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en realidad contiene una gran carga de emotividad, pues dependiendo del
sentido que se le de al verbo, el significado de la frase se balancea entre
la broma y el más profundo agradecimiento. Hoy, siendo padre de dos hijas
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Abstract

The classic Web infrastructure used to publish, consume, and exchange
content is also available to host raw data so machines can access and process
such information. This so-called Web of Data has grown exponentially in
recent years, weaving its own net of online, connected datasets, using RDF
as a common language and a bridge between them. All this amount of gener-
ated RDF data result in huge collections, consequently opening the doors to
various lines of research, including RDF data compression, which optimizes
the storage and streamlines data exchange. In contrast to universal com-
pressors, RDF compression techniques are able to detect and exploit specific
forms of redundancy, leveraging syntactic and semantic redundancies in RDF
data. However, to date, little attention has been paid to some structural reg-
ularities that real-world datasets follow and that constitute another source
of redundancy. In this thesis we have analyzed the structural redundancy
that the RDF graph inherently possesses and we have proposed a prepro-
cessing technique called RDF-Tr (RDF Triples Reorganizer) which groups,
reorganizes and re-codes RDF triples, alleviating two sources of structural
redundancy underlying the schema-relaxed nature of RDF. We have inte-
grated RDF-Tr into two of the main state-of-the-art RDF compressors,
HDT and k2-triples, significantly reducing in both cases the size that the
original compressors achieve, thus outperforming the most prominent state-
of-the-art techniques. We have denominated HDT++ and k2-triples++ the
result of applying RDF-Tr to each compressor.

RDF is supported by a whole set of semantic technologies that allows,
among other things, access to data in large RDF collections thanks to SPARQL,
its own SQL-like query language. In the field of RDF compression, different
compact data structure configurations are used to build RDF self-indexes,
providing efficient access to the data without (partial or total) decompres-
sion. The indexed HDT (called HDT-FoQ) was the pioneer in this scenario
and is nowadays used by the semantic community to publish and consume
large RDF data collections. In this thesis, we could not ignore this fact, and
we have extended HDT++ (called iHDT++) to support full SPARQL Triple
Patterns resolution, consuming less memory than its counterpart. We have
proven that iHDT++ reduces by 20-45% the space that HDT-FoQ needs,
while speeding up the resolution of most Triple Pattern queries, reporting
space-time tradeoffs that compete and outperform, in different scenarios, the
state-of-the art RDF self-indexes.





Resumen

La infraestructura de la Web clásica que utilizamos para publicar, con-
sumir e intercambiar contenido, también está disponible para alojar el raw
data que puede ser accedido y procesado por las máquinas. Esta Web de Da-
tos ha experimentado un crecimiento exponencial durante los últimos años,
tejiendo su propia red de datasets (conjuntos de datos) interconectados y dis-
ponibles en ĺınea, utilizando RDF como lenguaje común, haciendo de puente
entre ellos. Esta enorme cantidad de datos en RDF deviene en colecciones de
datos de gran tamaño, y ha abierto las puertas a diversas ĺıneas de investi-
gación, incluyendo la compresión de datos en RDF, que optimiza el espacio
de almacenamiento y, a su vez, agilizando su intercambio. A diferencia de los
compresores universales, las técnicas de compresión de RDF detectan y tra-
tan las redundancias espećıficas que poseen a niveles sintáctico y semántico.
Sin embargo, hasta la fecha, se ha prestado poca atención a ciertos patro-
nes estructurales que los conjuntos de datos del mundo real siguen y que
constituyen otra fuente de redundancia. En esta tesis hemos analizado la re-
dundancia estructural que los grafos RDF inherentemente poseen y hemos
propuesto una técnica de preprocesamiento llamada RDF-Tr (RDF Triples
Reorganizer) que agrupa, reorganiza y recodifica los triples, tratando dos
fuentes de redundancia estructural subyacentes a la naturaleza del esquema
RDF. Hemos integrado RDF-Tr en dos de los principales compresores RDF
del estado del arte, HDT y k2-triples, reduciendo significativamente en am-
bos casos el tamaño que obtienen los compresores originales, superando a las
técnicas más prominentes del estado del arte. Hemos denominado HDT++
y k2-triples++ al resultado de aplicar RDF-Tr en cada compresor.

RDF además, se apoya en un conjunto de tecnoloǵıas semánticas que per-
miten, entre otras cosas, hacer consultas a las grandes colecciones de datos
en RDF gracias a SPARQL, un lenguaje de consulta propio parecido a SQL.
En el ámbito de la compresión RDF se utilizan diferentes configuraciones de
estructuras de datos compactas para construir auto-́ındices RDF, que pro-
porcionan acceso eficiente a los datos sin necesidad de una descompresión
previa de los mismos (parcial o total). HDT-FoQ, la versión indexada de
HDT, fue el pionero en este ámbito y hoy en d́ıa es utilizado por la comuni-
dad semántica para publicar y consumir grandes colecciones de datos RDF.
En esta tesis no pod́ıamos ignorar este hecho, y hemos extendido HDT++,
llamándolo iHDT++, para permitir la resolución de patrones de tripletas
SPARQL consumiendo menos memoria que HDT-FoQ. Hemos demostrado
que iHDT++ reduce en un 20-45 % el espacio que necesita HDT-FoQ, a la



vez que acelera la resolución de la mayoŕıa de las consultas por patrón de tri-
pleta, mejorando la relación espacio-tiempo, en algunos escenarios, del resto
de auto-́ındices RDF del estado del arte.
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Chapter 1

Introduction

1.1. Motivation

The World Wide Web is a distributed set of documents in hypertext (i.e.,
web pages) connected through hyperlinks. The Web has been a revolution
thanks to the ease of publishing and sharing information of all kinds. How-
ever, this way of publishing content is mainly aimed at human consumption,
not machine processing, so the automated extraction of information from the
Web is a very laborious process. To mitigate this problem, the Web of Data
emerges as an extension of the World Wide Web, sponsored and defined by
Tim Berners-Lee [7], one of its founders. Here, data hosted in the Web can
be connected to be searched, shared and reused among applications or or-
ganizations. This information from different fields of knowledge is published
in the Web as datasets, and they acquire greater value if they are intercon-
nected, so machines can browse their content and navigate the Web of Data.
The way in which data should be published in this linked model is defined
[6] by four principles:

1. Use URIs to identify things.

2. Use HTTP URIs so those names can be looked up.

3. Provide useful information when a URI is looked up, using standards
like RDF [32] or SPARQL [47], among others.

4. Include links to other URIs, so more things can be discovered.

Linked Data becomes Linked Open Data (LOD) when such content is
under an open license and, therefore, free to reuse or republish. This open
data model has been growing impressively over the past few years. This
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Figure 1.1: Evolution of the Linked Open Data cloud.

evolution can be seen in Figure 1.1, where the first twelve datasets that, in
2007, originally formed the LOD cloud [38] (i.e., open and interconnected
datasets) can be seen on the left. In contrast, the right hand side of the
Figure shows the growth that the LOD cloud has experienced in these twelve
years, where it is virtually impossible to visualize any of the 1,239 datasets.
Note that DBpedia [3] is really at the core of the LOD, as it is present in
the center of both clouds. The reason for this is that DBpedia is based
on the Wikipedia structured content (mainly infoboxes), and hence contains
cross-domain information that references to (and is referenced by) specific
knowledge datasets. Since the first version of the LOD cloud in 2007, many
important projects of heterogenous fields of knowledge have joined the ini-
tiative, such as geography (e.g., LinkedGeoData1, with more than 1.2 billion
statements), life sciences (e.g., Bio2RDF 2, 11 billion statements) or general
knowledge (e.g., DBpedia3 or more recently WikiData4 with 9.5 billion and 8
billion statements respectively). One of the main achievements of the Linked
Open Data project is that the datasets that comprise the LOD cloud share
their information in the same language, in order to make it easy for machines
to access, browse and navigate their data model.

RDF. The W3C (World Wide Web Consortium) proposed a model to de-
scribe, publish and interchange data on the Web called RDF (Resource De-
sciption Framework) [32]. The information in RDF is expressed through

1http://linkedgeodata.org/
2http://bio2rdf.org/
3http://www.dbpedia.org/
4https://www.wikidata.org/
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Figure 1.2: Example of an RDF graph.

triples, each one comprising the resource being described (i.e., subject), a
property of that resource (i.e., predicate), and the corresponding value (i.e.,
object). This linking structure forms a directed, labeled graph, where the
edges represent the named link between two resources; i.e., the graph nodes.
Within a triple, a subject can be a URI or a blank node (i.e., anonymous
resource), a predicate must be a URI and the object can be a URI, a blank
node (or bnode) or a literal. A more formal definition can be found in Section
2.1.

A simple but real example of an RDF graph, extracted from DBpedia,
is shown in Figure 1.2, where we have a few triples representing some fea-
tures about the University of Valladolid5: It is a University established in
1290 whose motto is ”Sapientia Aedificavit Sibi Domvm (Latin)”. Besides,
it is present in two cites, Valladolid and Palencia, both are part of Castile
and León, in Spain. An example of a triple is (:University of Valladolid,

dbo:motto, "Sapientia Aedificavit Sibi Domvm (Latin)" ), which expresses the
motto of the University.

The W3C recommends syntaxes for storing and exchanging RDF such
as Turtle [46], JSON-LD [50] or N-Triples [13], among others, but RDF is
not tied to a fixed serialization format, hence the RDF Graph in Figure 1.2
can be written in any standard RDF format. For example, the Turtle and
N-Triples serializations for our example are shown in Figure 1.3.

All RDF formats convey the same meaning, but they also suffer the
same problems: their high level of verbosity and redundancy. Although

5http://dbpedia.org/page/University of Valladolid
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Figure 1.3: Serialization of the RDF graph.

Turtle mitigates redundancy by grouping prefixes (with the inclusion of
"@prefix" terms) and using some sort of adjacency lists, arbitrary long URIs
(e.g., http://dbpedia.org/resource/Castile and León) are still present in sev-
eral triples, playing the role of subjects and/or objects. Verbosity and re-
dundancy are particularly troubling in the Linked Open Data domain, where
large datasets are increasingly consolidated. This problem is not new, but
remains challenging [16] and is usually referred to as Big Semantic Data
management [34].

In this scenario, the W3C Member Submission, HDT (Header – Dic-
tionary – Triples) [19] [18], emerges as the first RDF binary serialization
that proposes to transform the classical RDF graph to a graph of integer
IDs. HDT minimizes the repetition of potentially large strings using a Dic-
tionary, which assigns a numerical ID to each term in the dataset. It di-
vides the RDF terms into four subsets lexicographically sorted, depending
on the role that each RDF term plays within the dataset (subject, pred-
icate, object or subject-object6). This partitioning [2] avoids the duplica-
tion of terms in the dictionary, since up to 60% of the RDF terms of a
dataset belong to the subject-object category [37]. Figure 1.4 shows the
four clusters of RDF terms in the Dictionary component, and the trans-
formed ID graph corresponding to our example. To decode Triple-ID, for
example (4, 4, 7), we just have to look for the particular ID of each term
(subject, predicate and object) in their specific Dictionary. Therefore, sub-

6HDT refers to ”subject-object” as the terms that play both subject and object roles
in the dataset.
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Figure 1.4: Our example as a graph of integer IDs.

ject 4 corresponds to the term :University of Valladolid; the predicate 4 is
dbo:motto; and finally, the object 7 encodes the literal "Sapientia Aedificavit

Sibi Domvm (Latin)" . The original triple is retrieved replacing the identifiers
with their corresponding RDF terms, (:University of Valladolid, dbo:motto,

"Sapientia Aedificavit Sibi Domvm (Latin)" ).

SPARQL. While it is true that the main use of RDF compression is for
the publication and exchange of Big Semantic Data, HDT finds its maxi-
mum expression when querying these large collections of linked data through
a query language, SPARQL (SPARQL Query Language for RDF ) [47]. The
simplest form of querying RDF with SPARQL is a Triple Pattern, an RDF
triple in which any of its components (subject, predicate, object) can be a
variable (denoted by a question mark) or a constant. Therefore, eight pos-
sible combinations (i.e., Triple Patterns) are possible: {(?,?,?), (?,?,o),

(?,p,?), (?,p,o), (s,?,?), (s,?,o), (s,p,?), (s,p,o)}. The following exam-
ple, (:University of Valladolid, dbo:motto, ?o) asks for the object of the triple;
i.e., we want to know the actual motto of the University of Valladolid. Tra-
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ditionally, SPARQL queries have been made possible thanks to endpoints
provided by specific RDF graph storage artifacts (i.e., triple stores) that al-
low the query of their contents. However, HDT introduced a novelty in the
SPARQL field, since it is the first RDF serialization technique that allows
Triple Pattern query resolution on the file, without the need for any addi-
tional support (i.e., triple stores), but adding some indexes to accelerate their
resolution.

HDT-FoQ (HDT Focused on Querying) [33] is the extension of the HDT
model that attaches some compact data structures that make simple but
efficient data retrieval possible. For these reasons, HDT is an RDF binary
serialization format, but it is also used as a storage engine in well known
Semantic Web projects such as Linked Data Fragments (LDF)7, LOD Laun-
dromat8 [5] or LOD-a-lot [17]. LDF provides a query interface based on
Triple Pattern Fragments (TPF) [53], an iterative process that converts the
clients’ complex SPARQL queries (over HDT datasets) into the union of sim-
ple Triple Patterns, returning paginated partial results, and therefore balanc-
ing the computational cost between servers and clients. LOD Laundromat
is a project that cleans the LOD RDF datasets, removing blank nodes, du-
plicated triples and syntax errors. After being cleaned, data is published
in many syntaxes, including HDT, and can be queried by the TPF APIs.
LOD-a-lot exposes an HDT mashup of 28 billion cleaned triples (from LOD
Laundromat), queryables by the TPF interface.

Challenges. The big boom in the exposure of large datasets on the Web
of Data, and the wide acceptance of RDF as the glue that links them, has fo-
cused the research of the last few years on the compaction of the serialization
of RDF graphs. The fact that HDT was the first RDF binary serializer, along
with its simple and intuitive model, has made HDT a great success within
the Semantic Web community. Precisely because of its simplicity, HDT (and
HDT-FoQ) does not capture the peculiarities of the RDF graph and can
therefore be improved by detecting and eliminating additional redundancy
in the Triples component. Specifically, RDF collections hoard three types
of redundancy [41]: Semantic redundancy occurs when the knowledge
described by some triples can be inferred from others. In this case, these
triples can be removed, thus reducing the size of the dataset, but preserving
the knowledge. Compression in this case is merely related to how informa-
tion is available within the dataset, so classic compression techniques are not
valid to alleviate this type of redundancy. It should be noted that semantic

7https://linkeddatafragments.org/
8http://lodlaundromat.org/
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compression can be lossy, so the decompression process will not necessarily
return the original graph (but an equivalent one). Symbolic redundancy
is present when there are similarities and repetitions between the URIs and
Literals (i.e., symbol repetitions). Symbolic redundancy is mainly due to
URIs with long prefixes. This kind of redundancy can be removed by univer-
sal compressors (i.e., gzip, bzip2, . . . ), since URI prefixes appear repeatedly
throughout the dataset. However, on the contrary, they do not allow access
to data without a prior decompression. This type of redundancy can also
be mitigated with the use of compressed string dictionaries [35], which are
used to encode the RDF terms present in a dataset as integers, making a
translation possible between a term and its identifier and vice versa. Finally,
syntactic redundancy refers to the existence of structural regularities in
the RDF graph. Resources of the same class are usually described by the
same predicates; for example, the predicate dbo:motto describes resources
such as Universities, but could not be used to describe printers, for instance.
Unlike N-Triples, which writes the full terms of each triple (one per line),
Turtle syntax is able to minimize this redundancy by serializing the triples,
grouping predicate-object pairs related to the same subject (i.e., adjacency
lists). As in the case of subject-predicate connections, relationships estab-
lished between predicates and objects are also restricted to a limited range.
Specific graph compressors can treat this sort of redundancy by serializing
the graph in compressed adjacency lists or matrix structures. The fact that
graph compressors usually work with integers must be taken into account, so
a previous step of generating a dictionary is necessary.

1.2. Hypothesis

Specific RDF compressors mitigate any of the three redundancies above
achieving a size reduction. These compressors are classified into physiscal
compressors, if they exploit the syntactic and/or symbolic redundancy; logi-
cal compressors, if they act on semantic redundancy; and hybrid compressors,
which mix both types. An introduction to the main RDF compressors of the
state of the art can be found in Section 2.2.

In this thesis, we have addresed a particular RDF problem: the distri-
bution of the predicates of the RDF real-world datasets are such that they
introduce overheads in their serializations. This problem brings up two chal-
lenges. On the one hand, specific syntactic redundancy should be identified
and treated in order to improve the compression that the main state-of-the-
art techniques currently achieve. On the other hand, new data structure
configurations should be proposed to allow SPARQL Triple Pattern queries
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on compressed data. This feature is currently available in techniques that
lead the state of the art. All of the above leads us to raise the main hypothesis
of this thesis:

“RDF graphs are not randomly structured, on the contrary, they
tend to follow organizational patterns resulting in semi-structured
datasets. Based on this inherent RDF characteristic, the terms
can be organized, grouped and re-encoded so that syntactic re-
dundancy is minimized, improving the existing RDF compression
techniques, such as HDT, while maintaining its ability to query
in compressed space.”

Within a dataset, subjects of the same class are usually described by the
same predicates. For example, a person might be described by predicates
such as an ID, name, sex, date of birth, etc. However, those predicates do
not fit when describing countries, for instance. In our example (see Figure
1.2), the resources :Valladolid and :Palencia are described by the same
predicates {dbo:country, dbo:isPartOf, rdf:type}, since both are of the
same class (i.e., cities). We call predicate-family (or family) the set of pred-
icates that describe subjects of the same nature, splitting the graph into
subgraphs, each one containing all subjects described by the same char-
acteristics. Therefore, the relationships established between subjects and
predicates can be replaced by those between subjects and families. A more
fine-grained analysis is performed when considering the presence of predicate
rdf:type. This predicate is used extensively to categorize the information
in the dataset, providing the class of the subject it describes. Therefore,
although it is not mandatory, this predicate appears many times through-
out the dataset. Type objects (i.e., related to the rdf:type predicate) can
be attached to the family to semantically categorize the subjects they are
describing. Besides, although RDF allows the connection between any pred-
icate and object, predicates are, in practice, related to a well-defined range
of objects. Therefore, objects can be locally identified within the scope of
each predicate, using fewer bits to be encoded.

The second part of the hypothesis proposes that our new form of serial-
ization can be queried efficiently. In this context, RDF self-indexing provides
efficient access to the data without a decompression. As seen before, HDT
can generate auto-indexes on the top of its structure to allow and speed up
the query of its data. HDT-FoQ (HDT and its self-indexes) manages to effi-
ciently perform searches by subject, but requieres expensive indexes to run
predicate and object-based queries. We efficiently guarantee data querying
by adding new compact data structures on top of our proposal, which will al-
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leviate the main weakness of HDT-FoQ (i.e., predicate-based queries), while
preserving the efficiency of the rest.

1.3. Contribution

This thesis encompasses several contributions. First of all, a full revision
of RDF compression [34], which has been published in the homonymous
chapter of the book Encyclopedia of Big Data Technologies [49], where we
have also described the sources of redundancy that RDF inherently possesses
(see the previous section) and how the different kinds of compressors are able
to mitigate them.

In this thesis we analyze common patterns related to the use of predicates
and objects in RDF real-world datasets, and show how structural sources of
redundancy underlying the schema-relaxed nature of RDF can be exploited
to improve their effective encoding. Its main contribution is the concep-
tion of our proposed RDF graph reorganization technique, called RDF-Tr,
which alleviates its structural redundancies and improves HDT (the most
used RDF compressor by the community) in terms of compression space and
decompression time. However, the use of RDF-Tr is not limited to HDT. In
particular, it is applied to another syntactic compressor, k2-triples [1], which
performs a more effective ID-graph encoding, organizing the RDF terms like
HDT (four partitions), but encoding the triples in |P | binary matrices, which
are subsequently compressed using k2-trees [11] (see Section 2.2 for more de-
tails). Applying RDF-Tr to k2-triples, as in the case of HDT, achieves
improvements in compression size and decompression speed.

RDF-Tr groups triples by families of predicates and recodes object IDs
within the scope of the predicate in which they act. This results in a new
binary representation of the triples, called HDT++, while retaining the orig-
inal HDT Dictionary component. HDT++, which was presented in the Data
Compression Conference (DCC) in 2015 [22] (see Chapter 3), outperforms
its original effectiveness up to 2.3 times, accelerating the decompression time
up to 3.4 times.

The fact that RDF-Tr acts only on the Triples component of HDT,
leaving the Dictionary intact, makes it possible to apply the same transfor-
mations to some other RDF compressors, as in the case of the aforementioned
k2-triples. RDF-Tr, which was published in the journal Information Sci-
ences in 2020 [24] (see Chapter 4), formalizes the DCC proposal, optimizing
the configuration of some parameters that allow the improvement of HDT++.
In addition, it is also used to improve k2-triples. Once RDF-Tr is applied
over k2-triples, a more compact version is obtained, called k2-triples++, sav-
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ing up to 2.3 times the space needed by its original version, and increasing
the decompression time up to 2.4 times.

In addition to compression, one of the strengths that both HDT and k2-
triples have, as well as RDFCSA [10] (another of the leaders in RDF compres-
sion), is that they all allow for the resolution of SPARQL Triple Patterns on
the serialized file. Therefore, and despite the great numbers obtained in terms
of compression, another contribution is needed for this thesis: A proposal for
indexing the reorganized RDF graph for the sake of providing resolution of
Triple Patterns. To complete this challenge, iHDT++ (indexed HDT++)
extends the concept of HDT++ with the inclusion of proficient self-indexes
that alleviate the main weakness of HDT-FoQ (i.e., predicate-based queries).
On the one hand, iHDT++ outperforms HDT-FoQ in terms of space com-
plexity by up to ≈ 45%. On the other hand, regarding the resolution of Triple
Patterns, the main achievement is the improvement of two orders of magni-
tude when solving the query {(?,P,?)}, while {(?,?,?)} is up to one order of
magnitude faster in iHDT++, depending on the dataset. For the rest of the
Triple Patterns accessed by predicate (i.e., {(S,P,O), (S,P,?)}), iHDT++ is
still faster, although the difference is less significant. Accessing by object
(i.e., {(S,?,O), (?,P,O), (?,?,O)}) reports similar times as HDT-FoQ, being
the access by subject (i.e., (S,?,?)), the only operation that HDT-FoQ solves
faster than iHDT++. A preliminary version of iHDT++ was presented at
the Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD) [23] in
2017. Finally, an optimized and definitive version was presented in the In-
ternational Symposium on Language & Knowledge Engineering (LKE) [25]
in 2019, and published in the Journal of Intelligent & Fuzzy Systems [26] in
2020 (see Chapter 5).

Finally, all these contributions have been compiled into a tool9, capable
of being integrated into the original HDT library, which allows it to per-
form the reorganization of the triples from an HDT file, transforming it into
HDT++. This transformation can also be applied to k2-triples. In addition,
iHDT++ self-indexes can be built with this tool to enable Triple Pattern
query processing.

1.4. Thesis Structure

This thesis is presented as a compendium of publications. Chapter 2
provides the background on which the compendium is based, including the
processes of publishing and querying data on the Web of Data, basic com-
pression concepts and a state of the art of RDF compressors. Chapters 3

9https://github.com/antonioillera/iHDTpp-src
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to 5 gather the three publications that constitute this thesis, each of them
corresponding to a particular contribution, which are the following:

– Chapter 3: “Serializing RDF in Compressed Space”. [22] In proceed-
ings of the Data Compression Conference (DCC 2015). Conference
indexed in GII-GRIN-SCIE (GGS)10 Conference Rating: GGS Class 2.

– Chapter 4: “RDF-TR: Exploiting structural redundancies to boost RDF
compression”. [24] Journal article published in Information Sciences,
indexed in the Journal Citation Reports (JCR) Ranking: Impact factor
5,910. Q1: Computer Science, Information Systems (9/156).

– Chapter 5: “iHDT++: Improving HDT for SPARQL Triple Pattern
Resolution”. [26] Journal article published in Journal of Intelligent &
Fuzzy Systems, indexed in the Journal Citation Reports (JCR) Rank-
ing: Impact factor 1,851. Q3: Computer Science, Artificial Intelligence
(79/136).

Finally, Chapter 6 presents the Conclusions of the thesis and the open
lines of research that are left as future work.

10http://gii-grin-scie-rating.scie.es/
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Chapter 2

Background

2.1. Semantic Web and Technologies

We have previously introduced the notion of Web of Data, in contrast to
the document-centric traditional Web, and how Linked Open Data helps to
share and complete information among datasets, navigating from generalist
datasets like DBpedia to specific ones such as Linkedmdb or LinkedGeoData.
The term Semantic Web refers to this Web of Linked Data and technologies
around it. Tim Berners-Lee identified five different levels of linked data
quality [6], depending on how a particular dataset is published in the Web:

1. Available on the web (irrespective of the format) but with an open
license, to be considered as Open Data.

2. Available as machine-readable structured data (e.g., Excel instead of
an image scan of a table).

3. Use non-proprietary format (e.g., CSV instead of Excel).

4. Use open standards from W3C (RDF and SPARQL) to identify things,
so that people can point to your content.

5. Link your data to other people’s data to provide context.

Levels four and five clearly identify RDF as a key semantic technology
within the Linked Open Data initiative. Some techniques have been devel-
oped to facilitate the generation of RDF data. This is the case of R2RML
(RDB to RDF Mapping Language) [15], a language to dump the content of
relational databases into RDF datasets; or GRRDL (Gleaning Resource De-
scriptions from Dialects of Languages) [14], which proposes transformations
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over markup languages such as XML or XHTML [43] to convert the content
into RDF; thus, web page contents can be extracted and integrated into the
Semantic Web.

As previously stated, data in RDF are expressed by triples with the form
(subject, predicate, object) and these triples can be seen as labelled directed
graphs. Looking back at Figure 1.2, we can see that there are two types of
objects : literals, which are surrounded by a square in the example; and URIs,
which are encircled in the same example. Special nodes are the blank nodes,
which are anonymous resources (acting as subjects and/or objects) without
a URI that are normally used to group nodes. At this point, we can show
formal definitions [21] of an RDF triple and an RDF graph assuming infinite,
mutually disjoint sets U (RDF URI references), B (blank nodes), L (RDF
literals) and a set of variables V .

Definition 1 (RDF triple): A triple (s, p, o) ∈ (U∪B)×U×(U∪B∪L) is
called an RDF triple. In such a triple, s is called the subject, p the predicate
and o the object.

Definition 2 (RDF graph): An RDF graph is a set of RDF triples. Each

triple (s, p, o) in an RDF graph can be graphically represented by s
p−→ o.

Definition 3 (Triple Pattern): An RDF Triple Pattern is an RDF triple
(s, p, o) ∈ (U ∪B ∪ V )× (U ∪ V )× (U ∪B ∪ L ∪ V )

Just as it is important that different datasets represent their data in the
same language (i.e., RDF) to enable their connection, it is equally important
to use the same vocabularies to interpret their content in certain contexts.
For this purpose, the community has proposed RDFS and OWL to restrict
RDF semantics. Figure 2.1 shows the Semantic Web Stack or Semantic Web
Layer Cake1, which illustrates the hierarchy of technologies that make up the
Semantic Web, each of them sustained by the elements of the lower layers.

RDFS (RDF Schema) [9] is a semantic extension of RDF (see Figure 2.1),
which provides a very simple way to construct vocabularies (i.e., ontologies),
mainly based on the use of class hierarchies and restrictions in the associ-
ation of terms. RDFS uses rdfs:Class to identify resources as classes and
rdfs:subClassOf to establish relationships between classes and superclasses.
The next example defines Public University as a subclass of University

(:University, rdf:type, rdfs:Class)
(:Public University, rdf:type, rdfs:Class)
(:Public University, rdfs:subClassOf, :University)

1https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
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Figure 2.1: The Semantic Web Stack.

Restrictions in the relationships that can be established between resources
are defined by the use of two properties: domain (rdfs:domain) and range
(rdfs:range). The rdfs:domain predicate indicates that a property applies to
instances of a particular class; while the rdfs:range predicate indicates that
the values of a property are instances of a particular class. For instance,
we could declare that a predicate enrolled is restricted to the relationship
established between instances of the classes Student and University.

(ex:enrolled, rdf:type, rdf:Property)
(ex:enrolled, rdfs:domain, rdf:Student)
(ex:enrolled, rdfs:range, rdf:University)

In addition to RDFS, OWL (Web Ontology Language) [42] offers a big-
ger and more expressive vocabulary to model domains in a more flexible
way. Properties in OWL can be characterized as Symmetric, Reflexive or
Transitive, among others, giving greater value to the relationships estab-
lished between resources. For example, if we have defined the property
isPartOf as Transitive (see Figure 2.2), we could express (Valladolid, isPartOf
Castile and León) and (Castile and León, isPartOf, Spain). However, it would
not be necessary to describe the fact that (Valladolid, isPartOf Spain), since
this information is inferred by the transitive property of isPartOf.

OWL incorporates a great variety of predicates that provide semantic
content to classes and individuals (i.e., instances), allowing the use of log-
ical operators in definitions, such as union (owl:unionOf ) or intersection
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Figure 2.2: A transitive property defined in OWL.

(owl:intersectionOf ) between ranges, restricting relationships through car-
dinalities (owl:cardinality, owl:minCardinality, owl:maxCardinality) or con-
straining the values (owl:allValuesFrom, owl:someValuesFrom, owl:hasValue),
to name but a few. OWL also introduces the owl:sameAs property, which is
vital in the Linked Data project, since it allows equivalences to be established
between concepts of different datasets.

RDFS and OWL not only provide semantics to RDF, but also facilitate
reasoning processes to infer new knowledge (i.e., triples) that is not explic-
itly contained within the dataset. Even if, in our example, there were no
triple (:Valladolid, dbo:country, :Spain), this knowledge could be inferred
from (:Valladolid, dbo:isPartOf, :Castile and León) and (:Castile and León,
dbo:coutry, :Spain). While RDFS is simpler and provides lighter semantics,
OWL is more complex, richer, and in turn introduces greater complexity of
reasoning [45].

One of the main attractions of RDF is that complex queries can be per-
formed on datasets thanks to its SQL-like language, SPARQL (briefly in-
troduced in Section 1.1). Queries in SPARQL are based on graph pattern
matching over the RDF graph, returning a subgraph that satisfies the es-
tablished conditions in the query. Recall that Triple Patterns are the basic
construction queries in SPARQL, where any term can be a variable or a con-
stant. Back to the example in Figure 1.2, let us suppose that we want to
know the cities where the University of Valladolid is present, which means
querying (:University of Valladolid, :city, ?). Figure 2.3 shows how this
Triple Pattern is expressed as a SPARQL. Solving the query in our example
will return two objects (:Valladolid and :Palencia) mapped to the variable
?o. Note that the result of applying the same query to the DBPedia end-
point2 will return more results, as our example graph is a basic excerpt of
the original.

Triple patterns are the prelude to much more complex queries that can be

2https://dbpedia.org/sparql
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Figure 2.3: Querying by SPARQL Triple Pattern

Figure 2.4: Basic Graphic Pattern in DBPedia

performed in SPARQL. A set of Triple Patterns constitutes a Basic Graph
Pattern (or BGP), really constituting a join of those Triple Patterns match-
ing the RDF graph. Figure 2.4 shows an example of BGP made up of two
Triple Patterns (surrounded by the WHERE clause) which looks in DBPedia
for the cities and the countries of those cities where the University of Val-
ladolid is present. The UNION operator forms a disjunction of two graph
patterns; solutions to both sides of the union are included in the results.
For example, the sentence shown in Figure 2.5 returns Public and Private
Universities in Spain.

The well known SQL modifiers GROUP BY, HAVING, ORDER BY or
LIMIT can be used in SPARQL sentences with the same purpose. SPARQL
also handles other commonly used and important clauses, such as FILTER,
which eliminates from the solution those results that do not satisfy a condi-
tion, or OPTIONAL, that tries to match a graph pattern, but if the optional
match fails, the whole query does not. One of the most relevant updates
of SPARQL has been the introduction of the so-called property paths that
allow graph pattern matching of arbitrary length paths. In addition, differ-
ent query forms, such us SELECT (returns the values selected in sentence),
CONSTRUCT (returns an RDF subgraph), ASK (returns a boolean answer)
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Figure 2.5: SPARQL UNION in DBPedia

and DESCRIBE (returns the description of a resource) can be used. Yet,
SPARQL not only allows the querying of RDF data, it also supports updat-
ing the data, by adding or deleting triples.

2.2. RDF Compression

The main objective of RDF compression is to serialize an RDF graph, or
a semantic equivalent, using fewer bits than traditional representations. For
this purpose, RDF redundancies introduced in Section 1.1 must be detected
and treated. RDF specific compressors are classified into the following three
types, depending on the redundancy they treat.

Physical compressors usually remove symbolic redundancy, transform-
ing the RDF graph into a compressed-dictionary ID graph that replaces the
original graph. The most widespread way to perform the dictionary com-
pression, the aforementioned four-section vocabulary (subjects, predicates,
objects, and those terms with the subject-object role), is present in many
RDF physical compressors, such us HDT [19] or k2-triples [1] (see Figure
1.4). After creating the dictionary, the syntactic redundancy needs to be ad-
dressed on the transformed graph of integers. The graph is succintly encoded,
for example, as adjacency lists or matrices.

HDT, the pioneer of this type of compressors, conceives the graph as
a forest of |S| subject-rooted trees, each of them storing the relationships
between that particular subject and predicates. The last layer of the tree
contains the objects related to the subject-predicate pairs. Later, the forest
is encoded with two sequences of integers, the first concatenates the predicate
IDs related to the root-subject and the second stores the relationships be-
tween objects and the subject-predicate pairs. Two additional sequences of
bits mark the ranges of subject-predicate relationships and predicate-object
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Figure 2.6: HDT BitmapTriples

relationships within the scope of each subject. This resulting structure is
called BitmapTriples. Figure 2.6 shows the forest of trees representing the
ID-graph we had in Figure 1.4, as well as its BitmapTriples encoding. HDT
allows subject-based queries to simply traverse the trees starting from the
subject roots, hence solving those triple patterns with a bounded subject. In
contrast, this encoding needs additional indexes that HDT-FoQ [33] builds
on top of it to solve the rest of the Triple Patterns.

Specifically, HDT-FoQ replaces the predicate list by a wavelet tree [20]
(called WP ) to provide indexed predicate-based access: (?, p, ?) and (?,

p, o), and uses an additional adjacency list (called O-Index) to store the
positions where each object is located within the BitmapTriples sequence of
objects, allowing the resolution of (?, ?, o). Both structures are shown in
Figure 2.7 along with the BitmapTriples.

K2-triples uses the same four-vacabulary dictionary as HDT, but proposes
a different way of encoding the graph, building |P | adjacency matrices. A
1-bit in the coordinate (i,j) of the nth matrix means that the triple (i,n,j) is
an existing triple within the dataset. The resulting matrices, which are very
sparse, are subsequently compressed using k2-trees [11], improving HDT-
FoQ compression ratios. Figure 2.8 illustrates the resulting k2-tree for the
predicate 2 of our example, which encodes all triples for the second predicate.
We consider k = 2, hence each level is divided into k2 = 4 submatrices. The
right hand side of the Figure depicts the conceptual tree and two sequences
of bits T and L, which encode the k2-tree.

RDFCSA [10] recodes ID-triples to avoid ID overlappings among sub-
jects, predicates, and objects. This rearrangement ensures that all subject
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Figure 2.7: HDT-FoQ.

IDs are smaller than predicate IDs, and that these are smaller than object
IDs, ensuring that ID-triples are ”lexicographically” sorted, respectively, by
subject, predicate, and object. RDFCSA exploits the fact that this organi-
zation can be effectively encoded using the Compressed Suffix Array (CSA)
[48], which also guarantees efficient queries over the compressed representa-
tion, competing with k2-triples, at the cost of using more space.

BMatrix [12], also based on k2-trees, is specifically designed to work
with datasets with a large number of predicates, in this case improving the
state-of-the-art RDF compressors. RDF terms are encoded using the four-
vacabulary dictionary, and it builds two binary matrices compressed in the
end with k2-trees; the first one stores the subjects occurrences (in rows), in
triples (in columns), while the other one does the same with the objects.
Triples in columns are grouped by predicate, so a last data structure is nec-
essary to mark the positions where the triples change their predicate.

Karim et al. [29] propose a technique to detect Frequent Star Patterns
across the RDF graph: pairs of predicates-objects that define entities (i.e.,
subjects) of the same Class. The graph is subsequently factorized, replacing
the original triples with RDF molecules (graph patterns that match those
Frequent Star patterns), thus decreasing the edges and compacting the graph.
This method is more efficient in ontologies, where classes are well defined.

RDF compression is also applied in specific domains, as in the case of
the provenance data [8], RDF metadata generated when creating or up-
dating content in web documents, such as Wikipedia. In this specific and
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Figure 2.8: Vertical-Partitioning on k2-triples (k=2) for P2.

restricted scenario, the RDF graph follows structural patterns that are ex-
ploited, achieving an effective compression in this domain.

There are other works, not focused on the compression of the RDF graph
itself, but on the optimization of RDF self-indexes used for the resolution
of SPARQL Triple Patterns. Pibiri et al. [44] propose 3 three-layer indexes
(i.e., permutations), one for the triples ordered in SPO, a second index stores
the triples ordered in POS, and the last contains the triples ordered in SOP.
Note that the SPO index is actually the HDT BitmapTriples configuration,
replacing the bit sequences with pointers. As the set of triples in the dataset
is tripled, the nodes can subsequently be recoded with the relative positions
of the index where the information is already located, reducing the size of
the indexes.

Logical compressors address the semantic redundancy, detecting and
removing from the RDF graph redundant triples (i.e., those that can be
inferred), obtaining the canonical subgraph. The first contributions in this
field are based on the notion of lean subgraph [27] [39], the smallest instance
(i.e., subgraph) of the original RDF graph. The structure of the graph clearly
influences the number of triples removed by the lean subgraph, the threshold
being in two triples eliminated per blank node in the graph [27]. However,
the subgraph obtained does not ensure that it is the canonical graph, so there
may be triples that could be inferred and therefore redundant [39].

The rule-based (RB) technique [28] mines the graph, looking for patterns
of relationship between RDF terms (intra-property and inter-property pat-
terns), which are subsequently used to create rules and eliminate inferable
triples. However, the compression obtained when applying RB is not very
important, and the authors ultimately compress the datasets with HDT in
order to be competitive with the rest of the RDF compressors. Effectiveness
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in this kind of compression can be improved by using more expressive rules,
as frequent patterns do not catch all the semantic associations. Horn rules
can be detected by exploring the dataset [52] and then used to delete triples
that match with the Head of a Horn rule, while the remaining triples are
compressed with the RB method.

Hybrid compressors encompass logical and physical techniques, so that
the three types of redundancies can be tackled. Although they combine the
best of both compression methods, in practice, it is a field that has been
little explored.

The graph pattern-based (GPB) compressor [40] groups the triples that
share the same subject in Entitiy Description Blocks (EDB). Each EDB is de-
scribed by an Entity Description Patterns (EDP), which is a concept similar
to predicate families. Each EDP is encoded as a pair containing an EDP and
instances that match it, constituting the simplest level of de GPB (LV0);
then better patterns are acquired (LV1) by merging the EDBs. The last
level in GPB (LV2) recursively joins the merged EDBs. Experiments show
that, at the logical level, GPB (LV2) removes more triples (i.e., compresses
more) than RB; however, its effectiveness has not been compared to physical
compressors.

Finally, RDF2NormRDF [51] is not a compressor per se, but an attempt
to normalize the RDF graph. It deals with blank node particularities and
cleans duplicated RDF terms from the graph by applying several transfor-
mations rules. At the physical level, RDF2NormRDF applies another set of
rules to normalize types and certain tags, such as language. Experiments
show that RDF2NormRDF only outperforms HDT when dealing with small
datasets.
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Chapter 3

Serializing RDF in Compressed
Space
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Abstract

The amount of generated RDF data has grown impressively over the last decade, promoting
compression as an essential tool for storage and exchange. RDF compression techniques
leverage syntactic and semantic redundancies, but structural repetitions are not always
addressed effectively. This paper first shows two schema-based sources of redundancy un-
derlying to the schema-relaxed nature of RDF. Then, we revisit the W3C HDT binary
format to further compact its graph structure encoding. Our HDT++ approach reduces the
original HDT Triples requirements up to 2 times for more structured datasets, and reports
significant improvements even for highly semi-structured datasets like DBpedia. In general,
HDT++ competes with the current state of the art for structural RDF compression, leading
the comparison for three of the four analyzed datasets.

1 Introduction

The Resource Description Framework (RDF) [9] is a conceptual model which de-
scribes data in the form of triples. Each triple comprises the resource being described
(referred to as subject), a property of that resource (predicate), and the correspond-
ing value (object). Each triple can be seen as a simple graph in which the predicate
labels the edge from the subject to the object node. Thus, an RDF dataset is a
labeled directed graph linking subject descriptions in the form of triples. This flexible
paradigm has seen a massive growth in interest over the past few years. RDF has been
adopted in many and varied fields of knowledge and leading projects1: life-sciences
(e.g. Uniprot), geography (e.g. Geonames), open-government (e.g. US data.gov),
etc. Not surprisingly, DBpedia, an RDF conversion of Wikipedia, is the biggest cross-
domain dataset and the most accepted reference to assess the benefits of RDF.

Despite it is being widely used, the RDF framework does not restrict how data are
serialized. Recently, the RDF Working Group of the World Wide Web Consortium
(W3C) collected several practical RDF serialization formats2. Although the original
RDF/XML is still considered, Turtle-based languages are promoted over it. In any
case, these formats are dominated by a document-centric and a human-readable view
of RDF, adding unnecessary overheads to the final dataset representation [5]. Thus,
the resulting RDF files take up much space, wasting storage and bandwidth resources.

∗ Research funded by Ministerio de Economı́a y Competitividad, Spain: TIN2013-46238-C4-3-R,
and Austrian Science Fund (FWF): M1720-G11.

1Uniprot: http://www.uniprot.org/; Geonames: http://www.geonames.org/; US data-gov:
https://www.data.gov/; DBpedia: http://www.dbpedia.org/

2See the recent new version of the RDF primer, http://www.w3.org/TR/rdf11-primer/
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Even when considering JSON-LD, a serialization which leverages JSON features for
compaction (and also makes easy data parsing), the syntax requires great amounts
of bytes for effective serialization, so storage and exchange remains inefficient.

HDT [6] is another RDF syntax within the W3C scope3 but, in contrast to the pre-
vious “plain” serializations, it proposes a binary format. HDT encodes RDF into two
main data components: the Dictionary, providing a mapping between textual terms
and numerical identifiers (IDs), and the Triples, which encodes the graph structure
of IDs, avoiding management of nodes and edges with long strings. HDT outputs
very compact RDF serializations [4], enabling meaningful savings in storage and also
speeding up exchange processes. However, its graph structure encoding (the Triples
component) is quite straightforward, and it is not able to leverage particular sources
of redundancy underlying to RDF. This paper revisits HDT to improve its Triples
encoding. The new approach: HDT++, reduces up to 2 times the original Triples space,
while outperforms the most prominent RDF compressor: k2-triples [1] by 10− 13%.

The rest of the paper is organized as follows. Section 2 delves into the low-level
details of HDT and also summarizes the current state of the art for RDF compres-
sion. Section 3 shows how some structural RDF features are potential sources of
redundancy, and Section 4 explains how our current approach exploits them within
HDT foundations. Section 5 compares the current approach with respect to the orig-
inal HDT, and the aforementioned k2-triples. Finally, Section 6 concludes about our
current work and devises future research leveraging the reported advances.

2 Background

HDT [6] is a binary serialization format optimized for RDF storage and transmission
over a network. It encodes RDF data into three components (Header, Dictionary, and
Triples) carefully described to address some RDF peculiarities, but also considering
how these data are used in the common Publication-Exchange-Consumptionworkflow.

The Header is a metadata component that describes relevant information for dis-
covering, parsing and consumption purposes. It uses few kilobytes, so it is free of
scalability issues. Then, the RDF graph is represented on the basis of two data com-
ponents: the Dictionary maps all different terms in the dataset to unique identifiers
(IDs), and enables the Triples component to encode the inner RDF structure as a
compact graph of IDs. Efficient encoding of string dictionaries is a challenge beyond
RDF compression [2], so the dictionary representation is orthogonal to the problem
addressed in this paper. Nevertheless, note that the HDT Dictionary component has
already been encoded using effective compressed RDF dictionaries [4, 11].

The Triples component encodes RDF triples as groups of three IDs: (ids idp ido),
where ids, idp, and ido are respectively the IDs of the corresponding subject, predicate,
and object terms in the Dictionary. The current Triples component organizes all these
triples into a forest of trees, one per different subject in the dataset (see Figure 1).
These trees are ordered by subject ID, i.e. the ith tree organizes all triples rooted
by the ith subject in the Dictionary. Each tree has three levels: the root encodes
the subject; the second level encodes all predicates related to the subject (predicate

3HDT was acknowledged as Member Submission, http://www.w3.org/Submission/HDT/
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Figure 1: Forest of trees modeling ID triples in HDT.

Figure 2: Configuration of binary streams used for encoding the Triples component.

IDs are listed in increasing order); and, the leaves encode the adjacency lists of all
objects related to each (subject, predicate) pair, also listed in increasing order of
object IDs. Note that if a subject is related to j different predicates, its tree encodes
j different object lists. This forest organization is succinctly serialized using four
binary streams. On the one hand, two sequences: Sp and So, which concatenate
predicate and object IDs respectively, following the tree orderings. Given an RDF
dataset that comprises |P | different predicates and |O| different objects, the encoded
IDs in Sp and So take log |P | and log |O| bits per element respectively. On the other
hand, two bitsequences: Bp and Bo, which are aligned with Sp and So respectively, in
the following way. When Sp[a] stores the last predicate ID of an adjacency list, then
Bp[a]=1, being 0 otherwise. In other words, the list of predicates related to the kth

subject ends in the kth 1-bit in the Bp bitsequence and starts after the k − 1th 1-bit.
This reasoning also applies for object encoding in Bo and So.

Figure 2 shows the structures which encode the previous example. For instance,
the 4th predicate list is encoded from Sp[12] to Sp[14]: {1,2,4}, because Bp[14]

stores the 4th 1-bit and Bp[12] stores the next 0-bit after the 3rd 1-bit.

State of the Art of RDF Compression

Following the categorization in [13], HDT can be considered as a syntactic com-
pressor because it detects redundancy at serialization level. On the one hand, the
Dictionary reduces symbolic redundancy from the terms used in the dataset. On the
other hand, the Triples component leverages structural redundancy from the graph
topology. This kind of redundancy is also detected in k2-triples [1]. This approach
performs a predicate-based partition of the dataset into disjoint subsets of (subject,
object) pairs. These subsets are highly compressed as (sparse) binary matrices that
also allow efficient data retrieval. Other approaches, like HDT-FoQ [10] or WaterFowl
[3] also enable data retrieval in compressed space. Both techniques, based on HDT
serialization, report competitive performance at the price of using more space than
k2-triples, which is the most effective compressor, to the best of our knowledge.

RDF compression may also leverage semantic redundancy. These logical com-
pressors [8] discard triples which can be inferred from others, and they only encode
these “primitive triples”. Thus, these techniques save space because they reduce the
number of triples to be encoded. In addition, they may also apply syntactic com-
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pression techniques. For instance, Joshi et al. [8] combine their approach with HDT,
but their results are similar to that obtained by simply using HDT. Recently, Wu et
al. [13] have proposed SSP, an hybrid compressor leveraging syntactic and semantic
redundancy. Its results show that SSP+bzip2 slightly improves HDT+bzip2

3 Schema-based Sources of Redundancy

RDF is described as a schema-relaxed model in which data with different degrees of
structure can be integrated. That is, RDF allows structured and semi-structured data
to be mixed in a single representation. This flexibility is a double-edged sword because
compression techniques can no longer rely on a fixed schema, when in fact RDF
datasets present inherent schema-based features that may be a source of redundancy
not explicitly considered. Two main sources of redundancy are identified and then
integrated into our approach.

Predicate families. The predicates used to describe a subject may vary greatly
within a dataset. For instance, the list of predicates used to describe people (name,
age, e-mail, etc.) are different to those used to categorize a song (title, author, album,
etc.) and both can coexist in a dataset. Moreover, resources can be described with
different level of detail (semi-structured descriptions): some people can be described
using their name and age, others through their name, and e-mail, etc. However,
it is nonetheless true that, given the descriptive character of RDF, i) there exist
predicate repetitions when describing resources of the same nature (e.g. between songs
and between people), and ii) although the number of predicate combinations (aka:
predicate families) theoretically grows with the number of predicates, the number
of combinations is bounded [4]. Table 1 reports some statistics for four real-world
datasets (see Section 5 for more details). On the one hand, dbpedia and linkedmdb

are the less-structured datasets: the number of predicate families is ≈ 22.5 times
the number of predicates in dbpedia, and ≈ 38 times for linkedmdb. It denotes the
use of a “light” schema. Nevertheless, the number of lists remains significantly small
regarding all possible combinations of predicates, so we still found massive repetitions
of subjects described with similar predicates. The number of families in dbtune is more
bounded (≈ 2.5 times) as it is a more structured dataset. On the other hand, the
us census is a clear example of a highly-structured dataset because the number of
families is even less than the number of predicates.

A more fine-grained analysis is performed when considering the presence of the
rdf:type predicate. This property is used to set the class of the subject being de-
scribed, but it is not mandatory (e.g. no subject in the us census describes it). In
practice, rdf:type tends to be the most repeated predicate, so it is used in many triples
along the dataset. As shown in Table 1 (last column), families involving rdf:type are a
large majority of all existing ones (except for us census which does not use rdf:type).
Thus, predicate families are, in general, related to typed subjects, and the type values
come from a small universe of classes (column #classes).

All these features suggest that a family-based encoding may be more effective
because it avoids predicate repetitions to be encoded per general or typed subject.
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dataset #triples #predicates #classes #predicate families #predicate families (class)
linkedmdb 6,147,996 222 53 8,459 8,442
dbtune 58,920,361 394 64 963 782
us census 149,182,415 429 0 106 ×
dbpedia 431,440,396 57,986 351 1,309,392 1,152,617

Table 1: Statistical description of some real-world datasets (note that the #classes column shows

the number of different values (classes) for the rdf:type predicate; the #predicate families (class) column shows

the number of different families including the rdf:type predicate).
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Figure 3: Number of predicates per object (mean and standard deviation).

Predicates per Object. Schema-based redundancies are often referred to the sub-
ject being described, but one can also find repetitions in the objects. In RDF, objects
set the corresponding values for the descriptions, labeled by means of predicates.
While any predicate could be attached to a value, it is obvious that values tend to be
very tight to the predicates. For instance, info@rdfhdt.org is clearly attached to an
“e-mail” predicate (it would be rare to find this value in a predicate such as age), yet
others such as Nevada could be a “family name”, an “album”, etc. Despite this latter
exceptional case, it is usual that object values are related to a single predicate [4].
Figure 3 illustrates this fact for the aforementioned datasets, showing that the mean
number of predicates per object is very close to 1 (with a limited standard deviation).

In contrast to previous approaches, in which all objects are treated equally (using
a global object-ID dictionary), all this stands that objects may be separately encoded
within each predicate, thus resulting in local and smaller object IDs.

4 Our Approach

Our current approach focuses on improving the current HDT Triples component to
leverage the aforementioned sources of redundancy. First, the concept of predicate
families is materialized to improve the HDT predicate encoding. Then, the object
encoding is lightened by introducing particular mappings which leverage the fact that
most objects are related to just one predicate.

Predicate families. First, the Triples component is processed to identify all differ-
ent predicate families in the dataset. The resulting set of families is then mapped to a
range: [1, |F |], so the ith family is identified by the ID i. This decision enables the
predicates level to be re-encoded. For each subject, its predicate list is replaced by its
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Figure 4: Forest modeling ID triples using predicate families.

Figure 5: Forest configuration before subject reorganization.

family ID. This is illustrated in Figure 4, showing the conversion of the previous ex-
ample into three different families. Each subject is now linked to a single node which
encodes its corresponding family; e.g. the 4th subject is linked to the 3rd family, which
comprises the predicates {1,2,4}. This families structure is encoded succinctly by
means of a coordinated sequence and bitsequence (top right of the figure).

We leverage the aforementioned preponderance of families associated with typed
subjects by extracting all triples involving rdf:type, as we represent the class values
of the family in a separate types structure. This decision saves many object IDs
to be encoded at the object level. This new structure stores the IDs which encode
the correponding class values in the Dictionary, and uses the ID 0 for encoding non-
typed families. Besides this, a coordinated bitsequence is required because a predicate
family may involve many rdf:type values; e.g. the 3rd family has types 24,53.

Finally, we perform a two-step subject reorganization in order to bring together
all elements related with the same family. The final result is shown in Figure 5. In a
first step, we simply put together the trees of the subjects with the same family. For
instance, in Figure 4, the subjects of the 1st family are 1, 3 and 6; the subject 2 is the
only related to the 2nd family and the subjects 4, 5 and 7 are related to the 3rd family.
To avoid the subject ID encoding, we perform a second step, in which we “re-map”
the subject IDs, so that the subjects are correlative and implicitly represented, as
shown in Figure 5. To do so, we add a subject permutation structure: PermS, which
is aligned with the original Dictionary mapping. That is, PermS[i]=j if the original
ith subject ID is currently in the jth family. To illustrate how PermS is used, let us
suppose that we are performing a sequential HDT decoding and we will proceed to
decode the 5th subject in Figure 5. It is the first subject in the 3rd family, so we look
for the first 3 in PermS. It is in PermS[4], so the element encodes the fourth subject
term in the Dictionary component. As noted, the start of each family must be stored
in a small structure: first, which points the first subject ID within each family. In
this example, first=[1,4,5], means that the 1st family starts at the first subject,
the 2nd family at the fourth, and the 3rd family at the fifth.

Note that PermS lists the family for each original subject ID, so it needs the
same space than the previous encoding which included the level of family IDs (see
the second level in Figure 4). Thus, this re-map apparently does not contribute to
compression. However, it is decisive for compressing the objects, as shown below.
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Figure 6: Grouping objects per predicate.

Figure 7: Clustering predicates.

Figure 8: Replacing global by local object IDs.

Predicates per Object. The previous reorganization ensures that all subjects
within a given family have the same structure of predicates, as this was the main
philosophy of grouping by predicate families. For instance, the example in Figure 5
shows that the first family comprises four predicates (1,3,5,7), so the three subjects
in the family are related to these four predicates. This implies that each subject is
related to four 1-bits in the object bitsequence4. Within each subject tree, objects
involving the first predicate in the family (in this case, the predicate ID 1) are encoded
until the first 1-bit; then, objects involving the second predicate (the predicate ID 3)
are encoded between the first and second 1-bit of Bo, and so on. Thus, we can easily
scan the object sequence and rearrange the objects per predicate within each family.
This new organization is illustrated in Figure 6.

This encoding, though, fails to fully group all the objects of the same predicate, as
we are splitting and sorting the representation by families. For instance, the objects
related to the predicate 1 in the first family are (1,8,5,6), but also (6,4,8) within
the third family, and both lists are represented separately. Thus, we rearrange all
the object lists by predicate (just by moving the lists together), hence achieving the
predicate clustering shown in Figure 7.

In spite of the reordering, we always keep track of the objects related to a subject
due to the re-mapping assigning consecutive subject IDs within predicate families. Let
us suppose we are decoding subject 2. The first structure, which delimits subjects
per family, points that it belongs to family 1, so its predicate list is (1,3,5,7). To
retrieve the related objects, and given that we are decoding the subject 2, we just
have to retrieve the second object list in the clusters of predicates 1, 3, 5 and 7.

Finally, we leverage the fact that objects are mostly related to just one predicate.
We replace the global ID-object assignment by a local one in which objects are iden-
tified in the scope of their predicate. For instance, the third predicate in Figure 7 is
used in three triples, with objects: {10,12,3}. We can re-map them to a smaller ID
range: [1,2,3], so the resulting list is {2,3,1}. This is illustrated in Figure 8.

Obviously, we need to keep track of this re-mapping to be consistent with the

4As stated, 0-bits point that more than one object is related to the same (subject,predicate) pair.
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Algorithm 1: Decoding algorithm.

1 for predicate← 1 to |P | do
2 ptr ← 1;
3 Fp ← families.getFamilies(predicate);
4 for f ← 1 to |Fp| do
5 for s← first[f] to first[f+1]-1 do
6 subject← PermS.getSubjectID(s);
7 repeat
8 object← PermO.getObjectID(So[ptr]);
9 newtriple(subject, predicate, object);

10 ptr ← ptr + 1;

11 until Bo[predicate][ptr] �= 1 ;
12 Tf ← types.getTypes(f);
13 if Tf [1] �= 0 then
14 for t← 1 to |Tf | do
15 newtriple(subject, rdf : type,Tf [t]);

ID-object mapping performed in the Dictionary component. However, the situation
is different to that explained for the subject permutation because a single object in
the original Dictionary may be mapped to more than one local ID in the new Triples
component. We add a second permutation: PermO to deal with this issue (see Figure
8, bottom). This structure lists the predicate clusters in which each original ID object
appears. For instance, the original object 1 appears within the predicates 1 and 4,
whereas object 2 appears just within the predicate 4. Once again, a coordinated
bitsequence uses 1-bits to mark the endings of the lists. To translate the ith object
ID in the jth dictionary, i) we select the ith occurrence of j at the kth position of the
sequence; and ii) we rank the number of 1’s until the kth bit in the bitsequence. This
rank value is the global ID. For instance, for the object 2 in the third predicate: the
2nd occurrence of 3 in PermO is at position 11. There are ten 1-bits up to this position
in the bitsequence, then the global object ID is 10 (as can be checked in Figure 7).

Implementation. Our current implementation preserves the Triples component
principles in the W3C HDT submission. That is, we encode adjacency lists with a
couple of aligned structures: the ID sequence and the bitsequence delimiting each
list. This ensures our current results to be directly reused by the HDT community.

Thus, predicates clusters (see Figure 8) are encoded as |P | adjacency lists of ob-
jects. Encoding costs are different for each list and depends on the number of different
objects related with the corresponding predicate. For instance, �log 5� = 3 bits are
used for object IDs in the first predicate, �log 2� = 2 bits for the second predicate,
etc. Note that the original HDT Triples for our example (Figure 2) used �log 16� = 5
bits to encode each object ID. In turn, predicate families can also be seen as ad-
jacency lists comprising (in increasing order) the corresponding predicate IDs, thus
using log |P | bits per ID. Regarding permutations, PermS is a simple array encoding
one family ID per subject (log |F | bits), and PermO is serialized as an adjacency list
of predicate IDs (log |P | bits). Finally, types is an adjacency list (using log |O| bits
per type value) and first is a sequence of |F | cells (log |S| bits per cell).

Algorithm 1 describes the decoding process. It is a nested loop algorithm iterating
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dataset #triples plain (MB) HDT (MB) HDT++ (MB) k2-triples (MB)
linkedmdb 6,147,996 35.91 22.54 14.24 9.02
dbtune 58,920,361 400.36 242.05 132.10 152.27
us census 149,182,415 1, 049.25 649.22 312.54 347.06
dbpedia 431,440,396 3, 497.36 1, 839.08 1, 523.72 1, 699.39

Table 2: Compression results.

over the |P | different clusters of predicates (Line 1). For each one, it retrieves the
families in which the predicate appears (Line 3), and iterates over them (Line 4). For
each family, it gets the sequential range of subjects within the family and iterate over
them (Line 5). For each subject, the algorithm uses PermS to retrieve the original
subject ID (Line 6). Then, it gets the associated object/s directly accessing the object
adjacency list at the current scanning position (So[ptr]), getting the original object
ID with PermO (Line 8) and then obtaining the current triple (Line 9). Finally, if
there are types related to this family (Line 13), then it also outputs the typed triples.

5 Experimental Evaluation

This section shows experimental results for our current approach. It is implemented
on a C++ prototype: HDT++, which is built on top of the original C++ HDT-library5.

We choose four different real-world RDF datasets: linkedmdb describes information
about movies, actors, characters, etc.; dbtune provides music-related structured data;
us census provides census data from the U.S.; and dbpedia is an RDF conversion
of Wikipedia. As showed in Table 1, the us census is a well-structured dataset, in
contrast to dbpedia which models many and varied types of entities. These datasets
also differ in size. They comprise from ≈ 6 millions for linkedmdb and ≈ 431 millions
for dbpedia. We compare the most straightforward triples encoding (referred to as
plain): it uses three IDs per RDF triple and each one is encoded using log |S|, log |P |,
and log |O| bits); the original HDT encoding [6]; our current approach: HDT++; and
k2-triples [1] which is currently the most prominent RDF compressor.

HDT++ outperforms the original HDT encoding for all datasets, but the improvement
is more significant for us census. In this case, HDT++ uses less than the half of the space
needed by HDT. This is an expected result because it is the most structured dataset.
However, the improvements for linkedmdb and dbtune are also noticeable: HDT++ needs
≈ 63% and ≈ 55% of the original space. For dbpedia, HDT++ saves more than 300MB
regarding HDT. The comparison regarding k2-triples shows that HDT++ is better for the
three largest datasets: ≈ 10-13% less space than k2-triples. This result is especially
interesting by considering that k2-triples is a pure RDF compressor while HDT++ is a
binary serialization format in which no explicit compression is performed. However,
k2-triples provides efficient data retrieval in the reported space requirements.

All HDT++ structures are directly mapped to main memory for triples decoding,
except the permutations. These are loaded as sparse binary matrices in which the i-th
row marks those positions in which the value i is used in the permutation. Each row is
compressed using a SDArray [12]. Besides this, the bitsequences from families and
types are loaded with an overhead of 37.5% on top of their plain representation to

5https://code.google.com/p/hdt-it/
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provide efficient rank/select resolution [7]. This straightforward deployment allows
HDT++ files to be loaded in roughly the same space used for disk storage (even the
space is slightly reduced for dbtune), and triples decoding is faster than the original
HDT. For instance, HDT++ decodes dbtune in 2.8 seconds, and HDT needs 4.46 seconds.

6 Conclusions and Future Work

This paper revisits the W3C HDT serialization of RDF datasets, improving the com-
pressibility of its graph structure encoding. In spite of the theoretical schema-relaxed
nature of RDF, we practically show the presence of two types of schema-based re-
dundancies underlying to RDF: predicate families are massively repeated for general
and typed subjects, and objects are often related to just one predicate.

Our HDT++ approach leverages these features, saving up to half the space used
by its HDT predecessor and competing on equal terms with the most effective RDF
compressor, k2-triples. Our achievements can be directly reused by the community
since all decisions are aligned to the HDT foundations. Thus, solutions exchang-
ing/consuming HDT can greatly reduce their storage requirements and network la-
tencies. Our future work focuses on exploiting this approach to provide triple pattern
resolution by reusing previous experiences on HDT-based retrieval [10].
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Abstract

The number and volume of semantic data have grown impressively over the last decade, promoting com-
pression as an essential tool for RDF preservation, sharing and management. In contrast to universal
compressors, RDF compression techniques are able to detect and exploit specific forms of redundancy
in RDF data. Thus, state-of-the-art RDF compressors excel at exploiting syntactic and semantic re-
dundancies, i.e., repetitions in the serialization format and information that can be inferred implicitly.
However, little attention has been paid to the existence of structural patterns within the RDF dataset;
i.e. structural redundancy.

In this paper, we analyze structural regularities in real-world datasets, and show three schema-
based sources of redundancies that underpin the schema-relaxed nature of RDF. Then, we propose
RDF-Tr (RDF Triples Reorganizer), a preprocessing technique that discovers and removes this kind of
redundancy before the RDF dataset is effectively compressed. In particular, RDF-Tr groups subjects
that are described by the same predicates, and locally re-codes the objects related to these predicates.
Finally, we integrate RDF-Tr with two RDF compressors, HDT and k2-triples. Our experiments show
that using RDF-Tr with these compressors improves by up to 2.3 times their original effectiveness,
outperforming the most prominent state-of-the-art techniques.

Keywords: RDF compression, Linked Data

1. Introduction

The Resource Description Framework (RDF) [29] is a logical model which describes data in the form of
triples. Each triple comprises the resource being described (referred to as subject), a property of that re-
source (predicate), and the corresponding value (object). For instance, the triple (<http://example.org/Dead
Man Walking>, <http://example.org/prop/title>, "Dead Man Walking") sets that the resource <http://example.org/

Dead Man Walking> has a title property with the value "Dead Man Walking".
An RDF triple can be seen as a directed graph in which the predicate labels the edge from the subject

to the object node. Thus, an RDF dataset (a set of triples) is often represented as a labelled directed
graph that links data descriptions in the form of triples. Figure 1 shows a simple RDF graph with four
triples that provide a basic description of Sean Penn and one of his films, “Dead Man Walking”. Note
that RDF restricts the types of terms that can play as subject, predicate, or object. Subject roles are
always played by International Resource Identifiers (IRIs) or local identifiers (referred to as blank nodes)
used to denote resources without explicitly naming them. Predicates are always IRIs (often described
in a vocabulary or ontology), whereas the object role can be played by both IRIs, blank nodes and also
literal values (such as "Dead Man Walking" in Figure 1).

This flexible paradigm has attracted increasingly interest over the past few years. RDF has been
adopted as the mainstream data representation in diverse fields of knowledge and leading projects1 such

IA preliminary version of this paper appeared in Proc. Data Compression Conference (DCC), pages 363–372, 2015.
∗Corresponding author: Departamento de Informática, Escuela de Ingenieŕıa Informática, Campus Miguel Delibes,
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1Bio2RDF: http://bio2rdf.org/; Geonames: http://www.geonames.org/; Wikidata: https://www.wikidata.org; DB-

pedia: http://www.dbpedia.org/
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http://example.org/Sean_Penn

“Sean Penn”

http://example.org/prop/name

http://example.org/Dead_Man_Walking

http://example.org/prop/title

http://example.org/class/film

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://example.org/prop/starring

“Dead Man Walking”

Figure 1: RDF triples modelled as a labelled directed graph.

NTriples

<http://example.org/Dead_Man_Walking> <http://example.org/prop/title> "Dead Man Walking".
<http://example.org/Sean_Penn> <http://example.org/prop/name> "Sean Penn".
<http://example.org/Dead_Man_Walking> <http://example.org/prop/starring> <http://example.org/Sean_Penn>.
<http://example.org/Dead_Man_Walking> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://example.org/class/film>.

Turtle

@prefix ex: <http://example.org/> .
@prefix prop: <http://example.org/prop/> .
@prefix class: <http://example.org/class/> .

ex:Dead_Man_Walking prop:title "Dead Man Walking" ;
  prop:starring ex:Sean_Penn ;
  a class:film .

ex:Sean_Penn prop:name "Sean Penn" .

Figure 2: RDF triples presented in NTriples and Turtle formats.

as life-sciences (e.g. Bio2RDF), geography (e.g. Geonames), or general knowledge (e.g. Wikidata), to
name but a few. Not surprisingly, DBpedia, an RDF conversion of Wikipedia, is the largest cross-domain
dataset2 and the most accepted reference to assess the benefits of RDF. In fact, DBpedia is considered the
nucleus for the so-called Web of Data [3], an interconnected data-to-data cloud that grows progressively
encouraged by the Linked Open Data (LOD) initiative3.

Despite its success, the RDF framework is a logical model, hence it does not restrict how data are
(phisically) serialized. The RDF Working Group of the World Wide Web Consortium (W3C) focuses on
this issue and collects several practical RDF serialization formats [45]. Serializations have evolved from
the initial verbose RDF/XML specification, to more specific, simple and compact formats, such as JSON-
LD, Turtle, NTriples, or NQuads. All these “plain” formats lead to document-centric, human-readable
serializations of RDF, which add unnecessary overheads when storing, exchanging and consuming RDF
graphs in the context of a large-scale and machine-understandable Web of Data.

Figure 2 shows the RDF representation of the previous example in two different formats, Ntriples and
Turtle. These forms of representation are equivalent and they suffer from similar verbosity and redun-
dancy problems, as they are both intended for human readability. Although Turtle mitigates redundancy
by grouping prefixes (with the inclusion of "@prefix" terms) and using some sort of adjacency lists, ar-
bitrary long IRIs, e.g. ex:Mystic River are still present in several triples, acting as subject and object
in different triples (the sources of RDF redundancies are reviewed in Section 2). Thus, RDF-specific
compression has recently emerged as an effective technique to detect and leverage internal redundancies
in RDF data, minimizing space requirements for storage, exchange and consumption processes [30]. In
addition, RDF compression plays an increasingly important role in other application areas, such as RDF
archiving and versioning [47] or distributed RDF stores [22], among others.

In this scenario, HDT [17], also within the W3C scope [16], represents one of the first and more
standardized binary formats for RDF data. The HDT format results in a very compact RDF serialization,
enabling significant savings in storage and speeding up data exchange (i.e., less bits over the wire). HDT
minimizes the repetition of potentially large strings using the so-called HDT Dictionary, which assigns
a numerical ID to each term in the dataset. Then, the graph structure of the dataset is managed as
a graph of term IDs, in the HDT Triples component. While efficient encoding of string dictionaries
is a challenge beyond RDF compression [32], triples encoding is an open and active research area. In

2The latest DBpedia version comprises more than 13 billion triples from 128 different languages.
3http://linkeddata.org/
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particular, HDT uses a straightforward configuration and encodes the triples as a forest of trees, one
per different subject, using bit and (compact) integer sequences. In turn, the k2-triples [1] technique
elaborates on the encoding of the triples and reports excellent compression ratios by representing triples
as a set of (compressed) adjacency matrices, one per different predicate. These compressors, though,
disregard specific sources of structural redundancies underlying RDF, i.e., common patterns emerging
while describing a subject. Note that, although RDF is a flexible, schema-relaxed model, data represented
in RDF come with different levels of structuredness [12], from structured data (e.g. converted from a
relational database) to unstructured data (e.g. from Wikipedia).

In this paper, we analyze common patterns related to the use of predicates and objects in real-world
RDF datasets, and show three structural sources of redundancy (introduced in Section 4) underlying
the schema-relaxed nature of RDF. This knowledge is then used to describe and implement a new
preprocessor: RDF-Tr (RDF Triples Reorganizer), which reorganizes triples to improve their effective
encoding. Then, we practically show the application of the technique for the aforementioned HDT and
k2-triples compressors, renamed HDT++ and k2-triples++ respectively. Our evaluation using real-world
RDF datasets shows that the improved compressors outperform their original effectiveness up to 2.3
times, and speed up decompression time up to 3.4 times in HDT and 2.4 times in the case of k2-triples.

The rest of the paper is organized as follows. Section 2 describes the three different sources of
redundancy underlying RDF datasets and summarizes the current state of the art for RDF compression.
Section 3 provides background on data compression and compact data structures. Section 4 presents the
concrete foundations and sources of redundancy addressed by RDF-Tr. The RDF-Tr reorganization
algorithm is fully detailed in Section 5, together with the configuration of compact data structures
required to implement it and how the original triples can be decoded. Sections 6 and 7 illustrate
the integration of RDF-Tr with existing RDF compressors. In particular, we introduce HDT++ and
k2-triples++, the variants of HDT and k2-triples that compress the “reorganized triples” . Section 8
conducts an exhaustive empirical evaluation of RDF-Tr with different real-world datasets, comparing
HDT++ and k2-triples++ to their original counterparts. Finally, Section 9 concludes and devises future
lines of research.

2. Preliminaries and State of the Art

The adoption of RDF as the main model to represent information in the Web of Data, and the
development of ambitious projects such as Linked Open Data, has fostered its use in emerging areas such
as Knowledge Graphs [7], Smart Cities or the Web Of Things, and critical sectors such as healthcare
and biomedecine [25]. For instance, Bio2RDF consists of around 11 billion triples generated from 35
important biomedical data sources, such as DrugBank, PharmGKB and KEGG. Such ever-increasing
dataset sizes present scalability challenges [14] and require efficient mechanisms to represent and consume
RDF data.

In this context, RDF compression has emerged as an active research and development field over the
past years [30]. Although universal compressors (e.g., gzip, bzip2, etc) leverage highly verbose RDF
serializations, their effectiveness is far from optimal. In general, universal compressors are not able
to detect and exploit all types of redundancy underlying RDF data. We first review these sources of
redundancy and then analyze state-of-the-art RDF compressors.

2.1. Sources of RDF redundancies

RDF redundancies are categorized at the semantic, symbolic and syntactic level [40]. An RDF
graph has semantic redundancy when the information it contains can be represented with fewer triples.
Semantic compressors are able to detect this type of redundancy and eliminate extra triples from the
original dataset [21]. Then, using inference techniques, the original dataset can be recreated, or at least,
a semantically equivalent graph can be obtained. Pure semantic compressors are not so effective by
themselves, hence they are often combined with symbolic and/or syntactic compressors.

Symbolic compression involves removing unnecessary repetitions of symbols in a dataset. This is
achieved by encoding each element of the RDF graph (URIs, blank nodes and literals) with a corre-
sponding integer identifier (ID), whose value is stored in a dictionary. In turn, these dictionaries provide
at least two primitive operations to translate RDF terms to IDs, and vice versa. Note that RDF dic-
tionaries reach non-negligible sizes and, in practice, they must also be compressed [33]. A survey on
compressed string dictionaries [32] shows that URI dictionaries can be highly compressed (up to 5% of
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their original size), while literal dictionaries need more space due to their more heterogeneous compo-
sition. In both cases, translation queries can be resolved efficiently (e.g., in 1 − 2µs per operation in a
standard setup [32]).

Syntactic redundancy depends on the RDF graph serialization and also on the underlying graph
structure. The simplest RDF syntaxes, such as NTriples [5], write all triples to serialize this subgraph,
e.g., one per line. That is, the same subject value would be repeated n times in the resulting file. This
drawback can be addressed by simply grouping triples by subject, i.e., considering that the subject struc-
ture is described as an adjacency list of (predicate,object) pairs. RDF syntaxes, such as Turtle [6], make
similar decisions to obtain more compact serializations. RDF compression at this level is traditionally
achieved by serializations that firstly reorganize the structure of the graph in order to leverage such re-
dundancies. In addition, serializations can use compact data structures (a brief background is provided
in Section 3) to achieve higher levels of compression [30].

2.2. RDF Compression

The current state of the art comprises a rich and diverse set of compressors for RDF data. These
are mainly lossless compressors (because they preserve the original information in the dataset), yet lossy
compressors are also emerging [24]. We focus on the former and classify them into physical and logical
compressors if they mainly focus on symbolic/syntactic or semantic redundancy respectively. Techniques
performing at both physical and logical levels are referred to as hybrid compressors.

Physical compressors. These techniques adapt traditional concepts from data compression to the
particular case of RDF . On the one hand, they capture and remove symbolic redundancy from RDF
terms by using compressed string dictionaries [32]. As explained above, this decision enables the original
RDF graph to be processed as an ID-graph, in which IDs refer to the corresponding terms in the
dictionary. On the other hand, different graph encodings have been proposed to compress the resulting
ID-graph. Although this approach is widely implemented, there are some physical compressors which
tune it from different perspectives.

HDT [17] pioneers this family of RDF compressors and proposes a simple but effective encoding
using three main components: i) the Header provides descriptive metadata about the dataset; ii) the
Dictionary maps RDF terms to IDs; and iii) the Triples component encodes the underlying graph. The
Header is used for dataset discovery and processing, but it is not relevant for compression purposes. We
focus on the other two components:

• The Dictionary processes RDF terms according to the role they play in the dataset (subjects,
predicates, or objects), but organizes them into four disjoint partitions: one for each role, and a
fourth one comprising terms which play both subject and object roles. This organization was
originally introduced in [2] and allows subject-object terms to be encoded only once. It is a
relevant improvement if one considers that, in real-world datasets, up to 60% of the terms are in
fact subject-object terms [33]. Let us refer to |SO|, |S|, |O|, and |P | as the number of different
subjects-objects, total subjects, total objects, and total predicates in the dataset, respectively.
Then, term-ID mappings are performed as follows: [1, |SO|] for subjects-objects, [|SO|+ 1, |S|] for
exclusive subjects, [|SO| + 1, |O|] for exclusive objects, and |P | for predicates. Each dictionary
partition is encoded (by default) using the prefix-based Front-Coding compression [32], which
ensures very efficient dictionary operations and excellent compression ratios for IRIs. In contrast,
this differential encoding is not so effective for literals, hence HDT also provides a self-indexed
dictionary for literals [33], which saves space storage at the price of less efficient retrieval operations.
Both types of dictionaries can be parameterized to optimize space/time tradeoffs.

• The Triples component encodes the resulting ID-graph as a set of |S| adjacency lists, one per
different subject in the dataset. Each list is modelled as a 3-level tree where the corresponding
subject is represented at the root; the middle level sorts all predicate IDs related to the subject;
while the leaves organize all object IDs related to each (subject, predicate) pair. These trees are
encoded using two integer sequences for predicates and objects (subjects are represented implicitly)
and two additional bitsequences to represent the shape of the trees. More details about the HDT
Triples component can be found in Section 6.1.

HDT has been widely adopted by the Semantic Web community because of its simplicity, its compres-
sion levels and its performance for data retrieval operations. It is worth noting that HDT is successfully
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deployed in client-side query processors, such as Triple Pattern Fragments4 [50] and SAGE5 [35], index-
ing/reasoning systems like HDT-FoQ [31] or WaterFowl [11], or recommender systems [19] among others.
However, its encoding of the graph topology is quite simple and further compression could be achieved.
This is addressed by k2-triples [1], a compressor that organizes RDF terms in the same four partitions
used by HDT, but performs a more effective ID-graph encoding. In particular, k2-triples implements a
predicate-based partitioning of the ID-graph and obtains |P | unlabelled graphs. Each of these predicate-
graphs is independently encoded as a binary matrix Mp, where Mp[i, j] = 1 means that the subject i
and the object j are related by the predicate p, and 0 otherwise. These adjacency matrices, which tend
to be sparse, are compressed using the (universal) k2-trees technique [9], reporting the best compression
ratios in the current state of the art of RDF compressors. More details about k2-triples are provided in
Section 7.1.

Two other physical compressors have been published more recently, RDFCSA [8] and OFR [46]. Their
contribution is quite different. On the one hand, RDFCSA excels in data retrieval at the cost of larger
space requirements, hence it does not outperform the best RDF compressors in the state of the art.
RDFCSA first performs the same dictionary transformation explained above. Then, it uses Sadakane’s
CSA (Compressed Suffix Array) [42] to encode the ID-graph. In comparison to those RDF compressors
providing efficient triple retrieval, RDFCSA competes with HDT in effectiveness, but it does not reach
compression ratios reported by k2-triples. On the other hand, OFR is a two-stage compressor that
mainly focuses on reducing storage requirements, disregarding triples retrieval needs. In the first stage,
OFR also isolates terms and triples. Terms are organized into a structure of six sub-dictionaries, first
performing partitions by subject, predicate, and object, and then building dictionaries for each different
class of term inside them. These dictionaries are run-length and delta compressed [43]. Regarding triples,
they are sorted by (object,subject) value and also run-length and delta encoding to exploit multiple object
occurrences and the non-decreasing order of the consecutive subjects. Dictionary and triples outputs
are then re-compressed during the second stage. The authors consider two universal compressors (zip
and 7zip) to remove all remaining redundancy after OFR reorganization. Compression ratios reported
by OFR, combined with zip and 7zip, outperform that achieved by HDT+zip and HDT+7zip. Despite
of this achievement, these numbers are not enough to compare whether a standalone OFR (with no
universal compression afterwards) improves HDT, or the techniques previously explained.

Finally, gRePair [28] extends the RePair algorithm to cater for graphs, including RDF graphs. In
short, gRePair builds a grammar with the relationships in the graph and replaces the original graph by
another with the rules of the corresponding grammar. gRePair is effective in very specific scenarios, i.e.,
when the graph has very few predicates and where there is a large number of repetitions in subject-
predicate or object-predicate relationships. In addition, gRePair has not been compared with specific
RDF compressors, but with the interleaved k2-tree method, which is comparable to k2-triples. In such
scenarios, gRePair obtains the best compression, up to 10 times w.r.t the k2-tree, in a graph with a
single rdf:type predicate. In contrast, when the number of predicates increases, the advantage over the
k2-tree decreases, and no evaluation is provided with large and complete real-world datasets.

Logical compressors. These compressors propose different strategies to detect redundant triples (those
that could be inferred) and to obtain the canonical subgraphs, which are finally encoded. Initial ap-
proaches [21, 34] consider the notion of lean subgraph. This concept refers to the smallest instance of
the original graph which preserves the ground part of the graph (non-blank nodes and edges connecting
them), and maps redundant blank nodes to labels already existing in the graph or to other blank nodes.
Ianone et al. [21] conclude that the number of triples removed by a lean subgraph greatly depends on
the graph features, but a reasonable lower limit is two triples removed] per blank node. Meier [34] states
that semantic redundancy is still possible in lean graphs because some of their triples can be derived from
others. The author introduces a user-specific redundancy elimination technique based on Datalog-like
rules. In short, this approach understands rules in a generative way; i.e., r(X,Y )→ t(Y,X) means that
t(Y,X) are generated from r(X,Y ). Thus, if r(a, b) exists in the dataset, it is not necessary to store
t(b, a), because it can be inferred. Despite its theoretical contribution, this technique is only well-suited
when user-defined rules are explicitly specified. The work of Pichler et al. [41] goes a step further and
studies how rules, constraints, and queries influence graph minimization. Although it provides a rele-
vant complexity analysis, it does not report any practical results. In fact, Joshi et al. [23] note that

4http://linkeddatafragments.org/
5http://sage.univ-nantes.fr/
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this approach is application dependent, hindering their adoption for compressing the ever growing RDF
datasets.

The rule-based (RB) compression method [23] is one of the first approaches reporting effectiveness
numbers. It uses mining techniques to detect two types of frequent patterns which are then used as
generative rules to remove all triples that can be inferred from such patterns. On the one hand, intra-
property patterns encompass groups of objects which are commonly used for subject description through
a particular predicate. On the other hand, inter-property patterns group pairs of predicate-object values
related to many subjects. Once the patterns are discovered, RB splits the dataset into two disjoint sets
of triples: i) the dormant set preserves (in an uncompressed way) those triples to which no inference
rule can be applied, and ii) the active set differentially encodes all triples to which rules are applied for
inferring new triples. While intra-property patterns are not so effective, inter-property allows up to 50%
of the original triples to be removed. However, it has no a significant effect on compression ratios by
itself, and RB must be combined with HDT to compete with physical compressors.

The use of frequent patterns does not capture all semantic associations in the dataset [49], so ef-
fectiveness can be improved if more expressive rules are considered. The technique proposed in [49]
introduces a mining algorithm focused on Horn rules. A Horn rule can be simply expressed as B ⇒ H,
where B = B1 ∧B2 ∧ . . . Bn is the body and H is the head. Both Bi and H are of the form (?s pred ?o),
where pred is any predicate relating a subject and an object (which can be bounded or left as variables).
An instantiation of the rule is considered invalid when a set of triples matches the body rule, but the
expected heading triple does not exist in the dataset. On the contrary, a valid instantiation occurs when
the corresponding heading triple is in the dataset. Once these Horn Rules are detected, all triples match-
ing the head parts are discarded and the remaining triples are encoded by following the RB strategy. In
this case, the active set contains all triples used in the body rules, and the dormant set comprises triples
which do not match any rule. It is worth noting that the latter set also contains conflicting triples.
That is, triples that are part of an invalid instantiation of a rule and a valid instantiation of another
rule. This Horn rule-based compressor outperforms RB in compression ratio at the price of less efficient
compression/decompression processes.

More recently, Guang et al. [18] proposed a new rule-based compressor that uses OWL2RL rules
[36] to remove redundant triples. First, it analyzes subject-object entities to discover common subgraph
patterns. These entity description patterns (EDPs) are quite similar to the predicate families that we
previously proposed in our seminal paper [20] (further detailed in Section 5). That is, for a given entity
e, the corresponding EDP comprises i) all predicates pi such that (e,pi,ox) exists in the dataset, and
(optionally) ii) the class value v if the triple (e,rdf:type,v) is also present. Additionally, an EDP
contains all predicates pj such that (sx,pj,e). The original dataset can be transformed into a set of
EDPs by grouping entities which are described by the same EDP. Each group is then independently
processed and OWL2RL rules are matched with pi and pj predicates in the EDP. An EDPRule is added
when the EDP satisfies a particular rule, and its inferred triples are removed. Finally, the remaining sx
and ox values are also encoded in the context of their EDP. The authors do not provide compression
ratios, but report that their approach detects up to 32.77% of redundant triples. In quantitative terms,
this result does not improve the previous compressors.

Hybrid compressors. These compressors combine the best of both worlds. On the one hand, they
detect and remove syntactic/symbolic redundancy at the serialization level. On the other hand, they
consider different strategies to compact the graph by deleting semantic redundancy at the logical level.
Although this form of compressors has barely been researched until now, interesting insights are provided
in [39, 48].

The graph-pattern based (GPB) compressor [39] was published concurrently with our seminal paper
[20], and has some common points with our current approach, as explained in the following sections. GPB
converts the original dataset into a sequence of entity description blocks (EDBs), which group all triples
that share the same subject. Each EDB is described by the set of predicates related to the subject and all
types assigned to them. EDBs are then grouped into entity description patterns (EDPs) which comprise
all EDBs with the same description. The current notion of EDP is similar to that explained above. That
is, an EDP is a subgraph pattern that describes the structure of predicates and type values for a subset
of subjects in the dataset. Each EDP is encoded as a pair which comprises the corresponding pattern
and all instances matching them6. This serialization is called Level 0 method (LV0). GPB introduces a

6Instances are encoded as IDs based on their MD5 hashes.
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merge operator that joins EDBs by their relations. This strategy is referred to as the Level 1 method
(LV1). Finally, the Level 2 method (LV2) recursively joins EDBs merged in previous stages. Experimental
results show that GPB-LV2 is able to detect and remove many more triples than RB, reporting better
compression ratios. It is clear evidence that GPB performs better at the logical level. Regarding its
effectiveness at the physical level, the paper does not compare GPB results to those achieved by other
compressors. However, the authors emphasize the potential improvements of GPB due to its ability to
remove syntactic redundancy.

Finally, RDF2NormRDF [48] is an RDF normalization approach, which cleans and eliminates redun-
dancies from RDF datasets as a means of converging into a canonical representation. Thus, it is not
a compressor by itself. At the logical level, it removes edge and node duplication by applying particu-
lar transformation rules. From a critical point of view, this problem is partially addressed by physical
compressors when removing duplicate triples and assigning unique IDs to literals used in more than one
triple. However, physical compressors do not deal with blank nodes particularities, preserving their inner
redundancy. At the physical level, RDF2NormRDF introduces additional rules to deal with namespace
issues and to provide consistent statement orders. It also normalizes how types and language tags are
effectively encoded. The normalization process implemented by RDF2NormRDF does not detect more
logical/physical redundancy than HDT, but it outperforms HDT for an experimental setup that only
comprises small datasets. Besides its compression achievements, RDF2NormRDF outputs normalized
datasets that verify all desired quality properties (completeness, minimality, compliance and consistency).

3. Data Compression and Coding

Data compression consists of reducing the number of bits required to encode data [43]. In this paper,
we only focus on lossless compression (i.e., techniques that are able to reconstruct the original data from
its compressed representation), and particularly, on the encoding of integer numbers. In the following,
we first review the concept of Variable-Length codes (VLCs) [44], and we summarize state-of-the-art
encodings of integer sequences. We then introduce the innovative concept of compact data structures
[37] and delve into more details of functional bitsequences. Finally, we review compact data structures
for graphs, which are then used in our approach.

3.1. Variable-Length Codes

Some prominent RDF compressors (such as HDT [17]) first transform the RDF dataset into a dic-
tionary of terms and a graph of IDs, before applying additional compression techniques. This allows
symbolic and syntactic redundancy to be detected and removed independently, improving the overall
compression effectiveness. Focusing on the ID-graph, its adjacency information is first modelled in the
form of lists or matrices, and then these structures are encoded.

Variable-Length codes (VLCs) [44] are often used to encode adjacency information, represented in
the form of integer IDs. Given an alphabet of integers A = {1, 2, . . . , σ}, a VLC maps each value into
a variable-length sequence of bits. Thus, VLCs consist of short and long codewords, i.e., compression
is optimized when the most frequent integers are encoded with the shortest codewords. Note that
VLCs assign the shortest codewords to the initial elements of the alphabet, hence IDs often need to be
rearranged to meet this premise.

Different forms of variable-length compression have been proposed in the state of the art [44]. In the
following, we focus on the so-called Elias codes [13], which are practically used in the implementation
of our approach. The gamma code: γ is the simplest one and encodes any positive integer n in binary,
preceded by blog2(n)c 0-bits. For instance, the binary encoding of 17 is 10001 and blog2(17)c = 4, so
γ(17) = 000010001. γ uses 1 + 2blog2(n)c bits to encode an integer n. In contrast to γ, the Elias delta
code: δ only uses 1 + blog2(n)c+ 2blog2(1 + blog2(n)c)c bits to represent n. In this case, the delta code
concatenates γ(blog2(n)c+ 1), followed by the binary representation of the number excluding the first 1-
bit (since it is implicit); e.g., to encode 17, its gamma representation is first obtained: γ(blog2(17)c+1) =
γ(4+1) = γ(5) =00101, and then the binary encoding of 17 is added (without the first 1-bit): 001010001.

3.2. Encoding of Integer Sequences

Although VLCs can be directly used to compress individual integer IDs from the ID-graph, they
disregard potential common regularities in adjacency lists. It is worth noting that adjacency lists are
often sequences of increasing IDs, which introduces an additional redundancy.
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Let us suppose that we want to encode the adjacency list L={1000, 1004, 1012, 1019, 1021} using
Elias gamma. In this case, each ID can be directly compressed as γ(1000), γ(1004), etc. Thus, the length
of the corresponding codewords will be proportional to the corresponding ID value. In this case, 21-bit
codewords are necessary to encode each ID, so encoding the whole list takes 105 bits.

Gap-encoding is often used to compress posting lists in Information Retrieval systems, before using
VLCs. Gap-encoding leverages that gaps between consecutive IDs in the list are short, so each ID can
be rewritten as the difference to its predecessor; i.e., L′[i] = L[i]−L[i− 1]. This also applies to the case
of adjacency lists. Assuming that the first element is always encoded “as is”, the previous list example
can be encoded as L={1000, 4, 8, 7, 2}. Thus, encoding the first ID takes 21 bits, but the remaining
values are encoded using 5, 7, 7, and 3 bits, respectively. Gap-encoding is effective in terms of space
saving, but it introduces additional costs for decoding purposes. Note that to obtain the i− th ID of the
list, the i− 1 previous values must be decoded. In practice, gap-compressed sequences are sampled and
absolute values are preserved every k positions. Thus, in the worst case, only k − 1 values are decoded
until the desired value can be obtained.

3.3. Compact Data Structures

Compact data structures are memory-efficient structures that arrange different types of data in a
reduced space, and retain querying capabilities over the compressed representation [37]. All these ap-
proaches are built on top of functional bitsequences,B[1, n], that provide three main operations:

• access(B, i) returns B[i], for any 1 ≤ i ≤ n.

• rankv(B, i) counts the number of occurrences of the bit v (i.e. v = {0, 1}) in B[1, i], for any
1 ≤ i ≤ n. Note that rankv(B, 0) = 0.

• selectv(B, j) returns the position of the j − th occurrence of the bit v (i.e. v = {0, 1}) in B, for
any j ≥ 0. Note that selectv(B, 0) = 0 and selectv(B, j) = n+ 1 if j > rankv(B,n).

Bitsequences must be enhanced to ensure an efficient performance for these operations. On the one
hand, plain approaches store the bitsequence as a bit array of n elements, and add additional structures
on top of it to ensure competitive time resolution. In our approach, we use the structure proposed by
[10], which answers select in time O(1) and pays a space overhead ≤ 0.2n bits (note that RDF-Tr
algorithms do not use rank, and access can be directly performed on the bit array in constant time).
On the other hand, compressed approaches [37] exploit different forms of bit redundancy to encode
the bitsequence in compressed space while answering the previous operations efficiently. None of the
approaches introduced in this paper use this class of bitsequences.

Different innovative compact data structures have been proposed on top of bitsequences and their
efficient operations, implementing trees, graphs, or grids, among others [37].

3.4. Encoding of Graphs

Given the scope of this paper and the graph-based RDF model, we hereinafter focus on compact data
structures for directed graphs. A directed graph G = (V,E) is composed of a set of vertices V and a set
of edges E ⊆ V ×V , being n = |V | and e = |E|. Typically, these structures should provide the following
operations [37]:

• adj(G, v, u) returns if the edge (v, u) ∈ E.

• neigh(G, v) returns the list of direct neighbors of v; i.e., {u, (v, u) ∈ E}.

• rneigh(G, v) returns the list of reverse neighbors of v; i.e., {u, (u, v) ∈ E}.

• outdegree(G, v) returns the number of direct neighbors of v; i.e., |neigh(G, v)|.

• indegree(G, v) returns the number of reverse neighbors of v; i.e., |rneigh(G, v)|.

In the following, we distinguish between compact data structures encoding direct graphs as adjacency
lists or adjacency matrices. To illustrate these approaches, we consider a directed graph composed of n =
6 vertices and a set of e = 10 edges: E = {(1, 2), (1, 3), (2, 4), (3, 2), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6), (6, 1)}.
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Adjacency Lists. The simplest compact data structure regards the graph as a sequence of adjacency lists,
each one listing the direct neighbors of each vertex. For instance, HDT [17] uses adjacency list encoding
as part of its BitmapTriples component.

Typically, an adjacency list structure, AL, concatenates all adjacency lists into a single sequence, S,
and a bitsequence, B, which is used to mark the last element of each list. This configuration is shown
in Figure 3, representing the previous example. In this case, six adjacency lists (one per vertex) are
concatenated, hence six bits are activated in B (positions 2, 3, 6, 8, 9, and 10). Thus, the list for vertex
1 is encoded in S[1, 2], the list for vertex 2 in S[3], vertex 3 in S[4, 6], and so on.

Figure 3: Example of adjacency list encoding.

Adjacency list encoding encompasses an integer sequence, S, and a functional bitsequence, B. Note
that S can be compressed as explained in Section 3.2, or can preserve IDs in plain form, i.e., each ID is
encoded using dlog2(n)e bits. In turn, plain or compressed approaches can also be used to implement
B and its operations [37]. Regardless of the particular implementation, adjacency list encoding allows
the aforementioned adj, neigh, and outdegree operations to be efficiently performed, as detailed below.
In contrast, this organization results inefficient in operations on reverse neighbors unless the transposed
graph is encoded, doubling the required space [37].

The resolution of adj, neigh, and outdegree on vertex v first requires the limits of its adjacency
list to be computed. The getListLimits function, in Algorithm 1, shows how the left and right limits
can be obtained using select operations. For instance, getListLimits(AL,3) obtains the limits of
the adjacency list of vertex 3, which is encoded from begin = select1(AL.B, 2) + 1 = 4, to end =
select1(AL.B, 3) = 6. Then, each operation proceeds as follows:

Algorithm 1: getListLimits(AL, v)

1 begin← select1(AL.B, v − 1) + 1;
2 end← select1(AL.B, v);
3 return (begin, end);

Algorithm 2: adj(AL, v, u)

1 (begin, end)← getListLimits(AL, v);
2 pos←

binarySearch(AL.S[begin], AL.S[end], u);
3 return pos;

Algorithm 3: neigh(G, v)

1 (begin, end)← getListLimits(AL, v);
2 neighbors← [AL.S[begin] . . . AL.S[end]];
3 return neighbors;

Algorithm 4: out(G, v)

1 (begin, end)← getListLimits(AL, v);
2 return end− begin+ 1;

• adj(G, v, u) looks for the vertex u in S[begin, end] using a binary search (see Algorithm 2). If
(v, u) ∈ E, the operation returns its (local) position in the corresponding adjacency list of v, or −1
otherwise. For instance, in adj(AL, 3, 4), i.e., checking the existence of the edge (3, 4), the value 4
is binary searched in B[4, 6]. Thus, adj(AL, 3, 4) = 2, because 4 is found in the second element of
the corresponding adjacency list of vertex 3. It is trivial to convert the result to a boolean output.

• neigh(G, v) returns an array that includes all values in S[begin, end] (see Algorithm 3). In our
example, neigh(AL, 3) returns values in B[4, 6] = {2, 4, 5}.

• outdegree(G, v) returns end−begin+1 (see Algorithm 4). In the previous example, outdegree(AL,
3) = 6− 4 + 1 = 3.

Note that this encoding also provides direct access to any element of an adjacency list. This func-
tionality is commonly invoked as neigh(G, v)[j]. It returns the j-th direct neighbor of v, which is located
at S[begin+ j − 1]; e.g., neigh(AL, 3)[2] = 4, because S[5] = 4.

Finally, it is worth noting that this encoding assumes that all lists have at least one element. Oth-
erwise, if empty lists are allowed, a slight modification must be introduced. In this case, 1-bits still
mark the end of the lists, but all elements in a list are now explicitly encoded with 0-bits. For instance,
the bitsequence B′ = [011001] encodes three adjacency lists: the first one contains one element, the
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Figure 4: Example of adjacency matrix encoding using a vector of vectors.

second list is empty, and the third list has two elements. It also causes a slight modification in the
getListLimits(v) function, which now obtains the left limit as posl =select1(v− 1)− (v− 1), and the
right one as: posr =select1(v) − v. Note that if posr = posl, the corresponding list is empty. In this
case, neigh(G, v) = ∅.

Adjacency Matrices. A näıve approach to encode adjacency matrices is using a vector of vectors. As
shown in Figure 4 for our previous example, this approach uses a main vector V , of size n, where each
cell stores a pointer to a secondary vector Li (1 ≤ i ≤ n), which encodes the neighbors of each vertex
in the graph. This structure is preferable to the previous one when the average outdegrees are large,
because pointers demand fewer bits than the bitsequence. In addition, the independent encoding of each
list Li makes it possible to use more effective techniques to compress the IDs in each list.

Similarly to the previous structure, this approach resolves adj, neigh, and outdegree very efficiently,
but it is not a good choice for applications that require operations on reverse neighbors. In particular:

• adj(G, v, u) binary searches u in the vector Lv.

• The result of neigh(G, v) is the vector Lv itself.

• outdegree(G, v) is easily obtained as the length of Lv.

More sophisticated techniques exploit the sparseness and/or clustering features of adjacency matrices
to reach high compression ratios. In this respect, the k2-tree [9] approach is one of the most-used compact
data structures for compressing directed graphs.

A k2-tree models a graph G(V,E) as a binary matrix M of size m ×m, where m is the minimum
power of k that is greater than n. Thus, M [i, j] = 1 iff the edge (i, j) ∈ E. M is recursively subdivided
into k2 submatrices, which are (conceptually) organized in a tree and encoded using a bitsequence T :
1-bit means that the corresponding submatrix has at least one non-empty cell, being 0 otherwise. The
last level of the tree encodes matrix cell values using another bitsequence L, where 1-bits mean that the
corresponding cells encode an existing edge in G.

Figure 5: Example of matrix encoding using a k2-tree.

Figure 5 illustrates the resulting k2-tree for our graph example. It is modelled as an 8×8 matrix (note
that the two right-most columns and the two bottom rows are filled with zeroes to reach the required
matrix size, even though they do not encode any existing vertex). The conceptual tree is depicted on
the right side, and the resulting bitsequences T and L are shown below. Note that only T and L are
actually encoded.
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A k2-tree structure can be efficiently navigated by rows (directed neighbor operations) or by columns
(reverse neighbor operations) using rank and select on the bitsequences (see [9] for more details).
Besides it supports the adj operation, and different forms of range-based queries. Thus, the k2-tree is
a fully functional data structure for graph encoding that also ensures high compression ratio scenarios,
including RDF compression [1].

4. RDF-Tr Foundations

RDF is described as a schema-relaxed model in which data with different degrees of structure can be
integrated. However, this flexibility is a double-edged sword. At the logical level, RDF is an effective
way to address data variety and allows structured and semi-structured data to be mixed in a single
representation. Conversely, this lack of a fixed schema prevents RDF compressors from assuming partic-
ular subgraph structures when, in fact, RDF data present many schema-based features. As previously
explained, this is a source of redundancy that introduces significant overheads in RDF serializations.

RDF-Tr foundations are drawn from structural/semantic RDF features and focus on improving
compression effectiveness. These features are related to the practical use of predicates and objects in
real-world RDF datasets.

4.1. Predicates

The set of predicates used to describe a subject may vary greatly within a dataset. For instance, let
us suppose that an RDF dataset represents information about cinema. The set of predicates used to
describe people (name, age, nationality, etc.) are different from those used to categorize a movie (title,
director, duration, etc.) and both coexist in the same dataset. Moreover, resources can be modelled
with different levels of detail (semi-structured descriptions): some people can be described using their
name and age, others through their name and nationality, etc.

It is nonetheless true that, given the descriptive character of RDF, there exist predicate repetitions
when describing resources of the same nature (e.g., among people). Although the number of predicate
combinations (referred to as predicate families) used for subject descriptions theoretically grows with the
number of predicates, the number of such combinations is bounded, even in datasets with a light schema
[15]. In the following, we formalize the concept of predicate family based on the notion of predicate lists
[15].

Definition 1 (Predicate Family). Let G be an RDF graph, and SG, PG, OG be the sets of subjects,
predicates and objects in G. We define the predicate family Fs as the set of predicates (labels) related to
the subject s ∈ SG. That is, the set of predicates Fs = {p | ∃z ∈ OG, p ∈ PG, (s, p, z) ∈ G}. We denote
as FG, or just F , the set of different predicate families in G. That is, FG = {Fx, x ∈ SG}, hence the
number of predicate families in the graph G is |FG| (or just |F |).

The predicate family concept is equivalent to the Characteristic set definition introduced by Neumann
et al. [38], and it is used to split the graph into subgraphs, each one containing all subjects described with
the same set of predicates. Once the subjects are grouped, their predicate structure can be implicitly
encoded attending to their corresponding predicate family.

Figure 6 illustrates the use of predicate families for a given RDF excerpt about films, which extends
our previous example in Figure 1. In this example, we find three different families: F1 ={rdf:type,
prop:name}; F2 ={prop:director, prop:name}; and F3 ={rdf:type, prop:starring,prop:title}, so sub-
ject descriptions can be split into three disjoint subgraphs which implicitly encode the corresponding
predicate structures. For instance, the objects {class:actor, ‘‘Morgan Freeman’’} describe the corre-
sponsing subject <http://example.org/Morgan Freeman> within the scope of the first subgraph. Thus, we
can infer that the subject and the given objects are linked through the predicates of the first family
(rdf:type, and prop:name).

All this sets the basis of our first foundation, which guides the design of our proposal:

Foundation 1. A predicate family models a subgraph pattern that comprises all predicates to describe a
set of subjects. Then, the original RDF graph can be split into as many subgraphs as predicate families
(|F |), ensuring that all subjects in a subgraph are described with the same predicates. In this way,
each subject can be described as the family it belongs to and a sequence of objects (for each predicate
of the family). Note that the corresponding predicates will be inferred from its predicate family. This
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Figure 6: Example of an RDF graph and its predicate families.

Figure 7: Integration of rdf:type values in predicate families.

decision will improve compression effectiveness because predicate occurrences are no longer encoded for
each subject, but only as part of the corresponding families. In practice, the number of predicate families
will be much lower than the number of subjects: |F | << |S|.

The second RDF-Tr foundation focuses on removing redundancy in the use of rdf:type. This
predicate provides the class of the subject being described. Although rdf:type is not mandatory, it is
widely used in practice to categorize the information in the dataset. Consequently, the rdf:type predicate
typically occurs in many triples.

In our previous example, both subjects in the first subgraph belongs to class:actor. It seems rea-
sonable that subjects of the same class are described with the same predicates, i.e., the same predicate
family. Thus, it is not necessary for the class value to be encoded for each subject in the subgraph, but
to relate this value to the predicate family that describes the corresponding subgraph.
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Definition 2 (Typed Predicate Family). Let t be the rdf:type predicate, F ts the predicate family Fs
where we remove rdf:type, that is F ts = {p | ∃z ∈ OG, p ∈ PG, p 6= t, (s, p, z) ∈ G}, and Cs all the class
values that define a subject, Cs = {o | (s, t, o) ∈ G}. Formally speaking, the predicate families enriched
with rdf:type values, F ′s can be defined as F ′s = 〈F ts , Cs〉. That is, a typed predicate family is a pair with
a predicate family and class values, such that there exists at least one subject in that predicate family
described with the given class value(s). Note that subjects can be potentially described with the same
predicate family, but different class values (e.g., a director and an actor could be described with the same
predicates). In this case, a predicate family can result in different typed predicate families, one for each
different combination of class values related to its subjects. Note that we consider the particular case
where Cs = ∅ (no class values) or F ts = ∅ (i.e., the original family Fs only has rdf:type). Therefore, the
total set of predicate families in a dataset, F ′, is defined as F ′ = {F ′s | s ∈ SG}.

Figure 7 shows the resulting subgraph configuration when rdf:type values are encoded as part of the
predicate family. All class values are removed from the corresponding subject descriptions and are
now linked to predicate families. For instance, the subject <http://example.org/Morgan Freeman>, within
the first subgraph, is explicitly described as {‘‘Morgan Freeman’’}, while the {class:actor} value can
be inferred from the first predicate family. This establishes the principles of the second foundation of
RDF-Tr.

Foundation 2. Enriching predicate families with rdf:type values allows the final serialization to discard
all RDF triples involving such predicate. Thus, this decision favors compression effectiveness by consid-
ering the large number of triples using rdf:type in real-world datasets. For simplicity, we hereinafter
use “predicate families” (F ) to refer to predicate families enriched with rdf:type values (F ′). We also
consider that families are repeated among subjects, hence we hereinafter refer to the different predicate
families, F1, F2,· · · ,Fz, where z is the number of different families in the dataset.

4.2. Objects

Schema-based redundancies are often referred to the predicates used to describe subjects, but one
can also find regularities in objects. RDF generally allows any predicate to be connected with any
object (except for range restrictions in the definition of some predicates), but object values tend to
be tightly bound to a limited number of predicates. In other words, predicate values come from a
limited and well-defined range. For example, as previously explained, it would be uncommon to find
‘‘clint@eastwood.org’’ as a value for a film duration, or ‘‘Dead Man Walking’’ as the family name of a
person. In fact, it is usual that object values are related to a single predicate [15].

From a structural perspective, this fact implies that in-links of a given object are often labelled with
the same predicate, which constitutes the principle of the third foundation of RDF-Tr.

Foundation 3. The potentially large universe of object values can be divided in |P | barely overlapping
ranges that can be managed independently. This allows objects to be locally identified within the scope
of each predicate (and not globally as is usual). Thus, local object identifiers can be encoded using fewer
bits (than those used when objects are globally identified), which improves compression effectiveness.

5. RDF-Tr

RDF-Tr is a preprocessing technique that reorganizes RDF triples to detect and remove redundancy
at various levels. It proposes a multi-step algorithm that implements particular decisions addressing the
three foundations introduced in the previous section.

In the following, we explain all these transformations (shortened to T1 to T5) on a generic example
presented in Figure 8. This excerpt uses the Turtle [6] serialization, with the following remarks:

• Turtle triples are used in Figure 8, hence (subject, predicate, object) terms are separated by whites-
paces, and triples end with a dot (‘.’).

• For the sake of simplicity, no concrete values are used for subject, predicate and object terms. We
will refer indistinctly to Si (similar for Pi and Oi) as the ith subject, or the subject with ID i. It
is worth noting that RDF-Tr requires the “special” rdf:type predicate to be identified with the
higher predicate ID (P7, in this example).
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S1 P1 O1. S1 P1 O8.  S1 P3 O10. S1 P5 O14. S1 P7 O9.
S2 P4 O1. S2 P5 O14. S2 P6 O11.
S3 P1 O5. S3 P3 O12. S3 P5 O15. S3 P7 O9.
S4 P1 O6. S4 P2 O7.  S4 P4 O1.
S5 P1 O4. S5 P2 O7.  S5 P2 O13. S5 P4 O2.
S6 P1 O6. S6 P3 O3.  S6 P5 O14. S6 P7 O9.
S7 P1 O8. S7 P2 O16. S7 P4 O1.

Figure 8: RDF triples used for illustrating the RDF-Tr algorithm.

• Finally, we consider an inner precedence relationship between subjects, predicates and objects.
That is, Si < Sj if i < j; i, j ∈ [1, |S|] (similarly for Pi and Oi in ranges [1, |P |] and [1, |O|],
respectively).

In general, we assume that triples are sorted by (subject, predicate, object), otherwise an initial
transformation (referred to as T0) is needed.

T0. Subject-based reorganization. This initial step groups together all triples describing the same
subject. As shown in Figure 9, this decision enables the RDF graph to be re-encoded as a forest of trees,
where each subject is the root of a tree that includes all the triples in which the subject is involved.
That is, triples are organized as a series of predicate-object lists (one per subject). For instance, S1 has
adjacency lists rooted by P1, P3, P5, and P7. The same four predicates are used by lists of S3 and S6, so
the first, the third, and the sixth subjects are described using the same predicate structure. Note that
red dotted lines are used, in the figure, to show triples labelled with the rdf:type predicate, as they will
have a special treatment (see Section 5.2).

5.1. Object-based transformation

Based on the results of Fernández et al [15], a particular object in an RDF dataset is often tied to
a certain predicate. Under this premise, we will perform the first transformation (T1) at object level.
Object identifiers will be re-coded to predicate-local IDs, as using local identifiers takes up less space
than global ones (see Foundation 3).

T1. Object re-mapping. We re-map objects related to the same predicate with a new sequential
identifier. These new local-IDs will be assigned in global-ID order. That is, we sort all objects of a given
predicate by their (original) IDs in the dictionary, and we then assign the position of each object as its
local-ID. Definition 3 formalizes this concept.

Definition 3 (Local Object ID). Formally, we define O∗i |Pj, a local object of predicate Pj, as O∗i |Pj =
Pj [i] : Pj = {Ok . . . Ol}; j ∈ [1, |P |], {k, l} ∈ [1, |O|], k < · · · < l. We abuse the notation to refer to a local
Object ID as O∗i , where the concrete predicate can be inferred from the context.

For instance, in our previous excerpt, P3 is used in 3 triples {(S1,P3,O10), (S3,P3,O12), (S6,P3,O3)}.
Thus, taking into account the global order of objects, O∗1 in P3 refers to O3, O∗2 to O10, and O∗3 to O13.
The same process is carried out for each predicate until all triples are rewritten with the new object iden-
tifiers. Figure 10 shows the output of this first transformation. Note that objects related to predicate
rdf:type remain unchanged, since these triples will be treated separately (see T3 in Section 5.2).

This transformation requires the introduction of an additional object mapping structure (MapO) to
obtain (during decoding, presented in Section 5.4) the original ID of a local object. As shown in Figure
10, MapO is implemented as an adjacency list structure that contains the original IDs of the objects related
to each predicate (except for those related to rdf:type). Thus, MapO encodes |P − 1| adjacency lists.
As explained in Section 3.4, this structure encompasses an integer sequence, MapO.S, which contains the
lists of object IDs, and a bitsequence, MapO.B, which marks with 1-bits the end of each list. This can be
easily seen in Figure 10, where the predicate P1 is related to five objects: O1, O4, O5, O6, and O8 (note
that MapO.B[5]=1 marks the end of the list), P2 is related to objects O7, O13, and O16 (MapO.B[8]=1
marks the end of the second list), and so on.

Mapping a local object ID (O∗i |Pj) to its global ID is simply implemented as neigh(MapO,j)[i],
i.e., the ID of the i-th direct neighbor of Pj . For instance, the global ID of O∗3 |P2 can be computed as
neigh(MapO,2)[3]=16, as the third object of predicate 2 is stored at MapO.S[8]= 16.
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O8O1 O10 O14 O9 O12O5 O15 O9 12 17 7O3

S3 S6

O6 O7

S4

O1 O4 O7

S5

O13 O8 O16

S7

O1O2O1 O14

S2

O11

P3P1 P5 P7 P3P1 P5 P7 P3P1 P5 P7P2P1 P4 P2P1 P4 P2P1 P4P5P4 P6

O6 O14 O9

Figure 9: RDF triples organized as a forest of trees.
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Figure 10: Object re-mapping (note that local object IDs are assigned according to the global object ID order).
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Figure 11: Predicate family discovery.

5.2. Predicate-based Transformations

Two predicate-based transformations are proposed to implement Foundations 1 and 2. Predicate fam-
ilies must first be discovered (transformation T2), and then be enriched, when necessary, with rdf:type

values (transformation T3). After these transformations, general triples are re-encoded in the form of
(subject, family, object), and triples involving rdf:type are removed and represented separately.

T2. Predicate family discovering. This transformation looks for all the different combinations of
predicates that are used for subject descriptions. As mentioned in Foundation 2, the different families
are numbered with an autoincremental ID, hence all families are identified within the range [1, |F |],
where |F | is the number of different families in the dataset. Thus, each subject Si is now related to a
family Fj , hence adjacency lists can be compacted by replacing (multiple) predicate occurrences with
the corresponding family ID.

Figure 11 illustrates this transformation in our previous example, where three different families are
discovered: F1 = {P1, P3, P5, P7}, F2 = {P4, P5, P6}, and F3 = {P1, P2, P4}. Reconstructing the original
triples from this encoding is straightforward. For instance, S1 is related to F1, and the last level of
objects contains four lists (one per predicate):

1. The first list contains O∗1 and O∗5 , and corresponds to the first predicate in F1, which is P1. Thus,
it encodes the triples (S1, P1, O

∗
1) and (S1, P1, O

∗
5).

2. The second list only includes O∗2 , and is related to the second predicate in F1, i.e., P3. Thus, it
encodes the triple (S1, P3, O

∗
2).

3. The third list contains O∗1 , which is related to the third predicate in F1, i.e., P5. Thus, it encodes
the triple (S1, P5, O

∗
1).

4. Finally, the last list is tagged with P7, which refers to rdf:type. Thus, the corresponding triple
will be removed from this representation (and encoded separately) in the following transformation.
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Figure 12: rdf:type encoding

Information about predicates and families must also be preserved as part of the encoding. A new
adjacency list structure, called families, is used for this purpose. As shown in Figure 11, it encompasses
|P − 1| adjacency lists, each one listing the IDs of the families in which each predicate (except for
rdf:type) is used. For instance, the first predicate is used in two families: {F1, F3}, the second predicate
only appears in a single family: {F3}, and so on.

Retrieving the IDs of the families for a given predicate p is simply implemented using neigh(families,
p). For instance, in our example, the families in which P4 appears can be retrieved as neigh(families,4)
= {2, 3}, i.e., families F2 and F3.

T3. Encoding of rdf:type. This transformation processes triples with the rdf:type predicate, retriev-
ing class values (i.e., the objects of these triples) and using them to type the corresponding predicate
families. Following Definition 2, the object types are part of the predicate families, so if two subjects are
related to the same initial family, but they differ in the types, two independent families will be formed.
Note also that a typed family can be related to multiple types, e.g., a family with the set of predicates
prop:starring and prop:title can be used to describe a subject having the general type class:film and
the more specific type class:Documentary.

Figure 12 shows the resulting transformation. The typed triples (previously marked with red dotted
lines) are no longer represented in the trees, as they are encoded in an additional data structure: types.
This adjacency list preserves the IDs of the object types related to each predicate family. Note that, in this
case, non-typed families are encoded as empty lists, hence types.B is implemented using the adjacency
list variant that allows for empty lists (see Section 3.4). For instance, in our example, types.B=[0111]
encodes that the first family is associated with one object type, while the other families have empty lists,
i.e., they are not typed.

The types structure is used to retrieve object types for a predicate family. For a given family f , it
is easily implemented as neigh(types,f), being ∅ if f is not typed. For instance, neigh(types,1)= 9,
because O9 is the class value of the first family. In contrast, neigh(types,2)=neigh(types,3)= ∅, as
F2 and F3 are not typed.

5.3. Subject-based Transformations

As stated in Foundation 1, a subject is described by a particular family of predicates. Thus, the set
of subjects described by the same family can be re-mapped as (family) local subjects. The following
transformations allow local subjects to be represented and efficiently managed.

T4. Subject re-mapping. This transformation first groups subjects by the family they belong to,
and then orders each group by subject ID. This rearrangement is finally used to assign a new sequential
identifier for each subject within a family. Definition 4 formalizes this concept.

Definition 4 (Local Subject ID). Formally, we define S∗i |Fj, a local subject of the family Fj, as
S∗i |Fj = Fj [i] : Fj 6= ∅ and Fj = {Sk . . .Sl}; j ∈ [1, |F|], {k, l} ∈ [1, |S|], k < · · · < l. We abuse the
notation to refer to a local subject ID S∗i , where the concrete family can be inferred from the context.

Figure 13 shows the resulting organization on our running example, where triples are now grouped by
family. As we can see, subjects have been re-encoded within the family they are related to, represented
with the new local subject identifiers, S∗i . For instance, subjects S4, S5 and S7 were described by family
F3 (see Figure 12), and they are now re-mapped to S∗1 , S∗2 , S∗3 , respectively.
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Figure 13: Subject re-mapping.
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Figure 14: Triples rewritten with the RDF-Tr algorithm.

A new subject mapping structure, (MapS), is required to obtain (during decoding, presented in Sec-
tion 5.4) the original IDs of local subjects. MapS is implemented as an adjacency list structure that
concatenates the original IDs of the subjects described by each predicate family. Thus, MapS encodes |F |
adjacency lists. As shown in Figure 13, the subjects S1, S3, and S6 are described by the family F1, and
they are mapped to S∗1 |F1, S∗2 |F1, and S∗3 |F1, respectively.

Mapping a local subject ID (S∗i |Fj) to its global ID is simply implemented as neigh(MapS,j)[i].
For instance, the local subject S∗3 |F1 is mapped to neigh(MapS,1)[3]= 6, i.e., the global subject S6.
Note that this structure is also used during the decoding process to retrieve all subjects described by a
given family Fj . This functionality is also implemented using the neigh operation, accessing the whole
list of directed neighbors. For instance, in our example, neigh(MapS,1)= {1, 3, 6} retrieves all subjects
described by F1.

T5. Predicate Grouping. The Subject-Family-Object tree-shape organization from the previous trans-
formations results in a very flat representation, as one subject is only represented by one family. Thus,
the last step of our process consists of obtaining a bushy representation that can help compression and
favor fast decoding. The previous representation is rearranged by predicate, obtaining Predicate-Family-
Object trees, such as the example shown in Figure 14. Therefore, a predicate is related to several lists of
objects, one per each family where the predicate is present.

This forest of trees can be represented in a more compact notation based on adjacency lists. The
“abstract” representation of these adjacency data, referred to as ATr, is shown in Figure 15. ATr only
needs to provide a simple operation getObjects, which retrieves all local object IDs given a predicate
and a subject. Sections 6 and 7 describe two practical implementations of ATr on the basis of the
existing HDT and k2-triples compressors.

5.4. RDF-Tr Implementation and Decoding

Figure 15 shows the final organization and structures after applying RDF-Tr, which includes the
compact representation of triples (ATr), and other auxiliary structures, families, types, MapS and
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Figure 15: Predicate family based (adjacency list) encoding.

MapO. In the following, we briefly summarize the implementation remarks shown in the previous section:

• RDF-Tr focuses on the reorganization of triples in a dataset, hence it manages IDs for each
subject, predicate and object term and assumes the use of a dictionary to make a bidirectional
translation between terms and integer IDs (similar to most symbolic compressors).

• The mapping structures for subjects and objects, MapS and MapO, are represented as adjacency
lists, which are succintly encoded using a bitsequence and an integer ID sequence (see Section 3.4).
The types and families structures are similarly encoded as adjacency lists.

• The implementation of ATr (essentially, adjacency data) may vary, depending on the internal
structure of the RDF syntactic compressor that uses RDF-Tr (as shown in Sections 6 and 7).

Algorithm 5 illustrates the decoding process that retrieves the original triples from the RDF-Tr-
based encoding. It implements a multi-nested-loop algorithm that iterates through all predicates (Line
1), except for rdf:type. For each predicate, we obtain the list of families in which the predicate is
present (Line 3), and iterate over them (Line 4). For each family, we first obtain its ID (Line 5), and
then use it to retrieve the list of object types (or ∅, if it is a non-typed family), and the list of subjects
related to this family (Lines 6 and 7). These subjects are then also iterated (Line 8). For each subject,
we use ATr to retrieve the list of objects related to the current predicate and subject (Line 10), referred
to as Os. At this point, we have retrieved all IDs, but they must be mapped from their local encoding
to their original IDs in the dictionary. In Line 9, the local subject ID is mapped to its global one, and
global object IDs are obtained in Line 13 (within a loop that iterates over all objects in Os). Finally,
in Line 14, the corresponding triple is emitted. Note that Lines 15 to 17 are only executed for typed
families. In this case, object types are iterated and new typed triples are emitted for the corresponding
subject and object type.

In the following sections, we show how RDF-Tr can be integrated into existing compressors, which
assume the responsibility of implementing ATr.

6. HDT++

The integration of HDT and RDF-Tr is referred to as HDT++. We first provide an overview of
HDT, with particular attention to triples encoding. Then, we show how RDF-Tr can be plugged into
HDT.

6.1. HDT

HDT [17] was a pioneer in RDF binary serialization, specifically focused on optimizing storage and
transmission costs over a network, as well as fast retrieval on compressed space. It is specifically tailored
to potentially large datasets, achieving similar compression ratios to general techniques such as gzip. As
summarized in Section 2.2, RDF is encoded using three logical components: Header (i.e., metadata),
Dictionary (the aforementioned mapping between string terms and IDs), and Triples (the graph of IDs).
We focus on the Triples component hereinafter, as RDF-Tr is focused on triples organization.

18



Algorithm 5: Decoding algorithm.

1 for predicate← 1 to |P − 1| do
2 ptrSubject← 1;
3 Fp ← neigh(families, predicate);
4 for f ← 1 to |Fp| do
5 family ← Fp[f ];
6 Tf ← neigh(types, family);
7 Sf ← neigh(MapS, family);
8 for s← 1 to |Sf | do
9 subject← Sf [s];

10 Os ← ATr.getObjects(predicate, ptrSubject);
11 ptrSubject← ptrSubject+ 1;
12 for o← 1 to |Os| do
13 object← neigh(MapO, predicate)[Os[o]];
14 newtriple(subject, predicate, object);

15 if Tf 6= ∅ then
16 for t← 1 to |Tf | do
17 newtriple(subject, rdf:type, Tf [t]);
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Figure 16: Forest of trees modeling ID triples in HDT.
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Figure 17: BitmapTriples implementation.

Figure 16 shows the organization of HDT Triples over the original triples of our running example
(see Figure 8). Triples are organized as a forest of trees, one per different subject in the dataset: the
root of each tree encodes the subject, the second level encodes the predicates related to the subject and
the leaves encode the adjacency lists of all objects related to each predicate within its root (subject)
scope. Note that the IDs of subjects, the predicates related to each subject, and the objects related to
a subject-predicate pair, are in increasing order.

HDT encodes triple IDs using the so-called Bitmap Triples structure. As shown in Figure 17, this
approach consists of two coordinated adjacency lists that respectively encode predicate and object adja-
cency information for each subject. On the one hand, predicate IDs are listed in the integer sequence Sp,
delimiting each subject list with 1-bits in Bp. Thus, the i-th 1-bit marks the end of the list corresponding
to subject i. On the other hand, So contains the integer sequence of object IDs, corresponding to the
leaves of the forest, where a 1-bit in the bitsequence Bo marks the end of the objects related to the
corresponding subject-predicate pair.

6.2. Plugging RDF-Tr into HDT

Plugging RDF-Tr into HDT is straightforward. RDF-Tr assumes that the HDT dictionary and
the corresponding forest of trees (represented in Figure 16) has been created. Then, leaving aside the
dictionary compression, which is performed as in HDT, the novel HDT++ process starts by traversing
the obtained forest of trees and performing transformations T1, T2, T3, T4, and T5 to reorganize triples
and build the data structures described previously. Finally, the abstract ATr structure is implemented
as follows.
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Figure 18: HDT++ implementation of ATr.

Algorithm 6: HDT++: getObjects(predicate, ptrSubject).

1 return neigh(Ps[predicate], ptrSubject);

HDT++ encodes ATr as an array of |P − 1| adjacency lists (one per predicate, except for rdf:type),
referred to as Ps. Each list is encoded as in BitmapTriples, i.e., using an integer sequence of IDs, So,
and its aligned bitsequence, Bo. This simple but effective approach allows adjacency lists to be managed
independently, hence each one can be encoded according to the features of its corresponding predicate.

Algorithm 6 shows the implementation of the getObjects method in HDT++. Recall that this
operation is used in the decoding process (see Line 10 of Algorithm 5) to get the objects related to
a given predicate and subject. Note that, in practice, the decoding algorithm does not iterate on the
subject ID, but the position (i.e., ‘ptrSubject’ in the code) where its object list is encoded for a given
predicate, as explained in Section 5.4. This algorithm simply performs the neigh operation over the
corresponding adjacency list structure, stored at Ps[predicate], retrieving all neighbors encoded in the
list of ptrSubject.

Finally, note that the remaining data structures (MapO, MapS, types and families) are built in
HDT++ following the same aforementioned procedures7 (see Section 5).

7. K2-triples++

We refer to k2-triples++ as the integration of k2-triples and RDF-Tr. As in the previous section,
we first introduce the foundations of k2-triples and then we describe the RDF-Tr integration.

7.1. k2-triples

Similarly to HDT, k2-triples [1] performs dictionary compression before encoding the resulting ID-
graph. It is worth noting that both approaches implement the same scheme for dictionary compression.
k2-triples takes advantage of the low number of predicates used in an RDF dataset and partitions it
vertically. That is, k2-triples performs a predicate-based partition of the dataset into disjoint subsets of
subject-object pairs, and then these subsets are highly compressed as binary matrices (i.e., a 1-bit marks
that the corresponding triple exists in the dataset) using k2-trees [9]. The size of these matrices will be
m×m, where m is the minimum power of k that is greater than max(|S|, |O|).

Continuing with the triples given in our running example, Figure 19 illustrates the resulting k2-tree
for the first predicate (with ID 1), i.e., it encodes all triples (s, 1, o), where s and o are the IDs of the
corresponding subjects and objects. The conceptual 16 × 16 matrix is illustrated on the left hand side
(note that, in this example |S| = 7 and |O| = 15), modelling subjects by rows and objects by columns.
We consider k = 2, hence each level is divided into k2 = 4 submatrices. Recall that (i, j) = 1 means that
there is a triple, in which the subject i (rows) is related to object j (columns) through the predicate 1.

The right hand side of Figure 19 depicts the conceptual tree and the final configuration of bitsequences
T and L, which effectively encode the k2-tree. As explained in Section 3.4, all the aforementioned graph
operations (including neigh) are efficiently provided by the k2-tree using rank and select.

7These structures are not represented in Figure 18 for simplicity, but their configuration is the same as in Figure 15.
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Figure 19: Vertical-Partitioning on k2triples (k=2) for predicate P1.
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Figure 20: K2triples++ implementation of ATr

Algorithm 7: k2triples++: getObjects(predicate, ptrSubject).

1 return neigh(k2 − tree[predicate], ptrSubject);

7.2. Plugging RDF-Tr into k2-triples

Transforming k2-triples into k2-triples++ involves a similar process to that described for HDT++.
Thus, the dictionary and the ID-graph are first obtained, and the RDF-Tr transformations are then
performed to obtain MapO, MapS, types, families and the ATr structure, which is represented as fol-
lows. As in k2-triples, ATr is vertically partitioned by predicate, i.e., (subject, object) pairs are encoded
in the k2-tree corresponding to their related predicate(s). It is worth noting that, in k2-triples++, the
size of each adjacency matrix depends exclusively on the number of subjects and objects related to the
corresponding predicate (instead of the total number of subjects and objects in the dataset).

Figure 20 illustrates how k2-triples++ implements ATr. Note that the largest matrix (of size 8× 8)
is modelled for predicate 1, as it is related to 6 different subjects and 5 different objects. In contrast,
the matrix for predicate 6 is 1× 1, as this predicate is just present in a single triple.

The implementation of ATr in k2-triples++ provides the getObjects operation, required for de-
coding. As shown in Algorithm 7, we also make use of the neigh operation of the k2-tree to process the
row ptrSubject and retrieve the corresponding objects.

8. Experimental Evaluation

This section evaluates the performance of RDF-Tr in real-world RDF datasets. We first provide
concrete details of our prototype (Section 8.1) and then describe the evaluation corpus (Section 8.2).
We analyze the results of the evaluation in Section 8.3 and Section 8.4 provides a final discussion of our
results.

8.1. Practical RDF-Tr Implementation

Our RDF-Tr prototype8 is built in C++11, making extensive use of the Succinct Data Structure Li-
brary9 (SDSL). This library implements different compact data structures and provides rich functionality

8The code of the prototype is publicly available at https://github.com/antonioillera/HDTpp-src
9https://github.com/simongog/sdsl-lite

21



over these structures10. Thus, our prototype implements all the auxiliary RDF-Tr structures, types,
families, MapO and MapS on SDSL functionalities:

• Types is serialized as an adjacency list: the sequence S is implemented as an SDSL int vector,
which uses log2(|O|) bits per ID, and the bitsequence B is built over a plain bit vector. Note
that a variant of the aforementioned Clark’s structure11 [10] is loaded to provide efficient select

support.

• Families is serialized as an adjacency list, but it is loaded as a vector of vectors to speed up
data access. Each secondary vector is implemented as an independent SDSL int vector, which
encodes each ID using a number of bits proportional to the greatest family ID: F’ related to the
given predicate; i.e. log2(F ′) ≤ log2(|F |) bits per ID.

• MapO is also serialized as an adjacency list, but it is loaded as a vector of vectors to optimize the
memory footprint. Note that the list of objects related to each predicate can be very large, so bit-
sequences use more bits than the required pointers. Besides, object lists can be compressed, saving
additional space. Thus, we implement secondary vectors using the compressed SDSL enc vector.
First, we perform gap-encoding over the elements of each list and store samples each t dens po-
sitions. Then, the resulting representation is compressed using Elias-Delta. Note that t dens is
a user-defined value, so it is possible to tune this parameter for faster decompression, or greater
compression (at the expense of speed). Thus, in the analysis section, we will evaluate how the
variation of this parameter affects the decompression time and space of some datasets.

• MapS is loaded similarly to MapO in order to exploit the fact that the lists of subjects for predicate
families are also large, and these are effectively compressed using gap-encoding and Elias-Delta.

Finally, we provide two concrete implementations of ATr leading to the HDT++ and k2-triples++

compressors (as explained in Sections 6 and 7):

• HDT++ serializes |P − 1| adjacency lists and loads them into an array for decoding purposes. Note
that the int vector of each adjacency list is configured to use log2(|Op|) bits per ID, where |Op|
is the number of different objects within the range of the predicate p.

• k2-triples++ serializes |P − 1| k2-trees, each one configured according to the number of subjects
and objects related to the corresponding predicate. We use k = 2, as in the original k2-triples
approach [1].

8.2. Evaluation Corpus: Description and Statistics

Our evaluation considers five real-world RDF datasets: dblp provides open bibliographic information
on major computer science journals and proceedings; dbtune includes music-related structured data;
us census provides census data from the U.S.; linkedgeodata uses the information collected by the
OpenStreetMap project and makes it available as an RDF knowledge base according to the Linked Data
principles; and dbpedia is an RDF conversion of Wikipedia (mostly on the infobox information).

Table 1 reports the main statistics of these datasets, namely, the number of triples, and the number
of total subjects, predicates, and objects, (|S|, |P |, and |O|, respectively). Furthermore, Table 2 reports
relevant statistics for RDF-Tr. We show, for each dataset, the number of families (|F |), the number of
different types used in the dataset, the number of typed-families (recall that a typed-family is a family
that is defined by at least one type), the number of typed-triples (i.e., triples involving rdf:type), as well
as the maximum value of local object identifiers (i.e., the maximum number of objects in the range of a
particular predicate).

A first analysis of these statistics shows that linkedgeodata and dbpedia are the less-structured
datasets, inasmuch as the number of families is ≈ 24 times the number of predicates in linkedgeodata

and ≈ 50 times in the case of dbpedia. Despite their low structural level, it is important to note that
the number of detected families is small compared to the possible combinations of relationships between
subjects and predicates. Conversely, dbtune and dblp are structured datasets, since the number of

10A brief summary of the structures and operations is available at http://simongog.github.io/assets/data/sdsl-

cheatsheet.pdf
11https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/select support mcl.hpp
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Dataset #triples |S| |P | |O|
dblp 55,586,971 3,591,091 27 25,154,979
dbtune 58,920,361 12,401,228 394 14,264,221
us census 149,182,415 23,904,658 429 23,996,813
linkedgeodata 271,180,352 51,916,995 18,272 121,749,861
dbpedia 837,257,959 113,986,155 60,264 221,623,898

Table 1: Main statistics of the evaluation corpus.

Dataset |F | #types #typed-families #typed-triples Max local-obj
dblp 283 14 283 5,475,762 6,428,355
dbtune 1,047 64 866 12,340,116 2,254,960
us census 106 0 0 0 1,242,683
linkedgeodata 441,922 1,081 440,035 81,261,427 38,826,195
dbpedia 2,969,486 370,069 2,811,839 92,725,995 40,325,707

Table 2: Statistics related to RDF-Tr.
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Figure 21: Number of predicates per object (mean and standard deviation).
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Figure 22: Distribution of RDF objects per predicate in linkedgeodata.

families is ≈ 2.5 and ≈ 10.5 times the number of their predicates, respectively. Finally, us census is a
clear example of a highly-structured dataset because the number of families is even less than the number
of predicates.

The use of types is denoted by #types, #typed-families and #typed-triples columns in Table 2. A
comparison of #typed-families with the total number of families shows that most families are actually
typed (except for us census, which does not use types). In other words, although the predicate rdf:type

is optional in a dataset, it is actually present in most subject descriptions. In this regard, the #typed-
triples column shows that typed datasets include a high number of triples involving rdf:type. For
instance, linkedgeodata has more than 81 million typed triples, which corresponds to almost 30%
of its total triples, while in the rest of the typed datasets, 10-20% of the triples are typed.

Figure 21 extends these statistics and represents the average number of predicates per object. As
expected (see Section 4.2), we can observe that the number of predicates per object is very close to
1, even in the less structured datasets. In turn, Figure 22 shows the inverse relation, i.e., the number
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HDT HDT++ k2triples k2-triples++
dataset size (MB) time (µs) size (MB) time (µs) size (MB) time (µs) size (MB) time (µs)
dblp 203.19 0.0614 127.03 0.0557 99.85 0.2292 43.71 0.1456
dbtune 242.05 0.0835 112.75 0.0810 152.38 0.3309 125.95 0.3302
us census 649.22 0.0892 323.24 0.0792 347.05 0.3030 195.46 0.2409
linkedgeodata 1,446.19 0.0867 646.17 0.0667 541.28 0.2394 525.39 0.2688
dbpedia 4,152.62 0.0639 2,901.12 0.0674 2,208.40 0.2982 1,326.74 0.2628

Table 3: Compression (size) and decompression (time per triple) results.
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Figure 23: dblp and dbtune tradeoffs

of objects per predicate, in linkedgeodata. In general, all datasets show a skewed distribution: most
predicates are related to few objects, while there is a small number of predicates related to many objects.

All these features suggest that a typed family encoding, such as RDF-Tr, may be more effective
because it groups predicates and types, thus preventing unnecessary repetitions, and it encodes objects
by predicate, thus minimizing their ID lengths.

8.3. RDF-Tr Analysis

This section analyzes the experimental results when applying RDF-Tr to the well-known HDT and
k2-triples RDF syntactic compressors, leading to HDT++ and k2-triples++ respectively. Experiments
were performed in a -commodity server- Intel Xeon E5645@2.4GHz, 96GB DDR3@1066Mhz. Reported
(elapsed) times are the average of five independent executions. We report in-memory spaces of the
encodings (including the necessary structures to decode the serializations), disregarding the dictionary
space (as all of the evaluated techniques make use of the same dictionary).

For each dataset in our evaluation setup, Table 3 shows the triples encoding size and decompression
time of the original HDT and k2-triples compressors, as well as the resulting size after applying RDF-
Tr i.e., HDT++ and k2-triples++ respectively. For this experiment, we fix a value of t dens such that
the decompression time of the original serialization is similar to the decompression time of its improved
serialization with RDF-Tr. We evaluate different t dens tradeoffs below.

The results in Table 3 show that, with similar decompression times, HDT++ and k2-triples++ are able
to significantly reduce the space requirements of their HDT and k2-triples counterparts. The improve-
ment of the RDF-Tr technique in HDT++ results in 37% space savings in dblp (t dens=128), ≈50% sav-
ings in dbtune (t dens=32), US census (t dens=16) and linkedgeodata (t dens=16), and 30% in dbpedia

(t dens=16).
k2-triples++ also achieves important compression improvements over k2-triples, with 56% space

savings in dblp (t dens=128), 17% in dbtune (t dens=32), 45% in US Census (t dens=32) and 30% in
dbpedia (t dens=128). In linkedgeodata, the space improvement is negligible (3%). In this case, the
dataset has many different terms with respect to the number of triples (see Table 1), i.e., elements are
hardly reused and less redundancies in the triples can be found. Note also that the matrices generated
by k2-triples++ are generally smaller than the k2-triples ones because local object IDs are smaller than
global object IDs. Table 1 shows the comparison between the total number of objects and the maxi-
mum local ID, which are the reference values to generate the matrices by k2-triples and k2-triples++

respectively.
Finally, in order to inspect potential space/time tradeoffs, Figures 23-25 evaluate different t dens

values in HDT++ and k2triples++. The x-axis reflects the space given as a percentage over the size of
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Figure 24: US census and linkedgeodata tradeoffs
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Figure 25: dbpedia tradeoffs

HDT12. The decompression time per triple (in microseconds) is represented in the vertical axis. For
simplicity, the same t dens values have been applied to MapS and MapO. Results show how HDT++ and
k2triples++ can be adapted to particular scenarios. For instance, in the case of dbpedia (Figure 25),
HDT++ can be tuned to take only 60% of the original (already compressed) HDT size, at the cost of
additional decompression time. Note that the tradeoffs depend on the data distribution. For example,
dblp (Figure 23) is a very structured dataset and decompression times are not significantly degraded at
more aggressive t dens values.

8.4. Discussion

Our experimental results show that RDF-Tr can leverage structural redundancies and achieve large
space saving (approx 50% overall) as a preprocessing technique of both HDT and k2-triples compressors.

In general, as expected, RDF-Tr takes advantage of highly-structured datasets (i.e., datasets with
a lower number of families). That is, HDT++ and k2-triples++ achieve better compression ratios in
the more structured datasets, such as dbtune, dblp and us census. Nonetheless, with the aforemen-
tioned exception of linkedgeodata in k2-triples++, results also show important space savings in weakly-
structured datasets such as dbpedia, both in HDT++ and k2-triples++.

Besides the level of structuredness of a dataset, a detailed analysis of the results and the characteristics
of the datasets shows the following correlations:

• The compression ratio of RDF-Tr is positively affected by the number of typed triples in the
dataset (see column #typed-triples in Table 2). As shown in Foundation 2 and the corresponding
T3 transformation, RDF-Tr encodes the values of rdf:type within predicate families, avoiding
unnecessary repetitions across subjects. For instance, as noted before, linkedgeodata has more
than 80 million typed triples, which amounts to an impressive 30% of the total triples. This results

12We take HDT as the baseline as it is a W3C Member submission, i.e., a de-facto standard for RDF compression.
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Figure 26: Datasets reorganization time.

in the reported good compression ratios of RDF-Tr, in spite of its weak structure (with more than
400K families).

• The compression ratio of RDF-Tr is negatively affected by a high proportion of RDF objects over
the total number of triples (see Table 1), but positively affected by a skewed distribution of the
number of objects related to each predicate (see Figure 22). Thus, excluding the auxiliary structures
(i.e., families, types, MapS and MapO), the main burden of the representation lies in the encoding
of ATr. Irrespective of the concrete RDF syntactic compressor that integrates RDF-Tr, given
Foundation 3 and the object remapping in the transformation T1, ATr uses predicate-local IDs
(i.e., sequential identifiers per predicate). Thus, the smaller the number of objects per predicate,
the shorter the IDs and the smaller the space they take up. In turn, an overall large number of
objects with respect to the total number of triples (e.g., in dblp or linkedgeodata) results in some
large object lists, and thus large IDs (see column Max local-obj in Table 2), where the effect of the
transformation is less remarkable.

Finally, while we show that the decompression time is not affected by RDF-Tr, it is also important
to consider the time that RDF-Tr takes, in practice, to perform all the transformations described in
Section 5. This time is represented on the Y-axis (logarithmic scale) of Figure 26 and is dependent on
two factors, the number of triples of the dataset (X-axis) and the number of predicate families that make
it up. This last dimension is depicted by the size of the bubble of each dataset (in logarithmic scale). As
expected, the one-time RDF-Tr organization mainly depends on the number of triples in the dataset
(as we scan all of them to discover the families), with a relative influence on its number of families (as
we need to construct all RDF-Tr structures based on them). In particular, RDF-Tr takes only a few
seconds for dblp, dbtune, and uscensus, all of them with few families and a relatively small number of
triples, and ≈11 minutes for the weakly structured linkedgeodata dataset, with almost 300m triples and
more than 400K families. As a corner case, dbpedia pays the price of almost 1B triples and 3M families,
requiring a one-time processing of several hours. Exploring optimized construction techniques for such
extremely unstructured datasets, e.g., exploiting parallelism to iterate triples and building families and
RDF-Tr structures, is considered for future work.

9. Conclusions and Future Work

This paper presents RDF-Tr, a preprocessing technique that reorganizes RDF triples to leverage
inherent structural redundancies. We first describe the foundations of two types of schema-based redun-
dancies underlying RDF: predicate families are massively repeated for general and typed subjects, and
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objects are often related to just one predicate. Then, we provide the required RDF-Tr transformations
and additional structures to efficiently compress RDF data.

RDF-Tr has been applied to HDT and k2-triples, two of the most commonly used state-of-the-art
compressors. These techniques have been evaluated on real-world RDF datasets, considering different
domains and structuredness. Our results show that the resultant HDT++ and k2-triples++ compressors
save up to half the space of their counterparts, with similar decompression times. In addition, the final
configuration can be tuned to explore different space/time tradeoffs.

Our current work focuses on exploiting the RDF-Tr organization to additionally provide fast retrieval
on compressed space. In particular, we work on implementing SPARQL triple pattern retrieval, partially
reusing the HDT and k2-triples functionality. In turn, both HDT++ and k2-triples++ should be currently
loaded entirely in main memory in order to be consumed. The adaptation of RDF data repositories for
these compressed models is a challenge to face in the near future. In addition, we are also exploring how
to use parallelism to practically optimize the construction of RDF-Tr structures.

Finally, the application of our foundations (i.e., heuristics) to uncover redundancies that can be
further captured by RDF compression techniques sets the stage for the application of further uncovered
transformations. Our future work considers both using other implicit structural similarity patterns (e.g.,
looking at the structure of adjacent nodes in the RDF graph [27]), as well as making use of explicitly
declared constraints or regularities in the data (e.g., expressed with SHACL [26] or ShEx [4]).
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Abstract. RDF self-indexes compress the RDF collection and provide efficient access to the data without a previous decompres-
sion (via the so-called SPARQL triple patterns). HDT is one of the reference solutions in this scenario, with several applications
to lower the barrier of both publication and consumption of Big Semantic Data. However, the simple design of HDT takes a
compromise position between compression effectiveness and retrieval speed. In particular, it supports scan and subject-based
queries, but it requires additional indexes to resolve predicate and object-based SPARQL triple patterns. A recent variant, HDT++,
improves HDT compression ratios, but it does not retain the original HDT retrieval capabilities. In this article, we extend HDT++
with additional indexes to support full SPARQL triple pattern resolution with a lower memory footprint than the original indexed
HDT (called HDT-FoQ). Our evaluation shows that the resultant structure, iHDT++, requires 70−85% of the original HDT-FoQ
space (and up to 48− 72% for an HDT Community variant). In addition, iHDT++ shows significant performance improvements
(up to one level of magnitude) for most triple pattern queries, being competitive with state-of-the-art RDF self-indexes.

Keywords: HDT, RDF compression, Triple pattern resolution, SPARQL, Linked Data.

1. Introduction

The World Wide Web is a network of documents, in
which nodes (web pages) contain pieces of information
intended for human consumption, and the edges relate
this information through links, which facilitate navi-
gation among pages. This document-centric informa-
tion architecture does not facilitate access to raw data,
hindering to automate different processes. The Web of
Data arises as a response to this situation and offers,
on the own infrastructure of the Web, mechanisms to
represent and interconnect data with sufficient seman-
tics and level of granularity to allow automatic pro-
cessing [2]. RDF (Resource Description Framework)
[24] plays a fundamental role in the Web of Data.

RDF models and interconnects data using ternary
sentences (triples) formed by a subject (S), a predicate
(P), and an object (O). These RDF triples can be in-

*Corresponding author. Antonio Hernández Illera, Department of
Computer Science, University of Valladolid. Campus María Zam-
brano, 40006, Segovia, Spain. E-mail: antonio.hi@gmail.com.

terpreted as directed graphs in which subjects and ob-
jects act as nodes and predicates are the edges between
them. The flexibility of RDF has facilitated its use as
a standard de facto for the publication of raw data on
the Web, and, more recently, Knowledge Graphs [3];
DBpedia or Bio2RDF publish billions of triples, be-
ing a clear example of the volume reached by RDF
collections and, in turn, the scalability challenges that
entail its management and consumption. One of these
scalability problems is the way RDF datasets are seri-
alized. Traditionally, “flat” formats (like XML) have
been used, whose verbosity is a limiting factor when
managing Big Semantic Data. The alternative is to use
binary formats that encode the RDF datasets according
to its structural and/or semantic properties.

HDT (Header-Dictionary-Triples) [7] is positioned
in this scenario and proposes a binary format that ex-
ploits RDF redundancy [14]. HDT obtains compres-
sion ratios comparable to those reached by gzip, and it
reports competitive performance for scan queries and
subject-based retrieval [8], with no prior decompres-
sion. In addition, HDT-FoQ (Focused on Querying)

0000-0000/20/$00.00 c© 2020 – IOS Press and the authors. All rights reserved
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[15] adds two indexes (either loaded into memory or
mapped from disk) on top of HDT to allow for full
SPARQL [21] triple pattern (TP) resolution.1

HDT has been adopted in the Web of Data because
of its simplicity and a competitive space/time trade-
off, taking a key role in the development of client-side
query processors such as Triple Pattern Fragments [25]
and SAGE [17]. However, both HDT and HDT-FoQ
are limited by a design that emphasizes simplicity of
representation and disregards other sources of redun-
dancy. HDT++ [11] modifies that design and imple-
ments a reorganization of triples that partially elim-
inates structural redundancies. Specifically, HDT++
takes advantage of the fact that subjects of the same
type are described by similar sets of properties and that
their value ranges have little overlap. HDT++ notably
improves the compression ratios obtained by HDT, as
well as its decoding speed. Yet, it does not provide the
necessary mechanisms to solve SPARQL TPs.

In this paper, we present iHDT++ an enhanced
representation that allows HDT++ files to be effi-
ciently queried. In particular, we extend the existing
HDT++ structures with additional information to re-
solve predicate-based and subject-based TPs (i.e. those
in which the predicate or subject are provided, re-
spectively). Then, we provide a new object-based in-
dex that completes the iHDT++ proposal and enables
full SPARQL TP resolution. Our experiments show
that iHDT++ uses around 70 − 85% of the memory
footprint of HDT-FoQ, largely outperforming most of
the TPs (e.g. the challenging predicate-based retrieval,
(?P?)). The space differences are even more notice-
able with the HDT Community version (48-72%), a
practical proposal to speed up predicate-based issues
(presented in Section 2.3). iHDT++ also shows com-
petitive space/time tradeoffs with state-of-the-art RDF
self-indexes, k2-triples and RDFCSA.

The rest of the article is organized as follows. Sec-
tion 2 presents the background of iHDT++. Section 3
describes the structures added by iHDT++ on top of
HDT++, and explains how these can be used to resolve
SPARQL TPs. Section 4 compares the performance of
iHDT++ with the existing HDT-based solutions and
the most promising RDF self-indexes. Finally, our con-
clusion and future work are discussed in Section 5.

1A TP is an RDF triple in which any of its components can be vari-
able (? is used to indicate components that are variables): (SPO),
(SP?), (S?O), (S??), (?PO), (?P?), (??O), and (???).

2. Background

This section provides the basic background of the
paper. We introduce the notion of compact data struc-
ture [18], with particular attention to those structures
used by the HDT-based approaches and iHDT++.
Compact data structures are also at the core of the
most competitive RDF compressors, including effi-
cient RDF self-indexes. We also review state-of-the-art
RDF compression techniques, and we delve into par-
ticular details of HDT-based approaches, which set the
foundations of our proposal.

2.1. Compact Data Structures

A compact data structure [18] proposes a data ar-
rangement that uses an amount of space close to the
theoretical optimal number of bits (required to pre-
serve the data), while providing efficient functional-
ity with no prior decompression. Thus, a compact data
structure compresses the original data and allows it to
be queried and manipulated in compressed form.

The main blocks of compact data structures are
functional bitsequences, explained as follows.

Bitsequences. A bitsequence B[1, n] is an array of n
bits that provides three basic operations:

– access(B, i) returns B[i], for any 1 ≤ i ≤ n.
– rankv(B, i) counts the number of occurrences of

the bit v ∈ {0, 1} in B[1, i], for any 1 ≤ i ≤ n;
rankv(B, 0) = 0.

– selectv(B, j) returns the position of the j − th
occurrence of the bit v ∈ {0, 1} in B, for any j ≥
0; selectv(B, 0) = 0 and selectv(B, j) =
n+ 1 if j > rankv(B,n).

iHDT++ uses a “plain bitsequence” that implements
Clark’s approach [6], which adds additional structures
on top of B to efficiently resolve rank and select

(access is directly performed on the bit array in con-
stant time). Bitsequences can be compressed [18] to
save space requirements, but none of the RDF com-
pressors analyzed in this paper use them.

Sequences. A sequence S[1, n] is a generalization
of a bitsequence, whose elements S[i] (i.e. symbols)
come from to an alphabet Σ = [1, σ]. They support
the same operations: access(S, i) returns the symbol
stored at S[i], while ranks(B, i) and selects(B, j)
allow any symbol s ∈ Σ to be queried.

The simplest sequence implementation is an array
that encodes each symbol using dlog2(σ)e bits. This
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Fig. 1. Example of adjacency list encoding.

“plain sequence” answers access(S, i) in O(1), by
accessing S[i], but it does not resolve rank and se-

lect efficiently. The wavelet tree [10] proposes an al-
ternative for sequence encoding. It organizes symbols
in a balanced tree of height h = log(σ), comprising
h bitsequences of n bits each. It requires n log2(σ) +
o(n) bits of space, using plain bitsequences, and an-
swers access, rank, and select in O(h).

Sequences of symbols are highly compressible in
many cases; e.g. posting lists in Information Retrieval
or adjacency lists in (Semantic) Web Graphs are usu-
ally gap-encoded [13] to exploit that symbols are
sorted, in increasing order, within the sequence. Differ-
ent forms of variable length compression [23] can also
be adopted to compress the sequence of symbols. They
compress sequences at the cost of slower access, as
the symbols must be previously decompressed.

Adjacency Lists. Adjacency lists are typically used
to encode graphs. Given the RDF scope of this paper,
we hereinafter focus on directed graph encoding. A di-
rected graph G = (V,E) is composed of a set of ver-
tices, V , and the set of edges, E ⊆ V × V . Typically,
the direct neighbors of a vertex v refer to all vertices
that can be reached from v, i.e. {(v, u) ∈ E}. Con-
versely, the set of reverse neighbors of a vertex v con-
tains vertices u such that {(u, v) ∈ E}.

Figure 1 shows the adjacency list encoding for a
graph with n = 6 vertices and a set of e = 10 edges:
E = {(1, 2), (1, 3), (2, 4), (3, 2), (3, 4), (3, 5), (4, 5),
(4, 6), (5, 6), (6, 1)}. Note that the structure AL con-
catenates all adjacency lists into a single sequence, S,
and a bitsequence, B, in which 1-bits mark the last el-
ement of the list of each vertex. In the example, the list
for the first vertex v1 is encoded in S[1, 2], the list for
v2 in S[3], and so on. The direct neighbors of v1 are
{v2, v3}, and the reverse neighbors of v2 are {v1, v3}.

Adjacency lists are optimized to obtain direct neigh-
bors for a vertex v: neigh(G, v), and to check if two
vertices v and u are connected: adj(G, v, u), which
returns the position of u in the list if (v, u) ∈ E, or
-1 otherwise. Both operations are implemented using
select on B and then access to the corresponding
positions in S, but this organization is not well suited
for reverse neighbors queries, unless the transposed
graph is encoded, doubling the required space [18].

Self-Indexes. A self-index is a compressed index that
provides search functionality over a data collection
and contains enough information to reproduce it [19].
Thus, a self-index can replace the original data col-
lection by a compressed representation that also en-
ables efficient retrieval operations to be performed. Al-
though self-indexes were originally designed for text
collections, they are currently used to manage different
types of data, including RDF.

In the scope of this paper, we refer the k2-tree
[5], a highly compressed binary matrix that is used
for graph encoding and supports efficient direct and
reverse neighbors queries, and CSA [22], a fully-
functional compressed suffix array.

2.2. RDF Compression

RDF compressors detect and remove redundancy at
symbolic, syntactic, and/or semantic levels [20], re-
porting impressive space savings, and enabling effi-
cient management of big semantic data [14].

HDT [8] was originally devised as binary serializa-
tion format for RDF, but it has been used as RDF com-
pressor due to its compactness (similar to gzip). HDT
also allows for basic, but efficient retrieval function-
ality. This feature was further improved by HDT-FoQ
[15], a compact data structure configuration that en-
ables full SPARQL TPs resolution to be performed on
top of HDT files, with no prior decompression. This
functionality was rapidly adopted, making HDT a core
component of state-of-the-art client-side query proces-
sors such as Triple Pattern Fragments [25] and SAGE
[17]. More recently, HDT++ [11] revisited HDT to re-
duce its memory footprint, but the resulting approach
did not retain the retrieval capabilities of HDT-FoQ.
More details about HDT are provided in Section 2.3.

RDF self-indexes [14] detect and remove syntactic
redundancy underlying to the graph structure of RDF.
These self-indexes support full SPARQL TPs resolu-
tion, like HDT-FoQ, but their optimized configurations
of compact data structures make them more compet-
itive in terms of space. K2-triples [1] partitions the
RDF dataset by predicate and, for each predicate, it
models pairs (subject, object) as binary matrices where
[i, j] = 1 mean that the i-th subject and the j-th ob-
ject are connected by the given predicate. The resulting
matrices are very sparse and can be effectively com-
pressed using k2-trees [5]. RDFCSA [4] models the
RDF dataset as a text, in which subjects precede lex-
icographically predicates and objects. This “text” is
then indexed using a compressed suffix array (CSA)
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[22], which ensures efficient data retrieval. Neverthe-
less, this organization promotes subject-based queries,
which are more efficient than the remaining SPARQL
TPs. Both self-indexes are included in our experimen-
tal setup and compared to iHDT++ (see Section 4).

Finally, note that other RDF compressors purely fo-
cus on space reduction and disregard search function-
ality [14], which is our core contribution.

2.3. HDT-based Approaches

HDT [8] is a binary serialization format that orga-
nizes the content of an RDF dataset into two com-
ponents (Dictionary and Triples), which are primar-
ily responsible for the effectiveness of HDT. On the
one hand, the Dictionary faces the symbolic redun-
dancy of an RDF graph providing a compressed cata-
log with the terms used in the nodes and edges of the
RDF graph, assigning a unique identifier (ID) to each
of them. These IDs are used to encode the structure of
the graph in the Triples component. In this paper, we
leave aside Dictionary compression and retrieval [16],
as it is orthogonal to our current approach, and we fo-
cus on optimizing the Triples component.

The Triples (in the form of IDs) conform a for-
est with subject-rooted trees and (predicate, object)
sorted branches. As shown in Figure 2, the content
of these trees is stored in two correlated adjacency
lists, that represent the predicates of each subject, and
the objects of each subject-predicate pair.2 The HDT
adjacency list implementations encompass a plain se-
quence (i.e. an integer array) and a plain bitsequence
[9], where 1-bits mark the end of each list; i.e the
last descendent of a branch. This organization makes
triples decompression efficient and facilitates access
per subject (i.e. in SPO order), but prevents the rest of
SPARQL TPs from being efficiently resolved.

2.3.1. HDT-FoQ (Focused on Querying)
HDT-FoQ [15] enhances HDT files with two addi-

tional indexes to provide full TPs resolution. On the
one hand, it replaces the sequence Sp (in the adjacency
list of predicates) by a wavelet tree [10], which pro-
vides indexed access by predicate (PSO order). It adds
a little space overhead, but ensures that all predicate-
based accesses are performed in logarithmic time (with
the number of predicates). On the other hand, HDT-
FoQ defines an object-index in the form of adjacency

2In Figure 2, we highlight the triples involving the predicate
rdf:type, as they will have a special treatment in HDT++.

list (OPS-order). It keeps track of the positions of each
object (in the adjacency list of objects), enabling fast
object-based TPs. However, this object index requires
non-negligible space, reducing the overall HDT-FoQ
effectiveness.

Although HDT-FoQ reports competitive space-time
tradeoffs, it is worth noting that its performance is not
competitive for the TP that only binds the predicate:
(?P?). In this case, predicate occurrences are per-
formed via select operations over the wavelet tree,
which suffer from scalability problems with a medium-
large number of predicates. A community version of
HDT-FoQ, referred to as HDT Community hereinafter,
solve this issue pragmatically. First, it removes the
wavelet tree and restores the original plain adjacency
list of predicates. Then, it uses the transposed version
of this latter to speed up predicate-based queries. Thus,
this alternative improves predicate-based queries, but
increases space requirements.

2.3.2. HDT++
HDT++ [11] proposes an alternative serialization for

RDF datasets that optimizes the HDT effectiveness by
applying the RDF-TR transformation [12]. RDF-TR

preprocesses the HDT Triples component (see Figure
2) to detect and eliminate redundancy at various levels,
using three types of transformations.

Object-based transformation. The ranges of objects
related to different predicates tend to be disjoint, i.e.
an object does not usually relate to more than one
different predicate [11]. This fact enables objects to
be locally identified within the range of each pred-
icate, hence using lower IDs to encode each object.
It reduces drastically the number of bits used to en-
code object occurrences, but requires a mapping struc-
ture (referred to as MapO) to translate the new lo-
cal IDs to the original ones. MapO is an adjacency
list that encompasses (in increasing order) the origi-
nal IDs of the objects related to each predicate. Fig-
ure 3 illustrates the MapO configuration for the triples
in Figure 2: predicate 1 is related to the original ob-
ject IDs {1,4,5,6,8}, predicate 2 with the objects
{7,13,16}, etc. MapO uses the neigh primitive, of
the adjacency list structure, to map local IDs to their
global counterparts.

Predicate-based transformations. RDF does not re-
strict how entities are described, but subjects are usu-
ally described using common sets of properties. For
instance, in the graph in Figure 2, subjects 1, 3 and
6 are described with the same properties {1,3,5,7},
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Fig. 2. Organization of Triples component in HDT (note that only predicates and objects adjacency lists are preserved).

Fig. 3. HDT++ Triples component.

or subjects 4, 5, and 7 use the properties {1,2,4}.
RDF-TR determines these predicate families and as-
signs them a unique identifier in [1,|F|]. In our ex-
ample, there are three families: F1 = {1,3,5,7},
which describes subjects 1, 3 and 6; F2 = {4,5,6},
which describes subject 2; and F3 = {1,2,4}, which
describes subjects 4, 5, and 7. A new adjacency list,
called Families, preserves the families in which each
predicate is used. As shown in Figure 3, the first predi-
cate is present in families {1,3}, predicate 2 is only in
family {3}, etc. Families also uses neigh to retrieve
the list of families for a given predicate.

The repetitions of the predicate families are even
more explicit with the use of the predicate rdf:type.
In these cases, it is quite likely that subjects of the same
type are described using the same set of predicates.
RDF-TR considers the existence of “typed” predicate
families, i.e. families that declare some value for the
predicate rdf:type, and enhances the definition of
the family with the value(s) of this predicate. This de-
cision avoids triples tagged with rdf:type to be ex-
plicitly encoded. Managing typed families requires an
additional adjacency list structure: types, which pre-
serves the type values of each family. Figure 3 illus-
trates this structure and encodes3 that the first family
is typed with the object 9. Finally, note that HDT++

3In this case, the bitsequence implements a slightly different en-
coding to allow empty lists, as some families may not be typed.

also maps rdf:type to the last predicate ID; in our
example, it is identified using the ID |P | = 7.

Subject-based transformation. Each subject can be
now described by a predicate family, hence all subjects
of the same family have the same connection struc-
ture. RDF-TR exploits this by grouping subjects of the
same family, which are now locally re-encoded within
their corresponding family. This decision requires an
additional mapping structure (MapS) to translate the
new local subject IDs to their corresponding counter-
parts. As shown in Figure 3, it is implemented as an
adjacency list that arranges subject IDs per family; e.g.
family 1 is related to subjects 1, 3, and 6, which corre-
spond to local subjects 1, 2 and 3 (for such family).

The previous transformations allow triples to be se-
rialized in the form of Subject-Family-Object trees,
with the local ID objects (per predicate) and local ID
subjects (per family). However, it is a flat representa-
tion in which each subject is connected to a single fam-
ily. RDF-TR proposes a final transformation to obtain
a bushy (and more compressible) encoding in the form
Predicate-Family-Object. Each tree is now rooted by a
predicate, which is connected to objects (in leaves) by
the corresponding family. Subjects are implicitly en-
coded in this representation, thanks to the family-based
grouping and the local subject IDs. The structure Ps is
required to implement this encoding. As shown in Fig-
ure 3, it is a vector of |P | adjacency lists (one per pred-
icate), called Ps in which sequences So preserve local
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object IDs and bitsequences Bo encodes relationships
between local objects and subjects, within the scope of
each predicate. Ps provides the getObjects(p, pos)
operation, which retrieves the list of objects starting in
position pos for the predicate p (see [12] for additional
details).

Finally, note that the inner sequences of MapS and
MapO are gap-encoded (with parameterizable sam-
ples) and then compressed using Elias-Delta [23]. The
remaining adjacency lists are encoded using plain se-
quences and bitsequences. The experiments reported
in [12] showed that HDT++ is faster than HDT for
triple scanning (decompression), while it uses less than
half the HDT space for more-structured datasets. How-
ever, HDT++ does not retain the HDT-FoQ retrieval ca-
pabilities, so it cannot be directly used to replace the
current HDT-based infrastructure in query processors.

3. iHDT++

HDT++ ensures efficient data scan, i.e. it resolves
the (???) TP. In contrast, subject-based and predicate-
based TP can be resolved in a non-efficient manner,
and object-based TPs are practically discarded (they
might require a full scan). iHDT++ transforms HDT++
into a query processor for SPARQL TPs. We enhance
the existing structures with additional information to
ensure subject and predicate-based TPs to be effi-
ciently resolved. In addition, a new index, iObjects,
is proposed to resolve object-based TPs.

3.1. Additional Data Structures

HDT++ uses adjacency lists to implement their com-
ponents. These structures are optimized to obtain di-
rect neighbors for a given vertex v, but are inefficient
to retrieve the reverse neighbors of a v (i.e. vertices
u such that (u, v) ∈ E). However, reverse neighbor
operations are needed to resolve SPARQL TPs, hence
MapS, MapO, and Families must be enhanced with
their transposed structures.

Transposed Structures. MapO arranges object IDs by
predicate, allowing local objects to be mapped to their
original IDs. This operation is useful for decoding pur-
poses, but is not enough for TPs resolution because
triple patterns use global IDs instead. iHDT++ pro-
poses to use the transposed of MapO (referred to as
MapO’) to list the predicate(s) of each object (i.e. usu-
ally just one). MapO’ is implemented as an adjacency

Fig. 4. Transposed structures of iHDT++.

Fig. 5. Indexed Ps (iPs).

Algorithm 1: getObjSubject(pred, fam, subj)

1 posf ← select1(iPs[pred].Bf , fam− 1);
2 rnk ← rank1(iPs[pred].Bo, posf );
3 poss ← 1+ select1(iPs[pred].Bo, subj + rnk − 1);
4 return iPs.getObjects(pred, poss) ;

list, encompassing a plain bitsequence and a plain se-
quence that uses log2(|P |) bits per ID.

The previous reasoning also applies for MapS and
Families. The transposed of these structures, MapS’
and Families’ respectively, are needed to support
subject-based retrieval: MapS’ is used to obtain the
ID of the family related to a given subject (the sub-
ject is referred by its global ID) and Families’ al-
lows the predicate set of a given family to be effi-
ciently retrieved. MapS’ is implemented as an ID ar-
ray, as each subject is only related to a single family;
i.e. MapS’[i] stores the ID of the family correspond-
ing to the i − th subject. It uses log2(|F |) bits per
ID. Families’ is implemented as an adjacency list,
in which each ID is encoded using log2(|P |) bits.

Figure 4 shows the resulting configuration of MapO’,
MapS’, and Families’ for the previous example.

Indexing Ps. The Ps structure encodes Predicate-
Family-Object trees, but the limits of each family
(within each predicate) are not explicitly delimited.
This information is not needed for decoding purposes
because the scan algorithm traverses Ps sequentially
[12]. However, family limits must be explicitly en-
coded to allow random access. An additional bitse-
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Fig. 6. iObjects configuration.

quence Bf is added on top of each adjacency list to
mark the end of each family within the predicate. The
resulting structure is called iPs.
iPs enhances the getObject primitive to retrieve

the objects related to a given (subject,predicate) pair
within a given family. Algorithm 1 describes this
operation, called getObjSubject, and Figure 5 il-
lustrates the iPs configuration for our current ex-
ample. For instance, if we are looking for the ob-
jects related to the third subject of the second fam-
ily of P1, getObjSubject(1, 2, 3) finds that the
corresponding list is encoded from poss = 7 and
getObjects(1, 7) = {5}.
The iObjects Index. This structure enhances HDT++
for object-based queries, storing the positions in which
each object occurrence is encoded in iPs. The special
value 0 is used to encode that a given object is only as-
sociated with predicate rdf:type. These objects have
a special consideration, as explained below.
iObjects is also implemented as an adjacency list,

which concatenates object positions according to their
global IDs; i.e. positions of O1 are first encoded, then
positions ofO2, and so on. The positions of each object
are internally organized in increasing order for each re-
lated predicate, and 1-bits mark the last object occur-
rence for a given predicate. The resulting iObjects

for our example is illustrated in Figure 6 (we also
show MapO’ for explanation purposes). For instance,
O1 is related to two predicates: P1 and P4, as shown
in MapO’. Thus, iObjects encodes two list of occur-
rences for O1, one for each predicate: L1,1 = {1} and
L1,4 = {1, 2, 4}. To decode the corresponding triples,
the adjacency lists of each predicate must be accessed
in iPs, retrieving the corresponding positions; e.g. po-
sitions 1, 2, and 4 of iPs[4] encodes the (local) subject
IDs of the triples that relate P4 and O1.
iObjects needs a secondary structure (iTypes) to

manage the set of objects that are related to the pred-
icate rdf:type. Note that, in Figure 6, S[15] = 0.

Algorithm 2: pattern_SPO(subj,pred,obj)
1 family ← MapS′[subj];
2 if pred < |P | then // pred is a regular predicate
3 if adj(Families’, family, pred) 6= −1 then
4 localo ←adj(MapO, pred, obj);
5 if localo 6= −1 then
6 locals ←adj(MapS, family, subj);
7 idf ←adj(Families, pred, family);
8 O ←iPs.getObjSubject(pred, idf , locals);
9 if bsearch(O, localo) 6= −1 then return true ;

10 else return false ;
11 end
12 else return false ;
13 end
14 else return false ;
15 end
16 else // pred is rdf:type
17 if adj(Types, family, obj) 6= −1 then return true ;
18 else return false ;
19 end

It means that O9 is related to rdf:type, but the re-
lated family is unknown. iTypes is composed of a
bitsequence (Bt) that marks those objects related to
rdf:type, and an adjacency list that contains the IDs
of the families that are typed with the correspond-
ing object. The corresponding iObjects configura-
tion for our example is depicted in Figure 6 (bottom).
Note that the bitsequence only sets the bits correspond-
ing to O9 and the adjacency list has a single element
that encodes F1, because F1 has the type O9.

3.2. Triple Pattern Resolution

In this section, we explain how iHDT++ can re-
solve all SPARQL TPs, except for (???), which cor-
responds to the scan of the dataset and it is already pro-
vided by HDT++ [12]. Note that we assume that the
bounded terms in queries are IDs (in the HDT Dictio-
nary) that identify the corresponding subjects, predi-
cates, or objects.

3.2.1. Access by Predicate
The organization of iHDT++ promotes predicate-

based operations, as it encodes Predicate-Family-
Object trees that can be efficiently traversed. Thus, be-
sides (???), all TPs binding the predicate can exploit
the iHDT++ organization. In the following, we present
the algorithms to resolve (SPO), (SP?) and (?P?).
Even though (?PO) could be also resolved, but its per-
formance improves notably by accessing by the value
of the object (see Section 3.2.3), as there are generally
fewer triples associated to a particular object than to a
given predicate [7].
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Algorithm 3: pattern_SP?(subj,pred)
1 family ← MapS′[subj];
2 if pred < |P | then // pred is a regular predicate
3 if adj(Families’, family, pred) 6= −1 then
4 locals ←adj(MapS, family, subj);
5 idf ←adj(Families, pred, family);
6 O ←iPs.getObjSubject(pred, idf , locals);
7 res← ∅;
8 for i← 1 to |O| do
9 res← res ∪ neigh(MapO, pred)[O[i]];

10 end
11 return res;
12 end
13 else return false ;
14 end
15 else // pred is rdf:type
16 return neigh(Types, family);
17 end

(SPO) This TP checks the existence of the triple
(subj,pred,obj) in the RDF dataset, as shown in Algo-
rithm 2. First, the family of the subject is retrieved (line
1), and then the predicate is checked (line 2) to de-
termine if it is a regular predicate or it is rdf:type.
The latter case is easily resolved because the requested
triple exists in the dataset only if family and obj are re-
lated in Types (line 17). The former case, which in-
volves a regular predicate, requires a multiple check:
we verify that family includes pred (line 3), and then
obtain the local ID of obj within pred; if pred and obj
are not related (i.e. ID = -1), the triple does not ex-
ist (line 12). The following step maps subj to its local
ID within its family (line 6), and then the position of
family in pred is retrieved (line 7). Line 8 gets the set
of objects related to (subj,pred) and then obj is binary
searched in O (line 9); if localo ∈ O, the triple exists
in the dataset.

(SP?) This TP retrieves all objects associated with
the pair (subj,pred), as shown in Algorithm 3. It first
obtains the family of subj and then evaluates pred, as in
the previous pattern. If the TP asks for rdf:type, the
requested objects are the direct neighbors of family in
Types (line 16). Looking for the objects associated to
a normal predicate also requires checking that family
includes pred, obtaining the local ID of subj, the posi-
tion of family in pred, retrieving the corresponding ob-
jects using getObjSubject (line 6) and finally map-
ping them to their original counterparts (lines 8-10).

(?P?) This TP returns all the pairs (subject,object)
described by pred, which was poorly resolved by
HDT-FoQ. Algorithm 4 illustrates the resolution with
iHDT++. For a normal predicate (lines 2-18), the al-
gorithm proceeds as the decompression process [12],
but for a concrete predicate. First, the families includ-

Algorithm 4: pattern_?P?(pred)
1 res← ∅;
2 if pred < |P | then // pred is a regular predicate
3 ptrSubj ← 1;
4 F ← neigh(Families, pred);
5 for i← 1 to |F| do
6 family ← F [i];
7 S ← neigh(MapS, family);
8 for j ← 1 to |S| do
9 subject← S[j];

10 O ← iPs.getObjects(predicate, ptrSubject);
11 ptrSubj ← ptrSubj + 1;
12 for k ← 1 to |O| do
13 object← neigh(MapO, pred)[O[k]];
14 res← res ∪ (subject, object);
15 end
16 end
17 end
18 end
19 else // pred is rdf:type
20 for i← 1 to |F | do
21 O ← neigh(Types, i) ;
22 ifO 6= ∅ then
23 S ← neigh(MapS, i) ;
24 for i← 1 to |S| do
25 for j ← 1 to |O| do
26 res← res ∪ (S[i],O[j]);
27 end
28 end
29 end
30 end
31 end
32 return res;

ing pred are retrieved (line 4) and iterated (lines 5-17).
For each family, its related subjects are obtained (line
7) and also iterated (lines 8-16). The objects related
to each pair (subject, pred) are obtained (line 10) and
then mapped to their global IDs (lines 12-15), as in the
previous algorithms. The process for rdf:type also
requires a nested loop algorithm. In this case, the algo-
rithm iterates over all families and, for each one, it re-
trieves its type values (line 21). If O is not empty (line
22), the family is typed and its related subjects are re-
trieved from MapS. Finally, we iterate over S and O to
return all the pair combinations from each set.

3.2.2. Access by Subject
As opposed to the original HDT, iHDT++ resolves

only a single TP accessing by subject: (S??).

(S??) This TP looks for all pairs (predicate, ob-
ject) describing a given subject (subj). As shown in Al-
gorithm 5, subj is used to retrieve its related family,
which is then used to obtain the corresponding predi-
cates (lines (2-3). The set of predicates is then iterated
to retrieve all objects related to subj and each predicate.
It is easily resolved by calling pattern_SP? (line 5),
and the returned objects are appended to the result
set (lines 6-8). Finally, we check whether the family
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Algorithm 5: pattern_S??(subj)
1 res← ∅;
2 family ← MapS’[subj];
3 P ← neigh(Families’, family);
4 for i← 1 to |P| do
5 O ← pattern_SP?(subj, P [i]);
6 for j ← 1 to |O| do
7 res← res ∪ (P [i], O[j]);
8 end
9 end

10 O ← neigh(Types, family);
11 ifO 6= ∅ then
12 for i← 1 to |O| do
13 res← res ∪ (|P |, O[j]);
14 end
15 end
16 return res;

Algorithm 6: pattern_S?O(subj,obj)
1 res← ∅;
2 P ← neigh(MapO’, obj);
3 for i← 1 to |P| do
4 if pattern_SPO(subj,P[i], obj) then
5 res← res ∪ P [i];
6 end
7 end
8 return res;

is typed, to add the corresponding pairs (rdf:type,
value) to the result set. In line 10, the possible type
values of the family are retrieved from Types; if there
exist, they are added to the final result set (note that the
ID |P |, in line 13, refers to the predicate rdf:type).

3.2.3. Access by Object
iHDT++ provides efficient object-based search via

MapO’ and iObjects, resolving the TPs (S?O),
(??O), and (?PO).

(S?O) This TP retrieves all predicates that label
the pair (subj,obj), illustrated in Algorithm 6. It uses
MapO’ to get the predicates related to obj (line 2), and
then invokes pattern_SPO to check the combinations
(subj,P[i], obj (line 3), for each retrieved predicate
P [i]. If the triple exists, P [i] is added to the result set.

(?PO) This TP retrieves all subjects characterized
by the pair (pred,obj). It distinguishes between nor-
mal predicates and rdf:type. The process for normal
predicates first checks if obj is related to pred (lines
3-4), and then retrieves the position in which these oc-
currences are encoded in iObjects (lines 5-6). For
each occurrence in Occs, we navigate the adjacency
list of pred in iPs to finally decode the corresponding
subject, which is mapped to its original ID (line 11).
If pred is rdf:type, we also check if obj is related
to such predicate. In this case, we retrieve the families

Algorithm 7: pattern_?PO(pred,obj)
1 res← ∅;
2 if pred < |P | then // pred is a regular predicate
3 posp ←adj(MapO’, obj, pred) ;
4 if posp 6= −1 then
5 pos← posp+select1(MapO’.B, obj − 1);
6 Occs← neigh(iObjects,pos);
7 for i← 1 to |Occs| do
8 idf ← 1+rank1(iPs[pred].Bf ,Occs[i]− 1);
9 family ← neigh(Families, pred)[idf ];

10 locals ← Occs[i]−
select1(iPs[pred].Bf , idf − 1);

11 res← res ∪ neigh(MapS, family)[locals];
12 end
13 end
14 end
15 else // pred is rdf:type
16 if access1(iTypes.Bt, obj) = 1 then
17 object← rank1(iTypes.Bt, obj) ;
18 F ← neigh(iTypes, object) ;
19 for i← 1 to |F| do
20 S ← neigh(MapS,F [i]) ;
21 for j ← 1 to |S| do
22 res← res ∪ S[j];
23 end
24 end
25 end
26 end
27 return res;

Algorithm 8: pattern_??O(obj)
1 res← ∅;
2 P ← neigh(MapO’, obj);
3 for i← 1 to |P| do
4 S ← pattern_?PO(P[i], obj);
5 for j ← 1 to |S| do
6 res← res ∪ (S[j],P[i]);
7 end
8 end

typed by obj from iTypes (line 18). For each family,
we obtain its corresponding subjects, which are added
to the final result set.

(??O) This TP retrieves all the (subject,predicate)
pairs described with the given obj value. The reso-
lution is illustrated in Algorithm 8. It uses MapO’ to
retrieve all predicates P[i] related to obj. Then the
pattern_?PO is invoked for each one, and the re-
turned subjects, and the corresponding P[i], are added
to the result set.

4. Evaluation

This section presents a comprehensive evaluation
that compares iHDT++ to its predecessors, HDT-FoQ
[15] and its Community variant. Our goal is to show
that iHDT++ can replace the existing HDT-based de-
ployments by a more lightweight approach, without
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losing the current HDT performance. We also compare
iHDT++ to k2-triples [1] and RDFCSA [4], to show
that it competes with the state-of-the-art RDF self-
indexes, keeping the standardized features of HDT.

4.1. Experimental Setup

The iHDT++ prototype4 is coded in C++ 11 and
uses the SDSL library5 to implement all compact data
structures. HDT-FoQ and HDT Community prototypes
are publicly available6 and the C-based k2-triples and
RDFCSA have been kindly provided by their authors.
All experiments in this study were run on an Intel
Xeon CPU E5-2470 0 @ 2.30GHz, 8 cores/16 siblings,
64GB RAM, Debian GNU/Linux 9.8 (stretch).

Datasets. Table 1 shows the main features of 4 real-
world datasets used in this evaluation: DBLP (scien-
tific publications), DBTUNE (music data), USCEN-
SUS (census data from U.S.) and LINKEDGEODATA

(geographic data from OpenStreetMap). The selected
datasets differ in size, topic and level of structure.

We only show figures for representative USCEN-
SUS and LINKEDGEODATA due to lack of space,
but all conclusions drawn from them apply to the
other datasets. On the one hand, USCENSUS pro-
vides highly-structured contents, as shown by its low
number of predicate families, 106, which is even less
than the number of different predicates, 429. Note that
USCENSUS does not use the rdf:type predicate.
On the other hand, LINKEDGEODATA is an unstruc-
tured dataset that uses a high number of predicates,
18, 272, including rdf:type. In this case, 1, 081 dif-
ferent classes are related to rdf:type, which are used
to type 440, 035 families. In addition, LINKEDGEO-
DATA has almost 2,000 non-typed families.

Experiments. Our experiments evaluate the space
complexity and query performance of all SPARQL
TPs over the aforementioned datasets. In all cases, we
have randomly chosen 1,000 different query patterns7

that return, at least, one result. The performance time
is averaged over five independent runs. In turn, we re-
port compression ratios for each dataset and technique:
we calculate these numbers as the amount of memory
used by each technique with respect to the original size
of the dataset (expressed in terms of triple-IDs).

4https://github.com/antonioillera/iHDTpp-src
5https://github.com/simongog/sdsl-lite
6https://github.com/rdfhdt/hdt-cpp
7(?P?) is limited by the number of predicates in the dataset.

Figures 7 and 8 show the corresponding space-time
tradeoffs for each dataset and TP. Each graph reports
query times, in µs/pattern, in Y-axis (logarithmic
scale) and compression ratios in X-axis. Note that mul-
tiple space-time tradeoffs are reported for iHDT++,
k2-triples, and RDFCSA, as follows. In our case, MapS
and MapO are configured with different sampling val-
ues tdens = 2i, 1 ≤ i ≤ 7, (better performance is re-
ported for low tdens values, at the cost of less com-
pressed representations). K2-triples has a plane con-
figuration that can be enhanced with two additional
indexes to speed up some TPs. Finally, RDFCSA is
tuned with ψ sampling values tψ = {16, 32, 64, 256}.

4.2. Analysis of the Results

This section analyzes the space-time tradeoffs in
Figures 7-8, comparing iHDT++ with the HDT-based
predecessors and the most efficient RDF self-indexes.

Compression. iHDT++ outperforms HDT-based so-
lutions. Its memory footprint is between≈ 50% and≈
60% of the original size of USCENSUS and 52%−70%
of LINKEDGEODATA, while HDT-FoQ uses 81% and
91%, respectively, and HDT Community more than
100% in both cases. These numbers endorse the RDF-
TR transformation [12], underlying to iHDT++, but
also the lower cost of its additional structures com-
pared to HDT-FoQ and HDT Community ones.

In turn, RDFCSA and iHDT++ report roughly the
same numbers for both datasets, but the comparison
with k2-triples demonstrates that more optimized self-
indexes are clearly superior in space. The plain config-
uration of k2-triples has a memory footprint of 20% of
the original space for both datasets, while enhancing it
with additional indexes just increases to 25% for US-
CENSUS and 30% for LINKEDGEODATA. It is an ex-
pected result as k2-triples is highly-optimized for com-
pression.

Query Performance. The first line of Figures 7 and
8 shows plots for TPs using predicate-based access
in iHDT++, i.e. (???), (SPO), (SP?), and (?P?).
iHDT++ is always faster than HDT-FoQ and HDT
Community. The difference is particularly significant
in (???) and (?P?), in which iHDT++ outperforms
its predecessors by an order of magnitude in USCEN-
SUS. The difference decreases in (???) for LINKED-
GEODATA, but for (?P?) iHDT++is almost two or-
ders of magnitude faster than HDT-FoQ. For (SPO)
and (SP?), iHDT++ is also faster, although the differ-
ence is less than 1µs per pattern in each case. The com-
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Table 1
Dataset features.

Dataset Triples Subjects Predicates Objects Types Families Typed families Triples Size (MB)
DBLP 55,586,971 3,591,091 27 25,154,979 14 283 283 636.14
DBTUNE 58,920,361 12,401,228 394 14,264,221 64 1,047 866 647.29
USCENSUS 149,182,415 23,904,658 429 23,996,813 0 106 0 1,707.19
LINKEDGEODATA 271,180,352 51,916,995 18,272 121,749,861 1,081 441,922 440,035 3,103.41
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Fig. 7. TPs Resolution: USCENSUS
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Fig. 8. TPs Resolution: LINKEDGEODATA

parison to self-indexes also shows that iHDT++ is the
fastest choice. RDFCSA performs in the same order of
magnitude than iHDT++, but it is always slower. Re-
garding k2-triples, it only competes in (SPO), being
one order of magnitude slower for the remaining TPs.

The left-most plots in the second line show the
tradeoffs for (S??), the only TP that is resolved by
subject. HDT-FoQ and HDT Community report the
best time as both leverage their subject-based organi-
zations, but the difference with iHDT++ is not signif-
icant. It needs ≈ 2 − 3 more µs per pattern, reporting

similar numbers than RDFCSA.K2-triples performs 2
orders of magnitude slower than the rest.

Finally, we analyze the TPs in which iHDT++ ac-
cesses by object: (S?O), (?PO) and (??O). These
are the less-favoured queries in iHDT++, but their
performance remain competitive. HDT variants are
slightly faster in USCENSUS, but the difference de-
creases in LINKEDGEODATA, where iHDT++ is the
fastest choice in (S?O). On the other hand, iHDT++
outperforms RDFCSA with roughly the same memory
footprint, while k2-triples only competes in (S?O), be-
ing 2 orders of magnitude slower for other TPs.
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5. Conclusion

Scalable HDT-based technologies have emerged
as the de-facto standard to manage large RDF com-
pressed data in the Web of Data. These systems ex-
ploit the compact data structures of HDT to resolve
SPARQL TPs with an affordable memory footprint.
Despite their success, all these systems are limited
by the simplicity of the HDT encoding, which causes
space overheads and lack of scalability for some
predicate-based TPs. In this paper, we enhance the
existing HDT++ compressor (a variant that leverages
structural redundancies) with additional compact in-
dexes to support full SPARQL TP resolution. Our ex-
periments show that iHDT++ halves the memory foot-
print of HDT Community, the most extended variant
of HDT, while it improves the resolution of the less ef-
ficient predicate-based TP by one order of magnitude.
In addition, iHDT++ speeds up the majority of TPs.
Our experiments also report better space/time trade-
offs than the most competitive RDF self-indexes in the
state of the art, k2-triples and RDFCSA.

These results show that iHDT++ can replace cur-
rent HDT-backends, improving the performance of the
tools relying on HDT-based technology for publication
and consumption. Our current efforts focus on provid-
ing the integration toolset for this purpose.
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Chapter 6

Conclusions and Future Work

6.1. Conclusions

The Web has changed in recent years: going from being an entity for
human consumption at its dawn, to beginning to be a huge container of semi-
structured data described in the same language (i.e., RDF), freely accessible
(i.e., Open Data) and connected to each other (i.e., Linked Open Data) to be
(re)used, exchanged, searched (i.e., SPARQL) and consumed by machines.

RDF compressors have become, in a short time, an important line of re-
search in the field of the Web of Data thanks to their ability to reduce the size
of large data collections and their performance for the resolution of SPARQL
Triple Patterns. However, the redundancies that the schema-relaxed nature
of RDF causes have not been taken into account, or have not been particularly
relevant. In this thesis, we have demonstrated the hypothesis formulated in
Section 1.2, addressing two types of structural-based redundancies: predicate
families are massively repeated for general and typed subjects, and objects
are often related to just one predicate. To prove the hypothesis, we reorga-
nize the RDF graph configuration to reduce these redundancies underlying
the RDF datasets, thus improving the compressibility of its graph structure
encoding.

Our proposal, RDF-Tr, reorganizes the triples to leverage these fea-
tures and generalizes the reorganization process in such a way that it can be
plugged into different symbolic compressors (those that use integer IDs to
encode RDF terms), such as HDT and k2-triples, two of the main and most
commonly used RDF compressors of the state of the art. Experiments show
that it is possible to save up to 50% of the dataset size when RDF-Tr is ap-
plied to HDT (thus leading to a novel proposal named HDT++), and 56% in
the case of k2-triples (i.e., k2-triples++), the most effective RDF compressor.
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Regarding decompression, the original compressor times are similar to their
counterparts. Additionally, the final configuration can be tuned to explore
different space/time tradeoffs.

The RDF-Tr organization can be exploited to additionally provide fast
SPARQL Triple Pattern retrieval on compressed space. In this thesis we
have enhanced HDT++ with additional compact indexes (i.e., iHDT++) to
support full SPARQL Triple Pattern resolution. It is experimentally shown
that iHDT++ halves the memory footprint of HDT-FoQ, while also improv-
ing the resolution of the less efficient predicate-based Triple Patterns by one
order of magnitude. In addition, iHDT++ speeds up the majority of Triple
Patterns. Our experiments also report better space/time tradeoffs than the
most competitive RDF self-indexes in the state of the art, k2-triples and RD-
FCSA. These results show that iHDT++ can replace current HDT-backends,
improving the performance of the tools relying on HDT-based technology for
publication and consumption. On the other hand, we have experimentally
verified that the effectiveness of our technique (i.e., compression ratio) is pe-
nalized when facing highly unstructured datasets, maintaining its efficiency
in data access. This may open the door to new lines of research to mitigate
the consequences of the lack of structure in some data collections.

6.2. Future Work

As we have demonstrated in this thesis, processes carried out in the RDF
graph, such as the reorganization of triples and the recoding of identifiers are
highly effective, improving the compression of some RDF graph techniques.
These redundancies, tackled by RDF-Tr, were detected heuristically and
new patterns could be discovered to get a better compression (e.g., looking
at the structure of adjacent nodes in the RDF graph [31]). In this context,
queries can take advantage of family organization and optimize more com-
plex queries, for example, joins per subject. In addition, self-indexes built on
the top of HDT++ (i.e., iHDT++) could be adapted for use in k2-triples++
and thus, providing SPARQL Triple Pattern resolution (i.e., ik2-triples++).
Although the cost of applying RDF-Tr is acceptable nowadays, the con-
struction of the necessary structures and self-indexes could be parallelized in
order to optimize the construction of RDF-Tr, iHDT++ and ik2-triples++.
Different (compact) data structures can be explored to build the indexes, so
the size and/or speed of information retrieval can be optimized. Further-
more, family grouping could help to decrease the versioning update time on
datasets, dealing only with families involved in data changes. Besides, RDF
compressors can be adapted to make use of explicitly declared constraints or
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regularities in data (e.g., expressed with SHACL [30] or ShEx [4]).
One of the main characteristics of Big Semantic Data is the speed of

growth of the number of RDF datasets and the interconnections between
them (as seen in Figure 1.1). Although some large semantic data collections
remain static (in particular those following a one-off conversion from other
sources), some large datasets (e.g., WikiData) are frequently updated or even
generated in real time (e.g., in the area of RDF streaming). In general, the
RDF compression process has a non-negligible creation/recreation cost that
may hamper dynamic updates. Given this fact, a challenge to be faced is
the inspection of time/space tradeoffs to boost fast and efficient compression,
and the adaptation of RDF data stores to host compressed and uncompressed
data that would allow for both types of data and therefore the update of
datasets in real time [36].
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Appendix A

Using RDF-Tr and iHDT++

This appendix presents the iHDT++ library, which contains the practical
implementation of the theoretical work of the research developed over the last
few years and now compiled in this thesis. The library is free software under
the terms of the GNU Lesser General Public License, and it is available at
GitHub1. This has a special relevance for the scientific community, since it
allows the results of the experiments contained in the papers that are part
of the thesis to be reproduced.

This project makes use of two already existing libraries: HDT and SDSL.
On the one hand, HDT is the first and most used binary representation of
RDF, so it was taken as a starting point to apply our reorganization and
self-indexing processes, preserving and reusing the dictionary that HDT im-
plements. HDT serializes the triple IDs succinctly using the Compressed
Data Structure Library (libcds)2, whose development has been discontinued
despite its effectiveness in compression. That is the main reason why we
use the Succinct Data Structure Library (SDSL)3, which must be installed
to use the compact data structures (and their operations) provided and used
by iHDT++. The source code is written in C++ and is available online
in a public repository, along with the latest available HDT version. The
main folders of the project are: libsdsl, which contains the installation of
the SDSL library; hdtpp contains the core of our work, which includes the
data structures and methods necessary to reorganize triples and access infor-
mation in compressed space; finally the tools folder provides simple utilities
to perform these operations. Below there is a representation of the project
folder tree where the mentioned directories are located.

1https://github.com/antonioillera/iHDTpp-src
2https://github.com/fclaude/libcds2
3https://github.com/simongog/sdsl-lite
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iHDTpp-src

libsdsl

libhdt

src

hdtpp

tools

By means of an example, we can see the necessary steps to create a
representation in HDT++ from a data collection (e.g., dblp) serialized in
HDT to later access its data. Given an HDT dataset, hdt2hdtpp applies
RDF-Tr and recompresses the HDT file into HDT++ (see Code 1).

$ iHDTpp−src/libhdt/tools/hdt2hdtpp dblp.hdt dblp.hdtpp
Bash Code 1: Applying RDF-Tr on an HDT file.

iHDT++ indexes allow data in a compressed HDT++ file to be accessed.
The hdtppSearch utility implements a simple interface to access the dataset
by SPARQL Triple Patterns. A simple use of this tool is shown in Code 2,
where we ask for all triples. Indexes are created/loaded in execution time.

$ iHDTpp−src/libhdt/tools/hdtppSearch dblp.hdtpp "? ? ?"
Bash Code 2: Applying RDF-Tr on an HDT file.

On the other hand, hdtpp2rdf decompresses the HDT++ file, obtaining
the RDF version of the dataset (see Code 3).

$ iHDTpp−src/libhdt/tools/hdtpp2rdf dblp.hdtpp dblp.rdf
Bash Code 3: Decompressing an HDT++ file.
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