
1 3 10 .5225 .5162 .5343 .5372 .5226 .5631 .5647 .5059 .5007 .5001 .5013
2 3 5 .4742 .4681 .5146 .4975 .4745 .5184 .5789 .4541 .4492 .4703 .4628
2 3 10 .5112 .5039 .5339 .5228 .5165 .5433 .6007 .4867 .4774 .4855 .4841
1 5 5 .6469 .6420 .6682 .6635 .6497 .6850 .6994 .6301 .6255 .6289 .6325
1 5 10 .6612 .6506 .6750 .6675 .6588 .6902 .7038 .6336 .6388 .6293 .6306
2 5 5 .6296 .6161 .6690 .6571 .6356 .6709 .7208 .6012 .5978 .5848 .6080
2 5 10 .6465 .6378 .6693 .6708 .6489 .6864 .7312 .6136 .6098 .6113 .6168

Table 7: Mean TMP for the first simulation scheme for different classification rules, number of groups K, predictors d and
functions F .
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F K d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB
1 2 5 .4087 .3975 .4176 .4162 .4086 .4454 .4376 .3835 .3925
1 2 10 .4547 .4354 .4660 .4850 .4532 .4714 .4719 .4277 .4334
2 2 5 .3758 .3654 .4127 .4279 .3822 .4485 .4233 .3679 .3675
2 2 10 .4262 .4358 .4754 .4621 .4288 .4677 .4739 .4188 .3990
1 3 5 .5931 .5732 .6467 .6713 .5949 .6465 .7025 .5627 .5727 .5808 .5868
1 3 10 .6437 .6342 .6706 .6564 .6421 .7063 .7279 .5928 .6041 .6096 .5977
2 3 5 .5540 .5423 .6193 .5889 .5547 .6221 .7393 .5191 .5371 .5337 .5384
2 3 10 .6065 .5916 .6457 .6251 .6133 .6670 .7646 .5596 .5761 .5620 .5768
1 5 5 .9853 .9505 1.0448 1.0318 .9872 1.0930 1.1610 .8821 .9166 .9012 .8956
1 5 10 1.0224 .9771 1.0614 1.0449 1.0169 1.1309 1.1710 .9075 .9451 .9162 .9154
2 5 5 .9422 .9103 1.0525 1.0250 .9523 1.0673 1.2901 .8318 .9041 .8119 .9046
2 5 10 .9758 .9482 1.0653 1.0460 .9778 1.0921 1.3094 .8573 .9268 .8559 .9084

Table 8: Mean MAE for the first simulation scheme for different classification rules, number of groups K, predictors d and
functions F .

F K d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB
1 2 5 .6374 .6596 .6263 .5675 .6371 .5700 .5683 .6754 .6628
1 2 10 .5650 .5963 .5432 .4800 .5654 .5370 .5273 .6034 .6020
2 2 5 .6939 .6861 .6254 .6041 .6660 .5925 .5705 .6961 .7063
2 2 10 .5809 .5824 .5442 .4767 .5800 .5420 .5244 .6168 .6290
1 3 5 .6969 .7049 .6602 .6504 .6969 .6433 .6189 .7016 .6993 .6876 .6802
1 3 10 .6721 .6866 .6439 .6419 .6714 .6139 .6095 .6877 .6824 .6753 .6691
2 3 5 .7152 .7240 .6758 .6717 .7113 .6533 .5982 .7320 .7344 .7206 .7234
2 3 10 .6875 .6968 .6603 .6706 .6855 .6285 .5744 .7060 .7044 .7055 .7025
1 5 5 .7089 .7175 .6731 .6893 .7091 .6244 .6263 .7226 .7198 .7028 .7014
1 5 10 .6981 .7072 .6681 .6754 .6967 .6205 .6127 .7127 .7078 .6929 .6939
2 5 5 .7137 .7270 .6719 .6782 .7091 .6350 .5805 .7383 .7305 .7378 .7115
2 5 10 .7070 .7159 .6681 .6883 .7053 .6306 .5812 .7334 .7197 .7180 .7047

Table 9: Mean AUC for the first simulation scheme for different classification rules, number of groups K, predictors d and
functions F .

K n d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB
2 10K 5 .4482 .4066 .4693 .4505 .4421 .4531 .4711 .3741 .3584
2 20K 5 .4139 .4029 .3936 .4091 .4335 .4411 .4571 .3552 .3271
2 10K 10 .4113 .3826 .4025 .4349 .4123 .4224 .4543 .3232 .3297
2 20K 10 .3596 .3573 .3594 .3796 .3636 .3893 .4519 .2998 .2883
3 10K 5 .5391 .5131 .5495 .5585 .5424 .5657 .5899 .4753 .4817 .4657 .4806
3 20K 5 .5030 .4923 .5090 .4988 .5362 .5426 .6177 .4597 .4138 .4279 .4171
3 10K 10 .5288 .5051 .5137 .5396 .5271 .5255 .5701 .4296 .4415 .4403 .4439
3 20K 10 .4717 .4576 .4731 .4807 .4738 .4894 .5580 .3975 .3985 .3675 .3984
5 10K 5 .6307 .6015 .6335 .6404 .6358 .6585 .6717 .5969 .5854 .5580 .5780
5 20K 5 .5705 .5626 .5922 .5753 .6084 .6350 .6879 .5357 .5228 .4879 .5157
5 10K 10 .6088 .5911 .5944 .6234 .6070 .6326 .6258 .5318 .5304 .5342 .5418
5 20K 10 .5516 .5406 .5598 .5552 .5565 .5947 .6425 .4770 .4782 .4462 .4659

Table 10: Mean TMP for different classification rules, number of groups K, predictors d and training sample sizes n, for the
second set of simulations.

K n d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB
2 10K 5 .4482 .4066 .4693 .4505 .4421 .4531 .4711 .3741 .3584
2 20K 5 .4139 .4029 .3936 .4091 .4335 .4411 .4571 .3552 .3271
2 10K 10 .4113 .3826 .4025 .4349 .4123 .4224 .4543 .3232 .3297
2 20K 10 .3596 .3573 .3594 .3796 .3636 .3893 .4519 .2998 .2883
3 10K 5 .6573 .6171 .6673 .6862 .6657 .6868 .7385 .5505 .5792 .5483 .5741
3 20K 5 .5943 .5736 .5937 .5751 .6418 .6464 .7881 .5101 .4661 .4594 .4499
3 10K 10 .6438 .6131 .6118 .6507 .6393 .6317 .7119 .4821 .5094 .4963 .4894
3 20K 10 .5303 .5117 .5281 .5453 .5328 .5629 .6724 .4292 .4367 .3865 .4353
5 10K 5 .8658 .8015 .9020 .9138 .8852 .9895 1.0752 .7788 .8043 .7054 .7445
5 20K 5 .7264 .7045 .7699 .7290 .8247 .9008 1.0910 .6478 .6515 .5564 .6177
5 10K 10 .8542 .8156 .8293 .8743 .8561 .9296 .9331 .6843 .7000 .6613 .6838
5 20K 10 .6747 .6568 .6889 .6824 .6896 .8105 .9013 .5471 .5679 .4959 .5307

Table 11: Mean MAE for different classification rules, number of groups K, predictors d and training sample sizes n, for the
second set of simulations.
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K n d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB
2 10K 5 .5861 .6412 .5535 .4807 .5894 .5655 .5216 .6798 .6914
2 20K 5 .6195 .6378 .6446 .4593 .5732 .5888 .5352 .7175 .7492
2 10K 10 .6290 .6768 .6426 .5546 .6286 .6083 .5677 .7517 .7485
2 20K 10 .6977 .7043 .6910 .6220 .6925 .6500 .5650 .7761 .7855
3 10K 5 .6511 .6806 .6369 .5408 .6506 .6082 .5752 .7126 .7111 .7344 .7210
3 20K 5 .6819 .6951 .6812 .6204 .6434 .6344 .5497 .7370 .7740 .7651 .7768
3 10K 10 .6682 .6858 .6732 .6158 .6697 .6452 .6078 .7558 .7493 .7608 .7582
3 20K 10 .7273 .7372 .7212 .7025 .7201 .6783 .6170 .7907 .7948 .8213 .7953
5 10K 5 .7257 .7429 .7107 .7216 .7146 .6370 .6278 .7575 .7544 .7585 .7453
5 20K 5 .7717 .7834 .7452 .7616 .7041 .6603 .6035 .8054 .8128 .8293 .8088
5 10K 10 .7437 .7544 .7434 .7154 .7435 .6569 .6833 .8033 .8078 .7783 .7778
5 20K 10 .7991 .8053 .7814 .7846 .7913 .6854 .6721 .8452 .8419 .8495 .8377

Table 12: Mean AUC for different classification rules, number of groups K, predictors d and training sample sizes n, for the
second set of simulations.


