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Abstract: The fault diagnosis of electrical machines during startup transients has received increasing
attention regarding the possibility of detecting faults early. Induction motors are no exception, and
motor current signature analysis has become one of the most popular techniques for determining
the condition of various motor components. However, in the case of inverter powered systems, the
condition of a motor is difficult to determine from the stator current because fault signatures could
overlap with other signatures produced by the inverter, low-slip operation, load oscillations, and
other non-stationary conditions. This paper presents a speed signature analysis methodology for a
reliable broken rotor bar diagnosis in inverter-fed induction motors. The proposed fault detection is
based on tracking the speed fault signature in the time-frequency domain. As a result, different fault
severity levels and load oscillations can be identified. The promising results show that this technique
can be a good complement to the classic analysis of current signature analysis and reveals a high
potential to overcome some of its drawbacks.

Keywords: fault detection; fault diagnosis; frequency analysis; induction motors; rotating machines;
signal processing; spectral analysis; time-frequency decompositions

1. Introduction

The use of induction motors (IMs) in industrial applications with variable speed
systems is widespread because they are more reliable, versatile, and efficient than line-fed
machines [1]. High-performance IMs are considered robust machines, but they require
reliable condition monitoring systems to avoid unprogrammed stops in production lines
and reduce maintenance costs. The rotor cages of IMs are usually made from copper bars;
these bars are exposed to failures in applications with variable operating conditions because
of the excessive mechanical stresses involved [2]. Much attention has been directed to the
study of broken rotor bar (BRB) fault, because if undetected it can develop into catastrophic
machine breakdown [3]. Many papers in the literature have studied the diagnosis and
condition monitoring of the IM rotor, but most only deal with machines operating at a
constant speed and whole broken rotor bars. Nowadays, variable speed systems where
the IM is driven by voltage source inverters (VSIs) are more common; they are used in
a wide range of applications—namely, material handling, lifting, textile, compressors,
pumps, mills, winders, and lifts [4]. These VSIs are usually pulse width modulators (PWM)
that produce non-sinusoidal voltages using a solid-state inverter by rapidly switching the
output voltage on and off. It is known that no matter how accurate the switching of the
PWM is, they are an inherent source of harmonic distortion in IM voltages and currents,
which has a negative impact on the efficiency of fault detection techniques [5].
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Motor current signature analysis (MCSA) is the most popular method in preventive
maintenance and it is considered the reference technique for broken bar fault diagnosis
in squirrel-cage motors. The stator current signature analysis of motors under transient
operation (such as startup) has received special attention in the last decade as an alternative
to improve the reliability of stationary analysis and reduce the rate of false alarms in the
classic MCSA [6,7]. To do this, detection and diagnosis methodologies have been proposed
based on time-frequency (t, f ) decompositions capable of identifying fault signatures and
complementing the analysis of the stationary current signals [8–12]. These works achieve
the identification of fault signatures and extract condition indicators from the single-phase
electrical current in the startup transient. Nevertheless, most of these methods assume a
line-fed induction machine, and the analysis of transients, such as startups, in inverter-fed
IMs is still an active field and an open question.

Different approaches for the condition monitoring of inverter-fed IMs under startup
transient regimes have been studied recently [13,14]. BRB detection under non-stationary
conditions consists of tracking fault-related signatures called sideband harmonics. Unlike
motors powered directly from the grid, VSIs introduce several harmonic components
produced by the PWM that overlap with these signatures, obstructing their recognition and
the accuracy of the fault diagnosis. Different tools have been proposed to overcome these
issues and improve the reliability of fault diagnostic methods based on transient analysis.
These tools include adaptive transforms [15,16], non-linear signal decompositions [17,18],
demodulation schemes [19–21], statistical methods [22–24], intelligent algorithms [25–28],
and combined techniques. However, all these methodologies focus on the analysis of the
stator current signal.

This paper proposes the analysis of the rotor speed signal for the detection of broken
rotor bars at incipient states in inverter-fed induction motors during the startup transient.
This technique is also used to distinguish load oscillations to avoid false positives. It is
demonstrated that the speed analysis of induction motors in the time-frequency domain
offers a reliable detection of broken rotor bars when the stator current analysis fails due
to low-slip operation, load oscillations, overlapped signatures, and other non-stationary
conditions. The proposed technique is used to obtain and evaluate speed fault pattern
variations and evolutions along the startup transient. The method is applied to real speed
signals from laboratory experiments and compared to the analysis of the stator current
of an induction motors subjected to different fault severities and load oscillations. This
proposal can be a valuable and attractive complement to other techniques based on stator
current, vibrations, or thermal analysis [29–31]. Results demonstrate that the analysis of
the motor speed during startups in VSI-fed IMs can detect broken rotor bars, even at low
fault severities, and distinguish this fault from load oscillations to avoid false positives.
This proposal can be a valuable and attractive complement to other techniques based on
stator current analysis and can help to avoid false alarms in VSI-fed IM systems. The
capability of speed analysis is examined in this work, which is an extended contribution of
the conference paper presented in [32].

2. Influence of Rotor Fault on Motor Speed
2.1. Theoretical Background

Electrical current analysis techniques for detecting BRB in IM are based on how the
power spectral density (PSD) of the stator current is affected. This fault type increases the
bar resistance, produces asymmetry in the airgap’s electromagnetic field, and gives rise to
sideband harmonics [33] located at:

fr f = fs(1± 2ks), k = 1, 2, 3..., (1)

where fs is the power supply fundamental frequency, s is the rotor slip, and k is an integer.
The low-order components (when (k = 1)) are of special interest for fault diagnosis because
they have larger amplitudes than high-order components. The (1− 2s) fs component is
known as the left side-band harmonic (LSH) and the frequency component at (1 + 2s) fs is



Energies 2021, 14, 1469 3 of 16

known as the right side-band harmonic (RSH), since they are located to the left and the
right of fs in steady-state analysis. In a faulty IM, the air-gap torque is affected by the flux
linkages and the stator currents. The linkages fluxes are given by:

ψ =
∫
(va − Rsia)dt, (2)

where va is the stator voltage, Rs is the stator resistance, and ia is the stator current. The
interaction of the (1± 2s) fs components with the fundamental magnetic flux produces an
oscillatory torque at frequency 2s fs in the total torque, which is given by:

∑ Γ(t) = Γ0 + 3Pψ
N

∑
k=1

I
′
ksin(2ks fst + αψ − αk), (3)

where Γ0 is the dominant torque component produced by the fundamental component
of the stator current, αk is the ripple phase, and P is the pole-pair number. The fault
components at the torque ripple produce a low-frequency modulation on the motor speed,
with twice the slip frequency when the rotor is damaged [34]. The content of the angular
speed for a faulty motor can be modeled in (rad/sec) by [35]:

ωr(t) = ωm(t) +
N

∑
k=1

3Pψ

J2sω
I
′
kcos(2ks fst + αψ − αk), (4)

This can be expressed in (r.p.m.) by:

nr(t) =
120ωr(t)

4π
, (5)

where 2ks fs are the speed oscillations due to the faulty rotor, J is the inertia, and ωm is the
angular speed fundamental component for a healthy induction motor in r.p.m., given by:

nm(t) =
120 fs(t)

P
(1− 2s(t)). (6)

The most used method to detect fault-related oscillations in induction motors is the
steady-state analysis of the stator current based on frequency analysis by Fourier transform
(FT). Spectral leakage around the first harmonic is the main drawback of this analysis,
whose causes are non-strict stationary conditions, non-integral digital frequencies, and the
inherent finite time window of the analysis [36]. A comparison of the stator current and the
speed analysis performed on healthy and faulty conditions of the motor operating under
steady state is shown in Figure 1. The fundamental supply frequency at 50 Hz is noticed
in Figure 1a, where a concentration of leaked energy is present in adjacent spectral bins.
The LSH is observed at 44.86 Hz with an amplitude of −35.7 dB in the current spectrum of
the motor with one BRB. Its amplitude is higher than the LSH of the healthy motor with
−38.58 dB, which may be undetectable without a speed reference. Figure 1a,b shows the
spectra of the stator current and the speed of the same tests of an induction motor in healthy
and faulty states (one broken rotor bar). For the latter, the spectrum shows an increase in
the speed oscillation at a 2s fs frequency of 11.3 dB compared to the same component for
the healthy case. The spectral leakage around the dominant frequency fs (50 Hz) in the
stator current spectra is significant when compared to the low level of leakage around the
fundamental speed component nr (0 Hz).
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Figure 1. Spectra of the (a) stator current and (b) mechanical rotor speed of the motor supplied from
the voltage source inverter and in stationary operation.

2.2. Time-Frequency Analysis of Startup Transient

At start-up transient or speed variations, neither the current nor the rotor speed can be
considered as stationary or deterministic processes because their amplitude, frequency, and
phase are not constant, besides the fact that behaviors and measurements are susceptible
to many disturbances and unpredictable errors such as digital quantization, external
vibrations, noise, and other environmental effects. It becomes necessary to consider the
signals as random processes. In this work, the (t, f ) analysis of the speed signal is computed
by a high-resolution PSD estimation called multiple signal classification (MUSIC), which is a
frequency estimation technique based on eigen analysis. MUSIC algorithm requires a short
number of observed points to offer a high-resolution spectrum estimation, which makes it
a suitable technique for VSI-fed induction machines analysis at startup transient [37].

The PSD of n-observation samples of the speed process is defined as the discrete-time
Fourier Transform of its autocorrelation sequence:

Pxx( f ) = T
∞

∑
k=−∞

rnn[k]e−j2π f kT , (7)

where the variable rnn[k] is the autocorrelation function of the nr[k] and is defined as
nr[k] = E[nr[k]nr[k + l]]. The speed vector nr = [nr(0), ..., nr(n − 1)] can be written as
nr = x+η=Sa+η, where η is the additive noise in the measured signal and the x vector
[x(m), x(m + 1), ..., x(m + n− 1)] = Sa is defined as:

x =


ejω1m ejω2m · · · ejωqm

ejω1(m+1) ejω2(m+1) · · · ejωq(m+1)

...
...

. . .
...

ejω1(m+n−1) ejω2(m+n−1) · · · ejωq(m+n−1)




a1ej2πφ1

a2ej2πφ2

...
aqej2πφq

, (8)

The autocorrelation matrix of the measured mechanical speed can be written as the
sum of the autocorrelation matrices of the signal x and the noise η as Rnn = Rxx + Rηη .
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An eigen decomposition of Rxx and Rnn, s can be expressed as a linear combination of the
principal eigenvectors [vp+1, ..., vn] [38]. In the multiple signal classifications algorithm, the
power spectral density is defined as:

Pxx( f ) =
N

∑
k=p+1

∣∣∣sH( f )vk( f )
∣∣∣2, (9)

where s( f ) is the complex sinusoidal vector. Since Pxx( f ) has its zeros at the frequencies
of the sinusoids, it follows that the reciprocal of Pxx( f ) has its poles at these frequencies.
Therefore, the spectral estimation is computed as:

P̂q
xx( f ) =

1
sH( f )V( f )VH( f )s( f )

, (10)

where V = [vp + 1, ..., vn] is the matrix of eigenvectors of the noise subspace. The resulted
spectrum displays sharp peaks at frequencies of the mechanical speed oscillations, hence
the PSD estimation is used for a high-resolution time-frequency analysis.

3. Experimental Setup

A laboratory test bench that emulates a typical VSI-fed induction motor system was
used for experimental investigation. The laboratory setup consists of a 0.75 kW three-phase
induction motor (Model D-91056 by Siemens) fed by a voltage source PWM inverter (Model
ACS355-03E-15A6-4 by ABB). Appendices A and B summarize the technical parameters
and specifications. The mechanical load was provided by an electro-magnetic powder
brake (Model SE2662-5R by Lucas-Nülle).

Five cases of a rotor bar condition were studied, including the healthy status and four
different broken bar severity degrees (from an incipient fault condition to a full broken
rotor bar). In the healthy case, all bars of the rotor are in healthy condition. For the first fault
status, the damage degree was simulated by drilling a 2 mm-diameter hole in a rotor bar,
the depth of the hole (dp) was 1

4 of the bar height. In the second fault severity condition, the
depth of the hole in the bar was increased to 1

2 of the bar height. In the third fault severity
condition, the depth of the hole was increased to 3

4 of the bar height. Finally, the last fault
severity condition was the fully broken rotor bar, where the depth of the hole was equal to
the bar height, which is h = 13 mm. This results in five fault severity conditions, where s1
represents a healthy condition of the rotor, s2 a low level of degradation (dp = 3.25 mm), s3
the half-broken bar (dp = 6.5 mm), s4 a high level of degradation (dp = 9.75 mm), and s5 a
fully broken rotor bar (dp = 13 mm). Figure 2a shows a cross-sectional view of the rotor
cage with details of the different depth levels drilled into the bar and Figure 2b shows the
drilled rotor bar.

The machine speed nr was provided by a tachogenerator (Model SE2672-5U by Lucas-
Nülle) with an output voltage range of 0–10 V proportional to its rotation speed. One
phase current ia was also measured for comparison purposes using a Hall effect transducer
by LEM, model LV-25NP. A compact data acquisition system (NI cDAQ-9147) was used
for data acquisition. This incorporated an analog input module, NI 9215, with 16 bits of
resolution, and two independent input channels to capture the speed signal and stator
current. The input scale of these two channels was 10 V. Therefore, the quality and reliability
of the speed and stator current signals capture was the highest possible, as those signals
were recorded using the high range of the input scale. Every isolated analog to digital
converter was pre-programmed with a sampling frequency fn = 50 kHz based on the
Nyquist theorem (higher than twice of the highest PWM switching frequency) to prevent
unrealistic alias frequency components in the measured signals at the acquisition stage.
Figure 3 shows a photograph of the test ring.
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Figure 2. View of the rotor employed in the tests: (a) side view schematic for the transverse section
of the squirrel cage rotor, and (b) squirrel cage rotor with a complete broken rotor bar condition.

Figure 3. Experimental test ring configuration: (1) asynchronous motor, (2) electro-magnetic powder
brake, (3) powder brake control, (4) voltage source inverter, (5) signal condition stage, (6) data
acquisition system, (7) PC, and (8) programmable function generator.

4. Experimental Results

The startup transient analysis examined the five case studies of different severity
levels from healthy s1 to the faulty case s5, as explained in Section 3. The healthy case s1
and faulty case s5 were already analyzed in Section 2 (see Figure 1), but with the motor
operating in a stationary regime. For every case study, low load and high load operation
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tests are studied. All the acquired signals were processed and plotted by the Matlab R©

software. The digital sequences of nr and ia are first decimated from the original fn to a
new sampling frequency fn/M in a pre-processing stage for selecting the frequency band
analysis [0 − fn/M) Hz and to decrease the computing requirements. The decimation is
carried out by means of a low-pass filter and a sample rate compressor with the down-
sample factor M. The Parks–MacClellan [39] algorithm was used to design the low-pass
filter; its parameters are cutoff frequency ωc =

π
M , pass-band attenuation Ap = 0 dB, and

stop-band attenuation As = 100 dB. The filter design was chosen to provide an adequate
response in the pass-band while limiting the high-frequency components. The decimation
factor M is selected according to the spectral behavior of the fault signature. In the case
of the stator current, the bandwidth of analysis (0, 62.5 Hz)contains the main spectral
components and the fault-related side-band harmonics. In the case of speed signal, the
bandwidth of analysis (0, 31.25 Hz)contains all the desired information for rotor fault
diagnosis purposes. The decimation is processed with a multi-stage approach to avoid
measurement errors and spectral aliasing at the signal processing stage. The decimation
factors are M = 5 × 4 × 5 × 4 and M = 5 × 4 × 5 × 4 × 2 for the stator current and rotor
speed, respectively. Figure 4 illustrates the proposed methodology.

Decimator

Low-pass
filter

Gain=1

Sampling rate
compresor

M
nr(t)

Mechanical
Load

VSI

rpm

ADC

Acquisition Time-Frequency

High-Resolution

Figure 4. Simplified block diagram of the decimation process.

The measured signals consisted of a 10 s startup transient followed by 1 s of steady-
state operation. During all the tests, nr(t) and ia(t) were recorded simultaneously to make
a fair comparison between the stator current and the speed analysis. The precision and
resolution of data acquisition are comparable to those used in industrial practice. Two
series of tests were carried out at two different constant load torques, 2.6 and 3.8 Nm—low
level (LL) and high level (HL), respectively. The VSI was programmed to provide a linear
startup following a ramp from 0 Hz to the motor-rated frequency ( fb = 50 Hz) with a
constant d f

dt during the first 10 s. Figure 5a presents the voltage and current waveforms of a
startup transient (10 s) followed by steady-state operation (1 s); the signal amplitudes are
normalized by their corresponding maximum value. As expected, ia(t) and va(t) exhibit a
larger harmonic content than a line-fed system.

In Figure 5b, the pulse-width-modulated waveform of va(t) and the switching effect
produced by the VSI can be seen, and the highest electrical magnitude of the stator current
during the startup transient occurs around 2 s after energization. Figure 6 presents the
spectral characteristics of a line-fed and VSI-fed motor; the comparison of these plots shows
the harmonics and inter-harmonics injected by the VSI in the system.

The measured rotor speed waveforms for a healthy and faulty case (s5) under LL and
HL are shown in Figure 7. The figure presents the time-varying synchronous speed ns =
120 fs(t)/p when the motor is supplied by a linear ramp of frequency voltage v/ f (0–50
Hz/0–10 s).

The rotor speed is closer to the synchronous speed (dashed line) when the motor
load is low due to the reduced motor slip. When the mechanical load is high, the slip
also increases, and the rotor speed separates more from the synchronous speed. Between
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second 1 and 2.5, a dead zone is observed after starting due to the time the motor takes to
overcome the load inertia at standstill.
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Figure 5. Voltage (va) and current (ia) waveforms in the induction motor fed by the voltage source
inverter during: (a) 10 s of startup transient and 1 s of steady state, and (b) close up of the steady
state.
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Figure 6. Spectra of the motor supply voltage when fed from the line or from the voltage source
inverter and under stationary conditions.
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4.1. Time-Frequency Analysis of Startup

Time-frequency analyses for healthy and faulty tests are computed using the high-
resolution estimation MUSIC; the PSD magnitude is presented in the z-axis of the (t, f )
plane in a relative scale 20log10

∣∣Pxx
(
ejω)∣∣2. Rotor speed and stator current (t, f ) decom-

positions are produced by applying a 81-point rectangular window with a 49 percent
overlap.

4.1.1. Induction Motor Under High-Load Condition

The time-frequency decompositions of stator current and rotor speed for a high-loaded
motor are displayed in Figures 8 and 9, respectively. Figure 8a illustrates the application
of the stator current analysis for the healthy motor (s1), and Figure 8b presents the stator
current analysis for the motor with a broken rotor bar (s5). The high-resolution technique
is capable of realizing very sharp (t, f ) spectral analyses, allowing the observation of
individual spectral components. In both cases, Figure 8a,b, the maximum energy concen-
trations take place at the linear frequency variation fs(t) = 5t as a result of the dominant
component of the voltage supply. The spectral harmonics of winding, eccentricity, and
other components introduced by the VSI are also observed in the (t, f ) decompositions.
For non-sinusoidal voltage supplies, triplen harmonics are seldom present in three-phase
induction motors; conversely, 2nd and 4th harmonics can be observed in the stator current
analysis. In Figure 8b, the time-varying spectrum of the faulty motor is presented and
shows the appearance of the fault sidebands (1± 2s) fs, which are close to the fundamental
component and can be observed evolving with a positive slope. Although a visual com-
parison between Figure 8a,b shows the existence of the fault components in the vicinity
of fs in Figure 8b, a precise identification, isolation, and quantification of LSH or RSH is
complicated, as its trajectories are partly overlapped with fs.

The proposed motor speed signature analysis is presented in Figure 9 for the same
experimental tests of Figure 8. As envisioned in Equation (4), Figure 9a shows that for
a healthy motor the dominant spectral component in nr is nm and there is absence of a
fault harmonic component. In contrast, Figure 9b clearly exposes the presence of a speed
oscillation at the twice slip frequency during the startup transient, revealing a rotor defect
in the motor. Notice that even though the electrical starting point is at t = 0 when the VSI
energizes the induction motor, the fault oscillation 2s fs rises about two seconds later when
the shaft starts rotating. This is because the fault signature is directly related to the slip
and consequently to the rotor movement. This speed oscillation trajectory can be easily
tracked in the (t, f ) domain; the average speed value does not produce a signature in the
time-frequency domain and the trajectory of the speed oscillations are easily observed.

2nd

4th

LSH

RSH

Figure 8. Time-frequency analyses of the IM stator current under startup transient and high-load
level for: (a) healthy motor and (b) rotor with one full broken rotor bar.
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2sfs

nm

Figure 9. Time-frequency analyses of the motor speed under startup transient and high-load level
for: (a) healthy motor and (b) rotor with one full broken rotor bar.

4.1.2. Induction Motor Under Low-Load Condition

Time-varying analyses resulting from the stator current for healthy s1 and a faulty s5
cases are compared in Figure 10, when the motor is operating under low-slip condition.
Figure 10a illustrates the application of current signature analysis to the healthy motor;
apart from noise, Figures 8a and 10a present a similar time-varying spectra, and both
LL and HL condition (from a healthy machine) exhibit the presence of even harmonics,
eccentricity harmonics, and the main energy component in the t-f decomposition concen-
trated at fs. Conversely, Figure 10b shows a different energy distribution and depicts the
appearance of the symmetrical fault-components (LSH and RSH), which are separated
from the fundamental component and can be observed only after the second 10 at 45 and
55 Hz. However, its energy cannot be tracked in the startup transient (0 to 10 s), since
they are very close to fs and its trajectories are indistinguishable. The results presented in
Figure 10 illustrate the main limitation of the motor current signature analysis to detect
fault-harmonics when induction motors are operating under light load conditions. When
the motor is operating under light load conditions, the slip approaches zero and the stator
current analysis experience troubles in fault signature identification.

The proposed methodology, motor speed signature analysis, is presented in Figure 11
for the same experimental tests of Figure 10. In this case, the spectrum for the healthy
motor with a constant mechanical load of 2.6 Nm is shown in Figure 11a. Although the
result belongs to a startup transient under variable-frequency supply, it is found that nr is
composed only for a constant component nm embedded in noise. On the other hand, the
result shown in Figure 11b is different because the (t, f ) analysis reveals a new harmonic
component related to the broken rotor bar fault, now clearly the component appears at
frequency 2s fs. One can also observe a frequency decrement in the separation between nm
and the fault-component trajectory due to the lower slip than when the motor load was
high (in Figure 9b).
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fs

fecc

fs
LSH

RSHRSH

Figure 10. Time-frequency analyses of the IM stator current under startup transient and low load
level for: (a) healthy motor and (b) a rotor with one full broken rotor bar.

2sfs

nm

Figure 11. Time-frequency analyses of the motor speed under startup transient and low load level
for: (a) healthy motor and (b) a rotor with one full broken rotor bar.

If Figures 9b and 11b are compared, in the latter in Figure 9b the fault-related compo-
nent is far separated from the dominant component because the motor slip is higher due to
a high load: The greater the load level, the greater the rotor slip and, in consequence, the
higher the frequency speed fluctuation.

The results show that the fault components are better detected using the motor speed
analysis, which gives a clear separation of the spectral components at the (t, f ) plane and
permits the extraction of the speed oscillation amplitude at the fault frequency. In the speed
analyses given for a healthy and faulty cases, it can be observed that the dominant spectral
components in the (t, f ) decompositions are the constant trajectories nm (Figures 9 and 11).
Results of the stator current decompositions (Figures 8a and 10) are clearly different, where
the dominant component is the frequency modulated component fs (from 0 to 50 Hz).
The low-frequency variation in nm and 2s fs in the motor speed spectrum improves the
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PSD estimation by reducing bias and leakage in the (t, f ) decompositions, thus giving an
accurate localization and quantification of the fault signature.

4.2. Early Fault Detection

In addition to the fault detection analysis, the amplitude of the fault component is
isolated and extracted from the (t, f ) domain for diagnosis purposes. Figure 12 presents
the results of the 2s fs amplitude for the five severity levels from s1 to s5. The amplitudes
evolution for HL and LL conditions are shown in Figure 12a,b, respectively. In the case of
healthy condition s1 and the s2 severity level, the speed oscillation is small and it is difficult
to determine any difference. However, the amplitude of the fault signatures for the cases
s3, s4, and s5 expose a clear increment in the speed fluctuation at 2s fs as the severity of the
fault increases.
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Figure 12. Time evolution of the 2s fs amplitude during the startup transient for multiple severity
cases under: (a) high load condition and (b) low load condition.

4.3. Induction Motor Under Load Oscillations

To study the performance of the proposed methodology, the (t, f ) analysis is used to
process the rotor speed of an IM under load oscillations. In particular, the low-frequency
load oscillation phenomenon is interesting to consider because it is a common root cause of
rotor fault false alarms when the classical steady-state analysis is performed. The oscillation
in the load was produced by feeding the controller of a magnetic powder break with a
low-frequency sinusoid, which is provided by a programmable function generator. This
time the motor startup was programmed in the VSI with 5 s, to verify and validate the
effectiveness of the analysis under short transient startup. Figure 13a shows the result of
the healthy motor case under a normal condition without load oscillation, where there
are not low-frequency trajectories present in the (t, f ) decomposition. In Figure 13b, the
result of the same healthy motor is shown but with a load oscillating by 4 Hz. A clear
frequency component is present during the transient and the steady state at 4 Hz. The
2s fs pattern induced by a rotor fault is shown in Figure 13c; with the measured speed
signal, it is easy to corroborate that the slip at the stationary regime is s = 0.032, allowing
the method to confirm that the trajectory which converge to 3.28 Hz corresponds to a
rotor fault component. The (t, f ) decomposition of the speed signal for the faulty motor
operating under the oscillating load is shown in Figure 13d, where not only the oscillation
component of the load at 4 Hz is observed in the (t, f ) plane but also the presence of the
rotor fault trajectory with different direction can be noticed. These experimental results
show that the speed analysis of the startup transient is effective to identify rotor fault
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components and load oscillation components, even when in stationary regime they overlap
at the same frequency.

fault
Rotor

= 4 Hzoscillation
Load

fault
Rotor

oscillation
No load

= 4 Hzoscillation
Load

motor
Healthy

motor
Healthy

2sfs

2sfs

Figure 13. Time-frequency decomposition of the rotor speed under startup transient and high load
level for: (a) healthy motor, (b) healthy motor and load oscillation, (c) rotor with a broken rotor bar
without load oscillation, and (d) rotor with a broken rotor bar with load oscillation.

In this work, a tachogenerator was used to measure the speed, but in real applications
other speed sensors can be used with a better reliability, robustness, and accuracy, such as
optical encoders or speed resolvers. It should not be forgotten that a reliable and effective
analysis of the stator current for fault detection is also based on a good estimate or accurate
measurement of the motor speed, which is necessary for the location of fault-related
components. The proposed method is a good complement to the analysis of the stator
current and can help to avoid false alarms.

5. Conclusions

This paper presents a new methodology for the early detection of broken rotor bars
in VSI-fed induction motors based on the analysis of motor speed in the time-frequency
domain. Although speed monitoring has been considered in stationary conditions, it
has not received attention under transient conditions. The proposed method has two
advantages with respect to stator current analysis: the rotor speed shows fewer spectral
components than the stator current and the average value of the rotor speed does not
produce a frequency pattern. The study confirms the existence of the fault pattern 2s fs in
the speed during the startup transient and reports the diagnostic capabilities of the method
to detect and distinguish between load oscillation components and rotor fault signatures
during non-stationary conditions. The results prove that: (i) speed analysis under startup
transients can be used as an effective and reliable technique for the diagnosis of broken rotor
bars in inverter-fed induction motors during startups compared to the analysis of the stator
current; (ii) broken rotor bars can be detected at early stages of the fault; (iii) the proposed
analysis technique avoids false positives by low-frequency oscillations, as their trajectories
in the time-frequency plane are different from those related to the fault. The analysis of
the speed signal was carried using a high-resolution technique, MUSIC. However, much
simpler techniques, such as short-time Fourier transform, can also be used if an appropriate
window length is chosen to avoid spectral leakage around the average value of speed.
As the development of a broken rotor bar is slow over time, this methodology can be
incorporated into an on-line condition monitoring system. The computational burden of
the proposed analysis is also low, so this is not an impediment either. One disadvantage of
the proposed technique, compared to stator current monitoring, is the sensor used, which
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is not usually available in many adjustable speed drives. In future works, the authors
will study if this methodology can be applied to the detection of other kinds of faults or
machines.
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Abbreviations
The following abbreviations are used in this manuscript:

BRB Broken rotor bar
fs Fundamental frequency
fb Motor rated frequency
fn Sampling frequency
FT Fourier Transform
HL High-load level
IM Induction Motor
LL Low-load level
LSH Left Side Harmonic
MCSA Motor current signature analysis
MUSIC Multiple signal classification
PSD Power spectral density
PWM Pulse width modulation
RSH Right side-band harmonic
s f s Slip frequency
t, f time-frequency
VSI Voltage source inverter

Appendix A

Three-phase induction motor rated characteristics: Rated power = 0.75 kW, Rated
voltage = 230/460 V, Rated current = 3.2/1.86, Synchronous speed = 1500 r.p.m.

Appendix B

Voltage source inverter characteristics: Rated output voltage = 220/240 V, Rated
power: 4 kW, Start-up mode = Linear, Control mode: scalar (v/ f ), Commutation method =
pulse width modulation.
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