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Abstract—Monitoring large-scale processes is a crucial task
to ensure the safety and reliability of the plants. This paper
proposes an approach for decentralized fault detection in large-
scale processes. The measured variables of the plant are divided
into multiple and possibly overlapping blocks using different
techniques based on data. Local monitoring methods are applied
in each block using DPCA (Dynamic Principal Component
Analysis) model. The local results are then fused by the Bayesian
inference strategy. This paper also compares different techniques
to decompose the plant looking for the best strategy from
the point of view of the fault detection results. The proposed
method was applied to the widely used benchmark Tennessee
Eastman Process, showing its effectiveness when compared with
a centralized method and another decentralized technique.

Index Terms—Fault detection, Dynamic principal component
analysis, Decentralized monitoring, Regression, Clustering.

I. INTRODUCTION

The complexity of monitoring systems in industrial plants
has seen substantial growth over the last years, implying an
increasing deployment of processing units and sensors. The
consequence is an enormous amount of data that will be
extremely useful to increase the knowledge about the plant
and to develop better monitoring methods, in particular, data-
based methods have been improved their effectiveness [1], [2].

Specifically, multivariate statistical process monitoring
(MSPM) methods, like PCA, Partial Least Squares (PLS),
Independent Component Analysis (ICA) and many others,
have been gained great importance in the process monitoring
field [3]–[6]. The main characteristic of these methods is their
ability to handle large amount of data from the plant and to
extract valuable information about the industrial process that
can be used to perform the fault detection, without having
any previous knowledge. Also, it is not required to train and
adjust a first principles plant model, which can be many times
unaffordable.

Furthermore, the variables are, usually, not only cross-
correlated but auto-correlated, implying that the current state
of these variables are the result of the past states of the plant.
In other words, the system is dynamic and it is necessary to
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include this auto or time-correlation in the monitoring model.
Some MSPM methods, like Canonical Variate Analysis (CVA)
[5], [7], already include the analysis of past states, but other
MSPM methods, like PCA, make use of the augmented data
matrix, which includes time-lagged variables along with not
lagged variables, to take in account the dynamic behaviour of
the plant. This is the Dynamic PCA (DPCA) method [8].

The amount of data from the plant is growing significantly,
with lot of sensors, control devices, etc. and this is a major
problem as it is required to increase the data transmission ca-
pability and to have high computing capacity. Sometimes it is
feasible to dispose a unique processor that receives all the data
collected in the plant, but this is only possible when the plant
size is reduced. In many other cases, for example, in chemical
plants, this solution is not feasible and a decentralized or
distributed approach has been considered by some authors [9]–
[15]. A decentralized method creates some blocks that group
the variables, using overlapping or not overlapping blocks,
that is, a variable can be included or not in different blocks.
Also, there is the possibility to do a complete decentralization,
with one block per variable, or to develop a system with
less blocks than variables [12]. Previous knowledge about the
plant, process topology, etc. are different options to perform
the plant division [16], [17], but a more practical alternative
is to use data-driven decentralization methods [9], [10], [12].
These methods only need to collect data and analyse them to
discover correlations between variables, which will be used to
decompose the plant.

In a previous paper, the authors have explored the effective-
ness of decentralized DPCA method using Neural Nets and
Sparse Partial Least Squares to analyse the plant and perform
the block division [18]. In that case, the fault detection method
worked with a decentralized plant where every variable had its
own block. Although that proposal had confirmed its effective-
ness, it is not possible to work with a completely decentralized
approach in very big plants because, as it is necessary to
implement one processing unit with every variable, the eco-
nomic costs as well as the transmission requirements will be
unbearable. So, it is necessary to explore other decentralization
methods that work with a reduced number of blocks.

This paper proposes some methods to find block distribu-
tions with different numbers of blocks for a decentralized
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fault detection method. In concrete, in this paper the plant
decomposition is carried out using neural netwoks, mutual
information and clustering methods. The objective is to test
their effectiveness in an complex industrial plant, comparing
them with other decentralization methods and with a central-
ized method, and looking for the best method from the point
of view of fault detection results.

This document is organized as follows: Section II explains
DPCA method, decentralized approach, with its variants, and
Bayesian inference strategy based decision fusion technique.
In Section III is detailed the decentralized proposal of this
paper. Section IV contains the application of this proposal
on the Tennessee Eastman Plant and a comparison with a
centralized DPCA approach, as well as other decentralized
method. The article finishes with Section V that presents the
conclusions and the future work.

II. PRELIMINARIES

A. Dynamic PCA

1) PCA: PCA is a technique based on analysing the data
measured in a plant. If there are m sensors and n measures
are taken, the data matrix X(n×m) can be constructed. This
matrix is normalized, by columns, to zero mean and unit
variance before the correlation matrix, S is obtained:

S =
1

(n− 1)
XTX (1)

S is decomposed, using singular value decomposition:

S = VΛVT (2)

where Λ contains the eigenvalues in its diagonal, while the
columns of V are the corresponding eigenvectors. The eigen-
values are the variance included in each principal component,
T, which are obtained using the loadings matrix, P:

T = XP (3)

The loadings matrix, P, is composed with the a first
columns of V. With high values of a, more data variance
is captured by PCA but the less dimensionality reduction
is achieved. So, the selection of this parameter is a trade-
off between a reduced number of principal components and
information retained in the PCA model.

a) PCA fault detection: In order to detect faults, the
statistics T 2 and Q are used [6]. T 2 (also known as Hotelling’s
Statistic), for a new measure x, is obtained as:

T 2 = xTPΛ−1a PTx (4)

And a fault is detected in measure x if T 2 is over its thresh-
old T 2

α. Also, the Q statistic, which measures the goodness of
fit and the system noise and disturbances, can be obtained, for
a new measure x, as:

Q = [(I−PPT )x]T [(I−PPT )x] (5)

where I is a square identity matrix.

A fault is detected in measure x if Q overpasses its threshold
Qα. The thresholds for T 2 and Q can be found in [19], and
their values are obtained for a certain significance level.

As the plant will suffer noise, disturbances, etc. it is
expected to get some false positives when doing the fault
detection. One way to reduce this problem is to require a
certain number of consecutive fault detections to consider that
there is a true fault in the system. This value must be set by
the user reducing as much as possible the false alarms, but
avoiding an excessive delay in the fault detection.

2) DPCA: In any industrial plant it is expected to find
certain influence of past states into the current state. This is not
taken in account by the standard PCA, but there is a modified
version of this method that includes this time correlation in its
analysis: the DPCA [8]. It follows the same steps as PCA but
the initial data matrix is replaced by the augmented matrix,
Xa, which is constructed using current and delayed measures
of the variables:

Xa =


XT
l+1 XT

l . . . XT
1

XT
l+2 XT

l+1 . . . XT
2

...
...

. . .
...

XT
n XT

n−1 . . . XT
n−l

 (6)

being Xt the vector of data at time t. The number of lags
included are represented by l, taking in account that this
parameter must be selected by the user choosing the value
that achieves the best results. One way to do this is through
Akaike Information Criterion (AIC) ( [5], [20]).

B. Decentralized fault detection

The monitoring methods usually work with a unique model
for the whole plant. So there exists one central processing unit
that receive all the measures from all the sensors and uses them
to determine the condition of the plant. This is the centralized
approach, but there is the option to divide the plant in blocks
of variables and implement a monitoring unit in each of these
blocks. This is the decentralized approach.

But this approach needs to define how the decentralization
is done and how to fuse the monitoring results obtained in the
blocks, because a unique and global diagnosis is needed.

The decentralization can be done using previous knowledge
about the plant, or analysing the available data [9]. The second
option looks more feasible because it is not common to have
a complete and detailed information about the installation.
Some authors have explored this possibility using techniques
as: Sparse PCA [12], Correlation [9], [10], etc. With these
methods the variables are grouped according to the strength
of the relations encountered by the method.

After the decentralization process the system will be divided
in one of this two ways: Completely decentralized decompo-
sition and Multi-block process decomposition [12]. In the first
case, each sensor has its own block and no more variables are
included. This option does not likely provide good results as it
ignores the correlation between variables. In the second case,
some blocks are created including different variables in each
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one. A variable can be grouped in various blocks and there
is a possibility to have the same or less number of blocks
than variables. In this case, the influence between variables
are taken in account for the monitoring.

Also it is necessary to decide what conditions are needed
to detect a fault in the decentralized plant. One option is to
activate the fault alarm if a fault is detected in any group but
this could lead to problems like false alarms. There are other
options to fuse the results from the blocks in order to improve
the performance of the monitorization , like Bayesian methods,
weighted voting, etc. [21].

1) Bayesian Inference Criterion: The Bayesian Inference
Criterion (BIC) [9] is able to fuse the results from differ-
ent locations in a decentralized system, delivering a unique
outcome. In PCA based monitoring model, each block will
send two results: statistics T 2 and Q; so BIC method must be
applied two times, one for each statistic.

For one statistic (T 2 or Q) in block i (with i = 1, 2, . . . , b),
the fault posterior probability is:

P(F |xi) = P(xi|F )P(F )/P(xi) (7)

and:

P(xi) = P(xi|N)P(N) + P(xi|F )P(F ) (8)

where N is the normal system state while F represents the
abnormal state. The prior probabilities are: P(N) and P(F ), for
the normal and faulty state of the system, respectively. An α
value is fixed for P(N) (with α ∈ [0, 1]), while 1−α is used for
P(F ). The values for P(xi|N) and P(xi|F ) are obtained using
the expressions:

P(xi|N) = e−ST/STi,lim , P(xi|F ) = e−STi,lim/ST (9)

where STi,lim represents the corresponding threshold for ST
in the i-th group. After this calculations, the BIC index is
generated using the results form all the blocks:

BICST =

b∑
i=1

P(xi|F )P(F |xi)
m∑
i=1

P(xi|F )

(10)

When BICST > (1 − α) a fault is detected with ST
statistic. As with PCA thresholds, the limit (1 − α) can be
adjusted using faultless test data looking for a value that fixes
the false alarms to the level demanded by the user.

C. Neural Networks

A widely used option for modelling non-linear systems are
the Artificial Neural Networks (ANN). This technique obtains
one or more outputs processing some inputs. Between the
inputs and outputs there are a set of interconnected processing
elements called neurons. These neurons receive a set of inputs
coming from other neurons, and calculate a linear combination
of these inputs. Then, this linear combination is transformed
with an activation function. The output of these neurons can

x1

x2

x3

Input
layer

Hidden
layer 1

y1

y2

Output
layer

Figure 1. Neural network example

feed another layer of neurons, or can be used to calculate the
net output. All the connections between neurons are weighted,
that is, each input of a neuron is multiplied by a weight,
and the adjustment of these weights is done during the net
training, which allows the net to “learn” patterns. A neural
net with three inputs, one hidden layer with four neurons, and
two outputs is shown in Figure 1.

D. Mutual Information

The Mutual Information (MI) is, in information theory, a
measure that quantifies the mutual dependence between two
variables [22]. Precisely, its value represents the “amount of
information” that a random variable can provide about another
random variable. MI can be understood as the reduction in
uncertainty about one variable when another variable is known.
High MI value means high uncertainty reduction, while low
values means small uncertainty reduction. If MI is zero, the
variables are not dependent.

MI for two random variables x and y is calculated as:

MI(x, y) =
∑
y

∑
x

P(x,y)log(
P(x,y)

P(x)P(y)
) (11)

where P(x,y) is the joint probability mass function of x and y,
and P(x) and P(y) are the marginal probability mass functions
of x and y, respectively. The MI value between two variables
is relevant only if an upper (1 − α)% critical threshold is
overpassed (α must be defined by the user).

E. Clustering

Clustering is a data mining technique which identifies in
an automated way groups of elements (clusters) according to
their similarity. The main objective is to find clusters so that:
the average similarity between elements inside the same cluster
will be high and the average similarity between elements from
different clusters will be reduced.

There are many algorithms to do Clustering, but one of the
most used is Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [23]. In this algorithm the user must
establish the parameter ε: the radius of neighbourhood, which
is used to do the clustering process: in each cluster must be
core points that have, at least, a certain number of points
placed at a distance d < ε from them; other points can be
included in the same cluster if there are placed at a shorter
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distance than ε. Any other point will be considered an outlier
and it will not be included in any cluster.

III. DISTRIBUTED FAULT DETECTION WITH DPCA

The proposal of this paper consists of three steps: Plant
decentralization, Local DPCA development and Global fault
detection. In the first one, Plant decentralization, the system
will be divided in blocks of variables only analysing data.
Then, the second is Local DPCA development, which trains a
Dynamic PCA in each one of the created blocks. Finally, in
Global fault detection step, a central processor will receive the
results obtained by each local DPCA, fuse them and generate
a global and unique result of the fault detection process. All
this steps are detailed below:

Step 1.- Plant decentralization: three decentralization strate-
gies were proposed: Neural Net, MI and Clustering. All of
them were selected because they are non-linear and based
on different concepts, specifically: regression, information and
clustering, respectively. All of them only need to process data
to divide the plant. Also, they can deliver diverse decentraliza-
tions sizes: Neural Net will create a full decentralized method
(same number of blocks as the number of variables ), while
Clustering allows to specify the number of blocks, giving the
chance to obtain methods with a reduced number of blocks.
MI based method will give a less decentralized approach than
Neural Nets. This will be very useful to check how different
decentralization sizes work.

a) Neural Net: This method was presented and explained
in [18]. It creates a full decentralization model, so each
variable has its own block. The process consists of creating
a neural net model for each variable, where this variable is
the output and the remaining variables are the inputs. Some
net configurations (number of hidden layers and neurons) are
tested and the one with the lowest value of rMSE is selected.
After that, the variables with highest influence in the net output
are included in the group along with variable which is the
output of the net. As was verified in [18], this model is able
to capture the non linear relations between the variables.

b) Mutual Information: This method is based on the
analysis of the MI matrix. It consists in two steps, in the
first one the plant is divided, getting one block per variable,
and in the second step a reduction in the number of blocks
is performed.The plant decomposition is done analysing the
mutual information (MI) matrix, where in each i-th row there
is the mutual information between the i-th variable with all
the rest of variables. So, each i-th block is composed by
the variables corresponding to the elements of that row that
overpass a certain threshold. Then, each variable has its own
block, but it is necessary to check if there exists blocks with a
reduced number of elements. In that case, these small blocks
are removed, and an extra block is created with the variables
whose blocks have been eliminated. The minimum number of
variables in each block is a parameter that must be selected
by the user.

c) Clustering: Here the objective is to group variables
that share any kind of relation. It is necessary to define which

characteristics of the variables are going to be processed to
discover these relations. In this proposal, a data matrix is
created, where row i contains the kurtosis and skewness of
variable i, the mean and the variance value of the row i from
correlation matrix, and the mean and variance of row i from
MI matrix. Then, this data matrix is processed using DBSCAN
algorithm, which generates blocks or clusters of variables
that share more relation between them. The parameter of
neighbourhood, ε, must be chosen by the user, selecting this
one that gives better result in the fault detection task.

Step 2.- Local DPCA development: Once the system is
divided, a local fault detection method must be implemented in
each block. This is done with Dynamic PCA, which processes
an augmented matrix Xa, composed of the variables that
belong to the corresponding block as well as some delayed
values of these variables. The number of lags, l, is selected
between different values, as well as the value for a parameter,
which is set to a value that retains a certain percentage of data
variance. The selected combination of both parameters is the
one that achieves the best results in the fault detection task.
Once the local DPCA are trained, the thresholds for T 2 and Q
are calculated. Then, these limits are tuned in order to obtain
only 1% of anomalous observations when analysing non faulty
data.

After these two off-line steps, then comes the fault detection
task:

Step 3.- Global fault detection. After the model training,
new measures are taken and processed in each block by local
DPCA models. These blocks deliver the current local values
for T 2 and Q, as well as the respective thresholds, which
are sent to a central processor. This processor fuses local
statistics through BIC index (Section II-B1), obtaining global
BIC values for T 2 and for Q, which are used to detect faults
in the whole plant: if one or both BIC indexes overpass their
corresponding thresholds, for a certain confidence level α,
a fault is detected. Also, as it is necessary to avoid false
alarms, another condition is set: a fault will only be detected
if a certain number of consecutive anomalous observations are
found. This number will be set by the user looking to avoid
false alarms but with a reduced fault detection delay.

The scheme of this method can be seen in Algorithm 1.

IV. ILLUSTRATIVE EXAMPLE

Tennessee Eastman Process (TEP) [24] benchmark was used
to evaluate the performance of the proposed approaches. Here
we present the results of three different decentralizing strate-
gies, including Neural Net, Mutual Information and Clustering
based methods.

TEP plant has been widely applied to test monitoring
methods [5], [12], [25]–[28] and it is a reference in this area.
The available data for this plant are composed of measures
of 52 variables, taken every 3 minutes, and faultless train and
test datasets are included. Also train and test datasets from
21 different faults are available (see Table I) [24]. Each train
dataset is formed by 500 samples while test datasets contain
960 samples.
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Algorithm 1 Data based decentralization with DPCA
1: Off-line steps:
2: Normalize train data (faultless)
3: if method: NeuralNet then . Step 1.a
4: for i=1 to m do . For each variable
5: Model Neural N. with varied parameters (layers, neurons)
6: Select model with lowest rMSE
7: end for
8: end if
9: if method: MI then . Step 1.b

10: Obtain MI matrix and thresholds
11: for i=1 to m do . For each variable
12: Take row i of MI: MIi and thresholds: MIthi
13: Select variables j that: MIi(j) >MIthi (j)
14: end for
15: Remove small groups
16: Create block with variables without group
17: end if
18: if method: Clustering then . Step 1.c
19: Create data matrix: kurtosis, skewness, etc.
20: Apply Dbscan & Get clusters
21: end if
22: Generate blocks using previous results
23: Develop DPCA local models . Step 2
24: for i=1 to b do . For each block
25: Develop local DPCA with different lags
26: Select DPCA model with best results
27: end for
28: On-line steps: . Step 3
29: for Each new measure do
30: for i=1 to b do . For each block
31: Obtain ST i = { T 2, Q } . Block statistics
32: end for
33: for ST={T 2, Q} do . For each statistic
34: BICST = f(ST1, ST2, . . . , STm)
35: if BICST overpass (1− α) then
36: Fault detection using ST
37: else
38: No fault using ST
39: end if
40: end for
41: end for

Table I
TEP FAULTS

Fault Fault description Fault type
1 A/C feed ratio, B composition constant (Stream 4) Step
2 B composition, A/C ratio constant (Stream 4) Step
3 D feed (Stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (Stream 1) Step
7 C header press. loss-reduced availability (Stream 4) Step
8 A, B and C compositions (Stream 4) Random variation
9 D feed temperature (Stream 2) Random variation
10 C feed temperature (Stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown -
17 Unknown -
18 Unknown -
19 Unknown -
20 Unknown -
21 Stream 4 valve Sticking

A. Experimental setup

Three different methods were tested in this work, each one
with its own parameters: number of lags, variance retained
by DPCA, etc. These parameters were adjusted after some
tests with train datasets looking to obtain the best monitoring
model in terms of: lowest average fault detection time, highest
number of faults detected and lowest number of faulty datasets
with false alarms. After the parameters of each method were
adjusted, the significance value α for BIC fusion is tuned using
test faultless dataset looking to reduce or avoid the presence
of false alarms.

For the first decentralization strategy, based on neural nets,
different models were created (using various numbers of
hidden neurons) and the one with the lowest value of rMSE
error was selected, for each variable. With respect to the
second strategy, MI based, the matrix MI data were obtained as
well as the respective thresholds. Each row of the matrix were
used to find which variables must be grouped together. Finally,
Clustering based strategy was developed using information
about Kurtosis, Skewness, and mean and variance values of
correlation and mutual Information of each variable.

After the decentralization, local DPCA methods were
trained try to get the best combination of parameters in order
to obtain the best fault detection results. Finally, the methods
were tuned to this values:
• Neural Net method used augmented matrices in local

DPCA with 2 lags, the α value for BIC was 0.9, after
3 consecutive anomalous observations a fault is detected,
the selected principal components in local DPCA retained
60% of variance, local thresholds in DPCA models were
tuned for a confidence level of 90% and a variable was
selected in each model when its coefficient is over the
mean of the maximum and minimum values for all the
variables inside the net. The value for BIC α was not
readjusted after using test data.

• MI method needed 4 consecutive anomalous observations
to detect a fault, local DPCA models were developed
with 3 lags in augmented matrices, also, local DPCA
retained 75% of variance in their principal components,
and α = 0.9 for BIC fusion. After some tests, this value
was modified only for T 2: α = 0.865.

• Clustering strategy was tuned to 5 consecutive anomalous
observations to detect a fault, 4 lags in the local aug-
mented matrices, 60% of variance included in principal
components in DPCA models, the value for α in BIC
was set to 0.99 and the clustering was done with ε = 0.8.
Using test datasets, α was set to: 0.987 for T 2 and 0.986
for Q.

B. Results

In this proposal the objective was to develop decentralized
monitoring using different plant decomposition methods based
on data to looking the best one for the fault detection task.
Also, the proposed methods are compared with a centralized
DPCA approach, whose results are taken from [5] and with
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other decentralized method: Weighted Dynamic Decentralized
PCA (WDDPCA), taken from [10], to see their effectiveness.

Some indexes were used to do the comparison: the Missed
Detection Rate (MDR), that is, what percentage of faulty
measures are classified as faultless data; the fault detection
delay, which measures how many samples are needed to detect
a fault after its occurrence; the False Alarm Rate (FAR),
which represents the percentage of non-faulty samples that are
classified as faulty; and, finally, the number of faults detected.

Table II shows the number of blocks implemented by each
method. ANN works with one block per variable, so it has
the highest grade of decentralization along with WDDPCA,
so they are the methods which need more local processing
units. Also, WDDPCA includes all variables in each block,
complicating the local data processing task. Then comes MI
based decentralization, with 42 blocks, so this technique is
able to slightly reduce the number of blocks. And, finally,
Clustering method can deliver a decentralized approach with
a reduced number of blocks, in this case, only 4 blocks.

Also, in Table II, it is shown that all proposals were
capable of detecting more faults than the centralized DPCA
and WDDPCA, particularly, ANN, which could find all the 21
faults. Also, MI decentralization detected all the faults using Q
statistic. FAR index took values from 0 to 0.2 for the proposed
methods, not too far from DPCA with T 2 and WDDPCA with
Q, but clearly lower than central DPCA with Q.

Table II
BLOCKS, FALSE ALARMS RATES AND FAULTS DETECTED (IN %)

ANN MI Clustering WDDPCA DPCA
Blocks 52 42 4 52 1
FAR T 2 0.2 0 0 2.41 0.6
FAR Q 0 0.2 0 0 28.1
Detected faults T 2 21 20 20 18 17
Detected faults Q 21 21 19 18 18

Tables III and IV contain the MDR results. This index gives
an idea about the sensitivity of each method.

Tables V and VI show the delay results for each fault and
each method. It should be taken into consideration that all
methods in the comparison need to detect some consecutive
anomalous observations, so the detection time shown in the
Tables must be increased by the corresponding values specified
in previous section, for each method.

Tables III and IV show that all decentralized methods were
better than centralized DPCA in all index and with both
statistics. Analysing the results, Neural Net method with T 2

delivered the best results of the comparison in MDR index (it
is the best in 15 faults) results, while MI and WDDPCA were
the best using Q, as they got the lowest value in 13 cases out of
21. When comparing MDR results with Q only for MI against
WDDPCA, MI is better in 14 faults while WDDPCA obtains
the lowest MDR in 13 faults. Clustering method, which is the
decentralization with the lowest number of blocks, delivered
worse MDR values than the other decentralized methods, but
it was able to deliver better results than central DPCA in 15
faults with T 2, and in 18 faults with Q.

Table III
MISSED DETECTION RATE (MDR), IN %. T 2

Fault ANN MI Clustering WDDPCA DPCA
1 0.13 0 0.38 0.25 0.6
2 1.13 1.13 1.01 1.50 1.9
3 94.11 99.62 98.24 97.25 99.1
4 27.44 88.96 85.43 0.00 93.9
5 70.30 74.78 75.38 72.50 75.8
6 0 0 0.38 0.50 1.3
7 0 0 0 0 15.9
8 0.88 2.26 2.51 2.25 2.8
9 93.61 99.00 99.12 99.13 99.5
10 38.22 51.07 58.29 55.63 58.0
11 43.98 59.85 56.66 14.88 80.1
12 0.38 0.50 0.50 0.75 1.0
13 4.39 4.89 5.40 5.25 4.9
14 0 0 0 0 6.1
15 83.08 97.37 96.61 96.38 96.4
16 48.75 73.90 78.02 76.00 78.3
17 8.77 9.66 38.32 4.38 24.0
18 9.77 10.41 10.55 10.25 11.1
19 97.74 92.60 99.75 77.25 99.3
20 42.11 46.42 59.80 45.50 64.4
21 55.51 62.36 67.71 46.50 64.4

Table IV
MISSED DETECTION RATE (MDR), IN %. Q

Fault ANN MI Clustering WDDPCA DPCA
1 0 0 0 0 0.50
2 1.25 0.88 1.51 1.50 1.50
3 98.50 97.74 98.99 97.63 99.00
4 0 0 0 0 0
5 75.56 71.39 66.96 0.00 74.80
6 0 0 0 0 0
7 0 0 0 0 0
8 2.01 1.88 2.51 1.88 2.50
9 98.37 96.99 99.50 99.38 99.40
10 38.72 47.93 59.30 31.00 66.50
11 8.90 3.76 13.44 9.63 19.30
12 0.5 0.5 0.63 0.63 2.40
13 4.76 4.39 4.15 5.13 4.90
14 0 0 0 0 0
15 96.24 95.11 95.73 96.88 97.60
16 54.39 54.83 60.05 31.75 70.80
17 2.88 2.01 3.89 2.25 5.30
18 9.65 9.16 9.42 9.50 10.00
19 75.31 25.22 72.99 24.25 73.50
20 38.97 31.49 46.23 30.50 49.00
21 47.49 47.43 52.39 46.88 55.80

Tables V and VI reveal that, again, ANN achieved the best
detection time using T 2 (as it is the fastest in 15 faults),
while, MI method was the best using Q, with the lowest
detection delay in 14 faults. Clustering based decentralization
was the best in 9 fault, the same result as WDDPCA. Also,
Clustering get lower detection times than central DPCA,
because, comparing only these two methods, Clustering was
the fastest in 18 faults with T 2 and with Q.

Summarizing, using T 2, ANN achieved the best results in
MDR and, also, in detection delay; while MI and WDDPCA
decentralizations were the best using Q. It is known that T 2

monitors the model, while Q processes the noise, disturbances,
etc. [6], and, as ANN got better results with T 2, this method
probably had captured the behaviour of the model better than
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Table V
DETECTION DELAY, IN SAMPLES. T 2

Fault ANN MI Clustering WDDPCA DPCA
1 1 0 3 2 6
2 9 9 8 12 16
3 40 nd 80 nd nd
4 0 74 144 0 151
5 0 0 0 0 2
6 0 0 3 4 11
7 0 0 0 0 1
8 7 18 20 18 23
9 0 2 2 nd nd

10 22 52 56 48 101
11 9 8 5 5 195
12 0 0 0 2 3
13 35 41 44 42 45
14 0 0 0 0 6
15 573 675 671 nd nd
16 0 33 304 189 199
17 20 19 35 21 28
18 83 83 84 84 93
19 8 420 nd 17 nd
20 78 77 80 81 87
21 415 505 514 258 522

nd=not detected

Table VI
DETECTION DELAY, IN SAMPLES. Q

Fault ANN MI Clustering WDDPCA DPCA
1 0 0 0 2 5
2 10 7 12 12 13
3 86 316 nd nd nd
4 0 0 0 0 2
5 0 0 0 0 2
6 0 0 0 0 1
7 0 0 0 0 1
8 16 15 16 15 21
9 3 359 nd nd nd

10 32 32 44 26 50
11 3 2 2 5 7
12 0 0 0 2 8
13 36 35 33 41 40
14 0 0 0 0 1
15 571 461 572 nd nd
16 16 15 33 13 196
17 18 16 19 19 24
18 78 76 77 77 84
19 79 7 79 3 82
20 78 73 78 74 84
21 265 253 281 257 286

nd=not detected

the other methods, as it was stated in [18].
The evolution of BICQ and Q is shown in Figure 2 when

Fault 11 is considered. All methods are able to detect the fault
immediately after its emergence. But, this fault is a random
variation (see Table I), so the fault appears and disappears
continuously. And this behaviour is detected by the methods,
going up and down of their thresholds. DPCA is the least
sensitive as it has more observations below the limit. Also,
the fault type explains why MDR rates are so high in some
faults, because MDR considers as faulty observations all the
samples after the fault appears. The same happened for T 2.

In any case, the proposed three decentralization strategies

Figure 2. Fault 11. Q and BICQ indexes.

achieved better results with both statistics than the central
DPCA, showing that decentralized approaches are preferable
to centralized one. And, in view of the results, more blocks
imply more faults detected and lower MDR and lower fault
detection delay. Also, the proposed method ANN was able
to improve the results of the other decentralization strategies,
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while MI method were able to get better, or at least, equal
results than the WDDPCA method, with the advantage of
having smaller number of blocks. The Clustering method,
with the smallest number of blocks, worked better than the
centralized approach and, also, it delivered results not too far
from the remaining methods of the comparison.

After considering the results, it is clear that when working
with big plants, which have a large number of sensors and
the maximum number of blocks are restricted, it is possible
to develop a distributed monitoring method with a reduced
number of blocks and it will be assured that the results will
be better compared with non distributed methods.

V. CONCLUSIONS
Some decentralized monitoring methods were presented in

this paper. All of them analyse the relation between the mea-
sured variables to decide how to group them without having
previous knowledge about the plant. The decentralization were
based on: neural nets, mutual information and clustering. After
the decentralization, a DPCA model was developed in each
block to process the measures and send the results to a central
processor, which fuses all local results using BIC.

This research tried to find how different decentralization
methods perform, and the results of the tests showed that two
of the proposed methods, ANN and MI, worked better than
the other decentralization strategy, WDDPCA, while all the
three proposals were better than a centralized DPCA in terms
of number of faults detected, MDR and detection delay. The
proposals provide different options for decentralization: from
a full decentralization (one block per variable) to a reduced
decentralization, making it possible to work with different
plant sizes or computational resources. Also, ANN, MI and
Clustering included less variables per block than WDDPCA,
making the data processing task easier and faster.

For future work, it will be interesting to use more decen-
tralization methods trying to find more effective techniques.
Also, it will be advisable to use different MSPM techniques
to detect faults.
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