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ExoMars Raman Laser 
Spectrometer (RLS): development 
of chemometric tools to classify 
ultramafic igneous rocks on Mars
Marco Veneranda1*, Guillermo Lopez‑Reyes1, Jose Antonio Manrique‑Martinez1, 
Aurelio Sanz‑Arranz1, Emmanuel Lalla2, Menelaos Konstantinidis2, Andoni Moral3, 
Jesús Medina1 & Fernando Rull1

This work aims to evaluate whether the multi‑point analysis the ExoMars Raman Laser Spectrometer 
(RLS) will perform on powdered samples could serve to classify ultramafic rocks on Mars. To do 
so, the RLS ExoMars Simulator was used to study terrestrial analogues of Martian peridotites and 
pyroxenites by applying the operational constraints of the Raman spectrometer onboard the Rosalind 
Franklin rover. Besides qualitative analysis, RLS‑dedicated calibration curves have been built to 
estimate the relative content of olivine and pyroxenes in the samples. These semi‑quantitative results, 
combined with a rough estimate of the concentration ratio between clino‑ and ortho‑pyroxene 
mineral phases, were used to classify the terrestrial analogues. XRD data were finally employed as 
reference to validate Raman results. As this preliminary work suggests, ultramafic rocks on Mars could 
be effectively classified through the chemometric analysis of RLS data sets. After optimization, the 
proposed chemometric tools could be applied to the study of the volcanic geological areas detected 
at the ExoMars landing site (Oxia Planum), whose mineralogical composition and geological evolution 
have not been fully understood.

The ESA ExoMars rover mission aims to search for past/present life traces on Mars and to investigate the 
geochemical and environmental evolution of the  planet1,2.

To fulfill these objectives the Rosalind Franklin rover will be equipped with a drill that reaches the up to 2 m in 
depth, thus collecting geological samples that have been sheltered from UV radiation and external environmental 
weathering  processes1. Once collected, the rover Sample Preparation and Distribution System (SPDS) will crush 
the samples and deliver the powdered material to the analytical laboratory. Here, profiting from the combined 
analysis potential of the ExoMars  rover3, the Raman Laser Spectrometer (RLS)4 and  MicrOmega5 spectroscopic 
systems will investigate the mineralogical composition of the powders, which is a step of critical importance in 
the selection of the optimal scientific targets to be analyzed by the Mars Organic Molecule Analyzer (MOMA)6.

Among the mentioned instruments, RLS is the first Raman spectrometer to be qualified for space exploration 
 missions4. The instrument will analyze between 20 and 39 spots per sample, depending on the available time and 
resources during operation. Having this in mind, it is of primary importance to carry out all the preparatory 
studies necessary to develop dedicated chemometric tools that can help maximizing the scientific outcome of 
Raman data sets (understood as the totality of spectra gathered from the sample). To this end, the RLS team 
developed the so-called RLS ExoMars Simulator, a laboratory spectrometer that collects spectra qualitatively 
comparable to those the RLS flight model (FM) will gather on Mars, while avoiding the technical-logistic 
limitations imposed by the management of instrumentation developed for space  exploration7.

As demonstrated in preliminary studies based on the characterization of terrestrial analogs proceeding 
from the Planetary Terrestrial Analogues Library (PTAL)  collection8, the RLS is able to effectively unveil the 
mineralogical complexity of heterogeneous geological samples, even achieving the detection of minor and trace 
 phases9. Beyond the qualitative analysis of Raman spectra, further researches prove that the relative concentration 
ratio between major phases of sample mixtures could be determined through the chemometric analysis of RLS 
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data  sets7. Despite being preliminary results obtained under ideal conditions (mixture of analytically pure mineral 
phases exhibiting strong Raman scattering), the promising outcome encouraged the RLS science team to evaluate 
the possibility of using RLS data sets to extrapolate semi-quantification information from Martian rocks and soils.

Among the numerous potential applications, the semi-quantitative analysis of Martian samples having a low 
degree of complexity (in terms mineralogical diversity) could find a reliable use in the study of the igneous rocks 
that, according to remote data obtained from  orbit10,11, cover more than 10% the landing site of the ExoMars 
rover (Oxia Planum). For example, it could be also used to correctly classify the olivine-rich rocks detected at 
the southern part of the ellipse, which indicates the presence of ultramafic geological units (dunite/peridotite) 
in the region. In this regard, the detailed analysis of CRISM, THEMIS and HiRISE high-resolution data from 
selected craters displaying unaltered central uplift structures, suggests that the Martian crust presents ultramafic 
igneous rocks dominated by olivine and pyroxene  phases12. This inference about Martian crustal composition 
fits with the results obtained from the laboratory study of SNC Martian meteorites. Being mainly composed of 
olivine (≥ 90 vol%), with minor pyroxene, feldspar and chromite phases, Chassigny meteorites such as NWA 
 869413,14 and NWA  273715,16 are classified as dunite. Within the shergottite group, the lherzolitic variety (including 
 Y98402817,  LEW8851618 and  ALH7700518, among others) are mainly composed of olivine (40–60 vol%) and 
clinopyroxene (mixture of pigeonite and augite, between 15 and 60 vol%) with minor chromite  crystals19,20. 
Compared to these, nakhlites (e.g.  Lafayette21,  Nakhla22 and  NWA81723) are mostly composed of monoclinic 
phases (augite, ≥ 75 wt%), while olivine is between 3 and 17 vol%24. Finally, Allan Hills 84,001 is mostly composed 
of orthorhombic pyroxene  Fs27.3Wo3.3En69.4 (97 vol%, olivine concentration below 1 vol%)25, this being the only 
meteorite found to date belonging to the orthopyroxenite group. As described  elsewhere26,27, by correlating the 
elemental and mineralogical composition of SNC meteorites with their formation ages, several patterns can be 
found that reflect an historical evolution of the Martian mantle—crust system.

Recognizing the scientific relevance of comparing the information extrapolated from Martian meteorites 
with the Raman data collected in situ from potentially-unaltered rocks, this work aims to find out whether, by 
combining an on-ground qualitative and semi-quantitative analysis of RLS-Simulator data sets, it is possible to 
achieve a correct classification of ultramafic igneous rocks on Mars. To achieve this goal, the present analytical 
study has been organized as follows. First, a Raman-based qualitative study of pyroxenite and peridotite analogues 
was carried out. Olivine/pyroxene calibration curves were then created and used to perform a semi-quantification 
study of the selected samples. Qualitative and semi-quantitative results were finally used to properly classify the 
analyzed rocks.

Taking into account that (1) this study was carried out using the RLS ExoMars Simulator by faithfully 
reproducing the operational mode of the RLS instrument on Mars, and (2) the Raman-based classification of 
terrestrial analogues was validated by comparison with reference data gathered from a state-of-the-art laboratory 
XRD system, this work aims to provide a realistic assessment of the potential scientific outcome that could derive 
from a refined chemometric analysis of RLS data sets gathered on Mars.

Materials and methods
Terrestrial analogue selection. In this work, Terrestrial analogs of Martian peridotite and pyroxenite 
were selected and analyzed. Peridotites were collected in 2009 from the Svalbard islands (Norway) during the 
Arctic Mars Analogue Svalbard Expedition (AMASE) coordinated by NASA and ESA  agencies28. Svalbard 
peridotitic rocks are well acknowledged for being optimal terrestrial analogues of Martian ultramafic geological 
units. In fact, there are numerous studies in which these materials have been used to test space-derived analytical 
 instruments29, and to simulate mineral weathering processes potentially occurring on  Mars30. In detail, the 
analogues considered in this work (DUN1, DUN2 and DUN3) are coarsely crystalline rock of green color that, 
according to preliminary petrographic evaluations, mainly consists of olivine and pyroxene minerals.

Pyroxenite terrestrial analogues (named PYR1, PYR2 and PYR3) are part of the sample collection from the 
ERICA research group and were collected in northern Norway. Although the exact sampling area is unknown, 
many localities from northern Norway are widely acknowledged for being optimal terrestrial analogs of Martian 
geological  contexts8. The selected coarse materials are dark in color and, based on microscopic observations, are 
mainly composed of pyroxene crystals with minor but varied amounts of olivine grains.

Sample preparation. Terrestrial analogues. To accurately simulate the operational constraints of the RLS 
flight model, terrestrial analogues were pre-treated to reproduce the granulometric distribution of the SPDS 
Crusher. According to the ExoMars mission requirements, the average grain size of the crushed sub-soil samples 
must be ≈ 250 μm, with 90 wt% of the granulometry within 50 and 500 μm. Thus, terrestrial analogs were ground 
using a Planetary Mono Mill PULVERISETTE 6 (Fritsh) and sieved. The aliquots were then mixed by replicating 
the particle size distribution produced by the SPDS Crushing Station. For each analogue, an additional fragment 
was further milled to obtain fine powders with the grain sizes necessary to perform optimal XRD analyses 
(below 150 µm).

Mineral mixtures. A reliable semi-quantification study of the abovementioned ultramafic rocks passes through 
the use of external calibration curves that, in this work, were prepared by analyzing mixtures of olivine and 
pyroxene at different concentration ratios. For this purpose, pure and well characterized mineral phases were 
used. Although Martian olivine is rich in Fe (Fayalite end-member)31–33, these specimens are rarely found on 
Earth. For this reason, a certified forsterite (Mg-rich phase) from the Bureau of Analysed Samples LRD (reference 
code SX49-12) was used. On the other side, pure augite crystals from the Umba Valley region (Kenya) were 
selected as pyroxene proxy, this being one of the phases most frequently detected on  Mars34,35. Furthermore, as 
explained in “Raman data treatment and analysis” section, the analytical method used for the calculation of the 
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calibration curves is designed to be robust against the spectral variations expected from the different possible 
phases of the endmembers.

Olivine and pyroxene were manually milled using an agate mortar, sieved and mixed at different concentration 
ratios to obtain 11 reference samples (Table 1). As for the terrestrial analogues, the granulometric distribution of 
reference samples closely resembled the powders produced by the ExoMars Crushing station.

Analytical instruments. X ray diffractometry. A Discover D8 X-Ray Diffractometer (Bruker) was used to 
investigate the mineralogical composition of the terrestrial analogues. The instrument includes a Cu X-ray tube 
(wavelength 1.54 Å) as excitation source and a LynxEye detector. Fine-powdered rocks (granulometry ≤ 150 µm) 
were analyzed by setting a scan range between 5° and 70° 2θ, a step increment in 2θ of 0.01 and a count time 
of 0.5  s per step. Analysis of resulting diffractograms was performed with the XPowder 2004.04.71 software 
with PDF-2 (2010) and the American Mineralogist Crystal Structure Database crystallographic databases. A 
background correction for each diffractogram was achieved with the Splin-autoroller and polynomial tools 
available XPowder 2004.04.71 that allows for calculation of a background polynomial subtraction  function36. 
XRD mineral quantification and theoretical density determination of the mixture were achieved by using the 
reference intensity ratio from pattern matching results with XPowder 2004.04.7136.

Raman spectroscopy. The Raman analysis of these ultramafic rocks was performed by means of the RLS ExoMars 
 Simulator7, which is considered the most reliable laboratory spectrometer to effectively emulate the scientific 
outcome of the RLS system onboard the Rosalind Franklin  rover8,9,37. The instrument includes a continuous 
laser source emitting at 532 nm, a high resolution TE Cooled CCD Array spectrometer, an optical head with a 
long WD objective of 50 × and a reply of the ExoMars sample holder. Range of analysis (70–4200 cm−1), working 
distance (≈ 15 mm), laser power output (20 mW), spot of analysis (≈ 50 µm), spectral resolution (6–10 cm−1) 
and signal to noise ratio of this instrument are closely resembling those of the RLS instrument. Software-wise, 
the RLS ExoMars Simulator integrates the same algorithms implemented by the RLS to autonomously operate 
on Mars, such as dark subtraction, fluorescence quenching and acquisition parameters  calculation38. Data were 
acquired using a custom developed software based on LabVIEW 2013 (National Instruments).

Considering the RLS instrument soon operating on Mars will analyze a line of 20–39 spots per sample, 5 lines 
of 39 spots were run on each terrestrial analogue as well as on the 11 olivine/pyroxene mixtures. Qualitative and 
semi-quantitative information extrapolated from the 5 data sets were then compared in order to determine the 
reproducibility of the results.

Raman data treatment and analysis. Prior to the qualitative data analysis, Raman spectra were 
submitted to baseline correction, elimination of cosmic rays and normalization. This task was performed by 
using the IDAT/SpectPro, a software developed by the RLS team to receive, decodify, calibrate and verify the 
telemetries generated by the RLS on  Mars39. After treatment, Raman data sets gathered from olivine/pyroxene 
mineral mixtures were used to build dedicated calibration curves. Being this the first documented approach 
towards the potential use of RLS data sets to semi-quantify terrestrial analogues of Martian ultramafic rocks, 
authors chose to apply an univariate chemometric method which is, in turn, robust against the possible variations 
in the peak positions of the mixtures endmembers, making the method reliable for the quantification of olivine-
pyroxene mixtures, irrespective of their specific mineral phase. As experimented elsewhere, calibration curves 
were generated by calculating the intensity ratio between the main peaks of the considered phases (in this 
case ≈ 855 and ≈ 660 cm−1 for olivine and pyroxene respectively) with respect to their total  intensity7. For each 
mixture, a mean value was obtained for each line of spots by averaging the result of the respective spectra (see 
Eqs. 1, 2).

Table 1.  Mineralogical composition of standard sample mixtures used for the external calibration procedure.

Sample ID Pyroxene (wt%) Olivine (wt%)

P0 0.00 100.00

P5 5.00 95.00

P10 9.93 90.07

P25 25.15 74.85

P37.5 37.00 63.00

P50 50.00 50.00

P62.5 69.49 30.51

P75 75.12 24.88

P90 89.40 10.60

P95 95.00 5.00

P100 100.00 0.00
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where r is the estimated proportion concentration indicator (related to the proportion through the calculated 
calibration curve), n is the number of spots per line and I is the peak intensity of the spectrum (without baseline) 
at a determined spot. The calibration curve uncertainty was estimated by calculating the standard deviation 
among the mean values of the 5 lines, with a confidence interval of 95% (± 2σ). All the calculations were 
performed using MATLAB R2019a.

An additional interpretation of pyroxene spectra was then performed to estimate the concentration ratio 
between monoclinic (clino-) and orthorhombic (ortho-) phases. As detailed in previous  works40,41, the Raman 
signal that most clearly differentiates the two systems is emitted by the Si–O symmetric stretching vibration of 
the bridging O atoms (Si–Obr, 650 ÷ 750 cm−1). Indeed, monoclinic minerals emit a single, sharp peak around 
665 cm−1, while orthorhombic phases show a characteristic doublet (signal of medium intensity at 662 cm−1 
together with a stronger peak around 680 cm−1. Having this in mind, the exact position of the Si–Obr peaks was 
interpreted as follows:

• If the main peak is below 667 cm−1, the spectrum is assigned to monoclinic minerals.
• If the main peak is above 675 cm−1, the spectrum is assigned to orthorhombic minerals.
• If the peak is detected between 667 and 675 cm−1, the spectrum is assigned to both systems.

The concentration ratio between clino- and ortho-pyroxene was roughly estimated by calculating, for each 
line of spots, the ratio between the number of spectra assigned to each system. The uncertainty was finally 
estimated by calculating two-times the standard deviation of the ratio extrapolated from each line of spots (95% 
confidence bounds).

Results
Raman‑based qualitative analysis of terrestrial analogues. The characteristic doublet of olivine 
(824 and 856 cm−1) was found in most of DUN1 spectra. In some cases, the high SNR enabled the detection of 
additional secondary peaks at 591, 826, 921 and 965 cm−1 (Fig. 1a). As detailed in previous works, marked shifts 
in the position of Raman peaks may occur, being their position closely correlated to the elemental composition 
of the olivine grain. Even though similar displacement could be triggered by marked temperature variations, 
this issue will have a minimal influence on RLS spectra. Indeed, being analyzed inside the Pasteur payload, 
samples are expected to be stored at temperatures close to − 5 °C (thus, not far from laboratory conditions). 
Taking into account that olivine is a solid solution between forsterite (Fo,  Mg2SiO4) and fayalite (Fa,  Fe2SiO4) 
end-members, calibration curves were built to extrapolate the Fo/Fa ratio of olivine crystals by analyzing the 
position of their Raman  peaks42–44. Considering the position of olivine peaks and applying the calibration curves 
presented by Mouri and  Enami43, the composition of DUN 1 olivine grains can be described as  Fo95Fa05. This 
value is consistent with the results provided in previous works that, through the elemental study of Svalbard 
peridotites, detected olivine grains with a composition ranging between  Fo90Fa10 and  Fo91Fa09

45,46. In this regards, 
it must be underlined that some olivine spectra from DUN 1 displayed a peak shift displacement of 1 cm−1 (823 
and 855 cm−1). However, the spectral resolution of the spectrometer (6–10 cm−1) does not allow to define with 
certainty whether the observed displacement was due to variations in the elemental composition of the mineral 
or to instrumental factors.

Beside olivine, the detection of intense peaks around 670 and 1010 cm−1 and secondary peaks in the spectral 
region below 400 cm−1 confirmed the presence of pyroxene as additional major phase. Knowing that variations in 
the spectral features of pyroxene can be used to distinguish monoclinic and orthorhombic  phases41, the presence 
of two different minerals was deduced. On one hand, numerous spectra displayed peaks at 329, 385, 667 and 
1011 cm−1, which perfectly match augite reference patterns (clino-pyroxene, (Ca,Mg,Fe)2(Si,Al)2O6, Fig. 1b). On 
the other hand, a lower number of spectra showed peaks at 138, 240, 345, 667, 687, 1015 and 1038 cm−1, fitting 
enstatite standards (ortho-pyroxene,  MgSiO3, Fig. 1c).

At least one spectrum of calcite was detected on each line analyzed from sample DUN 1 (main peak at 
152, 278, 714 and 1085 cm−1, see Fig. 1e). Calcium carbonate can be interpreted as product of metasomatism 
alteration that, as confirmed by detailed mineralogical studies of equivalent samples, generated from the 
interaction between mantle rocks and carbonatite  fluids47–49. Together with calcite, apatite was also found as 
minor phase  (Ca5(PO4)3, Main peak at 967 cm−1, see Fig. 1d). This mineral can also form under hydrothermal 
conditions and, as described in previous studies, it is found as mineral indicator of carbonatite metasomatism of 
mantle  xenoliths47–49. This provides an additional evidence in support of the occurrence of this specific alteration 
mechanism in the analyzed analogues.

Sample DUN 2 presents a mineralogical composition similar to DUN 1. Once again, olivine was found to be 
the main mineral phase. However, the characteristic double peak was constantly detected at 823 and 855 cm−1, 
suggesting an elemental composition closer to the forsterite endmember  (Fo92Fa08). Pyroxene was also detected as 
additional major phase. In this case, however, augite was only sporadically detected, suggesting the predominant 
presence of orthorhombic phases (enstatite). Rock alteration by metasomatism carbonatites was verified by the 
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Figure 1.  Characteristic RLS spectra gathered from the study of DUN and PYR samples. Peaks labelled with 
an asterisk proceeds from additional mineral phases. In detail, the displayed spectra were collected from sample 
DUN 1 (a, e), DUN 2 (c, f), DUN 3 (g), PYR 1 (d) and PYR 2 (h) and PYR 3 (b).
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detection of calcite and magnesite  (MgCO3, main peaks at 325 and 1098 cm−1, Fig. 1f). The joint presence of the 
two carbonates on Svalbard ultramafic rocks fits with the results presented in previous  works50,51.

Sample DUN 3 is mainly composed of olivine  (Fo92Fa08) and pyroxenes. In this case, the relationship 
between monoclinic and orthorhombic phases appeared to be similar to sample DUN 2, being enstatite the most 
commonly detected mineral. Rutile  (TiO2) was additionally found as accessory phase. The main peaks of this 
titanium oxide polymorph (244, 440 and 609 cm−1, see Fig. 1g) were clearly detected in all data sets. Concerning 
metasomatism alteration products, apatite was also observed, while the presence of calcite is doubtful (a very 
weak signal was sporadically observed between 1080 and 1090 cm−1).

Under a qualitative point of view, PYR1, PYR2 and PYR3 show very similar compositions. They are mostly 
composed of pyroxene phases, with olivine as additional mineral. As for the case of DUN samples, PYR analogues 
are a mixture of orthorhombic and monoclinic phases. From a preliminary observation, the majority of the 
spectra gathered from samples PYR1 and PYR3 display a double peak in the range between 650 and 700 cm−1, 
suggesting a high concentration of clino-pyroxene grains. On the contrary, the main mineral phase of sample 
PYR 2 has a monoclinic structure. In PYR samples, the main olivine peaks were constantly detected at 822 and 
853 cm−1  (Fo87Fa13). According to the number of spectra collected from each analogue, it can be estimated that 
PYR1 and PYR3 samples has a similar olivine content, which is higher than PYR2. As represented in Fig. 1h, 
one spectrum (out of 196) of feldspar was detected on sample PYR2. However, this mineral is incompatible with 
ultramafic igneous rocks, thus it must be interpreted as a contamination occurred during sample collection and/
or preparation. Beside feldspar, neither minor primary minerals nor alteration products were detected in the 
analyzed materials.

The overview of the detected mineral phases is provided in Table 2.

Construction of olivine/pyroxene calibration curves. Laboratory samples, prepared by mixing olivine 
and pyroxene at controlled proportions, were used to build calibration curves by following the method described 
in “Raman data treatment and analysis” section. Following the method described  elsewhere7, the intensity ratio 
between the main peaks of olivine and pyroxene (≈ 855 and 660  cm−1 respectively) was calculated for each 
spectrum. The relative concentration ratio was calculated by averaging the value obtained from each spectrum 
composing the line of spots. The uncertainty was finally estimated within 95% confidence bounds by calculating 
two-times the standard deviation of the proportions gathered from the 5 lines of spots. Knowing that (1) the 
number of analysis the RLS will perform on Martian samples will vary from 20 to 39, and (2) the reliability of 
the Raman-based semi-quantification method depends on the number of analyzed spectra, in this work two 
extreme scenarios were evaluated. In the first case, only the minimum number of spectra to be analyzed by RLS 
during nominal operation on Mars was considered (20). By plotting the calculated intensity ratio (Y axis) versus 
the real proportion (wt-%, X axis) of the samples listed in Table 1, the calibration curves represented in Fig. 2 
were obtained.

Equations 3 and 4 describes the obtained calibration curves, which will be then used to estimate the relative 
concentration ratio between olivine and pyroxene of ultramafic rocks are:

In the second case, the maximum number of spectra the RLS spectrometer will gather from Martian samples 
was considered (39). The obtained calibration curves are displayed in Fig. 3, while the relative equations (Eqs. 5, 
6) are provided below.

(3)roli
(

20 spots
)

= −0.0102 · prop2oli + 0.0503 · propoli + 97.2588; R2
= 0.9996

(4)rpyr
(

20 spots
)

= 0.0102 · prop2pyr − 0.0503 · propoli + 2.7412; R2
= 0.9996

(5)roli
(

39 spots
)

= −0.0102 · prop2oli + 0.0410 · propoli + 97.4123; R2
= 0.9997

(6)rpyr
(

39 spots
)

= 0.0102 · prop2pyr − 0.0410 · propoli + 2.5877; R2
= 0.9997

Table 2.  Summary of mineral phases detected by means of RLS ExoMars Simulator.

Minerals DUN 1 DUN 2 DUN 3 PYR 1 PYR 2 PYR 3

Olivine X X X X X X

Clino-pyroxene X X X X X X

Ortho-pyroxene X X X X X X

Feldspar ?

Rutile X

Calcite X X ?

Magnesite X

Apatite X X X
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By comparing the two cases, 39-points curves present a similar tendency to the 20-points one, however, the 
uncertainty of the measure (calculated as ± 2σ) decreases from ± 5.4 to ± 3.7%. Considering the obtained results, 
the estimated proportion uncertainty of the calibration curves was evaluated for different numbers of spectra per 
line, from 1 to 39. As shown in Fig. 4, the proportion uncertainty markedly decreases starting from the analysis 
of 18 spectra. Thus, it was inferred that the relative concentration ratio between two main minerals composing 
Martian samples of low complexity (in terms of mineralogical heterogeneity) would be possible when working 
within the foreseen operational parameters of RLS (between 20 and 39 spots).

Figure 2.  Pyroxene and olivine calibration curves for 20-point lines.

Figure 3.  Pyroxene and olivine calibration curves for 39-point lines.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16954  | https://doi.org/10.1038/s41598-020-73846-y

www.nature.com/scientificreports/

Raman‑based semi‑quantitative analysis of ultramafic rocks. Concentration ratio between olivine 
and pyroxene. As in the case of mineral standard mixtures, ultramafic rocks were analyzed with the RLS 
ExoMars Simulator by collecting 5 lines of 39 spectra each. Though nominally this will not be the case for RLS 
while operating in Mars (the instrument will gather one line only), five lines were analyzed to provide a statistical 
reference of the expected uncertainty on the “problem” samples. The results gathered by applying the proposed 
univariate chemometric method are summarized in Table 3. As shown below, two values of uncertainty were 
calculated. The first one is extrapolated for each line from the calibration curve with 95% confidence bounds, 
while the second one is the standard deviation of the resulting proportions obtained from the five analyzed lines.

Concentration ratio between orthorhombic and monoclinic pyroxene. The relative concentration ratio between 
clino- and ortho- pyroxene was calculated for each sample by following the method described in “Raman 
data treatment and analysis” section. This proportion has a great scientific relevance, since it could be used to 
extrapolate information on the geological evolution of Mars. Indeed, considering that the concentration ratio 
between clino- and ortho-pyroxene in Martian rocks shown compositional trends with  time12,26,52, this value can 
be used as mineralogical indicator to estimate the age of geological units. In this work, uncertainty values were 
obtained by calculating the standard deviation of the ratios deduced from the five lines of 39 spots. Results are 
summarized in Table 4.

Combining the results summarized on Tables 3 and 4, the mean concentration ratios of olivine, ortho- and 
clino-pyroxene was calculated for each sample (Table 5).

Raman‑based classification of ultramafic rocks and result validation. From a qualitative point of 
view, the analyzed samples are mineralogically very similar. The six terrestrial analogues are mainly composed 
of olivine, clino-pyroxene and ortho-pyroxene, while rutile, apatite, calcite and magnesite were found to be 
additional minor phases of DUN samples. Considering the olivine-pyroxene proportions presented in “Raman-
based semi-quantitative analysis of ultramafic rocks” section, the analyzed rocks can be divided in two groups. 
Due to a relative content of olivine between 74 and 82%. Rocks from Svalbard (DUN1-DUN3) can be classified as 
peridotites. On the contrary, PYR samples are dominated by pyroxene minerals, being the relative concentration 
of olivine ranging between 4 and 19%. According to the measured proportions, these samples can be classified as 
pyroxenite (olivine concentration below 60%). As detailed in “Concentration ratio between orthorhombic and 
monoclinic pyroxene” section, for a proper classification of ultramafic rocks the concentration ratio between 
clino- and ortho- pyroxene needs to be estimated. According to the chemometric analysis of RLS ExoMars 
Simulator data, DUN1 and PYR2 samples differ from the other analogues for having a higher concentration of 
monoclinic (over orthorhombic) phases.

Raman-based qualitative and semi-quantitative results were compared to those obtained from the use of 
a state-of-the-art XRD system. As displayed in Fig. 5, diffractograms from DUN samples reveal a mineralogy 

Figure 4.  Prediction uncertainty as function of the number of analyzed spectra per line.
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Table 3.  Semi-quantitative results extrapolated from RLS ExoMars Simulator data (39-spots per line).

Sample Line Olivine (%) Pyroxene (%) Uncert from cal. curve (%) Olivine (%) Pyroxene (%) Std between lines (%)

DUN 1

L1 74.4 25.6 3.9

75.7 24.3 7.1

L2 70.2 29.8 4.2

L3 84.2 15.8 3.2

L4 67.9 32.1 4.3

L5 81.7 18.3 3.4

DUN 2

L1 79.3 20.7 3.6

82.0 18.0 10.3

L2 92.8 7.1 2.4

L3 82.8 17.2 3.3

L4 66.2 33.8 4.4

L5 88.9 11.1 2.8

DUN 3

L1 85.3 14.7 3.1

74.7 25.3 6.6

L2 75.3 24.7 3.9

L3 74.5 25.5 3.9

L4 68.8 31.2 4.3

L5 69.6 30.4 4.2

PYR 1

L1 19.2 80.8 4.6

18.2 81.8 1.2

L2 16.7 83.3 4.5

L3 19.4 80.6 4.6

L4 17.2 82.7 4.6

L5 18.5 81.5 4.6

PYR 2

L1 4.2 95.8 3.8

4.5 95.5 1.6

L2 3.2 96.8 3.7

L3 4.0 96.1 3.8

L4 7.3 92.7 4.0

L5 3.7 96.3 3.8

PYR 3

L1 8.5 91.5 4.1

8.0 92.0 1.5

L2 7.6 92.4 4.0

L3 7.3 92.7 4.0

L4 10.3 89.7 4.2

L5 6.3 93.7 4.0

Table 4.  Ortho-/clino-pyroxene concentration ratio, extrapolated from RLS ExoMars Simulator data.

Sample Line
Ortho-pyroxene 
(%)

Clino-pyroxene 
(%) Std (%) Sample Line

Ortho-pyroxene 
(%)

Clino-pyroxene 
(%) Std (%)

DUN 1

L1 33.3 66.7

PYR 1

L1 71.4 28.6

L2 25.0 75.0 L2 64.3 35.7

L3 40.0 60.0 L3 62.5 37.5

L4 16.7 83.3 L4 83.3 16.67

L5 33.3 66.7 L5 66.7 33.3

Average 29.7 70.3 9.0 Average 69.6 30.4 8.4

DUN 2

L1 83.3 16.7

PYR 2

L1 80.9 19.1

L2 80.0 20.0 L2 89.2 10.8

L3 71.4 28.6 L3 94.9 5.1

L4 87.5 12.5 L4 86.8 13.2

L5 83.3 16.7 L5 97.5 2.5

Average 81.1 18.9 6.0 Average 89.9 10.1 6.6

DUN 3

L1 54.5 45.5

PYR 3

L1 26.8 73.2

L2 77.8 22.2 L2 41.2 58.8

L3 70.0 30.0 L3 35.5 64.5

L4 75.0 25.0 L4 26.3 73.7

L5 66.7 33.3 L5 16.7 83.3

Average 68.8 31.2 9.1 Average 29.3 70.7 9.4
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dominated by olivine with minor content of clino-pyroxene and ortho-pyroxene phases. On the contrary, PYR 
samples (Fig. 6) are mainly composed of pyroxene phases, while olivine is present in minor amounts.

Applying the quantification method described in “Analytical instruments” section, the values summarized 
in Table 6 were obtained. According to the model, the mean error estimated for the calculated concentrations 
is 3.0%.

Taking into account the olivine/pyroxene concentration ratio estimated for each sample, as well as the 
proportions between monoclinic and orthorhombic phases, XRD and Raman results were plotted in a ternary 
graph (olivine, clino-pyroxene and ortho-pyroxene as end-members). As shown in Fig. 7, the classification areas 
identified by the two techniques for samples DUN2, DUN3 and PYR2 are partially overlapped, thus proving the 
good agreement between Raman and XRD results. With regards to the other analogues, the olivine/pyroxene 
ratio extrapolated for the two techniques are also very similar, while the estimated ratio between orthorhombic 

Table 5.  Raman semi-quantitative data of the main mineral phases detected on DUN and PYR samples.

Sample Olivine (%) Ortho-pyroxene (%) Clino-pyroxene (%)

DUN 1 75.7 7.2 17.1

DUN 2 82.0 14.6 3.4

DUN 3 74.7 17.4 7.9

PYR 1 18.2 57.0 24.8

PYR 2 4.5 28.0 67.5

PYR 3 8.0 82.7 9.3

Figure 5.  Diffractograms obtained from the analysis of DUN samples, highlighting the detection of olivine 
(Ol), ortho-pyroxene (Opx) and clino-pyroxene (Cpx).
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and monoclinic phases is slightly different. Indeed, Raman results seem to underestimate the content of ortho-
pyroxene in samples PYR1 and DUN1, and to overestimate it in sample PYR3.

Using diffractometric results as reference, the classification goodness of the proposed method was calculated 
by measuring the Euclidean distance between the mean concentration ratios estimated for each sample by XRD 
and Raman.

As shown in Fig. 7, DUN2 sample was classified as harzburgite by both semi-quantification methods. The 
overlap between XRD and Raman classification areas fit with the small Euclidian distance between their mean 
values (4.9). Even though both XRD and Raman instruments classified DUN1 and DUN3 as lherzolite, it must 
be underlined that the Euclidean distance measured from the two samples was 15.0 and 5.0 respectively. Relating 
this difference to the values provided in Tables 5 and 6, it can be inferred that the proposed Raman-based 
method underestimated the relative concentration of orthorhombic pyroxene (over monoclinic) on sample 
DUN1. PYR1 is the sample providing the greatest Euclidean distance (17.2) between XRD and Raman mean 

Figure 6.  Diffractograms obtained from the analysis of PYR samples, highlighting the detection of olivine (Ol), 
ortho-pyroxene (Opx) and clino-pyroxene (Cpx).

Table 6.  XRD semi-quantitative data of the main mineral phases detected on DUN and PYR samples.

Sample Olivine (%) Ortho-pyroxene (%) Clino-pyroxene (%)

DUN 1 78.8 15.9 5.3

DUN 2 85.4 11.1 3.5

DUN 3 73.5 21.4 5.1

PYR 1 14.2 70.7 15.2

PYR 2 6.5 31.5 62

PYR 3 4.4 73.5 22.1
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values (again, ortho-pyroxene concentration was underestimated by Raman). In spite of that, the analogue was 
classified as olivine-websterite by both semi-quantification methods. XRD and Raman results from PYR2 fit 
quite well (Euclidean distance = 6.9): both methods identified a composition between olivine-websterite and pure 
websterite. To conclude, the Euclidean distance between the areas calculated for PYR3 (16.1) caused this sample 
to be classified as websterite or olivine-websterite (rich in orthorhombic phases) depending if XRD or Raman 
data are considered, respectively. In this case, the discrepancy was mostly due to the Raman underestimation 
of clino-pyroxene content.

Conclusions
As proved by the comparison with reference diffractograms, the RLS ExoMars Simulator used by emulating the 
operational mode established for the RLS system soon operating on Mars (between 20 and 39 spot of analysis 
per sample) was able to successfully disclose the mineralogical complexity of the analysed terrestrial analogues.

Calibration curves, obtained by analyzing laboratory-prepared mineral mixtures, and tested on Martian 
analogues, confirmed that RLS can be used to estimate the relative concentration ratio of olivine and pyroxene 
on powdered rocks. By emulating the operational constraints of the RLS instrument, a calibration curve with a 
correlation coefficients  (R2) equal to 0.9997 with an estimated uncertainty of ± 3.7% (confidence interval = 95%) 
was obtained. Calibration curves were then used to extrapolate the relative content of olivine and pyroxene from 
the analyzed terrestrial analogues. The obtained results, combined with a rough estimation of the proportion 
between monoclinic and orthorhombic phases, were used to classify the igneous rocks. As can be seen in the 
ternary graph displayed Fig. 7, Raman results fit quite well with reference XRD data, being PYR3 the only sample 
where Raman and XRD brought to slightly different classifications (olivine-websterite vs websterite).

As the preliminary data summarized in this work suggests, the RLS spectrometer onboard the Rosalind 
Franklin rover could be used to correctly classify ultramafic rocks on Mars. This kind of study can find application 
in the analysis of the igneous geological units detected at the landing site, which have been pointed as potential 
analytical targets of the ExoMars mission.

Despite the good results obtained in this work, the classification method can be optimized. Being aware 
that the proposed univariate method can lead to under- or over-estimate the relative content of mineral phases 

Figure 7.  Ternary plot for sample classification.



13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16954  | https://doi.org/10.1038/s41598-020-73846-y

www.nature.com/scientificreports/

depending, for example, on their crystallinity (factor that affects intensity and width of Raman peaks), the 
aim is to optimize the semi-quantification method by using a multivariate analytical approach. Furthermore, 
knowing that the main Si–Obr vibration signals of monoclinic and orthorhombic pyroxene partially overlap, the 
estimation of their relative proportion can be refined by implementing data analysis process with algorithms for 
automated spectra deconvolution. Depending on the quality of the spectra, secondary peaks could be also taken 
into consideration for a correct discrimination between pyroxene phases. In this sense, the RLS team is planning 
a dedicated work that, through the RLS (spare model) analysis of monoclinic and orthorhombic pyroxene 
standards, seeks to determine the optimal spectral indicators to use for a reliable discrimination between the 
two mineral structures. Knowing that Raman-based semi-quantification studies could optimize the scientific 
outcome of the RLS on Mars, this work describes the first steps of the RLS science team towards the development 
of the necessary chemometric tools.
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