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Abstract

Fault detection and diagnosis in industrial processes are challenging tasks
that demand effective and timely decision making procedures. The multivariate
statistical approaches for fault detection based on data have been very useful.
However, they are known to be less powerful for fault diagnosis because they
normally require prior knowledge of the problem involved. In this context, this
proposal is based on an on-line, distributed fault isolation approach to provide
a scored rank of variables considered as responsible for the faults in a more
robust and earlier way than usual approaches. The fault isolation is carried out
considering some top Fault Isolation (FI) methods, without prior knowledge
regarding faults, in a distributed and collaborative way by a linguistic based
decision making. The isolation of faulty variables provided by each FI approach
is aggregated to provide a fault identification based on a scored ranking at two
time points: after the fault detection and when the plant has recovered. In
both cases, the final fault isolation is provided as a scored ranking obtained by
Ordered Weighted Average operators (OWA) and Regular Increasing Monotone
(RIM) aggregation functions, which permit the implementation of linguistic
aggregation functions. The risk aversion during this multicriteria isolation is
tuned by the user and can provide several strategies or policies. The fault
isolation at two key times searches for the origin of faults and evaluates the
evolution of the system after the fault’s occurrence in the new working position
of the plant. This is because faults in an industrial plant are propagated to
different variables due to the actions of the process controllers. This method
has been applied to two complex benchmark plants obtaining an earlier and
more robust isolation.

*Corresponding author, M.J. Fuente. Department of Systems Engineering and Automatic
Control, EII, C/ Paseo del Cauce N.59, Post code: 47011, University of Valladolid, Valladolid,
Spain, TIf: +34 983 42 39 84

Email addresses: alvar.sanchez@uva.es (A. Sdnchez Ferndndez), gresai@eii.uva.es
(G.I. Sainz-Palmero), j.m.benitez@decsai.ugr.es (J.M. Benitez), mjfuente@eii.uva.es
(M.J. Fuente)

Preprint submitted to Computers and Chemical Engineering March 9, 2021



Keywords: Fault identification, Multicriteria decision making, OWA operator,
contribution plots

1. Introduction

Fault detection and diagnosis (FDD) has been an active research area over
the last few decades. The purpose of fault detection is to determine the occur-
rence of an abnormal event in a process, i.e., a fault, and the diagnosis task
aims to identify the root cause or the source of the faults. Investigating the
root cause of abnormal events in industrial processes is crucial for maintaining
efficiency and optimal operation. As industrial processes become large scale
and complex systems due to efforts to reduce energy costs, environmental re-
leases, increasing profit, etc., the potential for faults to dynamically propagate
and produce significant damage in equipment, life or environment has increased.
This has encouraged the development of methods to detect faults quickly, and
also to isolate the variables associated with faults, preferably before their effects
become a major safety issue.

Several techniques have been developed to detect and diagnose faults, which
can be categorized into model-based and data driven methods [IH3]. The former
require a strong background to the plant and a long process of developing and
testing the model. The latter only requires historical data from the plant, and
the model developing process is easier and faster. So, recently, methods based on
signals, such as Principal Component Analysis (PCA) or Partial Least Squares
(PLS), have been widely used [4H9]. These methods work with data supplied by
all the sensors in the plant and return only a few statistics that are very easy
to work with. This is because it is only necessary to check whether the current
value of one of these statistics is over a limit value to know if the system is
working under fault conditions.

When the method detects a fault, it is important to know where the problem
is, i.e., the faulty variables need to be identified in order to diagnose the root
cause of the fault. This is helpful in repairing the installation quickly and safely.
Traditionally, contribution plots [I0] was the most popular tool for identifying
the faulty variables, where previous knowledge is not necessary, i.e., data from all
possible faults occurring in the system, which might not exist for some industrial
processes. However, it is a tool that, as the authors note, does not reveal the
cause of the fault. It can, nevertheless, find a group of variables with abnormal
behaviour, i.e., it isolates which variables are pushing statistics beyond their
control limits.

Other authors proposed different solutions to the fault identification prob-
lem: Dunia and Qin (1998) [11] worked on the reconstruction of variables in
order to isolate faulty variables. Yue and Qin (2001) [12] combined the statis-
tics 72 and @ into a new statistic, ¢. Their method, based on the cited re-
construction method [I1], aims to minimize ¢ after carrying out reconstruction
over different fault directions. These directions constitute the fault subspace.
One drawback of this technique is that this subspace changes when the fault is



propagated to other variables, as the fault situation evolves due to the action
of controllers. Alcala and Qin (2009) [I3] developed the reconstruction-based
contribution (RBC), which is based on the missing variable approach. RBC
has problems related to smearing between faulty and non-faulty variables. So,
RBC is practical for identifying faults which involve only one sensor. Another
solution, proposed by Detroja et al. (2007) [14], uses Correspondence Analysis
(CA) to isolate faulty variables, in a similar way to the contribution plots of
PCA.

Liu and Chen (2014) [15] introduced the Reduction of Combined Index (RCI)
and Modified Contribution Plots [I6]. This methodology avoids the smearing
of non-faulty variables, calculating a contribution plot by maximizing the re-
duction of a combined index through a missing data method. However, it does
not give a correct fault identification when several abnormal events happen, be-
cause it supposes that all faulty data have the same defective variables. More
recently, Jiang et al. (2015) [17] used Canonical Variate Analysis (CVA) to per-
form fault identification; here, two types of contributions are developed based on
variations in the canonical state space and the residual space. Another method
was proposed by Kariwala et al. (2010) [I8], which applies the Branch and
Bound algorithm (B&B) to search for faulty variables by minimizing the mon-
itoring statistics of Probabilistic Principal Component Analysis (PPCA). This
method is limited by the size of the variable set. Finally, Mahadevan et al.
(2009) [19] used Support Vector Machine techniques (SVM) to identify faults.
The results of some of these methods applied to the same plant are different
[10, (14} 15, [I7H19], showing that there is no unique, effective technique to isolate
faulty variables.

On the other hand, there are techniques based on the fusion of alternative
results for fault detection and identification, as in Zhang et al. (2015) [20].
Here, the authors apply various methods to detect and identify faults, and
take decisions that fuse the results of each one. However, it is focused on
fault classification, which requires available previous data regarding the different
faults, which is not realistic for industrial processes, since known event lists
might not exist and there is usually no faulty data available for most industrial
processes. In addition, an incorrect fault diagnosis result occurs when a new
type of fault appears. Similar ideas are in Gosh et al. (2011) [2I], which
uses multiple and heterogeneous FI methods, such as Kalman Filters, PCA
and artificial neural networks, fusing their results with several decision fusion
strategies. Nevertheless, as before, this has to be understood as a classification
problem, with the same prior challenges.

Additionally, there exists the challenge regarding the time when the diagnosis
must be carried out: diagnosis is sometimes developed at the time when the
fault detection is made [I0HI4], [I8] 19]; while, in other cases, it is developed
over a long period of time, as long as the available data samples, as in [I5HIT].
The first approach has the problem of the existence of disturbances, noise, etc.,
which distort the fault identification, while only taking into account the variables
affected by the fault first. The second approach analyses both variables affected
in the first moments after the fault and variables affected by the propagation



of the fault. If the plant has a control system, this control aims to correct
the controlled variables, modifying others. This means that, after a certain
period of time, the controlled variables return to their normal values, while the
manipulated ones go to unusual values. This leads to an untrue or untrusted
diagnosis.

The proposal of this work is focused on overcoming these problems: a lack of
an effective method for all situations and the requirement of prior knowledge of
fault origins and their influence on the plant. In order to face both challenges,
two ideas are considered: the aggregation of different FI methods through a
decision making to provide a final identification of the faulty variables, and
giving a fault isolation at two times: when the fault is detected and when the
plant works under faulty conditions.

First, the combination of different fault identification methods is based on a
multicriteria decision making approach, the Ordered Weighted Average (OWA)
linguistic operator, based on the Regular Increasing Monotone (RIM) function,
to find the variables that are candidates to be considered responsible for the
fault. This RIM OWA operator provides a scored ranking for the candidate
variables involved in the fault identification.

The second idea presented in this paper is to apply the fault identification
procedure in two different times: just after the fault is detected (Early fault iden-
tification), and after the occurrence of the fault, when the system has reached
a new steady point (Steady fault identification). Our proposal aggregates vari-
ous fault identification methods in a linguistic way in order to carry out a final
decision making. This aggregation is carried out throughout a time-window,
not only in just one sampling time. So the fault identification is made through
two time-windows at the two times previously described. Between both time
instants, a slide time-window is used in order to check if the system has reached
a new steady state, when the second fault identification must be carried out.
So the contributed idea is to use two time-windows for two fault isolations, i.e.,
a fault identification in two different instants of time, using two time-windows,
each corresponding to a different state of the system. This double time-window
based fault identification provides more reliable results, taking into account the
state of the system at each time.

Other authors, such as [22], use slide time-windows to detect faults, com-
puting on-line the principal components along a moving time-window, as the
method is termed Moving Principal Component Analysis (MPCA). However, in
[22], the time-window is used to detect faults: a reference principal component
is calculated in normal operation conditions, and the differences between the
reference principal components (PCs) and the PCs representing the current op-
eration condition, i.e., the PCs calculated in the time-window, updated step by
step, are used as indexes for monitoring. The fault detection index is calculated
on-line for each sampling time by the slide time-window, and compared to a
threshold to know if the system is in fault. In addition, the update of the PCs
for each sampling time can be done using a recursive PCA algorithm (RPCA)
[23, 24] instead a time-window. In this case, a process data block in normal op-
eration conditions is used to build an initial PCA model, and this PCA model



is updated when a new data block becomes available in a recursive way. So, in
these two methods, the windows are used to update the PCA algorithm in each
sampling time in order to detect faults when the system is time varying. In this
paper, the time-windows are used for fault identification not for fault detection,
and in this paper the FI methods used are not adapted recursively based on the
new data.

Otherwise, the time-windows are also used to identify faulty variables, i.e.,
once the fault is detected, the time-window is used to discover which variables
are responsible for the fault, as in [I5HI7]. In the traditional contribution plot
[10], the variable contribution is plotted for the observation in which the fault is
detected, but in [I7], a contribution plot based on the CVA statistics is carried
out; not only during the detection time, the procedure is repeated to generate
one contribution plot at each observation, from the observation in which the
fault is detected until the final data, and a 2-D contribution map is plotted. So,
in this case, a large time-window is used and the final decision, i.e., the fault
identification, is taken at the end of the observation data. This is a long time
to identify the faulty variables in the on-line operation in industrial plants. In
addition, [I5] [16] use the same idea, calculating the contribution plot based on
RCI in a long time-window, from the fault detection time to the final observation
data set, and at this final time a 2-D map is plotted. However, as before, this
decision-making time is too long in an industrial plant.

In our approach, the idea is to take advantage of both situations and to give
an initial fault identification when a fault is detected, as many authors have
done [10] 13, 14, [I8, 9], in order to provide fast fault identification. What
is more, this first time-window permits the faulty variables to be identified at
the fault detection time, revealing the candidate variables for causing the fault,
or the variables that are firstly affected by the fault. This is done in order
to locate the fault origin in the system. Simultaneously, the proposed method
gives a new fault identification after the system has evolved to a new steady
post-fault state, providing a more consistent fault identification, as the authors
in [I5HI7] have done, but faster than them, because instead of waiting for the
final observation to take the decision, this decision is taken at the time when the
plant has reached the new stationary point. This second time-window shows
how the system works under faulty conditions, giving information about the
new working condition of the plant and giving support to decide whether the
plant can continue working under the new situation or whether it needs some
type of modification.

Considering all this, the main contributions of this proposal can be summa-
rized as follows:

e A more robust identification provided by the aggregation of several top
FI approaches and an OWA operator. This aggregation is tuned by the
user, according to his/her own admissible risk in multicriteria decision
making, providing a scored ranking for the candidate variables that may
be responsible for the fault.

e A more trusted and earlier fault identification in two times: ahead of



fault detection and when the plant is again steady. This improves the
fault identification performance, avoiding initial disturbance and plant
transition to a new working point, all of which could blur the diagnosis.

e This fault identification in two times permits a more robust diagnosis in
the short term, and a more robust and earlier diagnosis is supplied in the
long term in comparison with the more usual approaches.

The remainder of this paper is organized as follows: Section |2 explains the
PCA method and the different fault identification methods used in this proposal.
Also, in the same section, there is the description of the linguistic operator
OWA. The proposed method is explained in Section [3] Section [4] explains the
workbenches used to test the proposed method, a wastewater treatment plant
and the Tennessee Eastman Process (TEP) plant, as well as presenting the
results of these tests. Finally, the conclusions of this work are explained in
section [Bl

2. Related works

In this proposal, the faults are detected using Principal Component Analysis
(PCA) and fault identification is based on the results of some of the most used
fault isolation data-driven methods without any prior fault knowledge. The
various alternative results are aggregated by a linguistic operator in a similar
way to a human technician.

2.1. Principal component analysis for Fault Detection

Let the data matrix X € R™™ with n observations and m measured vari-
ables. This matrix is normalized to zero mean and unit variance; then, its
covariance matrix is decomposed:

S = PAPT + PAPT (1)

The diagonal of A contains the most significant eigenvalues of S, sorted in de-
creasing order, and P are their associated eigenvectors. The residual eigenvec-
tors and eigenvalues are included in P and A, respectively.

The fault detection task is developed with Hotelling's statistic (T?) [10, 13}
25, which is a measure for the variation of the systematic part of the data,
the Square Prediction Error (SPE) statistic [10, 3] 25], which calculates the
variation of residual parts of the data, and a combined index of both statistics
called ¢ [T 26, 27].

The plant is under normal conditions, for an « significance level, if T2 is
under its threshold T2:

T? = 2"Dzx < Ta2 (2)
where D = PA—1PT.



For the SPE statistic (also called @) and a new observation z, the system
is under control if the value of @ is lower than Q:

Q= aTCx < Qo (3)

where C' = PPT. Jackson (1991) [28] gives the way in which the thresholds 7?2
and @, can be calculated.

Finally, the combined statistic [12} [I7, 27], ¢, combines T? and @, and is
under control if ¢ < @q:

2
@5}+%zt©x<gpa (4)
where ¢ = & + T% and ¢, can be found in [13].

The thresholds of these statistics, (T2, Q. and ¢, ) are calculated theoret-
ically as described in [28] and [I3], respectively, for a significance level (ISL or
a) of 1%, i.e., only a certain percentage of anomalous observations are over the
tuned limit in the faultless training data. Then, these values are tested in the
faultless test data, and retuned experimentally if necessary in order to assure
this false alarm rate. However, since false alarms are unavoidable, an out-of-
control value of a statistic can be the result of a fault or a false alarm. In order
to drastically decrease the rate of false alarms, it is necessary to establish a
number of consecutive anomalous observations to indicate a fault.

2.2.  Fault identification

After a fault alarm, it is necessary to identify the variable or variables re-
sponsible for the fault. There are several methodologies to do this, but only the
methods used in this paper are explained here.

2.2.1. Owerall average variable contribution: Cont™”

In the observation z, the contribution of the variables to T2 for each of the
higher normalized scores are calculated [10, 16, 29]. The contribution of variable
x; in the a normalized score is:

ta o
contq,j = w(% 1) (5)

if this value is negative, cont,_ ; is set to zero. The total contribution of each
variable j is:

CONT; = Zconta,j (6)
a=1

The variables with the highest contribution value are selected as candidates
for the fault.



2.2.2. Normalized errors of the variables: Cont@
If a new observation z falls outside the limit of @, the normalized error of
each variable xz; is [10, [16] 30} B1]:
conty, = (xj — )’ = e? (7)
where Z; is the value of the variable predicted by the model, and e; is the
residual.

2.2.3. ¢ contribution: Cont¥
For the observation z, the contribution of each variable i to the index ¢ is
[12, 13]:

¢ = (Fats)’ (3)

where &; is the i-th column of the identity matrix.

2.2.4. Reconstruction based index: RBCT2, RBC® and RBC¥

This method, used by various authors [32H34], minimizes the influence of
each variable on the detection index (T2, SPFE or ¢) [I1]. Based on the work of
Alcala and Qin (2009) [13], the amount of reconstruction index of a variable is
equivalent to the contribution of this variable to the out-of-control index. The
reconstruction based index (RBC) for a variable ¢ is obtained as:

RBCiinde:B — .’IJTM& (ngMgl)il ngMx (9)

where z is the current measurement and M is the matrix D for the T? index,
the matrix C for the @) index and the matrix ® for the ¢ index.

2.2.5. Modified Contribution Plots: RCIT

This method first finds the variable that maximizes the reduction of the
combined index (RCI) after the reconstruction of this variable [I5] [I6]. Then,
this variable is put in the group of faulty variables. Following that, the index ¢ is
recalculated using the reconstruction along the selected variable in the previous
steps and, if the reconstructed combined index is under its control limit, the
process stops. However, if the index is still over its limit, the process is repeated
with the variables in the non-faulty variables group. Finally, the variables inside
the faulty variables group are analysed [35].

The reduction of the combined index after reconstructing the faulty data is:

0= ong = (%ng = x50)" (€7 PE) (xns —%7,4) (10)

where x,,; is the set of faulty variables, and x}, 7 the same set of variables after
reconstruction. Also, the reconstruction of x,,¢ is:

X = (72T d(1 - I)x (11)



where T" is a diagonal matrix with ones in the faulty variables indexes and
zeros in the remaining positions. z is the data vector with all variables. The
contribution of the variable i to the RCI is:

BT = [(xpy — x5 )T (€7 0€)0%) (12)

2.8. Multicriteria Decision Making based on OWA operators

Multicriteria decision making (MCDM) is a well-known approach in different
domains, such as financial investments [36], B7], maintenance [38], energy man-
agement [39], fault detection and identification [20], etc., to give some global
solution when there are several options evaluated by many criteria [40}, 4I]. One
popular approach to MCDM is the aggregation functions with RIM quantifiers.
One of these are the Ordered Weighted Averaging (OWA) operators introduced
by Ronald R. Yager (1988) [42]. Liu and Han (2008) [43] gave a summary of
this family of operators.

RIM quantifier based MCDM aims to obtain final and global decisions
(Eq. regarding the scores, < «ay,as,as,...,a, >, obtained by every op-
tion in each criterion, ordered from the highest to the lowest, resulting in
< B, B2, B3, ..., Bn >, where B is the largest and 3, is the smallest.

n
F(Oq,OéQ,Oég,...,Oén) :ij‘ﬁj (13)
Jj=1

where w; is the weight for the jth 5. OWA operators are an option to
implement RIM quantifiers, Q(r), (Eq in aggregation functions [44].

Qa(r> =7
wi=Q () -Q () (14)

_ 1\& i—1\&
wj = (E) - (jT)
The OWA can be characterized by their orness and/or their andness [45H47],
taking into account eq. :

orness(w) = 27 >0 (n — j)w;
andness(w) =1 — orness(w) (15)

Qu(r) =1r* = orness = 14%1

Orness is included within the range [0,..,1]. Higher Orness values mean
taking into account options with good scores in only a few criteria (Low risk
aversion), while lower values are more conservative, because they only consider
those options with good scores in the majority of the criteria (High risk aver-
sion).



3. OWA-RIM aggregation based Fault Identification (ORAFT)

This proposal develops a fault identification approach based on the aggre-
gation of seven top FI methods, which do not use prior knowledge of the faults:
Overall average variable contribution [I0], Normalized errors of the variables
[10], ¢ contribution [13], Reconstruction based index (for T2, @ and ¢) [13] and
Modified Contribution Plot [16], through a linguistic operator (OWA-RIM) as
a multicriteria decision-making method tuned by the user according to his/her
own tolerable risk. This fault identification is performed with the information
collected during two time-windows, supplied at the end of each time-window:
the first is applied immediately after the fault detection, while the second is
applied after the system has evolved to a new steady condition.

A general overall view of the proposal is shown in Algorithm The fault
detection is based on a standard PCA using the statistics 72, @ and ¢, the
first of these exceeding its threshold during a consecutive number of samples
establishes the fault detection time. Then, during a short time-window after the
fault is detected, all the fault identification methods considered for this proposal
(see Section provide their own results. These outcomes are aggregated using a
linguistic approach based on a RIM-OWA function, resulting in a global scored
ranking of candidate variables responsible for the faults. This is the Early fault
identification. After that, the system is checked until a new steady working
condition after the fault is reached. Then a new fault isolation is carried out in
the new stationary point, based on the same techniques and RIM-OWA decision-
making, considering the data collected along this second time period; this is the
Steady fault identification.

A key issue is to tune the different critical parameters of the method, such as:
the risk considered during fault identification, the length of the time-windows
and the detection of a new stationary point. The criteria used to adjust these
issues are as follows:

e Risk assumed during fault identification: an OWA-RIM operator is used
to aggregate the candidates of the FI methods. The RIM aggregation
function: Q4 (r) = r* allows the weights for the OWA operator to be
calculated. The « is adjusted for the user to establish the desired risk
aversion set-point. Higher values of « give lower orness values (see Eq.
115]), which means high risk aversion or less risky decisions.

e Time-window lengths used to collect data for fault identification: It is
necessary to adjust the length of the first (after the fault) time-window:
Atgariy and the second (after the plant stabilization) time-window: Atgcqdy-

— Atgqriy: this time is tuned looking for the smallest value that pro-
vides the best Separability between the scores obtained by the vari-
ables in the ranking as a result of the aggregation. The objective is
to delay the fault identification as little as possible, thus using only a
few samples for the identification, permitting an easier discrimination
between the candidate variables (see Section .
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Algorithm 1 OWA-RIM aggregation based Fault Identification

1:

Tuning method:

2: for Faultless data do
3: Set a Risk Aversion value for MCDM.
2 2
4: FI methods: {Cont™", Cont?, Cont¥, RBCT, RBC%, RBC¥ and
RCIT }
5: Adjust Atgery for min(delay) with maz(separability)
6: Adjust  Atsteadys; Thsteady and Varsieadqy for min(delay) with
maz(DeteCtStabilization)
7: end for
8:
9: Data under analysis
10: for t=1 to n do > For each instant
11: Early fault identification:
12: if Fault Detection = TRUE then
13: while t< (tpauitDetection + At Eariy) do > Early time window
14: Dpi, < DiagnosisBasedOn{F1I,;} > Isolation from each FI
method
Variabley,
15: Ft arvaster (DF117~-~7DFI%) = Z?:l wj,Bj > Scores (wj: OWA
weights)
16: (8; =Ordered value of Variabley, in < Dpr,,DFry,..., D1, >)
17: end while
18: if t=(tFauitDetection + AtEariy — 1) then > End of Early window
19: FVariabley o average(Ftvwwblek), t € {Early time-window}
20: Diagnosis(Early) < Ranking(FYeriabler  [pVariablem)
21: end if
22: end if
23:
24:
25: Steady fault identification:
26: Check SystemStabilization
27: Dpy; = DiagnosisBasedOn{FI;} > isolation from each FI method
28: Ftvariablek (Drr1y,DFi1ys -y DF1,) = Z?zl wjB; > Scores in t (w;: OWA weights)
29: (B; =Ordered value of Variabley, in < Dpyr,,DFrr,, ..., Drr, >)
30: if Ftva”ablek not change in last Atgieqqy then
31: SystemStabilization = TRUE
39: FVariable, — aUET‘age(Ft‘:amablek) with ts € last AtSteady
33: Diagnosis(Steady) = Ranking(FVeriabler pVariablenm )
34: end if
35: end for
36:
37: Stabilization Criteria: )
38: First positions of Ranking Ftva”able"' don’t change in Atgicady
39: Scores of first positions vary less than Varsieqdy in Atsieady

11



— Atsieady: the process to adjust Atgieqdy consists of attempting to
find the value from which the identified variables do not change,
using data from different faulty situations. This value is adjusted
looking for the shortest delay for the fault identification, while at
the same time maximizing the number of faulty cases in which the
system once more reaches a steady set point, at tsteady (tSteady is
different for each fault).

e Stabilization time, tgieqdy: this is obtained by applying the RIM-OWA
diagnosis proposed for Atgieqdy. This provides a ranking of candidate
variables for each instant. The plant is considered stabilized when:

— the top ranking positions for the fault identification, with scores over-
passing a threshold: Thgieqdy, do not change during a time-window
of length AtSteady~

— these variable scores remain below some thresholds (selected by the
user), such as variance (Varstcqdy), along the same time-window.

The average score of each variable in this time-window is obtained and
sorted to obtain a ranking which is used for the Steady fault identification.

Regarding the usual fault isolation methodologies, this proposal introduces
some advantages concerning fault isolation time and robustness: regarding the
approaches, such as [10] [13], 18], that carry out the fault identification when the
fault is detected, ORAFI provides a more robust fault isolation due to the use
of many aggregated top FI approaches. ORAFI is also open to incorporating
any other FI method. So the time-window helps to avoid initial disturbances at
the plant, and the proposed methodology gives information about the evolution
of the plant after the fault, not only about its origin.

Regarding other approaches that consider ’long time periods’ to make the
fault identification, such as [I5HIT], ORAFT supplies information about the ori-
gin of the fault, not only about the faulty stabilized working condition. On the
other hand, in the steady fault identification, a more robust identification is
given earlier than in the other approaches, i.e., a shorter time-window collecting
data is enough, so both issues are key for any FDI system.

On the other hand, the fault identification is supplied as a scored ranking of
candidate variables to be responsible of the faults: this can be tuned according
to the user’s own risk criteria, permitting different fault identification policies
to be defined.

This approach can be developed and implemented in a decentralized or dis-
tributed, and parallel way, using many agents each apply one of the different
fault identification methods. After that, a central processor joins the results
using the MCDM method to give a global fault identification.

4. Tllustrative examples: Simulation case studies

This section presents the results of applying the proposed methodology to
two benchmarks: a Waste Water Treatment Plant (WWTP) and the Tennessee

12



Eastman Process. The first was used to test the proposal with a plant where the
origin of the fault was known, so it would be possible to check its effectiveness.
The second was a well-known simulated process used by many authors [I5] 17,
[48H50] to test their approaches. This was used to compare the performance of
this proposal regarding other solutions.

4.1. Case Study 1: Waste Water Treatment Plant

The approach presented in this paper has been tested in a simulated WWTP
(Figure [1). This model is the BSM2 (Benchmark Simulation Model No. 2)
developed by the Working Groups of COST Action 682 and 624 and the IWA
Task Group [51}, 52].
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Figure 1: BSM2 plant

I

WWTP is an installation designed to remove biological and chemical prod-
ucts from water, making it possible to use the treated water for other purposes.
The objective is to reduce toxicity and increase the water quality.

The model of the WWTP is available for Simulink (Matlab), and some
modifications were made to produce anomalies or faults in this installation.
The built-in control system was not modified and was running throughout the
simulation.

The mathematical model has 16 state variables, such as inert soluble ma-
terial, slowly biodegradable substrate, nitrate and nitrite, etc. [52], in each
measurement point (there are 20 measurement points, see Fig. |1} a total of 320
measurements are available). However, it is not possible to measure this set of
variables instantly in a real WWTP, so in this paper, a much more realistic set
of 7 variables are taken into account to monitor the process. They are obtained
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by combining some of the model variables (see Table . The model simulation
runs for 609 days, giving measured values every 15 minutes.

Table 1: Variables in BSM2 plant

Used variables Variables in the model
COD (Chemical Oxygen Demand) | S;, Ss, X;, X

05 So

Alkalinity Salk

Nitrogen SN07 SNH7 SND

Solids suspended TSS (Total suspended solids)
Flow Flow rate

Temperature Temperature

Three kinds of fault have been considered: Os sensor fault, alkalinity vari-
ation and problems with flows (leaks and pipe jams), with different fault sizes.
So a set of 13 tests have been carried out (see Table . Table [2| shows the
variables that are responsible for each fault.

Table 2: Faults in BSM2 plant

. L. Responsible
Fault # | Description variables
1 O, sensor failure, + 70 % 42 125
2 O, sensor failure, + 50 % 42 125
3 O, sensor failure, + 20 % 42 125
4 Oy sensor failure, - 20 % 42 125
5 O, sensor failure, - 50 % 42 125
6 Change in influent alkalinity, - 50 % 815
7 Change in influent alkalinity, + 20 % 815
8 Change in influent alkalinity, + 40 % 815
9 Change in alkalinity in reactor 1, + 10 % 22
10 Change in alkalinity in reactor 1, + 20 % 22
11 Change in alkalinity in reactor 1, - 30 % 22
12 Change in flows Qr and Qw, Qr - 50 % 80 86
13 Change in flows Qr and Qw, Qr - 25 % 80 86

4.1.1. Experimental methodology

The parameters and features used for this experimental work are detailed in
Algorithm [2]

First of all, a PCA model was created using the faultless data with 70%
of variance captured by the selected principal components. This value was
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Algorithm 2 Ezperimental methodology

1: Faulty train data preprocessing: Z-score normalization

N

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

PCA model: 70% of variance captured, thresholds adjusted to percentile
99.5.

Tuning Atge, (After fault detection):
for each fault do
for RiskAversion=HIGH to LOW do
for Atgery = 2 to 10 do

Calculate: Separability=Variance(Scores(Atgqriy)) > Scores
separation
end for
return (Atggr,) which min(Atgeny) and maz(Separability)
end for

end for

Tuning Atgieqqy (After fault stabilization):
for each fault do
for RiskAversion=HIGH to LOW do
for Atsieady = 3 to 20 do
for Varsieady = 0.00001 to 0.005 do
for Thsteady= 0.3 to 0.7 do
Calculate: Delaysiapitization and Detectsiapitization
end for
end for
end for
return (Atgieqdy) and (Varsieqdy) which min(Delaysiabitization)
and max(DeteCtStabilizatiO'rL)~
end for
end for

Fault detection and identification:
Faulty test data preprocessing: Z-score normalization
if FaultDetection = TRUE then
Develop Early fault identification in Atgary
for each instant do
Check stabilization
if SystemStabilization = TRUE then
Develop Steady fault identification in Atgteqay
end if
end for
end if
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selected after cross-validation tests looking for the best trade-off between the
number of principal components and the variance retained by these principal
components. Lower values lost too much information, while higher values did
not significantly increase the variance retained. The thresholds for the T2 and
(@ statistics were adjusted so that they only had 0.5% of observations over them
in normal conditions, avoiding false alarms before the fault happened.

The OWA-RIM based aggregation process: the weights were calculated for
High risk aversion (orness= 0.2), Moderate risk aversion (orness = 0.5) and Low
risk aversion (orness= 0.9). In this way, three alternative fault identification
policies could be checked. The (Early fault identification) time-window was
set to length 2 after doing many tests with different values (see Algorithm .
The objective was the minimum window length, maximizing the Separability of
the scores in the OWA-RIM ranking. This allowed for an easier discrimination
between candidate variables. In Table [3] the results of the tests for window
lengths of 2, 3 and 5 samples are shown.

Table 3: Tuning of window length for Early fault identification

Risk aversion in fault identification High (orness=0.2) Moderate (orness=0.5) Low (orness=0.9)
Window length (samples) 2 [3 [5 2 [3 |5 2 [3 5
Separability 0.0012 | 0.0011 | 0.00079 | 0.009 | 0.008 | 0.006 [ 0.055 | 0.049 | 0.038

The parameters for Steady fault identification must be adjusted to detect
the stabilization as early as possible, but always when the system has reached
a truly steady situation:

o Algieady Was adjusted to length 10. Higher values delayed the stabilization
detection and smaller values detected the untrusted stabilization.

e The score over Thgteqdqy = 0.5 for ranking variables has to be maintained
over 10 consecutive observations. Many other values were tested (see
Algorithm , but their influence was not appreciable.

e The variation of the scores (Varsteqdy) of these variables should be under
0.001. Lower values delayed the stabilization detection too much, and
higher values gave false stabilization times.

Tables [ [ and [6] show some tests developed to tune these parameters: for
different window lengths, the delay (in samples) obtained to detect the stabi-
lization of the plant, and the number of faulty datasets where the algorithm
correctly detects the stabilization of the plant (stabilization detections). For
example, in Table [4] with orness = 0.2 and a window length of 5 samples, the
stabilization time is 9554 samples, and the algorithm is able to correctly detect
the stabilization of the plant in 10 out of the 13 faults.

4.1.2. Results and discussion
The following tables show the results of the fault identification; in order to
make these results more readable, only the first six candidate variables and their
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Table 4: Tuning of window length for Steady fault identification, Variance=0.0005

Risk aversion in Fault identification High (orness=0.2) Moderate (orness=0.5) Low (orness=0.9)
Window length (samples) 5 10 15 5 10 15 5 10 15
Average delay (samples) 9554 | 10501 | 12542 | 3125 | 3406 | 4998 3457 | 12549 | 15988
Stabilization detections 10 12 11 12 12 10 12 13 13

Table 5: Tuning of window length for Steady fault identification, Variance=0.001

Risk aversion in Fault identification | High (orness=0.2) | Moderate (orness=0.5) Low (orness=0.9)
Window length (samples) 5 10 15 5 10 15 5 10 15
Average delay (samples) 1580 | 3501 | 6189 | 510 | 2406 | 4965 2385 | 11744 | 15885
Stabilization detections 10 13 13 12 13 13 12 13 13

scores are shown. This introduces the most relevant variables.

4.1.2.1. FEarly fault identification.

The Farly identification, the first fault isolation according to this methodol-
ogy, were provided shortly after fault detection. Comparing this fault identifica-
tion time to a standard PCA method (based on 70% of variance in its principal
components), using 72 and @ statistics to detect the faults and the contribution
to Q to identify the fault at detection time, our proposal gave the fault isolation
one sample later than PCA, due to the use of a time-window of length 2. In
this way, the fault identification provided is more robust, avoiding the initial
perturbations which are a consequence of the fault, as can be seen in Tables [7]
and [

In this fault identification, the difference between the risk aversion values is
clear: lower values (more strict criteria) imply a higher capability of discrimina-
tion between candidate variables, as only candidates with high scores in the top
positions in most contribution methods considered appear in the global ranking
in the top position with high scores. So there is less risk of taking irrelevant
candidate variables into account for the fault identification. Higher risk aversion
values (more permissive criteria) give more similar final scores to the candidates,
so this allows variables identified by only a few methods (because the rest are
unable to detect them) to be taken into account. This can be another fault
identification option or policy.

For the first 5 faults, the variables where the fault was inserted are 42 and
125, so these are the variables that must be in the first positions of the ranking.
This is clear with high risk aversion (orness = 0.2 for fault identification), but
as the risk aversion increases, more variables are taken into account, though
they do not have as much influence as variables 42 and 125. For example, fault
5 with high risk aversion (orness = 0.2) is a difficult situation, but the Early
fault identification window is able to distinguish the right candidates from the
others, whereas PCA does not identify the correct variables. The same happens
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Table 6: Tuning of window length for Steady fault identification, Variance=0.002

Risk aversion in Fault identification | High (orness=0.2) | Moderate (orness=0.5) Low (orness=0.9)
Window length (samples) 5 10 15 5 10 15 5 10 15
Average delay (samples) 1352 | 3412 | 3987 | 487 | 2105 | 4875 2133 | 10144 | 13578
Stabilization detections 10 12 12 11 12 12 11 12 12

Table 7: Early fault identification comparison. High risk aversion (orness = 0.2)

OWA-RIM PCA
Fault ]()szlriy};les) Early ranking Early score 2211?1}1’)185) Ranking
1 2 42 125 49 83 76 56 0.1229 0.0606 0.0382 0.0242 0.0242 0.0242 1 125 42 62
2 2 42 125 83 76 56 82 0.1353 0.0873 0.0363 0.03634 0.0363 0.0270 1 125 21 42
3 2 125 42 56 51 76 82 0.1490 0.0838 0.0103 0.0095 0.0089 0.0086 1 125 49 21
4 2 125 49 42 76 83 56 0.3705 0.1142 0.0714 0.0539 0.0539 0.0539 1 21 125 42 28 49 35
5 2 42 49 125 28 41 124 | 0.2395 0.1307 0.1174 0.0382 0.0136 0.0124 1 21 35 28 62 69 56
6 2 8 15 90 121 103 109 | 0.5315 0.5315 0.0155 0.00096 0.00096 0.00096 | 1 815
7 2 15 8 90 21 83 56 0.4999 0.4915 0.0078 0.0042 0.0040 0.0040 1 815
8 2 8 15 90 102 120 96 0.5115 0.5115 0.0122 0.0017 0.0017 0.0017 1 815
9 2 22557521714 0.32895 0.1676 0.1649 0.1551 0.1248 0.1248 1 22
10 2 22292155757 0.33559 0.1016 0.0594 0.0561 0.0539 0.0443 1 22
11 2 2229 36 21 75 43 0.81715 0.3294 0.1037 0.0206 0.0192 0.0174 1 22
12 2 8680815147 0.7665 0.4341 0.0295 0.0295 0.0282 0.0282 1 86 80
13 2 8680815147 0.6439 0.4271 0.0366 0.0366 0.0290 0.0290 1 86 80

with medium and low risk aversion (orness values of 0.5 and 0.9), where the
time-window can include these two variables in the head group of the ranking,
mixed with other variables.

Otherwise, comparing with the standard PCA for these first 5 faults, in the
high risk aversion mode (Table , our proposal revealed a 100% effectiveness
in 3 out of 5 faults, and for the other two, the responsible variables were in the
first three positions, clearly discriminated by their scores regarding the rest of
the candidate variables. The PCA, meanwhile, was not 100% effective in any of
these five faults, i.e., it did not clearly distinguish the variables which originate
the fault.

The results were less clear for the moderate risk aversion mode, because
our proposal did not give such a good discrimination between candidates as in
the previous case; however, this methodology has a higher performance than
the standard PCA. For the low risk aversion situation, however, the OWA-RIM
fault identification methodology took in account too many variables to give a
reliable diagnosis.

As for the remaining faults, the results of the OWA-RIM were very simi-
lar to the PCA ones, giving valuable information to discriminate between the
responsible variables.

Summarizing, using an aggregation of fault identification methods for a time-
window supplies, in the shown results, a more robust fault identification, detect-
ing the variables responsible for the faults, avoiding instantaneous disturbances
and discriminating these variables more clearly when the methodology is tuned
to have high or moderate risk aversion behaviour. On the other hand, as the
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Table 8: Early fault identification comparison. Medium risk aversion (orness = 0.5)

OWA-RIM PCA

Fault zzﬁ?h)s) Early ranking Early score J{:illi}pl(s> Ranking

1 2 42 125 83 76 56 55 0.3170 0.2638 0.2603 0.2603 0.2603 0.2525 1 125 42 62

2 2 42 125 83 76 56 62 0.3589 0.3106 0.2784 0.2784 0.2784 0.2615 | 1 125 21 42

3 2 125 42 76 56 44 62 0.4061 0.3387 0.2739 0.2704 0.2484 0.2454 | 1 125 49 21

4 2 42 125 83 56 49 62 0.5973 0.3016 0.3016 0.3016 0.2879 0.2724 | 1 21 125 42 28 49 35

5 2 21 42 125 76 83 56 0.43822 0.3405 0.3057 0.1978 0.1978 0.1978 | 1 21 35 28 62 69 56

6 2 8 15 97 103 115 121 0.5547 0.5547 0.0824 0.0824 0.0824 0.0824 1 815

7 2 15 8 8376 56 7 14 0.5514 0.5481 0.1271 0.1271 0.1271 0.1179 1 815

8 2 8 15 102 96 120 108 0.5412 0.5412 0.0805 0.0805 0.0805 0.0804 1 815

9 2 225575714 82 0.71789 0.5036 0.4621 0.4392 0.4393 0.4269 | 1 22

10 2 22295571475 0.7379 0.4041 0.3239 0.3021 0.3021 0.2853 1 22

11 2 22 29 36 89 83 76 0.9350 0.5960 0.2729 0.1778 0.1702 0.1702 1 22

12 2 86 80 95 110 116 104 | 0.8795 0.6652 0.1302 0.1301 0.1301 0.1301 1 86 80

13 2 86 80 8 15 95 104 110 | 0.8319 0.6585 0.1446 0.1446 0.1310 0.1304 1 86 80

Table 9: Early fault identification comparison. Low risk aversion (orness = 0.9)

OWA-RIM PCA

Fault ](2;11;11‘;1(\5) Early ranking Early score 3;11;13111?%) Ranking

1 2 55 59 62 69 42 125 0.825 0.8204 0.8141 0.8115 0.8089 0.7819 1 125 42 62

2 2 55 59 62 125 79 42 0.8264 0.8211 0.8174 0.8149 0.8096 0.7877 1 125 21 42

3 2 62 55 69 59 83 42 0.8417 0.8408 0.8392 0.830 0.8264 0.8263 1 125 49 21

4 2 5559 62 42 79 125 0.8223 0.8162 0.8162 0.8138 0.8049 0.7941 1 21 125 42 28 49 35

5 2 62 69 42 76 125 79 0.7812 0.7791 0.7588 0.7588 0.7588 0.6158 | 1 21 35 28 62 69 56

6 2 815 115 97 103 109 0.6443 0.6443 0.4078 0.4078 0.4078 0.4078 1 815

7 2 15 8 76 83 56 95 0.6388 0.6383 0.4788 0.4787 0.4787 0.4774 1 815

8 2 815 95 98 104 110 0.6358 0.6358 0.3900 0.3898 0.3897 0.3897 1 815

9 2 22557559797 0.94692 0.9019 0.8302 0.8220 0.8121 0.8045 1 22

10 2 22555979757 0.9558 0.8471 0.7870 0.7783 0.7735 0.7649 1 22

11 2 22 29 89 56 83 76 0.98784 0.7877 0.7303 0.7205 0.7204 0.7205 1 22

13 2 86 80 95 116 104 110 | 0.9461 0.8462 0.6884 0.6877 0.6877 0.6877 | 1 86 80

13 2 86 80 95 104 110 116 | 0.9395 0.8397 0.6792 0.6762 0.6762 0.6762 1 86 80

PCA with the @ contribution is one of the seven FI methods used by ORAFI,
it is clear that when this method fails, the fault identification of the ORAFI
method can compensate for it with the outcome of the remaining FI methods,
making it more robust.

In order to quantify the performance of the fault identification method for
the 13 faults, Table [10] gives the success rate for each fault. This rate depends
on the matching of the true variables responsible for the faults with the group
of candidate variables supplied by our methodology, and its capability of score
based discrimination of these variables regarding the remaining candidates.

Table shows that the proposed method gives a better result than the
standard PCA, considering the high or moderate risk cases. The discrimination
of the candidate variables for the low case is poorer and, for the first five faults,
the faulty variables are not even in the first ranking positions, providing a worse
fault identification.

4.1.2.2. Steady fault identification.
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Table 10: Rates for each fault identification

Qualification | Score | Conditions
Excellent 100 Only responsible variables in the candidates group
Good 67 Responsible variables in the candidates group
Not all the responsible variables in the candidates
Poor 33 group or no candidates group, but responsible
variables in first positions
Very poor 0 None of the responsible variables in the candidates
group, or no candidates group

Steady fault identification is the second part of this methodology, the time
delay for this identification after the fault detection is shown in Table [I2] The
proposed approach gives its Steady fault identification when stabilization is de-
tected. Comparing this fault identification time with the approach in [15] [I6],
which uses all the available data, and which is used in this paper to compare
the results, the identification time is lower for our methodology. Here, there are
58464 samples available for this plant, the fault appearing at time 18800, so the
fault identification would be delayed 39664 samples for the [I5] approach.

In the moderate value of risk aversion case, orness = 0.5, it gave the lowest
average and standard deviation values for the time delay. However, the lowest
risk aversion value (orness = 0.9) returned the worst value; this is because more,
different variables appeared as top candidates in the rankings during the stabi-
lization detection of the system; so, consequently, the delays were greater. In
any case, the diagnosis times were considerably smaller than the delay obtained
with methods that need all the data.

The results for this fault identification, based on each selected risk aversion
value, are shown in Tables[I3] [[4] and [T5] as well as a comparison with the RCI
method [16] (which is one of the seven FI methods aggregated by ORAFT) with
the entire data set after fault detection.

Once the system has stabilized its operation, the faults can affect other
variables apart from those responsible for the faults. In this case study, faults
1to 5 and 9 to 11 suffered from fault expansion, while for faults 6 to 8 and 12
and 13, the fault remained concentrated in the original faulty variables.

High risk aversion based fault identification: some other variables not re-
lated with the fault appeared as candidates for the first 5 faults (the origin is
in reactor 4, Oy sensor, variables 42 and 125). Specifically, variables measuring
the O level downstream in the plant (21,49,56,62,69,76,83,89) or the DQO level
(101,107,113), related with Oy. This result was similar for the RCI method. So
the fault identification was less clear than for Farly fault identification: the
scores were very similar for some variables, not only for the variables that orig-
inate the fault. In any case, it is possible to identify the variables that caused
these faults, except the fifth one, where all the candidate variables have the
same score.
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Table 11: Diagnosis rates for each Early fault identification

Fault OWA-RIM PCA
Risk aversion

High | Moderate | Low
1 100 33 33 67
2 100 100 33 67
3 100 33 33 33
4 67 33 33 33
5 67 67 67 0
6 100 100 100 100
7 100 100 100 100
8 100 100 100 100
9 100 100 100 100
10 100 100 100 100
11 100 100 100 100
12 100 100 100 100
13 100 100 100 100
Average rate | 94.5 | 80.5 74.92 | 76.92

The fault smeared other parts of the plant for faults 9 to 11, and the fault
identification reflected this change (the discrimination between scores was very
small, so a lot of variables were fault candidates); thus the isolation of the
variables which really originate the fault was not possible for these faults as for
the RCI method. However, they give us an idea of the propagation of the fault
for the plant.

The other faults did not suffer a notable change in the diagnosis, since the
fault did not expand its effect over the plant; in fact, the differences between
the scores of the top candidate variables and the others had increased in the
majority of them. The variable candidates for Faults 12 and 13, considering the
low risk case, were clearly identified. This confirms that the fault mainly affects
its origin. ORAFT based isolation coincides here with what really happened
in the plant. The RCI method for these faults did not put both responsible
variables (80 and 86) in the first positions, and it also identified other variables
not affected by the fault expansion. This confirms the robustness of the ORAFI
method.

Summarizing, fault identification using data from a ’long time interval’ (all
available data) does not imply a reliable fault isolation. This is because the
fault, after it happens, often expands its effect over the plant. So the origin of
the fault is only found if a fault identification is also performed in the first few
instants, as in the Farly fault identification.

In this example, the Steady identification of faults 1 to 5 and 9 to 11 did
not reveal the causes of the faults, as there were many variables as candidates,
and not all of them were the truly responsible ones. In faults 12 and 13, as the
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Table 12: Steady fault identification delay (in samples). BSM2

Steady fault identification delay

Fault Risk Aversion (orness)
High (0.2) | Moderate (0.5) | Low (0.9)

1 759 211 13630
2 113 4782 8282
3 396 6042 8281
4 15001 210 27743
5 1236 788 788
6 82 62 72
7 76 64 286
8 64 64 86
9 670 210 2476
10 278 122 288
11 1348 110 1344
12 104 100 146
13 150 130 286
Average 1559.77 991.92 4900.65
Std. Dev. | 4062.73 1987.5 8109.9

fault did not expand, the diagnosis of ORAFI was sufficient to know the fault’s
origin, unlike with RCI, which did not give a good diagnosis. In real situations,
it is not possible to know if the next fault will expand over the plant or not, so a
fast and early identification is also necessary to make the diagnosis. Thus, based
on these results, in a real plant, it may be necessary to perform an Farly fault
identification to see the original root of the fault and a Steady identification,
which either confirms the fault identification of the early one, if the fault has
not expanded throughout the plant, or gives another fault identification, i.e.,
explains how the fault is propagated over the plant.

4.2. Case study 2: TEP plant

The proposed method was also applied to the Tennessee Eastman Process
(TEP) data [53]. This is a case study widely used to test new control and
monitoring strategies. In the last field monitoring, it was used to check the
behaviour of fault detection and diagnosis techniques [15] 17, 48H50].

The plant processes five reactives: A, B, C, D and E, obtaining two products:
G and H. A schematic diagram of the plant is represented in Figure

The available data for this plant consists of 22 continuous process measure-
ments, 12 manipulated variables (but the last one, Agitator speed, is constant,
so it was not taken into account) and 19 sampled process measurements. So, 52
variables are available. Two datasets are available: training (480 observations)
and test (960 observations) datasets. Each of them consists of 22 data groups:
the first one corresponds to faultless operation and the other 21 correspond to
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Table 13: Steady fault identification. High risk aversion (orness = 0.2)

OWA-RIM RCI
Fault | Steady ranking Steady scores Candidate variables
1 42 125 62 69 56 76 0.6730 0.6730 0.6190 0.3389 0.3089 0.3089 | 42 125 21
2 125 42 62 69 56 76 0.9425 0.8653 0.4239 0.3859 0.3585 0.3585 125 42
3 125 42 113 107 101 49 | 0.7182 0.4253 0.3779 0.3363 0.3103 0.1716 125 42
4 125 28 42 21 89 56 0.2187 0.1679 0.1182 0.1043 0.0465 0.0244 42 125
5 56 76 83 62 69 49 0.7760 0.7760 0.7760 0.6982 0.6932 0.4796 | 21 28 56 76 83 62
6 8 15 90 36 22 43 63 0.9698 0.9698 0.0340 0.0073 0.0067 0.0054 | 8 15
7 8 1590 121 109 103 0.9025 0.9025 0.02107 0.0026 0.0026 0.0026 | 8 15
8 8 15 90 29 102 120 0.9319 0.9319 0.02678 0.0023 0.0021 0.0021 | 8 15
9 50 70 63 43 36 84 0.7271 0.7259 0.7242 0.7190 0.718 0.6917 63 70 84 50 70 36
10 36 43 50 63 70 77 0.8274 0.8211 0.8003 0.7882 0.7876 0.7506 | 50 77 43 63 70 36
11 84 77 57 63 70 36 0.90692 0.9069 0.9069 0.8969 0.8915 0.8359 | 84 77 57 63 70 36
12 80 86 113 101 107 64 | 0.6917 0.0982 0.0417 0.0417 0.0417 0.0087 | 28 80
13 80 86 107 113 101 90 | 0.6528 0.2401 0.0347 0.0347 0.0347 0.0254 | 80 28
Table 14: Steady fault identification. Moderate risk aversion (orness = 0.5)
OWA-RIM RCI
Fault | Steady ranking Steady scores Candidate variables
1 62 69 56 76 83 21 0.4508 0.4028 0.3549 0.3549 0.3549 0.3482 42 125 21
2 62 69 56 76 83 21 0.5367 0.4583 0.4026 0.4026 0.4026 0.3022 125 42
3 109 115 97 103 121 96 | 0.2816 0.2816 0.2816 0.2816 0.2816 0.2812 125 42
4 56 83 76 62 69 7 0.41484 0.3950 0.3950 0.3649 0.3643 0.2739 42 125
5 21 56 76 62 69 83 0.81401 0.6709 0.6709 0.6245 0.6234 0.6047 | 21 28 56 76 83 62
6 8 15 115 103 109 97 0.98134 0.9813 0.1339 0.1339 0.1339 0.1339 | 8 15
7 8 15 102 96 108 120 0.93853 0.9385 0.1352 0.1352 0.1352 0.1352 815
8 8 1597 103 109 115 0.97341 0.9734 0.1439 0.1439 0.1439 0.1439 | 8 15
9 36 43 50 84 77 57 0.80177 0.80004 0.7775 0.7609 0.7609 0.7609 | 63 70 84 50 70 36
10 36 43 22 50 29 84 0.78794 0.7706 0.736 0.7262 0.7136 0.562 50 77 43 63 70 36
11 84 77 57 36 63 70 0.9028 0.9028 0.9028 0.9005 0.8905 0.8859 84 77 57 63 70 36
12 80 86 113 101 107 95 | 0.8940 0.2863 0.1985 0.1985 0.1985 0.1465 28 80
13 80 107 101 113 86 95 | 0.9013 0.2395 0.2395 0.2395 0.2393 0.1645 80 28

different faults, including step faults, random variation, etc. The faults start
at the first observation in the training dataset, and at the 160th observation in
the test dataset. The data were generated by Chiang et al. (2001) [54], and it
can be downloaded from http://web.mit.edu/braatzgroup/links.html. A brief
description of the process faults can be seen in Table

Some of these faults are easy to detect, while others are more difficult; in
fact, some of them are usually not detected: faults 3, 9 and 15 [17].

4.2.1. Experimental methodology

The methodology for this benchmark is as for the previous case study. Pro-
cess parameters and features are detailed in Algorithm

A PCA model was created using the faultless data with 70% of variance
captured by the selected principal components: as in the previous case study,
this value was selected after cross-validation tests, getting a reduced number of
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Table 15: Steady fault identification. Low risk aversion (orness=0.9)

OWA-RIM RCI
Fault | Steady ranking Steady scores Candidate variables
1 62 69 76 56 83 80 0.8552 0.8542 0.8020 0.8018 0.8016 0.6534 | 42 125 21
2 101 107 113 50 97 103 | 0.8182 0.8182 0.8182 0.8005 0.7607 0.7607 | 125 42
3 101 107 113 97 103 109 | 0.8207 0.8207 0.8207 0.8052 0.8052 0.8052 | 125 42
4 69 62 56 76 83 49 0.7556 0.7554 0.7288 0.728 0.7257 0.7033 | 42 125
5 21 56 76 62 69 83 0.8140 0.6709 0.6709 0.6245 0.6233 0.6046 | 21 28 56 76 83 62
6 8 15 115 97 103 109 0.9911 0.9911 0.6565 0.6565 0.6565 0.6565 | 8 15
7 8 15 98 104 110 116 0.9905 0.9905 0.7534 0.7534 0.7533 0.7533 | 8 15
8 8 15103 109 115 121 0.9906 0.9906 0.7788 0.7788 0.7788 0.7788 | 8 15
9 84 77 57 63 36 70 0.9229 0.9229 0.9222 0.905 0.9029 0.9013 | 63 70 84 50 70 36
10 84 77 57 63 70 36 0.9721 0.9721 0.9721 0.9622 0.9573 0.9495 | 50 77 43 63 70 36
11 70 63 84 77 57 50 0.9642 0.964 0.9625 0.9625 0.9625 0.944 84 77 57 63 70 36
12 80 95 110 116 104 98 0.9897 0.7542 0.7511 0.7511 0.7511 0.7506 | 28 80
13 80 95 110 104 116 98 0.9918 0.7482 0.7443 0.7443 0.7443 0.7436 | 80 28

principal components and a high value of variance retained by principal com-
ponents. The thresholds for the T2 and Q statistics were adjusted to have only
0.5% of observations over them in normal conditions, avoiding the appearance
of false alarms before the fault happens.

The OWA-RIM based fault identification: the weights were calculated for
High risk aversion (orness= 0.2), Moderate risk aversion (orness = 0.5) and Low
risk aversion (orness= 0.9). The length of the first time-window was set to 3
observations for (Farly fault identification), getting the earliest identification
with the highest value of Separability (discrimination) between the scores (see
Table .

A length of 10 observations was selected for the Steady fault identification
time-window in order to achieve the fastest identification, but avoiding false
stabilization times. Also, these selected variables must have a score variance
along the time-window under 0.002 (the stabilization detection time increased
for lower values, but higher values gave false stabilization times). Tables
and [20] show some of the experiments developed to select these values. As
in the previous benchmark, the stabilization criteria require the variables of
the ranking with a score over 0.5 to be the same during these 10 consecutive
observations (see Algorithm [2| for the rest of the values tested.)

4.2.2. Results and discussion

As before, the tables with the results of the fault identification only show
the first six candidate variables and their scores. This is enough to see the most
relevant variables.

The performance of the method was compared with other proposals. The
Early fault identification was compared to PCA with the contribution of @ [10],
Branch and Bound (B&B) [18], Correspondence Analysis (CA) [I4], and the One
class Support Vector Machine (SVM) [19]. All these methods returned a fault
identification at the time of fault detection. The Steady fault identification was
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Figure 2: Tennessee Eastman Process diagram

compared with usual well-known methods using whole dataset, such as Canon-
ical Variate Analysis [I7] and Modified Contribution Plots (or Reconstruction
Combined Index: RCI) [I5].

4.2.2.1. FEarly fault identification.

The results for this Farly fault identification are shown in Tables
and taking into account many risk aversion values for the MCDM diagnosis.
The fault identification shows that other methods select candidate variables
that are not always coincident between them. However, in many faults, our
methodology gathers the variables revealed, in an individual way as candidates,
by other proposals. Also, our proposal gives an ordered and quantified list of
all these candidate variables.

Nevertheless, the fault isolation task only has to provide clues for diagnos-
ing the root causes of a process fault. In fact, the right diagnosis depends on
the results of isolating faulty variables and on the judgements made from the
knowledge of the process. The definition of the right diagnosis for this plant is
vague and not known, so the comparison with a right diagnosis is not possible.
As mentioned above, however, an ordered and quantified ranking of faulty can-
didate variables is supplied in this approach. This ranking includes most of the
variables for each method of the comparison considered as faulty, that is, the
variables with a bigger change in the first instants of the fault’s occurrence.
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Table 16: TEP faults

Fault # | Description Type
1 A/C feed ratio, B composition constant (Stream 4) Step
2 B composition, A/C ratio constant (Stream 4) Step
3 D feed (Stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (Stream 1) Step
7 C header pressure loss-reduced availability (Stream 4) | Step
8 A, B and C compositions (Stream 4) Random variation
9 D feed temperature (Stream 2) Random variation
10 C feed temperature (Stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown -
17 Unknown -
18 Unknown -
19 Unknown -
20 Unknown -
21 Stream 4 valve Sticking
Table 17: Tuning of time window length for Farly fault identification
Risk aversion in MCDM High (orness=0.2) Moderate (orness=0.5) Low (orness=0.9)
Window length (samples) | 2 | 3 [5 [7 2 [3 [5 [7 2 [3 [5 |7
Separability 0.006 | 0.0062 | 0.0049 | 0.0039 | 0.009 | 0.012 | 0.01 | 0.008 | 0.024 | 0.027 | 0.022 | 0.019

There were no remarkable differences between the three Risk Aversion val-
ues. With the High value, the scores were lower, but with a better separability
between scores. Nevertheless, all Risk aversion values gave a well-discriminated
group of candidates for most faults, allowing a clear identification.

4.2.2.2. Steady fault identification.

The time for Steady fault identification is shown in Table compared with
the CVA and RCI methods. CVA and RCI used the whole available dataset, so
they took 800 observations to get a diagnosis. When the proposed methodology
was not able to find the system stabilization, then the time delay was the same
as the other methods: 800 samples, but in the other faults, the diagnosis time
was much lower. The Moderate risk aversion value (orness=0.5) gave the lowest
average value of delay, but there were no significant differences between the
three cases.
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Table 18: Tuning of time window length for Steady fault identification. Variance=0.001
Risk aversion in MCDM High (orness=0.2) Moderate (orness=0.5) Low (orness=0.9)
Window length (samples) | 5 7 0 12 15 5 [7 [0 [12 [15 5 I [10 2[5
Average delay (samples) | 351.21 | 357.45 | 458.51 | 465.89 | 461.52 | 326.84 | 354.21 | 399.54 | 416.27 | 429.95 | 388.14 | 409.53 | 419.74 | 457.15 | 468.29
Stabilization detections |12 |15 |16 [ 17 |17 B [16 |17 [T |18 B [T [1r [T |18

Table 19: Tuning of time window length for Steady fault identification. Variance=0.002

Risk aversion in MCDM High (orness=0.2) Moderate (ormess=0.5) Low (omess=0.9)

Window length (samples) | 5 7 0 [12 |15 5 7 [10 |12 15 5 7 10 2 |15
Average delay (samples) | 32046 | 347.56 | 453.05 | 458.88 | 450.55 | 316.75 | 348.19 | 395.63 | 40533 | 424.40 | 382.18 | 403.88 | 41447 | 44911 | 4595
Stabilization detections |13 |16 |18 |18 |18 % |16 |18 |18 |18 ™ |17 |18 |18 |18

It is worth nothing that the proposed methodology reduced this fault iden-
tification time for the stabilized system by up to 50% in comparison with other
approaches. In some cases, this was reduced more than 15 times. The variance
of the delays obtained was high because the faults where the proposed method
cannot reach a stabilization point were included. At the end of Table there
are values of mean and standard deviation delay, taking into account only the
stabilized faults, which reduced the delay by nearly a quarter of the time for the
CVA [17] and RCI [I5] proposals. So, in most faults, the OWA-RIM aggregation
based Fault Identification is a lot faster.

Tables and [27] show the results of the fault identification for each
selected Risk Aversion (orness) value.

When the Risk Aversion value was reduced, the scores were higher, as ex-
pected, and the fault identification was similar to the CVA and RCI methods,
but it could be seen earlier. In addition, the user can adjust the risk of the fault
identification.

For example, with a low Risk Aversion value (orness = 0.2), the first candi-
date variables obtained a notably higher score than the next variables (better
separability), allowing an easier decision-making.

Also, the proposal gave information about the most relevant variables, while
the fault identification obtained by CVA, in many cases (faults 2, 6, 8, etc.),
gave too long a list of candidate variables, making it difficult to analyze the
condition of the plant. Compared with RCI, ORAFI gave a scored ranking of
all the variables, that is, the level of influence of the fault for each variable.

These results lead us to believe that the two-step fault identification is neces-
sary. In fact, the results obtained by the methods that analyze the first instants
are very different from the ones that analyze the whole available dataset. The
system evolves after the fault and, in many cases, the identification of faulty
variables is different between the first instants after the fault and when the
system has reached a new steady condition. In the first case, the information
obtained refers to the origin of the fault and, in the second, to the new working
conditions of the plant.
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Table 20: Tuning of time window length for Steady fault identification. Variance=0.003

Risk aversion in MCDM High (orness=0.2) Moderate (orness=0.5) Low (orness=0.9)

Window length (samples) | 5 7 [0 [12 |15 5 7 [0 [12 |15 5 7 [10 2 |15
Average delay (samples) | 310.55 | 331.55 | 442.15 | 449.84 | 451.57 | 306.53 | 344.84 | 401.36 | 402.81 | 421.41 | 373.22 | 399.51 | 409.74 | 431.01 | 439.57
Stabilization detections |10 |14 |15 |17 |17 B[4 |16 |16 |16 1 [16 | 1T |1t |17

Table 21: Early fault identification comparison. High risk aversion (orness=0.2)

Fault | Early identi ion-ranking | Early identification-score PCA B & B CA SVM

1 1620 725 13 23 0.5483 0.3303 0.2298 0.2212 0.1836 0.1127 16 20 46 16 1613720 16 18

2 3024104716 7 0.46213 0.2364 0.1476 0.1089 0.0602 0.0318 | 30 24 16 40 21 24 30 4041613207 | 4710 16
3 37328451418 0.1333 0.0931 0.0866 0.0760 0.0744 0.0709 | nd nd nd

4 51924302835 0.5870 0.0158 0.0152 0.0109 0.0102 0.0085 | 51 21 9 951 51 51

5 1135814 24 30 0.5098 0.4717 0.1348 0.0908 0.0844 0.0816 119352218 1122 4212211 5217

6 4412021137 14531 0.1856 0.0367 0.0180 0.0122 0.0119 441 144 441 1

7 16 71344521 .5968 0.4071 0.3660 0.2771 0.2078 0.1355 41636383125 46916224551 | 16713214 45

8 20 16 46 31 25 23 0.5221 0.397 0.3239 0.2416 0.2330 0.1594 346 29 16 20 37 46 13 716 20 16 23 20 30
9 nd nd nd nd nd

10 18 82320 3 31 0.2911 0.1154 0.0918 0.0871 0.0782 0.0704 | 19 34 35 19 20 18 18 38 50
11 51939422114 0.3858 0.0279 0.0086 0.0065 0.0061 0.006 51921 51 51 51

12 1122359 36 34 0.366 0.2214 0.0685 0.0344 0.0264 0.0204 1137224 22 2141122 11224
13 1673233136 0.3655 0.2484 0.2407 0.2181 0.2023 0.0933 | 37 32 26 42 37 511620137 34 16

14 5192124228 0.2783 0.2737 0.1914 0.0246 0.0137 0.0061 21519242 951 21 51 951

15 nd nd nd nd nd

16 1918322918 0.5599 0.384 0.0787 0.0413 0.0310 0.0268 50 3 27 50 19 50 19

17 21242272435 0.5977 0.0125 0.0091 0.0042 0.0038 0.0033 21242 5121 299

18 221135335124 0.8027 0.0711 0.0108 0.0096 0.0083 0.0082 | 22 11 40 41140 22 5117

19 5323943327 0.3553 0.0555 0.0353 0.0331 0.0313 0.0274 | 5 27 37 46 38 40 5120 4 5 20 46
20 46 13 20 34 5 40 0.6478 0.1466 0.0932 0.0446 0.0265 0.0235 | 46 39 13 23 8421140 1352177
21 19 21 50 40 23 3 0.167 0.1220 0.0979 0.0754 0.0715 0.0641 39 26 5 13 7 42 20 19 37 16

nd = not detected

4.2.8. Fault 7

Here, a brief description is given of the behaviour of the proposed method
for an example fault: fault 7, which is a pressure loss in the C header, i.e.,
the reduced availability of stream 4. In the Early fault identification, the most
important candidate variables, according to the scores, were 16,7,13,4, 21 and
45 (for High and Moderate Risk Aversion, orness = 0.2 and 0.5). For the Steady
fault identification, it was the variable 45. Looking at Figure[3] it is clear that,
at the start of the fault, the variables 4, 7, 13, 16, 21 and 45 suffered a strong
change in their value. This fault was a pressure drop in stream 4, and the ORAFI
indicated that it particularly affected variables 4, 16, 7 and 13, which measure
the flowrate of stream 4 (variable 4) that has suddenly dropped, as well as the
pressures in the stripper (variable 16), the reactor (variable 7) and the product
separator (variable 13), respectively. Since these pressures were not regulated
by controllers, they varied proportionally with the gas flow rate, because these
elements are located downstream from Stream 4. The valve (variable 45) was
also opened to compensate for the reduced availability of stream 4. So the fault
identification is correct.

Some instants later, these variables started to return to their original values,
due to the effect of the control system; except for variable 45, which remained at
an abnormal value. This was reflected by the Steady fault identification and is
the expected behaviour of the plant, which modifies the stream 4 valve set-point
to compensate the pressure loss in the above mentioned stream. This suggests
that the proposed approach was capable of locating the major faulty variables
with a high score in the ranking and filtering out the minor faulty ones with a
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Table 22: Early fault identification comparison. Moderate risk aversion (orness=0.5)

Fault | Early identification-ranking | Early identification-score PCA B & B CA SVM

1 16 20 25 7 23 46 0.6688 0.5514 0.3217 0.2976 0.2807 0.2722 16 20 46 16 16 13 7 20 16 18

2 30 24 10 47 31 25 0.7136 0.4399 0.3570 0.3453 0.202 0.1871 30 24 16 40 2124 30 4041613207 | 4710 16
3 83745322414 0.3073 0.2953 0.2849 0.2744 0.2301 0.2151 nd nd nd

4 5193424614 0.7876 0.1627 0.0 0.069 0.0647 0.0610 51219 951 51 51

5 35114142224 0.6524 0.6151 0.3231 0.2916 0.2795 0.246 119352218 11 22 4212211 52 17

6 4412046 137 0.77 22 0.2089 0.1537 0.1118 0.1051 441 144 441 1

7 1647134531 0.8118 0.5931 0.5528 0.5126 0.3457 0.2974 | 41636383125 | 46916224551 | 16713214 45

8 20 16 46 31 25 29 0.7388 0.5849 0.5830 0.3528 0.3222 0.2801 346 29 16 20 37 46 13716 20 16 23 20 30
9 nd nd nd nd nd

10 18 20 4 23 31 3 0.5900 0.2833 0.2601 0.2385 0.1984 0.1983 19 34 35 19 20 18 18 38 50
11 51962127 39 0.4677 0.1938 0.0575 0.0482 0.0467 0.0416 | 51 9 21 51 51 51

12 1122354136 6 0.5313 0.4558 0.1965 0.1279 0.1122 0.0981 1137224 22 2141122 11224
13 163233 713 21 0.5989 0.4806 0.4682 0.4142 0.3614 0.2817 | 37 32 26 42 37 51162013 7 34 16

14 519212426 0.4287 0.4249 0.3707 0.1625 0.1137 0.0608 21519242 9 51 2151 9 51

15 nd nd nd nd nd

16 19 18 29 32 31 50 0.7436 0.5232 0.2450 0.1937 0.1509 0.1487 [ 50 3 27 50 19 50 19

17 2124251941 0.7028 0.1031 0.0862 0.0427 0.0387 0.0347 21242 5121 299

18 2211137240 0.8921 0.3307 0.0818 0.0707 0.0554 0.0528 22 11 40 411 40 22 5117

19 54324 46 32 34 0.5538 0.1825 0.1793 0.1517 0.1517 0.1487 527 37 46 38 405120 4 5 20 46
20 4613207523 0.7359 0.2849 0.2179 0.1628 0.1570 0.1295 | 46 39 13 23 8421140 1352177
21 19 50 21 40 18 29 0.5139 0.3886 0.3439 0.2643 0.2599 0.25064 | 39 26 5 137 42 20 19 37 16

nd = not detected

Table 23: Early fault identification comparison. Low risk aversion (ornes=0.9)

Fault | Early identification-ranking | Early identification-score PCA B&B CA SVM

1 16 20 46 23 18 25 0.8361 0.7934 0.5562 0.5550 0.5312 0.5088 | 16 20 46 16 16 13720 16 18

2 30 24 31 47 25 10 0.9153 0.7108 0.598 0.5673 0.5642 0.5578 30 24 16 40 2124 30 4041613207 | 4710 16
3 83745243229 0.5919 0.5365 0.5276 0.48566 0.4832 0.4781 | nd nd nd

4 5193420146 0.9210 0.4219 0.2461 0.2151 0.2024 0.19943 | 51 21 9 951 51 51

5 35114222614 0.8426 0.7423 0.6653 0.6149 0.5854 0.5771 119352218 1122 4212211 5217

6 4412046 137 0.9345 0.8263 0.5801 0.4979 0.3622 0.3403 [ 44 1 144 41 1

7 164713318 0.9437 0.7974 0.7398 0.7215 0.7190 0.6742 | 41636383125 | 46916224551 [ 16713214 45

8 2046 16 18 29 31 0.8985 0.7994 0.7876 0.5995 0.5526 0.5492 | 3 46 29 16 20 37 46 13 716 20 16 23 20 30
9 nd nd nd nd nd

10 1820429233 0.8054 0.5397 0.5149 0.4374 0.4225 0.3912 | 19 34 35 1920 18 18 38 50
11 5192721629 0.6107 0.5558 0.1684 0.1621 0.1589 0.1525 | 519 21 51 51 51

12 1122 0.8320 0.7427 0.4922 0.4377 0.3396 0.3111 | 11 37224 22 2141122 11224
13 16 32 0.7887 0.7641 0.7417 0.6040 0.6027 0.5611 | 37 32 26 42 37 511620137 3416

14 5192124222 0.5604 0.5545 0.5355 0.4569 39 0.2035 | 21519242 951 2151 951

15 nd nd nd nd nd

16 19 18 29 50 31 32 0.9176 0.6899 0.6144 0.5488 0.4319 0.413 50 3 27 50 19 50 19

17 2124251922 0.8322 0.2951 0.2511 0.1296 0.1139 0.108 21242 5121 299

18 221113716 40 0.9628 0.7411 0.3181 0.2880 0.202 0.1879 22 11 40 411 40 22 5117
19 524 43 29 46 34 0.7335 0.5093 0.4483 0.4450 0.4240 0.4197 | 527 37 46 38 405120 4 520 46
20 46 13 75 23 20 0.8671 0.5103 0.4676 0.3955 0.3828 0.3807 | 46 39 13 23 8 42 11 40 1352177
21 19 50 21 18 3 29 0.9080 0.7351 0.5726 0.5140 0.5078 0.49079 | 39 26 5 1374220 19 37 16

nd = not detected

low score in the ranking, which would be practical for engineers in diagnosing
a process fault in a limited time frame.

Once more, the idea of using both time-windows for fault identification in
two different times, early and steady fault identification, is supported by the
results because some variables were affected at the first instant of the faults,
and others as the fault was propagated over time. If only one of the windows
(the early or the steady time-window) was used, a lot of information about the
faults would be lost. Also, the aggregation of different FI methods can give a
more robust diagnosis.
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Figure 3: Fault 7. Evolution of the candidate variables.

5. Conclusions

A method to carry out the fault identification of a plant is introduced here.
The main innovations of the OWA-RIM Aggregation based Fault identification
are: the aggregation of different well known fault identification methods carried
out with a multicriterion decision-making approach and the fault identification
is carried out in two steps using time-windows.
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The aggregation of different methods allows the results of a method to be
used when it is really effective, and to discard it when it is not valid (because
it does not give a similar result to other methods). This makes the Fault Iden-
tification more robust. The operator also has the option to decide on the risk
level of the fault identification, taking into account only the variables that are
selected as candidates by nearly all the methods, or including in the diagnosis
the variables with a good score in only a few methods.

The fault identification is carried out in two steps: the first one, developed
just after the fault detection, helps to identify the origin of the fault. The second
identification, performed when the system reaches a stable operation point after
the fault happens, gives information to the user about the new working condition
after the fault and whether it is advisable to continue operating the plant or
carry out repairs. Both fault identifications are developed in a time-window
which prevents the effect of noise, disturbances, etc., making the method more
robust.

The method has been tested in two plants: a waste water treatment plant
and the Tennessee Eastman Plant, showing its effectiveness in performing the
fault identification and showing that both identification (Early and Steady) are
necessary to correctly diagnose the state of the plant.

In this proposal, seven FI methods have been considered, but it is open to
extending the ORAFI aggregation with more methods. This can improve the
effectiveness and robustness of the method.
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Table 24: Steady fault identification delay.

Steady identification

Fault High risk | Moderate risk Low risk CVA | RCI
aversion aversion aversion

(orness=0.2) (orness=0.5) (orness=0.9)
1 417 464 494 800 800
2 43 74 122 800 800
3 800 800 800 nd nd
4 69 34 33 800 800
5 168 168 168 800 800
6 41 42 189 800 800
7 59 52 158 800 800
8 800 89 773 800 800
9 nd nd nd nd nd
10 800 800 800 800 800
11 800 800 800 800 800
12 800 800 800 800 800
13 113 101 114 800 800
14 184 83 74 800 800
15 nd nd nd nd nd
16 800 800 265 800 800
17 93 56 55 800 800
18 342 276 116 800 800
19 800 800 800 800 800
20 800 800 800 800 800
21 679 535 514 800 800
Average 453 399 414 800 800
Std. Dev. 339 342 324 0 0
Average
(only 201 165 237 800 800
stabilized)
Std. Dev.
(only 201 171 221 0 0
stabilized)

nd = not detected
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Table 25: Steady fault identification comparison. High risk aversion (orness=0.2)

Fault | Steady ranking Steady scores CVA-SSFV CVA-RSFV RCI

1 501441819 20 0.49177  0.29929  0.29469 | 18 19 50 14344445 141844 4550
0.14841 0.095174 0.059851

2 4730 10 24 31 16 0.24747 0.24404 0.2428 | 18 19 28 34 47 50 391325 28 29 34 43 46 47 34 28 10 47
0.10482 0.025131 0.021431

3 36 40 30 4 24 41 0.11424  0.061272  0.054644 | nd nd nd
0.052433 0.051343 0.048675

4 511495842 0.51602  0.015004 0.012828 | nd 51 51
0.012176 0.010698 0.0098518

5 50191838713 0.54234  0.42538  0.25552 | 50 52 3819
0.14817 0.11315 0.10701

6 4411629207 0.58565  0.22914  0.17015 371113162122232526 | 123789 111316172125 | 51
0.1086 0.10025 0.068958 30 31 33 35 36 38 43 44 47 28 29 31 34 35 36 37 38 39 42

43 45 46 51 52

7 454 8 21 20 36 0.7031 0.13786 0.12558 | nd 45 45
0.023644 0.021061 0.017697

8 16 713 10 47 34 0.70973  0.46838  0.40685 0111316 18192023 30 | 14710 13 20 24 25 28 29 31 | 16 10 47 7 30 13
0.18112 0.15369 0.14811 750 34 35 43 44 46 47

9 nd nd nd nd nd

10 3261927145 0.069529 0.059034 0.055383 | 7 13 19 50 18 18
0.048206 0.044145 0.039671

11 519326540 0.3401  0.041143  0.0094807 | nd 951 519
0.0076341 0.0075326
0.0073716

12 38115022218 0.28026 0.1 0.0862f 7T9111316181920222327 | 13482021 25354352 1138 4 22
0.065918 0.056208 0.053948 29 30 31 33 36 38 47 50

13 1950 18 16 7 13 0.75033  0.44267  0.32921 | 711 1316 18 1920212223 | 34 78 11 13 16 18 19 20 25 | 1938 50 16 7 13
0.10664 0.077435 0.07053 26 27 30 31 33 36 38 41 44 47 | 27 28 29 30 32 34 35 36 37 43

50 50 51

14 519212426 0.29523  0.24123  0.18186 | 50 92151 51921
0.010421 0.0094964 0.0067851

15 nd nd nd nd nd

16 19 18 38 35 40 32 0.28998  0.14713  0.13261 | 7 13 18 19 20 50 16 1980 18
0.067832 0.058264 0.055488

17 219242516 0.5. 0.020847 0.0085033 | 79 11 13 16 18 19 21 30 50 92151 21
0.005857¢ 0.0028783
0.0014499

18 43 51 46 42 45 4 0.8269 0.56166 020131 | 4791113141620222324 | 67121316 17 19 21 23 25 27 | 43 51 46
0.10881 0.071067 0.054741 26 27 28 29 30 33 35 36 39 41 | 28 30 32 33 35 36 37 38 41 42

46 47 50 51 4 48 51 52

19 546 35 41 39 34 0.07696  0.060251  0.05253 | nd 5 5
0.049232 0.048419 0.026763

20 46201311729 0.51899  0.14688  0.064884 | 7 11 13 16 18 20 13 50 20 46 46
0.025334 0.01418 0.012639

21 81950716 13 0.46479 021241 0.14141 | nd nd 8
0.12369 0.12307 0.11559

nd = not detected
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Table 26: Steady fault identification comparison.

Moderate risk aversion (orness=0.5)

Fault | Steady ranking Steady scores CVA-SSFV CVA-RSFV RCI

1 4414501918 0.6462 0.6412 0.6061 0.4114 | 18 19 50 14344445 1418444550
0.3218 0.2524

2 30 10 47 24 25 37 0.5 0.5495 0.5473 0.181 | 18 19 28 34 47 50 3913 25 28 29 34 43 46 47 34 28 10 47
0.1134 0.1120

3 36 40 30 4 24 41 0.1142 0.0613 0.0546 0.0524 | nd nd nd
0.0513 0.0486

4 5192834643 0.6504 0.1527 0.0811 0.0634 | nd 51 51
0.0628 0.

5 381445019 52 0.6612 0.2032 0.201 0.1073 | 50 52 38 19
0.1046 0.1041

6 4411629207 0.7842 0.5434 0.301 0.2545 | 2371113162122232526 | 123789 111316172125 | 51
0.1719 0.1567 30 31 33 35 36 38 43 44 47 28 29 31 34 35 36 37 38 39 42

43 45 46 51 52

7 454 8 46 20 30 0.8464 0.3166 0.2049 0.1609 | nd 15 45
0.1538 0.1155

8 16 713 10 47 34 0.8154 0.5558 0.4963 0.3885 | 7 10 11 13 16 18 19 20 23 30 471013202425282931 | 161047730 13
0.344 0.338 47 50 7

9 nd nd nd nd

10 3819 50 36 24 26 0.4743 0.27479 0.2723 0.1899 | 7 13 19 50 18
0.1761 0.1675

11 519326540 0.3401 0.0411 0.0095 0.0076 | nd 951 519
0.0075 0.0073

12 1116 357 13 36 0.512 17 0.2744 0.2595 | 7911131618 1920222327 | 134820 21 25 35 43 52 1138 4 22
0.2348 0.1909 29 30 31 33 36 38 47 50

13 16 719 13 38 50 0.6855 0.498 0.4719 0.4536 | 711 1316 18 1920212223 | 34 78 11 13 16 18 19 20 25 | 1938 50 16 7 13
0.441 0.3798 26 27 30 31 33 36 38 41 44 47 | 27 28 29 30 32 34 35 36 37 43

50 50 51

14 512192642 0.3991 0.3748 0.3484 0.0874 | 50 92151 51921
0.0821 0.0794

15 nd nd nd nd nd

16 50 34 38 29 20 28 0.5429 0.1863 0.16 0.1542 | 7 13 18 19 20 50 16 1980 18
0.1423 0.1373

17 212429516 0.5630 0.0861 0.0735 0.0612 | 79 11 13 16 18 19 21 30 50 92151 21
0.0370 0.0259

18 221113716 35 0.5848 0.2474 0.1233 0.1166 | 47911 131416202223 24 | 67121316 17 19 21 23 25 27 | 43 51 46
0.1067 0.0521 26 27 28 29 30 33 35 36 39 41 | 28 30 32 33 35 36 37 38 41 42

46 47 50 51 43 45 46 48 51 52

19 546 35 41 39 34 0.0769 0.0602 0.0525 0.0492 | nd 5 5
0.0484 0.0267

20 461113207 22 0.4836 0.1423 0.1319 0.1212 | 7 11 13 16 18 20 13 50 20 46 46
0.1196 0.1145

21 8195016 7 44 0.5760 0.2629 0.2252 0.1845 | nd nd 8
0.1500 0.1451

nd = not cted
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Table 27: Steady fault identification comparison. Low risk aversion (orness=0.9)

Fault | Steady ranking Steady scores CVA-SSFV CVA-RSFV RCI

1 1444452421 0.9133 0.9103 0.7810 0.4619 | 18 19 50 14344445 1418444550
0.395 0.3745

2 10 47 30 37 34 25 0.9013 0.8562 0.7942 0.5145 | 18 19 28 34 47 50 3913 25 28 29 34 43 46 47 34 28 10 47
0.4254 0.4139

3 36 40 30 4 24 41 0.1142 0.0612 0.0546 0.0524 | nd nd nd
0.0513 0.0487

4 5192863421 0.8689 0.4666 0.2311 0.1998 | nd 51 51
0.1653 0.1568

5 52 17 40 33 38 23 0.5027 0.4126 0.3544 0.3238 | 50 52 38 19
0.3115 0.3029

6 519161744 0.9955 0.7129 0.7108 0.5244 | 2371113162122232526 | 123789 111316172125 | 51
0.5158 0.4922 30 31 33 35 36 38 43 44 47 28 29 31 34 35 36 37 38 39 42

43 45 46 51 52

7 4520 29 4 50 46 0.8831 0.7119 0.7102 0.652 | nd 15 45
0.5044 0.442

8 10 47 30 37 34 25 0.8914 0.8741 0.7907 0.6181 | 7 10 11 13 16 18 19 20 23 30 471013202425282931 | 161047730 13
0.4568 0.3878 47 50 7

9 nd nd nd nd

10 3819 50 36 24 26 0.4743 0.2748 0.2723 0.1899 | 7 13 19 50 18
0.1762 0.1675

11 51927621 34 0.6658 0.5394 0.2029 0.1888 | nd 951 519
0.1883 0.1789

12 2211 35 40 16 21 0.5881 0.5441 0.3418 0.2689 | 7911131618 1920222327 | 13 4820 21 25 35 43 52 1138 4 22
0.2347 0.2059 29 30 31 33 36 38 47 50

13 1916 50 718 13 0.9651 0.8872 0.7976 0.6509 | 7 11 13 16 18 1920212223 | 34 78 11 13 16 18 19 20 25 | 1938 50 16 7 13
0.6312 0.5948 26 27 30 31 33 36 38 41 44 47 | 27 28 29 30 32 34 35 36 37 43

50 50 51

14 15192426 0.6249 0.4823 0.4453 0.2879 | 50 92151 51921
0.2671 0.2402

15 nd nd nd nd nd

16 5019272953 0.8526 0.4840 0.3763 0.3377 | 7 13 18 19 20 50 16 1980 18
0.3281 0.

17 212429516 1 0.2516 0.2097 0.1422 | 79 11 13 16 18 19 21 30 50 92151 21
0.1156 0.0904

18 221113716 38 0.7692 0.5792 0.4750 0.4519 [ 47911 131416202223 24 | 67121316 17 19 21 23 25 27 | 43 51 46
0.3908 0.1634 26 27 28 29 30 33 35 36 39 41 | 28 30 32 33 35 36 37 38 41 42

46 47 50 51 43 45 46 48 51 52

19 546 34 41 6 30 0.5828 0.4188 0.3129 0.3032 | nd 5 5
0.2987 0.2787

20 46713224211 0.6063 0.2564 0.2514 0.249 | 7 11 13 16 18 20 13 50 20 46 46
0.2288 0.2249

21 816 19 25 50 33 0.7612 0.3623 0.3516 0.3276 | nd nd 8
0.3139 0.3003

nd = not cted
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