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Abstract

Soft sensors driven by data are very common in modern industry to pre-
dict critical variables which are difficult to measure using other variables
that are relatively easier to obtain. The use of soft sensors implies some
challenges, such as the predictor variables colinearity, the time-varying and
possible non-linear nature of the industrial process. To deal with the first
challenge, the partial least square (PLS) regression has been employed for
many applications to deal with the linear variable relationships, with noisy
and highly correlated data. However, the PLS model needs to deal with the
other two issues: the non-linear and the time-varying side behaviour of the
processes. In this work, a new knowledge based methodology for a recur-
sive non-linear PLS algorithm (RNPLS) is systematized to deal with these
issues. Here, the non-linear PLS algorithm is made by carrying out the PLS
regression over the augmented matrix of input, which includes knowledge
based non-linear transformations of some of the variables. This transforma-
tion depends on the type of the system, and takes into account the available
knowledge about the process, which is provided by expert knowledge or em-
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ulated using software tools. Then, the recursive exponential weighted PLS is
used to modify and adapt the model according to the process changes. This
RNPLS algorithm has been tested using two case studies according to the
available knowledge, a real industrial evaporation station of the sugar indus-
try where the expert knowledge about the process permits the formulation
of the relationships and a simulated wastewater treatment plant where the
needed knowledge about the process is obtained by a software tool. The re-
sults show that the methodology involving knowledge regarding the process
is able to adjust the process changes, providing highly accurate predictions.

Keywords:
Soft Sensor, Partial Least Squares, Non-linear Mapping, Recursive
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1. Introduction

Nowadays, industrial plants normally have a large number of sensors.
Data obtained through these sensors are used to monitor and control the
process. However, it is usual in industrial process plants for some variables
not to be directly measured for several reasons: sometimes there are no
sensors available on the market to measure a concrete physical or chemical
variable, or if it exists, the cost is high. At other times, the expenses related
to the sensor’s maintenance are very high, etc. For these reasons, some pro-
cess variables are obtained periodically by performing a laboratory analysis,
which entails a considerable delay and low sampling time, with inappropriate
data being obtained for control and monitoring purposes. In these cases, a
soft sensor technique is a very effective method for estimating unmeasured
variables, based on other process variables that are easier to measure.

In recent years, the industry has paied attention on soft sensors [1]. It is
possible to find two categories of soft sensors: model-driven and data-driven
methods. The former are principally based on a first principles model de-
scribing the physical and chemical relationships of the process [2] and can be
obtained from process knowledge. However, given the complexity of indus-
trial plants, developing and maintaining these models require a lot of time
and effort. Nowadays, with the increased number of instruments in industrial
plants, data-driven based soft sensors have gained in popularity. The most
widely used techniques to develop soft sensors are the multivariate regres-
sion models, such as principal component regression (PCR) and partial least
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squares (PLS) [1]. However, these methods are linear and the industrial pro-
cesses are normally non-linear, so different non-linear data-driven methods
are used to cover this situation, such as support vector machines (SVM) [3]
and neural networks (ANN) [2, 4].

The PLS algorithm has been shown to be a powerful multivariate sta-
tistical tool for modelling output variables when data are noisy and highly
correlated as occurs in industrial plants. It has been demonstrated given two
datasets, PLS is able to capture the maximal covariance between them [5],
and the power of the PLS regression is that the relations between the set
of observed variables are modelled by latent variables, which are the pro-
jections of the original process variables onto an orthogonal subspace of low
dimension. These latent variables can be computed using the well-known
algorithm called NIPALS (non linear and iterative partial least square) [6]
or the kernel algorithm [7].

However, real plants can present significant non-linear characteristics, so
the PLS regression is not adequate due to its linear nature. To solve this
challenge, non-linear PLS (NPLS) algorithms have been developed. A first
review of literature about NPLS can be found in [8]. There are two basic
principles to develop NPLS algorithms.

The first is to apply non-linear transformations to the observed variables
and to extend the input matrix to include those transformations, and then
to apply the PLS algorithm over this augmented matrix [9]. The most used
non-linear transformations are a polynomial one [10], spline transformations
over the predictor variables, but in this case the coefficients of the splines are
more unknown parameters that have to be calculated [11] and the outputs
of an Radial Basis Function (RBF) network [12]. Information or knowledge
about the process is not explicitly used to treat the process non-linearities.
The problem with this approach is that the expansion with the transforma-
tions of all the input variables results in a very high increase in the number
of variables, which leads to the appearance of the problem called ”curse of
dimensionality”, which takes into account the high increase of the parameters
to be estimated regarding the available data, while the number of observa-
tions remains unchanged.

The second principle is focused on modelling the inner relationship be-
tween the latent variables, in a non-linear way, without modifying the original
values, but with a higher computational cost and optimization complexity.
This relationship between the scores (or latent variables) can be modelled by
a quadratic function [9, 13], artificial neural networks [14, 15], Radial Basis
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Function Networks (RBFN) [16], Takagy-Sugeno-Kang fuzzy models [17, 18]
or evolutionary computational (EC) methods [19].

A different approach to build an NPLS algorithm is when this is mapping
the observed data into a high-dimensional feature space, where it is possible
to build linear models based on the theory of support vector machines and
kernel functions: so a kernel PLS (KPLS) method was proposed by [20]
and used in [21] to predict some variables in a wastewater plant. However,
although the KPLS can fit non-linear relationships, the model obtained is a
black-box model with limited capabilities to explain the results in terms of
the original variables.

Another approach was found in [22] where the logarithm transformation
of inputs and outputs were carried out, in order to linearise both the dynamic
response and the output profile. So, in this case the predictor matrix of the
PLS algorithm are the logarithm transformations of the inputs to the system
(temperatures) and the response matrix are the logarithm transformation of
the outputs (compositions). Thus, with both transformations, the system
and as consequence the model are linear and, in this case, it is possible
to use the linear PLS regression. However, in a general industrial plant it
is not easy and/or possible to transform the inputs and outputs so that the
relationship between them is linear. A more general procedure it is necessary
to deal with non-linear transformations between variables to be used in the
PLS algorithm. Also, the objective, in this case, is not to linearise the model
and to use a linear PLS algorithm, the aim is to introduce the non-linear
characteristics of the process into the PLS algorithm to build a non-linear
PLS (NPLS) method.

However, all these techniques are based on the assumption that the pro-
cess is operating in a steady state, in which case the soft sensor can present
accuracy and robustness problems when there exist time-varying changes
such as those related to environmental conditions, the process raw materials,
etc. To be able to cope with these effects, some kind of adaptation must be
implemented in the soft sensor [23]. When data are collected continuously, it
is desirable to recursively update the regression model as new data become
available. Also, as the process changes with time, it is important to weight
the novel data more deeply while discounting past data using a lower weight.
[24] presents a recursive PLS algorithm where all input and output data are
characterised by their respective loading matrices and new data are added to
those matrices for updating the model. This algorithm keeps the size of the
input data matrices for calculating the PLS regression model constant, i.e.,
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they are not augmented with new data, but in the adaptation procedure, not
all latent variables are retained in the loading matrix, so this can imply a
loss of information and poor model performance. In [25], an RPLS algorithm
was developed to overcome these problems and a moving time window was
used to remove the oldest data. A fast recursive exponentially weighted PLS
algorithm is proposed by [26], where the adaptation to new data is in the
covariance matrices instead of the input and output data matrices. Some ap-
plications of the different RPLS algorithms can be found in [27, 28, 29, 30],
but all these recursive algorithms are based on linear PLS models.

Another option to take into account the non-stationary process variations,
i.e., the time-varying nature of the processes, is to use the fast moving win-
dow PLS method (FMWPLS) [31], to rule out the older data as new data
become available, following the ideas of [32] whom propose a fast moving
algorithm for monitoring time varying processes, adapting the PCA model.
In this approach the computational load does not depend on the window
size, which seems to be more adequate for on-line updating models. Also,
this technique has been extended to monitor non-linear time-varying process
with the Moving Window Kernel PCA (MWKPCA) [33]. Recently, much at-
tention has been focused on the latent variable methods based on linear state
space model for monitoring dynamic systems. Two major variants of the Lin-
ear State Spaces Models (LSSM) have been extensively adopted, particularly
the linear Gaussian state space model LGSSM [34] and the canonical variate
analysis CVA [35]. In these cases the state variables are the latent variables
whose time-varying behaviour are used to monitor and detect anomalies in
the system. These two latter methods are linear, to consider also the non-
linear nature of the systems, a non-linear extension of the Gaussian estate
space model (NGSSM) is proposed in [36].

Another aspect to take into account in the development of reliable indus-
trial data-driven soft sensors is the structure of the available data (missing
data, acquisition frequency, presence of outliers, variables resolution, etc.).
In the scientific literature there are works that address the existence of out-
liers [37, 38, 39], missing data [40] and different sampling rates (multirate
data) [41, 42, 43]. Facing this last aspect in different ways. A simple solu-
tion is to sample the system with the lowest frequency observed variable and
build the model with this low sampling rate data. Another solution is to just
do a numerical interpolation or to use lifting techniques to derive a model
in order to include the missing low frequency observations. Finally, a better
solution is based on finite impulse response (FIR) models used to weight past
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observations before their inclusion in the model [44]. Even it is possible to in-
troduce a regularization approach to smooth out the coefficients over time to
obtain a DPLS-TS (Dynamical PLS with temporal smoothness) [43] method
or a SPLS method (sparse PLS) depending on the regularization approach
used. Another aspect to consider is when the data present a mutiresolution
structure, the process information has different grades of granularity (differ-
ent resolutions). This happens when some variables contain instantaneous
information and other variables represent averages with different time spans,
shifts or production batches. This problem can be solved using mutiresolu-
tion soft sensors and multiresolution time series models [45, 46, 47].

In terms of knowledge acquisition (KA) in complex systems, it can be ob-
tained in different ways, as it was explained in a review carried out by [48].
This KA is addressed in multiple fields of activity, as the engineering field
[49]. The knowledge acquisition can be accomplished using human experts to
obtain the expertise knowledge about a specific field, but also this task can
be performed automatically based on data, applying machine agents. These
machine agents employ different computational intelligence technologies, as
statistical analysis, machine learning techniques as neural networks, neuro-
fuzzy systems, support vector machine and so on, that allow them to perform
an autonomous knowledge discovery process, generating knowledge models,
hidden in the data collected from the plants. In this paper, the knowledge
used to implement the software sensor is obtained using both sources: the
human experts for the first case study and the machine agents for the second
case study.

In this work, a new knowledge based methodology for Recursive Non-
linear PLS is introduced, integrating knowledge about the process into PLS
regression to overcome both the problems of non-linearity and the time-
varying changes of the industrial processes. Firstly, an NPLS model is made
using the PLS regression over an extended matrix of input. In this way,
the input matrix is augmented with knowledge in way of expected generic
non-linear relationships between the output variable and some of the original
input variables, these relationships can be provided by experts, or sourced
another way. These knowledge and expertise, can be expressed by means of
fuzzy rules, polynomial, exponential, logarithmic, and so on, representations
to deal with the non-linearity of the process. This knowledge can also con-
sider delayed variables, which permits to face with the dynamic nature of
the industrial processes. Finally, a recursive version of the NPLS, based on
the recursive exponential weighted with the kernel algorithm [26], is used to
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modify the model and enable it to adapt to the process changes.
Taking into account all this, the major contributions of this work can

be summarized as: (1) Systematize a methodology for integrating knowl-
edge about the process in the NPLS regression, here knowledge collecting
involves a few well established raw non-linear relationships regarding vari-
ables, sourced by experts, or by an alternative way if these are not available;
(2) extend the previous methodology including recursiveness in the non-linear
PLS algorithm considering the non-linearity, the dynamics, the collinearity
and the time-varying characteristics of the variables in industrial process;
and (3) ensuring consistent results in real plants.

The remainder of this paper is organized as follows. In section 2, the PLS
method and the RPLS algorithm proposed by [26] are briefly presented. In
section 3, the RNPLS based on knowledge algorithm is detailed, and in the
next section the effectiveness of this method is demonstrated by applying
the RNPLS algorithm to two complex plants, a real industrial evaporation
station of the sugar industry and a simulation benchmark of a Wastewater
Treatment Plant. Finally, conclusions are given in the last section.

2. Recursive PLS algorithm

PLS regression [5, 50] is widely used by many reasons; it can calculate
regression models from high collinearity data, allowing to analyze data with
more variables than individuals, resulting models are able to provide stable
predictions, minimizing the rate of adjustment, being able to manage data
with missing information and to identify outliers in the data [38].

PLS determines a projection structure that models the relationship be-
tween a response matrix Y ∈ Rn×p and the prediction matrix X ∈ Rn×m.

X =
A∑

a=1

tap
T
a + E = TPT + E (1)

Y =
A∑

a=1

taq
T
a + F = TQT + F (2)

where T is known as the score matrix, P and Q are the loadings and E
and F are the residual matrices of X and Y respectively, for a model with
a latent variables determined using cross-validation. Each score is extracted
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through deflating X and Y matrices by the non-linear iterative partial least
squares (NIPALS) algorithm [51].

Xa = Xa−1 − tap
T
a , Ya = Ya−1 − taq

T
a (3)

Once the PLS model is calculated using the process historical data until
all the data structure variance can be explained, it is possible to carry out
predictions of new estimates using the following equations:

T = XR, R = W
(
PTW

)−1
(4)

Ŷ = XBPLS, BPLS = RQT (5)

where BPLS is the matrix of regression coefficients and W is the PLS weights
matrix.

Regression coefficients provided by PLS can be used to predict the value
of the observed variables on-line. However, the historical data used to build
the PLS model should contain all possible future states and process con-
ditions and this is not usually possible. This includes not only the states
achieved under normal operation conditions but also those related to envi-
ronmental conditions, raw materials changes, etc [52]. Additionally, most of
the industrial processes exhibit time-varying behaviour and thus need some
approach to face the on-line adaptation. So, when new sample data xt, yt
became available, from the physical sensors or from the laboratory analysis,
the parameters of the PLS model, eq. (5), need to be learned on-line and
updated recursively (soft-sensors are usually called adaptive soft-sensors in
this context). In this on-line learning, some strategy needs to be used to
update the model parameters including recent data and forgetting the older
ones, allowing its use in applications where the time-varying behaviour is
relevant. This problem is usually solved by using an exponential weighting
approach, usually a forgetting factor.

The adaptive soft sensor used in this paper is the recursive version of the
PLS method, i.e., the RPLS method [26], which uses the current model, in
this case in form of the covariance matrix, and new data samples to update
the model. The adaptation requires weighting down the preceding model us-
ing a variable forgetting factor. This method is called exponentially weighted
recursive PLS algorithm and combine the improved PLS kernel algorithm de-
veloped by [53], that is proven to be faster than the NIPALS algorithm, with
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the updating of the covariance matrices XTX and XTY. Those matrices
are updated as new data are available and former data are exponentially
discarded:

(
XTX

)
t

= λt
(
XTX

)
t−1

+ xT
t xt (6)(

XTY
)
t

= λt
(
XTY

)
t−1

+ xT
t xt (7)

where xt and yt are the new (1×m) and (1×p) predictor and response vector
observed at time t respectively and (XTX)t and (XTY)t are the updated
covariances at time t while the old data are discounted exponentially with a
forgetting factor λt with (0 < λt ≤ 1) as new data are added. As it is known,
if λt = 1 no discount of past data is done.

The discounting of old data when new data is available is necessary to
account for the time varying nature of the processes. It is possible to do
it with a constant forgetting factor, or a variable one. The problem with
constant forgetting factor is that it is necessary the persistent excitation in
the process, that is not always possible, in these cases the covariance matrix
become ill-conditioned and the accuracy of the resulting model will be poor.
To avoid that, forgetting factor for the variables, that discount old data only
when there is information in the new data is a better solution. [54] proposed
the use of equation (8) to estimate the value of λt. This equation is calculated
in each sampling interval.

λt = 1− [1− xt(X
TX)−1

t xT
t ]e2t

Σ0

(8)

being λt narrowed using equation 9.

λt = max{λmin,min{λt, λmax}} (9)

where e2t is the error term and can be calculated using the PLS regression
estimates, Σ0 = σ2

0N0, being σ2
0 the expected measurement noise variance in

the output variable and N0 the nominal asymptotic memory length, that can
be used to adjust the speed and smoothness of the adaptation.

In ordinary PLS algorithm, xt and yt variables need to be mean centred
and scaled before using them to calculate the model. In time varying process,
mean and variance may be changing with time, so both need to be updated
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at each sampling interval in order to mean centre and scale the new data that
come from the plant. This can be done, in two forms, the first one, proposed
by [26], instead of mean-centring the data, augments the dimension of the
vector of observed variables x with an unity to account for the constant term,
i.e., the new data is:

xt = [x1t x2t ... 1] (10)

With this method the information regarding mean and variance can be
extracted from covariance matrices. Another way to update the mean and
variance is to use the exponential moving average. In this paper, the same
equations that would be obtained from the extended matrices are used but
calculated directly using equations (11) and (12) and executed every time a
new sample is available.

xt =
λt (
∑

x)t−1 + xt

Nt

(11)

var (x)t =
(
∑

x2)t −Ntx
2
t

Nt − 1
(12)

being x the (1×m) vector of means for the observed variables, var (x)t the
(1×m) vector of variances for the observed variables and Nt is the effective
window length. Similar equations can be used to calculate mean and variance
for predicted variables y.

Using the calculated values for the mean and variance, new data are
centred and scaled before being introduced into the covariance matrices. If
a variable forgetting factor would be used, the number of observations taken
into account to calculate the moving average, i.e., the effective memory length
would be:

Nt = λtNt−1 + 1 (13)

3. Knowledge based RNPLS

Nowadays, especially in the continuous production processes, information
and knowledge about the process is available through different sources and
can be formalized in different ways. Technicians in charge of processes have
gathered through years expert knowledge which can be expressed by fuzzy
rules or qualitative mathematical formulations. Usually, in the design stage of
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industrial plants, simple models and simulators are used to size the equipment
and to design the process and its control systems, being also alternatives
sources of this knowledge, even in other cases a detailed dynamic model are
available [55]. However, some times, the availability of experts is a challenge.
In these cases, it is proposed to use some software tools such as Alamo
(Automatic Learning of Algebraic MOdels) [56], to obtain some formulation
of this knowledge to be included in the PLS regression.

Two cases studies are introduced in this work for testing the proposal: in
the first case study, a real evaporation plant is involved, the knowledge was
available in way of well-known relationships managed by technicians about
process variables [57]. This information was used to find out base and raw
mathematical expressions that relate the observed measurements with the
output variable, extending the matrix of observed variables with these new
calculated variables.

However, sometimes the expertise in the plant is not available, or it is a
heavy challenge: this is the second case study introduced. In this case, it is
proposed to use some software, such as the mentioned Alamo tool [56], to
glimpse the relationship between observed and output variables.

Once the knowledge is obtained, this can be incorporate to the extended
input matrix in order to compute the recursive non-linear PLS as it is de-
scribed in the following subsection.

3.1. Recursive Nonlinear PLS algorithm

Here, knowledge about the process serves for dealing with the challenges
regarding non-linear characteristics and time-varying changes into a recur-
sive non-linear PLS method. First, a non-linear PLS methodology is built
combining PLS with the knowledge about the process to determine its non-
linear characteristics, i.e., the physical-chemical knowledge about the process
is used to glimpse raw non-linear relationships between some of the measured
variables and the predicted variables. After that, when new information is
taken from the plant, the NPLS is updated based on the new data and the
former model, to obtain a Recursive Non-linear PLS (RNPLS) algorithm.
So, this soft sensor is developed using two steps: building the non-linear
PLS with mentioned qualitative knowledge of the process and updating the
NPLS algorithm recursively when new information concerning the plant is
available. The scheme of methodology proposed is shown in Fig. 1 and in
the coming stages and steps:
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Figure 1: Flowchart of the proposed RNPLS based on knowledge soft sensor

Step 1. Non-linear PLS algorithm based on knowledge. The NPLS
method is implemented using knowledge of the process in terms of qualita-
tive relationships between the predictor variables and the predicted variable.
This stage is made up of sub-steps as follows:

1. Data training acquisition showing the current operation conditions.

2. Data pre-processing, to choose the process variables to build the input
or predictor matrix X ∈ Rn×m, where n is the number of observations
and m the number of variables, and the output or predicted matrix Y ∈
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Rn×p, where p is the number of predicted or unknown variables that
the sensor software has to calculate. Also in this step, it is necessary to
eliminate outliers, take into account the missing variables, and so on.

3. Using the knowledge of the process to formulate relationships in a sim-
ple mathematical way between the output variable and some of the
input variables of the matrix X. This step depends on the nature
of the process and the type of knowledge to be incorporated. If this
knowledge of the process, i.e., if the physical-chemical properties of in-
dustrial process are not well known or are very complex to establish
or this expertise is not available, this issue can be worked out using
software capable of generating algebraic models from data, such as the
Alamo method [56]. So, in this case, the qualitative knowledge is ob-
tained from the data collected in the first sub-step. The output of this
sub-step is a number of non-linear transformations of some of the input
variables: XNL1,XNL2, ...,XNLj, i.e., j new variables are obtained.

4. Extend the input matrix X with these transformed variables to create
the augmented matrix Xa, i.e., Xa = [X,XNL1,XNL2, ...,XNLj], with
Xa ∈ <n×(m+j) .

5. To capture the dynamic characteristics of the industrial process, a dy-
namic PLS (DPLS) method can be considered, taking into account,
for each observation, its previous L observations and stacking the data
matrix in the following manner: Xf = [Xa(t),Xa(t− 1), ...,Xa(t−L)],
where Xf ∈ <(n−L)×((m+j)(L+1)) is the final input matrix, Xa(t) is the
matrix data Xa at the t time instant and Xa(t−L) at the time instant
t− L, that is, with a L time samples delay.

6. This sub-step is optional. As the final input matrix Xf has a very large
dimension, i.e., the number of variables (or columns) of this matrix can
be very high [(m + j) · (L + 1)] and in order to avoid the ”curse of
dimensionality” problem, a dynamic feature selection over Xf can be
carried out [58], [59].

7. The final input matrix Xf and the output matrix Y are standarized
using z-score. Calculate the covariance matrices: XT

f Xf and XT
f Y.

8. Perform the PLS regression on those matrices using the PLS Kernel
modified algorithm explained in section 2, i.e., the inputs to the al-
gorithm are [XT

f Xf ,X
T
f Y] and the outputs are [W,P,Q,R,BPLS],

defined in eqs. 4 and 5. So, BPLS can be used to predict the output
variables.
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In this proposal, this step is calculated off-line, i.e., this first step is
necessary to train the NPLS model. The pseudo-code of this NPLS method
is shown in algorithm 1.

Algorithm 1 Knowledge based NPLS pseudocode algorithm

1: Initialize variables, and parametrize the problem: Number of training
data: n, number of latent variables, etc.

2: NPLS Training
3: Read training data for the initial NPLS.
4: Select the input matrix X and the output matrix Y
5: Apply non-linear transformations to the training data to obtain new ob-

served variables XNL1,XNL2, ...,XNLj.
6: Define the augmented matrix with the observed variables and

the transformed variables using non-linear relationships Xa =
[X,XNL1,XNL2, ...,XNLj]

7: Use past values to define a dynamic problem Xf = [Xa,Xa(t−1),Xa(t−
2), ...,Xa(t− L)].

8: [Optional] In the final matrix Xf defined before, performs the dynamic
feature selection.

9: Normalize the input and output matrices: Xf and Y to z-score
10: Calculate the normalized covariance matrices XT

f Xf and XT
f Y

11: Call PLS modified Kernel Algorithm with these covariance matrices as
inputs [53]

12: Use BPLS to predict the desired variables.

Step 2. Recursive Non-linear PLS algorithm. To face to the time-varying
behaviour in industrial processes and to improve the on-line performance of
the designed soft sensor, a recursive approach based on the ideas of [26] is
also used. This algorithm is calculated on-line and predicts the value of the
unknown variables using the knowledge based NPLS method training in Step
1, when a new data input vector x ∈ <1×m consisting of m variables becomes
available, each sampling time. The adaptation of the NPLS algorithm is
carried out when the target vector y ∈ <1×p is also available, which does
not occur in each sampling time, because in realistic industrial scenarios, the
target vector is sampled with a very low sampling rate, called in this paper
Ns. This procedure is explained in algorithm 2 and is made up of various
sub-steps:

1. Start with the NPLS algorithm based on knowledge trained in Step 1.
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2. Collect new data from the plant x ∈ <1×m. If the actual sampling time
is different from k ·Ns, with k = 1, 2, ... go to the prediction procedure.
If the actual sampling time coincides with the sampling rate of the
target vector, k · Ns, collect the new value of these variables from the
plant: y ∈ <1×p and go to the updating procedure.

3. Prediction procedure:

(a) Use the non-linear transformations obtained in the training pro-
cess to calculate the j new variables so as to extend the input ma-
trix using the new data collected from the plant: xNL1,xNL2, ...,xNLj.
The augmented matrix is now: xa = [x,xNL1,xNL2, ...,xNLj], with
xa ∈ <1×(m+j).

(b) Use the L previous observations to implement the DPLS method
and to calculate: xf = [xa(t),xa(t − 1), ...,xa(t − L)], the final
input matrix, where now xf ∈ <1×((m+j)(L+1))

(c) Apply the dynamic feature selection over xf if this sub-step was
done in the training procedure of Step 1.

(d) Normalize the new data matrix: xf to z-score, using the last mean
and variance calculated.

(e) Call the NPLS trained in Step 1, i.e., use the BPLS obtained in
Step 1 to predict the desired variables: ŷ

4. Updating procedure:

(a) Use the same three first steps of the prediction procedure ex-
plained above to get the final input matrix: xf .

(b) The recursive method discounts the old data when new data is
available using a forgetting factor, λt. So now, this variable for-
getting factor is calculated as explained in section 2, and it is used
to compute the mean and the variance of the new data, x and y,
for the next iteration, because as the system is time-varying, it is
normal that the mean and variance can change. In addition, it is
used in the updating of the covariance matrices XT

f X and XT
f Y,

taking into account the old model and the new available data (eqs.
6 and 7 respectively).

(c) Perform the PLS regression on these new covariance matrices
using the PLS Kernel modified algorithm to obtain an updated
model.

(d) Then, use this new updated BPLS to predict the output variable:
ŷ.
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Algorithm 2 RNPLS pseudocode algorithm

1: Start with the initial NPLS method trained in algorithm 1
2: Define period between new observations of the target vector Ns

3: Initialize variables, and parametrize the problem: number of data for
recursive estimation(Nr,∞ in on-line real application), number of latent
variables, etc.

4: Recursive NPLS
5: for i=1 to Nr do
6: Add new x data
7: if (i % Ns==0) then
8: Add new y data
9: end if

10: Calculate the new variables applying non-linear transformations to
the observed variables xNL1,xNL2, ...,xNLj.

11: Build the augmented matrix with the observed variables and
the transformed variables using non-linear relationships xa =
[x,xNL1,xNL2, ...,xNLj].

12: Use L past values to define extra observed variables xf = [xa,xa(t−
1),xa(t− 2), ...,xa(t− L)].

13: [Optional] Apply the dynamic feature selection over xf if this sub-step
was done in the training procedure of Step 1.

14: Normalize new xf data using the last calculated value.
15: if (i % Ns==0) then
16: Normalize new y data using the new information available.
17: Use equation (13) to calculate the effective memory length: Nt.
18: Use equation (8) to calculate λt.
19: Use equations (11) and (12) to update mean and variance for xf

and y.
20: Update normalized covariance matrices XT

f X and XT
f Y using

equations (6) and (7) respectively.
21: Call Modified Kernel Algorithm using all the previous calculated

variables.
22: end if
23: Use BPLS to predict the value for the desired variables.
24: end for
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4. Experimental results

Here, the proposal is applied in two case studies, and the corresponding
results are shown. The first one is a real-world case study addressing the
prediction of the sugar concentration in an evaporation station of a real sugar
industry, in where the expertise about this process is available by qualitative
knowledge, which is involved trough generic mathematical relationships. The
second case is the estimation of the chemical oxygen demand (COD) variable
in a benchmark regarding a wastewater treatment plant. Here, the expert
knowledge is not available but through the ALAMO software this expertise
was emulated in order to glimpse qualitative knowledge to be included in the
computation. In order to check the performance of this proposal (RNPLS),
its results have been compared with other approaches such as DPLS and
knowledge based NPLS.

4.1. Case Study 1: Evaporation station of a real sugar plant

The first case study is the design of a ◦Brix soft sensor in an evaporation
section of a sugar factory. Sugar plants produce sugar crystals mainly from
sugar beets or sugar cane, involving various stages. The process generally be-
gins with the sucrose extraction, obtaining a juice, which needs to be refined
and concentrated in order to crystallise the sugar in batch vacuum pans [60].
Evaporation is very important in sugar factories, it is the most energy con-
suming section of the plant and also provides steam to the rest of the plant
equipment [61]. Evaporation is formed by several evaporators arranged in
series, called a multi-effect evaporation, in which the steam produced in one
effect is used in the next one, that operates at a lower pressure (Figure 2).

Figure 2: Evaporation section scheme
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The main variable to control in the evaporation process is the ◦Brix, which
is defined as the amount of soluble solid content present in the juice, mainly
sucrose, expressed as a percentage. Together with the purity, gives an idea of
the concentration of sugar in the juice, and it should be kept within a specific
range of values to avoid problems. If the ◦Brix are too high, caramelization
can occur and a crust of sugar can be formed in the equipment. If the sugar
concentration is too low, the vacuum pans, where crystallization takes place,
would need to evaporate the remaining water, increasing the batch time.

Several instruments can be used to measure ◦Brix on-line, such as refrac-
tometers, densimeters, microwaves and infra-red waves. These sensors are
expensive and require frequent maintenance, which limits their use to criti-
cal points in the process. This fact makes this variable an excellent candidate
to be estimated using a soft sensor, as they can also be used as a replacement
for the real sensor during maintenance or recalibration.

For the experiments, real plant data, sampled every 10 seconds, were used.
Fifty variables related with the evaporation are considered, shown in table
1. Various data sets were gathered up from the plant representing ordinary
operation conditions; specifically, a training data set of 7000 sampled data
and a validation data set with 15000 sampled data were collected from the
plant to design the soft sensor.

Table 1: Variables description
Id. Description Units Id. Description Units

P1 Steam pressure in evaporator 1 bar P2 Steam pressure in evaporator 2 bar
P3 Steam pressure in evaporator 3 bar P4 Steam pressure in evaporator 4 bar abs
P5 Steam pressure in evaporator 5 bar abs P6 Steam pressure in evaporator 6 mbar abs
T1 Temperature of the juice at evaporator 1 inlet ◦C T2 Temperature of the juice at R10 heat exchanger inlet ◦C
T3 Temperature of the juice at R13 heat exchanger inlet ◦C T4 Temperature of the juice at R14 heat exchanger inlet ◦C
T5 Temperature of the juice at R3 heat exchanger inlet ◦C T6 Temperature of the juice at R3B heat exchanger inlet ◦C
T7 Temperature of the juice at R8 heat exchanger inlet ◦C T8 Temperature of the juice at R9 heat exchanger inlet ◦C
T9 Temperature of the juice at thin juice tank outlet ◦C T10 Temperature of the juice at R10 heat exchanger outlet ◦C
T11 Temperature of the juice at R11 heat exchanger outlet ◦C T12 Temperature of the juice at R12 heat exchanger outlet ◦C
T13 Temperature of the juice at R3 heat exchanger outlet ◦C T14 Temperature of the juice at R3A heat exchanger outlet ◦C
T15 Temperature of the juice at R3B heat exchanger outlet ◦C T16 Temperature of the juice at R4 heat exchanger outlet ◦C
T17 Temperature of the juice at R5 heat exchanger outlet ◦C T18 Temperature of the juice at R6 heat exchanger outlet ◦C
T19 Temperature of the juice at R7 heat exchanger outlet ◦C T20 Temperature of the juice at R8 heat exchanger outlet ◦C
T21 Temperature of the juice at R9 heat exchanger outlet ◦C T22 Steam temperature in evaporator 1 ◦C
T23 Steam temperature in evaporator 2 ◦C T24 Steam temperature in evaporator 3 ◦C
T25 Steam temperature in evaporator 4 ◦C T26 Steam temperature in evaporator 5 ◦C
T27 Steam temperature evaporator 6 ◦C T28 Temperature of the steam from boilers to evaporation ◦C
W1 Mass flow of juice to heat exchanger R10 t/h W2 Mass flow of juice to heat exchanger R3 t/h
W3 Mass flow of juice to heat exchanger R3B t/h W4 Mass flow of juice to heat exchanger R4 t/h
W5 Mass flow of juice to heat exchanger R8 t/h W6 Mass flow of juice to heat exchanger R9 t/h
W7 Mass flow of juice from thin juice tank t/h W8 Mass flow of juice evaporator 6 outlet t/h
W9 Mass flow of steam from boilers to evaporation t/h T29 Temperature of the juice in evaporator 1 ◦C
T30 Temperature of the juice in evaporator 2 ◦C T31 Temperature of the juice in evaporator 3 ◦C
T32 Temperature of the juice in evaporator 4 ◦C T33 Temperature of the juice in evaporator 5 ◦C
T34 Temperature of the juice in evaporator 6 ◦C P7 Pressure of the steam from boilers to evaporation bar
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4.1.1. Experimental methodology

The aforementioned training data are used for knowledge based NPLS
method, following the different steps introduced in Algorithm 1. The first
step consists of using the available expertise to implement glimpsed new
variables, usually as non-linear relationships of the original variables, i.e., to
calculate XNL1,XNL2, ...,XNLj.

Here, this knowledge of the process involves non-linear relationships re-
garding the thermodynamic calculation of the vapour pressure of the juice,
which depends on the dry substance content [62].

In fact, the soft sensor could be developed using only the physical model
equations with reasonable results, but the use of the physical model has
some drawbacks that are described in [2]. Physical equations are for pure
sucrose solutions in ideal conditions and thermodynamic equilibrium, and
this is not true in an industrial environment. Also, these equations are very
sensitive to small variations in the two variables involved, steam pressure and
juice temperature at the evaporator output, so the calculations are not very
robust. This can be observed in Figure 3, where the estimation is close to
the real value, but is very noisy. When using PLS and NPLS methods, more
process variables are involved in the ◦Brix calculation, so the resulting model
provides more robust estimates.

Nevertheless, although the direct use of these models does not deliver a
very good estimation, the knowledge of the plant and the use of these models
provide expertise and knowledge to establish some underlying behavioural re-
lationships between variables, which are useful into the PLS problem. These
relationships are the same in each evaporation effect, so bx, Tj, Tv and Tx

can be related for the six effects in the following forms:

nlneq1 = ln([Tj Tv]) (14)

nlneq2 = Tj
2 (15)

nlneq3 = ln(1/ ln([Tj Tv])) (16)

nlneq4 =
√

ln([Tj Tv]) (17)

nlneq5 =
√

1/ ln(Tx) (18)

nlneq6 =
√

ln (Tj/Tx
2 + Tx) (19)

where Tj are the juice temperatures in ◦C at the output of all effects
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Figure 3: Results for ◦Brix calculated using the physical model

corresponding to variables T29 to T34 in table 1, Tv are the temperatures of
the steam leaving the evaporator chambers for all the effects corresponding
to variables T22 to T27 in table 1, Tx is the correction of the temperature
of the solution due to the presence of sugar. Tx can be supposed as the
difference between the juice temperatures Tj and the steam temperatures
Tv. In equations 14, 16, 17 and 18, [Tj Tv] represent the concatenation of
Tj and Tv vectors.

Also, the steam pressure of the vapour generated in the evaporators P
and the ◦Brix can be guessed as:

nlneq7 = ln(log10(P)) (20)

Finally, it is known that the ◦Brix obtained in the evaporation basically is
inversely proportional to the amount of juice flowing through the evaporation
F, so another relationship can be included.

nlneq8 = 1/F (21)
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The second step (see Algorithm 1) is to build the augmented matrix. So
in this case, the variables resulting from applying these eight equations for
each effect to the corresponding variables are added as extra columns to the
matrix of input variables X to form the augmented matrix Xa.

Also, in order to take into account the influence of past values in the
calculation of the predicted variable, the dynamic problem is solved including
past values of the variables as extra columns in the observed matrix to obtain
the final input matrix Xf defined in Algorithm 1. To be precise for this model
L = 4 lag variables are introduced, i.e., Xf = [Xa(t), [Xa(t−1), ..., [Xa(t−4)].
This value is calculated as a trade-off between improving the performance of
the static NPLS and not increasing too much the dimension of the final input
matrix: Xf , i.e., its number of columns: (m+j)∗(L+1) = (50+46)∗(4+1).
With this final matrix, the Modified Kernel PLS algorithm is executed to
obtain the NPLS soft sensor.

4.1.2. Results and discussion

Here, Step 2 of the proposal is applied, i.e., the on-line prediction of
the ◦Brix, using the RNPLS method (see Algorithm 2). To determine the
performance of the proposed RNPLS, the estimation made using the RNPLS
algorithm is compared with dynamic PLS (DPLS) method and with the
recursive dynamic PLS both with L = 4 past values of the observed variables,
i.e., Xf = [X(t),X(t− 1), ...,X(t− 4)] and with the knowledge based NPLS
trained in the first step. The comparison is made in terms of the mean square
error (MSE) between the real value of the variable and its predicted value
with validation data for each of the methods considered. The results of the
mean squared error (MSE) obtained for the different approaches with the
validation data can be seen in table 2.

The worst results are obtained for the case of the physical model, with a
very noisy prediction, that can be observed in Figure 3.

For the case of the non-recursive approaches, the results obtained using
the knowledge based NPLS are compared with the DPLS method. In both
cases, the number of latent variables considered are 12. The results can
be seen in Figure 4 and it can be clearly observed as the NPLS approach
improves significantly the estimation.

In both linear and non-linear predictions, i.e., in DPLS and NPLS soft
sensors, it is clear that the main error is due to the fact that the mean value
in the validation zone, i.e. with new data collected from the plant, is lower
than the mean for the training zone, because of the time-varying behaviour
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Figure 4: Comparison between ◦Brix predictions made with the dynamic PLS (upper plot)
and the non-linear dynamic PLS (lower plot).

of the real industrial process. This produces higher values for the predicted
variable than the real ones. This problem can be dealt with in the recursive
version of the algorithm.

The recursive approach considers that the NPLS is able to adapt to the
new operation conditions by including new information that can be added
to the previously available information and use it to update the covariance
matrices. In this case, the soft sensor is used on-line, making predictions
concerning the process variable, while the information relative to the output
can be added when new laboratory analysis results are available, which are
obtained each Ns sampling periods. The goodness of the adaptation depends
on the frequency of this analysis.

Now, with the NPLS trained in Step 1, new input data, x, are collected
from the plant in each sampling time, and it is supposed that new information
for the target vector, y, is available every 1440, 720 or 360 sampling periods,
i.e., three study cases are under consideration, that corresponds with 1, 2
and 4 hours of sampling.

So, following Step 2 of the method (Algorithm 2), the recursion or adap-
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Type of sensor
Linear
MSE

Non-linear
MSE

Dynamic PLS 2.5175 1.5871
Recursive PLS Ns = 1440 2.0153 1.3210
Recursive PLS Ns = 720 1.7501 1.2252
Recursive PLS Ns = 360 1.3113 0.9147
Physical model 2.7205

Table 2: MSE for the tested approximations

tation of the NPLS model is carried out every Ns sampling times. When this
recursive approach is used, the NPLS sensor software improves its perfor-
mance. In Table 2, the results for all the performed experiments are shown,
it is possible to observe thatthe proposed method, the RNPLS algorithm,
obtains better results than the linear recursive PLS for all cases, and as ex-
pected, the more frequently new information is added, i.e., the lower Ns is,
the better the prediction of the unknown variable. i.e., the best results are
for the RNPLS with new information included in the model every Ns = 360
sampled periods (1 hour). In Figure 5, the results for the recursive RNPLS
approximation are also shown.

To visualize the contribution of the different non-linear terms to the ◦Brix
estimation, the absolute value of the higher 50 PLS regression coefficients
BPLS for the observed variables X have been plotted in Figure 6. The
original non transformed variables are named following the notation defined
in Table 4, adding D1, D2, D3 and D4 to represent delayed variables. The
variables obtained via non-linear transformations, have been named using the
correspondent non-linear equation, followed by the name variable described
in Table 4 and finally the delay indication. A simple observation of the upper
plot of Figure 6, shows that different non-linear terms contribute significantly
to the predicted variable estimation. The coefficients shown correspond to the
values obtained using the training data of the RNPLS algorithm with Ns =
360, but these are not constant and evolve during the recursive estimation.
The evolution of the 5 most significant BPLS coefficients is plotted in the
lower graph of Figure 6. It can be seen as the coefficients are stable during
the validation experiment but their values vary to adapt the model to the
new information as it becomes available.

A more detailed analysis of the contribution of the non-linear terms to
the estimation is displayed in Table 3 where the sum of the BPLS coefficients
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Figure 5: Results for the Soft Sensor using the RNPLS. Upper plot includes new infor-
mation every 3600 seconds, intermediate plot adds new information every 7200 s and the
lower figure adds new information every 14400 s.

Figure 6: BPLS values for the Ns = 360 recursive NPLS. Upper plot: 50 highest values
of the BPLS coefficients. Lower plot: evolution of the 5 highest BPLS coefficients during
the recursive estimation.

24



for each non-linear transformation and its percentage over the sum of the
BPLS coefficients is shown. It can be seen as the contribution of the terms
obtained using non-linear transformations is bigger to 58%. The most sig-
nificant contributions correspond to the transformations achieved applying
equations 14, 16 and 17.

Observation
∑

BPLS Percentage of the total
Linear terms 1.3264 41.63 %
Non-linear terms 1.8598 58.37%
nleq1 (14) 0.3452 10.83%
nleq2 (15) 0.1431 4.49%
nleq3 (16) 0.3455 10.84%
nleq4 (17) 0.3725 11.69%
nleq5 (18) 0.1463 4.59%
nleq6 (19) 0.2086 6.55%
nleq7 (20) 0.1383 4.34%
nleq8 (21) 0.1603 5.03%
Total 3.1862 100%

Table 3: Contribution of BPLS coefficients

4.2. Case Study 2: Wastewater Treatment Plant

The second example in which the RNPLS method is tested is the Bench-
mark Simulation Model no. 2 (BSM2) developed by the Working Groups of
COST Action 682 and 624 and the IWA Task Group [63]. This benchmark
consists of a Wastewater Treatment Plant (WWTP) that purifies contami-
nated water coming from urban activities making the effluent adequate for
pouring into a river or for use in other applications.

The layout of the BMS2 is shown in Figure 7. The plant can be divided
into various stages: a primary clarifier, activated sludge reactors where bio-
logical reactions are carried out to remove nitrogen and the organic matter, a
secondary clarifier, where clean water is obtained, and an anaerobic digester
where pathogenic microbes are removed from the sludge to make them suit-
able to be sent to a dumping site. A complete review on data driven soft
sensors for wastewater treatment plants can be found in [64] and the first ap-
plications of PLS in WWTP to predict process variables are in [65, 66, 67].

In the case described in this paper, the selected variable to be estimated
by the soft sensor is the Chemical Oxygen Demand (COD) of the effluent, i.e.,
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Figure 7: Process Diagram of the BMS2 plant

the output matrix Y. As secondary variables, used to estimate the COD, 114
process variables have been included to make up the original input matrix
X. These variables correspond to the 6 variables shown in Table 4, for the
19 currents numbered 1 to 19 in Figure 7. The benchmark plant model is
coded in Simulink (Matlab), and the simulation model has been executed to
generate data for 146 days under normal operation conditions. Measurements
were recorded every 15 minutes, so there are 14000 samples, the first 7000
samples for the training data set and the rest of the data for the testing data
set, i.e., the other 7000 samples.

4.2.1. Experimental methodology

The first step of the proposal is to apply the available knowledge about
the system to obtain extra generic underlaying relationships (Algorithm 1)
between variables for improving the performance during the computation
of the RNPLS. In this case, the physical-chemical properties of the process
are very complex and not very well known, so the underlaying relationships
between the measurements observed from the process variables and the es-
timated variable are not really known, so in order to save this knowledge
gap we use a software capable of generating algebraic models from data,
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Identifier Variable Units

ALK Alkalinity gCOD ·m3

O2 Dissolved Oxygen gCOD ·m3

TSS Total suspended Solids gSS ·m3,
Q Wastewater Flow m3 · d−1

T Wastewater Temperature ◦C
N2 Total Nitrogen mg · L−1

Table 4: List variables used

in this case the Alamo software [56], to obtain underlaying knowledge about
the behaviour between variables, complementing the expertise skill available.
According to all this, the following non-linear relationships were established
using both knowledge sources:

nlneq1 = 1/TSS (22)

nlneq2 = TSS2 (23)

nlneq3 = 1/ALK (24)

nlneq4 = ALK2 (25)

nlneq5 = 1/O2 (26)

nlneq6 = N22 (27)

nlneq7 = 1/N2 (28)

nlneq8 = 1/T (29)

nlneq9 = 1/ exp (O2) (30)

The relationship between process variables are supposed to be the same
for all the process currents, so the previous equations are applied to all of
them.

Next, the augmented matrix Xa is built, including the non-linear relation-
ships in the original matrix variable X. Also, due to the important transport
delays of the plant, a dynamic PLS has been implemented, where past mea-
surements are included as independent variables in the NPLS model, for this
example L = 2 lag variables are introduced. This value, as before, is calcu-
lated as a trade-off between improving the performance of the static NPLS
and not increasing by too much the number of columns of the final input
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Type of sensor
Normal operation

MSE
Operation disturbances

MSE
Linear Non-linear Linear Non-linear

Dynamic PLS 5.3411 3.9522 244.0255 72.1629
Recursive PLS Ns = 100 5.3410 4.1454 10.9437 10.3699
Recursive PLS Ns = 30 4.3807 3.6725 15.2080 4.8380
Recursive PLS Ns = 10 3.9300 3.5956 6.6147 3.9988

Table 5: MSE for the tested approximations

matrix: Xf , ((m+ j) ∗ (L+ 1)). In this case, the final input matrix is:

Xf =
[
Xa(t) Xa(t− 1) Xa(t− 2)

]
(31)

The covariance matrices are calculated with this matrix, as it was ex-
plained in section 3.1, and the Modified Kernel PLS algorithm is executed
to obtain the knowledge based NPLS soft sensor.

4.2.2. Results and discussion

Here, Step 2 of the proposal is applied, i.e., the on-line prediction of
the COD using the RNPLS method (see Algorithm 2). The estimation
performance of the proposal is compared, as before, with the dynamic PLS
method (DPLS), with only the original variables X and L = 2 past values,
i.e., Xf = [X(t),X(t− 1),X(t− 2)] and the knowledge based NPLS trained
in the first step and with the recursive linear dynamic PLS model (RDPLS)
with also two lag variables. The comparison is made taking into account
the mean square error (MSE) between the real value of the variable and its
predicted value with validation data for each one of the methods considered.

In Figure 8, DPLS and the proposed NPLS using non-linear relationships
are compared. It can be seen how the NPLS based on knowledge achieves
some improvement over the linear DPLS model. This can be observed even
better in Table 5, where the MSE for the different models considered in this
paper are compared with validation data. In the first column of Table 5, it
is possible to observe how the NPLS can reduce the MSE index of the linear
DPLS model under normal conditions.

Next, the proposed RNPLS method is applied on-line, making predictions
on the output process variable each sampling time. However, the recursive
updating action is only carried out when new information of the target vari-
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Figure 8: Comparison between COD predictions of the dynamic linear PLS (DPLS) (Upper
figure) and the knowledge based dynamic non-linear PLS (NLPS) (lower plot).

able is obtained from the plant i.e. every Ns sampling period, because of the
slow sampling rate of the output variable in real industrial scenarios.

As before, three scenarios are studied, the first is when y is measured or
obtained by laboratory analysis each Ns = 10 samples, i.e. every 150 min-
utes, a time relatively close to the sampling time of the system, 15 minutes,
as explained above in this section. The second case is when Ns = 30 sam-
pled times, i.e. every 7.5 hours, an intermediate time; while the third case
is when Ns = 100 sampled times, i.e. every 25 hours, a time very far from
the sampling time of the system. In Figure 9, the results for the RNPLS are
shown for the chosen update frequencies. The new information provides bet-
ter approximations for the predicted variable, i.e., the RNPLS obtains better
results than the recursive DPLS in all three cases and, for two cases, it is
better than the NPLS, and as expected, the more frequently the information
is added to the RNPLS, the better the results, as it is possible to see in the
first column of Table 5, where the best result is obtained when the RNPLS
soft sensor is updated every Ns = 10 sample times.

However, in this case, the improvement is not very impressive and it can
be hardly observed in Figure 9, due to the fact that the process is maintained
close to the operation point, i.e., within a limited range of operation. When
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Figure 9: Results for the Soft Sensor using the RNPLS approach with various periods in
which new information is added, i.e., when the updating procedure is carried out, upper
figure Ns = 100, intermediate figure Ns = 30 and lower figure Ns = 10 sampled times

the process changes abruptly due to changes in the operation conditions, the
improvement provided by the RNPLS is much more significant. In the next
experiment, while the soft sensor is working on-line, an increase is provoked in
one of the input variables, specifically in the flow of the thickener overflow.
In this situation, both the DPLS and the NPLS methods are not able to
provide good results, showing a high bias in the predicted variable, while the
RNPLS is able to adapt to the perturbation in the three scenarios considered,
as can be seen in Table 5. The second column of Table 5 shows the MSE
index when the aforementioned disturbance is introduced in the process, and
it is possible to see how, in this case, the improvement of the RNPLS over
the other methods is very important. Finally, in Figure 10, the NPLS and
RNPLS with an update period of Ns = 30 samples are compared, to show
the best results obtained with the proposed RNPLS soft sensor.

5. CONCLUSIONS

This paper presents the design of software sensors based on knowledge for
the estimation of unknown variables in real industrial processes. This work
proposes a new methodology to integrate the available knowledge about the
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Figure 10: Comparison between NPLS and RNPLS with Ns = 30 for an experiment with
a deviation in the flow of the thickener overflow.

process in a recursive non-linear PLS (RNPLS) method. This permit both
problems of the non-linearity and the time-varying feature of the industrial
processes to be overcome. First, an NPLS model is made by carrying out the
usual PLS regression over an extended matrix of input, built with the orig-
inal process variables and with non-linear transformations of some of those
variables sourced from the expert knowledge available around the process,
which permits to deal with the non-linearity nature of the industrial pro-
cesses. Also, some delayed variables can be introduced in the augmented
matrix to consider the dynamic nature of the real processes. Finally, a re-
cursive version of the NPLS is used to modify the model and adapt it to
the process changes when new information concerning the target vector is
available.

This RNPLS algorithm was applied to two case studies: to estimate the
sugar concentration in an evaporation station of a real sugar industry and to
predict the Chemical Oxygen Demand variable in a benchmark of a wastewa-
ter treatment plant. It was also compared with the PLS and knowledge based
NPLS algorithms. The results show that when the system is working in an
operation point without changes in the system, the RNPLS gives a better re-
sult, but one which is not very far from the other methods for predicting the
unknown variable, as happens in the example of the Wastewater treatment
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plant. However, if the system is time-varying, as is usual in real industrial
plants, the proposed RNPLS algorithm will give better results, with quite
significant improvements regarding the other methods, as tested in the two
study cases. Thus, the proposed methodology including knowledge in the
RNPLS algorithm allows an improvement in the prediction for non-linear
and time-varying processes.
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