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Abstract The stabilization of Takagi-Sugeno (T-S) systems
is solved here for the two-dimensional (2-D) polynomial dis-
crete case, by using the sum of squares (SOS) approach.
First, we provide a stabilization condition formulated in terms
of Polynomial Multiple Lyapunov functions (PMLF). Then,
a non-quadratic stabilization condition is developed by ap-
plying relaxed stabilization technique. Both conditions can
be used for design, by solving them using numerical tools
such as SOSTOOLS. A numerical example illustrates the
effectiveness of the results.

Keywords discrete 2-D systems · Sum-of-Squares (SOS) ·
stabilization · Takagi-Sugeno systems.

1 Introduction

Two-dimensional (2-D) systems [1], [2], are drawning great
attention in Systems Theory due to their extensive appli-
cations in practice, for instance, in multi-dimensional sig-
nal processing and transmission, and in thermal process. In
fact, 2-D systems are very appropiate to model physical pro-
cesses described by partial differential equations [3]. More-
over, 2-D techniques can also be applied as an analysis tool
to solve complex control problems, for example, PI control
of discrete linear repetitive processes [4], iterative learning
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control [5], and repetitive process control [2]. Several 2-
D models have been proposed, depending on the applica-
tion [6]. The approach here is inspired by [7], where suf-
ficient conditions for robust H∞ filtering were derived for
2-D discrete Roesser systems using homogenous polynomi-
ally parameter-dependent matrices of arbitrary degree, and
in [8], that dealt with a parallel problem with time-varying
delays.

These previous results focused on linear 2-D systems:
we aim here to study the 2-D non-linear systems that can
be represented using Takagi-Sugeno (T-S) models: these T-
S models [9] are attracting a great deal of attention because
they can effectively approximate a wide class of nonlinear
systems, which can then be treated by adapting some lin-
ear systems techniques. For example, quadratic stabiliza-
tion of T-S systems [10], [11] has been widely investigated
based on a common quadratic Lyapunov function and the
Parallel Distributed Compensation (PDC) [12], that unfor-
tunately tends to give conservative conditions. Many other
stability conditions for nonlinear systems have been investi-
gated (see, for instance, [10], [13] and references therein).
We emphasize here Multiple Lyapunov functions as they
lead to good results in the sense that a common Lyapunov
quadratic function may not exist but a multiple one exists
(see [14], [15]), making possible to ensure stability for a
wider class of nonlinear systems. Based on the T-S model,
relaxed stabilization conditions are given in [16], by consid-
ering the information of some membership functions. Stabil-
ity and stabilization conditions were derived for continuous-
time T-S models in [17]. Various state-space models for 2-
D systems have been suggested in [18] to solve complex
problems in different fields, for example, robust H∞ filter-
ing of T-S systems, and stabilization of T-S systems with
attenuation of stochastic perturbation. Relaxed stabilization
conditions were developed in [19] by using non-quadratic
stabilization conditions and a homogeneous polynomially

© Springer Nature Publishing AG. Journal of Control, Automation and Electrical Systems volume 30, pages 137–147 (2019)
https://doi.org/10.1007/s40313-018-00433-y
 



2 Redouane Chaibi1, et al.

parameter-dependent Lyapunov function. By using the basis-
dependent Lyapunov function approach and adding slack
matrices, the H∞ filtering problem for 2-D T-S systems de-
scribed by the Fornasini-Marchesini (FM) model was solved
in [20]. Sufficient LMI conditions were also studied in [21]
considering the effect of stochastic perturbations.

The techniques used here are instead based on a Sum-
Of-Squares (SOS) approach [22], which makes possible to
investigate the stability of polynomial systems for a range of
problems that is wider than the more extensively used LMI
approaches. SOS conditions can be numerically solved us-
ing off-the-shelf tools such as SOSTOOLS [22], [23]. More
precisely, we use techniques based on those in [24], for poly-
nomial T-S systems. SOS techniques have mainly been ap-
plied to 1-D continuous-time nonlinear systems: For exam-
ple, the stability of polynomial systems with time-delay was
presented in [25], using a novel polynomial Lyapunov-Krasovskii
functional; Stability conditions for continuous-time polyno-
mial systems were investigated in [26], by using polynomial
Lyapunov functions; finally, we mention the effective tech-
nique for constructing Lyapunov functions for continuous-
time multidimensional nonlinear systems in [27]. So far, few
approaches have been proposed to deal with 2-D T-S system
using SOS techniques: we can just cite [28], where a sta-
bilization condition of the discrete 2-D T-S system based
on polynomial Lyapunov functions has been provided. We
must point out that the fact that in 2-D systems the informa-
tion flows along two different directions makes controller
synthesis for 2-D T-S systems more complex and challeng-
ing, especially when a polynomial model is considered, i.e.,
a T-S model whose consequent part is represented by a poly-
nomial. Thus, this paper concentrates on designing the poly-
nomial T-S control for nonlinear 2-D system that are charac-
terized in the Roesser model; this is more challenging prob-
lem that parallel problems studied in the literature, such as
those in [29].

Thus, this paper delivers an SOS-based methodology to
solve the stabilization of Roesser-type polynomial discrete
2-D systems, whose consequent parts are depicted by poly-
nomials. In this manner, the polynomial nonlinearities can
be manipulated exactly and a large class of other nonlinear-
ities can be treated by introducing auxiliary variables and
constraints. We first derive a stabilization condition, based
on polynomial multiple Lyapunov functions. Then, a non-
quadratic stabilization condition is derived by using relax-
ation techniques. The proposed stabilization conditions are
represented in terms of SOS and are numerically solved (par-
tially symbolically) via SOSTOOLS [23]. We emphasize
that the stabilization approach discussed in this paper is more
general than existing LMI approaches to 2D T-S systems,
thanks to the use of the Sum-Of-Squares approach.

The remainder of the paper is organized as follows: Sec-
tion 2 provides the preliminaries and notation used through-

out the paper; the main results are presented in Section 3; a
numerical example is provided in Section 4 to demonstrate
the effectiveness of the developed approach; finally, some
conclusions are given in Section 5.

2 Problem Formulation

Notation:
• R: the set of real numbers;
• Z+: the set of nonnegative integers
• C1: the set of complex numbers
• I : identity matrix (of size specified by the context);
• λi(.): ith eigenvalue;
• ∗: represents a term that is induced by symmetry.

We consider here discrete nonlinear 2-D systems described
as follows:

x+(k, l) = Z (x(k, l))+S (x(k, l))u(k, l) (1)

xh(0, l) = f (l), xv(k,0) = g(k) (2)

with

x(k, l) =
[

xh(k, l)
xv(k, l)

]
,x+(k, l) =

[
xh(k+1, l)
xv(k, l +1)

]
,

where xh(.) ∈ Rn1 , xv(.) ∈ Rn2 are the horizontal and
the vertical state, respectively; u(.) ∈ Rm is the control vec-
tor; Z (.) and S (.) are nonlinear functions satisfying Z ,S
∈ C1; k, l are two integers in Z+; finally, f (l), g(k) are the
boundary conditions along the horizontal and vertical direc-
tions, respectively.

The following equivalent discrete 2-D T-S system will
be used, to represent the nonlinear Roesser system (1):
Rule i: IF z1(k, l) IS Mi1 AND,. . . , AND zs(k, l) IS Mis
THEN

x+(k, l) = Ai(x(k, l))x̂(x(k, l))+Bi(x(k, l))u(k, l) (3)

xh(0, l) = f (l), xv(k,0) = g(k)

with

Ai(x(k, l)) =
[

Ai
11(x(k, l)) Ai

12(x(k, l))
Ai

21(x(k, l)) Ai
22(x(k, l))

]
,

Bi(x(k, l)) =
[

Bi
1(x(k, l))

Bi
2(x(k, l))

]
where i = 1, . . . ,r, Mis are the fuzzy sets, zp(k), for p =

1, . . . ,s, are the premise variables, r is the number of IF-
THEN rules, x̂(x(k, l)) is a column vector whose entries are
all monomials in x(k, l) and Ai(x(k, l)), Bi(x(k, l)) are poly-
nomial matrices in x(k, l), with appropriate dimensions.
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These polynomial discrete 2-D T-S systems can also be
expressed in a more compact form as follows

x+(k, l) =
r

∑
i=1

hi(z(k, l)){Ai(x(k, l))x̂(x(k, l))

+Bi(x(k, l))u(k, l)}
(4)

where

hi(z(k, l)) =
wi(z(k, l))

∑
r
i=1 wi(z(k, l))

, wi(z(k, l)) =
s

∏
j=1

Mi j(z(k, l))

where Mi j(z(k, l)) is the grade of membership of z j(k, l)
in Mi j and wi(z(k, l)) represents the weight of the ith rule. In
this paper, we assume that wi(z(k, l))≥ 0, for i = 1,2, . . . ,r,
and ∑

r
i=1 wi(z(k, l))> 0 for all t. Therefore, we get hi(z(k, l))≥

0, for i = 1,2, . . . ,r and ∑
r
i=1 hi(z(k, l)) = 1 for all t.

Remark 1 The region of validity of this system is defined by
V0:

V0 = {x(k) ∈ Rn; |L(N)x(k)| ≤ η(N)} (5)

where η(N) > 0 and L(N) ∈ R1×n for N = 1, . . .n with n

representing the number of constraints that characterize the
allowed region for the closed-loop system in the state space.
For detailed discussions about the use of T-S models to rep-
resent exactly nonlinear systems inside a region V0 we can
cite [35,36]: although those results are for one dimensional
systems, they can be directly extended to multidimensional
systems, like the 2D T-S in this paper.

Some stabilization conditions for the 2-D polynomial
discrete systems in (4) will be later derived using the SOS
approach, which is now introduced.

Lemma 1 [30] For two symmetric matrices P > 0 and Q >

0, the inequality AT QA−P < 0 holds, if there exist a matrix
G such that[

P ∗
GA G+GT −Q

]
> 0

Definition 1 [22] A multivariate polynomial f (x), for x ∈
RN , is a SOS if there exist polynomials fi(x), i = 1, . . . ,n
such that

f (x) =
n

∑
i=1

f 2
i (x) (6)

This implies f (x)≥ 0 for any x ∈ Rn.

Lemma 2 [31] Let f (x) be a polynomial in x∈Rn of degree
2d. Let Z(x) be a column vector whose entries are all mono-
mial in x, with a degree no greater than d. Then, f (x) is said
to be SOS if and only if there exists a positive semi-definite
matrix Q such that

f (x) = Z(x)T QZ(x) (7)

3 Main Results

To simplify the calculations, the following notations will be
adopted:

hi = hi(z(k, l)), Mz(x̃) =
r

∑
i=1

hiMi(x(k, l)),

M−1
z (x̃) = (

r

∑
i=1

hiMi(x(k, l)))−1

K = {k1,k2, . . . ,kn} denotes the set of row indices of Bi(x̃)
whose corresponding row is equal to zeros; we then define
x̃ = (xk1 ,xk2 , . . . ,xkn). We will consider T (x(k, l)) that is a
polynomial matrix defined by x̂(x(k, l)) = T (x(k, l))x(k, l).

3.1 Stabilization Conditions Via Polynomial Multiple
Lyapunov function

In [33], a PDC control scheme and a polynomial Lyapunov
function are proposed for 1-D to obtain less conservative
stabilization conditions. In this paper we extend the PDC
scheme used in the literature for 1-D T-S polynomial fuzzy
systems to the 2-D systems studied in this paper. This 2-D
controller can be expressed as follows

Rule i: IF z1(k, l) IS Mi1 AND,. . . , AND zs(k, l) IS Mis
THEN

u(k, l) = Fi(x̃)x̂(x(k, l))

with i = 1, . . . ,r, and Fi(x̃) polynomial matrices of appropri-
ate dimensions to be determined. The overall 2-D controller
can be represented by

u(k, l) =
r

∑
i=1

hiFi(x̃)x̂(x(k, l)) = Fz(x̃)x̂(x(k, l)) (8)

the closed-loop system is given by

x+(k, l) =
r

∑
i=1

r

∑
j=1

hih j{Ai(x̃)+Bi(x̃)Fj(x̃)}x̂(x(k, l))

= (Az(x̃)+Bz(x̃)Fz(x̃))x̂(x(k, l))

(9)

Theorem 1 The polynomial T-S system (9) is asymptoti-
cally stable if there exists symmetric polynomial matrices
X j

1 (x̃)∈Rn1×n1 , X j
2 (x̃)∈Rn2×n2 , and a polynomial matrices

K j
1(x̃)∈Rm1×n1 , K j

2(x̃)∈Rm2×n2 , where ε i
1(x̃)> 0, ε i

2(x̃)> 0
for (x̃ 6= 0) and ε

i j
1 (x̃)≥ 0, ε

i j
2 (x̃)≥ 0 for all x̃ such that the

following SOS holds:

ν
T
1 (X

i
1(x̃)− ε

i
1(x̃)I)ν1 is SOS i = 1, . . . ,r (10)

ν
T
1 (X

i
2(x̃)− ε

i
2(x̃)I)ν1 is SOS i = 1, . . . ,r (11)

ν
T
2 Ω

mn
ii (x̃)ν2 is SOS i,m,n = 1, . . . ,r (12)

ν
T
2 (Ω

mn
i j (x̃)+Ω

mn
ji (x̃))ν2 is SOS (13)
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i < j i, j,m,n = 1, . . . ,r
with ν1, ν2 vectors of appropriate dimensions, that are inde-
pendent of x(k, l), and

Ω
mn
i j (x̃) =


Ωi j11(x̃) ∗ ∗ ∗

0 Ωi j22(x̃) ∗ ∗
Ωi j31(x̃) Ωi j32(x̃) Ω m

i j33(x̃) ∗
Ωi j41(x̃) Ωi j42(x̃) 0 Ω n

i j44(x̃)


> 0

(14)

Ωi j11(x̃) = X j
1 (x̃)− ε

i j
1 (x̃)I

Ωi j22(x̃) = X j
2 (x̃)− ε

i j
2 (x̃)I

Ωi j31(x̃) = T1(x̃+)Ai
11(x̃)X

j
1 (x̃)+T1(x̃+)Bi

1(x̃)K
j

1(x̃)

Ωi j32(x̃) = T1(x̃+)Ai
12(x̃)X

j
2 (x̃)+T1(x̃+)Bi

1(x̃)K
j

2(x̃)

Ω
m
i j33(x̃) = Xm

1 (x(k+1, l))− ε
i j
1 (x̃)I

Ωi j41(x̃) = T2(x̃+)Ai
21(x̃)X

j
1 (x̃)+T2(x̃+)Bi

2(x̃)K
j

1(x̃)

Ωi j42(x̃) = T2(x̃+)Ai
22(x̃)X

j
2 (x̃)+T2(x̃+)Bi

2(x̃)K
j

2(x̃)

Ω
n
i j44(x̃) = Xn

2 (x(k, l +1))− ε
i j
2 (x̃)I

Proof Considering the following polynomial multiple Lya-
punov function:

V (x(k, l)) = x̂T (x(k, l))Pz(x̃)x̂(x(k, l)) (15)

where Pz(x̃) is a polynomial matrix in x(k, l) such that

Pz(x̃) =
[

Pz
1(x̃) 0
0 Pz

2(x̃)

]
> 0

λmin(Pz(x̃))‖x̂(x(k, l))‖2
2≤V (x(k, l))≤ λmax(Pz(x̃))‖x̂(x(k, l))‖2

2

where λmin(.) and λmax(.) denote the minimum and max-
imum eigenvalueS of a matrix, respectively.

Note that if Pz(x̃) is a constant matrix and x̂(x(k, l)) =
x(k, l), then (15) reduces to the multiple Lyapunov func-
tion xT (k, l)Pzx(k, l) used in the literature: therefore (15) is
a more general representation, and will reduce conservatism
in the developed conditions.

The variation of (15) is given by

∆V (x(k, l)) = x̂+T (x(k, l))Pz(x̃+)x̂+(x(k, l))

− x̂T (x(k, l))Pz(x̃)x̂(x(k, l))

= x̂T (x(k, l))[(Ãz(x̃)+ B̃z(x̃)Fz(x̃))T Pz(x̃+)

× (Ãz(x̃)+ B̃z(x̃)Fz(x̃))−Pz(x̃)]x̂(x(k, l))

=−x̂T (x(k, l))Q1z(x̃)x̂(x(k, l))
(16)

where

−Q1z(x̃) = (Ãz(x̃)+ B̃z(x̃)Fz(x̃))T Pz(x̃+)

× (Ãz(x̃)+ B̃z(x̃)Fz(x̃))−Pz(x̃)

and

Ãz(x̃) = T (x̃+)Az(x̃), B̃z(x̃) = T (x̃+)Bz(x̃)

T (x̃+) =
[

T1(x̃+) 0
0 T2(x̃+)

]
=

[
T1(x(k+1, l) 0

0 T2(x(k, l +1))

]

Note that Q1z(x̃) are positive definite symmetric polyno-
mial matrices, and λmin(Q1z(x̃))> 0, so

x̂T (x(k, l))Q1z(x̃)x̂(x(k, l))≥ λmin(Q1z(x̃))‖x̂(x(k, l))‖2
2

Thus, ∆V (x(k, l)) is bounded as follows:

∆V (x(k, l))≤−λmin(Q1z(x̃))‖x̂(x(k, l))‖2
2, ∀‖x̂(x(k, l))‖2 <η(N)

∆V (x(k, l)) is negative if −Q1z(x̃)< 0

−Q1z(x̃) = [(Ãz(x̃)+ B̃z(x̃)Fz(x̃))T Pz(x̃+)(Ãz(x̃)

+ B̃z(x̃)Fz(x̃))−Pz(x̃)]< 0
(17)

Pre- and post-multiplying both sides of (17) by P−1
z (x̃), we

obtain (18) where P−1
z (x̃) = Xz(x̃) and Kz(x̃) = Fz(x̃)Xz(x̃),

i = 1, . . . ,r:

[Xz(x̃)(Ãz(x̃)+ B̃z(x̃)Fz(x̃))T X−1
z (x̃+)(Ãz(x̃)

+ B̃z(x̃)Fz(x̃))Xz(x̃)−Xz(x̃)]< 0
(18)

applying the Schur complement, we then have

Ω
mn
z (x̃) =

[
Xz(x̃) (Ãz(x̃)Xz(x̃)+ B̃z(x̃)Kz(x̃))T

∗ Xz(x̃+)

]
> 0 (19)

where

Ω
mn
z (x̃)=

r

∑
m=1

r

∑
n=1

r

∑
i=1

r

∑
j=1

hm(z(k+1, l))hn(z(k, l+1))hih jΩ
mn
i j (x̃)

Xz(x̃) =
[

X z
1(x̃) 0
0 X z

2(x̃)

]
,Xz(x̃+) =

[
X z

1(x̃
+) 0

0 X z
2(x̃

+)

]

X z
1(x̃

+) =
r

∑
m=1

hm(z(k+1, l))Xm
1 (x(k+1, l))

X z
2(x̃

+) =
r

∑
n=1

hn(z(k, l +1))Xn
2 (x(k, l +1))

and Ω mn
i j (x̃) are defined in (14).
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3.2 Stabilization Conditions for Polynomial System using
Non-PDC Control

In order to obtain more relaxed stabilization conditions for
polynomial discrete 2-D T-S systems, a Non-PDC control
law is used, of the following form [28]:

u(k, l) = Kz(x̃)Y−1
z (x̃)x̂(x(k, l)) (20)

where Kz(x̃) and Yz(x̃) are polynomial matrices of appro-
priate dimensions to be determined

Kz(x̃) =
[

Kz
1(x̃) Kz

2(x̃)
]
, Yz(x̃) =

[
Y z

1 (x̃) 0
0 Y z

2 (x̃)

]
the closed-loop system of (4) and (20) is then as follows:

x+(k, l) = (Az(x̃)+Bz(x̃)Kz(x̃)Y−1
z (x̃))x̂(x(k, l)) (21)

Theorem 2 The 2-D system (21) is asymptotically stable if
there exist symmetric polynomial matrices Pi

1(x̃) ∈ Rn1×n1 ,
Pi

2(x̃) ∈ Rn2×n2 , and polynomial matrices Ki
1(x̃) ∈ Rm1×n1 ,

Ki
2(x̃) ∈ Rm2×n2 , Y i

1(x̃) ∈ Rn1×n1 , Y i
2(x̃) ∈ Rn2×n2 , Zmn

ii (x̃),
Zmn

i j (x̃) = (Zmn
ji )

T (x̃) such that (22), (23), (24), (25) and (26)

are satisfied, where ε i
1(x̃), ε i

2(x̃), ε
i j
1 (x̃) and ε

i j
2 (x̃) are non

negative polynomials such that ε i
1(x̃)> 0, ε i

2(x̃)> 0 for (x̃ 6=
0) and ε

i j
1 (x̃)≥ 0, ε

i j
2 (x̃)≥ 0 for all x̃.

ν
T
1 (P

i
1(x̃)− ε

i
1(x̃)I)ν1 is SOS (22)

ν
T
1 (P

i
2(x̃)− ε

i
2(x̃)I)ν1 is SOS (23)

ν
T
2 (T

mn
ii (x̃)−Zmn

ii (x̃))ν2 is SOS i,m,n = 1, . . . ,r (24)

ν
T
2 (T

mn
i j (x̃)+T mn

ji (x̃)−Zmn
i j (x̃)−Zmn

ji (x̃))ν2 is SOS

(25)

i < j, i, j,m,n = 1, . . . ,r.
Zmn

11 (x̃) Zmn
12 (x̃) . . . Zmn

1r (x̃)
Zmn

21 (x̃) Zmn
22 (x̃) . . . Zmn

2r (x̃)
...

...
. . .

...
Zmn

r1 (x̃) Zmn
r2 (x̃) . . . Zmn

rr (x̃)

> 0 (26)

m,n = 1, . . . ,r.

with ν1 and ν2 vectors that are independent of x(k, l).

T mn
i j (x̃) =


Ti j11(x̃) ∗ ∗ ∗

0 Ti j22(x̃) ∗ ∗
Ti j31(x̃) Ti j32(x̃) T m

i j33(x̃) ∗
Ti j41(x̃) Ti j42(x̃) 0 T n

i j44(x̃)


> 0

(27)

Ti j11(x̃) = P j
1 (x̃)− ε

i
1(x̃)I

Ti j22(x̃) = P j
2 (x̃)− ε

i
2(x̃)I

Ti j31(x̃) = T1(x̃+)Ai
11(x̃)Y

j
1 (x̃)+T1(x̃+)Bi

1(x̃)K
j

1(x̃)

Ti j32(x̃) = T1(x̃+)Ai
12(x̃)Y

j
2 (x̃)+T1(x̃+)Bi

1(x̃)K
j

2(x̃)

T m
i j33(x̃) = Y m

1 (x(k+1, l))+Y mT
1 (x(k+1, l))

−Pm
1 (x(k+1, l))− ε

i j
1 (x̃)I

Ti j41(x̃) = T2(x̃+)Ai
21(x̃)Y

j
1 (x̃)+T2(x̃+)Bi

2(x̃)K
j

1(x̃)

Ti j42(x̃) = T2(x̃+)Ai
22(x̃)Y

j
2 (x̃)+T2(x̃+)Bi

2(x̃)K
j

2(x̃)

T n
i j44(x̃) = Y n

2 (x(k, l +1))+Y nT
2 (x(k, l +1))

−Pn
2 (x(k, l +1)− ε

i j
2 (x̃)I

Proof Consider the following polynomial Lyapunov func-
tion [28]:

V (x(k, l)) = x̂T (x(k, l))Y−T
z (x̃)Pz(x̃)Y−1

z (x̃)x̂(x(k, l)) (28)

Then,

x̂T (x(k, l))ν1minY−T
z (x̃)Y−1

z (x̃)x̂(x(k, l))≤V (x(k, l))

≤ x̂T (x(k, l))ν1maxY−T
z (x̃)Y−1

z (x̃)x̂(x(k, l))
(29)

where

ν1min = λminz(Pz(x̃)), ν1max = λmaxz(Pz(x̃))

As (Y−T
z (x̃)Y−1

z (x̃)) = Yz(x̃)Y T
z (x̃) with

ν2min = λminz(Yz(x̃)Y T
z (x̃)), ν2max = λmaxz(Yz(x̃)Y T

z (x̃))

(29) becomes

ν1minν
−1
2max‖x̂(x(k, l))‖

2≤V (x(k, l))≤ ν1maxν
−1
2min‖x̂(x(k, l))‖

2

which ensures that V (x(k, l)) is a polynomial Lyapunov func-
tion.

Then, the variation of (28) is given by

∆V (x(k, l)) = x̂T (x(k, l))[(Ãz(x̃)+ B̃z(x̃)Kz(x̃)

×Y−1
z (x̃))TY−T

z (x̃+)Pz(x̃+)Y−1
z (x̃+)(Ãz(x̃)

+ B̃z(x̃)Kz(x̃)Y−1
z (x̃))

−Y−T
z (x̃)Pz(x̃)Y−1

z (x̃)]x̂(x(k, l))

=−x̂T (x(k, l))Q2z(x̃)x̂(x(k, l))
(30)

where

−Q2z(x̃) = [(Ãz(x̃)+ B̃z(x̃)Kz(x̃)

×Y−1
z (x̃))TY−T

z (x̃+)Pz(x̃+)Y−1
z (x̃+)(Ãz(x̃)

+ B̃z(x̃)Kz(x̃)Y−1
z (x̃))

−Y−T
z (x̃)Pz(x̃)Y−1

z (x̃)]

(31)



6 Redouane Chaibi1, et al.

Y z(x̃+) =
[

Y z
1 (x̃

+) 0
0 Y z

2 (x̃
+)

]
,Pz(x̃+) =

[
Pz

1(x̃
+) 0

0 Pz
2(x̃

+)

]

Y z
1 (x̃

+) =
r

∑
m=1

hm(z(k+1, l))Y m
1 (x(k+1, l))

Y z
2 (x̃

+) =
r

∑
n=1

hn(z(k, l +1))Y n
2 (x(k, l +1))

Pz
1(x̃

+) =
r

∑
m=1

hm(z(k+1, l))Pm
1 (x(k+1, l))

Pz
2(x̃

+) =
r

∑
n=1

hn(z(k, l +1))Pn
2 (x(k, l +1))

and Q2z(x̃) are symmetric polynomial matrices, positive
definite.

x̂T (x(k, l))Q2z(x̃)x̂(x(k, l))≥ λmin(Q2z(x̃))‖x̂(x(k, l))‖2
2

Thus, ∆V (x(k, l)) is bounded as follows:

∆V (x(k, l))≤−λmin(Q2z(x̃))‖x̂(x(k, l))‖2
2,

∀‖x̂(x(k, l))‖2 < η(N)

Note that in the 2-D system the information is prop-
agated along two independent directions; hence, hi(z(k +
1, l)) and h j(z(k, l+1)) are two different membership func-
tions.

Multiplying the right side of (31) by Yz(x̃), and the left
side by Y T

z (x̃), we have:

(Y T
z (x̃)ÃT

z (x̃)+KT
z (x̃)B̃

T
z (x̃))Y

−T
z (x̃+)Pz(x̃+)Y−1

z (x̃+)

× (Ãz(x̃)Yz(x̃)+ B̃z(x̃)Kz(x̃))−Pz(x̃)< 0.
(32)

By using Lemma 1, where A=Y−1
z (x̃+)(Ãz(x̃)Yz(x̃)+B̃z(x̃)Kz(x̃)),

(32) can be expressed as

Tz(x̃) =
[

Pz(x̃) ∗
ϒ21 ϒ22

]
> 0 (33)

where

ϒ21 = Ãz(x̃)Yz(x̃)+ B̃z(x̃)Kz(x̃)

ϒ22 = Yz(x̃+)+Y T
z (x̃+)−Pz(x̃+)

Tz(x̃) =
r

∑
m=1

r

∑
n=1

hm(z(k+1, l))hn(z(k, l +1))

× (
r

∑
i=1

h2
i T mn

ii (x̃)+
r−1

∑
i=1

∑
j>i

hih j(T mn
i j (x̃)+T mn

ji (x̃)))

where T mn
i j (x̃) are defined in (27)

If the conditions (25) and (26) are satisfied, then the
following are also satisfied:

Tz(x̃)≥
r

∑
m=1

r

∑
n=1

hm(z(k+1, l))hn(z(k, l +1))

× (
r

∑
i=1

h2
i Zmn

ii (x̃)+
r−1

∑
i=1

∑
j>i

hih j(Zmn
i j (x̃)+Zmn

ji (x̃)))

=
r

∑
m=1

r

∑
n=1

hm(z(k+1, l))hn(z(k, l +1))θ T Zmn(x̃)θ

(34)

where θ T = [h1I h2I . . . hrI] and

Zmn(x̃) =


Zmn

11 (x̃) Zmn
12 (x̃) . . . Zmn

1r (x̃)
Zmn

21 (x̃) Zmn
22 (x̃) . . . Zmn

2r (x̃)
...

...
. . .

...
Zmn

r1 (x̃) Zmn
r2 (x̃) . . . Zmn

rr (x̃)


Remark 2 The feasibility of the developed SOS condition is
influenced by the polynomials ε1

i (x), ε2
i (x), ε1

i j(x) and ε2
i j(x);

therefore, in practice the polynomial structure of ε1
i (x), ε2

i (x),
ε1

i j(x) and ε2
i j(x) has to be carefully selected.

Remark 3 Following the previous study on polynomial fuzzy
models, [24,33], the major drawback of the results is the
numerical computational cost. In fact, when the degree 2d
increases, the computational complexity increases, and the
computational time required increases. Nonetheless, the SOS
approach has a clear advantage, as a generalization of the
existing approaches to T-S fuzzy system, being more effective
in representing nonlinear control systems. In fact, the SOS
approach used here is more relaxed than the LMI approach
previously used in the literature [32].

4 Computer simulations

Example 1 Let us consider the following nonlinear differ-
ential equation borrowed from [32]

∂ 2q(x, t)
∂x∂ t

= a1
∂q(x, t)

∂ t
+a2

∂q(x, t)
∂x

+a0 sin2(q(x, t))

+b f (x, t))

with the initial and boundary conditions q(x,0) = q1(x) and
q(t,0) = q2(t). q(x, t) is the state function, a0,a1,a2,b are
real coefficients, and f (x, t) is the input function. If we define

xh
c(x, t) =

∂q(x, t)
∂ t

−a2q(x, t)

xv
c(x, t) = q(x, t)
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then we obtain the following 2-D model:[
∂xh

c(x,t)
∂x

∂xv
c(x,t)
∂ t

]
=

[
a1 a1a2 +a0 sin2(xv

c(x, t))
1 a2

]
×
[

xh
c(x, t)

xv
c(x, t)

]
+

[
b
0

]
uc(x, t)

with boundary conditions

xh
c(0, t) = q̇2(t)−a2q2(t)

xv
c(x, t) = q1(x)

Consider the two following rules obtained for sin2(xv
c(x, t)):

IF sin2(xv
c(x, t)) is about 0, THEN[

∂xh
c(x,t)
∂ t

∂xv
c(x,t)
∂ t

]
= Ac

1

[
xh

c(x, t)
xv

c(x, t)

]
+Bc

1uc(x, t)

IF sin2(xv
c(x, t)) is about ∓1, THEN[

∂xh
c(x,t)
∂ t

∂xv
c(x,t)
∂ t

]
= Ac

2

[
xh

c(x, t)
xv

c(x, t)

]
+Bc

2uc(x, t)

with

Ac
1 =

[
a1 a1a2
1 a2

]
,Bc

1 =

[
b
0

]

Ac
2 =

[
a1 a1a2 +a0
1 a2

]
,Bc

2 = Bc
1

The membership functions are given by:

h1(x, t) = 1− sin2(xv
c(x, t)), h2(x, t) = sin2(xv

c(x, t))

For control purpose the 2-D T-S system is discretized
with sampling intervals T1 and T2 corresponding to vari-
ables x and t, respectively, with the system parameters given
in [32,29] and [34], obtaining the following system:

IF sin2(xv(k, l)) is about 0, THEN[
xh(k+1, l)
xv(k, l +1)

]
= A1

[
xh(k, l)
xv(k, l)

]
+B1u(k, l)

IF sin2(xv(k, l)) is about ∓1, THEN[
xh(k+1, l)
xv(k, l +1)

]
= A2

[
xh(k, l)
xv(k, l)

]
+B2u(k, l)

A1 =

[
1+a1T1 a1a2T1

T2 1+a2T2

]
,B1 =

[
bT1
0

]
A2 =

[
1+a1T1 (a1a2 +a0)T1

T2 1+a2T2

]
,B2 = B1

The membership functions then become: h1(k, l) = 1−
sin2(xv(k, l)), h2(k, l) = sin2(xv(k, l)). We can refer to [40]

Table 1 Feasibility intervals for a2

Methods Feasibility intervals
Usual PDC [32] [−1.990, −0.512]

Theorem 1 of [32] [−2.012, −0.494]
Corollary 2 [32] [−2.292, −0.212]

Theorem 2 non-PDC of [32] [−2.492, −0.014]

Theorem 1 PDC of [28] [−2.499, −0.018]
Theorem 2 non-PDC of [28] [−2.65, −0.01]

Theorem 1 of [29] with g = 2 [−2.502, −0.013]
Theorem 2 of [29] with g = d = 2 [−2.561, −0.012]
Theorem 3 of [29] with g = d = 2 [−2.566, −0.011]

Theorem 1 PDC with 2d = 2 [−2.525, −0.001]
Theorem 2 non-PDC with 2d = 2 [−2.743, −0.001]

for more discussions about the discretization of the continuous-
time T-S fuzzy model, see also the papers dealing with the
delta operator, like [41]. For the numerical simulation we
consider the following parameters: a1 = −3, a0 = −2, b =

−1, T1 = 0.5, T2 = 0.8.

The feasible intervals for a2 are shown in Table 1 for
the proposed technique, and compared with those in the lit-
erature. From Table 1, we can observe that the intervals ob-
tained by our proposed Theorems 1 and 2 are larger than
the results given by [32], [29] and [28]. Fixing a2 = −2.4,
and then solving (22) to (26) with the SOSTOOLS solver
gives:

K1(x̃) =
[

K1
1 (x̃) K1

2 (x̃)
]
,K2(x̃) =

[
K2

1 (x̃) K2
2 (x̃)

]
,

Y1(x̃) =
[

Y 1
1 (x̃) 0
0 Y 1

2 (x̃)

]
,Y2(x̃) =

[
Y 2

1 (x̃) 0
0 Y 2

2 (x̃)

]

K1
1 (x̃) =−7.5365.10−6xh(k, l)2−435.36xv(k, l)2

K1
2 (x̃) = 0.000070999xh(k, l)2 +14012.0xv(k, l)2

K2
1 (x̃) =−7.2643.10−6xh(k, l)2−433.25xv(k, l)2

K2
2 (x̃) = 0.000051495xh(k, l)2 +10150.0xv(k, l)2

Y 1
1 (x̃) = 7.0585.10−6xh(k, l)2 +427.83xv(k, l)2

Y 1
2 (x̃) = 0.000010406xh(k, l)2 +1945.4xv(k, l)2

Y 2
1 (x̃) = 7.1543.10−6xh(k, l)2 +428.39xv(k, l)2

Y 2
2 (x̃) = 0.000010334xh(k, l)2 +1951.3xv(k, l)2

with the boundary conditions

xh(0, l) = 0.2, 0≤ l ≤ 30

xv(k,0) = 0.3, 0≤ k ≤ 30

xh(0, l) = 0.05, xv(k,0) = 0.1, i, j > 30
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Fig. 1 Horizontal states xh(k, l) for a2 =−2.4 using the proposed con-
troller.

0

20

40

60

0

20

40

60
−0.4

−0.2

0

0.2

0.4

Fig. 2 Vertical states xv(k, l) for a2 = −2.4 using the proposed con-
troller.

Figures 1 and 2 show the evolutions of the two states
xh(k, l) and xv(k, l), respectively: it is clear that the polyno-
mial discrete 2-D T-S system (4) with the polynomial con-
troller (20) is asymptotically stable.

Remark 4 The same system can be studied with the satura-
tion. In fact, 2-D systems with saturation has been already
studied in [39] (FM T-S system) where the sinusoid was
used in the example. The 2-D saturated systems for Roesser
model was also solved in [38], where the saturation func-
tion used is the standard symmetric one. Note that we have
already dealt with the problem of stabilization of nonlinear
discrete-time T-S fuzzy systems with actuator saturation in
[37] for (1-D), where the sinusoid was used in the example,
and we will consider the discrete 2-D T-S problem as future
work.

For a polynomial X(x̃) ∈Rnd×nd , the complexity of com-
puting the SOS decomposition, depends on two factors: the
number of variables and the degree of the polynomial (2d+
1)n2

d .
The number of variable (N.V) and the number of (LMIs /
SOS) are shown in Table 2 for the example. Notice that with
this technique lies when the number of variables or the de-

gree of the polynomial are increased, the conservatism of
the result decreases, but the computational complexity in-
creases.

Example 2 Consider the following discrete-time nonlinear
plant represented by the polynomial 2-D T-S fuzzy Roesser
model with the following two rules:

A1 =

[
0.25 0.675

0.75xh(k, l) 0.325

]
,B1 =

[
−0.36xv(k, l)

0

]

A2 =

[
0.25 0.105

0.75xh(k, l) 0.325

]
,B2 = B1

The membership functions are given as: h1(k, l) = 1−
sin2(xv(k, l)), h2(k, l) = sin2(xv(k, l)).

By solving the SOS design condition in Theorems 2, the
asymptotical stability for the above 2-D polynomial fuzzy
system is ensured. The corresponding controller gain matri-
ces are given by:

K1(x̃) =
[

K1
1 (x̃) K1

2 (x̃)
]
,K2(x̃) =

[
K2

1 (x̃) K2
2 (x̃)

]
,

Y1(x̃) =
[

Y 1
1 (x̃) 0
0 Y 1

2 (x̃)

]
,Y2(x̃) =

[
Y 2

1 (x̃) 0
0 Y 2

2 (x̃)

]

K1
1 (x̃) = 0.45443xv(k, l)+3.4487.10−18

K1
2 (x̃) = 1627.9xv(k, l)−1.0845.10−15

K2
1 (x̃) = 0.45512xv(k, l)+1.4207.10−17

K2
2 (x̃) = 253.6xv(k, l)−1.4194.10−17

Y 1
1 (x̃) = 6.0479.10−6xh(k, l)2 +6.6041xv(k, l)2

Y 1
2 (x̃) = 0.0040157xh(k, l)2 +8681.2xv(k, l)2

Y 2
1 (x̃) = 3.9496.10−6xh(k, l)2 +6.609xv(k, l)2

Y 2
2 (x̃) = 0.0037871xh(k, l)2 +8693.1xv(k, l)2

with the boundary conditions

xh(0, l) = 0.2, 0≤ l ≤ 30

xv(k,0) = 0.3, 0≤ k ≤ 30

xh(0, l) = 0.05, xv(k,0) = 0.1, i, j > 30

Figs. 3-4 show the state trajectory of the system state
variables xh(k, l) and xv(k, l), respectively. The simulation
results in Figs. 3-4, show that the polynomial discrete 2-D T-
S system is asymptotically stable. Hence, the effectiveness of
the proposed approach has been illustrated in the numerical
example.
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Table 2 Number of variables and number of (LMIs/ SOS constraints), where n1 = n2 = nd and m1 = m2 = md

Methods N.V Number of (LMIs/ SOS constraints)
Theorem 1 PDC in [32] nd(nd +1)+2mdndr+16n2

dr+nd(4nd +1)r(r+1) r+ r
2 (r−1)+1

Theorem 1 PDC for degre 2d (2d +1)[nd(nd +1)r+2ndmdr] 2r+ r3 + r3

2 (r−1)
Theorem 2 NON-PDC in [32] nd(nd +1)r+2mdndr+2n2

dr+16n2
dr3 +nd(4nd +1)r3(r+1) r3 + r3

2 (r−1)+ r2

Theorem 2 NON-PDC for degre 2d (2d +1)[nd(nd +1)r+2mdndr+2n2
dr+16n2

dr3 +nd(4nd +1)r3(r+1)] 2r+ r3 + r3

2 (r−1)+ r2
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Fig. 3 Trajectory of the 2-D polynomial system state xh(k, l).
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Fig. 4 Trajectory of the 2-D polynomial system state xv(k, l).

5 Conclusion

Stabilization of a class of 2-D nonlinear systems has been
solved in this paper using a Sum-of-Square approach. More
precisely, stabilization of the class of 2-D discrete systems
that can be described in terms of Takagi-Sugeno Roesser-
type polynomial models has been studied using PDC con-
trollers. Firstly, an stabilization condition based on polyno-
mial multiple Lyapunov functions has been derived. Sec-
ondly, a non-quadratic stabilization condition was developed
using a relaxation technique. These design conditions are
formulated in terms of SOS, to make them numerically tractable.
A numerical example has been provided to show the effec-
tiveness of the proposed results.
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