1	Influence of the diffuser type and liquid-to-biogas ratio on biogas
2	upgrading performance in an outdoor pilot scale high rate algal pond
3	David Marín ^{1, 2, 3} , Alessandro A. Carmona-Martínez ^{1, 2} , Raquel Lebrero ^{1, 2} , Raúl
4	Muñoz* ^{1, 2}
5	¹ Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering,
6	Valladolid University, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
7	² Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
8	³ Universidad Pedagógica Nacional Francisco Morazán, Boulevard Centroamérica, Tegucigalpa, Honduras.
9	
10	* Corresponding author: mutora@iq.uva.es
11	
12	ABSTRACT
13	Four different types of biogas diffusers (metallic of $2 \mu m$, porous stone, and two ceramic

membranes of 0.2 and 0.4 μ m) were evaluated to improve the quality of biomethane in 14 an outdoor pilot scale photobioreactor interconnected to an external biogas absorption 15 16 unit. Each type of diffuser was tested independently using three different liquid to biogas 17 (L/G) ratios (0.5, 1 and 2). No significant difference was recorded in the CH₄ concentrations of biomethane (i.e. > 93.0%) working with the different types of diffusers 18 19 at L/G ratios > 1. Only the metallic biogas diffuser supported CH₄ concentrations higher than 94.0% at a L/G ratio of 0.5. The increase in L/G ratio induced the stripping of the 20 21 dissolved N₂ and O₂ into the biogas, which compensated the decrease in CO₂ 22 concentration mediated by the higher pH value of the scrubbing solution. The ANOVA 23 of the results here obtained confirmed that both the type of biogas diffuser and the L/G 24 ratio significantly determined the quality of the upgraded biogas.

25

26 Keywords:

Algal-bacterial photobioreactor; Biogas upgrading; Diffusers; Liquid/gas ratio; Outdoorcultivation.

29

30 **1. Introduction**

Nowadays, the biogas generated as a byproduct from the anaerobic treatment of organic 31 waste and wastewater might represent an environmental problem if it is not energetically 32 33 valorized. Biogas must be partially purified prior use as a renewable energy vector capable of reducing the dependence on fossil fuels in order to produce electricity and heat 34 for industrial and domestic applications [1,2]. A stricter biogas purification must be 35 36 implemented in order to fulfil with international regulations for its injection into natural 37 gas grids or use as vehicle fuel. Typical compositions in biomethane standards are: CH4 \geq 90-95%, CO₂ \leq 2-4%, O₂ \leq 1% and negligible amounts of H₂S [2,3]. 38

39

Algal-bacterial processes have emerged as an environmentally friendly and cost-40 41 competitive alternative to conventional physicochemical processes capable of simultaneously removing CO₂ and H₂S in a single stage process [2,4–6]. In algal-42 bacterial cultures, sulfur oxidizing bacteria oxidize the H₂S contained in biogas into SO4²⁻ 43 44 using the high dissolved oxygen (DO) concentrations present in the cultivation broth as a result of photosynthetic activity, while CO₂ is photosynthetically fixed by microalgae 45 using solar energy [7,8]. Microalgae-based biogas upgrading processes have been 46 47 optimized under indoor conditions in photobioreactors interconnected to external biogas scrubbing units under artificial illumination and using metallic diffusers to sparge the 48 49 biogas into the absorption column [8-11]. Similarly, photosynthetic biogas upgrading has been validated under outdoor conditions in different photobioreactor configurations. 50 Posadas et al. [12] evaluated the simultaneous upgrading of biogas and wastewater 51

treatment in a 180 L algal pond using a metallic diffuser and liquid to biogas (L/G) ratios 52 53 of 0.5, 1.0, 2.0 and 5.0. Marín et al. [13,14] evaluated the influence of the seasonal variations of environmental conditions on biogas upgrading performance in a 180 L 54 photobioreactor fed with carbonate supplemented centrate, using a metallic diffuser and 55 L/G ratio of 1.0. Similarly, Rodero et al. [15] investigated the influence of biogas flow 56 rate and L/G ratios on biomethane quality in a 9.6 m³ algal pond using a polymeric 57 58 membrane diffuser. In addition, Marín et al. [16] assessed the influence of the L/G ratio and alkalinity in the cultivation broth on the quality of the upgraded biogas in a 11.7 m^3 59 horizontal hybrid tubular photobioreactor using metallic diffusers. Table 1 summarizes 60 61 the different types of photobioreactor configuration and biogas diffusers tested, along 62 with the recorded CH₄ concentration in the upgraded biogas. Despite the promising results obtained so far, the effect of the type of diffuser used for biogas sparging in the 63 64 absorption column on the biomethane quality has not been systematically assessed. The type of diffuser will directly impact on the mass transfer, and therefore on the removal of 65 the target pollutants in the biogas scrubbing unit, thus constituting a key element of 66 process optimization. 67

68

<Table 1>

In this sense, the influence of four different types of biogas diffusers with different pore sizes (namely metallic of 2 μ m, porous stone, ceramic membrane of 0.2 and 0.4 μ m) at three L/G ratios on biogas upgrading performance was herein investigated in an outdoor pilot scale photobioreactor interconnected to an external biogas absorption unit.

73

74 **2. Materials and methods**

75 **2.1 Biogas and synthetic digestate**

A synthetic biogas mixture composed of CO₂ (29.5%), H₂S (0.5%) and CH₄ (70%) was 76 77 used as a raw biogas in the present study (Abello Linde; Spain). The synthetic digestate (SWW) used consisted of (per liter of distilled water): 6.00 g NaHCO₃, 3.00 g Na₂CO₃, 78 0.94 g K₂HPO₄, 1.91 g NH₄Cl, 0.02 g CaCl₂·2H₂O, 0.005 g FeSO₂·7H₂O, 0.10 g 79 MgSO₄·7H₂O and 5 ml of a micronutrient solution (composed of 0.10 g ZnSO₄·7H₂O, 80 0.10 g MnCl₂·4H₂O, 0.20 g H₃BO₃, 0.02 g Co(NO₃)₂·6H₂O, 0.02 g Na₂MoO₄·2H₂O, 81 82 0.0005 g CuSO₄·5H₂O, 0.70 g FeSO₄·7H₂O and 1.02 g EDTA·2Na·2H₂O per liter of distilled water). The resulting composition of the SWW was: total organic carbon 51 ± 8 83 mg L^-1, inorganic carbon 1211 \pm 51 mg L^-1 and total nitrogen 528 \pm 33 mg L^-1. The 84 85 composition of the SWW, characterized by a high nutrient concentration and high alkalinity, was selected according to Toledo-Cervantes et al., [8] and Wilkie et al., [17]. 86

87

88 2.2. Experimental set-up

The experimental plant used for this experimentation was located outdoor at the Institute 89 90 of Sustainable Processes of Valladolid University (Spain). The experimental set-up was integrated by a 180-L open photobioreactor divided in two water channels and with one 91 baffle at each side of the photobioreactor. The open photobioreactor has an illuminated 92 surface of 1.20 m² (length of 170 cm; depth of 15 cm; width of 82 cm). The cultivation 93 broth inside the photobioreactor was recirculated with a velocity of 20 cm s⁻¹ by a 6-blade 94 paddlewheel. A biogas scrubbing column of 2.5 L (height: 165 cm; internal diameter: 4.4 95 96 cm) operating at atmospheric pressure was interconnected to the photobioreactor through a conical settler of 8 L. (Fig. 1). The implementation of a biogas scrubbing bubble column, 97 and consequently the need for diffusers to sparge biogas, was selected due to the fact that 98 the high concentrations of biomass present in the recirculating liquid will entail a severe 99

100 clogging and malfunctioning in other types of biogas scrubbing technologies such as101 spray towers or packed absorption columns.

102

<Figure 1>

103

104 2.3. Operational conditions and sampling procedures

Process operation was carried out from September the 4th to October the 8th 2019. The 105 photobioreactor was inoculated with a culture previously grown in an outdoors 106 photobioreactor at an initial concentration of 450 mg total suspended solids L⁻¹. The 107 108 microalgal inoculum was composed of Mychonastes homosphaera, Pseudanabaena sp. 109 and Scenedesmus sp. with a share (based on the number of cells) of 82, 17 and 1%, respectively. The photobioreactor was fed with SWW as a nutrient source at a flow rate 110 of 3.5 L d⁻¹. Four different types of biogas diffusers with different pore sizes were 111 112 successively installed at the bottom of the scrubbing unit in order to analyze their influence on biogas upgrading performance: a cylindrical metallic diffuser with a pore 113 114 size of 2 µm (height: 2.3 cm; diameter: 1.7 cm), a rectangular porous stone with a 115 heterogeneous pore size distribution (length: 3.0 cm; height: 1.5 cm; width: 1.5 cm), a 116 cylindrical ceramic membrane with a pore size of 0.2 µm (height: 20.0 cm; diameter: 1.0 117 cm) and a cylindrical ceramic membrane with a pore size of $0.4 \,\mu\text{m}$ (height: 20.0 cm; diameter: 1.0 cm). Three different L/G ratios were tested under process operation with 118 each diffuser. In this sense, the biogas was sparged into the scrubbing unit, through the 119 different types of diffusers at 72 L d⁻¹. The liquid recirculation from the settler to the 120 absorption unit was operated under co-current flow at rates of 36, 72 and 144 L d⁻¹ 121 (corresponding to hydraulic retention times, HRT, in the column of 100, 50 and 25 min, 122 respectively), resulting in L/G ratios of 0.5, 1.0 and 2.0, respectively. The different 123 combinations of diffusers and L/G ratios were tested sequentially for each type of 124

diffuser, starting with the lowest L/G ratio of 0.5 and ending with the highest L/G ratio 125 126 of 2.0. The pH in the photobioreactor remained constant during all experimentation period at an average value of 9.1 \pm 0.1. Tap water was supplied in order to compensate water 127 evaporation losses in the open photobioreactor and allow process operation without 128 effluent. Gas samples of 100 µL of the upgraded biogas were drawn every two hours to 129 130 monitor the gas concentrations of CO_2 , H_2S , N_2 , O_2 and CH_4 . The pH in the 131 photobioreactor and in the scrubbing unit was also monitored every two hours. The photosynthetic active radiation (PAR), DO concentration, and ambient and 132 photobioreactor temperatures were daily monitored in each test (Table A1). 133

134

135 **2.4. Analytical procedures**

Gas concentrations of CO₂, H₂S, N₂, O₂ and CH₄ in the raw and upgraded biogas were
determined using a Varian CP-3800 GC-TCD according to Posadas et al. (2015) (Palo
Alto, USA). pH was determined with an Eutech Cyberscan pH 510 (Eutech instruments,
The Netherlands). PAR, DO concentrations, and ambient and photobioreactor
temperature were measured according to Marín et al., [13].

141

142 **2.5. Statistical analysis**

143 The results here presented were provided as the average values along with their standard 144 deviation from five replicate measurements for each test run. An analysis of variance 145 (ANOVA) was performed to determine the influence of the biogas diffusers on the quality 146 of the upgraded biogas.

147

148 **3. Results**

149 **3.1 Metallic diffuser**

150	CO ₂ concentration in the upgraded biogas reached values of 3.4, 3.4 and 1.3% and
151	removal efficiencies (REs) of 88.9, 88.8 and 95.7% at L/G ratios of 0.5, 1.0 and 2.0,
152	respectively (Fig. 2a). The pH in the scrubbing unit decreased by 4.5, 4.4 and 2.9%, at
153	L/G ratios of 0.5, 1.0 and 2.0, respectively (Table 2). H ₂ S from raw biogas was
154	completely removed regardless of the L/G ratio. On the other hand, N ₂ concentrations
155	reached values of 1.5, 1.9 and 3.0%, while O ₂ concentrations in the upgraded biogas
156	reached values of 0.2, 0.1 and 0.5% at L/G ratios of 0.5, 1.0 and 2.0, respectively (Fig.
157	2a). Finally, CH ₄ concentrations in the upgraded biogas of 94.9, 94.6 and 95.2% were
158	recorded at L/G ratios of 0.5, 1.0 and 2.0, respectively (Fig. 2a).
159	<table 2=""></table>
160	<figure 2=""></figure>
160 161	<figure 2=""> 3.2 Porous stone diffuser</figure>
161	3.2 Porous stone diffuser
161 162	3.2 Porous stone diffuser CO ₂ concentration in the biomethane accounted for 11.1, 3.8 and 1.2%, which
161 162 163	3.2 Porous stone diffuser CO ₂ concentration in the biomethane accounted for 11.1, 3.8 and 1.2%, which corresponded to CO ₂ -REs of 63.4, 87.3 and 95.9% at L/G ratios of 0.5, 1.0 and 2.0,
161 162 163 164	3.2 Porous stone diffuser CO ₂ concentration in the biomethane accounted for 11.1, 3.8 and 1.2%, which corresponded to CO ₂ -REs of 63.4, 87.3 and 95.9% at L/G ratios of 0.5, 1.0 and 2.0, respectively (Fig. 2b). The reduction in the pH of the recirculating culture medium in the
161 162 163 164 165	3.2 Porous stone diffuser CO ₂ concentration in the biomethane accounted for 11.1, 3.8 and 1.2%, which corresponded to CO ₂ -REs of 63.4, 87.3 and 95.9% at L/G ratios of 0.5, 1.0 and 2.0, respectively (Fig. 2b). The reduction in the pH of the recirculating culture medium in the absorption unit at L/G ratios of 0.5, 1.0 and 2.0 were 10.0, 5.4 and 4.4%, respectively
161 162 163 164 165 166	3.2 Porous stone diffuser CO ₂ concentration in the biomethane accounted for 11.1, 3.8 and 1.2%, which corresponded to CO ₂ -REs of 63.4, 87.3 and 95.9% at L/G ratios of 0.5, 1.0 and 2.0, respectively (Fig. 2b). The reduction in the pH of the recirculating culture medium in the absorption unit at L/G ratios of 0.5, 1.0 and 2.0 were 10.0, 5.4 and 4.4%, respectively (Table 2). H ₂ S from the raw biogas was completely removed regardless of the L/G ratio.
161 162 163 164 165 166 167	3.2 Porous stone diffuser CO ₂ concentration in the biomethane accounted for 11.1, 3.8 and 1.2%, which corresponded to CO ₂ -REs of 63.4, 87.3 and 95.9% at L/G ratios of 0.5, 1.0 and 2.0, respectively (Fig. 2b). The reduction in the pH of the recirculating culture medium in the absorption unit at L/G ratios of 0.5, 1.0 and 2.0 were 10.0, 5.4 and 4.4%, respectively (Table 2). H ₂ S from the raw biogas was completely removed regardless of the L/G ratio. N ₂ concentration reached values of 0.4, 1.1 and 3.0%, while O ₂ concentrations accounted
161 162 163 164 165 166 167 168	3.2 Porous stone diffuser CO ₂ concentration in the biomethane accounted for 11.1, 3.8 and 1.2%, which corresponded to CO ₂ -REs of 63.4, 87.3 and 95.9% at L/G ratios of 0.5, 1.0 and 2.0, respectively (Fig. 2b). The reduction in the pH of the recirculating culture medium in the absorption unit at L/G ratios of 0.5, 1.0 and 2.0 were 10.0, 5.4 and 4.4%, respectively (Table 2). H ₂ S from the raw biogas was completely removed regardless of the L/G ratio. N ₂ concentration reached values of 0.4, 1.1 and 3.0%, while O ₂ concentrations accounted for 0.1, 0.2 and 1.0% at L/G ratios of 0.5, 1.0 and 2.0, respectively. Finally, the CH ₄

172 **3.3 Ceramic Membrane**

173 The CO₂ concentrations achieved when using the ceramic membrane diffuser of $0.2 \,\mu m$

at L/G ratios of 0.5, 1.0 and 2.0 were 12.3, 3.9 and 1.4%, respectively, and 11.8, 1.2 and

1.1% when using the ceramic membrane of 0.4 µm, respectively. Therefore, the CO₂-175 176 REs corresponded to 59.5, 87.1 and 95.3% (ceramic membrane of 0.2 µm), and 61.0, 95.9 and 96.3% (ceramic membrane of 0.4 µm) (Fig. 2c; 2d). The decrease in pH in the 177 cultivation medium in the experiment conducted with the ceramic membrane of 0.2 µm 178 was higher than that with a pore size of $0.4 \,\mu\text{m}$ at L/G ratios of 0.5 and 1.0, and negligible 179 in both membranes at a L/G ratio of 2 (Table 2). H₂S from raw biogas was completely 180 181 removed in both ceramic membranes regardless of the L/G ratio. On the other hand, N₂ concentration in the experiments with the ceramic membrane of 0.2 µm reached values 182 of 0.9, 2.4 and 4.2%, respectively, and 1.5, 2.5 and 3.9% in the ceramic membrane of 0.4 183 184 µm at L/G ratios of 0.5, 1.0 and 2.0. O₂ concentration in the upgraded biogas reached values of 0.2, 0.7 and 0.7% when using the ceramic membrane of 0.2 µm at L/G ratios of 185 186 0.5, 1 and 2, and 0.7, 0.3 and 0.5% with the ceramic membrane of 0.4 µm, respectively, 187 (Fig. 2c; 2d). Finally, CH₄ concentrations in the upgraded biogas using the ceramic membrane of 0.2 µm were 86.7, 93.0 and 93.6%, respectively, and 86.0, 96.0 and 94.5% 188 189 with ceramic membrane of 0.4 at L/G of 0.5, 1 and 2, respectively (Fig. 2c; 2d).

190

191 **4. Discussion**

192 The diffuser that provided the most efficient upgrading of biogas at a L/G of 0.5 was the 2 µm metallic diffuser, which was the only one that fulfilled with most international 193 regulations required for biogas injection into natural gas grids or use as a vehicle fuel: 194 $CH_4 \ge 90-95\%$, $CO_2 \le 2-4\%$, $O_2 \le 1\%$ and negligible amounts of H_2S [2,18,19]. When 195 a L/G ratio of 1.0 was used, the four diffusers exhibited a similar upgrading performance 196 in terms of CH₄ concentration, reaching values up to 96.0%. This increase in CH₄ 197 concentrations was promoted by the increase in pH in the absorption unit, which 198 supported a higher CO₂-REs due to the enhanced gradient of CO₂ concentration between 199

the biogas and liquid phase. Similarly, the four diffusers provided comparable CH4 200 201 concentrations (up to 95.2%) at a L/G of 2. However, this increase in the cultivation medium pumped into the biogas scrubbing unit resulted in increased in N2 and O2 202 203 concentrations regardless of the type of diffuser tested. This can be explained by the superior dissolved gas stripping at higher liquid flowrates, which negatively impacted on 204 205 the final concentration of CH_4 in the upgraded biogas [20]. The biogas quality at a L/G 206 ratios of 1 and 2 fulfilled with the current European biomethane standard regardless of 207 the diffuser configuration [2,18,19]

208

Overall, the results herein obtained confirmed that the metallic diffuser was the best system to purify biogas at the L/G ratios typically implemented in photosynthetic biogas upgrading processes in open photobioreactors. These results were in accordance to Marín et al. [16], who reported higher CH₄ concentrations at decreasing L/G ratios. Indeed, the CH₄ content in biomethane decreased from 89% at L/G of 1 to 87% at L/G of 5 in an outdoor horizontal hybrid tubular photobioreactor constructed with metallic diffusers for biogas upgrading.

216

217 Finally, an ANOVA test was carried out to elucidate the influence of the type of diffusers and the L/G ratio on the quality of the upgraded biogas. The F critical value (value that 218 will define if the means for each component are significantly different) was 3.2 for the 219 220 three different L/G ratios tested in this work. The F values (ratio between the mean square of the component and the mean square of the error) for CH₄, CO₂, N₂ and O₂ were 206.7, 221 274.5, 28.9 and 36.3, respectively, at the L/G ratio of 0.5 (Table 3a). On the other hand, 222 the F values at L/G ratio of 1.0 were 18.5, 152.6, 53.3 and 21.4 for the above mentioned 223 gases, respectively (Table 3b). Finally, the F values at L/G ratio of 2.0 were 16.7, 3.4, 224

19.2 and 4.0 for CH₄, CO₂, N₂ and O₂, respectively (Table 3c). The F values were greater
than the F critical value of 3.2 regardless of the biomethane component, which confirmed
that the quality of biomethane varied significantly with the type of diffuser and the L/G
ratio implemented in the photosynthetic biogas upgrading process.

229

<Table 3>

Unfortunately, the concentration of methane in the cultivation broth returned to the algal pond has not been measured in this particular study. However, no methane slippage into the photobioreactor was expected due to the low aqueous solubility of methane (according to its Henry's Law constant, $H_{CH4} \approx 0.03$ at 25 °C) compared to other contaminants (i.e. CO₂ and H₂S, $H_{CO2} \approx 0.83$ and $H_{H2S} \approx 2.45$ at 25 °C). In addition, it was hypothesized that the inherent presence of bacteria (e.g. methanotrophs) would eventually oxidize any CH₄ transferred to the cultivation broth.

237

238 **5.** Conclusions

239 This study demonstrated the statistically significant influence of the type of biogas 240 diffuser and the L/G ratio in the scrubbing unit on the quality of biomethane in an outdoor 241 pilot scale photobioreactor. L/G ratios > 1.0 supported a significant decrease in CO₂ 242 concentration in the upgraded biogas along with a superior stripping of O₂ and N₂ from the scrubbing solution regardless of the type of diffuser used. The 2 µm metallic diffuser 243 provided the highest CH₄ concentration in the upgraded biogas regardless of the L/G ratio 244 245 (94.6-95.2%), which complied with most international regulations for biomethane injection into natural gas grids. 246

247

248 Acknowledgements

249	This v	work was supported by Fundación Domingo Martinez and the Regional Government
250	of Ca	stilla y León and the EU-FEDER programme (CLU 2017-09 and UIC 071). The
251	finan	cial support of the Regional Government of Castilla y León for the PhD grant of
252	David	l Marín is also acknowledged.
253		
254	REF	ERENCES
255	[1]	Scarlat N, Dallemand JF, Fahl F. Biogas: Developments and perspectives in
256		Europe. Renew Energy 2018;129:457–72.
257		https://doi.org/10.1016/j.renene.2018.03.006.
258	[2]	Muñoz R, Meier L, Diaz I, Jeison D. A review on the state-of-the-art of
259		physical/chemical and biological technologies for biogas upgrading. Rev Environ
260		Sci Bio/Technology 2015;14:727–59. https://doi.org/10.1007/s11157-015-9379-
261		1.
262	[3]	Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of
263		biogas to biomethane. Biomass and Bioenergy 2011;35:1633-45.
264		https://doi.org/10.1016/j.biombioe.2011.02.033.
265	[4]	Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, et al. Biogas
266		upgrading and utilization: Current status and perspectives. Biotechnol Adv
267		2018;36:452-66. https://doi.org/10.1016/j.biotechadv.2018.01.011.
268	[5]	Bose A, Lin R, Rajendran K, O'Shea R, Xia A, Murphy JD. How to optimise
269		photosynthetic biogas upgrading: a perspective on system design and microalgae
270		selection. Biotechnol Adv 2019:107444.
271		https://doi.org/10.1016/j.biotechadv.2019.107444.
272	[6]	Nagarajan D, Lee D-J, Chang J-S. Integration of anaerobic digestion and

- 273 microalgal cultivation for digestate bioremediation and biogas upgrading.
- 274 Bioresour Technol 2019;290:121804.
- 275 https://doi.org/10.1016/j.biortech.2019.121804.
- 276 [7] Posadas E, Serejo ML, Blanco S, Pérez R, García-Encina PA, Muñoz R.
- 277 Minimization of biomethane oxygen concentration during biogas upgrading in
- algal-bacterial photobioreactors. Algal Res 2015;12:221–9.
- 279 https://doi.org/10.1016/j.algal.2015.09.002.
- 280 [8] Toledo-Cervantes A, Serejo ML, Blanco S, Pérez R, Lebrero R, Muñoz R.
- 281 Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via
- biomass productivity control. Algal Res 2016;17:46–52.
- 283 https://doi.org/10.1016/j.algal.2016.04.017.
- 284 [9] Posadas E, Szpak D, Lombó F, Domínguez A, Díaz I, Blanco S, et al. Feasibility

study of biogas upgrading coupled with nutrient removal from anaerobic

- effluents using microalgae-based processes. J Appl Phycol 2016;28:2147–57.
- 287 https://doi.org/10.1007/s10811-015-0758-3.
- [10] Rodero R, Posadas E, Toledo-Cervantes A, Lebrero R, Muñoz R. Influence of
 alkalinity and temperature on photosynthetic biogas upgrading efficiency in high
- rate algal ponds. Algal Res 2018;33:284–90.
- 291 https://doi.org/10.1016/j.algal.2018.06.001.
- 292 [11] Toledo-Cervantes A, Madrid-Chirinos C, Cantera S, Lebrero R, Muñoz R.
- Influence of the gas-liquid flow configuration in the absorption column on
- 294 photosynthetic biogas upgrading in algal-bacterial photobioreactors. Bioresour
- 295 Technol 2017;225:336–42. https://doi.org/10.1016/j.biortech.2016.11.087.

296	[12]	Posadas E, Marín D, Blanco S, Lebrero R, Muñoz R. Simultaneous biogas
297		upgrading and centrate treatment in an outdoors pilot scale high rate algal pond.
298		Bioresour Technol 2017;232:133–41.
299		https://doi.org/10.1016/j.biortech.2017.01.071.
300	[13]	Marín D, Posadas E, Cano P, Pérez V, Blanco S, Lebrero R. Seasonal variation
301		of biogas upgrading coupled with digestate treatment in an outdoors pilot scale
302		algal-bacterial photobioreactor. Bioresour Technol 2018;263:58-66.
303		https://doi.org/10.1016/j.biortech.2018.04.117.
304	[14]	Marín D, Posadas E, Cano P, Pérez V, Lebrero R, Muñoz R. Influence of the
305		seasonal variation of environmental conditions on biogas upgrading in an
306		outdoors pilot scale high rate algal pond. Bioresour Technol 2018;255:354–8.
307		https://doi.org/10.1016/j.biortech.2018.01.136.
308	[15]	Rodero R, Lebrero R, Serrano E, Lara E, Arbib Z, García-Encina PA, et al.
309		Technology validation of photosynthetic biogas upgrading in a semi-industrial
310		scale algal-bacterial photobioreactor. Bioresour Technol 2019;279:43-9.
311		https://doi.org/10.1016/j.biortech.2019.01.110.
312	[16]	Marín D, Ortíz A, Díez-Montero R, Uggetti E, García J, Lebrero R, et al.
313		Influence of liquid-to-biogas ratio and alkalinity on the biogas upgrading
314		performance in a demo scale algal-bacterial photobioreactor. Bioresour Technol
315		2019;280:112-7. https://doi.org/10.1016/j.biortech.2019.02.029.
316	[17]	Wilkie AC, Riedesel KJ, Owens JM. Stillage characterization and anaerobic
317		treatment of ethanol stillage from conventional and cellulosic feedstocks.
318		Biomass and Bioenergy 2000;19:63-102. https://doi.org/10.1016/S0961-
319		9534(00)00017-9.

320	[18]	European Committee for Standardization. UNE EN 16723-1:2017 Natural gas
321		and biomethane for use in transport and biomethane for injection in the natural
322		gas network - Part 1: Specifications for biomethane for injection in the natural
323		gas network 2017. https://www.en-standard.eu/une-en-16723-1-2017-natural-
324		gas-and-biomethane-for-use-in-transport-and-biomethane-for-injection-in-the-
325		natural-gas-network-part-1-specifications-for-biomethane-for-injection-in-the-
326		natural-gas-network/ (accessed December 10, 2019).
327	[19]	European Committee for Standardization. UNE EN 16723-2:2018 Natural gas
328		and biomethane for use in transport and biomethane for injection in the natural
329		gas network - Part 2: Automotive fuels specification 2018. https://www.en-
330		standard.eu/une-en-16723-2-2018-natural-gas-and-biomethane-for-use-in-
331		transport-and-biomethane-for-injection-in-the-natural-gas-network-part-2-
332		automotive-fuels-specification/ (accessed December 10, 2019).
333	[20]	Sovechles JM, Waters KE. Effect of ionic strength on bubble coalescence in
334		inorganic salt and seawater solutions. AICHE 2015;61:2489-96.
335		https://doi.org/doi.org/10.1002/aic.14851.

FIGURE CAPTIONS

- Figure 1. Schematic diagram of the outdoor experimental pilot plant used for thephotosynthetic purification of biogas.
- **Figure 2.** Concentration of CH₄, CO₂, N₂ and O₂ in the upgraded biogas using (a)
- metallic 2 µm, (b) porous stone, (c) ceramic membrane 0.2 µm and (d) ceramic membrane
- 342 $0.4 \,\mu\text{m}$ diffusers.

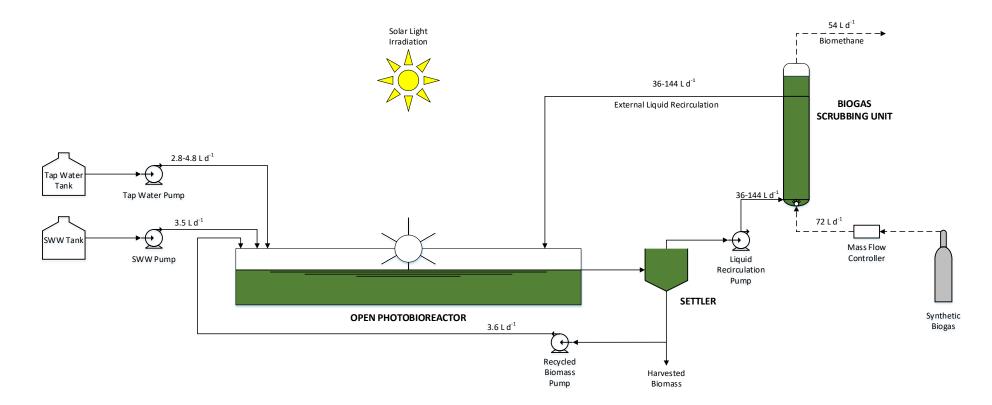
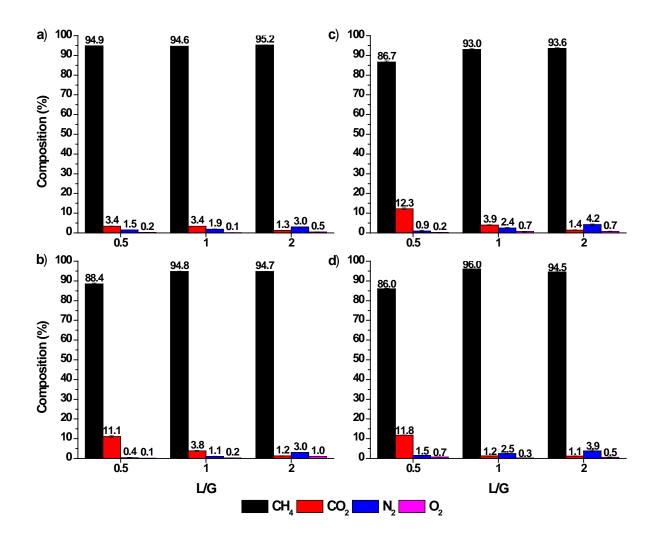



Figure 1. Schematic diagram of the outdoor experimental pilot plant used for the photosynthetic purification of biogas.

Figure 2. Concentration of CH₄, CO₂, N₂ and O₂ in the upgraded biogas using (a) metallic 2 μ m, (b) porous stone, (c) ceramic membrane 0.2 μ m and (d) ceramic membrane 0.4 μ m diffusers.

Reference	Photobioreactor configuration	L/G ratios tested	Type of Diffuser	CH ₄ concentration (%)
Toledo-Cervantes et al. (2016)	Indoor 180 L HRAP	1; 5; 10 and 20	Metallic 2 µm	95; 88; 68 and 68
Toledo-Cervantes et al. (2017)	Indoor 180 L HRAP	0.3; 0.5; 0.8 and 1	Metallic 2 µm	95; 98; 98 and 96
Rodero et al. (2018)	Indoor 180 L HRAP	1	Metallic 2 µm	98
Posadas et al. (2017)	Outdoor 180 L HRAP	0.5; 1; 2 and 5	Metallic 2 µm	86; 90; 92 and 80
Marín et al. (2018a)	Outdoor 180 L HRAP	1	Metallic 2 µm	85 - 98
Rodero et al. (2019b)	Outdoor 9.6 m ³ HRAP	1.2; 2.1 and 3.5	Polymeric membrane	85; 89 and 90
Marin et al (2019)	Outdoor 11.7 m ³ horizontal hybrid tubular photobioreactor	0.5; 1; 2; 3; 4 and 5	Metallic 2 µm	87; 90; 88; 89; 88 and 87

Table 1. CH₄ concentration in the upgraded biogas using different photobioreactor configurations with different types of diffuser.

Table 2. pH values and decrease (as percentage) in the of the cultivation broth in the biogas scrubbing unit using the different types of diffusers.

					L/G				
		0.5			1			2	
Type of diffuser	Bottom	Тор	Decrease (%)	Bottom	Тор	Decrease (%)	Bottom	Тор	Decrease (%)
Metallic	8.95	8.55	4.5 %	9.10	8.70	4.4 %	9.20	8.93	2.9 %
Porous Stone	9.09	8.18	10.0 %	9.13	8.64	5.4 %	9.14	8.74	4.4 %
Ceramic Membrane 0.2 µm	9.08	8.03	11.6 %	9.11	8.29	9.0 %	9.03	8.66	4.1 %
Ceramic Membrane 0.4 µm	9.02	8.68	3.8 %	9.05	8.75	3.3 %	9.15	8.78	4.0 %

	Sum of squares	Degrees of freedom	Mean square	F	F critical
CH_4	224.0	3.0	74.7	206.7	3.2
Error	5.8	16.0	0.4		
CO_2	242.9	3.0	81.0	274.5	3.2
Error	4.7	16.0	0.3		
N_2	4.9	3.0	1.6	28.9	3.2
Error	0.9	16.0	0.1		
O_2	1.0	3.0	0.3	36.3	3.2
Error	0.1	16.0	0.0		

Table 3. Analysis of variance of biogas at L/G ratios of (a) 0.5, (b) 1 and (c) 2.

b)

a)

	Sum of squares	Degrees of freedom	Mean square	\mathbf{F}	F critical
CH ₄	10.8	3.0	3.6	18.5	3.2
Error	3.1	16.0	0.2		
CO ₂	23.1	3.0	7.7	152.6	3.2
Error	0.8	16.0	0.1		
N_2	6.0	3.0	2.0	53.3	3.2
Error	0.6	16.0	0.0		
O2	0.7	3.0	0.2	21.4	3.2
Error	0.2	16.0	0.0		

c)

	Sum of squares	Degrees of freedom	Mean square	F	F critical
CH ₄	6.6	3.0	2.2	16.7	3.2
Error	2.1	16.0	0.1		
CO ₂	0.3	3.0	0.1	3.4	3.2
Error	0.5	16.0	0.0		
N_2	5.7	3.0	1.9	19.2	3.2
Error	1.6	16.0	0.1		
O ₂	0.4	3.0	0.1	4.0	3.2
Error	0.6	16.0	0.0		

1	Supplementary Material
2	Influence of the diffuser type and liquid-to-biogas ratio on biogas
3	upgrading performance in an outdoor pilot scale high rate algal pond
4	David Marín ^{1, 2, 3} , Alessandro A. Carmona-Martínez ^{1, 2} , Raquel Lebrero ^{1, 2} , Raúl
5	Muñoz* ^{1, 2}
6	¹ Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering,
7	Valladolid University, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
8	² Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
9	³ Universidad Pedagógica Nacional Francisco Morazán, Boulevard Centroamérica, Tegucigalpa, Honduras.
10	
11	* Corresponding author: <u>mutora@iq.uva.es</u>
12	

 Table A1. Environmental parameters during each test.

	Diffuser and L/G											
	Metallic			Porous Stone			Ceramic Membrane 0.2 µm			Ceramic Membrane 0.4 µm		
Parameter	0.5	1	2	0.5	1	2	0.5	1	2	0.5	1	2
Ambient Temperature (°C)	10.0	13.0	13.0	14.0	15.0	11.0	13.0	13.0	12.0	14.0	11.0	10.0
Photobioreactor Temperature (°C)	11.2	12.1	11.6	14.9	15.1	10.7	12.3	11.4	14.1	13.7	11.1	12.3
PAR (µmol m-2 s-1)	69	54	58	84	88	126	73	67	27	65	396	83
DO (mg O2 L-1)	3.1	4.2	3.9	6.4	6.8	6.8	7.3	6.4	3.7	6.6	7.2	4.9
14												