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Abstract

Monitoring complex industrial plants is a very important task in order to en-
sure the management, reliability, safety and maintenance of the desired product
quality. Early detection of abnormal events allows actions to prevent more seri-
ous consequences, improve the system’s performance and reduce manufacturing
costs. In this work, a new methodology for fault detection is introduced, based
on time series models and statistical process control (MSPC). The proposal ex-
plicitly accounts for both dynamic and non-linearity properties of the system.
A dynamic feature selection is carried out to interpret the dynamic relations by
characterizing the auto- and cross-correlations for every variable. After that,
a time-series based model framework is used to obtain and validate the best
descriptive model of the plant (either linear o non-linear). Fault detection is
based on finding anomalies in the temporal residual signals obtained from the
models by univariate and multivariate statistical process control charts. Finally,
the performance of the method is validated on two benchmarks, a wastewater
treatment plant and the Tennessee Eastman Plant. A comparison with other
classical methods clearly demonstrates the over performance and feasibility of
the proposed monitoring scheme.
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1. INTRODUCTION

The increasing complexity of modern industrial processes brings with it an
increase in the importance of process monitoring to ensure plant safety and
product quality [1]. Early detection of abnormal events allows actions to pre-
vent more serious consequences, improve the system’s behaviour and reduce
maintenance and operation costs. The main objective of anomaly, or fault, de-
tection is to identify any abnormal event indicating a distance from the process
behaviour as compared to its normal behaviour. In other words, an anomaly
occurs when the system deviates significantly from its normal situation during
the on-line operation. The second goal is fault diagnosis (or isolation), which
determines the root cause of the detected anomaly.

Process monitoring can generally be divided into three categories: model-
based methods, knowledge-based methods, and data-based methods [2–4]. The
first category is also called analytical redundancy (AR), in which an explicit
model is used. Unusual events are detected by referencing the measured process
behaviour against the model. However, as modern industrial processes become
more and more complex it is difficult and time consuming to develop an accurate
model that characterizes all the physical and chemical phenomena occurring
in industrial processes. Fault detection using knowledge-based techniques is
usually a heuristic process based on the available knowledge of the system’s
behaviour and the experience of expert plant operators. However, the creation
of the process knowledge base is always a time consuming and difficult operation,
requiring the long-term accumulation of expert knowledge and experience.

Furthermore, data-based anomaly-detection methods rely on the availability
of historical data of the inspected system under normal operation mode. These
methods have become more and more popular in recent years, especially in
complex industrial processes, where models and knowledge are difficult to obtain
in practice and where, because of the wide utilization of distributed control
systems, large amounts of data have been collected. Such data contain the most
process information and can be used for modelling and monitoring the process.
In particular, multivariate statistical process control (MSPC), such as Principal
Component Analysis (PCA), Partial Least Squares (PLS), etc. have been used
to monitor different industrial processes [5, 6].

Industrial plants are normally non-linear and dynamic. To deal with the
dynamic property in the processes, dynamic PCA utilizing an augmented ma-
trix with time-lagged variables, which models the auto-correlation and cross-
correlation among data samples, was proposed in [7] and used in different ap-
plications [8, 9]. Canonical variate analysis (CVA) has also been proposed for
dynamic process monitoring [10], where both past data and future measure-
ments are used to estimate the process state space model and build a fault
detection scheme. However, there are some limitations for these techniques,
as the high dimensionality of the augmented matrix, which cannot be applied
to monitoring a large number of auto-correlated, cross-correlated and collinear
variables.

Some process variables can affect other variables with a time-delay [11];
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a time-delayed process variable might have a stronger relationship with other
variables (delayed or not) than the non-delayed one. So, high cross-correlation
among process variables with different time-delays is possible, and it is difficult
to select both auto-correlation and cross-correlation together, i.e., dynamic fea-
tures, for every process variable. However, it is expected that a proper selection
will improve the monitoring scheme’s behaviour.

To solve the problem of non-linearity, some extensions of non-linear PCA
have been reported in the literature, such as [12], which develops a non-linear
PCA based on autoassociative neural networks; while, more recently, [13] presents
a similar idea, but using neural networks called invariant autoencoders (AE),
equivalent to non-linear PCA, to extract a robust and non-linear representation
of the process data. However, these methods usually require more computation
and inevitably lead to the convergence to the local minimum during the net-
work training. In addition, the number of principal components (PCs) must be
specified in advance before training the neural networks.

A different idea is proposed in [14] and this is called Kernel PCA (KPCA),
where non-linear data in the input space is transformed into linear data in a
high dimensional feature space, through a non-linear mapping, a kernel trick,
to calculate the principal components in the feature space [15]. However, the
drawback of KPCA is that the computation time may increase with the number
of samples, and the data pattern in the feature space is rather hard to interpret
in the input space; so it is hard to identify the variables causing the fault. In
addition, the fault detection of KPCA is very sensitive to the parameters of
the kernel function used to implement it, especially for the radial basis function
or the Gaussian kernel, the most commonly used one. Finally, there is no
theoretical framework for specifying the optimal value for those parameters.

Motivated by the above considerations, the objective of this paper is to
present a dynamic and non-linear fault detection and diagnosis methodology,
that explicitly accounts for the dynamic relations in the process through dy-
namic feature selection, and for the non-linear relationship between the process
variables through a time-series based model, capturing both the non-linear and
the dynamic correlation in the process. Thus, the residuals, which are the dif-
ference between the process measurements and the output of the time-series
model, can be monitored by conventional SPC charts, because the time-series
model is used to remove the non-linear and the dynamic characteristics of the
process. Therefore, the main objective of this paper is to combine the advan-
tages of the SPC monitoring scheme and time-series modelling to enhance the
performance of the monitoring scheme and widen its applicability in practice
for complex and large-scale industrial processes.

The proposal works as follows: first, a dynamic feature selection method
to characterize the dynamic relations of every process variable is carried out;
then, a time series model is developed for every variable taking into account
the features previously obtained; the residuals are then processed by different
SPC charts. Every residual is processed by univariate statistics, the EWMA
chart [16, 17], to detect and diagnose faults when one of the residuals exceeds
its control limits. As this frequently happens, the systems have a very large
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number of variables, so it is better to process all the variables together to obtain
a unique statistic to check whether there is a fault in the system or not. In this
paper, the residuals are also processed by the well-known PCA algorithm, using
the classical Hotelling’s and SPE statistics to detect the faults.

The major contributions of the current work can be summarized as: (1)
proposing a general methodology to monitor dynamic and non-linear complex
process; (2) proposing a dynamic feature characterization for the dynamic pro-
cesses; and (3) ensuring consistent monitoring performance compared to other
fault detection methods driven by data.

The rest of this paper is organized as follows: Section 2 briefly reviews the
theoretical concepts used related to the dynamic feature selection, the statistical
process control and the time series modelling; Section 3 presents an explanation
of the proposed approach; and Section 4 outlines the application of the proposed
methodology to two complex systems: a waste water treatment plant and the
Tennessee Eastman plant. Finally, Section 5 reviews the main points discussed
in this work and concludes the study.

2. THEORY

In order to carry out this proposal, it is necessary to identify m different
models, for a system with m sensors measuring m system variables, from the
measurement data recorded by the sensors. In particular, for each system vari-
able xi, i = 1, ...,m, we are looking for a forecasting time-series model fi based
on a subset or a transformation of the other variables which are best able to
predict this variable. At the same time, the aim is to find nominal system
models with dynamic dependencies, i.e., where a variable might have influence
on a target in several time steps in the future (but not immediately). Thus,
it is aiming for a vectorized time-series model, where the prediction model fi
for each variable xi, i = 1, ...,m includes the necessary time-lags on a subset of
other variables, which are the best to explain this variable. So, the data set
containing the variable to be modelled is spanned to include lags along the m
original non-delayed variables as inputs to the model.

xi(t) = [x1(t), ..., x1(t− k1), xi(t− 1), ...xi(t− ki), ..., xm(t), ...xm(t− km)] (1)

where {k1, k2, ..., km} ⊆ {0, ..., L}, thus allowing variables without lags to par-
ticipate in the model definition. L denotes the maximal lags and will be set to a
concrete value calculated with a dynamic feature selection. In this way, models
are potentially obtained where no lags, different lags from the same variable, or
different lags from different variables, may appear as inputs.

2.1. Dynamic feature selection

The interaction among different measured variables might be more appropri-
ately represented on the basis of different time-delays. In order to model every
variable, it is necessary to know which are the best relations for using. So a
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dynamic feature selection concerning auto- and cross-correlation with different
time-delays is carried out. First, the matrix X (n samples × m variables), with
the original variables in normal operation conditions, is augmented, taking for
each observation its previous L observations and stacking the data matrix in
the following manner:

Xa = [Xt|Xt−1| . . . |Xt−L] (2)

where the operator | is the matrix concatenation operator, Xa ∈ <(n−L)×(m(L+1))

is the augmented matrix, Xt is the data matrix X at the time instant t and
Xt−L at the time instant t− L, that is, with a delay of L time samples.

To implement the dynamic feature selection, the relationship between two
variables xit and xjl at two different time instants is calculated as the absolute
value of the correlation coefficient :

<i(x
i
t,x

j
l) =

∣∣∣xiTt xjl /‖xit‖‖xjl ‖∣∣∣ (3)

where i, j = 1, ...,m and t, l = 1, ..., L. This coefficient is a direct measure of the
correlation between variables and, after the calculation of vector <i for the i-th
variable, the dynamic feature selection is carried out by selecting the variables
in matrix Xa with high correlation values, i.e., <i > δi, are selected as inputs to
model the variable xi, with δi being a cut off parameter for each variable that
depends on the correlation present in the system.

Other method used for the dynamic feature selection is Dynamic Partial
Least Squares (DPLS) [18]. It is a well known method to reduce the dimen-
sionality of a system and it searches for a new feature set composed of linear
combinations of the original ones. This method then adjusts a linear model
using least squares over these new discovered features.

X = TPT + E (4)

Y = TQT + F (5)

where X is the predictor matrix (n × m), Y is the response matrix (n × p),
T is the first k terms of the latent variables or the score vectors, P and Q,
respectively, are the loading vectors of the data matrices X and Y, and E
and F are the residual terms of PLS. In general, each score is extracted through
deflating X and Y by the well known algorithm of the non-linear iterative partial
least squares (NIPALS) until all variance in the data structure is explained [19].
These score vectors are calculated as:

T = XR (6)

This matrix R = W(PTW)−1 is very useful to show which variables in X
are most related to the model response Y. The way in which this method can
perform the regression is:

Y = XBPLS + F, BPLS = RQT (7)
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So in this case, the augmented matrix Xa (eq. 2) is constructed and a PLS
regression model is calculated, taking each of the system variables, Y = xi,
i = 1, ...m as output variable and the matrix Xa as the predictor, without
the corresponding i-th variable that is being modelled. The dynamic feature
selection is carried out by selecting the variables in matrix Xa with high absolute
value of regression coefficients, i.e., high values of the vector BPLS.

A third way for the dynamic feature selection to be done is by combining
both methods, i.e., first to do a dynamic feature selection with the correlation
coefficient between variables and, after that, refine the selection using the PLS
method. So, the variables and their delays with bigger correlation coefficient
are chosen first, and these variables are arranged in a data matrix Xi, one for
each variable in the system, i = 1, ...m. After that, a PLS regression model is
obtained for the variable i-th, while the variables with bigger absolute values
of the corresponding regression coefficients, BPLSi, are chosen as final input
variables.

For the special case of ARIMA models, where the data of each variable are
modelled using only the delayed information from each respective variable, the
dynamic feature selection is done using the Autocorrelation Function (ACF)
and Partial Autocorrelation Function (PACF) [20].

2.2. Time series modelling

Many methods have been developed to analyze and forecast time-series [21],
making the choice of an appropriate method an important task. A brief sum-
mary of time-series models is presented:

Autoregressive Integrated Moving Average. The three univariate time-series
models which have been widely applied are the autoregressive (AR), the mov-
ing average (MA) and the autoregressive and moving average models (ARMA),
and when the system is not stationary, the ARIMA model ([20, 22]). When
a time-series exhibits seasonality, a SARIMA model can be used to measure
the seasonal effect or eliminate seasonality. In this time-series model (ARIMA),
a variable is modelled through its own lags, and does not explicitly use the
information contained in other related time-series. In industrial processes the
variables are not independent and besides the autocorrelation of each variable,
there exists high a cross-correlation among different process variables with differ-
ent time-delays. To capture the relationships between them, time-series models
with exogenous or input variables can be used, so the autoregressive moving av-
erage model with external inputs (ARMAX) and its variants (ARX, ARIMAX,
SARIMAX,...) can be suitable.

Neural Networks. Neural networks are a useful non-linear modelling tech-
nique [23], especially the Multilayer Perceptions (MLP) neural networks, which
are capable of approximating, to arbitrary accuracy, any continuous function
as long as they contain enough hidden units [24]. Their attractive properties
have led to the rise of several types of NNs and applications in the literature in
different fields ([25–27]).

Support vector regression. Support vector machine (SVM) analysis is a pop-
ular machine learning tool for classification and regression, first identified by
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[28]. It supposes a training dataset (xi, yi) i = 1, ...N ⊂ X ×R where X denotes
the space of input patterns. The goal is to find a function f(x) that has at most
ε deviation from the actually obtained targets yi for all training data and, at
the same time, is as smooth as possible. This is known as ε- SV regression:

f(x) = 〈w, x〉+ b (8)

with w ∈ X , b ∈ R. When the problem is non-linear, an SVM can be used as a
non-linear regression function by using the kernel trick to map the input feature
space to a higher dimensional feature space, where a linear decision function is
constructed. ([29–31])

2.3. Statistical process control techniques

The aim of Statistic Process control (SPC) is to monitor a process to detect
abnormal behaviour. In order to detect faults, the statistical control charts (also
referred to as monitoring charts) are used [32]. They present a value over time
and some thresholds that must not be surpassed in normal operating conditions.
So, these control charts are crucial in detecting whether a process is still working
under normal operating conditions (usually termed in-control) or not (out-of-
control). Within this framework, different control charts have been developed
to monitor the system over time, including [33]:

• Shewhart control chart [34]: this represents the time evolution of the
mean of a variable with upper and lower limits. If one of these thresholds
is exceeded, a fault is detected. To avoid false alarms, it is usual to require
a certain number of consecutive instants with abnormal values to activate
the fault alarm.

• Cumulative Sum (CUSUM) charts [35, 36]: here the method represents the
cumulative addition of deviations in every observation. It is able to detect
small variations faster than Shewhart charts. This technique requires a
value k of past observations to be set and these are used to calculate the
cumulative sum at the current time.

• Exponentially Weighted Moving Average (EWMA) control chart [16]: this
method filters the data. It computes a decision function for each observa-
tion zi(t) based on the current data and the past average values:

zi(t) = λxi(t) + (1− λ)zi(t− 1) (9)

where xi is the i-th value of the monitored variable at time t, and λ is the
degree of weighting that determines the temporal memory of the EWMA
decision function. With 0 6 λ 6 1, lower values of λ give more influence to
the past values, while higher values gives more importance to the current
value. The control limits are calculated as:

UCL,LCL = µ0 ± Lσ0
√

λ

2− λ
(10)
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where L is the width of the control limits (which determines the confidence
limits, usually specified depending on the false alarm rate) and µ0 and σ0
are the mean and standard deviations of anomaly-free data.

These control charts are univariate SPC charts and their performance is
based on the prior assumption that the process data are not correlated. Such
an assumption may not be valid in industrial processes. Then two options can
be considered. The first is to use a time-series modelling, i.e. to model the
variables and use the residuals, resulting from this time-series modelling that
are approximately uncorrelated, to monitor the process with the conventional
SPC charts. The second option is to use a multivariate statistical process control
tool, such as Principal Component Analysis (PCA).

2.3.1. PCA

Principal Component Analysis develops a linear transformation of the orig-
inal data into a set of uncorrelated variables (principal components). The first
principal component has the largest possible variance, the second has the sec-
ond largest variance, and so on. Choosing the first principal components, it is
possible to reduce dimensionality without losing too much information.

This method decomposes the covariance matrix S of the original data matrix
X(n×m) with data collected from the system in normal operation conditions,
using Singular Value Decomposition:

S = PΛkPT + P̃Λ̃P̃T (11)

where Λk contains, in its diagonal, the k most significant eigenvalues of S, in
decreasing order. Their associated eigenvectors are contained in P. The residual
eigenvectors and eigenvalues (m− k) can be found in P̃ and Λ̃, respectively.

Fault detection using PCA is performed with Hotelling′s statistic (T 2) and
the Square Prediction Error (SPE) statistic ([37–39]). The plant is in normal
operation conditions, for an α significance level, if T 2 is under its threshold T 2

α:

T 2 = xTDx < T 2
α (12)

where D = PΛ−1k PT.
The SPE statistic (or Q), for a new observation x, considers normal condi-

tion when Q is under the threshold Qα:

Q = xT C̃x < Qα (13)

where C̃ = P̃P̃T. The method to obtain the thresholds for T 2 andQ is explained
in [40].

3. PROPOSED APPROACH

The detection of an abnormal situation in industrial processes can be accom-
plished using techniques based on data. Here, a time-series model was integrated
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with SPC charts to develop a methodology for monitoring these situations. The
goal is to detect abnormal events, i.e., faults in a plant, as fast as possible, by
solely analyzing data. This method consists of four steps: dynamic feature se-
lection, time-series modelling, construction of the control chart limits and fault
detection using SPC tools. The general methodology proposed is outlined in
Figure 1 and in the following steps:

Figure 1: Flowchart of the proposed anomaly detection methodology

Step 1. Dynamic feature selection. The variables in an industrial plant are
not usually independent. There are auto- and cross-correlations among them,
i.e., the interaction between different variables might be more appropriately
represented on the basis of different time-delays. So, here, a dynamic feature
selection method concerning auto- and cross- correlation with different time-
delays is presented. This step is composed of sub-steps as follows:

1. Collection of training data representing the normal operation conditions
of the process.

2. Data pre-processing, which consists of data analysis, to eliminate outliers,
to scale the data to the adequate range, and so on. The outliers are
identified and modified using the Tukey method [41]

3. To select the most appropriate variables with their time delays to repre-
sent every variable of the system, i.e., to carry out the dynamic feature
selection, using the different methods presented in section 2.1.
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Step 2.-Time-series Modelling. The second step is to build a reference de-
scriptive model using the data set defined in the first step representing normal
situations. In this step, another data pre-processing, which consists of the anal-
ysis (trends, seasonality in the time series) and scaling of the data is first carried
out. Then, the normal operation data are divided into two groups by n-cross
validation, training and test data. Third, different models can be built for every
variable of the system, i.e., the goal is to find the best time-series descriptive
model for every system variable with the dynamic features selected in step 1
from training data. To automate the process of model building, grid search can
be used for hyperparameter optimization. Some measures of the error commit-
ted in forecasting each test time series with each respective model are used to
select the preference of these models. These error measures are:

• rMSE (root-mean-square error): the square root of the mean squared error
(MSE)

• sMAPE (Symmetric mean absolute percentage error): the average value
of the absolute value of the error in percentage.

sMAPE = 100%/n

n∑
t=1

|Ft −At|
(|Ft|+ |At|)/2

(14)

where n is the number of samples, Ft is the forecast at time t and At is
the current measure at that instant.

• relMAE (relative mean absolute error): divides the average value of the
absolute error by the mean absolute error obtained by another model
considered as a reference. In this article, this reference model is the “naive
”forecast, which supposes that the next observation will be the same as
the current one.

relMAE =
MAE

MAEp
(15)

where MAE is the mean absolute error of the tested model and MAEP
is the same measure, but applied to the reference model.

The model with the lowest rMSE value will be selected, for every variable,
provided that the relMAE is under 1. The other measures: sMAPE and relMAE
will be used to know the performance of the selected model.

Step 3.-Computation of the control chart limits. In this step, the control
limits of every chart used in this methodology need to be calculated. They are
based on the residuals, calculated as the difference between the prediction for
each variable using the respective time-series model chosen in step 2 and the
actual measurement of this variable. Here, it is possible to use two different
control charts:
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1. The EWMA control chart. This chart works with the variables individu-
ally, i.e., a control chart is calculated for every residual, and in this case
the upper control limit (UCL) and the lower control limit (LCL) of every
control chart need be computed using eq. 10.

2. PCA. In this case all the residuals are taken into account together, and two
charts are defined to detect anomalies. First a PCA model is calculated
using the residuals in normal operation conditions, and the thresholds for
the Hotelling’s and Q statistics are calculated using the equations defined
in section 2.3.1.

These three steps are calculated off-line.
Step 4.- Detection of anomalies. This step is calculated on-line and is com-

posed of various sub-steps:

1. Collecting test data from the plant that may possibly contain abnormal
situations. The aim now is to detect whether there are anomalies in this
test data set.

2. Pre-process the data in the same way as with the training data. The
dynamic feature selection performed in step 1 is carried out.

3. Generate the residuals, which are the difference between the measurements
and the output of the time-series models constructed in step 2, for every
variable.

4. Calculate the decision function zi(t) as eq. 9 for every residual for the
EWMA control chart. Compute the statistics T 2 and Q with the equations
12 and 13 respectively, for the PCA control charts.

5. Detection for abnormal situations. Compare the defined statistics with
their corresponding thresholds. If any of the control charts defined (the
decision function zi(t), the T 2 or the Q statistics) exceed their respective
thresholds, for a number of consecutive observations (Obs), an anomaly
is declared. There must be a consecutive number of observations before
declaring an alarm, this is done in order to avoid false alarms. In this case,
a fault alarm is sent to the operator so that the appropriate corrective
actions can be taken. If no anomaly is detected (the three control charts
do not exceed their control limits), there is no anomaly and the monitoring
process goes on.

To detect abnormal situations, the residuals can be used as an indicator.
These residuals are close to zero when the behaviour of the monitored system
is normal. However, when an abnormal situation or fault occurs, the residuals
deviate significantly from zero, indicating the presence of a new situation that
is distinguishable from the normal one.

An overview of this fault detection methodology is presented in Algorithm
1.

4. ILLUSTRATIVE EXAMPLES: SIMULATION CASE STUDIES

This section presents the results of applying the proposed methodology to
two well-known benchmarks: the Tennessee Eastman Process and a Waste Wa-
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Algorithm 1 Fault detection

1: for Non Faulty Data, off-line do
2: Step 1. Dynamic feature selection
3: Normalize data
4: Do the dynamic feature selection for each variable using the three meth-

ods: correlation, PLS and a combination of both methods.
5: Step 2. Time series-modeling
6: Calculate different time-series models for each variable: ARIMA, AR-

MAX, NN, SVR, random Forrest, etc.
7: Choose the best model for each variable, using the rMSE, and relMAE

indexes
8: Step 3. Computing the control chart limits
9: Get predictions for each variable . Using every chosen model

10: Obtain residuals:
11: ResidualNF (t) = Observed(t)− Predicted(t)
12: Develop PCAresiduals . PCA model with ResidualNF (t)
13: Define the control limits UCL and LCL for the control charts
14: Define the thresholds T 2

α and Qα for the T 2 and Q statistics.
15: end for
16:

17: Step 4. Detection of anomalies
18: Analyze new data, on-line:
19: for t=1 to n do . For each instant
20: Get and normalize a new observation: xn(t)
21: for i=1 to m do . For every variable m
22: Do the dynamic feature selection defined in step 1
23: Predictioni(t) : x̂in(t) = f(modeli, (t, t− 1, t− 2, ...))
24: Residuali(t) = xin(t)− x̂in(t)
25: end for
26:

27: Fault detection based on EWMA chart:
28: for i=1 to m do . For every variable m
29: Compute the decision function zi(t) = λResiduali(t)+(1−λ)zi(t−1)
30: if zi(t) > UCL then
31: Fault = TRUE in time t
32: end if
33: end for
34:

35: Fault detection based on PCA of residuals:
36: Calculate T 2(t) and Q(t) for Residual(t)
37: if T 2(t) > T 2

α or Q(t) > Qα then
38: Fault=TRUE in time t
39: end if
40: end for
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ter Treatment Plant (WWTP).
The performance of the proposed monitoring methodology is validated by

the most common indexes for evaluating process monitoring performance: the
missed detection rate (MDR), the false alarms rate (FAR), the fault detection
delay and the number of detected faults ([5, 42–44]). The objective of a fault
detection technique is for it to be robust to data independently of the training
set, sensitive to all the possible faults of the process, and quick to detect the
faults. The robustness of each statistic was determined by calculating the false
alarm rate during normal operating conditions for the test set and comparing it
against the level of significance upon which the threshold is based. The sensi-
tivity of the fault detection techniques were quantified by calculating the missed
detection rate and the promptness of the measures is based on the detection de-
lays. Missed detection rate (MDR) denotes that faulty data are misclassified as
faultless data, i.e., the MDR is the number of faulty data samples not exceeding
the control limits over the total number of faulty data:

MDR = 100
NF,N
NF

% (16)

where NF,N is the number of faulty samples identified as normal and NF is the
number of faulty samples.

The FAR is the number of normal data samples classified as faulty data over
the total number of faultless data and is defined as:

MDR = 100
NN,F
NN

% (17)

where NN,F is the number of normal samples identified as faults and NN is the
number of normal samples.

4.1. Case Study 1: Tennessee Eastman Process

The first case study is the Tennessee Eastman Process (TEP) (Fig. 2) [45].
This benchmark was created to provide a realistic industrial process for control
and monitoring studies. It contains five major units: a reactor, a stripper, a
condenser, a recycle compressor, and a separator. A detailed process description
including the process variables and the specific plant wide closed-loop system
can be found in [46].

The available data for this plant consist of 22 continuous process measure-
ments, 11 manipulated variables and 19 sampled process measurements. So, 52
variables are available. The data was generated with a sampling interval of 3
min. There are two data sets available: the training set and the test set, each
of which have 22 time-series of 500 and 960 observations, respectively. The first
one is faultless data, and the other 21 series are data from different fault situa-
tions. The faults start at the first observation in the training data sets, and at
the 160-th observation in the test data sets. Process faults are detailed in Table
1. Faults 3, 9 and 15 are hard to detect [47]. These data are generated by [46]
and can be downloaded from http://web.mit.edu/braatzgroup/links.html.
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Figure 2: Tennessee Eastman Process

Table 1: TEP faults

Fault # Description Type
1 A/C feed ratio, B composition constant (Stream 4) Step
2 B composition, A/C ratio constant (Stream 4) Step
3 D feed (Stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (Stream 1) Step
7 C header pressure loss-reduced availability (Stream 4) Step
8 A, B and C compositions (Stream 4) Random variation
9 D feed temperature (Stream 2) Random variation
10 C feed temperature (Stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown -
17 Unknown -
18 Unknown -
19 Unknown -
20 Unknown -
21 Stream 4 valve Sticking

4.1.1. Experimental methodology

The training normal data (no faults) X ∈ <500×52 are used for the off-line
calculations of this proposal, which can be applied using the following steps (as
presented in algorithm 1).
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Step 1.- Dynamic feature selection. The first step is the dynamic feature
selection, i.e., to discover which delayed variables must be used to model each
variable; this is done using the three methods explained in section 2.1 for all the
variables and their 15 first delays: correlation analysis, PLS feature extraction
and a combination of both techniques. So it is necessary to construct the matrix
Xa defined in Eq. 2, with L = 15. The 10 most correlated delayed variables
are used for each variable for the next step: modelling, this is done to avoid
over-fitting models, especially for the neural networks.

Step 2.- Building the time-series model. The faultless training data (500
observations) were used to model each variable with its corresponding dynamic
features as inputs. First, these data were normalized according to the time-
series model to be calculated. For example, the data for the neural networks
must be normalized to range [0.2, 0.8] not the most common [0, 1], because
it is necessary to leave some room for bigger observations when new data are
processed. For the ARIMA models, the data were normalized to have zero mean
and differentiate the series if it was not stationary, etc. Then, different types of
models were developed for every system variable. In this work, the developed
time-series models were:

• ARIMA models, with the structure ARIMA(p,q,i), where the order of
each part of the model AR (p), MA (q), and Integral part (i) is specified.
In the experiments carried out, the variation of these parameters was:
p = [0, ..., 15], q = [0, ..., 15] and i = [0, 1, 2], with the additional condition
that: p+ q ≤ 20.

• Neural network models. The NN used is always a Perceptron Multilayer
network (MLP) with three layers, where the input layer has 10 inputs
corresponding to the inputs selected in the dynamic feature selection of
step 1, and the output layer has only one neuron. The number of neurons
in the hidden layer is a parameter to be modified in each of the calculated
models, and this parameter varies as follows: neurons in hidden layer =
[5, ..., 6× (2× number of inputs)].

• Support Vector Machine Regression (SVR) with a Gaussian Kernel: k(u, v) =
exp(−γ|u − v|2). In this model it is necessary to adjust two parameters:
C and γ, in the experiments carried out these parameters vary as follows:
C = [0.1, 1, 10, 100, 1000] and γ = [0.01, 0.1, 1, 10, 100]

• Support Vector Machine Regression (SVR) with a sigmoid kernel: k(u, v) =
tanh(γuT v+coef). In this model it is necessary to adjust two parameters:
C and γ, in the experiments carried out these parameters vary as follows:
C = [0.1, 1, 10, 100, 1000] and γ = [0.01, 0.1, 1, 10, 100]

• Random forest models. Number of variables randomly sampled as candi-
dates at each split : [200, 300, 400]. Number of trees to grow: [1500, 2000]
this value should not be set at too small a number to ensure that every
input variable gets predicted at least a few times.
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The model with the lowest rMSE value using test data was selected. In this
application, the selected time-series model for every variable and its structure
can be seen in Table 2, where ANN are the neural networks with correlation
coefficients variable selection and PLS ANN are the neural networks with PLS
based variable selection. The final number of neurons in the hidden layer are
shown in this Table. Note that some variables have an ARIMA model with pa-
rameters (0,0,0). These variables are white noise and they cannot be modelled,
so in this case the model used to calculate the residuals is just the mean value
of the variable in normal conditions.

Table 2: Selected time-series model for every variable

Variable Model Variable Model
1 ANN: Hidden Layer:26 27 ARIMA: (0,0,0)
2 ANN: Hidden Layer: 13 28 ARIMA: (0,1,0)
3 ANN: Hidden Layer: 6 29 ARIMA: (2,2,0
4 ANN: Hidden Layer: 13 30 ARIMA: (1,1,0)
5 ANN: Hidden Layer: 13 31 ARIMA: (1,3,0)
6 ANN: Hidden Layer: 8 32 PLS ANN: Hidden Layer: 3
7 ANN: Hidden Layer: 23 33 ARIMA: (2,0,0)
8 ANN: Hidden Layer: 5 34 ARIMA: (1,1,0)
9 ANN: Hidden Layer: 5 35 ARIMA: (1,1,0)

10 ANN: Hidden Layer: 12 36 ARIMA: (1,0,0)
11 ANN: Hidden Layer: 5 37 ARIMA: (0,0,0)
12 ANN: Hidden Layer: 10 38 ARIMA:(1,2,0)
13 ANN: Hidden Layer: 13 39 ARIMA: (0,1,0)
14 ANN: Hidden Layer: 7 40 ARIMA: (0,0,0)
15 ANN: Hidden Layer: 5 41 ARIMA: (0,0,0)
16 PLS ANN: Hidden Layer: 3 42 ANN: Hidden Layer: 20
17 ANN: Hidden Layer: 24 43 ANN: Hidden Layer: 16
18 ARIMA: (2,2,1) 44 ANN: Hidden Layer: 7
19 PLS ANN:Hidden Layer: 8 45 ANN: Hidden Layer: 24
20 ARIMA: (2,2,0) 46 ANN: Hidden Layer: 13
21 ANN: Hidden Layer: 7 47 ANN: Hidden Layer: 11
22 ANN: Hidden Layer: 15 48 ANN: Hidden Layer: 11
23 ARIMA: (0,1,0) 49 ANN: Hidden Layer: 9
24 ARIMA: (1,1,0) 50 ARIMA: (1,2,1)
25 ARIMA:(3,1,0) 51 ANN: Hidden Layer: 21
26 PLS ANN: Hidden Layer: 4 52 ANN: Hidden Layer: 15

Step 3.- Computing the control chart limits. Now a forecast is obtained for
every variable using the respective model and then compared with its actual
measured value, resulting in a residual. Based on these residuals, the control
limits for both control charts have to be calculated.

1. Residuals EWMA control chart (EWMAres). The thresholds can be ob-
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tained using the equation 10, and were adjusted experimentally by doing
some tests with different values of λ and getting the minimum number of
consecutive anomalous observations (Obs) for each value to activate the
fault alarm, using the training faultless data. The selected values after
some experiments were λ = 0.7 and Obs = 6. This combination gives
a good result in terms of false alarms rate, missed detection rate and
minimum detection time as can be seen in the results.

2. Fault detection based on PCA of residuals (PCAres). Here, it is first
necessary to create a PCA model using the calculated residuals. This PCA
is developed with 85% of variance in the selected principal components
(this is a trade-off between maximizing information contained in principal
components and minimizing the number of them). Now, it is necessary to
calculate the thresholds for the statistics T 2 and Q, taking into account the
fact that it is necessary to consider a consecutive number of observations
exceeding the threshold (Obs) in order to detect a fault. The thresholds of
these statistics were calculated theoretically as explained in [37] and, after
that, these limits were tuned experimentally for an imposed significance
level (ISL or α) of 1%. This value is the expected percentage of alarms for
the system under normal operation conditions. The value of Obs = 3 is
calculated experimentally to ensure 0% alarms in the Q and T 2 statistics
in the training set.

4.1.2. Detection Results and discussion

Here, step 4 of the methodology is carried out, i.e., the on-line detection of
anomalies. The fault detection performance of this proposal has been compared
with various data-driven multivariate statistical methods applied to the TE
plant: PCA, dynamic PCA (DPCA), Canonical Variate Analysis (CVA) (using
T 2
s , T 2

r , and Q statistics) [42], and Kernel PCA (KPCA) [48]. The comparison is
made in terms of performance indexes defined at the beginning of this section:
number of detected faults (bigger is better), false alarms rate, missed alarms
rate (lower is better) for each fault and detection delay (also lower is better).

The number of faults detected for every method is presented in Table 3. The
better performance of the proposed methods is clear, because, while the other
methods can detect between 16 to 18 faults, EWMAres method can detect 20
out of 21 faults and PCAres with the Q statistical is able to detect all the faults.

Table 3: Faults detected by each method. TEP

PCA PCA DPCA DPCA CVA CVA CVA KPCA KPCA EWMAres PCAres PCAres
T 2 Q T 2 Q T 2

s T 2
r Q T 2 Q T 2 Q

Faults detected 16 18 17 18 18 18 16 18 18 20 17 21

To check the robustness of the methods, the False Alarms Rate (FAR), also
called Type I error, is calculated using the training data set (500 observations)
for normal operation conditions ([5, 42–44]). The thresholds in all the methods
have been defined to obtain a false alarm rate in normal operation conditions
similar to the ISL, i.e., in terms of 1%. After this, the Type I error is checked by
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testing the second normal data set of 960 samples. The results for the methods
are presented in Table 4. It can be observed that the minimum false alarms
rate for the testing data (0.39%) is obtained by the PCAres method with the
T 2 statistic proposed in this paper, whereas the DPCA method with the Q
statistic achieves the highest false alarm rate (28.1%), a very high value.

All the statistics in the CVA method also have a very high false alarm
rate, in the range (8% to 12%). From the aspect of engineering practice, it
is important to trigger a fault alarm after detecting 3 to 6 abnormal samples
consecutively. Therefore, the Type I error (0.39% and 1.06% of PCAres with the
T 2 and Q statistic respectively) is acceptable, since it is calculated by counting
single samples. Note that, to avoid this false alarm rate when the system is
working on-line, a number of consecutive samples has to exceed the threshold
to detect an abnormal situation. In this paper, three is considered to be the
minimum number of consecutive anomalous samples to detect a fault. So, in all
the situations considered in the paper (normal and the 21 faults), the real false
alarm rate is 0%. Based on this analysis, it can be concluded that the proposed
methods are applicable to monitoring dynamic processes.

Table 4: False Alarms Rate (FAR) in %. TEP

Method and Statistic Training data Test data
PCA T 2 0.2 1.4
PCA Q 0.4 1.6
DPCA T 2 0.2 0.6
DPCA Q 0.4 28.1
CVA T 2

s 1.3 8.3
CVA T 2

r 0 12.6
CVA Q 0.9 8.7
KPCA T 2 1.5
KPCA Q 2
EWMAres 0.94 1.6
PCAres T 2 0.3 0.39
PCAres Q 1.04 1.06

Table 5 shows, in percentages, the Missed Detection Rate (MDR), which
is calculated by dividing the number of faulty observations identified as non
faulty by the total number of faulty observations, for each method and fault.
The proposed methods (EWMAres, PCAres with statistic Q) outperform the
other methods PCA, DPCA, KPCA and CVA, with T 2

s and Q statistics for
most fault cases. CVA with the statistical T 2

r also gives good MDR results in
many faults, but not very far from the EWMAres and PCAres with Q, except
for faults 5, 10 and 19, which are very different. However, in the cases of faults
8, 11, 13 and 18, the detection performance is greatly enhanced by the proposed
monitoring techniques, and also in faults 3, 9 and 15, which are very difficult
to detect. Nevertheless, as the authors state in paper [42], they have changed
the thresholds to perform this MDR comparison for the PCA, DPCA and CVA
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methods with respect to the ones used to calculate the FAR so as to get better
results, while in KPCA and the methods proposed in this paper, the thresholds
to implement MDR and FAR are the same.

Table 5: Missed Detection Rate (MDR), in %. TEP

Fault PCA PCA DPCA DPCA CVA CVA CVA KPCA KPCA EWMAres PCAres PCAres
T 2 Q T 2 Q T 2

s T 2
r Q T 2 Q T 2 Q

1 0.8 0.3 0.6 0.5 0.1 0 0.3 0 0 0 0.625 0.125
2 2 1.4 1.9 1.5 1.1 1 2.6 2 2 0 2 1.5
3 99.8 99.1 99.1 99 98.1 98.6 98.5 96 92 89.1 99.875 93.8
4 95.6 3.8 93.9 0 68.8 0 97.5 91 0 0.25 81.5 6.625
5 77.5 74.6 75.8 74.8 0 0 0 75 73 38 76.125 65.3
6 1.1 0 1.3 0 0 0 0 1 0 0 0 0
7 8.5 0 15.9 0 38.6 0 48.6 0 0 0 0.75 0
8 3.4 2.4 2.8 2.5 2.1 1.6 48.6 3 4 0 2.75 1.6
9 99.4 98.1 99.5 99.4 98.6 99.3 99.3 96 96 88.4 99.75 93.8

10 66.6 65.9 58 66.5 16.6 9.9 59.9 57 49 28.9 66.625 43.3
11 79.4 35.6 80.1 19.3 51.5 19.5 66.9 76 19 7.0 42.75 27.375
12 2.9 2.5 1 2.4 0 0 2.1 3 2 0 1.5 0.5
13 6 4.5 4.9 4.9 4.7 4 5.5 6 5 0.25 6.5 4.0
14 15.8 0 6.1 0 0 0 12.2 21 0 0 0 0
15 98.8 97.3 96.4 97.6 92.8 90.3 97.9 95 93 85.5 99.5 90.9
16 83.4 75.5 78.3 70.8 16.6 8.4 42.9 70 48 15.9 64.375 33.75
17 25.9 10.8 24 5.3 10.4 2.4 13.8 26 5 2.6 15.25 2.625
18 11.3 10.1 11.1 10 9.4 9.2 10.2 10 10 0 11.5 9.0
19 99.6 87.3 99.3 73.5 84.9 1.9 92.3 97 51 56.6 98.75 41.8
20 70.1 55 64.4 49 24.8 8.7 35.4 59 45 16.1 43.625 20.1
21 73.6 57 64.4 55.8 44 34.2 54.7 65 47 51.5 69 62.1

Table 6 contains the detection delay for every method and every fault, show-
ing the great improvement in reducing the detection delay (number of samples)
of the PCAres method with the statistic Q in comparison to the PCA, DPCA
and CVA methods, while eliminating false alarms. The detection delay of the
proposed method is in line with the KPCA method, as they are equivalent or
very similar in 10 of the 21 faults considered. However, our method detects
faults 3,9, and 15, while the KPCA does not. In addition, the PCAres with
the Q statistic is better in 7 of the remaining faults, while the KPCA is best in
the other 4 faults. At the same time, the proposed method with the Q statis-
tic gives the best detection time for faults 4, 5, 6, 7, and 14, where the faults
were accurately detected at the occurring time sample. On the other hand, the
EWMAres method achieves results better than or similar to those of the PCA,
DPCA and CVA with the Q statistic.

The comparisons with the four indexes (number of faults detected, FRA,
MDR and detection delay) obviously demonstrate the effectiveness and supe-
riority of the proposed methodology, especially for the PCAres with the Q
statistic.

4.2. Case Study 2: Waste Water Treatment Plant

Once it had been proved that the proposed methodology can detect all the
faults with a short detection delay and a reduced number of missed and false
alarms, it was tested on a very complex biological system: a Waste Water Treat-
ment Plant (WWTP) (Figure 3) to detect different faults with different fault
magnitudes. This benchmark is called BSM2 (Benchmark Simulation Model
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Table 6: Detection delays (in samples). TEP

Fault PCA PCA DPCA DPCA CVA CVA CVA KPCA EWMAres PCAres PCAres
T 2 Q T 2 Q T 2

s T 2
r Q T 2 Q

1 7 3 6 5 2 3 2 5 2 5 1
2 17 12 16 13 13 15 25 10 13 16 12
3 86 50
4 3 151 2 462 1 3 1 0 0
5 16 1 2 2 1 1 0 1 1 10 0
6 10 1 11 1 1 1 0 1 1 0 0
7 1 1 1 1 1 1 0 1 1 0 0
8 23 20 23 21 20 20 21 25 22 22 15
9 233

10 96 49 101 50 25 23 44 20 42 108 38
11 304 11 195 7 292 11 27 23 12 10 13
12 22 8 3 8 2 2 0 3 3 7 2
13 49 37 45 40 42 39 43 41 36 47 35
14 4 1 6 1 2 1 1 1 2 0 0
15 740 677 9 674 654
16 312 197 199 196 14 9 11 9 12 33 12
17 29 25 28 24 27 20 23 19 20 27 19
18 93 84 93 84 83 79 84 74 80 94 79
19 82 11 280 10
20 87 87 87 84 82 66 72 59 71 86 75
21 563 285 522 286 273 511 302 252 475 563 510

No. 2) and was developed by the Working Groups of COST Action 682 and
624, and the IWA Task Group ([49, 50]).

These plants are installations whose function is to process waste waters and
make them able to be used for other purposes or to discharge them into the
environment. This process increases the water quality. The model of the plant
is implemented in Simulink (Matlab). To generate faults, some parts of it were
changed. The default plant control system was running throughout the simula-
tion.

The variables measured in this model are 16 state variables such as flow,
slowly biodegradable substrate, oxygen, nitrates, etc. [50], at each measurement
point. There are 20 measurement points, as can be seen in Fig. 3, so 320
measurements can be obtained. However, in a real WWTP, it is not possible
to get these measurements instantly, so the method used here is applied over a
set of 7 variables, which are easier to obtain in a real plant, and are obtained
by combining some of the model variables (see Table 7). The model simulation
runs for 609 days and, for this paper, the measurements were recorded every 8
hours. The faults considered are: an O2 sensor fault, an alkalinity variation and
various problems with flow, such as leaks and pipe jams, with different fault
sizes. Finally, 16 faulty test data sets were made available to test the proposal
(see Table 8).

4.2.1. Experimental methodology

The experimental methodology is similar to that in the previous case study:
a normal training data (no faults) set X ∈ <1827×140 is used for the off-line
calculations of this proposal, which can be applied using the following steps (as
was presented in algorithm 1).

Step 1.- Dynamic feature selection. The first step was dynamic feature se-

20



Figure 3: BSM2 plant

Table 7: Variables in BSM2 plant

Used variables Variables in the model
COD (Chemical Oxygen Demand) Si, Ss, Xi, Xs

O2 SO
Alkalinity Salk
Nitrogen SNO, SNH , SND
Solids suspended TSS (Total suspended solids)
Flow Flow rate
Temperature Temperature

lection, i.e., to discover which delayed variables must be used to model each
variable; this is done using the three methods explained in section 2.1 for all the
variables and their 15 first delays. For every variable, the 10 most correlated
delayed variables are used for the next step: modelling. The dynamic feature se-
lection for the ARIMA model is done using the Autocorrelation Function (ACF)
and Partial Autocorrelation Function (PACF), as has been explained.

Step 2.- Building the time-series model. The second step with this work-
bench was to develop the time-series models. The faultless training data (1827
observations) was used to model each variable with its corresponding dynamic
features as inputs. First, these data were normalized according to the time-series
model to be calculated, as explained in the TE case study. Then, different types
of models were developed for every system variable, in this case these models
were:

21



Table 8: Faults in BSM2 plant

Fault # Description
1 to 5 O2 sensor failure, from -50 % to +70 %
6 to 8 Influent alkalinity change, from -50 % to +40 %
9 to 11 Reactor 1 alkalinity change, from -30 % to +20 %

12 and 13 Change in lower flow of primary Dec, from -50 % to -30%
14 Change in storage tank output flow, - 50 %

15 and 16 Qr and Qw flows change, from -50% to -25% of Qr

• ARIMA models, with structure ARIMA(p,q,i), where the order of each
part AR (p), MA (q), and Integral part (i) is specified. In the experiments
carried out, the variations of these parameters are: p = [0, ..., 15], q =
[0, ..., 15] and i = [0, 1, 2], with the additional condition that: p+ q ≤ 20.

• Neural network models. The NN used is always a Perceptron Multilayer
network (MLP) with three layers, where the input layer has 10 inputs
corresponding to the inputs selected in the dynamic feature selection of
step 1 and the output layer has only one neuron. The number of neurons
in the hidden layer is a parameter to be modified in each of the calculated
models, and this parameter varies as follows: neurons in hidden layer =
[5, ..., 6× (2× number of inputs)].

The model with the lowest rMSE value using test data in normal operation
conditions is selected. The selected time-series model for some of the variables
and its structure can be seen in Table 9, where ANN are the neural networks
with correlation coefficients variable selection and PLS ANN are the neural
networks with PLS based variable selection, and the final number of neurons in
the hidden layer are shown in the Table. In this case study, as the wastewater
treatment plant is a very non-linear process, the best time-series model for most
of the variables are non-linear, specially a neural network model; all the variables
modelled with an ARIMA model are the ones presented in Table 9.

Step 3.- Computing the control chart limits. Now a residual is calculated
as the difference between the prediction for every variable using the respective
model and its measured value. Based on these residuals, the control limits for
both control charts have to be calculated.

1. Residuals EWMA control chart (EWMAres). These thresholds are ad-
justed as in the previous benchmark using the faultless training data.
The thresholds were adjusted experimentally to have a minimum number
of consecutive observations outside the thresholds with different values of
λ. The values chosen were Obs = 5 and λ = 0.9, which achieve the lowest
possible delay with no false alarms and all the faults detected.

2. Fault detection based on PCA of residuals (PCAres). A PCA model using
the residuals was built. This PCA is performed with a number of prin-
cipal components that achieve 85% of the variance (as before, this value
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Table 9: Selected time-series models for some variables in the WWTP

Variable Model Variable Model
1 PLS ANN: Hidden Layer: 26 28 ARIMA: (2,2,1)
2 ANN: Hidden Layer: 21 35 ARIMA: (4,2,1)
3 PLS ANN: Hidden Layer: 26 42 ARIMA: (4,2,1)
4 ANN: Hidden Layer: 26 56 ARIMA:(5,1,1)
5 PLS ANN: Hidden Layer: 26 77 ARIMA: (2,1,1)
6 ANN: Hidden Layer: 26 84 ARIMA (4,2,1)
7 PLS ANN: Hidden Layer: 21 98 ARIMA: (2,2,1)
8 ANN: Hidden Layer: 26 105 ARIMA: (2,2,1)
9 PLS ANN: Hidden Layer: 21 126 ARIMA: (2,2,1)

10 PLS ANN: Hidden Layer: 26 133 ARIMA: (2,2,1)
11 PLS ANN: Hidden Layer: 21 140 ARIMA: (2,2,1)

maximizes information while minimizing the dimensionality). The thresh-
olds of the T 2 and Q statistics are calculated theoretically and they are
then tuned experimentally for an imposed significance level (ISL) of 5%
in normal operation conditions. Also, as in the example above, in order to
avoid false alarms when the system is working on-line, it is necessary to
overpass these limits in Obs = 5 consecutive samples to detect the fault.
This number of consecutive observations avoids the appearance of false
alarms and also gives the smallest delay and the highest fault detection
rate.

4.2.2. Detection results and discussion

In this sub-section, step 4 of the methodology is carried out, i.e., the on-line
detection of anomalies. In this case study, this proposal will be compared with
PCA with 70% of variance explained by its selected principal components and
its T 2 and Q thresholds adjusted theoretically with ISL = 5%. This study is
in terms of the performance indexes defined above: number of detected faults
(bigger is better), false alarms rate, missed alarms rate (lower is better) for each
fault and detection delay (also lower is better).

In this example for all the methods, PCA and the proposed methods in this
paper, the thresholds are adjusted to obtain an ISL = 5% in normal operation
conditions and the threshold has to exceed some consecutive number of samples
so there will be zero false alarms in working conditions. The false alarm rate
for the test data is in Table 10, where it is possible to see that the best result is
for the (EWMAres) method with (0.32%) and also for the (PCAres) with the
Q statistics.

Table 11 shows the Missed Detection Rate (MDR), in percentages. Here,
once more the EWMAres method gives the best results, as it is able to detect
more faulty observations than other methods, with big differences. Faults 6 to
16 are very easy to detect and all the methods works well, except the PCA with
the T 2 statistic, which is the worst. For faults 1 to 5, which are very difficult
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Table 10: False Alarms Rate (FAR). BSM2

Method and Statistic est data
PCA T 2 2.6
PCA Q 4.8
EWMAres 0.32
PCAres T 2 3.2
PCAres Q 2

to detect, the PCAres method with the Q statistical is the second best method
after the EWMAres one.

Table 11: Missed Detection Rate (MDR), in %. BSM2

Fault PCA PCA EWMAres PCAres PCAres
T 2 Q T 2 Q

1 96.41 10.53 0.12 69.83 6.93
2 96.66 42.11 3.98 87.42 27.86
3 97.18 87.55 27.47 96.92 82.16
4 97.82 71.50 25.03 96.79 86.01
5 91.78 0.26 0.13 44.16 0.26
6 27.47 0.26 0.26 0.26 0.26
7 86.65 0.26 0.26 0.26 0.26
8 26.32 0.26 0.26 0.26 0.26
9 2.05 0.39 0.39 0.39 0.39

10 0.39 0.39 0.26 0.39 0.26
11 27.47 0.26 0.26 0.39 0.26
12 0.26 0.26 0.26 0.26 0.26
13 0.26 0.26 0.26 0.26 0.26
14 0.26 0.26 0.26 0.26 0.26
15 0.26 0.26 0.26 0.26 0.26
16 14.89 0.26 0.26 0.26 0.26

The detection delay obtained by each method is shown in Table 12. It is
clear that the best method in this case is the PCAres with Q statistics, because
it gives the smallest delay for all the faults except for Fault 2. Also, all the
methods are able to detect all the faults, except the PCAres with the statistical
T 2, which cannot detect faults 3 and 4, two faults very difficult to detect. In
general, the detection delay is bigger for the T 2 statistic than the Q statistic.
So, with the best results in 15 out of 16 faults, it is clear that the PCAres
method (with Q statistic) is the best option in the fault detecting task. The
EWMAres method is also very good for this example, as it has the lowest false
alarm rate, the lowest missed detection rate and a good detection time.
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Table 12: Detection delays (in samples). BSM2

Fault PCA PCA EWMAres PCAres PCAres
T 2 Q T 2 Q

1 258 772 23 253 12
2 258 725 184 253 193
3 258 211 223 nd 194
4 259 278 223 nd 208
5 259 7 3 2 2
6 726 7 3 2 2
7 541 7 3 2 2
8 775 7 3 2 2
9 506 8 4 3 3

10 8 8 3 3 2
11 775 7 3 3 2
12 7 7 3 2 2
13 7 7 3 2 2
14 7 7 3 2 2
15 7 7 3 2 2
16 692 7 3 2 2

nd=not detected

5. CONCLUSIONS

This paper presents a dynamic and non-linear fault detection and diagnosis
methodology. The proposed methodology explicitly accounts for the dynamic
relations in the process data through dynamic feature selection, and for the
non-linear relationship between the variables of the process through a time-
series model available to capture both the non-linear, if it exists, and the dy-
namic correlation in the process data. After that the residuals, which are the
difference between the process measurements and the output of the model, are
monitored using conventional SPC charts, such as the EWMA control chart if
the residuals are evaluated individually, or a Multivariate Statistical Process
Control (MSPC) chart when the residuals are processed all together; in this
case they are evaluated with the PCA algorithm and the classical Hotelling’s
and SPE statistics.

This methodology was applied to two plants: the Tennessee Eastman Process
and a Waste Water Treatment Plant, and compared with other fault detection
methods. The method based on individual residuals with the univariate con-
trol chart (EWMA) gives a good performance, but it is not better than the
other methods of the comparison, specially for the TE plant, but it does give
a very good result with the WWTP. However, the method based on the PCA
of residuals is the best in the comparative, giving the highest number of faults
detected and the lowest detection time (delay). The fault alarms rate (FAR) is
also better than the other existing methods for the test data, while the missed
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detection rate (MDR) outperforms the other methods and is equivalent to the
best one (CVA with the Tr statistic). So, comparisons with the four indexes
(number of faults detected, FRA, MDR and detection delay) obviously demon-
strate the effectiveness and superiority of the proposed methodology, specially
for the PCAres with the Q statistic. Finally, these examples demonstrate that
the proposed methodology efficiently detects faults for non-linear and dynamic
processes.
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