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ABSTRACT

The design of delay-dependent robust H controllers is solved here for a class
of uncertain 2-D continuous systems: those with interval time-varying delays
and norm-bounded parameter uncertainties. By constructing a novel augmented
Lyapunov-Krasovskii functional and then using the Wirtinger inequality, a new
delay-dependent stability condition is developed, that uses the known lower and
upper bounds of the time-varying delays to develop less conservative solutions that
previous results in the literature. This condition is then applied to Hs performance
analysis and robust He controller design, using linear matrix inequalities (LMIs).
Two numerical examples are presented that illustrate the effectiveness of the pro-
posed method.
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1. Introduction

Most real-world physical systems have, by nature, multidimensional characteristics, so
many researchers are currently studying two-dimensional (2-D) systems. These studies
on 2-D systems can generally be easily extended to other multidimensional systems,
which is not the case for 1-D results. 2-D linear state-space models were introduced
in the 1970s (Fornasini & Marchesini, 1976, 1978; Givone & Roesser, 1972), and are
being applied to various science and engineering problems, in digital data filtering,
in image processing (Roesser, 1975), in thermal engineering (Kaczorek, 1985), etc.
These applications prompted theoretical developments, concerning stability analysis,
stabilization, filter design for 2-D systems, etc, in both the discrete and continuous
frameworks (See, for example, Alfidi & Hmamed (2007); Badie et al. (2018a); Benza-
ouia et al. (2011b); Dhawan & Kar (2007); Du et al. (2001); Hmamed et al. (2008,
2013) and references therein).

The phenomena of time delays are considered here, as they are an inherent part of a
wide variety of dynamic systems, such as nuclear reactors, aircrafts, chemical processes,
etc. The presence of time delays are known to lead to complex dynamic behaviors, such
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as oscillations, instabilities or degraded performance (Boukas & Liu, 2001; Fridman &
Shaked, 2002). Thus, analyzing stability and designing controllers that are adequate for
systems with time delays is receiving significant attention. It should be mentioned that
the stability criteria can be classified into two categories, namely, delay-independent
(Benzaouia et al., 2011a; Bokharaie & Mason, 2014; Paszke et al., 2004; Souza et al.,
2009) and delay-dependent (El Aiss et al., 2017; Kwon et al., 2016; Sun et al., 2010).
Delay-independent stability conditions do not take the delay size into consideration, so
they are conservative for many systems, specially if the delay is small. Therefore, delay-
dependent stability criteria are being studied: for 2-D delayed systems, Yao et al. (2013)
developed some delay-dependent stability criteria for uncertain 2-D state-delayed sys-
tems in the Fornasini-Marchesini second model by using Lyapunov function methods
and free weighting matrices techniques. By employing a delay decomposition approach
Hmamed et al. (2016) presented some delay-dependent stability criteria for a class of
continuous 2-D delayed systems, which improves the existing results in Benhayoun et
al. (2013). Recently, by the use of the auxiliary function-based integral/summation
inequalities (Park et al., 2016) some delay-dependent stability criteria for 2-D delayed
systems in discrete and continuous-time have been presented by Badie et al. (2018b,c).
It must be pointed out that in practice delays are not constant, so stability, control and
filtering for systems with varying delays is currently a hot topic. In the 2-D context
some results have already been reported that consider varying delays: for instance,
El-Kasri et al. (2013) solved delay-dependent robust H., filtering for uncertain 2-D
continuous systems described by Roesser model with time-varying delays. In Ghous
& Xiang (2016a), a free-weighting matrix approach was proposed to investigate the
robust stability and H,, control problems of uncertain 2-D continuous systems with
time-varying delays. Recently, Le & Trinh (2017) has proposed new delay-dependent
conditions that ensure the exponential stability for a class of 2-D linear continuous-
time systems with time-varying delay. However, the results in (El-Kasri et al., 2013;
Ghous & Xiang, 2016a; Le & Trinh, 2017) assume that the lower bounds of the delays
are zero, but most engineering systems with delays have non-zero lower bounds: this
means that they are interval delays. Thus, existing delay-dependent stability criteria
for 2-D continuous systems with varying delays would generally be conservative in the
presence of interval delays. Removing these conservative limitations is becoming very
important. This motivates the present study: a delay-dependent stability criterion is
developed that considers explicitly interval delays.

In addition, H, control is considered here: this research area is nowadays rather
popular, as it deals with robustness in a practical way. It has been studied in detail
for different types of systems during the last decades. For the problem at hand (2-D
systems with delays), we refer the reader to (Badie et al., 2019; Ghous & Xiang, 2015,
2016a,b; Ghous et al., 2017); for example, Hy, control of 2-D continuous nonlinear
systems with time-varying delays has been solved in Ghous & Xiang (2015). In Ghous
& Xiang (2016b), the Ho control problem of 2-D continuous switched systems with
time-varying delays has been studied. In Ghous et al. (2017), the stability analysis and
H, control problem of 2-D continuous-time Markovian jump systems with partially
unknown transition probabilities have been studied.

Thus, this paper consider the stability analysis and Ho, control for 2-D uncertain
continuous systems with interval time-varying delays and norm-bounded parameter
uncertainties. By constructing a Lyapunov-Krasovskii functional, using the Wirtinger
inequality and the reciprocal convex combination technique, an approach is derived
for analyzing stability, which can achieve less conservative results than those in (El-
Kasri et al., 2013; Ghous & Xiang, 2016a). Then, the H,, performance analysis for



the uncertain 2-D continuous systems with delays is proposed. As a result, a robust
controller is designed in terms of linear matrix inequalities (LMIs). Two numerical
examples illustrate the effectiveness and the merits of the proposed approach.
Notations Throughout the paper, R" denotes the n-dimensional real Euclidean
space, R™*™ denotes the set of n x m real matrices. I and 0 represent the iden-
tity matrix and zero matrix respectively. ||.|| denotes the Euclidean norm. The
superscripts 7" and —1 stand for the matrix transpose and inverse, respectively.
P > 0 denotes a real symmetric and positive definite matrix. (%) are terms in-
duced by symmetry in symmetric matrices. diag{...} denotes a block diagonal matrix.
sym(M) is the shorthand notation for M +M7". The L norm of a 2-D signal w(ty, o) is

||w||2=¢ / / W (b, ta)w(ty, ta)dt dia,
0 0

where w(t1,t2) is in L2{[0,00),[0,00)} or, as shorthand, in Ly if ||w]|]2 < oo.

2. Problem Statement and Preliminaries

This paper considers the following class of 2-D continuous Roesser-like model with
varying delays:

Oz" (t1,t2) h h
o | =4 [5" (tl’t2>] +4 [”3 (h _h(tl)’tQ)] + Bu(ty, ta) + Bu(ty, t2)
Ox? (t1,t2 v d v _ 1,02 1,02),
[8(152) X (tl,tQ) x (tl,tz d(tg))
_ A2t t) a"(tr — h(t1),t2)
Z(tl,tg) =C |:xv(t1,t2) +C J)v(tl,tQ B d(tg)) + Dw(tl,tg) + Fu(tl,tg),

(1)
with

A+ AA, Ag=A;+AA;, B=B+AB,

A=

A Aro Aanr Aaiz By Eq
I R b IR A R b U
C:

[C1 C2], Ca=[Cau Car],

where 2(t1,t5) € R™, is the horizontal state vector, zV(t;,t2) € R™ is the
vertical state vector, w(ti,t2) € R™ is the disturbance input, that belongs to
L2{[0,0),[0,00)}, and z(t1,t2) € R is the measured output. Ajj, A2, A21, Aga,
Adu, Adlg, Adgl, AdQQ, Bl, BQ, El, EQ, Cl, CQ, th Cdg, D, and F' are assumed to
be constant matrices with appropriate dimensions. AA, AAy, and AB are uncertain
matrices of the following form:

[AA AAq AB| =GF(t1,tz) [ Hi Hy Hz], (2)



where

G:|:g;:|v Hy=[Hu Hi2|, Hy=|Hoy Hoyl,

and Hs are known real constant matrices, and F(t1,t2) is an unknown continuous
matrix satisfying:

Fl(ty,t2)F(t1,t2) < I. (3)

h(t1) and d(t2) are time-varying continuous differential functions, that represent
the varying state delays along horizontal direction and vertical direction, respectively,
satisfying:

hi < h(t1) < he, h(ty) < pp <1, hiz = hy — ha, ()
di < d(t2) < do, d(ta) < pa <1, di2 = dg — dy.

where hy, ha, di, da, p1 and po are positive scalars.
The initial conditions are given by:

a0, ts) = Po(t2), —ha<O<0, 0<ty<Th,

a"(0,t2) =0, —hy <O <0, tr>T, (5)
$v(t1,5):g05(t1), —d2 §5§0, ()Stl §T1,

$v(t1,5)20, _d2§6§0> tl ZTlv

where T} < oo and Ty < oo are positive constants, ¢g(t2) and @s(t1) are given contin-
uous vectors.

Remark 1. The term uncertainty refers to the differences between models and real
systems. The polytopic and norm-bounded uncertainties are the most used represen-
tations. In the present paper, we consider the problems of robust stability and H.,
control for uncertain 2-D continuous systems with interval time-varying delays and
norm bounded parameter uncertainties, where the uncertain system is represented by
a nominal model at the center of the hyper ellipsoid of uncertainty in the parameter
space.

Remark 2. When the lower bounds h; and d; are zero and Cy = 0, system (1)
becomes the system studied in Ghous & Xiang (2016a). Therefore, system (1) is more
general than the one considered in Ghous & Xiang (2016a).

The uncertain matrices AA, AA; and AB are said to be admissible if both (2) and
(3) hold.
When w(tq,t2) = 0 and u(t1, t2) = 0 system (1) becomes the free system:

" (t1,ts) h h
sl BN S L CHEYR BN R N
[f)gi”] _A{xvm,m) AL oty by — hy) | ©

Definition 2.1. (Ghous & Xiang, 2016a) The 2-D continuous system (6) with bound-



ary conditions (5) is said to be asymptotically stable if

im  sup|lz(ts, 2)]| =0, (7)
(t1+t2)*)00

where
T
w(tl,tg) = [fL‘hT(tl,tg) I'UT(t]_7t2) ] .

Definition 2.2. (Hmamed et al., 2010) Let V(t1,t2) = V"(t1,t2) + V¥ (t1, 1) be a
Lyapunov functional of the system (6): then, its unidirectional derivative is

8Vh(t1,t2) 8V”(t1,t2) (8)
oty Otoy ’

Va(ty,t2) =
Lemma 2.3. (Benzaouia et al., 2011a) The 2-D system (6) is asymptotically stable
if its unidirectional derivative (8) is negative definite.

Lemma 2.4. (Seuret & Gouaisbaut, 2013) For a positive definite matrix R > 0, and
a differentiable function {y(u),u € [a,b]} the following inequality holds:

b
. . 1 7 - 3 _
[ i @Rie)do > ;=T RS + =T R, 9
where
= = ylb) - yla),
2 b
=2 = ) +v(a) - 7 [ vl)da

Lemma 2.5. (Sun et al., 2009) For a positive definite matrix R > 0, and a differen-
tiable function {y(u),u € [a,b]} the following inequality holds:

a)dadB > 225 RE;, (10)
[ [ i
/ / a)dadB > 25T RE,, (11)

where

1 b
= = y(b) —
s = 0~ = [ wleda,

1 b
== @) - o [ wla)da,

Lemma 2.6. (Reciprocal convexity lemma Park et al. (2011)) For any vector € R™,
positive definite matrices Ry, Ry € R™ "™, matrices X1, X9 € R"™™ S € R™ " and



real scalar o € [0, 1], the following inequality holds:

L ror I ror | X1 g Ry S X1
_;C Xl R]'X]‘C_EC X2 RZXQCS_C- X2 * R2 X2 C’

. R S
subject to [ . R2} > 0.

Lemma 2.7. (Xie, 1996) Given matrices © = ©T,Y and Z with appropriate dimen-
sions, then for any F(t1,ts) satisfying FT (t1,te)F(t1,t2) < I,

O+ YF(t1,t2)Z + ZTF(t1,t2) YT <0,
if and only if there exists a scalar € > 0, such that
©+eYY 471277 <.

Lemma 2.8. (Schur complement Boyd et al. (1994)) For given symmetric matrices

g oT — {511 512]

*  Sog

where S11, Soo are square matrices, the following conditions are equivalent
(1) S <0
(2) S11 <0, Soo — SESﬁlsu < 0;
(3) Sap <0,  Si1 — S1255 STy < 0.

In this paper, the robust H., control problem is solved for the 2-D system (1) using
the following state feedback controller:

u(tl,tQ) =K [i:gi:g; :| (12)

where K = [ K, Ky ] is the controller gain to be determined.
From (1) and (12), we obtain the following closed-loop system:

8$h(t1,t2) h h
o | _ 4 | 2"(t1,t2) » | x2(t — h(t1),t2) .
[ %tl’b) ] = Ac |:J:‘v(t1,t2) +Ad .’L’U(tl,tg _ d(tg)) + Bw(tl,tQ),
o xh(tl,tg) :Eh(tl — h(tl),tg)
2(t1,t2) = Ce [x”(t1,t2) +C, (1.t — d(t)) + Dw(ty,t2), (13)

with
A,=A+AA+EK, C,=C+FK.

Then, the robust H,, control problem to be addressed in this paper can be formulated
as follows:



Given a 2-D system (1) and a prescribed level of noise attenuation v > 0, determine
the matrices K; and K of the controller (12) such that the following requirements
are satisfied:

(i) The closed-loop system (13) with w(t1,%2) = 0 is robustly asymptotically stable.
(ii) Under zero boundary condition, it holds that

12ll2 < yl[wl]2, (14)

for a prescribed v > 0.

3. Main Results

3.1. Stability analysis

This subsection focuses on the problem of robust stability analysis for the uncertain
2-D continuous system with interval varying delays (6).

Theorem 3.1. The 2-D continuous system (6) with parameter uncertainties (2)-(3),
varying delays (4), and boundary conditions (5) is robustly asymptotically stable if
there exist symmetric positive-definite matrices P", P?, ?, 7 R;-L, R}’, Z,};, Zy,
appropriately dimensioned matrices Mih, MZ-”,S’}’, SY and positive scalars ey, (i =
1,2,3), (1 =1,2), (k=1,...,4), such that the following LMIs hold.

W+ sym(Uy + JlT./\/l.AJl) JlT./\/lG €1J1THT i
T = * —e1l 0 <0, (15&)
i * * —eal |
W+ sym(Uyo + JlT./\/l.AJl) JlT./\/lG €2J1THT i
Ti9 = * —eol 0 <0, (15b)
i * * —eol ]
W+ sym (U + JlT./\/l.AJl) JlTMG €3J1THT i
Tgl = * —83[ 0 < 0, (150)
i * * —e3l ]
W+ sym(Uao + JlT./\/l.AJl) JlTMG €4J1THT i
Yoy = * —eyl 0 <0, (15(1)
i * * —eql |
diag{(R} + Z%),3(RS + Z})} s"
Uy = . > 0, 15
: { \ diag{(R} + Z1), 3(R + 21} (15¢)
_ | diag{(R3 + Z5),3(R; + Z3)} S
T2 = { h diag{(Ry + 23),3(Ry + zp)} | = O (150)
where

W = 4+ AT 4 ATPUAY,
Uy, = GhTphph 1 g Tpvpy,
Uy = G"P"D} +G"TP'D3,
Usi = GMTPhDh 1 GoT pope,



with

J1

Upy = G" P"D} +G°TP'D3,

€9 €1 €1 €10
e1—es | D= | hen |, Dy=| hen |,G"=|e—es |,
| e3 —e7 hige1s hi2e15 €4 — €
[ e €
dierz |, Dy = | dierz |,
| dize1q dizeie
i T M ash T M AT T 17T r T 7T
€1 My 0O Ay Ay Hiy
g wp o | | A #l
€5 — 2 — — 21
o | M7 0wy ATl aly | T Eh |
€9 M0 ~I,, 0 0
| €10 | | 0 M3 L 0 —1Iy, | 0]
[ €3 — €5 €4 — €p
es3 + e5 — 2eq3 AV — eq + eg — 2eq4
€ — €7 ’ € — €8 ’
| e5 +er — 2e1s eg + eg — 2eiq
[ diag{ R}, 3R}} Sh o _ | diag{R3, 3RS} Sv
* diag{R’Ql,SRg}] T [ * dia{RY,3R5} |’

ef (QF + Q5 + Qf)er — e§ Qes — e7 Qber — (1 — p)es Qfes

+e3 (QF + Q3 + Q5)ez — €5 Qfes — e§ Q3es — (1 — pa)eg Qheo

—i—h%egR?eg — (e1 — eg)TRiL(el —e3) —3(e1 +e3 — 2611)TR}f’(61 + e3 — 2e11)
+diefgRiero — (ea — ea) R (e2 — e4)

—3(62 +e4 — 2612)TR11}(62 +e4 — 2612) + h%2€gR3€9

h2
+d%26{0R5610 + ?163;2{169 — 2(61 — 611)TZ{1(€1 — 611)

d? h2
+?16{0Zf610 — 2(62 — 612)TZi}(62 — 612) + ?163’2369
2

d
—2(63 — 611)TZ{Z(€3 — 611) + Eler{odew — 2(64 — 612)TZ;}(€4 — 612)
2

h
+%69TZ§69 — 2(63 — 613)TZ§Z(63 — 613) — 2(65 — 615)TZ§(€5 — 615>

2

d
+%6{OZ§610 — 2(64 — 614)TZ§(64 — 614) — 2(66 — 616)TZ§)(66 — 616)
2

h
—i—%eépieg — 2(65 — 613)TZ£(65 — 613) — 2(67 — 615)TZ£(€7 — 615>

d2
-l-%e{OZZelo —2(eg — 614)TZ}1}(66 —e1q4) — 2(es — elﬁ)Tfo(eg —e16)



and the elementary matrices ey, (m = 1,2, ...,16) are defined by:

[ On;l,(p—l)n Nh Onh,,(S—p)n ] ) (p = mT_l), Zf m 1S Odd,'

em =
[Onv,(p—l)n N, Onv,(S—p)n ] ) (p = %)7 if m is even;

with Ny = [ I, Oppny |s No = [ Onyin I, |-

Proof. In order to proof the stability for system (6), we select the following Lyapunov-
Krasovskii functional candidate:

V(t1,ta) = V(t1, ta) + V¥(t1,ta), (16)

with

7

t1,t2 Z (t1,t2),

=0
Vit t2) = " (1, t2) P CM (11, 1),

2 tl tl
tl,tz Z/ a t2 Qh h(a tQ)dOt-l-/ th(oz,tg)an:h(a,tg)da,
i=1 vt~ h”

t1—h(t1)

o

t1

Vi (t1,ta) = hl/ #"" (v, t2) R} 3" (a, tg)dad,
hy Jt1+p

—hy
Vi (t1,t2) —h12/ / (a, t2) Rba"(a, t2)dad B,
ho t1+5

0 0
VIt te) = / / (o, t2) Z0E" (o, to)dadBd,
hi JA t1+5

A
/ / / (v, to) ZR i (, tg)dad BdN,
hi hi t1+ﬂ

1 hl
/ / (a, t2) Z (a, to)dadpdA,
ho A t1+ﬁ

/,
:/_h;/A " )2l (0, t)dadBd),

Oé tz
hy Jty "rﬁ

Vi (t1, t2)
Vi (t1,t2) =
Vi (t1, t2)
and

U(t1,t2) = ZVU (t1,t2),
Vo (t1,t2) = C (t1,t2)PUC(t1,t2),

t2 t2
VI (t1,t2) = / T(t1,0)QYx" (2, )da+/ d(t)m”T(tl,a)ng”(tl,a)da,

to—
VY (t1,t2) :dl/ / T(t1, ) RY3" (t1, a)dadpB,
—d; t2+5



V tl,tQ —dlg/ / tl, R2$ (tl, )dOzdﬁ,
t2+ﬁ

Lty te) = / / / (a, t2) Z72" (t1, a)dad BdA,
dy dl‘i‘ﬁ

Vi (t1,t2) —/ / / (o, t2) Z3 2" (t1, o)dodBdA,
dl dy t2+,3

dy
tlatQ / / tl, Z3.'17 (t17 )dadﬁd)\,
t2+ﬁ
V7 (t,t2) = / / T(t1,0) 23" (t1, a)dadBd,
—ds —d2 terﬁ
where
iﬂh(thtz) t zV(ty, ta)
M (t1,te) = ftl hy z"(a, ta)da | | CY(t1,t2) = ft; g TU(tha)da |
Nl :1 xh(a,tg)da tt; g, TV (ha)do
and " (a, o) = %ﬁ’h)’tl:a, iV (t, o) = M‘tz o
Define
ah(ty, ta)
hxv(tlatQ) hll t1 o z (Oé,tQ)dOé
x"(ty — hy,t2) i
ft g 2 (t2, )da
o ta ) e e
WO —hs 2
&(t1,t2) = col ( h(t1),t2) ’ h(t 1)1 ha —Z(lt 1) |
(tht?_ ( )) d(tz)—dy ftz t2) t27 )d
h(ty
v( h27t2) ﬁh() tlth(t) (Oé,tz)dOé
X (t17t2 _d2) 1 to—d(ta) o " d
i (ty,to) T Jieay T (t2, @) dx
\ iv(tlth) }
OVI(ty,t
8(1;2) = 2§hT(t1,tQ)QhTPhth(tth)+CChT(t1,t2)(Qlll-l—Qg-f—Qg)xh(tl,tQ)

—l’hT(tl — hl, t2)Q?$h(7ﬁ1 — hl, tg) — .ThT(tl — hg, tg)Q}fl‘h(tl — hg, tg)
—(1 = h(t2)2" (tr = h(t1), t2) Q1" (tr — (1), t2)

h2
+ " (b 12) (2R + 2 + Z3)i" (1, 1)
h3,
+5° 2iMT (ty,t9) (2R + Z8 4+ ZM il (11, t0)
t1
hl/ a tg R (Oz,tz)da
tl hl

t1— hl
—h12/ (v, t2) RB " (av, t2)dex
t1— h2

10



where
D" = [ef hiely (ha—h(t1)ely + (h(t) — ha)ely |

)

and

avv t 7t U v U VU v v v v v
;t; L 26T (t1,2)G T PUDVEY (t1, ta) + 27 (t1, £2)(QF + Qb + Q%) (t1, 12)
2T (ty,ty — d1) QY2 (t1, 2 — di) — V7 (t1,tg — d2)Q4a" (1,12 — da)
—(1 = d(t2))z"" (t1, t2 — d(t2))QY2" (t1, t2 — d(t2))
d2
5 @ (b, 1) (2RY + 21 + Z3)i (1, 12)

d2
+5 a7 (t1,t2)(2RY + Z8 + Z3)3" (t1, t2)

to

dl/ T(ty, ) RV (1) dav
to— d1
to— dl

—d12/ T(t1, o) Rya" (t1, or)dax

0
_ / T (ty, a) 205" (t1, o) dadf
dq t2+,3
0

ta+5
/ J'U”T(tl, a)Zy iz (t, a)dadf
—d1 to —d1

7d1 tzfdl
/ / T (ty, ) Z33° (t1, a)dadB
—dy Jt24f
/ d

—dy  pt2+pB
/ &7 (t1, @) 2" (tr, )dadf

—ds

where
D' = [f dief, (d—d(ta))ely + (d(tz) — dr)ely ]"

Y

By defining \* = h(t;l)ﬁ_hl and \Y = d(tz)m_dl we can write

Dh = MDh 4 (1 - \)Dh,

11



AUAPDRE 1 (1 = X)ONDE £ XY (1 = ADE + (1 - \%)(1 — \M)Dh,
AUDY + (1 — \V)D3,
= MNAUDY £ (1 = MAYDY + A (1 — A”)DY + (1 — A")(1 — \V)Dy.

D’U

It follows from the integral inequalities in Lemma 2.4 and Lemma 2.5 that:

t1
xhy / " (o, to) RUE" (o, to)dae > €T (8, t0){(e1 — e3)T R (e1 — e3)
ha
+ 3(61 + €3 — 2611)TR?(61 + €3 — 2611)}€(t1, tz), (17&)

ta
*dl / ivT(tl, oz)fo'”(tla)doz Z fT(tl, tg){(eg - 64)TR?{(62 - 64)
dy

+ 3(62 +e4 — 2612)TR11](€2 +e4 — 2612)}§(t1, tg), (17b)
t1—hy t1—hy
*h12 / .’i‘hT(Oé, tg)Rgdvh(a, tg)da = h12 / tﬁhT(Oé, tg)Rg‘a'ch(a, tg)da
tlfhz tlfh(tl)

tl h(tl)
- hm/ " (o, t2) RAE" (o, to)do >
tlfhg

hio T T ph
_ t1,t — R —
" _h(t1>€ (t1,t2){(es —e7)” Ry(es —e7)
+3(e5 + e7 — 2e15)" R (e5 + 7 — 2e15) }(t1, 12)
hi2 T T ph
_ t1,t — R —
) Sy (t1,t2){(es —e5)" Ry(e3 —e5)
+ 3(63 +e5 — 2613)TR3(€3 +e5 — 2613)}f(t1, tg), (17C)
t27d1 t27dl
*dlg / .’th(tl, Ol)RgiU(tl, Oz)dOé = d12 / C)'L‘UT(tQ, Q)Rng (tg, Oé)dOé
tg—dg t2_d(t2)

to—d(t2)
+ dig / i‘UT(tQ, Oé)Rgi‘v(tQ, Oé)dOé >
tz—dg

d
@_71;@2)?(751, t2){(es — eg) T RS (e — eg)

+ 3(66 + eg — 2616)TR12}(€6 + eg — 2616)}f(t1, tg)
T T pv
- t1,t — R —
i) - a6 (t1,t2){(es — €6)” R3(es — €6)
+ 3 64 + e — 2614) R§(€4 + e — 2614)}5(151, tg), (17(1)

*/hl /tl+5 (@, 02) 213" (o, t2)dadf >
Ty, t2){2(e1 — e11)T Z(er — enn) (b, ta), e

/ / T (ty,0) 20" (11, 0)dadB >
dy t2+ﬁ
€T (t1,t2){2(eq — €12)T Z¥ (eq — e12) }e(t1, t2), (17f)

t1+/3
*/ / (a, ta Zza: (a, to)dadf
hl t

éT(thh){?(e:a — 1) Z (es — enn) Ye(t, ta), (17g)
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t2+5
R / . /t T(t1,0) 23" (11, a)dad
éT(tl, t2) {2(64 — e12)" Z3 (es — €12) }E(t1, ta), (17h)

/ / (o, t0) Z0E" (a, ta)dad =
ti+p
/ / (v, t2) Z3i" (o, to)dad B
h(t) Jt.+8

)
/ / (v, t2) Z03" (av, to)dovd 3
t1+8

1

+ (hg - h(tl))/ ath(a,tg)ZgLih(a,tg)dadﬁ >
t1—h(t1)

1 (t1,t2){2(e3 — e13)T Z1(e3 — e13) + 2(e5 — e15)T Z0 (e5 — e15)

+ 3}12_)h(t;j( es +e5 — 2613)TZ§L<63 +e5 — 2613)}§(t1, tg), (17i)

/ / tl, )Zgj:”(tl,a)dadﬁ:
to+p
_dl
/ / T(t1,0) 233" (11, @) dad
d(t2) Jta+p
—d(tz2)
/ / T(t1,0) 253" (t1, ) dadd
ta+

T (dy — d(t)) / o T, 0755 (0,000t 2

€1 (t1,t2){2(es — e14)T Z3 (s — e14) + 2(e6 — e16)” Z3(e6 — e16)

M(&i —eq)" Z3(ea — e5)
+ 3d2_)d(621i(64 +e6 — 2e14)" Z3 (eq + e — 2e14) }(t1, t2), (17})

t1+,3
/ / (o, t0) Z0E" (v, to)dadB =
t

t1+ﬁ
/ / (o, t0) Z0E" (v, to)dadB
t

h(t1
h(tl t1+ﬁ
/ / (o, to) ZR il (, tg)dad B
t1
—h(ty)
+ (k) — hy) / A7 (1) 21N (0, 1) dad >
tl—hg
€T (t1, t2){2(e5 — e13) Z(e5 — e13) Ye(t, t2) + 2(e7 — e15)T Z(e7 — exs)
h(t1) — hy T h
+ ———(e5 —e7) Zj(es — e
hQ—h(tl)( 5 —e7) Zj(es —er)
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h(t1) — h1)
ha — h(t1)

t2+,3
/ / tla Z4SU (t17 )dOéd,B:
to
—dy t2+ﬁ
/ / T (15, 0) 2} (t, a)dadB
to

+3 (65 +e7 — 2615)TZ£(65 +e7 — 2615)}5@1, tg), (171{)

tz) tz)
—d(t2) pt2+8
/ / 7 (3, 0)) 243" (t2, a)dadf
ta
—d(t2)
T (d(ts) — dy) / 7 (12, 0) 243" (t2, 0)dodB >
to—do
7 (1, t2){2(es — e14)" Z{ (6 — e14) + 2(es — e16)” Z (es — €16)
d(tz) — da T
+ = (eg—eg)" Zj(eg — €
dz—d(tz)( 6 —e€s) Zj(es — es)
d(ty) —d
gzl —dy) (e6 + es — 2e16)" Z§ (es + es — 2e16) }E (11, 12). (171)
doy — d(t2)

According to Lemma 2.6, we have

et t2) (03 — e0)T (B + Z4)(es 3

+3(es + e5 — 2e13)" (RS + Z§) (es + 5 — 2e13) }Y(t1, t2)
() {(es — e (B + Z0)es )

+3(es + er — 2e13) " (R + Z1)(es + e7 — 2e15) }(t1, t2)
— &(t1, )T {(e3 — e5)T ZB(e3 — e5) + (e3 4 e5 — 2e13)T ZB(e3 + e5 — 2e13)

+ (65 — 67)TZ£(65 — 67) + 3(65 +e7 — 2615)TZ!11(65 +e7 — 2615)}£(t1, t2)
> &0 (t, t2) AF B A E(t, 1),

and

€t ) {(es — o) (B3 + Z8) e — co)
+ 3(eq + e — 2e14)T (RS + Z3) (e + e — 2e14) YE(t1, o)
+ ﬁﬁ(ﬁ, ta)"{(es — es)” (RS + Z§)(es — es)
+3(eg + es — 2e16)” (RS + Z3)(e6 + es — 2e16) Y(t1, t2)
— &(t1, )T {(eq — e6)T ZY(eq — e6) + (e4 + €6 — 2e14)T ZY(eq + €6 — 2e14)

+ (66 — eg)TZX(€6 — 68) + 3(66 +eg — 2616)TZ}1)(66 +eg — 2616)}§(t1, tg)
> &1 (11, t2) AL By AL (t1, 1),

Following (6), for any free matrices Mf, MQh, Mz? , MY, M3 and Mg, with appropriate
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dimensions, we have:

. 2{[aﬁ@hw)]T[Aﬂl 0 ]+[aﬁ@1—hagjﬁ}T[Agl o]

Jiv(tl, tQ) 0 Mlv x”(tl, tg — d(tg)) 0 Mé)
dxh(titn) 1T h
+ 83:“?2,152) |: ]%3 ]\21} :| }
G 3
[ ah(t,to < [al(t — h(t1), t2) Ba?(t1.ta)
% { 4 |:£Cv(t1,t2) A ottty — d(ty)) | T 2t 12)
= 1(ty, to) {sym(JE M(A + GF(t1, t2)H)J1) }e(t1, 1), (20)

Combining together with (17a)-(20) yields

Vi(ti,ta) < €T(ty, t2){W + sym(U + JEMAJ, + JLGF (1, t2) HJy) }(t1, t2)
= ET(ty, ) {N"\II1; + (1 — A)AVIL + AP (1 — AY)IIyy
H(1 = A" (1 = A2 }é(t, t2),

where

My = W+ sym(Uyy + JEMAJ + JEMGF(ty,t2)HTy),
Iy = W+ sym(Uyz + JEMAJ + JLMGF(ty,t)HJy),
Moy = W + sym(Usy + JE MAJy + JE MGF(ty,t2)HJy)

( (t1,t2)HJ1)

Moy = W + sym(Uso + JLMAJL + JEMGF(t1,t2)HJY).

)

Hence, if II;; < 0, IT1o < 0, IIs1 < 0, and IIys < 0, are satisfied, then Vu(tl,tg) <0,
which ensures the robust asymptotical stability of system (6). Then, applying Lemma
2.7, if there exists positive scalars 1, €9, €3 and €4, the following inequalities hold:

W+ sym(Uyy + JE MATY) + el P T MGGT MY Ty + e Jl HTHI, <0, (21a)
W + sym(Uyz + JEMAT) + e LTI MGGTMT Ty + eoJT HTHJ, <0, (21D)
W+ sym(Usy + JT MAT) + e3 ' TI MGGTMT Ty + e3J] HYHJ, <0,  (21c)
W + sym(Uag + JE MATY) + e P T MGGT MY Ty +eqJ H'HI, < 0. (21d)

By using lemma 2.8, the inequalities in (15a),(15b),(15¢) and (15d) are equivalent to
conditions (21a),(21b),(21c) and (21d), respectively. This completes the proof. O

In the absence of uncertainties, Theorem 3.1 reduces to the following corollary.

Corollary 3.2. The 2-D continuous system (6) without parameter uncertainties (2)-
(3), time varying delays (4), and boundary conditions (5) is asymptotically stable if
there exist symmetric positive-definite matrices P", PY, ;”, 7 R;-L, R, Z,QL, Zy

and appropriately dimensioned matrices M, M? S" Sv, (i = 1,2,3), (j = 1,2),
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(k=1,...,4), such that the LMIs (15e), (15f), (22a), (22b),(22c) and (22d) hold.

W + sym(Uyy + JE MAJL) <0 (22a)
W + sym(Uyz + JT MAJ) <0 (22b)
W + sym(Uay + JF MAJ) < 0, (22¢)
W + sym(Uso + JE MAJL) < 0 (22d)

Remark 3. The number of decision variables involved in Corollary 3.2 in this paper
and Theorem 1 in Ghous & Xiang (2016a) are 12n? + 12n2 + 6ny, + 6n,, and 11.5n7 +
11.5n% + 2.5np, + 2.5n,, respectively.

Remark 4. It is well-known that the choice of the Lyapunov-Krasovskii functional
play an important role in reducing the conservativeness of the stability criteria. In the
present paper an augmented Lyapunov functional including some integral terms has
been used, which leads to exploit more information on the sizes of delays, in order
to develop a stability condition that does not create significant conservativeness in
the results. In addition, compared with the existing results, the Lyapunov-Krasovskii
functional used in this paper contains some additional triple-integral terms, which
plays an important role in the reduction of conservativeness. To the best of the au-
thors knowledge, it is the first time this Lyapunov functional is employed to solve the
problem of robust delay dependent stability for 2-D continuous systems with interval
delays.

Remark 5. It is well known that the conservatism of the delay-dependent stability
criteria depends on not only the choice of Lyapunov-Krasovskii functional but also
the estimation of the integral terms appearing in the derivative of some Lyapunov-
Krasovskii functional. Different from the free-weighting matrices technique employed
in Ghous & Xiang (2016a), this paper uses the Wirtinger inequality to estimate the
derivative of Lyapunov-Krasovskii functional. As a result, extra cross terms such as:

hi2
71571(151, tg){(€5 +e7r — 2615)TR§L(€5 +e7 — 2615)}§(t1, tg)
he — h(t1)
were used in the delay-dependent stability condition, which are effective in the reduc-
tion of conservatism.

4. H,, Performance Analysis

Theorem 4.1. For given scalars 0 < hy < ho, 0 < dj < da, p1, p2 and vy, system(1)
with u(ty,te) = 0 is robustly asymptotically stable with a prescribed Hs, performance
v if there exist symmetric positive-definite matrices P*, P?, ?, 7 R?, R}’, Z,?,
7y, appropriately dimensioned matrices Ml-h, MY, Sh, 8V and positive scalars €y, (i =
1,2,3), (j = 1,2), (k =1,...,4), such that the LMIs (15e), (15f), (23a), (23b),(23c)
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and (23d), hold.

Ti1w

Toow =

where

with

v
1w

[ Wy + sym(Uriw + JEMuAGTw) =V fE o T JIMWG a1 JTHE
* —TI 0 0
* * —e11 0
L * * _51[ -
[ W + sym(Uizw + Ty MwAwdw) =V fh fu [1 TEMuG a2 H]
* —I 0 0
* * —82] 0
L * * _521 -
[ W + sym(Usrw + JEMuAwTw) — V2 fE fo T JIMWG e3JTHE
* -1 0 0
* * *63[ 0
L * * 783] -
[ Wy, + sym(Uszw + JEMyAwdw) =V FE o [T TEMWG e JEHT
* -1 0 0
* * —64[ 0
i * * * —eyql ]
Wy = S+ ALTOMAL + ATTOUAY
U = gZTPhDIfw + g;]JTPU 1lw>
Uhaw = G, P"DY, + Gyl P'D3,,
U1y = g{LLJTPhDSw + gZJTPU 1lw>
Uzzw = ngtlJTPhDSw + ngTPU 2>
o , bit . S J10
fi—f3 |, Dlw=| hifu |, Dy, = | hafun |, Go=|fo—fa |,
| fa— 17 hia f13 hia f15 fa—Tfe
[ f fo
difi2 |, Dy = | difi2 |,
| di2f14 di2 f16
- . - A 1T - 1T
fi MP 0 A’;l Agl HI;I
fa Oh MY Ajlﬁ A:%2 HlT2
5 My 0 Adll Ad21 Hy,
f6 7Mw = 0 Mé) 7~A: Aglg AdTgQ 7Hw = Hgg ’
fo Mh o0 ~I,, 0 0
fio 0 My 0 —I,, 0
fo | 0 0 Bl Bl | |
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<0,

(23a)

<0,

(23b)

<0,

(23¢)

<0,

(23d)



f3—1fs fa—fo

o | fstfs—2f13 v | fat+ fo—2f14 _
B = f5s— fr A = fo — f3 S =[O In., ],
Is+ fr—2f15 Je + fs — 2f16

f: = Cifi+Cafo+Cafs + Caafo + D fu,
o = QY+ Q3+ Q5 i~ f5 QU fs — [T Q5 fr — (1L — m) f5 Q3 fs
+f3 Q1+ Q5+ Q) f2 — [ QVfa — [ Q5 fs — (1 — p2) f§ Q3 fo
+hifs Ry fo— (fi— f3)"Ry(fr — f3) = 3(fr + f3 — 2f1) " RY(fL + f3 — 2/n)
+d3 figRY fio — (f2 — fO) T RY(f2 — f1)
—3(f2+ fa—2f12) "Ry (f2 + fa — 2f12) + hiafg Rh fo

+dia fio R 10 + hjng Zi fo = 2(fr — 1) ZY (fr = fua)

+djf1152ff10 —2(fa — f12)" 2} (f2 — fr2) + hjnggfg

—2(fs = 1) 21 (fs = fu) + djf%zgfm —2(f1 = f12)"Z3(fa — fr2)
+}§2ngng —2(fs — f13)" Z§ (f3 — f13) — 2(f5 — f15)" Z§(f5 — fi5)
+C§2f1T0Z§f10 —2(fa — f1a)" Z3(fa — fra) — 2(fs — f16)" Z5(fs — fi6)
+h;12f§’ Zi fo = 2(fs = f13)" Z0(fs = f1a) = 2(f7 = f15)" 21 (f7 = fis)
+Cl§2f17£)ZZf10 —2(fo — f14)" Z (fs — f1a) — 2(fs — f16)" Z{(fs — fre),

and the matrices f,,(m =1,2,...,16) are defined by

{ [em Onym, |+ if mis odd;
fm =

[em Ony ne, ] , if m is even;

Proof. According to (1) with u(t1,t2) = 0, w(ti,t2) € L2{]0,00),[0,00)}, and similar
to equality (20) we obtain:

0 — 2{ [mh(tl,m)]T[M{L 0 ]Jr[xh(tl—h(tl),tg)r[MgL 0 ]

.’L’U(tl,tg) 0 M}} l‘U(tl,tg — d(tz)) 0 Mé)
axh(tl,tz) T h
— M 0
+ Bz”?g,tg) |: 03 Mv:| }
Ot 3
[ t) ] g [ah = b)) ], g o)
" { . [ w(tnta) | T wr(t—d(t) | T Buth, ) = P ta)
= fg(tl, tg){sym(Jng(.A + G.F(tl, tQ)Hw)Jw)}fw(tl, tg), (24)

where fw(tl,tg) = [fT(tl,tQ) wT(tl,tQ) ]T.
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In addition, defining

J:/Ooo/ooo{zT(tl,tz)z(tl,ta)—wT(tl,tz)w(tl,tQ)}dtldtQ, (25)

By considering the Lyapunov-Krasovskii functionals in (16), and assuming the zero
boundary condition,

J < / / {(Vit1, o) + 27 (1, 1) 2(t1, 1) — w (t1, t2)w(ty, o) ydt1dta,
o Jo

:%ﬁAwﬁm@HWﬁswmm+ﬂMW%h+ﬁEﬂ%bmww
FFT = LT FuYew(tr, to)dt dts,
B /000 /000 St t2) PN T o+ (1= M)A Tz + A" (1= A) g
(1= A1 = Ao Y (tr, t2)dty dto,
where

Mitw = We + symUire + JEMuAwdw + JEMGGF (ty, to) HyJw)
+f?fz - ’72f£fw7

2w = We + sym(Uiow + JEMuAwdw + JEMGGF (t, te) HyJw)
+szfz - ’VQfZ:fw?

o1 = We + sym(Usiw + JEMuAwdw + JEMGGF (t1, te) HyJw)
+szfz - 72f£fw7

IIo9yy = Wy + Sym(Z/{QZw + JZ;MwAwa + JZ;MwG]:(tla tQ)Hwa)
+f:;ffz - 'Yquffw-

if Ili1, < 0, 19y < 0, 914 < 0, and Ilso, < 0, we obtain J < 0, which implies:
12115 < +?[[wl[3-

Then, applying Lemma 2.7, if there exists positive scalars €1, €9, £3 and &4, the following
inequalities hold

W + symUirw + JE My Awdy) + e ' TEMWGGT ML Ty + 61 JEHE H Y, T,

+ =7 fa fuw <0, (262)
Wi + sym(Uiaw + JEMpAwdw) + 5 TEMWGGTME Iy + 0 JE HE H,, T,
+ = fl fw <0, (26D)
W + sym(Usiy + JEMpAwdw) + 3 TEMWGGT ME Ty + e3 T HE Hyp T,
+ =7 fa fw <0, (26c)
Wi + sym(Uaaw + JE My Awdy) + €5 ' TEMWGGTME 7y + 4 JTHY Hyp oy
+ T fe = fi fuw <0, (26d)
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By using Lemma 2.8, LMIs (23a), (23b), (23c¢) and (23d), are equivalent to those in
(26a), (26b), (26c) and (26d) respectively. This completes the proof. O

5. Robust H,, Controller Design

Theorem 5.1. For some given scalars h1 < hy < 0, di < do < 0 and p1, pe,
the closed-loop system (13) is robustly asymptotically stable with a prescribed Hs,
performance 7y if there exist symmetric positive-definite matrices P*, P, 7?, 7;’, R?,
R}’, Z,?, Z};, appropriately dimensioned matrices Wih, we, S 5Y Y1 Yy and positive
scalars n, (1 =1,2,3), (j =1,2), (k=1,...,4), such that the following LMIs hold:

[ W + sym(Uriw + JEMuwAwdw) — V2 fE fu T JIMWG e1JTHE
* —I 0 0
) R 0 <0, (27a)
i * * * -ml |
[ W + sym(Uhow + JEMwAwdw) =V fE f [T JEMWG e HT
* -1 0 0
. . .y 0 <0, (27b)
i * * * —nel |
[ Wy + sym(Uorw + JEMuwAwdw) — V2 fL fo T JEMWG e3JTHY ]
* —1I 0 0
. . el 0 <0, (27¢)
i * * * —nsl |
[ W + sym(Uozw + JEMuwAwdw) — V2 fL fo T JEMWG e JTHT ]
* -1 0 0
. . ol 0 <0, (27d)
i * * * —nal
diog{(Ry+ Z) 3Ry + 2y 8 ) -
* diag{(R} + Z}}),3(Ry + Z})} |
diag{(Rj + Z3),3(R5 + Z3)} s
| ; diag (RS + Z7),3(Rg + 7)) | 7 © 10

where

We = By + AT 4 AVTRUAY
Unw = G, P"DY, + Gyl P'DY,,
Uiow = G P"DY, +GuT PUDS,,
Usiw = Gi'P"DY, +GUT P DY,
Usow = Gu P"DY, + Go P

2w>
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with

[ 1, 0] [ WhAT, +Y"E] WhAS, + Y E] !
0 I, WvAL + YL ET wvAL + Y ET
Inh 0 _ WhAgll WhA£21
0 I, |, Aw= WUAdTu WvAdTm )
I,, 0 ~wh 0
0 I, 0 —WY
0 0 I BT BY
= [HuW" HioW° HyuyWh" HeoW® 0 0 Hs |,
diag{Ry, 3RS}, S" ] g [diag{R3,3R5} 5
* diag{RE 3RE} |7 — * diag{RY,3R3} |’

= (CyWT £ FY) f1 4 (CoW'T 4+ FYa) fo + Can W f5 4+ CooWT f + D fo,
= fFQr+ Qs+ QM — Q1 fs— fFFQh fr — (1 — ) fL Qb f5

+f3 (QF + Q5 + Q) fo — 1 QY fa— f§ Q8 fs — (1 — p2) f§ Q3 f

+hifg Rl fo— (fi — f3)" RY(fr — f3) = 3(f1 + f3 — 2f1)) " RY(f1 + f3 — 2f11)
+d3 fioRY fio — (f2 — f0)TRY(f2 — f1)

=3(f2+ fa—2f12) "Ry (f2 + fa — 2f12) + hiafo RS fo

2
Vo B Fro+ "L 2 gy — 2fy — ) 2L~ )
2 2
+%f1Ttof10 —2(fo = f12)" 21 (f2 = f12) + %ngngg

2
~2(fs— )" 21 s — )+ B FRZ8 Fro 20 — fi2) 3~ o)

My
2

2
+%f1ToZ§f1o —2(fs— f1) " ZY(fa — f1a) — 2(fs — f16)T 28 (f6 — f6)

+22 178 fo — 2(fs — fi3)T Z5(fs — fr3) — 2(f5 — f15)" Z5(f5 — fr5)

2
+% P20 by —2(fs — f13)T Z0(fs — f13) — 2(fr — f15) T Z0(fr — fus)

2
+%f1Ttoff10 —2(fs — fr)T ZY (fs — f1a) — 2(fs — f16)T Z2(fs — fi6),

Moreover, the stabilizing feedback controller gains are given: Ky = Yi(WM)™T, and
Ky =Yy (W)~ T,

Proof. Replace Ajy, A2, A2, Az, C1 and Cs in (23a), (23b), (23¢) and (23d) with
A+ E1 Ky, Ao+ E1 Ko, As1+E5 Ky, Ass+FEs Ko, C1+F Ky and Co+F K, respectively,
and setting M} = MY = M} = M" and MY = MY = M} = M.

In addition, define

L — diag:{thl val Mh*l val Mh*l val} ERSHX&H,
L, = diag{L,I,,, I, ,e; ' In,e; ' I},  k={1,2,3,4},

L5 — dzag — {Mh_l,Mh_l,Mh_17Mh_1},

LG — dlag — {M’Uflevfl’thlevfl}7
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And set

P'=LsP"LY; P"=L¢P'LE; QF = MM'QiM™T; Q) = M ' QiM T
Rl = MM'RIMMT RV = MUT'RYMOTT Zp = MM ZE MM g =
Zy =M ZgMeT St = diag{ MM M"Y S diag{a" T MY

SY = diag{ M ™', M*~ 1} S diag{M*~T M~ T}, Wy = MPL W, = ML
Vi =K MYT Y= KoM (i=1,2,3), (1=1,2), (k=1,..,4).

Then inequalities (28a)-(28f) are equivalent to LMIs (27a)-(27f) respectively.

LT 1Ly < 0; (28a)

LI 190 Ly < 0; (28b)

L5113 < 0; (28c)

LI 99 Ly < 0; (28d)

LW, Ly < 0; (28e)

LE¥w,L6 < 0; (28f)

This completes the proof. O

Remark 6. Recently, the Wirtinger inequality has been applied to develop less con-
servative delay-dependent stability conditions for one-dimensional systems (Park et
al., 2015; Seuret & Gouaisbaut, 2013); however, most of existing results have focused
only on stability analysis, not considering the controller design problem. The main rea-
son for this, is that the Wirtinger inequality involves the introduction of an augmented
Lyapunov-Krasovskii functional, which makes the controller design task complex. In
this paper, we have solved the problem of robust H., controller design for uncertain
2-D continuous systems with interval time-varying delays, by the use of some free
matrices in (24), which facilitated the design.

6. Numerical examples
Example 6.1. Consider the well-known dynamical system (involved in gas absorption

water stream heating and air drying) described by the following Darboux equation with
time delays, which is used in Ghous & Xiang (2016a):

agq(:n,t)_ 8q(:v,t)+ 0q(x,t)

pRY T v a2, + apq(z,t) + azq(z,t — d(t)) + bu(z,t), (29)

where ¢(z, t) is unknown function at x(space) € [0, z¢] and t(time) € [0, 00), ag, a1, az,
asg and b are real coefficients, ho i is a varying delay and u(z,t) is the input function.
Let us define

Mz, t) = 8q(§i’ 2 — azq(x,t), ¥ (z,t) = q(z,t).
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Table 1. Calculated upper delay bound d2 for different
dy and pg = 0.3.

Method dyr =0 d1 =0.5 dy =1
(El-Kasri et al., 2013) 2.1843 — —
(Ghous & Xiang, 2016a)  3.9829 — —
Corollary 3.2 4.1685 4.2949 4.3945

It is easy to verify that equation (29) can be converted into the model (6) with

| a1 ag+aras . 0 as
A‘L as ] Ad_[oo]

To carry out a numerical study the following parameters are also fixed: ag = 0.2,
a1 =-3,a2=—-1,a3=-04,b=0.

The stability of this system cannot be solved by the delay-independent methods in
Benzaouia et al. (2011a); Hmamed et al. (2013). However, solving the LMIs developed
in El-Kasri et al. (2013); Ghous & Xiang (2016a) and those in Corollary 3.2 yields the
upper bounds on ds that ensure stability of system (29) for p = 0.3 and various d;
in Table 1. It can be seen clearly that our results provides larger delay bound than
the previous results of other studies when d; = 0. In addition, the stability conditions
provided by (El-Kasri et al., 2013; Ghous & Xiang, 2016a) cannot deal with the case
when d; # 0.

Remark 7. One of essential concerns of delay-dependent stability conditions, is to
obtain a maximum allowable upper bound of delay as large as possible such that the
system can remain stable. Thus, the obtained maximum allowable upper bound can be
considered as a significant index to evaluate the conservatism of the delay dependent
stability criterion. According to Table 1, we can conclude that the stability criterion
presented in this paper is less conservative for this example than that in (El-Kasri et
al., 2013; Ghous & Xiang, 2016a).

Example 6.2. Consider a 2-D system (1) with the parameters that follows:

AH A12 o 0.1 0.1 Adll Ad12 . —-0.1 -1

Agp Az | |02 01| | Agr Age| | 0 —09]°
Bi|_ 01 Ei]_[1 Gi]_T[03

By | |03] | Ex| |1] [G2f |04)

[C1 Gy ]=[082], [Ca Ca2]=[00], D=1, F=0.1,
[Hiy Hi2 | =[0103], [Hxn Hp|=[0102], H3=0.1,

The purpose is to design a robust controller in the form of (12) such that the closed-
loop system is robustly asymptotically stable and satisfies the H,, performance con-
straint (14).

Table 2. Minimum values of Hs performance v,,;, for given delays do and ha with

p1 = p2 =0.9.
Method do =h2 =04 dog=hs=0.8 do = hg =12 NoDv
(Ghous & Xiang, 2016a) 1.1025 1.5198 Infeasible 32
Theorem 5.1 1.0922 1.1776 1.4958 47
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Table 3. Comparison of minimum values of Ho, perfor-
mance Ypmin for g1 = p2 = 0.6.

di=h1 da=ho Ymin Controller gain K

0.2 0.6 1.1227 [-1.4518 — 5.6650]
0.8 1.1749 [-1.1434 —4.7879]

1 1.2486 [—0.9303 — 3.8634]

0.4 0.8 1.1719 [-1.1523 — 4.8618]

1 1.2455 [-0.9266 — 3.9396]

1.2 1.4105 [-0.8034 — 2.9520]

0.6 1 1.2411 [-1.1523 —4.8618]
1.2 1.3800 [-0.8059 — 2.9895]

1.4 Infeasible —

To compare our results with those in Ghous & Xiang (2016a), we use Theorem
5.1 with di = hy = 0. Table 2 shows a comparison results on minimum disturbance
attenuation 7, for different do and hy and p = 0.9, and shows also the number of
decision variables (NoDv) involved in each method.

In the case of hy > 0 and d; > 0, Table 3 shows the minimum H., performance
Ymin and the corresponding controller gains based on Theorem 5.1. It is obvious that
the achieved minimum ~,,;, and the corresponding controller gain K are related to
lower and upper bounds of delays.

150 60
100

50

h
x(tt,)

-50

-100

-150

-200

Figure 1. State responses of the open-loop system.

For the simulations we define:

F(t1,t2) = sin(0.3(t1 + t2)),
w(ty, ty) = 0.1e7000H2) cog(0.1(t) + 1)),
h(t1) = 0.9 + 0.3cos(0.67ty),
d(t2) = 0.9 + 0.3cos(0.67t2).
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Figure 2. State responses of the closed-loop system.

The varying delays h(t1) and d(t2) satisfying:

0.6 < h(t;) < 1.2, h(t1) < 0.6,
B :

zh(0,t) =2, —hy <H<0, O§t2§24
2h(0,t) =0, —hy <H<0, t9>12,
z¥(t1,0) =2, —d2<06<0, 0§t1§24 ’
a¥(t1,0) =0, —dp <6<0, t3>1.2,

It should be emphasized that the open-loop system is unstable (see Figure 1). This
problem cannot be solved by the approach in Ghous & Xiang (2016a), due to the fact
that hy # 0 and dy # 0. On the contrary by applying Theorem 5.1 in this paper we
obtain a feasible solution for the minimum H., performance vy, and the optimal
controller gain matrix K and they are 7, = 1.3800 and K = [-0.8059 — 2.9895].

After applying the controller u(ty,t2) = K [ " (ty,ty) VT (t1,t0) ]T, the closed-loop
system is stabilized as depicted in the state responses and the measured output of the
closed-loop given in Figures 2 and 3, respectively, which confirm that the designed
state feedback controller is efficient.

Remark 8. It should be pointed out that, the delay dependent stability and H
control conditions proposed in this paper, can address the situation that the lower
bounds of delays are not restricted to be zero, while the conditions in Ghous & Xiang
(2016a) fail to be applied in this case. On the other hand, according to Remark 3, Table
1 and 2, it can seen that our method developed in this paper gives less conservative
results than the method in Ghous & Xiang (2016a) by sacrificing more number of

25



z(t1 ,t2)

Figure 3. Measured output of the closed loop system.

decision variables. The main reason for obtaining such larger number is that our results
are derived based on the augmented Lyapunov-Krasovskii functionals (16), which takes
into account more information on the sizes of delays and especially the lower bounds.
In the future research, we will focus on reducing the number of decision variables in
stability and H., control for uncertain 2-D with interval time-varying delays.

7. Conclusions

In the present paper, the Wirtinger inequality has been exploited to solve the stabil-
ity analysis and robust H,, controller design problems for uncertain 2-D continuous
systems, with delays varying within a given interval, and affected by norm-bounded
parameter uncertainties. More precisely, a new delay-dependent stability condition is
proposed that thanks to the augmented structure of the proposed Lyapunov functional
and the use of Wirtinger inequality, is less conservative than previous ones from the
2-D systems literature. Based on this condition, a state feedback controller has been
designed to solve the associated H, control problem. Numerical examples demonstrate
the effectiveness of the proposed method.
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