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Abstract

Mesenchymal stem cells (MSCs) have unique and beneficial properties and are currently used to treat a broad
variety of diseases. These properties include the potential for differentiation into other cell types, secretion of
different trophic factors that promote a regenerative microenvironment, anti-inflammatory actions, selective
migration to damaged tissues, and non-immunogenicity. MSCs are effective for the treatment of ocular surface
diseases such as dry eye, corneal burns, and limbal stem cell deficiency (LSCD), both in experimental models and in
humans. LSCD is a pathological condition in which damage occurs to the limbal epithelial stem cells, or their niche,
that are responsible for the continuous regeneration of the corneal epithelium. If LSCD is extensive and/or severe, it
usually causes corneal epithelial defects, ulceration, and conjunctival overgrowth of the cornea. These changes can
result in neovascularization and corneal opacity, severe inflammation, pain, and visual loss. The effectiveness of
MSCs to reduce corneal opacity, neovascularization, and inflammation has been widely studied in different
experimental models of LSCD and in some clinical trials; however, the methodological disparity used in the
different studies makes it hard to compare outcomes among them. In this regard, the MSC route of administration
used to treat LSCD and other ocular surface diseases is an important factor. It should be efficient, minimally
invasive, and safe. So far, intravenous and intraperitoneal injections, topical administration, and MSC transplantation
using carrier substrata like amniotic membrane (AM), fibrin, or synthetic biopolymers have been the most
commonly used administration routes in experimental models. However, systemic administration carries the risk of
potential side effects and transplantation requires surgical procedures that could complicate the process.
Alternatively, subconjunctival injection is a minimally invasive and straightforward technique frequently used in
ophthalmology. It enables performance of local treatments using high cell doses. In this review, we provide an
overview of the current status of MSC administration by subconjunctival injection, analyzing the convenience,
safety, and efficacy for treatment of corneal failure due to LSCD in different experimental models. We also provide a
summary of the clinical trials that have been completed, are in progress, or being planned.
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Background
Corneal damage is one of the main causes of blindness.
To safeguard the visual function, it is necessary to pre-
serve corneal transparency, which depends on many fac-
tors. One of the critical aspects of corneal transparency
is the health of the epithelial barrier, which must be con-
stantly renewed to accomplish its many vital functions.
This continuous epithelial turnover is possible because
of a population of limbal epithelial stem cells (LESCs) lo-
cated at the basal layer of the corneoscleral limbal niche
[1–4]. Destruction or dysfunction of the LESCs or their
niche induces limbal stem cell deficiency (LSCD). LSCD
syndrome is characterized by the presence of an unstable
epithelium with subsequent ulceration, ingrowth of con-
junctival tissue onto the corneal epithelium, neovascular-
ization of the corneal surface, and persistent
inflammation and chronic pain, all of which can ultim-
ately cause vision loss due to corneal opacity [5].
Cultivated limbal epithelial transplantation is the

current treatment of choice for treating patients suffer-
ing from ocular surface failure due to LSCD [6]. Al-
though it represents one of the first and most
recognizable successes of regenerative medicine, this
treatment is not exempt from limitations, such as the
low availability of donors and limited success in the
most severe cases [7–10].
Mesenchymal stem cells (MSCs) are considered to be

a very attractive candidate for cell-based therapies in
several clinical applications. There are already numerous
works indicating that the therapeutic effects of MSCs
rely not only on their innate differentiation capacity, but
also on their immunomodulatory and anti-inflammatory
properties to repair damaged tissues [11]. MSCs have
been widely studied as a successful therapy to treat ocu-
lar surface failure due to LSCD. They facilitate recovery
of the corneal epithelium and reduce corneal opacity
and inflammation of the ocular surface, not only in ex-
perimental models but also in humans [12].
Currently, there is a lack of consensus regarding the

best route to administer MSCs to the ocular surface for
corneal regeneration. Subconjunctival injection, the
focus of the present review, is a straightforward tech-
nique that is frequently used in the daily ophthalmologic
practice to administer different drugs. This approach
employs a simple, safe, and minimally invasive technique
to deliver locally high cell doses in a low volume [13].
Besides, there are different techniques that have been

commonly used so far. In some preclinical studies, MSCs
were administered topically [14–16], using natural or syn-
thetic substrata such as amniotic membrane (AM) [17–21],
fibrin [22], or films made of poly-L-lactic acid [14, 23, 24] or
polyamide [25]. In other studies, the cells were injected
intravenously [26–28], intraperitoneally [29, 30], intracor-
neostromally [31, 32], or subconjunctivally [33–39]. There

are also human clinical studies in which AM [12], sub-tenon
injections (clinicaltrials.gov_NCT04224207, NCT02144103,
and NCT03011541), or subconjunctival injections are used
to administer the MSCs (clinicaltrials.gov_NCT02325843,
NCT01808378, NCT04484402, NCT03967275, and
NCT03237442). The first clinical trial performed and pub-
lished using bone marrow (BM)-MSCs on AMs (clinical-
trials.gov_NCT01562002) was demonstrated to be both safe
and effective in the restoration of the corneal epithelial
phenotype for the treatment and improvement of patients
suffering from LSCD [12]. Additionally, sub-tenon injection
is also a suitable ocular route of drug administration that in-
volves the delivery of medication or cells through the area
between the sclera and the Tenon capsule. For instance, in-
jection of umbilical cord Wharton’s jelly-derived MSCs into
the sub-tenon space had beneficial effects on visual func-
tions in retinitis pigmentosa patients by reactivating the
degenerated photoreceptors (clinicaltrials.gov_NCT04224207)
[40]. In addition, two more clinical trials using sub-
tenon injection to transplant adipose tisue (AT)-MSCs
(clinicaltrials.gov_NCT02144103) and BM-MSCs (clinical-
trials.gov_NCT03011541) are in progress for the treatment
of glaucomatous neurodegeneration and retinal and optic
nerve damage, respectively.
However, there are some drawbacks to these adminis-

tration routes that are not present with subconjunctival
injection: (1) systemic administration presents a high
risk of side effects, and the number of cells that reach
the target tissue is low; (2) topical administration in-
volves loss of cells, as they are not retained on the ocular
surface for a long time; and (3) the use of carrier sub-
strata requires a surgical procedure, increasing the cost,
while limiting the number of cells that can be
transplanted.
In this review, we provide an overview of the current

status of MSC administration by subconjunctival injec-
tion, analyzing its convenience, safety, and efficacy for
the treatment of corneal failure due to LSCD. We also
identify clinical trials that are completed, in progress, or
that are planned.

Main text
Use of MSCs for treating corneal epithelial damage
MSCs constitute an adult stromal stem cell population
that originates from the mesoderm. Although BM and
AT are the most utilized sources, MSCs are also present
in muscle, cartilage, dental pulp, umbilical cord, pla-
centa, and in the limbal stroma of mammalian eyes,
including humans [11, 41]. To standardize the
characterization of these cells, the International Society
for Cellular Therapy established three minimal criteria
[42]: (1) adherence to plastic surfaces in standard culture
conditions; (2) multipotent differentiation potential to
form bone, cartilage, and adipose cells in vitro; and (3)
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presentation of a specific surface-antigen expression pat-
tern, including CD90, CD105, and CD73, but without
CD34, CD45, CD11b or CD14, CD19 or CD79α, and
HLA-DR [42].
Several in vitro and in vivo studies using MSCs for

corneal epithelium regeneration have been published re-
cently. All of these works, performed in different animal
models, present encouraging results regarding safety,
corneal epithelium regeneration, transparency recovery,
healing process, and ultimately vision restoration [17, 23,
26, 43]. These results could be due either to the transdif-
ferentiation of the transplanted MSCs into corneal epi-
thelial cells or to other well-known features of MSCs,
such as migration towards the injured areas, secretion of
trophic and growth factors capable of stimulating resi-
dent stem cells, and reducing tissue injury and inflam-
mation [23, 26, 44, 45].
MSC-secreted growth factors are considered essential

for the proliferation and migration of corneal epithelial
cells, and they contribute to the corneal epithelium re-
generative process [46–49]. The anti-inflammatory ac-
tion of MSCs is associated with secreted soluble factors
[29, 35] that suppress the infiltration of inflammatory
cells and CD68+ macrophages in the damaged tissue,
inhibiting the expression of inflammatory proteins [16,
33, 35].
MSCs have reduced expression of major histocompati-

bility complex (MHC) class I antigens, and they do not
express MHC II or co-stimulatory molecules like CD80,
CD86, and CD40 [50, 51]. Thus, the MSCs have a non-
immunogenic phenotype, making it possible to use them
allogeneically in cornea regeneration and avoiding the
need of immunosuppression after transplantation.

MSC administration routes for treating corneal epithelial
damage
The route of MSC delivery is one of the main problems
to overcome in achieving optimal benefits from stem cell
therapy. While some authors, using either intravenous
or intraperitoneal systemic administration of MSCs, re-
ported the migration of stem cells to the injured cornea
[26, 28, 52], others did not [29], suggesting instead that
the therapeutic effect was due to the trophic factors se-
creted by MSCs. Some studies indicate that intravenous
administration during the acute phase of corneal epithe-
lial damage can improve clinical signs such as epithelial
defects, neovascularization, and corneal opacity, in both
mice [26, 28] and rabbits [27].
The use of cell carriers for MSC transplantation is one

of the most frequently applied techniques. Clinical signs
are reduced when MSCs are transplanted to the ocular
surface using AM as carrier both in experimental models
[17–21] and in humans [12]. However, the cell dose that
can be delivered is normally lower than by using other

routes. In addition, as a human product, AM has limited
availability, risk of disease transmission, and a high eco-
nomic cost [53]. Another natural carrier is fibrin gel,
capable of helping repair the ocular surface when trans-
planted with or without MSCs [22]. Moreover, synthetic
cell carriers such as contact lenses [54], poly-L-lactic
acid [14, 23], and polyamide [25] have been studied to
find reproducible substrata that allow cell adhesion, via-
bility, proliferation, and regeneration of the ocular sur-
face when they are transplanted with MSCs. However,
the number of stem cells delivered by these carriers is
limited compared to the cell dose that can be adminis-
tered by injections. Additionally, most of the substrata
require suturing to the ocular surface. This extra step in
the surgical intervention and the follow-up surgery to re-
move the stitches make the whole process more tedious,
risky, and expensive.
In contrast to the other delivery protocols, topical ad-

ministration of MSCs has been used in LSCD experi-
mental models [14, 15]. While clearly simpler than the
delivery methods described above, it has some draw-
backs such as low retention time on the ocular surface,
high washing rate, and low permeability of the corneal
epithelium.
Considering all of the limitations associated with the

classic cell transplantation routes, subconjunctival injec-
tion has clear advantages and has emerged as a viable al-
ternative route for administering MSCs to the ocular
surface. It is minimally invasive and easily achieved in
routine clinical care for different treatments. It is nor-
mally indicated for the treatment of injuries in the cor-
nea, sclera, anterior uvea, and vitreous. Clinicians
regularly use subconjunctival injections of triamcinolone
for macular edema [55], anti-microbial drugs for the
treatment of infectious keratitis [56], mitomycin C in
pterygium surgeries [57, 58], and bevacizumad for cor-
neal neovascularization [59, 60] (Fig. 1). Moreover, this
technique is described in several preclinical studies to
treat different diseases such as uveitis, glaucoma, herpes-
virus, inflammation, vascular hyperpermeability, edema,
angiogenesis, retinoblastoma, choroidal neovasculariza-
tion, and corneal grafts [13]. Moreover, it can be used in
severe cases of LSCD, allows administration of high cell
doses in a small volume, and does not need any exten-
sive additional cell culture steps. Subconjunctival injec-
tions do not require the use of a surgical facility, and no
additional post-injection interventions are required,
resulting in a reduction of time and cost (Fig. 2).

Subconjunctival MSC injection for treating corneal
epithelial damage
In ophthalmology, subconjunctival injection is used to
deliver drugs when the topical route is judged insuffi-
cient. This approach bypasses the epithelial cell barrier,
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ensuring rapid absorption. It can be used in severe con-
ditions in which a high concentration of drug is needed
[61]. Recently, subconjunctival injection has been used
to administer MSCs in ocular surface therapy. Although
multiple benefits have become evident, it is not easy to
compare the published studies, as different animal
models, methods, and cell doses and sources have been
applied (Table 1).
Animal models of corneal epithelial damage in mice

[33, 62], rats [34–36, 38, 63, 64], and rabbits [37, 65, 39]
can be classified into two main groups. In one group,
damage is restricted to the cornea [34–37, 62–64],
whereas in the other group, both the cornea and the lim-
bus are affected [33, 38, 39, 65].
The source of MSCs to be transplanted either allogen-

eically or xenogeneically is another variable, and BM,
AT, and limbal MSCs are the most commonly used [33–
39, 63]. For both allogeneic and xenogeneic transplant-
ation, no immunosuppression was performed and no
toxic or cell rejection reactions were reported. There-
fore, subconjunctivally injected MSCs can be considered
as a safe treatment in the different animal models so far
reported and are currently being tested in a few clinical
trials (see below).
Despite the advantages described above, subconjuncti-

val injections also have five possible limitations, although
some could be resolved with new studies. The first limi-
tation is that there is still no consensus regarding the
best cell vehicle solution. Second, it is necessary to

establish a cell concentration in which the cells do not
form clusters and consequently block the syringe during
the injection. Third, it is not possible to inject a high
volume of solution because it must be retained in and
adsorbed by the conjunctiva. Fourth, there is yet no con-
sensus regarding the number and location of the injec-
tions. The fifth limitation is that even though the
technique is considered to be minimally invasive, it
causes some pain in humans, and it could potentially
allow an infection to occur.
To organize the information in the present review, we

describe the main results regarding the therapeutic re-
duction of clinical signs such as corneal opacity and
vascularization, as well as the anti-inflammatory and im-
munomodulatory effects. We also present results regard-
ing cell migration and the corneal epithelial regeneration
capacity after the subconjunctival MSC injection in ex-
perimental models of LSCD and/or corneal epithelial
damage. Finally, we present a section that summarizes
the clinical trials that are completed, have been planned,
or are currently being performed using subconjunctival
injections of MSCs for treating corneal epithelial damage
in humans.

Therapeutic effects of subconjunctival MSC injection
following corneal epithelial damage
Several studies of corneal regeneration have reported the
beneficial therapeutic effects of subconjunctival MSC in-
jection. All the cited studies below used allogeneic cells

Fig. 1 Pie chart depicting the current application of subconjunctival injections in clinical trials (clinicaltrials.gov). Macular edema (9%),
blepharoptosis (3%), cornea regeneration (MSC transplantation) (14%), neovascularization (20%), pterygium (9%), glaucoma (12%), dry eye (3%),
burn (use of vitamin C) (3%), age-related macular degeneration (AMD) (3%), cataract (9%), uveitis (3%), keratitis (3%), bleb (3%), and
anesthesia (6%)
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unless specifically state otherwise. In diabetic mice, after
mechanical removal of the corneal and limbal epithe-
lium, subconjunctivally injected BM-MSCs decreased
the epithelial defects and improved corneal reepitheliza-
tion as confirmed by expression of Ki67 in the wound
areas [33]. In another study, subconjunctival injection of
BM-MSCs in mechanically damaged mice corneas re-
duced corneal opacity and epithelial defects [62].
Martinez-Carrasco et al., while not specifically studying
a model of damage cornea, recently confirmed that the
subconjunctival injection of human BM-MSCs in a
mouse model of GVHD reduced the keratinization of
the corneal epithelium mediated by PAX6 [66].
In addition, Yao et al. studied the effect of BM-MSC

administration in a chemical burn model of rat corneas
[35]. They applied two subconjunctival injections, imme-
diately after the injury and again 3 days later. After 7
days, neovascularization was decreased as confirmed by
the reduction of vascular endothelial growth factor
(VEGF) expression, and the fast corneal epithelium re-
covery. Another study using a rat cornea burn model
demonstrated that the use of a single subconjunctival in-
jection of BM-MSCs was more efficient than AM BM-

MSC transplantation [34]; however, the results were not
strictly comparable because the number of cells trans-
planted by the AM was much lower. Nevertheless, the
corneas getting subconjunctival BM-MSCs had greater
decreases in epithelial defects, corneal opacity, and neo-
vascularization associated with reduced vessel length
and VEGF expression. Thus, the subconjunctival injec-
tion of BM-MSCs improved corneal wound healing dur-
ing the 4-week follow-up more efficiently than the AM-
transplanted BM-MSCs [34]. In a rat model of corneal
alkali burn, the efficacy of subconjunctival BM-MSC in-
jections combined with polysaccharide hydrogel treat-
ment was investigated [36]. The reduction of epithelial
defects, neovascularization, and corneal opacity were sig-
nificantly enhanced by the combined treatment. Zhang
et al. compared the subconjunctival injection of TNF-α–
pre-stimulated BM-MSCs and non-stimulated BM-
MSCs in a rat corneal burn model. In both cases, the
epithelial defects were reduced. However, the corneal
opacity decreased significantly only when TNF-α–pre-
stimulated BM-MSCs were administered [64]. Interest-
ingly, some researchers have also demonstrated that rat
subconjunctival BM-MSC injections are effective in

Fig. 2 Comparison of MSC transplantation onto the ocular surface using a carrier substratum (a) versus subconjunctival injection (b). MSCs,
mesenchymal stem cells
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Table 1 Subconjunctival injection of MSCs in experimental models of corneal epithelial damage

Species Experimental
model

Cell administration route Follow-
up
time

Clinical signs Cell
migration

Anti-inflammatory/
immunomodulatory
effects

Corneal/
limbal
markers

Reference

Mouse Corneal and
limbal
mechanical
removal in
diabetic mice

Mouse BM-MSCs: one injec-
tion (5 × 104/5 μl PBS) im-
mediately after damage

24, 48,
and 72
h

↓Epithelial defect
↑Corneal epithelium
proliferation

Migration
to the
limbal
stroma and
wound
healing
edge

↓Inflammatory
infiltrates
↓CD45, CD86
↓M1: TNFα, MCP-1
↑M2: CD206, IL-10,
Arg-1

↑P63
↓K12

Di et al.
[33]

Corneal
mechanical
removal (2
mm trephine)

Mouse BM-MSCs: one injec-
tion (5 × 105/10 μl PBS) 1 h
after damage

2 and
4 days

↓Epithelial defect
↓Corneal opacity

Migration
to the
cornea and
conjunctiva

↓CD45
↓IL-1β, TNFα

– Shukla
et al. [62]

Rat Corneal
chemical burn
(3 mm Ø disc/
1 M NaOH 40s)

Rat BM-MSCs (2 injections
2 × 106/100 μl PBS): one im-
mediately, and one 3 days
after damage

3–7
days

↓Neovascularization
↓Epithelial defect
↑Corneal epithelium
regeneration

No
migration.
Cells
located in
the
injection
site

↓CD68
↓MIP-1α, TNFα

– Yao et al.
[35]

Corneal
chemical burn
(6 mm Ø disc/
1 M NaOH 30s)

Rat BM-MSCs (2 injections
2 × 106/100 μl PBS + poly-
saccharide hydrogel): one
immediately and one 2
days after damage

3, 7, 14,
and 28
days

↓Neovascularization
(↓VEGF and ↑TSP-1)
↑Corneal epithelium
regeneration
↓Corneal opacity

– ↓Inflammatory
infiltrate
↑TGFβ
↓MIP-1α, TNFα

– Ke et al.
[36]

Corneal
chemical burn
(4 mm Ø disc/
1 M NaOH 30s)

Human limbal MSCs: one
injection (2.4 × 106/500 μl)
2 days after damage

1, 2, 3,
and 4
weeks

↓Corneal opacity
↓Neovascularization
↓Epithelial defect

Migration
to the
corneal
epithelium

↓Inflammatory
infiltrate

– Acar et al.
[63]

Corneal
chemical burn
(3 mm Ø disc/
1 N NaOH 30s)

Rat BM-MSCs (1 × 106/
100 μl PBS): one injection 7
days after damage

7, 14,
21, and
28 days

↑Corneal wound
healing
↓Neovascularization
(↓VEGF and MMP-9)
↓Epithelial defect
↓Corneal opacity

No
migration.
Cells
located in
the
injection
site

↓Inflammatory
infiltrate

– Ghazaryan
et al. [34]

Corneal/limbal
chemical burn
(3 mm Ø disc/
1 M NaOH 40s)

Rat BM-MSCs: one injection
(2 × 106/100 μl PBS) 3 days
after damage

3, 6, 9,
and 12
days

↓Corneal opacity
↓Neovascularization

– – – Pan et al.
[38]

Corneal
chemical burn
(6 mm Ø disc
1 N NaOH 20s)

Rat BM-MSCs (pre-stimu-
lated with TNF-α and non-
stimulated): one injection
(2 × 106/100 μl PBS) imme-
diately after damage

3, 7,
and 14
days

↓Corneal opacity
↓Epithelial defect

No
migration.
Cells
located in
the
injection
site

↓Inflammatory
infiltrates
↓CD68
↓iNOS, TNFα, IL-1, IL-6,
MCP-1, MIP-1α
↑PTGS2, TSG-6

– Zhang
et al. [64]

Rabbit Corneal
chemical burn
(7 mm Ø disc/
10% NaOH
40s)

Human AT-MSCs (1.3 × 105/
200 μl saline solution): one
injection immediately after
damage

30 days ↓Epithelial defect
↓Corneal opacity

– – ↑Connexin-
43
↑β-catenin
No
changes in
E-cadherin
and p63

Lin et al.
[37]

Corneal
chemical burn
(6 mm Ø disc
1 N NaOH 30s
on the upper
cornea)

Combined administration:
AT-MSCs (2 × 106/500 μl)
from rabbit by topical ad-
ministration + stromal
pocket + subconjunctival
injection (immediately after
injury)

3, 7, 14,
21, and
28 days

↓Corneal opacity
↓Neovascularization
(↓VEGF)
↓Epithelial defect

– ↓Inflammation – Almaliotis
et al. [65]

Partial corneal/
limbal

Human BM-MSCs or hu-
man limbal MSCs: one

7, 14,
28 days,

↓Corneal opacity
↓Neovascularization

Human
limbal

– – Li et al.
[39]
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prolonging corneal allograft survival, reducing corneal
opacity and neovascularization [67].
The administration of xenogeneic MSCs from human

limbal stroma can reduce corneal opacity, neovasculari-
zation, and epithelial defects in alkali-burned corneas of
rats [63] and rabbits [39]. Also, human limbal MSCs
were more effective than human BM-MSCs in reducing
the clinical signs [39]. Further, two corneal alkali burn
models developed in rabbits have demonstrated that epi-
thelial defects, corneal opacity, and neovascularization
can be reduced by injecting a single dose of human AT-
MSCs [37] or BM-MSCs [39]. Finally, in a partial LSCD
model developed in rabbits, subconjunctival injection of
AT-MSCs in combination with both topical application
and injection into stromal pockets reduced the clinical
signs of corneal opacity, neovascularization, and epithe-
lial defects [65].
Clearly from the above considerations, it is not easy to

directly compare the results from different works be-
cause each is performed under different conditions and
protocols. However, it is interesting that, especially in
rat models, even with different cell doses, different num-
ber of injections, and also different times of the injec-
tion, there is always improved corneal transparency,
fewer epithelial defects, and decreased neovasculariza-
tion. Therefore, to compare the outcomes more pre-
cisely, it is necessary to study the effects of MSCs
derived from the same origin but applied in different
doses and routes of applications in the same animal
model. This approach will facilitate making comparisons
and deciding which protocol gives the best results for
that model, and perhaps provide insight regarding the
application to human ocular surface disease.

MSC migration after subconjunctival injection
MSCs can migrate to injured and inflamed areas through
a mechanism that is mediated mainly by the chemokine
CXCL12 that is produced in the damaged tissues and by
the CXCR4 receptor present in the MSCs [68]. In dia-
betic mice with mechanical damage to the cornea and
limbus, 2 days after subconjunctival administration of
5 × 104 mouse BM-MSCs, Di et al. observed migration
of the cells to the stroma of the corneal wound edge and
also to the limbal stroma [33]. Consistent with these re-
sults, Shukla et al. also demonstrated the migration of
mouse BM-MSCs to the corneal and conjunctival stroma

4 days after subconjunctival injection of 5 × 105 cells in a
mouse model of corneal mechanical injury [62]. Addition-
ally, human limbal MSCs migrated from the limbus to the
corneal epithelium 4 weeks after subconjunctival adminis-
tration of 5 × 103 and 2.4 x 106 cells in rabbit and rat cor-
neal burn models, respectively [39, 63].
However, not all studies have documented MSC mi-

gration from the injection site to the wound site. Four
weeks after rat corneas received alkali burns and after
subconjunctival administration of 1 × 106 or 2 × 106 rat
BM-MSCs, Ghazaryan et al. [34], Yao et al. [35], and
Zhang et al. [64] found no evidence of MSC migration
to the corneas, demonstrating that the injected cells
remained in the injection site. Additionally, human BM-
MSCs showed no engraftment in the cornea of a mouse
GVHD model 18 days after subconjunctival administra-
tion of 2 × 105 human BM-MSCs [66]. However, the
therapeutic effect of the MSCs was evident, indicating
that the beneficial role of these cells is facilitated by
trophic factors. It should be noted that in studies where
no migration was observed, the MSCs were administered
3, 7, or 10 days after the creation of the damage [34, 35,
66]. In contrast, in most of the studies where the MSCs
were injected on the same day that the injury was in-
duced, migration to the limbus or cornea occurred [33,
62]. Thus, the delay in the administration of MSCs could
induce a decrease in the migratory capacity of the cells
due to a decrease in the signals released by the damaged
tissues. Based on this hypothesis, it would be important
to study how CXCL12 expression changes in the dam-
aged tissues over time. The disparity in results is difficult
to analyze because the studies used cells from different
sources and species. A comparative study of CXCR4 ex-
pression in MSCs from different species and sources
could provide insight regarding species-specific differ-
ences in MSC migration patterns.

Anti-inflammatory and immunomodulatory effects of MSC
subconjunctival injection in corneal epithelial damage
Several works have demonstrated the well-known anti-
inflammatory effects of subconjunctivally injected MSCs
[33, 34, 36, 63]. Investigations in mice demonstrated that
subconjunctival injection of mouse-derived BM-MSCs
produced a lower ocular surface inflammatory response
in corneal mechanical damage models, preventing the
infiltration of CD45-positive cells [62] and macrophages

Table 1 Subconjunctival injection of MSCs in experimental models of corneal epithelial damage (Continued)

Species Experimental
model

Cell administration route Follow-
up
time

Clinical signs Cell
migration

Anti-inflammatory/
immunomodulatory
effects

Corneal/
limbal
markers

Reference

chemical burn
(4 mm Ø disc/
1 M KOH 30s)

injection (5 × 103/200 μl)
immediately after damage

and 3
months

↓Epithelial defect
↓Goblet cells in the
cornea

MSC:
migration
to the
cornea
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(CD86+) [33] into the cornea. Moreover, the secretion
of some pro-inflammatory cytokines such as tumor ne-
crosis factor (TNF)-α, interleukin (IL)-1β, and myocyte
chemoattractant protein (MCP)-1 was reduced after sub-
conjunctival injection of mouse BM-MSCs in these
models [33, 62]. Additionally, Di et al. showed that
TNF-α stimulated gene/protein (TSG)-6 combined with
the MSCs, transformed the inflammatory monocytes
into macrophages in the M2 state, limiting the immune
response and expression of pro-inflammatory genes [33].
Furthermore, infiltration of T lymphocytes (CD3+) and
expression of TNF-α were reduced in the ocular surface
of a mouse GVHD model subconjunctivally treated with
human BM-MSCs [66].
In different models of rat corneal burns, subconjuncti-

val injections of rat BM-MSCs reduced infiltration of
CD68+ macrophages and other inflammatory cells [34–
36, 64]. Moreover, these studies agree on the decreased
expression of pro-inflammatory cytokines such as TNF-
α, IL-1, IL-6, and the chemotactic factors MIP-1α and
MCP-1 in BM-MSC-treated rats [35, 36, 64]. Interest-
ingly, Zhang et al. demonstrated that TNF-α–pre-stimu-
lated BM-MSCs were more efficient at reducing
inflammation than non-stimulated BM-MSCs [64]. Add-
itionally, the increase in the expression of prostaglandin-
endoperoxide synthase 2 and TSG-6 in the corneas
treated with stimulated and non-stimulated BM-MSCs
indicates that these molecules are implicated in the anti-
inflammatory effect of the BM-MSCs [64]. Lu et al. con-
firmed that BM-MSC injection in a rat model of corneal
allograft rejection decreased not only the CD68+ cells,
but also the CD4+ T cells. At the molecular level, the
anti-inflammatory action of this treatment was con-
firmed by (1) an increase in Ptprc gene expression, con-
sidered a CD45 antigen that regulates B and T cells, and
(2) a reduction of Hspa8 that is involved in inflamma-
tory processes via MAPK [67].
Therefore, all of these works demonstrate that subcon-

junctivally injected MSCs reduce the infiltration of in-
flammatory cells into the cornea and decrease mainly
TNF-α expression at the site of injury, promoting a less
inflammatory microenvironment. Moreover, TSG-6
could be one of the molecules involved in the anti-
inflammatory effect of the MSCs in the cornea.

Expression of corneal/limbal epithelial markers after MSC
subconjunctival injection
Analysis of corneal and limbal epithelial cell markers in
the treated ocular surfaces is used to document the re-
covery of the specific cellular phenotypes after the sub-
conjunctival injection of MSCs. In corneas of diabetic
mice that were subconjunctivally injected with BM-
MSCs, there was increased expression of the limbal epi-
thelial stem cell marker p63 and decreased expression of

the differentiated corneal epithelial cell marker K12 [33].
However, following alkali burn in rabbits, the expression
of the corneal epithelial cell marker connexin 43 and the
pro-proliferative marker β-catenin increased after AT-
MSC injection [37]. In contrast, there were no differ-
ences in the corneal epithelial cell marker E-cadherin or
in the limbal epithelial stem cell marker p63 expression
after the treatment. To date, the role of the subconjunc-
tivally administered MSCs in the recovery of the corneal
and limbal phenotype is not clear yet. Consequently, this
is an important field to further investigate.

Subconjunctival injection of MSCs in clinical trials for
treating corneal epithelial damage in humans
To date, five clinical trials appear in the database of the
US National Institutes of Health ClinicalTrials.gov
(Table 2), and to the best of our knowledge, no results
have been published yet for any of these clinical trials. The
first clinical trial performed by Boto et al. (Madrid, Spain)
(clinicaltrials.gov_NCT01808378) was an interventional,
phase 2, single-arm trial that has been completed accord-
ing to Clinicaltrialsregister.eu (clinicaltrialsregister.eu_
2010-024328-53). In this case, autologous AT-MSCs were
used to treat total bilateral LSCD in 8 patients, applying 4
subconjunctival injections (4 × 106 AT-MSCs per quad-
rant). Additionally, AMs were used, and 4 × 106 AT-MSCs
were topically dispensed to the damaged eye. The primary
outcome in this trial was the feasibility and safety of au-
tologous expanded lipoaspirated stem cells following 16
weeks of treatment for bilateral limbal-associated keratop-
athy. However, no results have been reported so far.
A new interventional, phase 1–2, three-arm parallel as-

signment, non-randomized, and unmasked clinical trial
was carried out by Volotovsky et al. (Minsk, Belarus) and
completed in 2019 (clinicaltrials.gov_NCT04484402). In
this case, both autologous AT-MSCs and limbal stem cells
were applied in 25 patients with inflammatory-dystrophic
diseases of the cornea. Although no results have been
published yet, treatment-related adverse effects and the
number of cured patients were evaluated for 4 weeks and
2 months, respectively.
In addition, there are two more single-arm clinical tri-

als in which subconjunctival injection of human BM-
MSCs are being used to treat corneal chemical burns.
The first one (clinicaltrials.gov_NCT02325843), under
the direction of Dan et al. (Guangzhou, China), has been
completed but no results have been reported so far. In
it, one injection of 5 × 106 human BM-MSCs was applied
in 16 patients. This was followed by a second injection if
a persistent epithelial defect was detected. The percent-
age of corneal perforations that occurred during a 3-
month follow-up was analyzed, and different adverse
events, such as ocular infection, conjunctival necrosis at
the injection site, and retinal artery occlusion, as well as
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systemic complications during 6 months of follow-up,
were also studied. The second single-arm clinical trial
(clinicaltrials.gov_NCT03967275) by Gabison et al.
(Paris, France) is still recruiting patients, and the dose of
allogeneic human BM-MSCs is still unknown.
Finally, an as yet uninitiated interventional, phase 1–2,

two-arm parallel assignment, randomized, and double-
masked clinical trial (clinicaltrials.gov_NCT03237442) by
Ma et al. (Guangdong, China) will compare the subcon-
junctival injection of 2 × 106 human umbilical cord
MSCs versus saline injection as potential treatment of
corneal chemical burns.

Conclusions
MSCs have several properties that make them a good
choice for cell therapy in different tissues, including the
cornea. The administration route is an important limiting
factor for these treatments, as it should be safe and, when
possible, minimally invasive. Subconjunctival injections
are a minimally invasive and straightforward technique
that is routinely used in ophthalmology to deliver drugs.
Recent work has clearly shown that it can also deliver cell-
based therapies, allowing the administration of higher cell
doses. In addition, this technique could reduce costs as no
substrata or surgical procedures are required.

Considering all the basic and translational investigations
related to subconjunctival injection of MSCs for corneal
regeneration, the convenience and interest of this tech-
nique is evident. Nevertheless, although the results of
existing preclinical studies are very encouraging, to con-
clusively state that subconjunctival injections are a safe
and effective route to administer MSCs to the ocular sur-
face, it is necessary to carry out more of these studies.
Additionally, the available clinical data from the ongoing
clinical trials is still limited and insufficient; therefore,
more clinical evidence is required to conclude if one route
of administration is better than another in terms of clin-
ical safety and efficacy. Nevertheless, considering the re-
generative and anti-inflammatory effects shown by
subconjunctival injection of MSCs in experimental models
of corneal epithelial damage [33–39, 62–65] and the
promising results obtained in the first clinical trial per-
formed and published using BM-MSCs on AMs for treat-
ing patients suffering from LSCD [12], good efficacy
would also be expected in LSCD patients when MSCs are
administered by subconjunctival injections.

Abbreviations
AM: Amniotic membrane; AT: Adipose tissue; BM: Bone marrow; GVHD : Graft
versus host disease; IL: Interleukin; LESC: Limbal epithelial stem cells;
LSCD: Limbal stem cell deficiency; MCP: Monocyte chemoattractant protein;

Table 2 Currently active clinical trials exploring subconjunctival injection of MSCs for treating corneal epithelial damages

ClinicalTrials.gov
identifier /
Clinicaltrialsregister.eu
identifier

Condition
or disease

Cell administration Study design Number
of
patients

Sponsor and
performing
center

Status and
initiation date

NCT01808378 /
EudraCT2010-024328-53

Keratopathy
associated
with
bilateral
LSCD

Human autologous AT-MSCs: 4
injections (4 × 106 MSCs per
quadrant) + topical application
of 4 × 106 MSCs for 20 min +
amniotic membrane

Interventional,
phase 2, single
arm, unmasked

8 Research Institute
of La Paz University
Hospital, Madrid,
Spain

Completed
according to
clinicaltrialsregister.eu
2012

NCT02325843 Corneal
chemical
burn

Human BM-MSCs: 1 injection of
5 × 106 MSCs/500 μl + amniotic
membrane. If persistent epithe-
lial defect was noted, a second
injection was performed.

Interventional,
phase 2, single
arm, unmasked

16 Sun Yat-sen Univer-
sity, Guangzhou,
China

Completed
2014

NCT04484402 Corneal
ulcer,
corneal
disease,
corneal
dystrophy

Autologous AT-MSCs + sodium
hyaluronate 1% solution
Autologous limbal stem cells +
sodium hyaluronate 1%
solution

Interventional,
phase 1–2, three-
arm parallel as-
signment, non-
randomized,
unmasked

25 Institute of
Biophysics and Cell
Engineering of
National Academy
of Sciences of
Belarus

Completed
2016

NCT03237442 Corneal
chemical
burn

Human umbilical cord MSCs: 1
injection of 2 × 106 MSCs/
200 μl

Interventional,
phase 1–2, two-
arm parallel as-
signment, ran-
domized, double
masked

100 Guangzhou Saliai
Stem Cell Science
and Technology
Co. Ltd., China

Not yet recruiting
(unknown status)
2017

NCT03967275 Corneal
chemical
burn

Allogeneic human BM-MSCs Observational,
single arm

3 Ophthalmological
Foundation
Adolphe de
Rothschild, Paris,
France

Not yet recruiting
2019

Data from www.ClinicalTrials.gov and www.clinicaltrialsregister.eu
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