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Abstract 
In this work, a dynamic optimizer (DO) is enhanced with elements taken from the Modifier 
Adaptation (MA) methodology for Real-Time Optimization (RTO). The objective is to use the 
capability of MA methodologies to reach the real optimum of a process despite the existence of 
process-model mismatch. The modifiers are computed during a process transient, without 
waiting for several steady states to occur, speeding up the time required to reach the plant 
optimum. The architecture proposed includes a modified dynamic optimization, a module for 
estimating the model states and an additional module for direct estimation of the modifiers 
during transient. The proposed approach was applied in a well-known benchmark example: the 
Williams-Otto reactor, where the model and process have significant parametric and structural 
mismatch. The results show that the proposed integration is capable of bringing the process 
closer to the real optimal economic operation point. 

Keywords: Real-time optimization; Modifier Adaptation; Uncertainty; Dynamic optimization; 
Process optimization; Transient measurements 

1 INTRODUCTION 
Generally speaking, the objective of process optimization is to take the right operation decisions 
that minimize production costs and maximize profits, fulfilling safety, environmental and quality 
constraints. Normally, decision-making inside the industrial sector is organized as in Figure 1. 
The top of the pyramid consists in the Enterprise Resource Planning (ERP) and it is responsible 
for production planning over a long time (months). The next level corresponds to the 
Manufacturing Execution Systems (MES) responsible for the operation planning and scheduling, 
which deal with assignments of products and tasks to corresponding equipment and timing over 
a period of days or hours. Inside the MES level, the Real Time Optimization (RTO) layer is located. 
RTO is a set of algorithms and techniques that automatically calculate, using real-time data, the 
optimum operating point of a process, considering economic criteria. Commonly, RTO uses a 
nonlinear stationary model with online process data to calculate the optimum value of key 
controller set points in steady state. These set points values are sent to a Model Predictive 
Control (MPC) layer. The final level corresponds to basic control, actuators, and sensors in the 
field. 
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Figure 1: Decision layers for control and operation in industry (Galan et al., 2019). 

In this work, special attention is given to the RTO and MPC layers. Ideally, RTO should provide 
the best operating point to solve the problem (1). 

 
min

𝒖
𝜙௣൫𝒖, 𝒚௣൯ 

𝑠. 𝑡  𝒈௣൫𝒖, 𝒚௣൯ ≤ 0   

𝒇𝒑൫𝒖, 𝒚௣൯ = 0 

𝒖𝑳 ≤ 𝒖 ≤ 𝒖𝑼 
 

 (1) 
 

Where 𝜙௣ is the process cost function to be minimized, 𝒖 are the decision variables between 
the lower and upper limits [𝒖௅ , 𝒖௎], 𝒚௣ are measured output variables, 𝒈௉ a set of inequality 
constraints and 𝒇௉  the “real” process model. In this paper, the subscript 𝑝, will indicate that the 
variable or function correspond to the correct one of the process.  

As the steady-state input-output function 𝒚௣(𝒖)  of the real process is generally unknown, an 
approximate steady-state nonlinear model is used to predict the output 𝒚(𝒖) and, using this 
relation to replace 𝒚, the RTO problem is formulated as follows:  

min
𝒖

𝜙(𝒖) 

𝑠. 𝑡  𝒈(𝒖) ≤ 𝟎   
𝒖𝑳 ≤ 𝒖 ≤ 𝒖𝑼 

(2) 

The solution of problem (2) generally differs from the real process (1) due to parametric or 
structural plant-model mismatch, and disturbances. One intuitive strategy to remedy this 
problem is to use process data to update the parameters of the nonlinear steady-state model, 
using data reconciliation or estimation algorithms. This method is called a two-step approach 
and it is probably the only commercial RTO system used in the industry nowadays (Câmara et 
al., 2016). 

However, the two-step approach does not solve the problem of finding the process optimum 
when there is structural process-model mismatch (Yip and Marlin, 2004). To improve this 
solution, further developments incorporated process gradient information in the calculation, in 
order to match the necessary conditions of optimality (NCO) of the plant and model. The 
Integrated System Optimization and Parameter Estimation (ISOPE) (Brdyś and Tatjewski, 1994) 
method uses a gradient term in the optimization problem to converge to a point that satisfies 
the NCO. Afterwards, it was observed that the parameter estimation step of ISOPE was 
unnecessary to satisfy the NCO conditions of the plant and modifications in the constraints must 



also be considered. Later on, Gao and Engell (Gao and Engell, 2005) defined new modifiers for 
the constraints and finally, Marchetti (Marchetti et al., 2009) formalized the Modifier Adaptation 
methodology (MA). In the basic MA (Marchetti et al., 2009), at the current steady state 𝑘 ,  
additional terms involving past inputs 𝒖௞ିଵ

∗  and modifiers 𝝀, 𝜸, 𝜺  are added to the original 
optimization problem in (2), formulating the modified problem as problem (3).  

min
𝒖

𝜙ெ: = 𝜙(𝒖)+𝝀௞
்(𝒖 − 𝒖௞ିଵ

∗ ) 

𝑠. 𝑡   𝒈ெ(𝒖): = 𝒈(𝒖) + 𝜸௞,௜
் (𝒖 − 𝒖௞ିଵ

∗ ) + 𝜺௞ ≤ 0  

𝒖𝑳 ≤ 𝒖 ≤ 𝒖𝑼 

(3) 

The variables 𝜙ெ and 𝒈ெ are the modified cost function and constraints respectively, 𝒖௞ିଵ
∗  are 

the optimum values of the manipulated variables calculated and applied to the process in the 
previous steady state. The modifiers are given by equation (4). 

𝝀௞
் =

𝜕𝜙௣

𝜕𝒖
ฬ

𝒖ೖషభ
∗

−
𝜕𝜙

𝜕𝒖
ฬ

𝒖ೖషభ
∗

 

 

𝜸௞
் =

𝜕𝒈௣

𝜕𝒖
ฬ

𝒖ೖషభ
∗

−
𝜕𝒈

𝜕𝒖
ฬ

𝒖ೖషభ
∗

 

 
𝜺௞ = 𝒈௣(𝒖௞ିଵ

∗ ) − 𝒈(𝒖௞ିଵ
∗ ) 

(4.a) 
 

(4.b) 
 
 
 

(4.c) 

Problem (3) is solved iteratively calculating the values 𝒖௞
∗ , applying to the process the decision 

variables suggested in problem (3), waiting until the next steady state, measuring the process 
outputs, and updating modifiers. 

To find 𝒖௞
∗ , the model used in the RTO layer must be adequate, that is, it must follow the 

adequacy criterion addressed by (Forbes and Marlin, 1996) that says that the model must have 
a local minimum in the same point of plant optimum, 𝒖௉

∗. Upon convergence, MA methodology 
already ensures the match between the model’s first order Karush-Kuhn-Tucker (KKT) conditions 
and the process conditions. For the second order conditions to also be met, the reduced Hessian 
of the Lagrangian of the problem (3) must be positive definite in 𝒖௉

∗ (Marchetti et al., 2016). 

As can be seen in equation (4.a) and (4.b), MA methodology needs the values of the gradients 
of the real plant and model to calculate the modifiers. There are different methods of accurately 
estimating model gradients; however, the plant gradients are more difficult to estimate. 
Variants of the MA methodology differ mainly in the methods for estimating the plant gradients. 
Others alternatives appeared as in the Nested Modifier Adaptation (NMA) approach (Navia et 
al., 2015) where modifiers are directly updated using an additional derivative-free optimization 
algorithm, such as the Nelder-Mead algorithm. In NMA the gradient estimation step is replaced 
by an optimization layer that aims to optimize a performance function measured from the real 
process, using the modifiers as decision variables. Notice that all the previous methods still need 
process information in steady state, which could be a problem when the process have a large 
settling time. 

Even though MA is a powerful methodology that could guarantee the real optimum of the 
process despite the use of incorrect models, the industrial application of MA is almost 
nonexistent (Marchetti et al., 2016). One reason can be associate to the mismatch between the 
RTO+MA and MPC layers when the setpoint calculated at the upper layer is unreachable by the 
controller layer, leading to a poor economic performance. Some recent contributions have 
presented solutions for that. Vaccari and Pannocchia (Vaccari and Pannocchia, 2016) used the 
so-called economic MPC (eMPC) where the optimization problem has an economic target. Their 



contribution includes the modifiers from the MA methodology to achieve the NCO of the process 
despite plant-model mismatch. So, the RTO layer inside MES in the decision-making hierarchy 
(Figure 1) is formulated within the MPC with additional modifier terms as in MA, and the results 
are used as targets in the control layer. The implementation has two layers: the target 
optimization layer and the regulator optimization layer. The eMPC is applied in an example of a 
continuous stirred tank reactor that uses a state space model in the controller with a parameter 
mismatch. But the gradient of the process in steady state for MA modifiers calculation is 
considered known. Afterwards, (Pannocchia, 2018; Vaccari and Pannocchia, 2018) expanded the 
previous work estimating the process gradients using online data and identification algorithms. 
Identification algorithms require a sufficient excitation for a correctly estimation of process 
gradients. So, during a period of time (identification horizon) a random signal is added to the 
input to excite the system, increasing the convergence time of the algorithm. 

Hernández and Engell (2019) also have contributed with a new integration of RTO+MA with an 
eMPC with two layers. The formulation corrects the nominal dynamic plant model instead of the 
objective function and predict plant gradients from transient data. The gradient estimation uses 
a linear dynamic model and identification algorithms to approximate the measurements of the 
true plant.  

Faulwasser and Pannocchia (Faulwasser and Pannocchia, 2019) have used the output modifier 
adaptation and the offset-free economic MPC with an augmented state estimator of previous 
works and present a formulation of the optimal control problem without the terminal state 
constraint. The authors confirm that the correct estimation of these gradients is very important 
to an eMPC+MA framework. In this work, they assume the plant gradients are available. 

Recently, Vaccari and coworkers have presented a two-layer eMPC+MA framework using a 
technique for direct estimation of the modifiers using steady-state perturbations and a Broyden 
update algorithm (Vaccari et al., 2020). In the same work the authors use transient data to 
significantly reduce the convergence time, but the estimation is inaccurate.  

In Table 1 an overview of the eMPC+MA contributions mentioned before is presented. The table 
shows how the plant gradient was calculated in each study, the ratio between the convergence 
time using correct gradients and estimated ones, and the number of layers inside the controller. 
The contributions using a process gradient estimation spend approximately 5-8 times more to 
converge in comparison to the results considering gradients known. These results show that the 
correct estimation of plant gradients still is a problem as the traditional/static MA requires a 
large number of time-consuming iterations to estimate correctly the steady-state process 
gradients of the cost function and constraints (Câmara et al., 2016). This may be a serious 
drawback from an application point of view as, not only real industrial processes are constantly 
under disturbances that makes difficult reaching steady state but also because many processes 
naturally have a large transient period covering several hours. This may make the correct plant 
gradient estimation impractical as, when a solution is computed, the process operation 
conditions may have changed.  

Some authors have presented alternatives to improve the performance of MA in real processes, 
estimating the process gradients using transient data. François & Bonvin (François and Bonvin, 
2014) presented an estimation of the gradients using Neighboring Extremals (NE). Rodriguez-
Blanco et al. (Rodríguez-Blanco et al., 2017) also developed a method that uses a truncated 
Taylor expansion of the process cost combined with identification algorithms to estimate 
process gradients using transient data. 



Table 1: Overview of eMPC+MA studies. 

Problems Reference Process Gradient 
estimation 

Ratio 
between 

convergence 
time with 
estimated 
gradients 

and perfect 
gradients (1) 

Number of 
layers inside 

the controller 

Isothermal 
Continuous- Stirred 
Tank Reactor (CSTR) 

A→ B → C 

(Vaccari and 
Pannocchia, 

2016) 
Assuming known - 2 

Isothermal 
Continuous- Stirred 
Tank Reactor (CSTR) 

A→ B → C 

(Pannocchia, 
2018) 

 Assuming 
known 

 Linear system 
identification 

8 2 

Isothermal 
Continuous- Stirred 
Tank Reactor (CSTR) 

A→ B → C 

(Vaccari and 
Pannocchia, 

2018) 

 Assuming 
known 

 System 
identification 
algorithm 
(N4SID 
method) 

5 2 

Isothermal 
Continuous- Stirred 
Tank Reactor (CSTR) 

A→ B → C 

Hernández 
and Engell 

(2019) 

Linear system 
identification - 2 

Isothermal 
Continuous- Stirred 
Tank Reactor (CSTR) 

A→ B → C 
and 

Williams Otto 
Reactor 

(Faulwasser 
and 

Pannocchia, 
2019) 

Assuming known - 1 

Williams Otto 
Reactor 

(Vaccari et 
al., 2020) 

 Assuming 
known 

 Modifiers 
directly 
estimated 
using 
Broyden’s 
approximation 

6 2 

(1) The ratio was approximately calculated from the results presented by the authors in the 
studies. The reference is only indicative as the examples are different and depend on 
the algorithm parameters and the problem. The ratio calculated only aims to evaluate 
the orders of magnitude of the algorithms currently available in the literature. 



The present work also integrates RTO, MPC and MA with a single control and optimization layer, 
presenting a new approach for directly estimating the MA modifiers with transient 
measurements such that they will coincide with the real ones when the steady state is reached. 
With this paper we wish to contribute to the advance of this field, which has important practical 
applications. The new modifier estimation technique instead of trying to estimate the process 
gradients, directly estimates the modifiers and it is called Dynamic Modifier Estimation (DME). 
DME considers the MA modifiers as terms that try to approximate the modified model to the 
real process using past process transient data. The goal behind the development is to find a 
formulation able to speed up the convergence to the plant optimum in order to apply this new 
strategy in slow dynamics processes that requires hours/days to achieve steady state, which 
makes the application of any traditional MA impractical. The proposed approach is tested in a 
well-known process, the Williams-Otto reactor with a process model that has significant 
parametric and structural mismatch.  

The paper is organized as follows: after the introduction, Section 2 explains the architecture of 
the system focusing on the dynamic optimization with MA and the state estimation using 
Moving Horizon Estimator (MHE). Then, Section 3 describes how DME directly estimates the 
modifiers on-line, using transient measurements. Section 4 presents the proposed algorithm. 
Section 5 shows an application of the methodology in the Williams Otto Reactor problem. Finally, 
Section 6 presents the conclusions and future work. 

 

2 Unification of RTO, MPC and MA architecture 

The architecture of the proposed integrated framework is depicted in Figure 2 and it is 
composed of three modules: a module integrating RTO, MPC and MA that performs the core 
task, called Dynamic Optimizer with MA (DOMA), a Moving Horizon Estimator (MHE) for 
estimating states and disturbances, and a third one, denoted as Dynamic Modifier Estimation 
(DME), for computing values of the modifiers used in DOMA. This scheme is executed at regular 
time intervals denoted by the subindex 𝑘. 

 

Figure 2: Architecture of DOMA with DME. 

At each iteration 𝑘, that coincides with the sampling time of all modules, values of manipulated 
variables applied to the process in the past interval 𝒖௞ିଵ and current process measurements 𝒚௞ 
are collected and sent to the MHE module to estimate the current model states 𝒙ෝ௞  and 
disturbances 𝒗௞. The solution given by the MHE module (𝒙ෝ௞ and 𝒗௞

∗ ), is used by the DME module 



with current values of the process economic cost function 𝜙௣,௞ and constraints 𝒈௣,௞, to estimate 
on-line the values of the cost and constraints MA modifiers ௞, 𝛄௞ and ௞, after filtering. In this 
work, the MA modifiers are not calculated using the gradients as in (4), but they are directly 
computed using the new algorithm proposed in this paper, the DME module. After that, the 
modifiers are used in the DOMA to compute new control actions over a certain horizon. Then, 
the first control action of the horizon, corresponding to current time 𝒖௞, is applied to the process 
at instant 𝑘. Finally, in the next sample time, the whole procedure is repeated, following a 
moving horizon policy, as in MPC. All the three modules presented are described in the following 
sections. 

2.1 Dynamic Optimizer with MA (DOMA) 
This module incorporates an economic target and the MA methodology in a dynamic 
optimization problem, searching for the control moves 𝒖௞ା௜ , 𝑖 = 0,1,2, … , 𝑛௨ − 1 ,  that 
minimize the cost function (5) subjected to constraints (6). Note that the problem is formulated 
in the continuous domain of time (𝑡). 

The process is represented by a continuous dynamic model (6.a), (6.b) assumed continuously 
differentiable. In problem (5), (6), 𝒙 𝜖 ℝ௡ೣ  represent the states, 𝒖 𝜖 ℝ௡ೠ  the control actions, 
𝒚 𝜖 ℝ௡೤  the measured outputs, and 𝒗௞  𝜖 ℝ௡ೡ the disturbances estimated by the MHE module. 
As the model is formulated in continuous time, 𝒙, 𝒖 and 𝒚 are functions of 𝑡, but for simplicity 
this dependence has been omitted throughout the document unless necessary (e.g. 6.f). Using 
a control vector parametrization, the control actions are only allowed to change at regular time 
intervals ∆𝑡 = 𝑡௞ − 𝑡௞ିଵ. Denoting 𝑘 the current sampling time, the control actions 𝒖௞  𝜖 ℝ௡ೠ, 
computed and applied at time 𝑡௞, are kept constant within each time interval [𝑡௞, 𝑡௞ାଵ], as in 
(6.f). The current and future control moves, denoted as 𝒖௞ା௜, 𝑖 = 0,1,2, … , 𝑛௨ − 1 defined in 
(6.e), are the decision variables of problem (5), (6). The selection of the control horizon 𝑛௨ and 
other tuning parameters follows the usual rules of MPC (Shah and Engell, 2011).  

The model allows to compute predictions of the cost function and constraints over a future 
horizon from 𝑡௞ to the final prediction horizon  𝑡௣௥௘ௗ, long enough so that the model can reach 
steady state. 𝑛௣௥௘ௗ refers to the number of time instants to reach 𝑡௣௥௘ௗ from 𝑡௞. 

The control moves are computed every sampling time from current time 𝑡௞  until a control 
horizon 𝑡௞ା௡ೠ

 after which 𝒖௞ା௜ = 0, but only the first control move 𝒖௞  is applied to the 
process.  

min
𝒖ೖశ೔

೔సబ,భ,…೙ೠషభ

𝜙൫𝑡௣௥௘ௗ൯ +௞
𝑻(𝒖ഥ − 𝒖௞ିଵ) + ෍ 𝒖௞ା௜

்

௡ೠିଵ

௜ୀ଴

𝑸௨𝒖௞ା௜  

 

(5) 

𝑠. 𝑡.     𝒇(𝒙̇, 𝒙, 𝒖, 𝒗௞) = 𝟎,  ∀𝑡 ∈ ൣ𝑡௞ , 𝑡௣௥௘ௗ൧ 
𝒉(𝒙, 𝒖, 𝒚, 𝒗௞) = 𝟎, ∀𝑡 ∈ ൣ𝑡௞ , 𝑡௣௥௘ௗ൧ 

(6.a) 
(6.b) 

𝒈(𝒖) + 𝛄௞
்(𝒖ഥ − 𝒖௞ିଵ) + ௞ ≤ 𝟎,  ∀𝑡 ∈ ൣ𝑡௞, 𝑡௣௥௘ௗ൧ (6.c) 

              𝒖𝑳 ≤ 𝒖𝒌ା𝒊 ≤ 𝒖𝑼, 𝑖 = 0,1, … 𝑛௣௥௘ௗ − 1 (6.d) 
𝒖𝒌ା𝒊 = 𝒖𝒌ା𝒊ି𝟏 + ∆𝒖𝒌ା𝒊, 𝑖 = 0,1, … 𝑛௣௥௘ௗ − 1 (6.e) 

𝒖(𝑡) = 𝒖𝒌ା𝒊 , 𝑡 ∈ [𝑡௞ା௜, 𝑡௞ା௜ାଵ], 𝑖 = 0,1, … 𝑛௣௥௘ௗ − 1 (6.f) 
∆𝒖𝒌ା𝒊 = 0 ,   𝑖 = 𝑛௨, … 𝑛௣௥௘ௗ − 1 (6.g) 

𝒙(𝑡௞) = 𝒙ෝ௞ (6.h) 



The cost function (5) of the problem is composed of three terms: 

1. As one wishes to reach and maintain the process operating steadily at the real process 
optimum, the first term, 𝜙൫𝑡௣௥௘ௗ൯, corresponds to an economic target computed with 
the value of model variables and control actions at the end of the prediction horizon 
𝑡௣௥௘ௗ, where the variables are supposed to reach steady state. Examples of economic 
targets can be maximizing benefits or production or minimizing costs or energy. We 
assume that the value of 𝜙௣,௞  at any time instant 𝑘  can be computed from process 
measurements and control actions. 𝜙൫𝑡௣௥௘ௗ൯ depends on the expected dynamic of the 
system, control moves and disturbances. 

2. The second one,  𝝀௞
்(𝒖ഥ − 𝒖௞ିଵ), is a MA type additional term responsible of modifying 

the economic cost function 𝜙 to match the NCO of the real plant in steady state. Here 
 𝒖ഥ = 𝒖௞ିଵ + ∑ 𝒖௞ା௜

௡ೠିଵ
௜ୀ଴  is the final value of the control actions. Note that this term is 

equivalent to the one added to the cost function in the traditional MA formulation (3). 
The modifier ௞ is computed every sampling time 𝑘 by the external module DME and 
kept constant in problem (5), (6) as 𝛄௞ and ௞.  

3. Finally, the third term, ∑ 𝒖௞ା௜
்௡ೠିଵ

௜ୀ଴ 𝑸௨𝒖௞ା௜  penalizes changes in the manipulated 
variables increasing stability and contributes to model adequacy and convexification 
(François and Bonvin, 2013). 𝑸௨ is a positive definite matrix, with weighting factors on 
the control moves 𝒖  that can be considered tuning factors for normalization and 
stabilization as in current practice of MPC.  

Finally, the problem is subjected to model (6.a), (6.b) and to inequality constraints (6.c), (6.d). In 
(6.c), 𝒈(𝒖) are computed using (6.a) and (6.b), the constraint modifiers 𝜸௞ and ௞ are calculated 
in the DME module and they are kept constant at every iteration 𝑘. 

To solve problem (5), (6), at every sampling time 𝑘 the initial value of the model states 𝒙(𝑡௞) 
and the disturbances are initialized at the values  𝒙ෝ௞  and 𝒗௞  respectively, which have been 
estimated by the MHE module. 

The DOMA presented in (5), (6) has been made considering the formulation (3) of MA, but other 
alternative and equivalent formulations are possible if the MAy (Papasavvas et al., 2019) 
approach is selected. In this case, the modifiers are used in the predicted output directly, instead 
of adding an extra term to the cost function. In the same way, the dynamic optimization problem 
could had been formulated as a two-step one, as in (Vaccari et al., 2020), where a static 
optimization to compute optimal steady-state targets is performed first and then, the results 
are used as terminal constraints in a horizon optimal control problem (FHOCP). Nevertheless, in 
(Vaccari et al., 2020) formulation, it may happen that the target values computed by target 
optimization problem are not reachable by the FHOCP, because path constraints are not 
considered when computing the optimal targets. This problem can be mitigated using the 
proposed formulation (5), (6), where the search only takes place within the feasible region.   

 

2.2 MHE estimation 
To provide offset free behavior to DOMA problem (5), (6), as well as computing the initial values 
of states and disturbances, an augmented state estimator can be employed. Extended Kalman 
filter (EKF) or Moving Horizon Estimation (MHE) are two well-known methods for this task, and 
any of them could be used in our scheme. Nevertheless, MHE was chosen because it fits better 
in the optimization framework, allows estimations of specific disturbances affecting the non-



linear model and, if necessary, includes constraints in the formulation (Huang et al., 2010; 
Rawlings et al., 2019; Vaccari and Pannocchia, 2018). The MHE uses past information of 
measurements and control actions to estimate values of the states and disturbances 𝒗, solving 
the dynamic optimization problem (7), (8).  

min
𝒙ೖష೙ 𝒗ೖష೔
௜ୀଵ,…,௡೐

 ෍ 𝒚௞ି௜
்

௡೐ିଵ

௜ୀ଴

𝑸௬𝒚௞ି௜ + 𝒙௞ି௡೐

் 𝑸௫𝒙௞ି௡೐
+ ෍ 𝒗௞ି௜

்

௡೐

௜ୀଵ

𝑸௩𝒗௞ି௜ 

 

(7) 

𝑠. 𝑡.         𝒇(𝒙̇, 𝒙, 𝒖, 𝒗) = 𝟎, ∀𝑡 ∈ ൣ𝑡௞ି௡೐
, 𝑡௞൧ , 𝒙൫𝑡௞ି௡೐

൯ = 𝒙௞ି௡೐
 (8.a) 

𝒉(𝒙, 𝒖, 𝒚, 𝒗) = 𝟎,  ∀𝑡 ∈ ൣ𝑡௞ି௡೐
, 𝑡௞൧ (8.b) 

    𝒈(𝒖, 𝒚) ≤ 𝟎,  ∀𝑡 ∈ ൣ𝑡௞ି௡೐
, 𝑡௞൧ (8.c) 

𝒖(𝒕) = 𝒖𝒌ି𝒊, 𝒗(𝒕) = 𝒗௞ି௜, 𝑡 ∈ [𝑡௞ି௜, 𝑡௞ି௜ାଵ], 𝑖 = 1, … , 𝑛௘ (8.d) 
𝒗𝑳 ≤ 𝒗௞ି௜ ≤ 𝒗𝑼, 𝑖 = 1 … 𝑛௘ (8.e) 

Δ𝒚௞ି௜ = 𝒚௞ି௜ − 𝒚௉,௞ି௜, 𝑖 = 0, … , 𝑛௘ − 1 (8.f) 
Δ𝒙௞ି௡೐

= 𝒙௞ି௡೐
− 𝒙ෝ௞ି௡೐

 (8.g) 
 

Problem (7), (8), has also been formulated in continuous time, and it is executed at every 
sampling time 𝑘, using the same non-linear model (8.a), (8.b) of the DOMA problem, considering 
a past horizon 𝑡 ∈ ൣ𝑡௞ି௡೐

, 𝑡௞൧. In this past horizon, the control variables 𝒖௞ି௜  applied to the 
process in [𝑡௞ି௜, 𝑡௞ି௜ାଵ], and the process measurements collected in 𝑡௞ି௜ , i.e., 𝒚௉,௞ି௜ , are 
known. The MHE problem is illustrated with reference to Figure 3. 

 

Figure 3: Past values for the MHE estimation. 

Note that the decision variables of the MHE problem are the values of the states at time 𝑡௞ି௡೐
 

(𝒙௞ି௡೐
) represented with a red “x” in Figure 3, and the past disturbances 𝒗௞ି௜, 𝑖 = 1, … , 𝑛௘ , 

denoted with yellow lines in Figure 3. The MHE assumes that, if 𝒖௞ି௜ were applied to the process 
and 𝒗௞ି௜ were applied to the model (8.a) and (8.b) starting from 𝒙௞ି௡೐

, then, the corresponding 
model output at sampling times 𝑘 − 𝑖,  𝑖 = 0, … , 𝑛௘ − 1, i.e.,  𝒚௞ି௜, must be as close as possible 
to 𝒚௉,௞ି௜ . This aim corresponds to the second term in the cost function (7), which also 
incorporates two additional terms: the last one minimizes the magnitude of the estimated 
disturbances 𝒗௞ି௜, while the first one is a prior weighting penalizing the distance of the decision 



variable 𝒙௞ି௡೐
, with respect to the one that was previously estimated at sampling time 𝑘 − 𝑛௘   

( 𝒙ෝ௞ି௡೐
), as in (8.g). 𝑸𝒙  , 𝑸𝒗  and 𝑸𝒚  are positive definite matrices, with weighting and 

normalization factors. The problem also includes inequality constraints to bound the 
disturbances in the allowed range (8.e), as well as others (8.c) to avoid non-desirable values of 
the variables. 

The solution of problem (7), (8) gives 𝒙௞ି௡೐

∗  and 𝒗௞ି௜
∗ , 𝑖 = 1 … 𝑛௘. This implies that once problem 

(7), (8) has been solved, its solution can be used to estimate the initial value of the model state 
at time 𝑡௞ , i.e., 𝒙ෝ௞ , that is required by the DOMA problem in (6.h). To obtain 𝒙ෝ௞  the model 
equations (9) must be integrated over 𝑡 ∈ ൣ𝑡௞ି௡೐

, 𝑡௞൧ starting from 𝒙௞ି௡೐

∗ , using the estimated 
disturbances 𝒗௞ି௜

∗ , 𝑖 = 1, … , 𝑛௘, and applying 𝒖௞ି௜. 

𝒇(𝒙̇, 𝒙, 𝒖, 𝒗∗) = 0 , ∀𝑡 ∈ ൣ𝑡௞ି௡೐
, 𝑡௞൧ , 𝒙൫𝑡௞ି௡೐

൯ = 𝒙௞ି௡೐

∗  (9) 
 

Once (9) has been solved, the states calculated at time 𝑡௞ are defined as the initial value for 
problem (5), (6) as it is stated in (10).  

𝒙ෝ௞ = 𝒙(𝑡௞) (10)  
 

The value of the disturbances 𝒗௞ required in problem (5), (6), is taken as the estimation given 
by the MHE at the most recent sampling period  𝒗௞ିଵ

∗ , this is 𝒗௞ = 𝒗௞ିଵ
∗ .  

 

3 ONLINE MODIFIERS ESTIMATION (DME) 
The third module of Figure 2, denoted DME, has the task of computing the modifiers 𝝀௞ , 𝜸௞ used 
in the DOMA module, while  𝜺௞  can be directly computed from (4.c). From their definitions in 
(4.a) and (4.b), several approaches have been proposed in the literature to compute modifiers 
based on the estimation of the process gradients from available measurements. As mentioned 
before, the use of transient measurements to estimate modifiers opens the door to the 
application of MA in slow dynamic processes. With that in mind, the MA modifiers could be seen 
as correction terms added to the economic optimization problem, so that the modified problem 
solution matches the process optimum. From this point of view, they can be estimated directly 
without computing process and model gradients explicitly. The module DME (Dynamic Modifier 
Estimation) of Figure 2 will try to estimate directly the modifiers using past data which, after 
filtering, will be incorporated in (5) and (6). 

The idea behind DME approach is explained next, considering only the economic cost function 
in a continuous form for simplicity. Consider the value of a vector 𝜽 such that the modified cost 
function that appears in equation (11.a) reproduces the measured process cost function 𝜙௣ over 
the past time interval  [𝑡௞ି௡೏

, 𝑡௞] as in Figure 4. 𝑛ௗ  is a small integer number, the DME past 
horizon, that may coincide or not with the past horizon of the MHE.  

𝜙௣ ≈ 𝜙 + 𝜽்Δ𝒖 + 𝛥𝒖்𝑸Δ𝒖 + ෍ Δ𝒖௝
்𝑸Δ𝒖௝

௡ೠିଵ

௝ୀଵ

 (11.a) 

Where 𝜙௣  and 𝜙  represent respectively the measured process cost function, and the cost 
estimated by the model, obtained with the Δ𝒖 applied to the process, in the interval of the DME 
past horizon. Both 𝜙௣ and 𝜙 are time functions obtained either by interpolation of measured 



values or by model integration. In equation (11.a), the term 𝛥𝒖𝑻𝑸Δ𝒖 + ∑ Δ𝒖௝
𝑻𝑸Δ𝒖௝

௡ೠିଵ
௝ୀଵ  

corresponds to the optimal value of the quadratic term in (5), computed in the resolution of the 
DOMA at past iterations 𝑘 − 𝑖. Control moves Δ𝒖  in 𝛥𝒖𝑻𝑸Δ𝒖 are the ones really applied to the 
process in the past. Finally, the summation term in (11.a) is the calculation of future moves that 
were not applied to the process because of the moving horizon strategy of the DOMA.  

Taking into account that output variables are functions of the manipulated variables 𝒖, one can 
compute the derivative of both sides of (11.a) w.r.t. 𝒖 applied to the process and obtain (11.b). 
Notice that the derivative of summation term in (11.a) is zero because this term does not have 
the variable 𝒖 applied to the process: 

𝜕𝜙௣

𝜕𝒖
≈

𝜕𝜙

𝜕𝒖
+ 𝜽் + 2𝛥𝒖்𝑸௨ (11.b) 

 

𝝀் =
𝜕𝜙௣

𝜕𝒖
−

𝜕𝜙

𝜕𝒖
≈ 𝜽் + 2𝛥𝒖்𝑸௨ (11.c) 

Now, if we rearrange equation (11.b) and use the definition of the modifiers, we could obtain 
an estimation of 𝝀 using (11.c) at any transient time, calculating the vector   that match the 
past process cost as in (11.a). 

In this way, we could consider the value of 𝜽் + 2𝛥𝒖்𝑸௨  at 𝑡௞  as an estimation of the cost 
modifiers at 𝑘. So, when the system reaches steady state, 𝜽் + 2𝛥𝒖்𝑸௨ will correspond to the 
steady-state modifiers.  

  

Figure 4. Past process cost function and evolution of the extended model cost function 
corresponding to past values of control actions and values of 𝜽௞ି௜  and 𝒖௞ି௜. 

Finding such values of   can be formulated as an optimization problem in the interval ൣ𝑡௞ି௡೏
, 𝑡௞൧ 

in which the cost process evolution 𝜙௣ and control moves applied are known. The cost function 
of the optimization problem would incorporate the squared difference between the process cost 
and the RHS of equation (11.a) in the previous sampling times. Then, the value of the modifiers 
(11.c) corresponding to the last interval [𝑡௞ିଵ, 𝑡௞]  is used in the DOMA problem to compute the 
next optimal control actions. The same idea can be extended to compute the constraints’ 
modifiers 𝜸, using in the cost function the squared difference between the process and the 
modified constraint from (6.c). 



Formally, the DME problem can be formulated as in (12) and (13) for 𝝀௞, and (14) for 𝜸௞. At 
iteration 𝑘 we know the past actions applied 𝒖௞ି௜ and vectors 𝝀௞ି௜ and 𝜸௞ି௜ used in previous 
iterations, as well as the values of the process cost function 

௣,௞ି௜
 and constraints 𝒈௣,௞ି௜ 

obtained. The only unknowns are 𝜽 and 𝜸஽ொ, which are parameterized conveniently. In (12) – 
(14), 𝑛ௗ is the DME past horizon. 

min
𝜽ೖష೔షభ,

௜ୀ଴…௡೏ିଵ

𝜎థ න Δ𝜙ଶ𝑑𝑡
௧ೖ

௧ೖష೙೏

+ ෍ ൫𝜽௞ି௜ିଵ
் 𝑸ఏ𝜽௞ି௜ିଵ൯

௡೏ିଵ

௜ୀ଴

  (12.a) 

𝑠. 𝑡.  𝒇(𝒙̇, 𝒙, 𝒖, 𝒗௞) = 𝟎 
       𝒉(𝒙, 𝒖, 𝒚, 𝒗௞) = 𝟎 

(12.b) 

Δ𝜙(𝑡) = 
௣

(𝑡) − [(𝑡) + 𝜽(𝑡)்𝒖(𝑡) + 𝑺(𝑡)] 
𝑺(𝑡) = 𝒖(𝑡)்𝑸𝒖𝒖(𝑡) 

(12.c) 

𝜽(𝑡) = 𝜽௞ି௜ିଵ, 𝑡 ∈ [𝑡௞ି௜ିଵ, 𝑡௞ି௜], 𝑖 = 0, … , 𝑛ௗ − 1 
 

𝜽௞ି௜ିଵ = 𝜽ന௞ି௜ିଵ − 𝜽௞ି௜ିଵ  , 𝑖 = 0, … , 𝑛ௗ − 1 
 

(12.d) 

𝒖(𝑡) = 𝒖௞ି௜ିଵ , 𝑡 ∈ [𝑡௞ି௜ିଵ, 𝑡௞ି௜], 𝑖 = 0, … , 𝑛ௗ − 1 
𝒖௞ି௜ିଵ = 𝒖௞ି௜ − 𝒖௞ି௜ିଵ  ,     𝑖 = 0,1, … 𝑛ௗ − 1 

 

(12.e) 

𝒙൫𝑡௞ି௡೏
൯ = 𝒙ෝ௞ି௡೏

 (12.f) 

 

In the first term of the cost function (12.a), expanded in (12.c), 𝑺 is the value of the quadratic 
term that penalizes changes in the manipulated variable from (5) solved at the past iteration. 
𝜎థ is a scalar weight for this difference. Notice that (12.a), (12.c) also include another quadratic 
term that try to smooth the changes over the values computed in the previous iterations (12.d) 
and contribute to convexify the problem, being 𝑸ఏ ∈ ℝ𝒏𝒖×𝒏𝒖 a diagonal matrix with weighting 
factors for each manipulated variable. The optimization is subjected to the dynamic model (12.b). 
The problem uses the value 𝒙ෝ௞ି௡೏

 that was estimated by the MHE as an initial state (12.f) and 
includes the disturbances 𝒗௞ to maintain consistency with the other modules. Also notice that 
 and 

௣
 are computed as continuous functions interpolating the past iterations  𝑘 − 𝑖. 𝜽ന is the 

vector of optimum solutions of problem (12) obtained in the last iteration. 

The solution of (12), 𝜽௞ିଵ
∗ , is considered equal to 𝜽௞ and allows estimating the cost modifiers in 

iteration 𝑘 using (13): 

𝝀௞
஽ொ = 𝜽௞

𝑻 + 2𝛥𝒖௞ିଵ
் 𝑸𝒖, 𝜽௞ = 𝜽𝒌ି𝟏

∗  (13) 

 

In the same way, we can formulate a similar problem (14) to compute each constraint’s 

modifiers 𝜸 . 𝝈௚ ≔ ቂ𝜎௚,ଵ, … , 𝜎௚,௡೒
ቃ

்
 is a column vector with the weighting values for each 

constraint and 
𝑗

∈ ℝ௡ೠ×௡ೠ a diagonal matrix with the weighting values for each constraint 
modifier, 𝑗 = 1 … 𝑛௚. 



min
𝜸𝑘−𝑖−1

𝐷𝑀𝐸

𝑖=0…𝑛𝑑−1

෍ 𝜎𝑔,𝑗 න Δ𝑔
𝑗
2𝑑𝑡

𝑡𝑘

𝑡𝑘−𝑛𝑑

𝑛𝑔

௝ୀ଴

+ ෍ ෍ ቀ𝜸
𝑘−𝑖−1

𝑗,𝐷𝑀𝐸 𝑇


𝑗
𝐼𝜸

𝑘−𝑖−1

𝑗,𝐷𝑀𝐸
ቁ

𝑛𝑑−1

𝑖=0

𝑛𝑔

𝑗=1

 (14.a) 

𝑠. 𝑡.  𝒇(𝒙̇, 𝒙, 𝒖, 𝒗௞) = 𝟎 
       𝒉(𝒙, 𝒖, 𝒚, 𝒗௞) = 𝟎 

(14.b) 

Δ𝒈(𝑡) = 𝒈௉(𝑡) − 𝒈(𝑡) − 𝜸஽ொ(𝑡)𝒖(𝑡), 𝑖 = 0 … 𝑛ௗ − 1 (14.c) 

𝜸஽ொ(𝑡) = 𝜸௞ି௜ିଵ
஽ொ , 𝑡 ∈ [𝑡௞ି௜ିଵ, 𝑡௞ି௜], 𝑖 = 0, … , 𝑛ௗ − 1 

𝜸௞ି௜
஽ொ = 𝜸௞ି௜

஽ொ − 𝜸ന௞ି௜, 𝑖 = 1, … , 𝑛ௗ 
(14.d) 

𝒖(𝑡) = 𝒖௞ି௜ିଵ, 𝑡 ∈ [𝑡௞ି௜ିଵ, 𝑡௞ି௜], 𝑖 = 0, … , 𝑛ௗ − 1 (14.e) 

𝒙൫𝑡௞ି௡೏
൯ = 𝒙ෝ௞ି௡೏

 (14.f) 

 

The solution of problem (14) is 
௞ିଵ
஽ொ∗. Similarly, to the estimation of 𝜽௞, the value of 

௞
஽ொ is 

taken equal to 
௞ିଵ
஽ொ∗. So, when the system reaches steady state 

௞
஽ொ will correspond to the 

steady-state modifiers.  

Finally, (4.c), (12), (13), and (14) give the new values of the cost and constraint modifiers 𝚲௞
஽ொ =

(𝝀௞
஽ொ , 

௞
஽ொ , 𝜺௞

஽ொ) which, after filtering (15), can be used as estimations of the modifiers to be 
used at iteration 𝑘 in the DOMA problem. The value of 𝜺௞

஽ொ  is obtained using (4.c) directly, 
while the superscript “DME” has been added to differentiate this value with the one applied to 
problem (5), (6), obtained after filtering. The term 𝚲௞ିଵ  is the vector of filtered modifiers 
applied to the process in the previous iteration 𝑘 − 1 and  is a gain matrix. 

𝚲௞ = 𝚲௞ିଵ + (𝑰 − )𝚲௞
஽ொ 

𝚲௞ = (𝝀௞, 𝜸௞ , 𝜺𝒌) 
(15)  

Where   can be represented by a block-diagonal matrix given by (16). 

 ∶= 𝑑𝑖𝑎𝑔(𝑏ଵ, … , 𝑏௡ೠ,𝑞ଵ𝑰௡ೠ
, … , 𝑞௡೒

𝑰௡ೠ
, 𝑑𝑰௡೒

) (16)  

 

The gain entries 𝑏ଵ, … , 𝑏௡ೠ,𝑞ଵ, … , 𝑞௡೒
, 𝑑 are taken in (0,1]. 𝑛௚ is the number of constraints 𝒈 in 

the problem and 𝑛௨ the number of manipulated variables. 

4 ALGORITHM  

The full algorithm of the DOMA architecture proposed in this paper (Figure 2) is presented 
below: 

Algorithm DOMA using DME to estimate MA modifiers.  

i. Initialization 
1. Collect 𝑁 ≔ max{𝑛ௗ , 𝑛௘}  previous data (sample time of the controller) of variables 

𝒖௞ି௜, 𝒚௣,௞ି௜, 𝜙௣,௞ି௜ , 𝒈௣,௞ି௜  where 𝑖 = 1, … , 𝑁.  

MHE module: given 𝑸௫, 𝑸௬ and 𝑸௩  

2. Initialize 𝒙ෝ௞ି௡೐
 



a. For measured states, consider 𝒙ෝ௞ି௡೐

ெ = 𝒚௣,௞ି௡೐

ௌ , being 𝒙ෝ௞ି௡೐

ெ  the subset of 
states that are measured, and 𝒚௣,௞ି௡೐

ௌ  the subset of 𝒚௣,௞ି௡೐
  containing the 

measured states in  𝑘 − 𝑛௘  
b. For unmeasured states, use values predicted from the model with 𝒗௞ି௜ = 𝟎, 𝑖 =

1 … 𝑛௘ 
3. Solve problem (7), (8) to find the past values of the states 𝒙௞ି௡೐

∗  and disturbances 
𝒗௞ି௜

∗ , 𝑖 = 1 … 𝑛௘. 
4. Evaluate the estimated state 𝒙ෝ௞ integrating (9) from 𝑡௞ି௡೐

 to 𝑡௞. Estimate the value of 
the disturbance using 𝒗௞ = 𝒗௞ି௜

∗  
5. Update 𝒙ෝ௞ି௡೐

= 𝒙௞ି௡೐

∗ . 

DME module: given 𝝈థ, 𝑸ఏ, 𝝈௚, 
𝑗  where 𝑗 = 1 … 𝑛௚ , and  𝜶 

6. Initialize previous values of 𝝀௞ି௜  and  𝜸௞ି௜, 𝑖 = 1 … 𝑛ௗ, using an identification method 
such as recursive least squares. Here the idea is starting with good estimators of the 
modifiers to improve the convergence of the DME module. 

7. Evaluate 𝜺௞ିଵ using (4.a) 
8. Solve problems (12) and (14) to obtain 𝜽௞ିଵ

∗ , 
௞ିଵ
஽ொ∗.   

9. Use (13) to obtain 𝝀௞
஽ொ and (4.c) to obtain 𝜺௞

஽ொ. Make 
௞
஽ொ = 

௞ିଵ
஽ொ∗ 

10. Use (15) and obtain the filtered modifiers 𝚲௞.  
 

DOMA module: given 𝑸௨ 

11. Go to step 19 
 

ii. For next iterations 

MHE module: 

12. Collect 𝑛௘ previous data of variables 𝒖௞ି௜, 𝒚௣,௞ି௜, 𝜙௣,௞ି௜ , 𝒈௣,௞ି௜ where 𝑖 = 1, … , 𝑛௘. 
13. Solve problem (7), (8) to find the past values of the states 𝒙௞ି௡೐

∗  and disturbances 𝒗௞ି௜
∗ . 

14. Evaluate the estimated state 𝒙ෝ௞ integrating  (9) from 𝑡௞ି௡೐
 to 𝑡௞. Estimate the value of 

the disturbance using 𝒗௞ = 𝒗௞ି௜
∗  

15. Update 𝒙ෝ௞ି௡೐
= 𝒙௞ି௡೐

∗  
 

DME module: 

16. Solve problems (12) and (14) to obtain 𝜽௞ିଵ
∗ , 

௞ିଵ
஽ொ∗.  

17. Use (13) to obtain 𝝀௞
஽ொ and (4.c) to obtain 𝜺௞

஽ொ. Make 
௞
஽ொ = 

௞ିଵ
஽ொ∗ 

18. Use (15) and obtain the filtered modifiers 𝚲௞.  
 

DOMA module: 

19. Solve problem (5), (6) using 𝒙ෝ௞ and 𝒗௞ from MHE, and 𝚲௞ calculated in DME.  
20. Apply 𝒖௞ to the process.  
21. Wait until next sample time and update 𝑘 = 𝑘 + 1  
22. Go to step 12. 



5 WILLIAMS OTTO REACTOR CASE STUDY  

5.1 The Williams Otto reactor 
Results for the proposed method for DOMA+DME are shown using a variation of the Williams-
Otto benchmark example (Williams and Otto, 1960) using molar concentrations.  This example 
has been widely used to study the performance of others eMPC+MA frameworks as mentioned 
in Table 1. The process consists of a continuous stirred tank reactor CSTR where the reactants 𝐴 
and 𝐵 combine to generate four species  𝐶, 𝐸, 𝐺, 𝑃 in three different reactions.  

𝐴 + 𝐵
௞భ
→ 𝐶 𝐵 + 𝐶

௞మ
→ 𝑃 + 𝐸 𝐶 + 𝑃

௞య
→ 𝐺 

The system is fed with a flow of component  𝐴  (𝐹஺ ), and component 𝐵  (𝐹஻ ), with an inlet 
concentration 𝑋஺଴ and 𝑋஻଴, respectively. The products leave the reactor by overflow, so that its 
volume 𝑉ோ  can be considered constant. The concentration of the outflow, 𝐹ோ , for each 
component is denoted by  𝑋஺, 𝑋஻, 𝑋஼, 𝑋ா, 𝑋ீ  and 𝑋௉.  

The velocity of each reaction is given by equations (17)-(19). The rate constant of each reaction, 
𝑘௜,  is described by the Arrhenius equation (20) that depends on the pre-exponential factor 𝑘௜,଴, 
the activation energy 𝐸௔௜ for each reaction, and the temperature inside the reactor, 𝑇. 

𝑟ଵ = 𝑘ଵ𝑋஺𝑋஻ (17) 

 

𝑟ଶ = 𝑘ଶ𝑋஻𝑋஼ (18) 

 

𝑟ଷ = 𝑘ଷ𝑋஼𝑋௉ (19) 

 

𝑘௜ = 𝑘௜,଴𝑒ି(ாೌ೔ ்⁄ ), 𝑖 = 1,2,3 (20) 

A cooling system maintains the temperature of the reactor around the desired value T. It is 
assumed that no significant change in the density or similar intrinsic parameters takes place.  

The inflow 𝐹஻, and the temperature set point T are the manipulated process variables, while 
inflow 𝐹஺ can be considered as a disturbance. Products 𝑃 and 𝐸 are the valuable ones, while 𝐶 
and 𝐺 are sub-products of the reactions. 

The nonlinear dynamics of the process is given by equations (21)-(26), which combined with the 
total mass balance (27) will be used in a simulation that will be considered as the real plant.  

Table 2 presents the parameters used in the simulation. 

𝑉ோ

𝑑𝑋஺

𝑑𝑡
= 𝐹஺𝑋஺଴ − 𝐹ோ𝑋஺ − 𝑉ோ𝑟ଵ (21) 

 

𝑉ோ

𝑑𝑋஻

𝑑𝑡
= 𝐹஻𝑋஻଴ − 𝐹ோ𝑋஻ − 𝑉ோ𝑟ଵ − 𝑉ோ𝑟ଶ (22) 

 

𝑉ோ

𝑑𝑋஼

𝑑𝑡
= −𝐹ோ𝑋஼ + 𝑉ோ𝑟ଵ − 𝑉ோ𝑟ଶ − 𝑉ோ𝑟ଷ (23) 

 



𝑉ோ

𝑑𝑋ா

𝑑𝑡
= −𝐹ோ𝑋ா + 𝑉ோ𝑟ଶ (24) 

 

𝑉ோ

𝑑𝑋ீ

𝑑𝑡
= −𝐹ோ𝑋ீ + 𝑉ோ𝑟ଷ (25) 

 

𝑉ோ

𝑑𝑋௉

𝑑𝑡
= −𝐹ோ𝑋௉ + 𝑉ோ𝑟ଶ − 𝑉ோ𝑟ଷ (26) 

 
𝐹ோ = 𝐹஺ + 𝐹஻ (27) 

 

Table 2: Parameters of Williams-Otto reactor real process. 

𝑘ଵ,଴ 9.9594 × 10଺   𝑙/(𝑚𝑜𝑙 𝑚𝑖𝑛) 
𝑘ଶ,଴ 8.66124 × 10ଽ  𝑙/(𝑚𝑜𝑙 𝑚𝑖𝑛) 
𝑘ଷ,଴ 1.6047 × 10ଵଷ 𝑙/(𝑚𝑜𝑙 𝑚𝑖𝑛) 
𝐸௔ଵ 6666.7 K 
𝐸௔ଶ 8333.3 K 
𝐸௔ଷ 11111 K 
𝑋஺଴ 10  𝑚𝑜𝑙/𝑙 
𝑋஻଴ 10 𝑚𝑜𝑙/𝑙 
𝑉ோ 2105  𝑙 
𝐹஺ 112.35 𝑙/𝑚𝑖𝑛 

 

Table 3: Cost of the reactants and price of products. 

𝑝஺ 7.623 €/𝑚𝑜𝑙  
𝑝஻ 11.434 €/𝑚𝑜𝑙 
𝑝௣ 114.338 €/𝑚𝑜𝑙 
𝑝ா 5.184 €/𝑚𝑜𝑙 

 

The purpose of the optimal operation is to maximize the operation benefits computed as the 
difference between the value of the useful products 𝐸 and  𝑃 and the cost of the raw materials 
 𝐴 and 𝐵. Table 3 provides prices of these products. If a perfect steady model of the process 
were available and no disturbances would take place, the optimal operating point could be 
obtained by solving the optimization problem (28).  Here, the inflow 𝐹஻ and reactor temperature 
𝑇 are constrained to operate within a certain range. 

𝑚𝑎𝑥
𝒖ୀ[ிಳ,்]

𝜙 = 𝐹ோ(𝑋௉𝑝௉ + 𝑋ா𝑝ா)−𝐹஺𝑋஺଴𝑝஺−𝐹஻𝑋஻଴𝑝஻ 

𝑠. 𝑡. 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (21) − (26) 𝑖𝑛 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 

180 𝑙/𝑚𝑖𝑛 ≤ 𝐹஻ ≤ 360 𝑙/𝑚𝑖𝑛 

75º𝐶 ≤ 𝑇 ≤ 100ºC 

0 ≤ 𝑋஺ ≤ 1.2 mo𝑙/𝑙  

0 ≤ 𝑋ீ ≤ 0.5 mo𝑙/𝑙 

(28) 

The real optimum of the process in steady state is 𝐹஻ = 293.55 𝑙/𝑚𝑖𝑛  and 𝑇 = 89.98 º𝐶 and 
the value of objective function is 𝜙 = 11594.40€  (black dot in Figure 5). As can be seen in 
Figure 5, which displays the value of the benefit 𝜙 for a range of values of the manipulated 



variables, the cost is in a relatively flat zone, which can create convergence problems for the 
optimizers.  

 

Figure 5. Process cost function and some contours values for 𝑋஺ and 𝑋ீ. The contour 1.2 
(dotted line) and 0.5 (solid line) are the problem constraints in (28) for 𝑋஺ and 𝑋ீ  respectively. 

The black and red dots correspond to plant and model optimum respectively. 

 

5.2 Application of DOMA+DME 
The DOMA+DME uses a simplified dynamic model that differs in structure and parameters from 
the process mentioned above. As the component 𝐶 is one order of magnitude below the other 
components, a common choice is to consider only 5 components and two reactions: 

𝐴 + 2𝐵
௞భ_௠௢ௗ௘௟
ሱ⎯⎯⎯⎯⎯ሮ 𝑃 + 𝐸 𝐴 + 𝐵 + 𝑃

௞మ_௠௢ௗ௘௟
ሱ⎯⎯⎯⎯⎯ሮ 𝐺 

The velocity of each reaction is given by equations (29)-(30). The rate constant of each reaction, 
𝑘௜_௔௣௣௥, is described by the Arrhenius equation (31) that depends on the pre-exponential factor, 
𝑘௜,଴_௠௢ௗ௘௟ , the activation energy 𝐸௔௜_௠௢ௗ௘௟  for each reaction and the temperature inside the 
reactor, 𝑇. 

𝑟ଵ_௠௢ௗ௘௟ = 𝑘ଵ_௔௣௣௥𝑋஺𝑋஻
ଶ (29) 

𝑟ଶ_௠௢ௗ௘௟ = 𝑘ଶ_௔௣௣௥𝑋஺𝑋஻𝑋௉ (30) 

𝑘௜_௔௣௣௥ = 𝑘௜,଴_௠௢ௗ௘௟𝑒
ି൫ாೌ೔_೘೚೏೐೗ ்⁄ ൯, 𝑖 = 1,2 (31) 

The dynamic model includes the following equations that represents mass balances of the 
different components considered: 

𝑉ோ

𝑑𝑋஺

𝑑𝑡
= 𝐹஺𝑋஺଴ − 𝐹ோ𝑋஺ − 𝑉ோ𝑟ଵ೘೚೏೐೗

− 𝑉ோ𝑟ଶ೘೚೏೐೗
 (32) 

 

𝑉ோ

𝑑𝑋஻

𝑑𝑡
= 𝐹஻𝑋஻଴ − 𝐹ோ𝑋஻ − 2𝑉ோ𝑟ଵ_௠௢ௗ௘௟ − 𝑉ோ𝑟ଶ_௠௢ௗ௘௟ (33) 

 

𝑉ோ

𝑑𝑋ா

𝑑𝑡
= −𝐹ோ𝑋ா + 𝑉ோ𝑟ଵ_௠௢ௗ௘௟ (34) 



 

𝑉ோ

𝑑𝑋ீ

𝑑𝑡
= −𝐹ோ𝑋ீ + 𝑉ோ𝑟ଶ_௠௢ௗ௘௟ (35) 

 

𝑉ோ

𝑑𝑋௉

𝑑𝑡
= −𝐹ோ𝑋௉ + 𝑉ோ𝑟ଵ೘೚೏೐೗

− 𝑉ோ𝑟ଶ೘೚೏೐೗
 (36) 

 
𝐹ோ = 𝐹஺ + 𝐹஻ (37) 

 

Therefore, the model presents a structural mismatch, since only five states are considered, 
instead of the six states of the process. In addition, we will assume that only four components 
𝐴, 𝐸, 𝐺, 𝑃 are measured at the reactor output. Model parameters are summarized in Table 4. 

Table 4: Parameters of Williams-Otto dynamic model for the DOMA. 

𝑘ଵ,଴_௠௢ௗ௘௟ 1.3134 × 10଼   𝑙/(𝑚𝑜𝑙 𝑚𝑖𝑛) 
𝑘ଶ,଴_௠௢ௗ௘௟ 2.586 × 10ଵଷ  𝑙/(𝑚𝑜𝑙 𝑚𝑖𝑛) 
𝐸௔ଵ_௠௢ௗ௘௟ 8077.6  K 
𝐸௔ଶ_௠௢ௗ௘௟ 12438.5 K 

𝑋஺଴ 10  𝑚𝑜𝑙/𝑙 
𝑋஻଴ 10 𝑚𝑜𝑙/𝑙 
𝑉ோ 2105  𝑙 
𝐹஺ 112.35 𝑙/𝑚𝑖𝑛 

 

Solving a problem similar to (28), but using the model (29)-(36) in steady state without 
disturbances, one can compute the optimum that corresponds to that model in steady state. 
The solution is 𝐹஻ = 307.23 𝑙/𝑚𝑖𝑛  and 𝑇 = 79.82 º𝐶 with the objective function equal to 𝜙 =

11259.52€  which is not far away from the optimal benefit of the process optimum. 
Nevertheless, when this solution is applied to the process, the value of the process cost is 
completely different, dropping the benefit down to 8655.4€ (red dot in Figure 5). This remarks 
about the importance of integrating MA methods into dynamic optimizers in order to recover 
optimality. 

DOMA uses the modified problem given by (38). The economic objective function considers the 
variables as computed at the end of the prediction horizon (line above variables). The states 𝑋ത௉ 
and 𝑋തா are predicted using equations (29)-(36) adding the disturbances 𝒗 from MHE. The two 
terms with 𝜆ଵ and 𝜆ଶ corresponds to the MA cost modifiers for each control variable. The last 
two terms are the penalties on the control efforts to smooth the control actions and contribute 
to model adequacy and convexity. 

 

 

 

 

 



𝑚𝑎𝑥
𝒖ୀ[ிಳ,்]

𝜙ெ = 𝐹തோ൫(𝑋ത௉)𝑝௉ + (𝑋തா)𝑝ா൯−𝐹஺𝑋஺଴𝑝஺−𝐹ത஻𝑋஻଴𝑝஻ + 𝜆ଵ,௞൫𝐹ത஻ − 𝐹஻,௞ିଵ൯

+ 𝜆ଶ,௞(𝑇ത − 𝑇௞ିଵ) + 𝜎௨భ
෍ ൫∆𝐹஻,௞ା௜൯

ଶ
+ 𝜎௨మ

෍ (∆𝑇௞ା௜)ଶ

௡ೠିଵ

௜ୀଵ

௡ೠିଵ

௜ୀଵ

 

𝑠. 𝑡. 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (29) − (36) with disturbances 𝑣 

𝐹஻,௞ା௜ = 𝐹஻,௞ା௜ − 𝐹஻,௞ା௜ିଵ, 𝑖 = 0 … 𝑛௣௥௘ௗ − 1 
𝑇௞ା௜ = 𝑇௞ା௜ − 𝑇௞ା௜ିଵ, 𝑖 = 0 … 𝑛௣௥௘ௗ − 1 

𝐹஻(𝑡) = 𝐹஻௞ା௡ೠ
    ,   𝑡 ∈ ൣ𝑡௞ା௡ೠ

, 𝑡௣௥௘ௗ൧ 

𝑇(𝑡) = 𝑇௞ା௡ೠ
  , 𝑡 ∈ ൣ𝑡௞ା௡ೠ

, 𝑡௣௥௘ௗ൧ 

180
𝑙

𝑚𝑖𝑛
≤ 𝐹஻,௞ା௜ ≤ 360

𝑙

𝑚𝑖𝑛
, 𝑖 = 0 … 𝑛௣௥௘ௗ − 1 

75º𝐶 ≤ 𝑇௞ା௜ ≤ 100ºC, 𝑖 = 0 … 𝑛௣௥௘ௗ − 1 

(38) 

 

Note that the cost function includes two conflicting objectives: maximize the benefit at the end 
of the prediction horizon and achieve a smooth and stable operation. This compromise is given 
by the weighting factors 

௜
 . The MHE module provides the initial value for the state at current 

iteration 𝑘 and disturbances. 

Similarly, the DME problem at every sampling time 𝑘 is given by (39). Here 
௉

 refers to the value 
measured in the process, as well as the concentrations 𝑋௣,௝ (for each component 𝑗) , while 𝜙 is 
a value estimated from the model (29)-(36) with disturbances. 

௉
 is calculated as a continuous 

function of time, interpolating the measurements in the interval [𝑡௞ିଷ, 𝑡௞]. 𝒖 and 𝜽 are also 
calculated as continuous function of time 𝑡, using the equation in (39). 

 

   min
𝜽ೖష೔షభ

௜ୀ଴…௡೏ିଵ

𝜎థ ∫ Δ𝜙ଶ𝑑𝑡
௧ೖ

௧ೖష೙೏

+ ൫𝜽௞ି௜ିଵ
் 𝑸ఏ𝜽௞ି௜ିଵ൯  

 
𝑠. 𝑡. 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (29) − (36)  with disturbances 𝑣 

Δ𝜙(𝑡) = ൫𝜙௣(𝑡) − (𝜙(𝑡) + 𝜽்𝒖(𝑡) + 𝒖(𝑡)்𝑸௨𝒖(𝑡))൯ 
𝜙௣(𝑡) = 𝐹ோ൫𝑋௣,௉(𝑡)𝑝௉ + 𝑋௣,ா(𝑡)𝑝ா൯ − 𝐹஺𝑋஺଴𝑝஺−𝐹஻𝑋஻଴𝑝஻ 
𝜙(𝑡) = 𝐹ோ(𝑋௉(𝑡)𝑝௉ + 𝑋ா(𝑡)𝑝ா) − 𝐹஺𝑋஺଴𝑝஺ − 𝐹஻,௞ି௜𝑋஻଴𝑝஻ 

𝒖௞ି௜ିଵ = ൣ𝐹஻,௞ି௜ିଵ 𝑇௞ି௜ିଵ൧
்

, 𝑖 = 0 … 𝑛ௗ − 1 
𝒖(𝑡) = 𝒖௞ି௜ିଵ , 𝑡 ∈ [𝑡௞ି௜ିଵ, 𝑡௞ି௜], 𝑖 = 0, … , 𝑛ௗ − 1 

𝜽(𝑡) = 𝜽௞ି௜ିଵ, 𝑡 ∈ [𝑡௞ି௜ିଵ, 𝑡௞ି௜], 𝑖 = 0, … , 𝑛ௗ − 1 
𝜽௞ି௜ିଵ = 𝜽௞ି௜ିଵ − 𝜽ന௞ି௜ିଵିଵ  , 𝑖 = 0 … 𝑛ௗ − 1 

(39) 

 

Equation (13) uses the solution 𝜽௞ = 𝜽௞ିଵ
∗  of (39) and filtering (15)  to compute 𝝀௞ that is used 

in (38).                    

 

 

 



5.3 Results 
 

Results of the proposed methods are given next. The starting point is given in Table 5 and 
corresponds to a value of the process state that is far from the optimum.  

Table 5:  Starting point of the simulation. 

𝑋஺ 0.8264 𝑚𝑜𝑙/𝑙 
𝑋஻ 4.8075 𝑚𝑜𝑙/𝑙 
𝑋஼  0.0843 𝑚𝑜𝑙/𝑙 
𝑋ா 1.2618 𝑚𝑜𝑙/𝑙 
𝑋ீ  0.2059 𝑚𝑜𝑙/𝑙 
𝑋௉ 1.0558 𝑚𝑜𝑙/𝑙 
FB 350 𝑙/𝑚𝑖𝑛 
T 82 º𝐶 

The DOMA problem (5), (6) could be solved numerically either with simultaneous or sequential 
approaches. The first one implies full discretization of the model, e.g. using orthogonal 
collocation on finite elements, which transforms the dynamic optimization into a NLP problem 
that can be solved with algorithms like IPOPT (Wächter and Biegler, 2006). This approach 
increases considerably the size of the problem to solve but allows a good treatment of path 
constraints and facilitate the use of automatic differentiation to calculate exact derivatives. 
Depending on the specific case considered, the sequential approach may offer also a good 
alternative by combining a dynamic simulation of the model with a NLP solver like SNOPT (Gill 
et al., 2005). One advantage of this method is the smaller size of the optimization problem and 
the fact that it does not require state discretization but requires integrating the extended system 
for computing exact derivatives and it is more difficult to deal with path constraints and unstable 
systems. In the MHE problem, similar numerical methods can be used. In the case study 
presented in this section a sequential approach has been used. 

Table 6:  Parameters used in the simulation for DOMA+DME. 

Module Parameter Value 
MHE 𝜎𝒚  

(𝑸𝒚 = 𝜎𝒚𝑰) 
250 

MHE 𝜎𝒙  
(𝑸𝒙 = 𝜎𝒙𝑰) 

1 × 10ିଶ 

MHE 𝜎𝒗  
(𝑸𝒗 = 𝜎𝒗𝑰) 

1 × 10ିହ 

MHE 𝑛௘ 3 
DME 𝜎థ 10 
DME 𝑸ఏ ቂ

4 0
0 2

ቃ 

DME 𝑛ௗ 3 
DOMA 𝜎௨భ

 0.05 

DOMA 𝜎௨మ
 0.44 

DOMA 𝛼 0.95 
DOMA 𝑛௨ 3 
DOMA 𝑛௣௥௘ௗ 30 



The reactor and the three dynamic optimization problems DOMA, MHE and DME, are 
formulated in the continuous domain in the simulation environment EcosimPro/Proosis (EA Int., 
2020), a modern object-oriented software. They are solved with a sampling time of 2 minutes. 
The optimization problems have been solved using a sequential approach in which a dynamic 
simulation of the model is connected to SNOPT, a reduced-space SQP optimization algorithm. 
Exact derivatives of cost functions and constraints are generated by the integration of the 
extended system as provided by the integration software IDAS.   The entire problem is solved in 
an average time of 3 sec. per iteration in a PC under Windows10 with a four cores i7 processor 
running at 3GHz and with 16 Gb of memory. The DOMA module starts at time 𝑡 = 8 𝑚𝑖𝑛 to 
allow collecting past measurements. The MHE, DME and DOMA parameters used are in Table 6. 

Figure 6 shows the states estimated by the MHE (blue line), together with the measured values 
from the process (red line). Estimated disturbances appear at the bottom for the five states of 
the model. 

                                                             

  

 
Figure 6. Results of the MHE module 

 

The lambda modifiers computed by DME after filtering are presented in Figure 7. Figure 8 shows 
the time evolution of the process cost function and Figure 9 shows the manipulated variables. 

 



 

Figure 7. Values of lambda modifiers calculated from the solution of the online DME. 

 

 

Figure 8. Cost function value during simulation DOMA+DME. 

  

Figure 9. Manipulated variables over time DOMA+DME. 

As can be seen, after an initial transient, the closed loop system stabilizes around 140 minutes, 
which is about four times the open loop response of the reactor (40 min), reaching an average 
benefit pretty close to the real process optimum.  

The next figures (Figure 10 and Figure 11) compare the results of the use of dynamic optimizer 
without modifiers, DOMA+DME and DOMA with correct modifiers. The application of DOMA 
(dark blue line) clearly improves the cost function of the process in comparison to the application 
of the dynamic optimizer without the correction in the economic function (green line). For 
comparison, the closed loop evolution of the DOMA with real optimum modifiers (assuming they 
were known) is also added (orange line). It can be noticed that using the real values of the 
modifiers in steady state, the system reaches the optimal operation in 50 minutes, which is 
almost one third of the convergence time of the DOMA using DME to estimate the modifiers. 
This reduction in the performance of the proposed algorithm can be explained because of the 
use of transient measurements (and not steady-state measurements) to estimate the modifiers. 
Nevertheless, the algorithm could reach a stationary point in the neighborhood of the process 
optimum in a short time. The small errors obtained can be attributed to the low sensibility that 
this variable can have in 𝜙௣ near to the optimum (flat zone commented from Figure 5).   



 

Figure 10: Comparison of the cost function with DOMA+DME (dark blue), DOMA with perfect 
modifiers (orange) and without MA (green). The light blue line corresponds to the plant 

optimum. 

 

    

Figure 11: Comparison of the control actions with DOMA with DME (dark blue), MA with 
perfect modifiers (orange) and without MA (green). The light blue line corresponds to the 

plant optimum. 

We made comparisons between the dynamic optimizer without modifiers, DOMA using perfect 
modifiers and DOMA with the modifiers obtained with the DME method. Comparisons with 
other papers that use the Williams Otto case study are not easy, as, surprisingly, many of them 
do not use the same models and parameters (Table 1). Besides, the comparison is subject to the 
value of the algorithm's parameters that must be estimated from previous simulations and then 
implementation of the algorithm. Nevertheless, just to illustrate the order of magnitude of the 
ratio between the time to convergence using gradients estimated online with process 
measurements and considering the gradients known, the DOMA using DME achieve a value 
about 3 (140 minutes /50 minutes).  
Finally, noise has been added to the process reflecting in 4% oscillations in the cost function, as 
shown in Figure 12.  The noise decreases the performance of the DME algorithm, creating a 
small offset in the decision variables. 

 



  

Figure 12:  Up: Cost function without (dark blue) and with (orange) noise added to the process. 
Bottom: control efforts without (dark blue) and with (orange) noise added to the process. The 

light purple line corresponds to the plant optimum. 

 

6 CONCLUSIONS 
 

This paper aims to study new ways of improving the practical application of MPC and RTO in 
industrial processes and their integration under the MPC framework. Good models are a key 
element of these technologies, however, as they are only approximations of reality, and usually 
not well maintained, a successful application in the industry depends on the integration of 
correction tools such as Modifier Adaptation. In addition, because of the time scales of many 
processes in the industry, these tools need to be applied on-line at rates much higher than the 
large number of steady states required by traditional MA. This paper wishes to contribute to the 
research in the field proposing one approach that combines standard RTO, MPC with Modifier 
Adaptation methodology and an additional module for direct estimation of the modifiers. The 
case study presented showed that this new approach can achieve values quite close to the real 
economic optimum operational point despite the parametric and structural mismatch between 
model and process. As the performance of the proposed algorithm depends on the value of the 
weighting factors from the different optimization problems, this can be a drawback to 
implementation in a real process. More research is required to analyze the joint operation of 
the three modules and a methodology to select tuning values, but this is out of the scope of this 
work. To improve the convergence time, further research might investigate other approaches 
for the balance between performance and stability, besides the application of different process 
gradients estimation methods from transient data. Future work also aims to formalize DOMA 
regarding the properties of the model that can ensure convergence of the method and 
conditions for convergence. Beside it will be studied the use of linear models in DOMA, as 
happens in industrial MPC controllers such as DMC (Dynamic Matrix Control).  
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NOMENCLATURE 
 

Nomenclature 
𝐸௔ Activation energy 
𝐹 Flow of component 

𝒇     𝒉 Model equations 
𝒈 Constraints of the optimization problem 

𝑖  𝑗 Index integer or component 
𝑘 Current iteration  

𝑛௨ Control horizon  
𝑛௣௥௘ௗ Prediction horizon  

𝑛௘ MHE horizon 
𝑛ௗ DME horizon 
𝑛௚ Number of constraints 
𝑝 Cost or price of reactants or products 
𝑸 Positive definite matrix with weighting and/or 

normalization factors 
𝑟 Reaction rate  
T Temperature  
𝑡 Time 
𝒖 Manipulated variable 
VR Reactor volume  
𝒗 Disturbances in state variables vector 
𝑋 Molar concentration  
𝒙 State variables vector 
𝒙ෝ Estimated state variables vector 
𝒚 Output variable 

Greek letters 
𝜶 MA filters 
𝜙 Cost function of the optimization problem 
 Weighting factors 
𝝀 Cost function first order MA modifiers 
𝜸 Constraint first order MA modifiers 
𝜺 Constraint zero order MA modifiers 
𝒗 Disturbances 
𝜽 Decision variable of DME module  
𝚲 Filtered modifiers 
 Weighting factor 

Superscript 
* Optimum  
^ Value estimated 
— Value at the end of the prediction horizon 
M Measured 
S Subset 

Subscript 
p Plant 
M Cost function or constraint with MA modifiers   
𝑘 Current iteration 

𝑝𝑟𝑒𝑑 Value at the end of the prediction horizon 
DME Values calculated in the DME module 
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