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Escuela Técnica Superior de Ingenieros de Telecomunicación
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Abstract

For decades, mankind has fantasized about the possibility of controlling devices

with our minds. Despite there is still a long way to go to achieve that goal, recent

progresses in neuroscience took a step forward and contributed to the development

of the first brain–computer interface (BCI) systems. Through the analysis of elec-

troencephalographic (EEG) signals, BCIs are able to decode users’ intentions into

application commands. Due to its ability to enhance or even replace nervous sys-

tem outputs, BCIs have emerged as novel assistive technologies that could improve

the quality of life of the severely disabled. Nevertheless, these systems currently

do not provide the required reliability to take the leap from laboratories to real

environments. Among the problems that current BCIs should face to, poor per-

formances, need of supervision and lack of portability and validation with target

users stand out.

In this context, the present Doctoral Thesis is focused on the development of

novel signal processing methodologies and assistive applications that contribute

to provide a real use of BCIs by motor-disabled people. From all kinds of BCI

control signals, the studies included in this compendium of publications use the

P300 evoked potential due to its versatility and reliability. In fact, BCIs that

are currently used by disabled people on a daily basis are generally P300-based,

restricting many other control signals to purely academic domains.

The contributions of this study are canalized in three different ways. Firstly,

two asynchronous algorithms are proposed. By default, P300-based BCIs are syn-

chronous systems, presenting an inability to monitor users’ attention and causing

unintended command selections even when users are not paying attention to the

oddball stimulation. This mode is unpractical and should be avoided whenever

a BCI is intended to be feasible in a real setup. Here, we propose (i) a thresh-

olding wrapper approach, which discriminates between control (i.e., attending)

and non-control (i.e., ignoring) states based on the classifier scores; and (ii) a fil-
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II Abstract

ter entropy-based approach, which allows to characterize EEG signals from both

states and extract discriminative information independently of the classifier. The

thresholding approach was integrated in two different assistive applications and

tested with motor-disabled users, while the entropy-based approach was studied

offline with healthy subjects.

Secondly, we propose the application of evolutionary single and multi-objective

meta-heuristics to select optimal channel sets for each user. This optimization is

often overlooked in the BCI literature due to its inherent complexity. However, it

is beneficial to improve the performance and users’ comfort, as well as to reduce

power consumption and the cost of the system. Furthermore, we present a novel

multi-objective algorithm especially designed for the BCI framework, the dual-

front genetic algorithm (DFGA). They were tested with three public databases

that recorded data of healthy subjects from different oddball paradigms.

Lastly, we present the design, development and evaluation of two novel asyn-

chronous assistive BCI applications: (i) a web browser, and (ii) a social networking

app for smartphones. The web browser is intended to be controlled using a lap-

top, selecting page links through a node tagging approach via row-col paradigm

matrices. The social networking app, by contrast, allows users to control Twitter

and Telegram in their smartphones. Both were evaluated with a population of

motor-disabled users in order to assess their feasibility in a real setup, detailing

not only quantitative measures (e.g., accuracy, timings), but also their qualitative

opinions and suggestions using questionnaires.

Our findings showed that the integration of an asynchronous management sig-

nificantly improved the performance in assistive BCIs. Particularly, it was found

that control signals are more complex and irregular than non-control ones, allow-

ing a reliable monitoring of users’ attention using entropy-based metrics (up to

94.4% accuracy). These outcomes brought to light the need of implementing an

asynchronous stage to provide a comprehensive control of the BCI and thus, to

support the personal autonomy of the target users. Moreover, results showed that

optimal channel sets present a high inter-subject variability, making the chan-

nel selection stage essential to optimize the overall performance of each user. In

that sense, the balanced combination of deterministic and stochastic strategies

of DFGA fostered the overcoming of existing algorithms in terms of performance

and convergence, allowing the supervisor to select an optimal set in function of

the number of channels available. Concerning the assistive applications, results

showed that the motor-disabled participants obtained significantly lower accura-

cies than healthy subjects (web browser: 95.8%, social networking: 92.3%), which
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states that a validation with target users is crucial to assure the feasibility of BCIs

in a real context. Despite this fact, the performances of motor-disabled users were

more than enough to claim the viability of both applications (web browser: 84.1%,

social networking: 80.6%), likely due to their asynchronous nature. Furthermore,

participants stated that they could imagine themselves using both applications on

their daily basis. We feel that these studies will contribute to move toward a real

use of these systems by motor-disable people, aiming at improving their personal

autonomy and quality of life.
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Chapter 1

Introduction

The current Doctoral Thesis focuses on contributing the Brain–Computer Interface

(BCI) field by designing, developing and testing novel signal processing methods

and assistive applications. BCI systems, which allow users to control applications

or external devices by processing their own brain signals, could rely on either

invasive or non-invasive approaches. Owing to the practicality of the system, this

study has been focused on non-invasive BCIs that analyze electroencephalographic

(EEG) signals. This research have led to the publication of a total of four articles in

journals indexed in the Journal Citation Reports (JCR) from the Web of Science�.

In particular, up to three papers were published between September 2017 and April

2019. Additionally, a fourth article is currently under review. As a result of the

aforementioned scientific productivity, this work is written as a compendium of

publications.

The thematic consistency of the manuscripts in relation to the Doctoral Thesis

is proved in section 1.1. The general context is briefly described in section 1.2,

which introduces biomedical engineering, signal processing and evolutionary com-

putation fields. Section 1.3 is devoted to the human brain, where the cerebrum

anatomy, its functions, and the measurement of brain activity are discussed. Sec-

tion 1.4 is focused on providing the basis for understanding BCI systems, including

their structure, invasiveness, and the control signals that correlate with the users’

intentions. Current limitations of the BCI systems are detailed as well. The lat-

ter, indeed, are the cause motivating the research problem. Due to the ability

of BCIs to establish a communication pathway between our brain and the envi-

ronment, these systems are specially suited to improve the quality of life of the

severely disabled. Therefore, motor disabilities of the target users that evaluated

1
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the applications included in the current doctoral thesis are described in section 1.5.

Finally, section 1.6 provides a comprehensive state-of-the-art revision of previous

approaches.

1.1 Compendium of publications: thematic con-

sistency

The idea of establishing a link between our brains and the environment, as well

as the possibility of acting through neural signals rather than muscles, have fas-

cinated mankind for a century. The discovering of EEG by Hans Berger in 1929

(Berger, 1929), the initial work of Jacques Vidal in 1973 and further progresses

in neuroscience made this idea even more plausible (Vidal, 1973a). Nowadays,

science fiction is becoming reality. For the past 25 years, research groups have

made great efforts to decode neural signals and provide different BCI systems to

disabled users and general population. Invasive and non-invasive, dependent or

independent, exogenous or endogenous, active or passive, synchronous or asyn-

chronous; many types of BCIs have arisen and are being improved by the research

community. Nonetheless, most BCI systems still lack the required reliability for

emancipating from the laboratories to a practical environment.

Hardware limitations, scarce performances, lack of validation or need of su-

pervision are some of the problems that current BCIs should face up to. In this

context, the present Doctoral Thesis aims at developing novel signal processing

methodologies and assistive applications, both intended to provide a real use of

the BCIs by motor-disabled people. Particularly, all the studies that have been

carried out in this work deal with P300 evoked potentials, a reliable control signal

that provides such performances that P300-based BCIs are the only ones that are

currently used by disabled people on a daily basis (Sellers Eric W., 2012). This is

the common thread shared by all the papers included in the present compendium

of publications. The relationship of the papers with each other and with the afore-

mentioned objective is illustrated in the Figure 1.1, whose main contributions are

depicted inside the common structure of a BCI system.

According to this non-chronological order, the first two papers were focused

on the signal processing level, whereas the last two were aimed at providing as-

sistive applications. The first paper (Mart́ınez-Cagigal et al., 2019b) dealt with

the need of supervision of current BCIs. Nowadays, most P300-based BCIs rely

on synchronous paradigms, leading to a random selection of commands even when
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users are not paying attention to the stimuli. We investigated if sample entropy

features are able to track users’ attention in real-time and provide an asynchronous

(i.e., self-paced) control of the system. We also developed a wrapper threshold-

based approach, which was then applied in the third (Mart́ınez-Cagigal et al.,

2017) and fourth (Mart́ınez-Cagigal et al., 2019a) papers. In the second paper

(Mart́ınez-Cagigal et al., 2020), we assessed the ability of three single- and three

multi-objective meta-heuristics to select a customized channel set for each user.

Then, we developed and proposed a novel method to overcome their limitations,

and we established a set of guidelines for adapting any meta-heuristic algorithm to

the P300-BCI channel selection problem. The last two papers were intended to de-

velop practical assistive BCIs for bridging the accessibility gap in new technologies

for the severely disabled. In particular, the third paper (Mart́ınez-Cagigal et al.,

2017) was aimed at providing an asynchronous P300-based BCI web browser. For

the sake of viability, the system was tested with sixteen multiple sclerosis patients

and five healthy volunteers, reaching average accuracies of 84.14% and 95.75%,

respectively. Lastly, the fourth paper (Mart́ınez-Cagigal et al., 2019a) was also

intended to provide a P300-based assistive application for motor-disabled people.

This time the paper presented an asynchronous BCI for controlling smartphone-

based social networks. The system was tested with eighteen motor-disabled and

ten healthy subjects, achieving mean accuracies of 80.6% and 92.3%, respectively.

Due to the structure of the present Doctoral Thesis, organized as a compendium

of publications, consulting each paper separately is essential for a comprehensive

understanding of this document as a whole. Therefore, Appendix A includes the

aforementioned manuscripts. Titles, authors, and abstracts of each one, as well as

the journals in which they were published are shown below:

Asynchronous control of P300-based Brain–Computer Interfaces using

sample entropy (Mart́ınez-Cagigal et al., 2019b).

Vı́ctor Mart́ınez-Cagigal, Eduardo Santamaŕıa-Vázquez and Roberto Hornero.

Entropy, vol. 21(3), p. 230, 2019. Impact factor in 2019: 2.494, Q2 in “physics,

multidisciplinary” (JCR-WOS).

Abstract: Brain-computer interfaces (BCI) have been traditionally worked using

synchronous paradigms. In recent years, many efforts have been made to reach

an asynchronous management, providing users with the ability to decide when

a command should be selected. However, to the best of our knowledge, entropy

metrics have not yet been explored. The present study follows a twofold purpose:
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Figure 1.1: Main contributions of the papers included in the compendium of publi-
cations, arranged along the common structure of a BCI system. ASOC: Applied Soft
Computing, IEEE TNSRE: IEEE Transactions on Neural Systems and Rehabilitation
Engineering, ESWA: Expert Systems With Applications.

(i) to characterize both control and non-control states by examining the regularity

of the EEG signals; and (ii) to assess the efficacy of a scaled version of the sample

entropy algorithm to provide an asynchronous control for BCI systems. Ten

healthy subjects participated in the study, who were asked to spell words through

a visual oddball-based paradigm, attending (i.e., control) and ignoring (i.e.,

non-control) the stimuli. An optimization stage was performed for determining

a common combination of hyperparameters for all subjects. Afterwards, these

values were used to discern between both states using a linear classifier. Results

show that control signals are more complex and irregular than non-control ones,

reaching an average accuracy of 94.40% in classification. In conclusion, the

present study demonstrates that the proposed framework is useful to monitor the

attention of the user and grant the asynchrony of the BCI system.
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Brain–Computer Interface channel selection optimization using meta-

heuristics and evolutionary algorithms (Mart́ınez-Cagigal et al., 2020).

Vı́ctor Mart́ınez-Cagigal, Eduardo Santamaŕıa-Vázquez and Roberto Hornero.

Applied Soft Computing, Under Review (R2), 2020. Impact factor in 2019 (last

year available): 5.472, D1 (Q1) in “computer science, interdisciplinary

applications”, and Q1 in “computer science, artificial intelligence”

(JCR-WOS).

Many brain–computer interface (BCI) studies overlook the channel optimization

procedure due to its inherent complexity. However, a suitable channel selection

procedure increases the performance and users’ comfort while reducing the cost

of the system. Evolutionary meta-heuristics, which have gained importance

due to their excellent performances in solving complex problems, have not been

fully exploited yet in this context. The purpose of the study is two-fold: (1)

to propose a novel algorithm to find an optimal channel set for each user and

compare its usefulness with other existing meta-heuristics; and (2) to establish

guidelines for adapting these optimization strategies to this framework. A

total of 3 single-objective (GA, BDE, BPSO) and 3 multi-objective (NSGA-II,

BMOPSO, SPEA2) existing algorithms have been adapted and tested with 3

public databases: ‘BCI competition III–dataset II’, ‘Center Speller’ and ‘RSVP

Speller’. Dual-Front Sorting Algorithm (DFGA), a novel multi-objective discrete

method especially adapted to the BCI framework, is proposed as well. Results

show that all the applied meta-heuristics reached accuracies that significantly

outperformed the entire set and the common 8-channel set of P300-based BCIs.

DFGA showed a significant improvement of accuracy of 3.9% over the 8-channel

set using also 8 channels; and obtained similar accuracies than it using a mean

of only 4.66 channels. Binary-based algorithms stood out because of their faster

convergence, especially the DFGA. Topographic results showed that optimal sets

differed among users, which reinforces the need to customize a channel set for each

of them. The proposed method computes an optimal subset for each number of

channels, allowing the user to select the most suitable set for further BCI sessions.

Brain–Computer Interface web browser for severely disabled people

(Mart́ınez-Cagigal et al., 2017).

Vı́ctor Mart́ınez-Cagigal, Javier Gomez-Pilar, Daniel Álvarez, and Roberto

Hornero. IEEE Transactions on Neural Systems and Rehabilitation Engineer-
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ing, vol. 25(8), pp. 1332–1342, 2017. Impact factor in 2017: 3.972, D1 (Q1) in

“rehabilitation”, and Q1 in “engineering, biomedical” (JCR-WOS).

Abstract: This paper presents an electroencephalographic (EEG) P300-based

brain-computer interface (BCI) Internet browser. The system uses the“odd-ball”

row-col paradigm for generating the P300 evoked potentials on the scalp of

the user, which are immediately processed and translated into web browser

commands. There were previous approaches for controlling a BCI web browser.

However, to the best of our knowledge, none of them was focused on an assistive

context, failing to test their applications with a suitable number of end users.

In addition, all of them were synchronous applications, where it was necessary

to introduce a “read-mode” command in order to avoid a continuous command

selection. Thus, the aim of this study is twofold: 1) to test our web browser

with a population of multiple sclerosis (MS) patients in order to assess the

usefulness of our proposal to meet their daily communication needs; and 2) to

overcome the aforementioned limitation by adding a threshold that discerns

between control and non-control states, allowing the user to calmly read the

web page without undesirable selections. The browser was tested with sixteen

MS patients and five healthy volunteers. Both quantitative and qualitative

metrics were obtained. MS participants reached an average accuracy of 84.14%,

whereas 95.75% was achieved by control subjects. Results show that MS patients

can successfully control the BCI web browser, improving their personal autonomy.

Towards an accessible use of smartphone-based social networks

through Brain–Computer Interfaces (Mart́ınez-Cagigal et al., 2019a).

Vı́ctor Mart́ınez-Cagigal, Eduardo Santamaŕıa-Vázquez, Javier Gomez-Pilar, and

Roberto Hornero. Expert Systems with Applications, vol. 120, pp. 155-166, 2019.

Impact factor in 2019: 5.452, D1 (Q1) in “operations research & manage-

ment science”, Q1 in “computer science, artificial intelligence”, and

Q1 in “engineering, electrical & electronic” (JCR-WOS).

Abstract: This study presents an asynchronous P300-based Brain–Computer In-

terface (BCI) system for controlling social networking features of a smartphone.

There are very few BCI studies based on these mobile devices and, to the best

of our knowledge, none of them supports networking applications or are focused

on an assistive context, failing to test their systems with motor-disabled users.

Therefore, the aim of the present study is twofold: (i) to design and develop

an asynchronous P300-based BCI system that allows users to control Twitter and
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Telegram in an Android device; and (ii) to test the usefulness of the developed sys-

tem with a motor-disabled population in order to meet their daily communication

needs. Row-col paradigm (RCP) is used in order to elicitate the P300 potentials in

the scalp of the user, which are immediately processed for decoding the user’s in-

tentions. The expert system integrates a decision-making stage that analyzes the

attention of the user in real-time, providing a comprehensive and asynchronous

control. These intentions are then translated into application commands and sent

via Bluetooth to the mobile device, which interprets them and provides visual

feedback to the user. During the assessment, both qualitative and quantitative

metrics were obtained, and a comparison among other state-of-the-art studies was

performed as well. The system was tested with 10 healthy control subjects and 18

motor-disabled subjects, reaching average online accuracies of 92.3% and 80.6%,

respectively. Results suggest that the system allows users to successfully control

two socializing features of a smartphone, bridging the accessibility gap in these

trending devices. Our proposal could become a useful tool within households,

rehabilitation centers or even companies, opening up new ways to support the

integration of motor-disabled people, and making an impact in their quality of life

by improving personal autonomy and self-dependence.

1.2 Context: biomedical engineering, biomedical

signal processing and evolutionary computa-

tion

Biomedical engineering is the branch of science that applies engineering principles

to understand, control and modify biologic systems (Bronzino and Peterson, 2014).

It covers a wide range of clinical, industrial and academic activities, including both

experimental and theoretical research. One of the greatest benefits of biomedical

engineering is the identification and resolution of issues and needs of our healthcare

system using technology and systems methodology (Bronzino and Peterson, 2014).

However, due to its interdisciplinary character, it is unlikely that a single person

could be expertized in the entire field, being essential the interplay among experts

of more specific scopes. For instance, specific fields such as neuroengineering,

rehabilitation engineering and human performance engineering are also closely

related to the design and development of BCI systems.

Physiological signal processing has become the key to understand biological

systems from an engineering perspective. The different physiologic systems in hu-
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man body (e.g., cardiovascular, endocrine, vision, auditory, gastrointestinal, res-

piratory, nervous) produce a great number of biomedical signals that reflect their

behavior over time (Bronzino and Peterson, 2014). By analyzing these signals, the

biomedical engineer may monitor the state of the user, detect meaningful changes

in these systems or identify pathological conditions. Unfortunately, this analysis

cannot usually be performed at first sight, but a processing step is essential to

extract and interpret hidden information. Understanding signals as functions that

convey information about the behavior or attributes of some phenomena (Priemer,

1990), signal processing aims at extracting features that characterize them by ap-

plying mathematical and information theory methodologies (Sörnmo and Laguna,

2005).

Evolutionary computation, indeed, covers a great number of methodologies

that have been successfully applied to such purposes. The term, which has be-

come increasingly important in the last decades, represents a family of optimiza-

tion algorithms inspired by biological evolution (Eiben and Smith, 2003). All of

them are based on the reproduction, variation, competition and natural selec-

tion of individuals in a population, which share a common objective. In many of

these algorithms, a collective and self-organized behavior emerges from individu-

als that a priori are only able to follow simple rules, known as swarm intelligence

(Yang, 2014). In other words, stigmergy arises while the population converges

into a common objective, usually referred to as meta-heuristic. While heuristics

rely on problem-specific strategies, meta-heuristics generalize them to problem-

independent frameworks (Bozorg-Haddad et al., 2017; Yang, 2014). As nature

does, the power of meta-heuristics rely on the most basic problem solving tech-

nique – that of trial-and-error (Eiben and Smith, 2003). This apparent simplicity,

however, does not hinder their efficacy in solving complex optimization problems,

which has led to their successful application in industrial fields, such as computer

vision, soft computing, signal and image processing, scheduling, and aerospace

engineering, among others (Coello and Lamont, 2004).

In this Doctoral Thesis, the aforementioned fields are applied in physiological

signals derived from the brain. An overview of the cerebrum anatomy is thus es-

sential to understand the different brain activity measurements, which are further

used to implement BCI systems. A detailed description of this topic is introduced

in the next section.
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1.3 The human brain

The human brain is the central organ of the nervous system, responsible of pro-

cessing and coordinating the information received by the senses, making decisions

and controlling most of the activities of the body (Standring, 2016). Together with

the spinal cord, they constitute the central nervous system (CNS). In a nutshell,

the main function of the CNS is to respond to events that occur in either the exter-

nal world or the body by eliciting neuromuscular or hormonal outputs that serve

the needs of our organism (Wolpaw and Wolpaw, 2012b). BCI systems essentially

employ these outputs to replace or improve CNS functions by generating artificial

signals. Therefore, human brain anatomy, functions and the measurement of its

activity are briefly introduced below.

1.3.1 Overview of cerebrum anatomy

Brain (i.e., encephalon) is composed by the cerebrum, diencephalon, brainstem

and cerebellum. The former is in turn encompassed by the cerebral cortex and

the subcortical areas, which include the hippocampus, basal ganglia and amygdala

(Standring, 2016). Although subcortical structures, as well as the diencephalon,

brainstem and cerebellum, make important contributions to the CNS, lack of note

to practical BCIs due to their unapproachable locations by non-invasive techniques

(Miller and Hatsopoulos, 2012). The cerebral cortex, by contrast, is relatively easy

to access experimentally, and it has become the primary focus in BCI research.

The cortex is the brain’s outer layer of neural tissue, divided by the interhemi-

spheric fissure into two paired hemispheres, which are in turn connected beneath

the cortex by the corpus callosum (Standring, 2016). It is colloquially known as

gray matter because of the color that exhibits its large number of neurons, whereas

the white matter refers to the many nerve fibers that interconnect the different cor-

tical areas and connect them to subcortical structures (Miller and Hatsopoulos,

2012). The cerebral cortex of higher mammals has seemingly evolved from a rela-

tively smooth sheet to a highly convoluted surface, composed by a set of sulci (i.e.,

ridges) and gyri (i.e., grooves). As shown in the Figure 1.2, these convolutions di-

vide the cortex into four major anatomical lobes: frontal, parietal, occipital and

temporal (Miller and Hatsopoulos, 2012). Even though this division have tradi-

tionally relied on an anatomical rationale, it has been demonstrated that lobes

are specialized in carrying out the bulk of certain basic functions, which will be

discussed afterwards.
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Figure 1.2: Primary anatomical areas of the human cerebral cortex from above (left)
and lateral (right) views. The major four lobes are shaded by different colors: blue, frontal
lobe; yellow, parietal lobe; purple, occipital lobe; and green, temporal lobe. Anatomical
tags corresponds to: (a) interhemispheric fissure, (b) prefrontal association cortex, (c)
precentral gyrus, (d) central sulcus, (e) postcentral gyrus, (f) primary motor cortex, (g)
primary somatic sensory cortex, (h) primary visual cortex, (i) preoccipital notch, (j)
cerebellum, (k) brainstem, (l) primary auditory cortex, and (m) lateral sulcus. Adapted
from Wolpaw and Wolpaw (2012a) and Society for Neuroscience (2017).

1.3.2 Brain functional specialization

Since the beginning of the 19th century, researchers have tried to map different

body functions over the cerebral cortex (Miller and Hatsopoulos, 2012). The the-

ory of modularity, extended from the outdated phrenology, suggested that the

brain has highly specialized regions which are domain specific for different cog-

nitive functions (Fodor, 1983). By contrast, the theory of distributed processing

suggested that brain is immensely interconnected and the information is processed

in a distributed manner (McIntosh, 1999). However, more recent studies based on

graph theory suggest that the functional behavior of the brain is a combination

of both (Bullmore and Sporns, 2009; Stam, 2004). Although complex cognitive

processes involve the interaction between different parts of the brain, there is a

general consensus that particular areas are more specialized than others (Miller

and Hatsopoulos, 2012). In BCI research, focusing the activity measurements on

specific cortical areas, which should be related to the employed paradigm, is es-

sential to extract suitable features. Among them, the most common key points

are the following:

Primary motor cortex (M1). Located in the frontal lobe (Figure 1.2, f), M1
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area is closely related to movement control (Miller and Hatsopoulos, 2012).

As could be noticed in the representation of Penfield’s homunculus (Fig-

ure 1.3), particular regions of M1 are intended to control particular body

areas. It is noteworthy that the cortical homunculus (i.e., little man in latin)

is disproportionately depicted over the M1. This is because controlling com-

plex body parts (e.g., hands, facial muscles) requires larger cortical areas

than managing simpler ones (e.g., elbow, knee).

Primary somatosensory cortex (S1). S1 is located in the parietal lobe, on the

other side of the central sulcus (Figure 1.2, g). This area is also important

for movement because it is related to sensations such as temperature, pain,

touch or proprioception (i.e., sense of limb position and movement) (Miller

and Hatsopoulos, 2012). Many of the axons of S1 neurons connect this region

with the thalamus and the spinal cord, for further processing of sensory

modalities and spinal reflexes (Miller and Hatsopoulos, 2012).

Prefrontal cortex (PFC). Located in the posterior part of the frontal lobe (Fig-

ure 1.2, b), PFC appears to have an important role in high-level executive

functions related to movement, planning complex cognitive and social behav-

ior, personality expression, short-term memory and decision making (Miller

et al., 2002; Wolpaw and Wolpaw, 2012a). The most dramatic example of loss

of these functions due to prefrontal damage is likely the case of Phineas Gage,

an American railroad foreman. His frontal lobe was almost completely de-

stroyed after a one-inch diameter iron rod went through his head. Although

he survived the accident and could live normally in many aspects, his per-

sonality drastically changed, becoming impulsive, unreliable and unable to

carry out his future plans (Miller and Hatsopoulos, 2012).

Primary visual cortex (V1). V1 is located in the anterior part of the occipital

lobe (Figure 1.2, h). Visual information that comes from the retina goes

through the lateral geniculate nucleus (i.e., a relay center in the thalamus)

and then reaches the visual cortex. V1 is specialized in processing sensory

inputs from the contralateral visual field (Standring, 2016). Hence, superior

retinal quadrants (i.e., inferior visual field) are connected with the upper part

of the V1, whereas inferior retinal quadrants (i.e., superior visual field) are

connected with the bottom part of the V1, and peripheral areas of the retina

are connected with the most anterior parts of V1. It is noteworthy that

visual information is not processed in a spatial way, but as edge detection

(Barten, 1999). For an image containing half side black and half side white,
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Figure 1.3: Cross section of sensory and motor homunculi over the primary somato
sensory cortex (S1, left) and the primary motor cortex (M1, right), respectively. Adapted
from Wolpaw and Wolpaw (2012a) and Society for Neuroscience (2017).

the dividing line will produce the strongest contrast due to lateral inhibition.

Therefore, most neurons will process the contrast line, while few neurons will

encode the brightness information (Barten, 1999).

Primary auditory cortex (A1). Located in the superior and medial parts of

the temporal lobe (Figure 1.2, l), A1 is specialized in processing auditory

information, being involved in higher functions such as hearing, language

switching or identifying the location of a sound in space (Pickles, 2013).

Curiously, A1 neurons are arranged according to the frequency to which they

react best. In physiology, this frequency arrangement is known as tonotopic

map, whose function, although still unknown, appears to reflect that cochlea

is also organized according to sound frequencies (Pickles, 2013).

1.3.3 Brain activity measurement

The brain activity that occurs in the aforementioned cortical areas reflects our

interaction with the outside world and our responses to external stimuli. When

designing a BCI system, it is essential to consider the main advantages and dis-

advantages of the different brain activity measurement techniques (Wolpaw and

Wolpaw, 2012b). From a microscopic point of view, brain activity is generated by

an exchange of neurotransmitters between neurons. This chemical phenomenon
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Figure 1.4: Temporal and spatial resolution of different brain activity measurement
techniques. Degree of invasiveness (DI) is also represented as a color gradient, according
to the brain layers (right). ECoG: electrocorticography, MEG: magnetoencephalogra-
phy, EEG: electroencephalography, fMRI: functional magnetic resonance imaging, fNIRS:
functional near-infrared spectroscopy, PET: positron emission tomography. Adapted
from Wolpaw and Wolpaw (2012a).

causes an imbalance in ion concentrations between the inside of a specific neu-

ron and the extracellular fluid, leading to a quick depolarization that propagates

across the axon. In practice, the membrane potential of the neuron rises and falls,

creating an action potential. When the electrical current reaches the end of the

axon, neurotransmitters are released again from the synaptic vesicles, providing a

cell-to-cell-communication (Standring, 2016).

BCIs make use of different acquisition methodologies to observe the macro-

scopic effect of these interactions and thus, to monitor users’ brain activity. Fig-

ure 1.4 depicts the most popular techniques, classified in function of their temporal

and spatial resolutions, as well as of their degree of user invasiveness. Based on

their underlying principles, brain activity measurements could be divided into

those that record electric, magnetic or metabolic activity:

Electric. Perhaps, the most intuitive way to monitor brain activity is to identify

electric sources related to the synaptic activity of individual neurons. De-

pending on the spatial resolution of the electrodes, electric activity can be

measured in micro-, meso- and macro- scales of cortical tissue. Microscale

fields (i.e., local field potentials), which reflect the activity of tissue volumes

of 0.001–1 mm3 (equiv. individual neurons), could be recorded by microar-
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rays or spikes within the brain. Mesoscale fields, which spread throughout

tissue volumes of 1–20 mm3 (equiv. neural modules, macrocolumns), are

typically recorded by electrocorticography (ECoG) from the surface of cor-

tex. Macroscale fields, which reflect joint electrical activity across volume

tissues of 103–104 mm3 (equiv. brain areas and lobes), are recorded by elec-

troencephalography (EEG) from the user’s scalp (Nunez, 2012). As shown in

the Figure 1.4, all of them present excellent temporal resolutions (i.e., 1–15

ms). Nevertheless, there is a trade-off between spatial resolution and degree

of invasiveness: microarrays and ECoG involve placing electrodes within the

cortex and over the arachnoid, respectively; whereas EEG is absolutely not

invasive.

Magnetic. The same electric currents that generate the electric field also produce

a magnetic field that can be measured by magnetoencephalography (MEG).

However, due to the low frequency of brain signals, electric and magnetic

fields generated by the brain are uncoupled (Srinivasan, 2012). In other

words, MEG is concerned on measuring a quasistatic magnetic field that is

not related with the electric field that reflects the EEG. Notwithstanding the

complementary information that MEG provides, the brain magnetic field is

very small relative to unavoidable ambient magnetic variations. Therefore,

it is required to use a superconducting quantum interference device (SQUID)

magnetometer at a very low temperature and in a specially shielded cham-

ber (Srinivasan, 2012). Besides its lack of portability, MEG is non-invasive

and provides an excellent temporal resolution (i.e., 1–15 ms) and a spatial

resolution comparable to EEG (Figure 1.4).

Metabolic. When a neuron increases the firing rate of action potentials, it uses

more energy. This energy is provided in form of glucose and oxygen, increas-

ing the blood blow in the region. Many techniques use blood flow as a marker

to indirectly measure brain activity (Wolpaw and Wolpaw, 2012c). Among

them, positron emission tomography (PET), functional near-infrared spec-

troscopy (fNIRS) and functional magnetic resonance imaging (fMRI) stand

out. By injecting a radiotracer in the patient’s body, PET is able to track

blood flow by detecting pairs of gamma rays caused by electron-positron

annihilation. Temporal and spatial resolutions are poor, the method is in-

vasive and involves exposure to ionizing radiation (Wolpaw and Wolpaw,

2012c). By contrast, fNIRS and fMRI are able to track blood flow in a

non-invasive way, making PET unsuitable for BCI applications where ease
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of use is crucial. Both of them rely on measuring the blood-oxygen-level-

dependent (BOLD) response. In our bodies, the transportation of oxygen is

carried out by hemoglobin (Hb), an iron-containing protein that coexists in

two forms: deoxy-Hb (without oxygen) and oxy-Hb (with oxygen). As blood

passes through the lungs, each deoxy-Hb picks up four O2 molecules, becom-

ing oxy-Hb; whereas when blood passes through organs and muscles, oxy-Hb

molecules release oxygen and revert back to deoxy-Hb. Whenever a brain re-

gion increases its activity, a BOLD response requests more oxy-Hb molecules,

increasing the blood flow. Hemoglobin presents different properties that al-

low BOLD response being tracked: oxy-Hb is light red and nonmagnetic,

whereas deoxy-Hb is dark red and slightly magnetic (Wolpaw and Wolpaw,

2012c). In fNIRS, probes emit infrared light at specific wavelengths and

measure the absorption when light has passed the underlying tissue. Differ-

ences in the absorption spectrum of oxy-Hb and deoxy-Hb makes possible to

monitor BOLD responses in different brain regions (Ferrari and Quaresima,

2012). Conversely, fMRI relies on the magnetic properties of the different

states of Hb. MRI scans use strong magnets and brief radio-frequency pulses

to modify the magnetic moment of nuclear protons. Deoxy-Hb, due to its

paramagnetic property, provides a disturbance on the moment additional to

the magnetic field created by the magnet, allowing fMRI to measure the

BOLD response (Ogawa et al., 1990). Even though the spatial resolution of

fMRI is excellent and fNRIS’s one is comparable to EEG, the temporal res-

olution of both techniques is limited by the slow rate of the BOLD response,

which lasts up to several seconds (Wolpaw and Wolpaw, 2012c). Moreover,

effective fMRI neuroimaging requires many scans to remove external arti-

facts (i.e., movements, respiration, vessels pulsations) and an expensive and

non-portable equipment.

Practical BCIs usually are required to work in real-time, making it essential

to have an excellent temporal resolution. For that reason, metabolic-based physi-

ological signals are often relegated to the research field. Among the rest of them,

most BCIs prioritize the portability of the system and avoid invasive approaches,

preferring EEG over other measurement techniques.
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1.4 Brain–Computer Interfaces

Since the invention of the EEG by the professor Hans Berger in 1929, scientists

have speculated about the possibility of moving or communicating through brain

signals rather than muscles (Berger, 1929). Nevertheless, it took until 1973 to

publish the first BCI in the literature. The system, developed by the professor

Jacques Vidal, was able to detect the direction of the eye gaze by processing visual

evoked potentials with the objective of controlling a two-dimensional cursor (Vidal,

1973b, 1977). Even though there is still a lot to be done, BCIs have drastically

evolved since then to the point of being successfully applied with motor-disabled

people to improve their quality of life; or even of becoming commercially interesting

in many non-clinical applications.

1.4.1 A closed loop

BCIs provide a communication pathway between the brain and the environment,

making it possible to control external devices or applications by using the user’s

brain activity. More specifically, Wolpaw and Wolpaw (2012a) define this emerging

technology as:

“(A BCI is) a system that measures CNS activity and converts it into

artificial output that replaces, restores, enhances, supplements, or improves

natural CNS output and thereby changes the ongoing interactions between

the CNS and its external or internal environment.”

This definition not only describes what a BCI is, but also the five most straight-

forward applications. In practice, BCIs might: (1) replace natural outputs that

have been lost due to injuries or diseases (e.g., speech synthesizer for people that

cannot longer speak); (2) restore weak responses (e.g., muscle stimulation via im-

planted electrodes for spinal cord injuries); (3) enhance CNS outputs (e.g., sound

alert for warning against somnolence when driving); (4) supplement neural outputs

(e.g., control of an extra robotic hand); and (5) improve CNS responses (e.g., re-

habilitation of muscles via sensorimotor brain signals in stroke patients) (Brunner

et al., 2015; Wolpaw and Wolpaw, 2012a). Independently of their final purpose,

BCI systems share a closed loop structure. The three main stages that compose

them, depicted in the Figure 1.5, are detailed below:

1) Signal acquisition. The first stage involves the recording of brain activity.

As discussed in section 1.3.3, there are several methods that monitor elec-

trical, magnetical or metabolic activity from the brain at different levels of
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Figure 1.5: Classical structure of a BCI system. Firstly, user’s brain activity is acquired
using EEG electrodes. Then, user’s intentions are decoded by the signal processing stage,
which involves feature extraction, selection and classification steps. Finally, the decoded
intentions (i.e., commands), are sent to the final application, which provides feedback to
the user. As shown, applications are intended to replace, restore, enhance, supplement
and/or improve the natural nervous outputs of the user.

invasiveness. Owing to the practicality of the system, most BCI studies in

the literature employ the EEG because of its non-invasiveness, low-cost and

ease of use.

2) Signal processing. Users’ intentions are not directly reflected in their

brain signals. The second stage is thus intended to process the acquired

signals in order to detect measurable changes that are correlated with the

users’ intentions. Signal processing is in turn composed by feature (1) ex-

traction, (2) selection, and (3) classification stages. The former aims to

extract several features somewhat correlated with the intentions by applying

signal processing methodologies. Selection algorithms are then applied to

select the most relevant features for preventing the curse of dimensionality
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(Blankertz et al., 2011). Finally, feature classification makes use of machine

learning algorithms to identify the intentions of the user and convert them

into application commands.

3) Application. Although signal acquisition and processing stages are usually

shared in BCI systems, the third stage depends utterly on the study. The

application is intended to receive and interpret the commands for providing

a real-time feedback to the user. This feedback is essential to close the loop,

allowing users to react by selecting new commands or modulating their own

brain activity.

1.4.2 EEG-based systems

From a practical point of view, BCIs for general population should ideally be

non-invasive, portable, cheap, reliable, easy to setup, comfortable, and robust

against different environments and external artifacts. Attending to these aspects,

techniques that are invasive, such as microarrays, ECoG and PET; cumbersome

or expensive, such as MEG, fMRI and fNRIS; are often delegated to the research

field. Therefore, EEG-based BCIs have been prioritized in the present Doctoral

Thesis, because of their non-invasiveness, low-cost and ease of use.

Electroencephalogram is a non-invasive monitoring technique that records elec-

trical activity from the brain by placing a set of electrodes over the user’s scalp.

Each electrode reflects a space-averaged activity of 100 million to a billion of neu-

rons, whose coordinated firing is strong enough to be recorded from outside the

brain (Nunez et al., 1997; Wolpaw and Wolpaw, 2012a). A typical EEG recording

involves the use of, at least, three electrodes (ground, reference and channel), a

differential amplifier, hardware filtering, an operational amplifier and an analog-

to-digital converter (ADC). The ground electrode is connected to the amplifier

ground, which is isolated from the power supply, preventing amplifier drifts and

favoring the common-mode rejection (Srinivasan, 2012). Note that EEG record-

ings are bipolar, and thus they measure voltage differences between a channel and

a reference. The reference electrode should be ideally located far enough from

brain sources, which is usually placed at the ear, mastoid or neck. Electrodes are

directly connected to a differential amplifier, intended to amplify the difference

between each channel and the reference, and to suppress the common voltage be-

tween them (i.e., common-mode). Remaining common voltages are due to unequal

impedances between electrodes, which are lessened by applying a conductive gel

between the electrodes and the scalp (Ferree et al., 2001). Then, hardware filters
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Figure 1.6: Schematic views of the standard International System 10–10 montage for
EEG recordings: (A) lateral, (B) top, and (C) scalp projection. In (A) and (B), gray
electrodes are not labeled for clarification purposes. This standard uses proportional
distances of 10% between the nasion and the inion for locating the landmarks.

typically remove frequencies below 0.5 Hz and over 200 Hz, although it depends

on the implementation. Signals are finally amplified about 2 · 104 times, sampled

and digitized. Channel positions are not arbitrary, but are specified in different

standards, such as International Systems 10–20, 10–10 or 10–5 (Srinivasan, 2012).

In the present Doctoral Thesis, the standard 10–10 is applied, which establishes

landmarks following proportional distances of 10% between the nasion and the

inion (Chatrian et al., 1985), as depicted in the Figure 1.6.

The high sampling rate of the ADC (commonly, fs ≥ 250 Hz) guarantees a

suitable temporal resolution (i.e., 1–15 ms), good enough to capture electrical

aftermaths of neurological processes in real time. However, the spatial resolution

of the EEG is limited due to the distance between cortical sources and the scalp.

As shown in the Figure 1.7, the cortical sources reflected by the EEG are caused

by large assemblies of pyramidal neurons that are arranged perpendicularly to the

cortex’s surface (Nunez et al., 1997). From a macroscopic point of view, each source

may be simplified as a dipole, making EEG more sensitive to correlated dipoles on

gyri than on sulci. In fact, sulci folds provoke the cancellation of their electrical

sources, which cannot be recorded by EEG channels (Srinivasan, 2012). Moreover,

the individual contribution of a single source is hindered by the set of tissues that

must go through. This tough journey is characterized by two phenomena: (1)

source effect, and (2) volume conduction. The former involves the attenuation,

distortion and noise contamination of a source when it passes through the cortex,

meninges and the skull (Wang, 2010). Volume conduction is concerned with the

spread of electrical activity when it encounters a different surface, such as the scalp
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Figure 1.7: Anatomical illustration of cortical sources perceived by the EEG. Pyramidal
cells are depicted as dipole layers that are perpendicular to the cortical sheet. EEG is
more sensitive to correlated dipoles in gyri perpendicular to the electrode (e.g., G–H);
less sensitive to correlated dipoles that are not completely perpendicular (e.g., D–E); and
insensitive for such dipoles that cancellate themselves, such as those found in sulci (e.g.,
B–C–D, E–F–G, H–I–J, K–L–M). Source effect and volume conduction phenomena are
also depicted.

(Nunez et al., 1997). Even though the laws that govern the volume conduction

effect are well-known, their application to EEG is extremely complex because of

the time dependence (Nunez, 2012). It is necessary to take into consideration that

both effects are inherent to EEG recordings.

The attenuation and distortion that neural sources suffer when traveling from

the cortex to the scalp makes EEG sensitive only to the coordinated activity of

billions of neurons at the same time. For this reason, EEG is often interpreted as

a rhythmic activity that reflects neural oscillations (Cohen, 2014). Although the

frequency spectrum is not limited, the oscillations that are thought to be associated

with cognitive processes are comprised in frequencies between 2–150 Hz (Cohen,

2014). As shown in the Figure 1.8, EEG signals may be further decomposed into

five main frequency rhythms or bands:

1) Delta (δ, 1–4 Hz). The slowest frequency band, characterized by high-

amplitude waves, prevails frontally in adults in deep sleep. It is also seen in

awake babies, but spatially located at occipital electrodes. An excessive and

generalized delta activity is abnormal, commonly associated with subcortical,
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Figure 1.8: Neural oscillations of electroencephalographic (EEG) signals of a healthy
awake subject. (A) EEG segment of 5 seconds from channel Pz; (B) power spectral
density (PSD) of the EEG signal; (C) decomposition of the EEG segment in the five
main bands: δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30), and γ (30–100 Hz).

deep midline or diffuse lesions, as well as with metabolic encephalopathy

hydrocephalus (Tatum IV, 2014).

2) Theta (θ, 4–8 Hz). Predominant in frontal or frontocentral regions, theta

activity is common in young adults. These waves are commonly enhanced

by drowsiness or hyperventilation; and are associated with meditative, emo-

tional and creative states (Tatum IV, 2014). Intermittent bursts of gener-

alized theta activity are often abnormal, which could indicate mild diffuse

encephalopathy or hydrocephalus (Tatum IV, 2014).

3) Alpha (α, 8–13 Hz). Also known as the posterior basic rhythm, the alpha

band was the first reported rhythmic activity by Hans Berger (Berger, 1929).

These waves are most prominent in bilateral posterior head regions during

relaxed wakefulness. For most adults, alpha rhythms increase their ampli-

tude immediately after eye closing, and attenuate in eye opening or mental

exertion. Unilateral failure may reflect an ipsilateral abnormality (Tatum

IV, 2014). Furthermore, alpha band is also referred as mu rhythm (µ, 8–

13 Hz) when its topography is mainly located over the sensorimotor cortex

(i.e., S1 and M1 regions). The mu rhythm is a decrease of contralateral alpha

activity associated with limb movements, or even the imagination of these

movements (Reilly, 2013; Wolpaw et al., 2002). It may be asymmetrical or

only seen at one side, which do not necessarily disclose a brain lesion. By

contrast, abnormal behavior is reflected if mu rhythm is persistent or not
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reactive to motor execution (Tatum IV, 2014).

4) Beta (β, 13–30 Hz). Frontal low-amplitude beta rhythms are closely

linked to anxiety, active concentration, drowsiness or light sleep. An ex-

cessive activation in this band is often associated with the consumption of

benzodiazepines, barbiturates and chloral hydrates; as well as with patholo-

gies such as the Dup15 syndrome (Tatum IV, 2014).

5) Gamma (γ, 30–100 Hz). Less studied, gamma rhythms are thought to be

related with high cognitive processing. These waves arise during cross-modal

sensory processing (perception that involves two or more senses at the same

time) and short-term memory matching (Kisley and Cornwell, 2006). Recent

studies also associate gamma activity with abrupt interactions between ex-

citatory and inhibitory neurotransmitter concentrations (Fuchs et al., 2007).

1.4.3 Control signals

The most important role of a BCI system is to accurately detect the intentions of

the user in real-time, which is not a straightforward process. As aforementioned,

complex cognitive processes such as thinking or decision making involve the inter-

action between different parts of the brain (section 1.3.2). Furthermore, the spatial

resolution of EEG and its inability to record neither non-perpendicular pyramidal

neurons or deep activity would hinder the focusing on certain brain areas (sec-

tion 1.4.2). Under this rationale, users’ intentions are not directly reflected on

their raw EEG signals, making paradigms and signal processing steps essential to

identify and convert them into application commands. Actually, EEG-based BCI

systems rely on the processing of measurable changes related to cognitive tasks,

known as control signals.

Control signals may be divided in function of the required time to master them.

Exogenous signals rely on processing natural responses of our brains to external

stimuli; thus, do not require any training, but a short calibration (Kleber and

Birbaumer, 2005; Nicolas-Alonso and Gomez-Gil, 2012). By contrast, endogenous

signals are based on users’ ability to self-regulate their brain activity through

neurofeedback (NF) training (Nicolas-Alonso and Gomez-Gil, 2012). Based on

operant conditioning, NF involves a real-time presentation of certain EEG param-

eters to the user, together with positive reinforcement for favoring the learning of

the desired regulation (Kleber and Birbaumer, 2005). In practice, users eventually

find their own strategies to self-regulate their brain rhythms in order to complete a
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certain task or, in this case, to generate measurable changes in their EEG signals.

Unfortunately, the control of these endogenous signals is time-consuming, last-

ing from hours to weeks, depending on the user (Nicolas-Alonso and Gomez-Gil,

2012). Notwithstanding the clear distinction between both types of control signals

in function of the training time, this taxonomy may be confusing because there

are control signals that encompass both exogenous and endogenous components

(Donchin et al., 1978).

Slow cortical potentials

Slow cortical potentials (SCP) are a family of slow endogenous voltage shifts that

are time-locked and phase-locked to certain sensorimotor activities (i.e., occur at

specific times before, during and after the events) (Allison Brendan Z., 2012).

These events are triggered by executing or imaging movements, or by achieving

cortical activation through cognitive tasks (e.g., mental arithmetic, concentration)

(Allison Brendan Z., 2012; Nicolas-Alonso and Gomez-Gil, 2012; Wolpaw et al.,

2002). SCPs are characterized by a slow negative wave, which starts 1.5−2 s prior

to the movement onset and reaches its peak negativity at the onset; followed by a

positive rebound that usually lasts 1−1.5 s (Guger et al., 2014). Their character-

istic slowness makes them appear in low delta bands (<1 Hz). In the literature,

SCPs are often referred as movement-related cortical potentials (MRCP), since

they are thought to reflect neural activation in preparation for action (Allison

Brendan Z., 2012; Guger et al., 2014; Jahanshahi and Hallett, 2003).

MRCP (i.e., SCP) waveforms differ depending on the NF paradigm and their

source localization across the cortical surface. Notwithstanding the numerous

components that make the MRCPs up, whose nomenclature and taxonomy vary

among authors (Allison Brendan Z., 2012; Farina et al., 2013; Jahanshahi and

Hallett, 2003), recent BCI studies distinguish between the bereitschaftspotential

(BP) and the contingent negative variation (CNV) (Guger et al., 2014). Both

are subcomponents of the MRCPs, but generated using different NF paradigms:

self-paced (i.e., asynchronous) for BP; and cue-based (i.e., synchronous) for CNV.

The BP, also referred as readiness potential (RP), consists of a negative voltage

deflection that usually begins 0.5−1.5 s before a volitional movement (Jahanshahi

and Hallett, 2003). Although it was originally believed that BP sources lain in

subcortical structures, such as basal ganglia and thalamus, more recent studies

suggest that sensorimotor areas (M1 and S1) are probably generators of BPs (Ikeda

et al., 1992; Toma et al., 2002). CNVs (or anticipation-related potentials) , by

contrast, are produced when the user anticipates motor or cognitive tasks (Guger
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Figure 1.9: Grand averaged MRCPs of 15 subjects performing motor movement tasks
with their elbow and wrist. Shaded areas represent the 95% confidence interval across
trials. (A) Motor execution response over Cz. (B) Motor imagery response over FCz.
MRCPs were computed using a public EEG dataset of upper limb movements (Ofner
et al., 2017).

et al., 2014). These waves are negative EEG drifts elicited 0.2−0.5 after displaying

a cue that warns an imperative stimulus will occur several seconds later. Since a

CNV reflects preparation for response, it is highly affected by motivational and

task-specific aspects. Besides being distributed over the regions that are directly

involved in the motor action, CNVs are mainly generated in frontal areas, such as

the PFC (Allison Brendan Z., 2012; Lu et al., 2012).

Regardless of their main subcomponent, a successful elicitation involves pre-

vious training, which usually requires repeated sessions over weeks or months.

Moreover, SCPs only offer dichotomous decisions: cortical inhibition or activa-

tion. SCP-based BCIs typically dissociate the problem-specific set of commands

in a tree-based selection framework, allowing users to select any command by se-

quentially performing binary selections. This scheme ends up hindering the speed

and ease of use of the final application, reaching low transmission rates and making

the BCI prone to errors (Allison Brendan Z., 2012; Nicolas-Alonso and Gomez-Gil,

2012). For these reasons, SCPs in BCI systems have been gently relegated and

substituted by more reliable control signals. Further SCP applications might be fo-

cused on supplementing hybrid BCIs with a complementary measure to anticipate

users’ movements or to reach an asynchronous control, enhancing the restoring

of muscle functions for rehabilitation purposes, or performing basic research or

neuromarketing, among others (Allison Brendan Z., 2012).
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Sensorimotor rhythms

Sensorimotor rhythms (SMR) are oscillations in mu (8–13 Hz), beta (18–30 Hz),

and gamma (30–100 Hz) bands recorded over the sensorimotor cortex (i.e., S1 and

M1 areas). SMRs are modulated by endogenous motor activity, leading to EEG

variations that are time-locked to the event, but not phase-locked (Pfurtscheller

and Lopes da Silva, 1999). In other words, the power of SMRs may vary in

association with actual or imagined sensorimotor events, experimenting either a

(1) decrease, known as event-related desynchronization (ERD); or an (2) increase,

known as event-related synchronization (ERS) (Pfurtscheller and Lopes da Silva,

1999; Pfurtscheller and McFarland, 2012).

In particular, mu band SMRs exhibit two different behaviors. For lower fre-

quencies (8-10 Hz), ERDs occur for any kind of motor event across the entire so-

matosensory region, which suggests a reflection of motor preparation or attentional

processes. On the other hand, ERDs produced in higher mu frequencies (10-13

Hz) are topographically and functionally restricted over certain task-specific ar-

eas (Pfurtscheller and McFarland, 2012). Note that the cortical representation is

contralateral to the movement. These localized mu ERDs are usually accompa-

nied by simultaneous ERSs in neighbor cortical areas, reflecting a phenomenon

known as focal-ERD/surround-ERS. Is it though that this effect may depict a

mechanism that joins efforts on an specific sensorimotor subsystem by inhibiting

other non-related cortical areas (Pfurtscheller and McFarland, 2012). Therefore,

ERD/ERS variations reflect local interactions between neurons, allowing accentu-

ations/inhibitions of certain oscillations (Pfurtscheller and Lopes da Silva, 1999).

Beta SMRs also exhibit ERDs in response to motor events or somatosensory stimu-

lation, but usually followed by a short ERS after movement, known as beta rebound.

Owing to the similarity between ERD/ERS variations caused by actual and

imagined motor events, SMR-based systems have gained a special interest in the

BCI literature. Through NF training, some users can learn to self-regulate their

own SMRs, even for subjects whose actual limb control is hindered or non-existent

(Pfurtscheller and McFarland, 2012). SMR variations are achieved by means of

motor imagery, repeatedly emphasizing kinesthetic experiences rather than visual

representations of movements (Nicolas-Alonso and Gomez-Gil, 2012). Eventually,

the control become automatic and the imagery turns out to be less important. Nev-

ertheless, current SMR-based BCIs are only able to detect spatially well separated

classes, usually two (e.g. left and right hands); although some studies have at-

tempted to control up to four (left and right hands, foot and tongue) (Ofner et al.,
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2017; Tangermann et al., 2012). Thus, the dissociation of application commands

into a tree-based selection framework is also present in SMR-based BCIs for com-

munication and control, due to the greatly limited number of discriminative classes.

In therapeutic applications where an accurate control of ERD/ERS events is not

sought, but the reinforcement/reorganizing of neural pathways through NF train-

ing, SMR-based BCIs are essential to provide continuous feedback (Pfurtscheller

and McFarland, 2012).

Figure 1.10 depicts SMRs variations elicited by a motor imagery task, where

the subject was requested to imagine left- and right-hand movements for 4 s after

a cue was displayed on a screen. As shown in (A), contralateral ERDs are mainly

present 1–4 s after the cue, followed by small ERS rebounds. The spectral analysis

(B) over this particular temporal window also displays a clear ERD, reducing the

power of the contralateral imagery task in the mu band. Furthermore, a time-

frequency analysis (C) of the signed-r2 statistic (i.e., coefficient of determination)

was performed to exhibit the difference between ERD/ERS of both tasks. As can

be noticed, this subject reached a higher skilled control of left-hand motor imagery.

The higher variation of the rhythm when the left-hand task was performed would

lead to an easier discrimination in the classification stage.

Steady-state visual evoked potentials

An event-related potential (ERP) is a pattern of voltage variations produced in

response to an external event (e.g., visual, auditory or tactile) (Sellers Eric W.,

2012). Particularly, when the ERP is time-locked to a visual event, such as a

brief flash, appearance of sudden images or abrupt color changes, it is known as

visual evoked potential (VEP). VEPs are generated in or near the V1 and are

usually more prominent over occipital areas (Allison Brendan Z., 2012). However,

single-trial ERPs are masked by EEG background activity which is unrelated to

the event, making them impossible to identify in the raw EEG with the naked eye.

Averaging across trials allows for extracting ERP patterns, making background

activity cancel itself and strengthen the time-locked response (Luck, 2014).

ERP voltage patterns utterly depends on the type of stimulus, as well as on

the task or paradigm. For instance, VEP main components include N75, P100

and N135, which usually occur 70, 100, and 135 ms after the stimulus onset,

respectively (Sellers Eric W., 2012). If the stimuli are presented in a slow rate,

the evoked responses are called transient VEPs; i.e., the pattern occurs once and

then ends. Nevertheless, if the stimuli is a rapid repetitive visual stimulation, the

evoked responses overlap themselves, producing a constant oscillation at the same



1.4. Brain–Computer Interfaces 27

Figure 1.10: Differences between SMRs of left and right hands during a motor imagery
(MI) task, where the cue was displayed at t = 0 s. (A) Averaged ERD/ERS (%) variations
in mu band (8–13 Hz) over C3 and C4. (B) Averaged PSD variations in temporal epochs
between 1–4 s over C3 and C4. (C) Spectrograms of signed-r2 statistics between both
classes over C3 and C4 (positive values reflect higher amplitudes of the left class). These
SMRs were computed using B subject calibration trials of the public IV BCI Competition
dataset 1 (Tangermann et al., 2012).

rate, known as steady-state VEP or SSVEP (Luck, 2014; Sellers Eric W., 2012).

The Figure 1.11(A) depicts how a simulated transient VEP becomes an SSVEP

as the stimulus rate increases.

SSVEPs are easily identifiable by simple spectral analysis, assuring high clas-

sification accuracies in SSVEP-based BCIs without prior training, due to their ex-

ogenous nature. As shown in Figure 1.11(B), not only SSVEPs are clearly reflected

in the PSD spectrum, but also their harmonics. The most common SSVEP-based

BCI setup involves creating an arrangement of commands or characters that flicker

at different frequencies. When the user pays attention to a specific command, an

SSVEP appears in the EEG spectrum and can be detected by the system. Even

though this setup allows selecting a high number of different classes, it should

be noted that most reliable flickering rates belong to the low beta band (i.e.,

13–19 Hz), which increments visual fatigue and maximizes the risk of photosensi-

tive epileptic seizures (Pastor et al., 2003). Moreover, the number of commands is

slightly limited by the vertical standardized refreshing rate of current LCD screens

(Volosyak et al., 2009).
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Figure 1.11: (A) Simulated VEP responses at different stimulus rates: 1, 7 and 14
Hz. Note how the transient VEP becomes an SSVEP as the stimulus rate increases. (B)
PSDs of real SSVEPs produced as responses to flashes that flickered at 7, 8.2 and 9.3 Hz
over the occipital cortex (channel Oz). These SSVEPs were computed using Subject 1
trials of the public AVI SSVEP database (Vilic, 2013).

P300 evoked potentials

The usefulness of ERPs as BCI control signals is not limited to transient VEPs or

SSVEPs, but its discriminative power can be strengthened by using more complex

events. Voltage patterns that arise when performing a time-locked average of a

response to an event are known as components. VEP main components, which

may be recorded from the first 150 ms following the stimulus onset, tend to reflect

cortical activity in V1. Although they usually vary depending on the modality of

the stimulus, these initial components are unconsciously triggered by the subject

and thus, they are considered exogenous (Sellers Eric W., 2012). Nonetheless, a

visual eliciting event may also cause later components if it is related with a certain

task that the subject must perform. In that case, longer-latency patterns reflect

higher-level cognitive processing less dependent on the stimulus modality, usually

referred as endogenous components (Sellers Eric W., 2012).

P300 evoked potentials (i.e., P3) are likely the most studied endogenous com-

ponent of VEPs. As its name suggests, P300 potentials are positive deflections

that appear in response to infrequent and particularly significant stimuli at about

300 ms after their onset (Wolpaw et al., 2002). The latency actually may vary

between 250 to 750 ms, though; depending on the spectral filtering, individual

aspects of users or on the difficulty of the task (Picton, 1992). These variations

suggest that it is indeed an endogenous component, elicited by the decision that a

rare event has occurred, whether conscious or not. P300 waves are usually more
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Figure 1.12: Grand averaged P300 evoked potentials across 18 subjects that performed
a visual oddball task. (A) Temporal ERP over Fz (dot-dash line) and Cz (solid line). The
blue shaded area indicates the 95% confidence interval across trials. (B) Topographical
plot of the averaged ERP amplitude between 400 and 600 ms for each channel. These
ERPs were computed using a public visual oddball database (Robbins et al., 2018).

prominent at central or parietal scalp positions, and attenuate gently from there

(Sellers Eric W., 2012).

The way to generate P300 waves in an ERP is known as oddball paradigm. The

paradigm is based on presenting infrequent target stimuli, which must be attended;

among other background stimuli, which must be ignored. Therefore, the task of

the user lie in classifying somehow these two different events. The less-frequent

event (i.e., target) elicit a P300, whereas the other one does not (Sellers Eric W.,

2012). Note that the lower the probability of the target stimuli, the higher the P300

amplitude. Figure 1.12 depicts a grand averaged P300 across 18 healthy subjects

that were performing a visual oddball task (pressing a button when a target image

appeared) (Robbins et al., 2018). As shown, the initial temporal components (e.g.,

N75, P100, N200) are shared with common VEPs (section 1.4.3), but a positive

deflection occurs after 380 ms. In this case, the P300 wave is lengthened (until

750 ms) due to the grand average across subjects, since each of them would reflect

a different latency. The topographic plot of Figure 1.12(B) displays the mean

amplitude between 400–600 ms across the scalp surface. As shown, the P300

potential is more prominent at central regions, whose amplitude declines mainly

in occipital areas until it turns into a negative deflection.

P300-based BCIs make use of P300 potentials to detect what command the user

wants to select from a set of them. Generally, the system implements variations

of the visual oddball paradigm that correlate the P300 response of the subject

with the provided commands, identifying the desired command after several stim-

uli repetitions (section 3.2). In practice, P300-based BCIs do not only process the
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P300 wave, but the entire ERP. For that reason, some authors refers that kind of

systems as ERP-based BCIs (Santamaŕıa-Vázquez et al., 2019). It is also notewor-

thy that there is no consensus when referring them as exogenous or endogenous

systems, due to the mix of VEP and P300 components. However, it is clear that

P300 potentials are generated as natural responses of brains to stimuli and thus,

P300-based BCIs do not require any training by the user, just a slight calibration.

Moreover, as P300 responses present higher amplitudes when the target stimulus

is less frequent, these BCIs favor the inclusion of a high number of different classes

(i.e., commands). These aspects make P300-based BCIs so reliable that they can

be used by disabled people on a daily basis for communication and/or environ-

mental control purposes (Sellers Eric W., 2012). Owing to the aforementioned

advantages, the present Doctoral Thesis is focused on designing, developing and

testing P300-based BCIs hereinafter.

1.4.4 Current limitations

The most straightforward applications of BCIs are focused on improving the qual-

ity of life of severely disabled people by replacing, restoring, enhancing, supple-

menting, or improving natural CNS outputs (Wolpaw and Wolpaw, 2012a). How-

ever, the level of development of current BCIs is usually not enough to take the

leap from laboratories and provide a real-life use of these systems. Indeed, BCI

is considered an orphan technology, which denotes systems that have been tested

in the laboratory, but which do not provide enough incentives to be commercially

interesting in their current form (Kübler et al., 2020; Wolpaw Jonathan R., 2012).

Therefore, BCI studies intended to provide assistive applications should deal with,

at least, the following limitations:

1) Hardware. Apart from the inherent limitations of non-invasive BCIs, which

were previously discussed in section 1.4.2; EEG equipment should ideally not

require conductive gel, be comfortable, easy to setup, fully portable, wire-

less, function many hours without maintenance, and perform well in real-life

environments. Although numerous efforts have been made to develop more

and more comfortable and independent equipment, current EEG systems

still lack of robust performances in all environments.

2) Reliability. Due to the inherent variability of the EEG, BCI performances

tend to vary markedly between trials, sessions and individuals. Even though

they usually improve with practice, performances never approximate to a



1.5. Motor disabilities 31

muscle-based control, nor to the required level of reliability for a practical

use (Wolpaw Jonathan R., 2012). For MI-based BCIs, reliability is further

limited by BCI illiteracy (i.e., people who is not able to reach an adequate

performance after training sessions) and the small number of classes that

can be successfully discriminated.

3) Validation. BCI studies often fail to prove their systems with target users

(i.e., severely disabled), making it impossible to infer their feasibility in a

real context (Mart́ınez-Cagigal et al., 2019a). Instead, most studies only

test their systems with healthy users, providing an initial approximation of

the expected behavior. Nonetheless, care must be taken when generalizing

these results, since it has been widely documented that disabled people usu-

ally reach lower performances than control subjects (McCane et al., 2014).

Therefore, recruiting a target population must be essential to assess the vi-

ability of the proposed system.

4) Synchrony. Ideally, a BCI should evolve toward an unsupervised use of

the system that provides users with a comprehensive self-paced control. Un-

fortunately, most studies propose synchronous BCIs, which implies that the

system is constantly translating EEG activity into commands, even without

a voluntary intention from the users. Hence, a supervisor is always required

to set the application up. This mode is usually unpractical, and should be

avoided if the system is intended to have possibilities to work in a real situ-

ation (Pinegger et al., 2015). Self-paced BCIs cannot be achieved without a

proper asynchrony management, which makes systems always available and

gives users the power to control when the BCI output should be produced

(Wolpaw Jonathan R., 2012).

1.5 Motor disabilities

Validation of BCIs with disabled people is crucial for identifying needs, testing

and determining the reliability of the systems. Among the wide variety of mo-

tor disabilities, people with locked-in syndrome (LIS) were identified as the most

immediate target population for BCIs. In this condition, the patient is conscious

but cannot communicate or move due to a complete paralysis of all limbs and the

last cranial nerves (Hochberg Leigh R., 2012). Note that LIS is not a disease,

but a state resulted from different clinical etiologies. However, it is not necessary

to reach that point, but also people with any kind of impaired mobility may be
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target users for BCIs. In general, motor disabilities of most BCI users are often

caused by neurodegenerative diseases, traumas, muscle disorders, or any illness

that impairs the neural pathways that control muscles or the muscles themselves

(Wolpaw et al., 2002).

All the assistive BCI applications that are presented in this Doctoral Thesis

have been evaluated with target users, in order to provide an accurate measure-

ment of performance in a real environment. All subjects presented different motor

disabilities caused by one of the following diseases:

1) Multiple sclerosis (MS). MS is the most common autoimmune disease

that affects the CNS. In MS, the immune system damages the myelin of

brain and spinal cord nerve cells, causing an inflammation that disrupts the

ability of neurons to communicate. This results in a variety of symptoms,

including motor problems, cognitive deficits or psychiatric disorders. Indeed,

up to 60% of the patients develop a motor disability before twenty years

after the onset (Compston and Coles, 2008). In rare cases the disease may

be terminal, although most people with MS have a normal life expectancy

(Compston and Coles, 2008).

2) Stroke. Also known as cerebrovascular accident, the stroke is the major

cause of disability and second most common cause of death worldwide. In

this condition, brain cells die because of insufficient blood flow, caused either

by an ischemic (i.e., lack of blood flow) or a hemorrhagic (i.e., bleeding)

origin. Both lead to functional brain damage in the affected regions, which

can be permanent (Donnan et al., 2008).

3) Spinal cord injury (SCI). An SCI is a damage to the spinal cord that

results in temporary or permanent loss of mobility or feeling. The injury

(caused by trauma or disease) can be either complete if a total loss of func-

tion is presented, or incomplete if some nerves are able to pass the damaged

area. Depending on the degree of affectation, the location, and the rehabili-

tation procedure, long-term SCI outcomes range from complete recovery to

permanent paraplegia or quadriplegia (McDonald and Sadowsky, 2002).

4) Cerebral palsy (CP). CP is the most common movement disorder in chil-

dren. It reflects an abnormal brain development that usually leads to spas-

ticity (i.e., stiff muscles), dyskinesia (i.e., uncontrollable movements) and

ataxia (i.e., poor coordination) (NINDS, 2013). Often, the cause is un-

known; though is closely related to problems that occur during pregnancy,
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childbirth or immediately after it. There is no cure for CP and thus, people

with CP require long-term care, including medications, therapies and even

surgical procedures (NINDS, 2013).

5) Muscular dystrophies (MD). MD comprises a group of muscle diseases

that lead to progressive weakness and loss of muscle mass. Although there

are several types of MD, all of them are considered inherited genetic disor-

ders; i.e., caused by mutations on genes involved in making muscle proteins.

There is no cure for MD and most people eventually become unable to walk.

However, symptoms may be monitored and relieved by medication, physical

therapy and surgery (Mercuri and Muntoni, 2013).

6) Friedreich’s ataxia (FRDA). FRDA is an inherited neurodegenerative

disease in which the production of the protein fraxatin is hindered, result-

ing in cellular damage and death. The ataxia is eventually caused by the

degeneration of the spinal cord nerves. Symptoms, which usually starts in

childhood, progressively worsen until people lose the ability to stand or walk.

FRDA has no cure; thus, patients rely on physical and occupational therapies

the rest of their lives (Delatycki et al., 2000).

1.6 State of the art

The main contributions of this Doctoral Thesis are related with the asynchrony of

the BCIs, the channel selection problem and the development of assistive applica-

tions (i.e., web browser, social networking app). Therefore, the next subsections

reflect a comprehensive state of the art revision of these topics:

1.6.1 Asynchrony

As mentioned in section 1.4.4, synchrony is one of the main limitations of current

P300-based BCIs. Conventional synchronous BCIs are typically associated with

visual oddball paradigms, in which random flashings elicit P300 potentials and

allows the system to discriminate among different commands. As the BCI cannot

monitor users’ attention, it will continue selecting random commands even if the

user is ignoring the stimuli. Thus, recent investigation have been focused on

providing a real asynchronous control of the system; i.e., to discriminate between

control (attending) and non-control (ignoring) states.
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Based on the hypothesis that P300 potentials are more easily discriminated

when users are attending to the stimuli, many studies rely on a threshold derived

from classifier’s scores, which are expected to be higher in the control state. These

scores were obtained from support vector machines (SVM) (He et al., 2017; Li

et al., 2013; Zhang et al., 2008) or linear discriminant analysis (LDA) (Alcaide-

Aguirre et al., 2017; Aloise et al., 2011; Aref and Huggins, 2012; Breitwieser et al.,

2016; Mart́ınez-Cagigal et al., 2017, 2019a; Tang et al., 2018) classifiers. Aydin

et al. (2018) proposed the use of labels instead of scores for designing different

criteria to define the non-control state. Some studies proposed modifications of

the paradigm to elicit SSVEPs; using P300 potentials to determine the target

command, and SSVEPs to identify the non-/control states (Li et al., 2013; Panicker

et al., 2011). Similarly, other studies took a step further, hypothesizing that the

stimulation already produces residual SSVEPs in control states, provided flashings

occur at a fixed rate. Hence, spectral methods were also proposed as features, such

as relative powers (Ma and Qiu, 2018), sums of spectral components (Pinegger

et al., 2015) or canonical correlation analysis (CCA) (Santamaŕıa-Vázquez et al.,

2019). Further modifications for hybrid BCIs have been also proposed, involving

MI tasks via SMR (Yu et al., 2017) or tactile ERPs (Breitwieser et al., 2016).

1.6.2 Channel selection

Channel selection optimization is usually overlooked in BCI literature due to its

inherent complexity. Nevertheless, a channel selection procedure is beneficial to

reduce the dimensionality of the data, the cost of the system, the power consump-

tion and to increase users’ comfort. According to the aforementioned limitations of

current BCIs (see section 1.4.4), this problem involves the hardware and reliability

aspects of the systems.

Generally, P300-based studies use the 8-channel combination proposed by

Krusienski et al. (2008), mainly located over parieto-occipital regions. This ap-

proach is valid as a general rule of thumb, but ignores the intrinsic inter-subject

variability of ERP responses. For this reason, many recent studies were aimed at

testing novel metrics to find the most appropriate channels for each subject. Note

that an exhaustive search is intractable, due to the enormous amount of possi-

ble combinations (i.e., 2Nc for a Nc-channel cap). Meta-heuristics have demon-

strated excellent performances solving complex optimization problems, especially

swarm intelligence and evolutionary computation approaches. In particular, parti-

cle swarm optimization (PSO), a single-objective algorithm, has been successfully
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applied in P300-based BCIs (Arican and Polat, 2020; Gonzalez et al., 2013, 2014;

Jin et al., 2010; Perseh and Sharafat, 2012). However, a BCI-oriented channel

selection should optimize two objectives simultaneously: (1) to maximize the per-

formance, and (2) to minimize the number of channels. As a preliminary work,

we used a weighted aggregation approach to merge both objectives into a single

expression and adapted 5 single-objective approaches to the discrete domain, in-

cluding PSO, bees algorithm (BA), artificial bee colony (ABC), binary ant system

(BAS) and firefly algorithm (FA) (Mart́ınez-Cagigal and Hornero, 2017a,b). Nev-

ertheless, simultaneous optimization was not explored; indeed, the application of

multi-objective algorithms in P300-based BCI channel selection is more limited.

To the best of our knowledge, only Kee et al. (2015) applied a non-sorting genetic

algorithm II (NSGA-II), while Chaurasiya et al. (2017) used a multi-objective bi-

nary differential-evolution algorithm (MOBDE), achieving promising results. In

spite of their scarce application, evolutionary computation applied is a growing

research field that integrates many different algorithms that have not been fully

exploited yet in this context. Moreover, their application in P300-based BCIs

is not straightforward, due to the dichotomy of the problem (e.g., select or re-

ject each channel). The discretization of these meta-heuristics must be performed

carefully, by means of adapting inner equations and employing binary operators

(e.g., crossover, mutation, transfer functions, etc.).

1.6.3 BCI web browsers

As aforementioned, the most straightforward application of BCI systems is to

improve the quality of life of the severely disabled, for instance, by replacing the

control of some devices to make them assistive and favor their accessibility. Owing

to the advance of Internet in the last decades, it is natural to think whether a

BCI web browser could be feasible. Nowadays, web browsers are designed to be

controlled by a keyboard and a mouse, but not with a small amount of control

signals.

In this regard, several previous attempts aimed at controlling a BCI web

browser were reported in the literature. The first ones employed SCP or SMR

as control mechanisms, using dichotomous decision trees to select or reject com-

mands (Bensch et al., 2007; Karim et al., 2006). Notwithstanding their usefulness

as the precursors of BCI-based web browsers, the binary selection strategy was

slow and required a supervisor to adjust several parameters (e.g., reading pauses,

address book entries, etc.). Furthermore, users needed to spend a lot of time to
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learn to control SCP and SMR signals, and it was not guaranteed that they could

eventually control them with enough ability to experiment a real command of the

system (Bensch et al., 2007; Karim et al., 2006). Mugler et al. (2010) overcome the

selection slowness by developing a P300-based system, in which commands were

selected using the oddball paradigm. Page links were tagged with an alphanumeric

coding, allowing its selection provided the code was entered using P300 selections.

Sirvent Blasco et al. (2012) also used a P300-based approach, but the selection

of links was made by simulating the movement of the mouse trough commands

that shifted its position a fixed amount of pixels in different directions. A hybrid

approach was also developed by Yu et al. (2012), in which the horizontal and

vertical movements of the mouse were controlled by SMR and P300 potentials,

respectively. Nonetheless, these approaches were synchronous and thus, it was

required to include a “read mode” command to pause the stimulation when the

user wanted to calmly read a web page . This pause, however, was fixed for a

predefined number of seconds, which could result too long or too short a time for

the user (Mugler et al., 2010; Sirvent Blasco et al., 2012). For a truly free surfing,

this synchronous mode is impractical and cannot be applied in a real setup. To

the best of our knowledge, there are not asynchronous-based BCI web browsers in

the literature. Noteworthy, Karim et al. (2006), Bensch et al. (2007) and Mugler

et al. (2010) tested their proposals with 1, 4 and 3 ALS patients, respectively;

reaching averaged accuracies of 80% and 72% (results of Bensch et al. (2007) were

not reported). Accuracies of healthy subjects, by contrast, reached a mean of

93% (Mugler et al., 2010; Sirvent Blasco et al., 2012; Yu et al., 2012), which com-

promises the generalization of the results and the feasibility of those studies that

lacked of validation with motor-disabled patients.

1.6.4 Mobile BCIs

Other BCI application could be focused on controlling some functionalities of

the smartphones. Currently, these devices have more than 4.9 billion of unique

users in the world, becoming an essential aspect of our daily lives (Kemp, 2018).

Although their functionalities cover managing finances, reading news, watching

videos, shopping, playing games or searching for information, among other uses;

more than the 56% of the time spent is dedicated to socializing via social media and

instant messaging (Ipsos MORI and Google, 2017). In spite of this development,

smartphones are still restricted for motor-disabled people than cannot control their

fingers or hands accurately. Therefore, whether a BCI controlled smartphone could
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bridge the accessibility gap in these trending devices is a reasonable concern.

Despite the popularity of smartphones or tablets nowadays, studies that aim at

controlling their functionalities using BCIs are scarce in the literature. These stud-

ies, tested with healthy subjects (HS), are limited to dial numbers in cell phones

(Chi et al., 2012; Wang et al., 2011), call contacts (Campbell et al., 2010; Wang

et al., 2011), accept incoming calls (Katona et al., 2014), play a simple racing game

(Wu et al., 2014), spell words (Campbell et al., 2010; Elsawy et al., 2017; Obeidat

et al., 2017), or open pre-installed apps and visualize the image gallery (Elsawy and

Eldawlatly, 2015). Among them, the works of Wang et al. (2011) and Chi et al.

(2012) used SSVEPs as control signals, reaching averaged accuracies of 95.90%

(10 HS) and 89.00% (2 HS), respectively. Others used a commercial control signal

from the Neurosky cap, achieving an accuracy of 75.00% (5 HS) (Katona et al.,

2014; Wu et al., 2014). The rest of them used P300 potentials, reaching accuracies

of 88.89% (3 HS) (Campbell et al., 2010), 83.34% (6 HS) (Elsawy and Eldawlatly,

2015), 64.17% (6 HS) (Elsawy et al., 2017) and 90.00% (14 HS) (Obeidat et al.,

2017). Nevertheless, to the best of our knowledge, none of those studies has been

focused on making social apps accessible, nor providing a high-level control of a

smartphone or tablet. In addition, results show a poor performance of HS com-

pared with those reported in other P300-based BCI studies, likely due to simple

EEG acquisition equipment and signal processing pipelines, leaving room for im-

provement. Furthermore, they have not tested their proposals with motor-disabled

people, which are presumably the target users of their applications. From these

state-of-the-art revision it is thus clear that a BCI system to control socializing

functionalities of a smartphone could be a novel contribution to the literature, as

well as a suitable assistive application to meet the daily communication needs of

the motor-disabled.

Once the main topics of this Doctoral Thesis have been introduced, the rest

of the document is organized as follows. Chapter 2 enumerates the hypotheses

that have motivated each study, including the overall purpose and the specific ob-

jectives. Databases and EEG acquisition procedure are detailed in the chapter 3.

Afterward, chapter 4 describes the methodology, including signal pre-processing,

feature extraction, selection and classification, channel selection, performance as-

sessment and statistical analysis. Main results are shown in the chapter 5, which

are further discussed in the chapter 6, enumerating the current limitations. Fi-

nally, the contributions of this Doctoral Thesis, as well as the final conclusions, are

detailed in the chapter 7. The last sections are intended to complement this doc-
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ument by including: the papers of the compendium of publications (appendix A),

the scientific achievements achieved during the Ph.D. (appendix B), and a brief

summary in Spanish (appendix C).



Chapter 2

Hypothesis and objectives

As it has been previously shown, developing reliable BCI systems for improving

the quality of life of the severely disabled has become a major concern in the last

decades. Therefore, the proposals developed in this Doctoral Thesis are focused on

providing asynchronous and channel selection signal processing methodologies and

assistive applications, intended to provide a real use of P300-based BCIs by motor-

disabled people. Thereby, the hypotheses that have motivated each study, as well

as the joint main hypothesis that justify the present Doctoral Thesis are declared

in section 2.1. On the other hand, section 2.2 introduces the main objective and

the specific objectives that must be fulfilled to reach it.

2.1 Hypothesis

Despite the growing interest of scientific literature in BCI systems in the last

years, the current limitations of these systems have relegated their application to

laboratories. Consequently, studies usually overlook the potential utilization of

the BCI on a real situation and focus on merely academic purposes. Thus, a naive

hypothesis can be formulated as a starting point: limitations of current BCIs that

hinder their application outside the laboratories can be lessened. Notwithstanding

its usefulness as an introductory step, this high-level statement does not suffice to

approach any particular investigation by its own. Therefore, additional lower level

hypotheses need to be examined for reaching that point.

As stated in subsection 1.4.4, current BCIs should mainly face the following

limitations: (1) reliability, (2) synchrony, (3) hardware, and (4) validation. In

general, (1) reliability may be addressed by using control signals with a proper

39



40 Chapter 2. Hypothesis and objectives

inter-subject generalization ability and a reduced calibration. In other words, sig-

nals that do not depend on the ability of users to self-regulate their own activity,

such as P300 evoked potentials (as discussed in subsection 1.4.3). Addressing the

(2) synchrony is absolutely essential to provide a comprehensive self-paced con-

trol of the BCI. Asynchrony can only be achieved if the BCI is able to determine

whether the user wants to deliver a command (i.e., control state) or not (i.e.,

non-control state). Thereby, it has been assumed that novel feature extraction

and classification approaches are able to reach an asynchronous control. Since

it can be thought that control state is more demanding than non-control, it is

particularly hypothesized that entropy-based measurements can characterize the

regularity of non-/control EEG signals and provide complementary information

for discriminating between both states. (3) Hardware limitations may be mainly

addressed through electronic improvements (e.g., dry electrodes, wireless commu-

nication, battery autonomy, etc.), although some software approaches can con-

tribute too. For instance, reducing the number of electrodes would reduce the cost

of the system, power consumption and increase users’ comfort. Due to their great

abilities to solve complex optimization problems, it has been hypothesized that

meta-heuristics based on evolutionary computation are able to optimize the chan-

nel set for each user in P300-based BCIs. Similarly, it has been assessed whether

these approaches effectively avoid the curse of dimensionality and maximize the

P300 potential detection accuracy, somehow contributing to the (1) reliability is-

sue as well. Regarding the last limitation, every single BCI intended to be used by

the severely disabled should be (4) validated with a target population for guaran-

teeing a proper performance, and not only with healthy subjects. Nowadays, there

are still numerous applications and devices whose accessibility is greatly limited

for motor-disabled people (e.g., surfing the Internet, accessing social networks). It

has been thus hypothesized whether a P300-based asynchronous BCI web browser

is able to provide a reliable Internet surfing for motor-disabled people. By exten-

sion, it has been also assessed if a P300-based asynchronous BCI can provide a

comprehensive control of smartphone-based social networks for the motor-disabled;

including Twitter –a microblogging service–, and Telegram –a cloud-based instant

messaging application–.

These statements are the main hypotheses that form the core of the present

Doctoral Thesis, which can be merged into the following global hypothesis:

“P300-based BCI systems may be oriented toward a real use outside

laboratories by applying novel signal processing methodologies (e.g.,

asynchronous management, channel selection) and developing asyn-



2.2. Objectives 41

chronous applications (e.g., web browser, social networks).”

2.2 Objectives

The general goal of this Doctoral Thesis is to design, develop and evaluate novel

signal processing methodologies and assistive applications toward a real use of

P300-based BCIs by motor-disabled people. These methodologies were focused

on optimizing channel sets and reaching a fully self-paced control of the systems;

whereas the assistive applications were aimed at bridging the accessibility gap in

web browsers and smartphone-based social networks. In order to achieve the main

objective, the following specific objectives arise:

I. To review the bibliography and state-of-the-art related to non-invasive BCI

systems, putting special emphasis in channel selection and asynchronous

techniques, as well in development of assistive applications.

II. To build a database of non-/control state EEG recordings for approaching the

asynchronous problem in P300-based BCIs and to recruit a large population

of motor-disabled users (including MS, stroke, SCI, CP, MD, and FRDA), as

well as their socio-demographic data, to validate the assistive applications.

III. To implement the most appropriate methods to optimize channel sets, dis-

criminate between asynchronous states, and identify P300 potentials; and to

investigate the suitability of further improvements.

IV. To design and develop two P300-based assistive asynchronous systems for

controlling: (1) a web browser, and (2) smartphone-based social networks.

V. To evaluate the ability of the selected methods for optimizing the channel set

of each user and reaching a self-paced control of P300-BCIs by testing them

in both public and previously recorded databases, as well as to validate the

developed P300-based assistive asynchronous BCIs with the recruited motor-

disabled population, as well as with healthy subjects.

VI. To conduct statistical analysis of results for evaluating the suitability of each

proposal, and for characterizing performances depending on the population;

and to compare and discuss the results to draw appropriate conclusions,

including a comprehensive comparison with previous state-of-the-art studies.

VII. To disseminate the main results and conclusions in JCR indexed journals,

as well as in book chapters and international and national conferences.





Chapter 3

Subjects and signals

In this chapter, different databases and acquisition setups that play an important

role in the compendium of publications are revised. Firstly, section 3.1 details

demographic and clinical characteristics of the subjects that compose the databases

of each study. The three different oddball paradigms employed to elicit P300

potentials are presented in section 3.2. Finally, section 3.3 describes the acquisition

setups, including EEG equipment, electrode locations and sampling rate.

3.1 Subjects

As the purpose and validation procedure of every conducted study vary, different

databases and subject pools were used in this Doctoral Thesis. A general specifi-

cation of these databases is shown in the table 3.1. Details of each of them, such

as number of subjects, sex, age and degree of disability of the participants are

indicated next:

1) Entropy-based asynchrony study. As the study was aimed at character-

izing both non-/control states, an asynchronous database was recorded. This

database was composed by 10 HS (6 males, 4 females, mean age: 25.70 ±
3.09 years) that were asked for ignoring and attending the row-col paradigm

(RCP), using a 16-channel EEG cap (Mart́ınez-Cagigal et al., 2019b).

2) Channel selection study. For the analysis of meta-heuristics to optimize

the number of channels, three different public databases were used (Mart́ınez-

Cagigal et al., 2020). All of them were recorded from HS with high-density

EEG caps, but employed different stimulation paradigms. The first one

43
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Table 3.1: Database specifications for each study.

Study Disabled
patients

Healthy
subjects

Paradigm No.
channels

Mart́ınez-Cagigal et al. (2019b) 0 10 RCP 16

Mart́ınez-Cagigal et al. (2020)
0 2 RCP 64
0 13 CS 63
0 12 RSVP 61

Mart́ınez-Cagigal et al. (2017) 16 MS 5 RCP 8

Mart́ınez-Cagigal et al. (2019a) 18∗ 10 RCP 8

MS: multiple sclerosis, RCP: row-col paradigm, CS: center speller, RSVP: rapid serial visual
presentation. ∗ 1 stroke, 2 spinal cord injury, 5 Friedreich’s ataxia, 5 cerebral palsy, 2 muscular
dystrophy.

is the ‘BCI Competition III: dataset II’, recorded from 2 HS using a 64-

channel EEG cap with the RCP (Blankertz et al., 2006). The second one

is the ‘Center Speller (008-2015)’ dataset, recorded from 13 HS (8 males, 5

females, mean age: 27 years) using a 63-channel EEG cap with the center

speller paradigm (Treder et al., 2011). The third one is the ‘RSVP Speller

(010-2015)’ dataset, recorded from 12 HS (6 males, 6 females, mean age:

29.17 years) using a 61-channel cap with the rapid serial visual presentation

paradigm (Acqualagna and Blankertz, 2013).

3) Web browser study. A reliable validation of an asynchronous BCI web

browser for the severely disabled requires recruiting target users, in addition

to the HS pool. Therefore, the database was composed by 16 MS patients

(10 males, 6 females, mean age: 42.06 ± 7.47 years) and 5 HS (all males,

mean age: 26.00 ± 4.58 years) using a 8-channel cap, whose demographic

and clinical data are detailed in the table 3.2 (Mart́ınez-Cagigal et al., 2017).

4) Smartphone-based social networks study. Similarly, the subject pool

that evaluated the smartphone-based social networks study was composed by

18 motor-disabled subjects (1 stroke, 2 SCI, 5 FRDA, 5 CP, 2 MD; 11 males,

7 females, mean age: 47.28 ± 9.68 years) and 10 HS (8 males, 2 females,

mean age: 26.10 ± 3.45), using a 8-channel cap. Their demographic and

clinical data are depicted in the table 3.3 (Mart́ınez-Cagigal et al., 2019a).

All subjects gave their informed written consent for participating in the stud-

ies, whose protocols were approved by the local ethics committee and conformed to

the declaration of Helsinki. Motor-disabled participants of Mart́ınez-Cagigal et al.

(2017) and Mart́ınez-Cagigal et al. (2019a) were recruited by the National Refer-
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Table 3.2: Participants’ demographic and clinical data for the web browser study.

User Sex Age DMD DCA DSA

H
ea

lt
h
y

CH01 M 23 - - -
CH02 M 31 - - -
CH03 M 23 - - -
CH04 M 31 - - -
CH05 M 22 - - -

M
S

P
a
ti

en
ts

CP01 F 30 Non-existent Very high Very high
CP02 M 31 Non-existent High Very high
CP03 M 43 Mild Very high High
CP04 F 47 Moderate Normal High
CP05 M 56 Moderate Low Very low
CP06 F 32 Non-existent Normal Normal
CP07 M 35 Non-existent Very high Very high
CP08 M 41 Non-existent High High
CP09 F 49 Non-existent Normal Very high
CP10 M 44 Mild Normal Low
CP11 F 41 Moderate Normal High
CP12 M 43 Moderate Very high Normal
CP13 M 44 Non-existent High High
CP14 M 52 Moderate Very high Normal
CP15 F 38 Non-existent Normal High
CP16 M 47 Moderate Normal Normal

DMD: degree of motor disability, DCA: degree of cognitive ability, DSA: degree of sus-
tained attention, M: male, F: female (Mart́ınez-Cagigal et al., 2017).

ence Centre on Disability and Dependence, located in San Andrés del Rabanedo

(León, Spain).

3.2 Oddball paradigms

As discussed in section 1.4.3, P300 evoked potentials are endogenous components

elicited by rare stimuli that transgress the user’s expectations. The experimen-

tal procedure that is required to produce these potentials is known as oddball

paradigm, which must keep to three main attributes: (1) there are two different

classes of stimuli; (2) stimuli that fall into one class are much more frequent than

for the other class; and (3) the task compel the subject to classify each stimulus

into one of the two classes. In fact, the absence of a stimulus may be a class if the

setup satisfies the aforementioned conditions (Sellers Eric W., 2012). In the BCI

field, visual oddball paradigms are widely used, leading to the proposal of many

variants. Regarding this Doctoral Thesis, three different paradigms were used:

1) Row-Col Paradigm (RCP). Probably the most common application of

the oddball paradigm in BCI systems (Farwell and Donchin, 1988). As shown
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Table 3.3: Participants’ demographic and clinical data for the smartphone-based social
networks study.

User Sex Age DMD
(%)

Disease

H
ea

lt
h
y

DH01 M 25 - -
DH02 M 25 - -
DH03 M 24 - -
DH04 M 25 - -
DH05 M 25 - -
DH06 M 32 - -
DH07 M 24 - -
DH08 M 25 - -
DH09 F 23 - -
DH10 F 33 - -

M
o
to

r-
d

is
a
b

le
d

su
b

je
ct

s

DP01 F 48 90% Stroke
DP02 M 46 80% Spinal cord injury
DP03 F 38 93% Friedreich’s ataxia
DP04 M 39 98% Spinal cord injury
DP05 F 49 78% Friedreich’s ataxia
DP06 M 31 76% Cerebral palsy
DP07 M 52 99% Cerebral palsy
DP08 M 44 90% Friedreich’s ataxia
DP09 M 47 69% Cerebral palsy
DP10 M 67 87% Cerebral palsy
DP11 M 62 86% Muscular dystrophy
DP12 M 47 90% Muscular dystrophy
DP13 F 66 94% Friedreich’s ataxia
DP14 F 40 88% Friedreich’s ataxia
DP15 M 38 98% Spinal cord injury
DP16 M 50 80% Spinal cord injury
DP17 F 42 89% Cerebral palsy
DP18 F 45 84% Spinal cord injury

DMD: degree of motor disability, M: male, F: female (Mart́ınez-Cagigal et al., 2019a).

in figure 3.1(A), a matrix containing alphanumeric characters or commands

is displayed. Rows and columns of the matrix flash in a randomized fashion

until every single row and column has been illuminated, which is known as

a sequence. The user, who must focus on the desired command, will elicit

a P300 potential whenever the column or the row that contain the target

command are flashed.

2) Center Speller (CS). The CS paradigm was proposed as a gaze-

independent variation of RCP for patients with impaired eye movements

(Treder et al., 2011). As shown in figure 3.1(B), CS exploits feature at-

tention based on colors and shapes that are sequentially presented on the

center of the screen. Commands are grouped into six different shapes that
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Figure 3.1: Visual oddball paradigms used in this Doctoral Thesis. (A) Series of flashings
in the RCP paradigm. Since the matrix dimensions are 6×6, a total of 12 randomized
flashings are required to highlight each row and column. The procedure is repeated Ns

times to increase the number of observations and strengthen the P300 wave. (B) Series
of flashings in the CS paradigm. Output commands are grouped in 6 sets with different
shapes and thus, the selected command is determined through two different selection
stages. Note that the Ns repetitions are performed in each stage separately. (C) Series
of flashings in the RSVP paradigm. Characters are sequentially displayed on the center
of the screen, using color and uppercase/lowercase variations. (D) Time course of a
sequence of flashings in visual oddball paradigms such as RCP, CS or RSVP.
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Table 3.4: Oddball parameters for each database.

Study Paradigm N†s
Timings

SD ISI SOA

Mart́ınez-Cagigal et al. (2019b) RCP 15 75 ms 100 ms 175 ms

Mart́ınez-Cagigal et al. (2020)
RCP 15 100 ms 75 ms 175 ms
CS 10 100 ms 100 ms 200 ms
RSVP 10 N.r. N.r. 83 ms

Mart́ınez-Cagigal et al. (2017) RCP 15 62.5 ms U(125,
250) ms

U(187.5,
312.5) ms

Mart́ınez-Cagigal et al. (2019a) RCP 15 62.5 ms U(125,
250) ms

U(187.5,
312.5) ms

SD: stimulus duration, ISI: inter-stimuli interval, RCP: row-col paradigm, CS: center speller,
RSVP: rapid serial visual presentation, N.r.: not reported (Treder et al., 2011), U randomized
within uniform distribution.
† Number of sequences of the training data.

flash according to the oddball paradigm, allowing the user to select them in

two stages: (i) the group, (ii) the specific command. Unlike the RCP, this

paradigm does not require an accurate control of the gaze, since flashings

are presented on the center of the screen.

3) Rapid Serial Visual Presentation (RSVP). The RSVP paradigm was

developed to exploit the foveal visual field and avoid eye movements (Ac-

qualagna and Blankertz, 2013). As shown in figure 3.1(C), RSVP depicts

symbols in the center of the screen in a serial manner. In order to favor

the identification of the symbols, half of the characters are uppercase and

the other half lowercase, using 5 different colors. A sequence is thus finished

when all symbols have been presented.

The procedure is repeated Ns times to get enough observations for assuring

the reliability of the P300 potential. Note that few flashings will elicit a P300

(i.e., infrequent class) in comparison with those that are not associated to the

target command (i.e., frequent class), leading to ratios of 1:6 in both examples.

Generally, calibration data is recorded with 10 ≤ Ns ≤ 15 sequences; being reduced

to an understandable number after classifier training. Of course, flashings should

be randomized inside a sequence; otherwise, the user could expect their onsets,

violating the core principle of P300 elicitation: an unexpected stimulation.

Figure 3.1(D) depicts the time course of a sequence of flashings. The stimulus

onset asynchrony (SOA), i.e. the elapsed time between two consecutive onsets;

is composed by the stimulus duration (SD) and the inter-stimuli interval (ISI).

Although there is not a general consensus about the fixation of these parameters,
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Figure 3.2: Electrode montages used in this Doctoral Thesis, according to the In-
ternational System 10–10: (A) asynchrony study (Mart́ınez-Cagigal et al., 2019b); (B)
application studies (Mart́ınez-Cagigal et al., 2017, 2019a); (C) RCP (left), CS (center),
and RSVP (right) databases of the channel selection study (Mart́ınez-Cagigal et al.,
2020). Ground and reference electrodes are marked in yellow and blue, respectively.

SOA usually takes values in the range of 175–200 ms (Acqualagna and Blankertz,

2013; Blankertz et al., 2006; Treder et al., 2011; Wolpaw and Wolpaw, 2012a).

Occasionally, ISI varies among sequences to hinder users’ anticipation. Table 3.4

indicates the values that have been used in this Doctoral Thesis. It is notewor-

thy that the epoch length used to classify both classes typically contains several

flashings and thus, the output ERP is a superposition of delayed P300 waves.

3.3 Acquisition setup

As the databases vary, the acquisition setup also varied among the studies. Fig-

ure 3.2 shows the electrode montages for each study, according to the International

System 10–10 (see section 1.4.2). EEG signals for the asynchrony (Mart́ınez-

Cagigal et al., 2019b), web browser (Mart́ınez-Cagigal et al., 2017) and social net-

works (Mart́ınez-Cagigal et al., 2019a) studies were recorded with a g.USBAmp

(g.tec Medical Engineering, Austria), at a sampling rate of 256 Hz and using 16,

8 and 8 active electrodes, respectively. Data was referenced to the earlobe, using

the channel Fpz as a ground. Conversely, the public databases that were used in

the channel selection study (Mart́ınez-Cagigal et al., 2020) differ: RCP database

was recorded using 64 channels at 240 Hz (equipment, reference and ground not
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reported) (Blankertz et al., 2006); CS and RSVP databases were recorded via 63

and 61 active electrodes connected to BrainAmp systems (Brain Products, Ger-

many) at 1000 Hz, referenced to the left mastoid and placing a ground electrode

over the forehead (Acqualagna and Blankertz, 2013; Treder et al., 2011).



Chapter 4

Methods

This chapter describes the methods that have been applied through the com-

pendium of publications. Signal conditioning and channel selection algorithms are

detailed in sections 4.1 and 4.2, respectively; followed by the standard EEG signal

processing pipeline: feature extraction (section 4.3), selection (section 4.4) and

classification (section 4.5). Afterward, section 4.6 is devoted to the asynchrony

management. Different methods to assess the performance of the proposed algo-

rithms are detailed in section 4.7. Finally, section 4.8 provides a brief description

of applied statistical analyses.

4.1 Signal pre-processing

After the EEG acquisition, a signal conditioning or pre-processing step must be

performed to remove artifacts and enhancing temporal, spectral or spatial charac-

teristics of the signals:

1) Frequency filtering. As EEG frequencies above 40 Hz have a very low

signal-to-noise ratio (see section 1.4.2) and amplifier’s low-frequency drifts

are sometimes present, a band-pass filtering is essential for BCI applications

(Krusienski Dean J., 2012). In this case, signals were band-pass filtered

between 0.1–60 Hz and then, a 50 Hz notch filter was applied to remove

the power interference. For the offline studies, finite impulse response (FIR)

filters were used (Mart́ınez-Cagigal et al., 2019b, 2020); for the online ones,

infinite impulse response (IIR) filters were applied (Mart́ınez-Cagigal et al.,

2017, 2019a).

51
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Figure 4.1: Spatial filtering techniques in EEG-based BCIs. The mean of blue electrodes
would be subtracted from the current channel (e.g., Cz), depicted in yellow. (A) Ear
reference. (B) Laplacian filtering, (C) CAR filtering.

2) Spatial filtering. Spatial filters are fundamentally used to improve source

localization, to enhance particular channels or to remove certain artifacts.

Considering the latter, a common average reference (CAR) filtering was ap-

plied by subtracting, for each channel, the mean value of all of them, as

shown in figure 4.1(C). Hence, xc = xc− 1
Nc

∑Nc

i=1 xi, where xc is the signal

for the electrode c, and Nc is the number of channels (Krusienski Dean J.,

2012). In this way, artifacts that are common to all electrodes, such as power

interference, are minimized. CAR provides a biased estimate of reference-

independent potentials as well, whose approximation error decreases in high-

density electrode montages.

4.2 Channel selection

The stimuli repetitions that are required to elicit a reliable P300 response (see

section 3.2) constitute high-dimensional data liable to produce an over-fitting of

the classifier. This phenomenon, known as the curse of dimensionality, may pro-

duce spoiled performances if data are not properly processed by means of feature

extraction and/or selection methods, regularized classifiers or channel selection

procedures. The latter is often overlooked in BCI literature, due to its inherent

complexity; and thus it is common to see a 8-channel set in P300-based BCIs as a

general rule of thumb (Krusienski et al., 2008). However, among these approaches,

channel selection procedures are the only that are able to reduce the cost of the

system, the power consumption and to increase users’ comfort. For this reason, we

studied the ability of several single- and multi-objective optimization approaches

for selecting the most appropriate channel set for each user Mart́ınez-Cagigal et al.
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(2020). We also proposed a novel meta-heuristic that overcame their limitations,

while the rest of the studies of this Doctoral Thesis used the Krusienski’s set

(Mart́ınez-Cagigal et al., 2017, 2019a), or an extended version of it (Mart́ınez-

Cagigal et al., 2019b).

Dealing with the problem of selecting the most suitable set of channels is not

trivial. For an Nc-channel cap, there are 2Nc possible subset combinations of

channels to consider, making an exhaustive search intractable in practice. Channel

selection is therefore viewed as a complex optimization problem, where iterative

meta-heuristics are applied to find an optimal (or suboptimal but suitable) solution

in a reasonable amount of time (Bozorg-Haddad et al., 2017). Here, a solution is

represented as s = [s1, s2, . . . , sNc
], si ∈ {0, 1}, where 1 and 0 values indicate

the selection or rejection of a specific channel i, respectively. Moreover, there

must be a way to assess the fitness of each solution for achieving an objective

function. In a P300-BCI, two main objectives should be pursued: (1) to maximize

the performance of the system, and (2) to minimize the number of EEG channels;

which may be modeled as:

minF (s) =

{
f1(s) = 1−AUC(s)

f2(s) =
∑Nc

i=1 si
, (4.1)

where f1(s) and f2(s) are the first and second objective, respectively. AUC(s)

denotes the area under receiving-operating characteristic (ROC) curve for the

solution s, an estimate of the discriminative ability of a binary classifier using

calibration data (Colwell et al., 2014; Zweig and Campbell, 1993). In this case,

a 5-fold cross-validated linear discriminant analysis was used to derive the aver-

aged AUC (see sections 4.7.1 and 4.5.1), after a proper feature extraction process

involving epoch windowing and decimation (Mart́ınez-Cagigal et al., 2020) (see

sections 4.3).

Once the objective functions are modeled, the solution associated with the

global optima may be found by using a meta-heuristic; i.e., an algorithm that

iteratively improves a candidate solution. Even though there are more than 70

evolutionary computation based meta-heuristics (Jr et al., 2013), only a few key

strategies are repeatedly used by these algorithms and slightly modified among

them. Furthermore, most of them are single-objective oriented. The aforemen-

tioned multi-objective formulation can be adapted into a single expression by us-

ing weighted approaches (Coello and Reyes-Sierra, 2006; Mart́ınez-Cagigal and

Hornero, 2017a,b; Mart́ınez-Cagigal et al., 2018); however, the supervisor would
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get a single solution, lacking of the possibility to consider the multi-objective

optimization tradeoff. Among the well-known single-objective meta-heuristics,

stand out: genetic algorithms (GA) (Holland, 1992), (binary) differential evolu-

tion (BDE, DE) (Storn and Price, 1997), (binary) particle swarm optimization

(BPSO, PSO) (Kennedy and Eberhart, 1995), ant colony optimization (ACO)

(Dorigo et al., 2006), or bees algorithms (BA) (Pham et al., 2006), among others.

By contrast, multi-objective algorithms try to optimize more than one objec-

tive simultaneously. Since these objectives usually conflict among themselves, it

is required to introduce a new metric in order to measure the quality of each so-

lution: the dominance. It is said that a solution s1 dominates another solution s2

(i.e., s1 � s2) if ∀i : fi(s1) ≤ fi(s2) and ∃j : fj(s1) < fj(s2) –in minimization

problems–. Therefore, those solutions that are not dominated by any other are

considered optimal. As shown in figure 4.2, the set containing optimal solutions

forms the Pareto-front curve, which depicts the tradeoff between the objectives

(Deb, 2005). Concerning the BCI channel selection model of equation 4.1, the

Pareto-front would display configurations that use different number of channels,

allowing the supervisor to freely select one of them. Common multi-objective

meta-heuristics include: non-sorting genetic algorithm II (NSGA-II) (Deb et al.,

2002); multi-objective PSO (MOPSO) (Reyes-Sierra and Coello, 2005); or strength

pareto evolutionary algorithm 2 (SPEA2) (Zitzler et al., 2001); among others.

4.2.1 Dual-Front Sorting Genetic Algorithm

In spite of the large amount of existing meta-heuristics, all of them should be

adapted to the BCI channel selection context to assure a proper performance.

The peculiarities of this discrete problem make some of the inner strategies of the

meta-heuristics suboptimal or even futile. For instance, continuous or crowding

distances, distance soughts, transfer functions or even any repository control ap-

proach. For this reason, we proposed a novel multi-objective algorithm especially

designed for the BCI channel selection problem: the dual-front sorting genetic

algorithm (DFGA) (Mart́ınez-Cagigal et al., 2020). The pseudocode of DFGA is

shown in figure 4.2(C), and its five main key aspects are detailed below:

1) Deterministic initialization. Heuristics generally initialize the population

by generating random solutions. However, the use of deterministic initializa-

tion may reduce both the inter-run variability due to stochastic effects and

a large amount of computation time. Although deterministic algorithms are

not likely to provide a global optimum, DFGA considers their outputs as
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1: procedure DFGA(Nc, pc, pm)
2: [RS,F ]← backward elimination()

3: [OS,F ,SS,F ]← dual front(R)
4: while ¬stopCondition do
5: /* Parent selection */
6: So ← binary tournament(2Nc/3,O)
7: Ss ← binary tournament(Nc/3,S)
8: PS ← So ∪ Ss

9: /* Genetic operators */
10: P ′S ← crossover(PS , pc)
11: P ′′S ← mutation(P ′S , pm)

12: P ′′F ← F (P ′′S )

13: /* Synthetic solutions */
14: QS ← generate synthetic(RS)

15: QF ← F (QS)

16: /* Repository updating */
17: RS,F ← rep update(R∪ P ′′ ∪Q)
18: [OS,F ,SS,F ]← dual front(R)
19: end while
20: return OS,F

21: end procedure

Figure 4.2: (A) Dominance concept in a two-objective minimization problem: (orange)
non-dominated solutions, (blue) dominated solutions. (B) Optimization of a Kursawe
function: (orange) solutions that belong to the Pareto-Front, (blue) suboptimal solutions.
(C) Pseudocode of DFGA.

intermediate solutions. Regardless of their qualities, we hypothesized that

these solutions are equivalent to those that will be eventually reached after

several generations of a randomly initialized algorithm. In this study, back-

ward elimination (BE, section 4.4.1) is used to initialize the repository. The

algorithm begins with the full set of channels and sequentially removes the

most irrelevant one (Jobson, 1991). The rejected channel in each step is the

one that returns the minimum f1(s) value if removed from the model s (i.e.,

its inclusion does not contribute to improve the system’s performance). The

algorithm continues removing channels until the set is empty. Note that this

operation will fill the repository R up with Nc solutions.

2) Elitism. In each generation, the repository is updated following an elitist

approach. As depicted in the figure 4.3(A), for each unique value of f2(s)

(i.e., for each number of channels), the repository solution that minimizes

f1(s) is selected. Note that this operation is applied in the repository, which
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Figure 4.3: Visual aids to clarify DFGA operations: (A) elitism, (B) dual-front sorting,
(C) parent selection, (D) single-point crossover and (E) bit-string mutation.

includes both non-dominated and dominated solutions, creating a balance

between local and global exploitation.

3) Dual-front sorting. Due to the deterministic initialization, the repository

should have a well-defined curve from the very beginning of the algorithm.

This aspect leads to a Pareto-front that is supposed to include solutions with

few channels. Traditionally, only Pareto-optimal solutions are considered in

the selection stage. Despite their convenience over dominated solutions, con-

sidering only the Pareto-front will lead to a local exploitation of solutions

with few channels. However, because of the intrinsic fixed size of the reposi-

tory in BCI problems (i.e., limited to Nc), the exploitation of solutions with

a greater number of channels was no longer an issue. Furthermore, it might

favor the spreading of the Pareto-front and the global search of DFGA. Ac-

cording to this rationale, DFGA subdivides the repository into two sets: O
(i.e., optimal set), which includes the non-dominated solutions; and S (i.e.,
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sub-optimal set), which includes the dominated solutions. Dual-front sort-

ing operation is shown in figure 4.3(B). Then, binary tournament selection

is applied in both sets, selecting 2Nc/3 solutions from O, and Nc/3 solutions

from S. Note that a solution may be selected more than once in the new

population. Finally, these solutions are combined in the population in order

to suffer recombination (i.e., crossover) and mutation, as shown in the figure

4.3(C).

4) Genetic operators. Owing to the binary nature of the search space, tra-

ditional genetic operators were considered the most convenient approach

for generating new solutions from a parent population. First, for each so-

lution xi, single-point crossover is applied with probability pc. That is,

si and another randomly picked solution sj (i 6= j) are combined into

s′i ← si[1 : u] ∪ xj [u + 1 : N ], where u ∼ rand ∈ [1, N ]. For each solu-

tion, bit-string mutation is also computed with probability pm. In other

words, if the n-th bit of a solution s′i has to be mutated, its value is flipped

(i.e., s′′i [n] ← ¬s′i[n]). The procedure is illustrated in the figure 4.3(D–E).

In (Mart́ınez-Cagigal et al., 2020), following the recommendations of the

literature, we fixed pm and pc to 1/Nc and 0.90, respectively (Deb et al.,

2002).

5) Synthetic solutions. When the values of pc or pm are too high, the mutated

population tends to exploit the middle part of the repository. In other words,

solutions with few channels tend to add more channels, whereas crowded so-

lutions tend to decrease their number of channels. In order to maintain a

similar exploitation across the entire repository spectrum, synthetic solu-

tions are generated apart from the mutated population. However, a random

generation of solutions across this spectrum will unnecessarily increase the

number of evaluations, slowing down the algorithm. DFGA generates syn-

thetic solutions using a metric that is intended to maintain the most relevant

channels of the current repository. The rank of the i-th channel is defined

as the number of times that the channel i is present in the repository (i.e.,

ri = |i ∈ R|). DFGA iteratively creates solutions that have from 1 to Nc−1

channels by means of a roulette wheel selection (i.e., fitness proportionate

selection) based on the rank values. It is worthy to mention that DFGA

generates a total of Nc − 1 solutions, since the Nc-th solution that contains

all the channels is already part of the repository.
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4.3 Feature extraction

Owing to the fact that P300-based BCIs must work in real-time, the feature ex-

traction stage is kept simple, being usually viewed as a signal conditioning step

before applying the final pattern recognition. Fundamentally, it is composed by

(1) a decimation, (2) a windowing, and (3) a concatenation across channels:

1) Decimation. The pre-processed EEG signal is decimated in order to reduce

the dimensionality. In a nutshell, decimation is the process to reduce the

sampling rate fs to fd by applying a low-pass filtering and down-sampling the

data. Note that the low-pass filter must have a cutt-off frequency of fd/2 to

avoid aliasing, according to the Nyquist–Shannon theorem (Krusienski Dean

J., 2012). For the online studies, we used fd = 20 Hz (Mart́ınez-Cagigal

et al., 2017, 2019a) to keep up with real-time; for the channel selection

study, we used fd = 25 Hz (Mart́ınez-Cagigal et al., 2020), since minimizing

the amount of samples per epoch was no longer an issue because it was an

offline analysis.

2) Windowing. Then, a time window is extracted from each epoch (i.e., flash-

ing in RCP). Typically, it lasts from the flashing onset (i.e., t = 0 ms) to a

timestamp delayed enough to capture the entire P300 wave (e.g., 600–1000

ms). Afterward, the epoch is normalized using a z-score of a previous refer-

ence time window; i.e., x = (x − µxR
)/σxR

, were xR is the EEG signal of

the reference window and µ and σ denote the mean and standard deviation,

respectively. In the present Doctoral Thesis, epochs were extracted using a

0–800 ms time window, and a -200–0 ms reference window (Mart́ınez-Cagigal

et al., 2017, 2019a, 2020).

3) Concatenation. Once the previous steps are applied, the epoch has dimen-

sions x ∈ RNs,Nc , where Ns is the number of samples of the window. In order

to transform the epoch into a feature vector, channels are concatenated to

get f ∈ R1,Ns×Nc .

4.4 Feature selection

Even though the decimation step reduced the dimensionality of feature vectors,

the number of features is usually too large in comparison with the number of

observations, which can lead to an over-fitting of the subsequent classifier. Hence, a
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feature selection algorithm to remove redundant or irrelevant features is commonly

applied before the pattern recognition stage (Jobson, 1991).

4.4.1 Step-Wise regression

Step-wise (SW) regression is undoubtedly the most popular feature selection al-

gorithm in P300-based BCIs (Krusienski et al., 2006, 2008; Sellers Eric W., 2012).

SW performs a sequential process, where at each step a single feature is added

(i.e., forward selection, FS) or removed (i.e., backward elimination, BE) from a

least square model in the next fit (Jobson, 1991).

Starting without any feature, the algorithm performs a FS by testing the signif-

icance of adding each feature separately, according to a partial F-statistic. Then,

the most statistically significant feature, provided its p–value < pin, is added to

the model. After each new entry to the model, a BS procedure is performed by

testing the significance again of each included feature. The less significant one,

provided its p–value > pout, is then removed from the model. The combination

of FS and BS procedures is repeated until (1) there are no features that meet the

pin and pout criteria, (2) there are no remaining features, or (3) the number of

included features reach a predefined limit. It is worthy to mention that, in order

to prevent an infinite loop, the pin criterion should be at least as small as pout

(Jobson, 1991).

In the present Doctoral Thesis, SW regression was used as a feature selection

stage in the online studies (Mart́ınez-Cagigal et al., 2017, 2019a) using the following

criteria: pin = 0.10 and pout = 0.15. Note that these criteria were set according

to previous literature (Krusienski et al., 2006, 2008).

4.5 Feature classification

Once features are extracted and appropriately selected, each feature vector must

be classified into two classes: presence/absence of P300, or non-/control state.

Feature classification is considered a technique under the scope of the pattern

recognition field, which concerns the automated recognition of regularities in data

(Bishop, 2006). In turn, it is also closely related with terms such as artificial

intelligence or machine learning, which are often used interchangeably.

Among the different machine learning approaches aimed at feature classifica-

tion, only supervised learning techniques are in the scope of the present Doctoral

Thesis. These methods infer a discriminant function from labeled examples (i.e.,
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training data), which is further used to classify new examples (i.e., test data) into

different classes. Therefore, before using a P300-based BCI system online, the

classifier must be calibrated in a previous copy-spelling session. In that session,

users are asked to spell a predefined word via RCP or CS, labeling the flashings

that contains the target character as positive; otherwise as negative. The classifier

is trained with those examples, fitting a discriminant function that sets a hyper-

plane that separates both classes. Afterward, the new real-time data of the online

sessions, which is not labeled anymore, is continuously classified by the model.

Note that, for the asynchronous systems, also labeled non-/control examples were

recorded as a calibration step (Mart́ınez-Cagigal et al., 2017, 2019a,b).

4.5.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a method that finds a linear combination

of features that try to separate two or more classes. Since the data is projected

down to a lower dimension, LDA is not only used to classify events, but also as

a dimensionality reduction technique (Bishop, 2006). For all linear classifiers, the

projection is expressed as y(X) = wTX, where X ∈ Rn,m with n features and m

observations, and w is the weight vector. In LDA, the projection will try to (1)

maximize the distance of the mean of both classes, and simultaneously (2) minimize

the variance of each class; the so-called Fisher criterion. Indeed, LDA is viewed as a

generalization of the Fisher’s linear discriminant (FLD), whose solutions are equiv-

alent in two-class problems. Furthermore, neither LDA or FLD make assumptions

about normal distributions in two-class problems (Pelillo, 2013), making them the

most popular classification algorithms in P300-based BCIs (Krusienski et al., 2006,

2008; Sellers Eric W., 2012).

For a two-class problem like the one that concerns us, the weight vector can

be identified by solving the following optimization problem:

max J(w) =
wTSBw

wTSWw
, (4.2)

SB = (µ2 − µ1)(µ2 − µ1)T , (4.3)

SW =
∑

n∈C1
(Xn − µ1)(Xn − µ1)T +

∑

n∈C2
(Xn − µ2)(Xn − µ2)T , (4.4)

where SB indicates the between-class matrix, µi the mean value of the features

of classes i ∈ C{1,2}, and SW the within-class matrix. The optimal weight vector
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would be:

w ∝ S−1
W (µ2 − µ1). (4.5)

Therefore, a new observation x is classified as C1 if y(x) ≥ y0; otherwise is

classified as C2 (Bishop, 2006). Generally, the threshold y(x) = y0 is chosen as

the hyperplane between the projections of both means: y0 = wT · 1
2 (µ1 + µ2).

However, in P300-based BCIs that use visual oddball paradigms such as RCP,

CS or RSVP, an additional step must be performed to determine the selected

command in real-time. A categorical classification is not needed, but a score that

indicates the likelihood to belong to the positive class. Generally, the score is the

posterior probability, computed by modeling the predicted training examples of

the positive class as multivariate gaussian distribution and estimating its mean and

covariance through a max-likelihood approach; i.e., l = P̂ (C1|y(x)) ∼ N (µ1,Σ1)

(Bishop, 2006).

Hence, the scores l of each flashing group (i.e., rows and columns in RCP, shapes

in CS, individual symbols in RSVP) are averaged. In RSVP/CS, the selected

symbol/shape would be the one that yields the maximum score, lmax; whereas in

RCP, the selected command would be the intersection between the selected row

and column. Similarly, the selected row/column would be the row/column that

yields the maximum score.

4.6 Asynchrony management

As mentioned in sections 1.4.4 and 1.6, it is required to detect the non-/control

states in real-time in order to reach a comprehensive asynchronous control in visual

P300-based BCIs. Thus, an asynchrony management could be viewed as a sup-

plementary signal processing pipeline independent of the P300 detection. In this

section, two proposed asynchronous methodologies are presented: the thresholding

and the multiscale entropy approaches.

4.6.1 Thresholding

The thresholding approach is based on the hypothesis that control state ERPs

yield higher lmax scores than non-control ones. The rationale behind this lies in

the fact that P300 should not be elicited when users do not attend to the stimuli,

causing lower posterior probabilities of the positive class. Therefore, the objective

is to set a constant threshold that can distinguish between control and non-control

lmax values.
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Once enough training examples of non-/control states are recorded, scores are

concatenated and labeled according to their class: lC contains control scores;

whereas lN contains non-control ones. These vectors are fed into a ROC curve,

which depicts the performance of a binary discriminant when the threshold varies

along the input values (Zweig and Campbell, 1993). The curve displays the true

positive rate (i.e., sensitivity) against the false positive rate (i.e., 1− sensitivity).

The optimal threshold τ would be the one that maximizes the sensitivity-specificity

pair; i.e., the point that yields the minimum Euclidean distance to coordinates

(0,1). Therefore, T is estimated in a calibration phase with training data. When-

ever the system classifies a new trial (i.e., character) in an online setup, the lmax

score is compared with the estimated threshold: if lmax ≥ T , the trial is clas-

sified as a control state; otherwise, it is considered non-control. Finally, control

state trials are delivered, whereas non-control ones are ignored. This method was

proposed and tested in the web browser study (Mart́ınez-Cagigal et al., 2017),

and afterward applied in the social networks application study (Mart́ınez-Cagigal

et al., 2019a).

4.6.2 Multiscale sample entropy

In Mart́ınez-Cagigal et al. (2019b), we proposed the multiscale entropy (MSE)

based on sample entropy (SampEn) as a feature extraction metric that could

characterize non-/control states. MSE is a nonlinear algorithm that estimates the

complexity of a signal by assessing entropy changes in different time scales (Costa

et al., 2002). Information about the dynamical structure is provided through

sequential entropy measurements in coarse-grained versions of the original signal,

considering a signal to be more complex if reaches higher entropy values for most

scales (Costa et al., 2005). In MSE, the τ -th scaled coarse-grained signal should

be obtained by decimating the original one by a factor of τ (see section 4.3)

(Humeau-Heurtier, 2015). Hence, the algorithm computes an entropy metric from

the original time series (τ = 1) to the highest considered scale (τ = τmax).

SampEn is a nonlinear method that estimates the irregularity of one-

dimensional physiological signals by assigning higher values to those that show

larger degrees of disorder (Richman and Moorman, 2000). Inside a BCI context,

SampEn is applied for each channel separately, returning a single feature for each

of them. In a nutshell, the algorithm measures the conditional probability that a

template of m consecutive samples, which already matches another template, still
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matches it if their lengths are increased by one sample (Humeau-Heurtier, 2015):

SampEn(m, r,N) = lim
N→∞

− ln

(
Am(r,N)

Bm(r,N)

)
, (4.6)

where m denotes the embedding dimension, r the tolerance, N the signal length,

and Bm(r,N) and Am(r,N) denote the probabilities of matching for templates

of m and m + 1 points, respectively. Considering a signal x = [x1, x2, . . . , xN ], a

template vector of length m would be xm(i) = [xi, xi+1, . . . , xi+m−1]. In prac-

tice, a match between two templates xm(i) and xm(j) occurs provided that

d[xm(i),xm(j)] < R; where d[·] denotes the Chebyshev distance and the toler-

ance value R is usually dependent of the standard deviation of x (i.e., R = r · σx)

(Humeau-Heurtier, 2015; Richman and Moorman, 2000). Therefore, the SampEn

is estimated as follows:

SampEn(m, r,N) = − ln

(
N −m+ 1

N −m− 1
· A
B

)
, (4.7)

where B and A denote the number of templates of lengths m and m + 1 that

matches for each different combination of i and j (given i 6= j), respectively. The

estimator is unbiased due to the normalization; however, its variance decreases

when the length of the signal increases. For this reason, the estimation is con-

sidered accurate if N ≥ 10m (Humeau-Heurtier, 2015; Richman and Moorman,

2000).

The application of MSE to characterize asynchronous states in BCIs should

guarantee that signals are large enough to provide an accurate estimator, requiring

a slightly different feature extraction procedure. In this case, non-/control training

trials (i.e., characters) were decimated (see section 4.3), but epochs were extracted

according to the figure 4.4. Therefore, the i-th epoch would be the decimated

signal from the first onset of the current character to the end of the i-th sequence.

MSE was then applied to each epoch, channel and subject. Note that only the

scales that provided coarse-grained signal whose length N ≥ 10m were computed.

Hyperparameters were optimized inside the common range of physiological signals:

m ∈ {1, 2}, r ∈ (0.10, 0.15, . . . , 0.30), and τ = (1, 2, . . . , 25); under a leave one

subject out procedure (see section 4.7.1) (Mart́ınez-Cagigal et al., 2019b).
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Figure 4.4: Epoch extraction procedure of a single trial for the application of SampEn-
based MSE. The number of possible epochs (E) matches the total number of sequences.

4.7 Performance assessment

During the different studies that compose the present Doctoral Thesis, several

validation methods were applied to assess the performance of the proposed signal

processing methods and applications.

4.7.1 Cross-validation

Fundamentally, cross-validation (CV) is a model validation technique that assesses

the generalization ability of the results of a statistical analysis. In other words, CV

allows to evaluate if a model can generalize to an independent dataset; which is

not assured if training samples were not representative (Witten and Frank, 2011).

1) Folds. In a k-fold CV, the training dataset is split into k equal partitions.

Then, the algorithm sequentially uses one of the folds for testing, keeping

the remainder dataset to train the model. That is, every instance has been

used for testing exactly once, returning a diagnostic ability statistic (e.g.,

accuracy) for each fold. Therefore, providing an adequate estimate of the

generalization ability of the model when averaging these statistics (Witten

and Frank, 2011). This algorithm was used in Mart́ınez-Cagigal et al. (2020)

to estimate the performance of the single- and multi-objective algorithms for

channel selection.

2) Leave one out (LOO). The LOO CV is a particularization of the k-fold CV

that keeps only one sample (or subject) for testing (i.e., equivalent to an m-

fold CV if the training dataset is composed by m observations) (Witten and

Frank, 2011). This technique was used in Mart́ınez-Cagigal et al. (2019b) to

optimize the MSE hyperparameters and to estimate the performance of the

signal processing pipeline to reach an asynchronous control of the BCI.
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4.7.2 Speed rates

When a practical P300-based BCI application to assist the motor-disabled is de-

veloped, not only the performance should be evaluated, but also the speed of the

system for selecting commands.

1) Information transfer rate (ITR). Traditionally, ITR has been employed

as a metric to measure the speed of BCI systems. Based on Shannon’s

information theory, the ITR estimates the number of bits per trial selection:

ITR =
1

T

(
log2N + P log2 P + (1− P ) log2

1− P
N − 1

)
, (4.8)

where N is the number of trial selections, P is the selection accuracy, and

Ts is the average duration of a trial in seconds (Wolpaw et al., 2000). How-

ever, the ITR assumes that: (1) the system is memoryless, (2) all possible

characters are equally probable, and (3) a synchronous paradigm is used.

The metric is thus biased for asynchronous BCIs because it neither consid-

ers multiple character matrices, nor correction of erroneous selections, nor

asynchronous pauses (Speier et al., 2013).

2) Output characters per minute (OCM). In contrast to ITR, OCM is

a communication rate metric especially suitable for asynchronous systems.

The metric is simply the ratio of the number of selections to the duration

of the task in minutes; i.e., OCM = N/Tmin (Speier et al., 2013). OCM

was used in Mart́ınez-Cagigal et al. (2019a) to evaluate the speed of the

developed social networking BCI system.

4.8 Statistical analysis

In order to make a fair comparison between two groups of results, several statistical

tests were applied in the compendium of publications. For instance, to assess sig-

nificant differences between non-/control features (Mart́ınez-Cagigal et al., 2019b),

or between results obtained from controls and patients (Mart́ınez-Cagigal et al.,

2017, 2019a).

4.8.1 Hypothesis testing

A statistical test evaluates the evidence the data provides against the null hypoth-

esis H0, which usually states that data is generated by random processes. The
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returned p-value indicates the probability of getting an fluctuation away from the

H0 distribution, assuming that H0 is true. It is considered that H0 is false (i.e.,

that there are significant differences in the data) if p-value < α, where α = 0.05

is the level of significance (Narsky and Porter, 2013).

In the present Doctoral Thesis, two different univariate, continuous, non-

parametric statistical tests have been used. Before their application, it was stated

that data were not normal and homoscedastic. When the comparisons were paired

(i.e., dependent, when data came from the same subjects), Wilcoxon signed-rank

tests were used. For instance, comparisons such as non-/control features or changes

in measurements between sessions (Mart́ınez-Cagigal et al., 2017, 2019a,b). For

unpaired comparisons (i.e., independent, when data came from different popu-

lations), such as the ones that compare control subjects versus patients, Mann–

Whitney U tests (i.e., Wilcoxon rank-sum tests) were applied (Mart́ınez-Cagigal

et al., 2017, 2019a).

4.8.2 Multiple testing correction

In the literature, the result of a test is considered significant if p-value < α; i.e.,

the probability of the comparison not being significant (false positive, type I error)

is less than α. However, when N independent tests are applied, the probability of

making at least one type I error by chance drastically increases to 1 − (1 − α)N

(e.g., 99.41% for N = 100 and α = 0.05), the so-called family-wise error rate

(FWER). This phenomenon is known as the multiple comparisons problem or the

look-elsewhere effect, and requires to establish a stricter α value or to adjust the

p-values to compensate the inferences being made (Narsky and Porter, 2013).

Multiple testing can be addressed by correcting the FWER (e.g., Bonfer-

roni, Šidák, Holm-Bonferroni) or the false discovery rate (FDR) (e.g., Benjamini-

Hochberg, Benjamini-Yekutieli, Storey q-values) (Farcomeni, 2008). The latter

is defined as the expected proportion of type I errors among the tests that have

already been considered significant. In this Doctoral Thesis, the procedure of

Benjamini-Hochberg (BH) was applied to correct the p-values by assuring that

FDR = α (Mart́ınez-Cagigal et al., 2019b). The algorithm (1) sorts the obtained

p-values in descending order, p; (2) calculates p̂ = Npk/k for k = 1, 2, . . . , N ; and

finally (3) adjusts the p-values by computing the cumulative minimum of vector

p̂, i.e. p∗k = min p̂1,...,k (Benjamini and Hochberg, 1995).
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Results

In this chapter, the most relevant results of the Doctoral Thesis are summarized.

They are organized according to the hypotheses of section 2.1, which in turn have

almost a directly relation with the papers that encompasses the compendium of

publications (see appendix A).

5.1 Asynchronous management using threshold-

ing and entropy metrics

Asynchronous management in P300-based BCI systems was assessed by two dif-

ferent approaches: thresholding (section 4.6.1), and MSE (section 4.6.2).

The thresholding approach was implemented in the assistive applications. Its

viability was tested online with motor-disabled subjects (Mart́ınez-Cagigal et al.,

2017, 2019a) according to the procedure detailed in section 4.6.1. Figure 5.1

shows the normalized SW-LDA scores of the selected characters for non-/control

calibration runs in both applications. As shown, the discriminative ability of the

threshold is higher for HS, reaching averaged training accuracies of 96.00%±4.77%

and 96.74%±3.47% for the web browser and social networking applications, re-

spectively. By contrast, these accuracies were reduced for the patients, yielding

86.77%±7.47% and 84.31%±9.16%, respectively. The predictive validity of the

thresholds was thus expected to decay in the evaluation sessions. However, it

should be noted that the purposes of both papers were oriented toward the eval-

uation of the web browser and social networking applications. Therefore, the

asynchronous management was not isolated and online performances were evalu-

67
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Figure 5.1: Asynchronous threshold estimation in the calibration sessions of (A) web
browser and (B) social networking applications. Boxplots depict normalized SW-LDA
scores of the selected characters for control (blue) and non-control (red) runs. The
averaged threshold value of each user is also shown as a dash-dotted line.

ated using thresholding as a part of the overall system (see sections 5.3 and 5.4).

In this regard, the false negative rate (FNR), defined as the ratio of false neg-

atives to the total number of selections, is an excellent measure to estimate the

benefit from using an asynchronous approach. HS reached an averaged FNR of

4.61%±6.48% and 1.10%±3.17% for the web browser and social networking appli-

cations, respectively; whereas motor-disabled patients obtained 10.87%±12.46%

and 1.54%±4.18%.

Non-/control state signals were also characterized offline by applying SampEn-

based MSE, according to the procedure described in section 4.6.2. As aforemen-

tioned, EEG recordings of 10 HS attending (i.e., control) and ignoring (i.e., non-

control) the RCP stimuli were recording with a 16-channel cap (see section 3.1).

Then, data was randomly divided into optimization (36 trials per user) and vali-

dation (84 trials per user) sets. Hyperparameters were optimized using a wrapper

LDA-based leave one subject out procedure (see sections 4.5.1 and 4.7.1) over the

optimization set (Mart́ınez-Cagigal et al., 2019b).
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Table 5.1: Validation results for each user in the asynchronous SampEn-based MSE
approach.

Ns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
c
c
u
ra

c
ie

s
(%

)

AH01 71.4 77.4 81.0 85.7 88.1 88.1 89.3 90.5 94.1 94.1 92.9 92.9 94.1 95.2 94.1
AH02 83.3 88.1 89.3 85.7 89.3 89.3 91.7 91.7 91.7 90.5 92.9 91.7 92.9 94.1 92.9
AH03 83.3 82.1 88.1 83.3 86.9 90.5 88.1 90.5 94.1 92.9 92.9 92.9 92.9 92.9 92.9
AH04 61.9 78.6 81.0 75.0 75.0 75.0 81.0 81.0 79.8 81.0 83.3 90.5 89.3 91.7 91.7
AH05 72.6 70.2 72.6 78.6 78.6 82.1 89.3 89.3 91.7 91.7 91.7 94.1 95.2 96.4 96.4
AH06 89.3 94.1 96.4 96.4 95.2 94.1 96.4 95.2 94.1 95.2 96.4 96.4 96.4 97.6 98.8
AH07 75.0 89.3 92.9 95.2 96.4 96.4 95.2 95.2 92.9 94.1 95.2 95.2 96.4 96.4 95.2
AH08 77.9 80.6 85.7 86.9 86.9 88.1 86.9 84.5 89.3 89.3 86.9 89.3 90.5 89.3 89.3
AH09 78.6 90.5 91.7 88.1 94.1 90.5 92.9 95.2 95.2 92.9 95.2 95.2 97.6 95.2 96.4
AH10 76.2 86.9 91.7 95.2 95.2 92.9 94.1 92.9 95.2 97.6 97.6 96.4 96.4 96.4 96.4

Mean 76.9 83.8 87.0 87.0 88.6 88.7 90.5 90.6 91.8 91.9 92.5 93.5 94.2 94.5 94.4
SD 7.6 7.2 7.1 7.1 7.2 6.2 4.6 4.7 4.6 4.5 4.4 2.5 2.8 2.6 2.8

C
C Mean 0.8 3.5 8.2 14.6 22.6 32.5 43.7 54.9 69.7 86.3 104.9 125.2 146.4 170.6 196.8

SD 1.0 0.3 0.8 1.0 1.4 2.0 3.1 3.3 3.8 4.7 5.6 6.0 6.5 7.2 8.6

Ns: number of sequences; CC: computational cost (in ms), SD: standard deviation. These
results were obtained using the optimal hyperparameters: τ = 2, m = 1, r = 0.3.

The parameters that maximized the accuracy over the optimization set were

m = 1, r = 0.3 and τ = 2. It was observed that accuracies show a decreasing

tendency as the scale increased, regardless of the embedding dimension. Fur-

thermore, the variation of the tolerance did not make a significant impact on the

results, especially for the smallest scales. Figure 5.2(A) depicts the grand-averaged

MSE values from the optimization set among all subjects for control (blue) and

non-control (red) trials. Note that differences between both states were also statis-

tically significant (p-values < 0.05, Wilcoxon signed-rank test, FDR-BH corrected)

for all scales and channels. At the subject level with the fixed hyperparameters

(see Figure 5.2(B)), these differences were mainly significant over the prefrontal

and occipital lobes.

Table 5.1 summarizes the results of the validation stage. An average accuracy

of 94.49%± 2.81% in classification was reached using 15 sequences. As expected,

the higher the number of sequences, the higher performance. Since the optimal

scale was found to be τ = 2, an online setup would only compute the SampEn over

the decimated signal, ignoring the remaining scales. In order to demonstrate the

viability of the proposed framework, an average of 1000 iterations of the algorithm

were computed to estimate the computational cost under an Intel Core i7-7700

CPU @ 3.60GHz (32 GB RAM, Windows 10, MATLAB®2018a). As shown, the

averaged elapsed time when using 15 sequences was 196.78± 8.64 ms.



70 Chapter 5. Results

Figure 5.2: (A) Grand-averaged MSE values from the optimization set of control (blue)
and non-control (red) states. Embedding dimension and tolerance were set to m = 1 and
r = 0.3, respectively. Solid lines indicate the average values, whereas shaded areas
indicate the standard deviation across observations. (B) Significant differences between
control and non-control features from the optimization set of each user. Hyperparameters
were set to the optimal values (τ = 2, m = 1, r = 0.3). Significant results are colored
(p-value < 0.05, Wilcoxon signed-rank test, FDR-BH corrected), whereas non-significant
results are depicted in white.
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5.2 Novel meta-heuristics as channel selection

methods

The usefulness of meta-heuristics as channel selection methods for P300-based

BCIs was explored in (Mart́ınez-Cagigal et al., 2020). A total of 3 single- (GA,

BDE, BPSO) and 3 multi-objective (NSGA-II, BMOPSO, SPEA2) existing evolu-

tionary algorithms were compared with three public databases that used RCP, CS

and RSVP paradigms (see sections 3.1 and 3.2). Owing to the limitations of these

meta-heuristics when applied to this discrete problem, DFGA was also proposed

as a novel multi-objective algorithm especially designed to the BCI framework. In

order to assure a fair comparison among the algorithms, all of them used m = 20

individuals and performed a total of 4000 evaluations. Furthermore, all the algo-

rithms were computed 20 times in order to avoid local minima .

Convergence analysis of the meta-heuristics, in function of the database, is sum-

marized in figure 5.3. Averaged convergence curves of single-objective algorithms

show the evolution of the aggregated objective function F (s) across generations,

estimating the ability of each method to search for an optimal solution in training

phase. Training pareto-optimal solutions of the multi-objective approaches across

subjects are also depicted. Figure 5.4 shows the grand-averaged ranks of selected

channels for each algorithm; i.e., a rank is the normalized number of times that a

channel was selected across the repetitions.

Results of the testing phase of single- and multi-objective meta-heuristics are

detailed in table 5.2 and figure 5.5, respectively. Table 5.2 details the averaged

testing accuracies of the solution that reached the minimum F (s) value across

the repetitions. The increase in accuracy of GA, BDE and BPSO in comparison

with the entire set of channels and the Krusienski’s set was statistically significant

for almost all subjects (i.e., p-values<0.05, Wilcoxon signed-rank test, FDR-BH

corrected). Differences among GA, BDE and BPSO were not significant. Fig-

ure 5.5, by contrast, shows the testing accuracies of those solutions that formed

the Pareto-front, using the maximum number of sequences available.

A computational analysis was also performed under an Intel Core i7-7700 CPU

@ 3.60 GHz, 32GB RAM, Windows 10 Pro, using MATLAB® 2018b. In order

to estimate the computational burden of each algorithm, the required time to

evaluate a solution was measured: NSGA-II (331 ms), DFGA (591 ms), GA (785

ms), BDE (810 ms), SPEA2 (835 ms), BMOPSO (852 ms), and BPSO (858 ms).

From a complexity point of view, all the multi-objective meta-heuristics, including

DFGA, behave as O(Nom
2), where No is the number of objectives and m is the
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Figure 5.3: Convergence analysis of the applied meta-heuristics in the channel selec-
tion study for each database. (A) Grand-averaged convergence curves of single-objective
meta-heuristics (GA, BDE, BPSO) in function of the aggregated F (s) objective. Mean
values are displayed with solid lines, whereas the 95% confidence interval of the sub-
jects’ repetitions is indicated by the shaded area. (B) Pareto-optimal solutions of multi-
objective approaches (DFGA, NSGA-II, SPEA2, BMOPSO) across subjects and repeti-
tions.

Figure 5.4: Grand-averaged channel ranks of each meta-heuristic (single: GA, BDE,
BPSO; multi: NSGA-II, BMOPSO, SPEA2, DFGA) in function of the database.
Krusienski’s set (KRU) is also depicted.

population size.

5.3 An asynchronous assistive application for web

browsing

The application of the asynchronous thresholding method led to the development

of a practical assistive P300-based BCI application for web browsing. The sys-
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Figure 5.5: Testing character accuracies of the final Pareto-fronts returned by multi-
objective meta-heuristics (DFGA, NSGA-II, SPEA2, BMOPSO) for the averaged sub-
jects of each database. For comparison purposes, Krusienski’s set (KRU) is also depicted
as a cross.

Table 5.2: Averaged testing accuracies and number of channels across users of the
selected run for each single-objective meta-heuristic.

Mtd.
Competition Center RSVP

Acc. N Acc. N Acc. N

GA 92.0% 14.0 97.4% 12.4 84.6% 13.4
BDE 92.0% 14.5 97.9% 12.5 85.5% 13.4
BPSO 92.0% 14.0 96.8% 12.5 85.0% 13.7

ALL 92.0% 64.0 86.5% 63.0 80.3% 61.0
KRU 86.5% 8.0 95.2% 8.0 78.6% 8.0

Mtd.: method, Acc.: accuracy, N : no. of sequences. Results obtained using the maximum

number of sequences available for each database (competition: 15, center: 10, RSVP: 10).

tem was composed by three stages: (1) data acquisition, which recorded and

pre-processed the EEG signals; (2) processing, which encompassed the feature

extraction and classification, as well as the asynchronous management; and (3)

web surfing, which translated the selections into browser commands and returned

feedback to the users (Mart́ınez-Cagigal et al., 2017).

Figure 5.6 depicts the graphical user interface. The application displayed the

Google Chrome web browser on the left side of the screen, reserving space for the

RCP matrices on the right side. In particular, two different RCP matrices were

used due to the great amount of commands required to perform a comprehensive

web surfing: (i) navigation and (ii) keyboard matrices. The small size of the

former (5×3) allowed users to select the commands quickly and perform a smooth

navigation. The latter (9×5), by contrast, included alphanumeric characters and

symbols, because it was intended to write e-mails and fill out forms. Note that the

user could toggle between both by selecting the command MTX. Signal processing,
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Figure 5.6: Graphical user interface of the asynchronous P300-based BCI web browser.
As indicated by the buffer (a), the user introduced a ‘2’, highlighting the potential selec-
tions (b) in green (i.e., codes that start with ‘2’). The rest of nodes (c) remain in gray. In
this example, the navigation matrix is active and the third row (f) is currently flashing.
However, users can freely toggle between both matrices by selecting the command MTX.

as well as stimuli generation, were coded in C++ under the BCI2000 open source

platform (Schalk et al., 2004). Web surfing was based on a labeling strategy.

Through a JavaScript extension, the web browser tagged each node (i.e., any

clickable object) with a numeric coding, making it possible to simulate the click

over them when the user selected the coding via RCP. The selection speed was

prioritized by tagging the nodes using numbers from 0 to 5 (i.e., those included

in the navigation matrix), and by instantaneously executing the link provided the

user already selected the required number of characters, avoiding the need of an

extra confirmation. Feedback was provided in several ways. On the one hand,

as soon as the tags were displayed, a buffer that indicates the past selections

appeared on the upper left corner of the screen. Users could remove the last

selection using ←. On the other hand, potential selections (i.e., nodes whose

coding starts with the previously selected characters) are highlighted in green,

whereas normal tags are colored in gray.

The viability and efficacy of the assistive application was assessed by 16 MS

patients and 5 HS (see section 3.1 for further details). Each user carried out four

different sessions:

1) Cal-I. The first calibration session was intended to train the classifier and

calibrate the asynchronous threshold. SW-based LDA training, composed

by 4 copy-spelling runs of 6 trials (15 sequences, keyboard matrix), lasted
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approximately 24 min. Threshold calibration was made of 8 runs of 6 trials,

of which half were control and the other half non-control. In this stage,

the navigation matrix and the optimal number of sequences of each user

were used in order to reduce the duration of the calibration. In control runs,

users were asked for paying attention to the requested items; whereas in non-

control runs, users were asked for reading an external text while ignoring the

RCP stimuli.

2) Cal-II. The second calibration session was only composed by another thresh-

old calibration block. This step was designed to increase the robustness of

the asynchronous management against the inter-session variability of the

EEG (Picton, 1992). The final threshold value was computed as the average

of the optimal thresholds of Cal-I and Cal-II.

3) Eval-I. The first evaluation session was composed of a series of tasks that

required a comprehensive use of the web browser. In the four first ones, the

asynchrony management was disabled; while the fifth was designed to test

the effectiveness of the threshold. All of them are detailed in the table 5.3,

with the optimal number of selections and the matrices that were required

to accomplish them. Note that, if the users made a mistake, they were asked

for solving it.

4) Eval-II. The second evaluation session assessed three additional tasks with

the threshold enabled. These tasks are also detailed in table 5.3. At the end,

users were asked for fulfilling a 7-point Likert questionnaire of 20 items to

collect their impressions and suggestions. Positive and negative items were

alternated to deal with the acquiescence bias.

The average duration to accomplish each task for both HS and MS patients

is also shown in table 5.3. Furthermore, reached accuracies of each subject and

sessions, as well as the optimal number of sequences and OCM, are detailed in

table 5.4. Note that the accuracy is defined as the ratio of the amount of correct

delivered selections to the amount of total selections, including false negatives

of the threshold (i.e., those that were not delivered because they were wrongly

considered as non-control selections). As shown, MS patients that could not reach

a minimum accuracy of 70% in any calibration session were discarded from the

subsequent assessment. Results of the questionnaires are shown in figure 5.7. As

shown, almost all negative items were rated behind the neutral value, and all

positive items were rated above it. Exceptions indicate that MS patients thought
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Table 5.3: Evaluation tasks for the assistive web browser application.

Task AT Description OS RM AD
HS MS

E
v
a
l-

I Link selec-
tion

No Scroll up and down a Wikipedia webpage
and select a link

6 N 2:33 4:01

Google
searching

No Select the search form, introduce ‘BCI’ and
select ‘

�

’
8 N,K 4:28 6:00

Tweeting No Select the Twitter form, write 2 characters
and send the tweet

6 N 2:38 4:13

Writing an
e-mail

No Read an inbox e-mail and reply it 13 N,K 6:18 8:18

Passive
reading

Yes Read a piece of news and ignore the RCP 10 N 4:17 5:17

E
v
a
l-

II Reading
and link
selection

Yes Scroll a Wikipedia webpage, read the infor-
mation and select a link

8 N 4:18 4:44

Tweeting Yes Same as Eval-I 6 N 3:25 3:44
Active
reading

Yes Read a piece of news, scroll down if needed 4 N 1:58 2:20

AT: asynchronous threshold enabled?, OS: optimal selections, RM: required matrices (N: navi-
gation matrix, K: keyboard matrix), AD: average duration in minutes:seconds, HS: healthy subjects,
MS: multiple sclerosis patients.

that it took much too long to surf the Internet with the system, and that both

MS and HS were slightly happy that the assessment sessions were over. HS also

reported that they could not image themselves using the system in their daily

life, which was expected due to their lack of motor disabilities. As suggestions,

MS wondered whether it could be possible to increase command selection speed,

plan shorter sessions, make flashings less annoying or add a TAB command. HS

suggested to increment the number of symbols and reported that sometimes they

unintentionally focused on adjacent commands.
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Figure 5.7: Questionnaire results for the assistive web browser application. Boxplots
of HS (green) and MS patients (orange) are shown, where mean values are indicated as
black dots. For visualization purposes, negative questions are detailed first, followed by
positive ones.

5.4 Control of smartphone-based social networks

The experience acquired developing the assistive web browser led to the designing

of an asynchronous and assistive P300-based BCI mobile application for control-

ling smartphone-based social networks, such as Twitter and Telegram. As shown

in figure 5.8, the system is mainly composed by three entities: (1) the user, which

involves the recording of the EEG signals; (2) the laptop, which receives and

processes them, decodes user’s intentions and translates them into application

commands; and (3) the smartphone, which receives the commands via Bluetooth

and offers feedback to the user (Mart́ınez-Cagigal et al., 2019a). Details con-

cerning signal acquisition, pre-processing, and feature extraction are described in

sections 3.3, 4.1, and 4.3, respectively. An SW-based LDA classifier was used,

according to sections 4.4 and 4.5; as well as a thresholding approach to reach an

asynchronous control of the system, previously detailed in section 4.6.1.

As can be observed in figure 5.8, a nested selection matrix approach was em-
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Figure 5.8: Setup of the assistive social networks mobile application from the point
of view of the user: (a) EEG signals reach the laptop, which pre-processes them and
generates the stimuli; (b) the panoramic screen displays the flashings according to the
currently selected matrix; finally, (c) the system determines the selected command and
sends it to the smartphone via Bluetooth, which offers feedback to the user.

ployed. Following the same rationale as for the web browser application, it is

composed by a small navigation matrix (4 × 4), intended to operate the applica-

tion; and a big keyboard matrix (8 × 7), intended to write texts. As shown, the

navigation matrix comprises the numbers from 0 to 7, six functionality buttons

(home, profile, write, cancel, scroll up and down), and two buttons for toggling be-

tween Twitter/Telegram and navigation/keyboard matrices. Functionalities that

could not been adapted using the buttons were tagged in order to be accessed by

typing their labels. Figure 5.9 displays six snapshots of the mobile application,

including Twitter’s timeline and tweets view and writing; as well as Telegram’s

chats, conversation and contacts lists. Signal processing and stimuli displaying

were coded with C++ under the BCI2000 platform (Schalk et al., 2004), whereas

the mobile application was coded in Java using the Twitter and Telegram open

source APIs.

The assistive social networks mobile application was assessed by 18 motor-

disabled patients and 5 HS, as detailed in section 3.1. Each user carried out three

different sessions: two calibration sessions (Cal-I and Cal-II), and one evaluation

session (Eval-I). Calibration sessions followed the exact same experimental proce-

dure as in the web browser assessment (detailed in the previous section 5.3). By

contrast, Eval-I was composed by a total of 6 tasks that required a comprehen-

sive control of the BCI application. Table 5.5 details all of them, including the

optimal number of selections, the matrices required to accomplish them and the

average duration. Note that the duration of each task varied among subjects due

to their different optimal number of sequences. Reached accuracies and optimal



80 Chapter 5. Results

Figure 5.9: Snapshots of the assistive social networks mobile application. From left to
right: Twitter’s profile timeline, dialog for writing tweets and tweet view; and Telegram’s
conversation list, group chat and contacts list.

Table 5.5: Evaluation tasks for the assistive social networks mobile application.

Task AT Description OS RM MDP
HS MS

E
v
a
l-

I

Toggling Yes Scroll up and down Twitter’s timeline and
toggle to Telegram

3 N 1:10 1:46

Retweeting Yes Scroll down Twitter’s timeline, select a tweet
and retweet it

4 N 1:50 3:13

Writing a
tweet

Yes Open the form to write a tweet and spell
“hello”

7 N,K 3:54 6:01

Replying Yes Access the user profile and reply the last
tweet with “great!”

11 N,K 5:53 8:13

Creating a
chat

Yes Select a Telegram’s contact, create a new
chat and spell “how are you?”

11 N,K 6:15 7:31

Chatting Yes Select a Telegram’s chat and reply with
“fine, and you?”

12 N,K 7:31 7:49

AT: asynchronous threshold enabled?, OS: optimal selections, RM: required matrices (N: navi-
gation matrix, K: keyboard matrix), AD: average duration in minutes:seconds, HS: healthy subjects,
MDP: motor disabled patients.

number of sequences for each session and subject are detailed in table 5.6. It is

noteworthy that 4 patients (DP01, DP07, DP11 and DP13) were discarded from

the assessment because they did not obtain a minimum accuracy of 70% in the

calibration sessions. At the end of Eval-I, a 7-point Likert questionnaire was given

to the subjects in order to collect their impressions and suggestions.

Averaged qualitative results of the questionnaires are shown in figure 5.10. As

shown, subjects were generally satisfied with the application. Exceptions were the

same as in the web browser assessment, including the time that was required to

navigate through the application and the toughness of the sessions. By contrast,

suggestions were focused on getting rid of the conductive gel and demanding more

speed.
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Table 5.6: Accuracy results of the assessment sessions for the assistive social networks
mobile application.

Subjects Cal-I Cal-II Ns
Eval-I Average

T1 T2 T3 T4 T5 T6 Acc. OCM1

HS

DH01 100% 91.7% 11 100% 100% 100% 90.9% 90.9% 91.7% 93.8% 1.38
DH02 100% 97.2% 6 100% 100% 85.7% 100% 100% 100% 97.9% 2.37
DH03 95.8% 95.8% 13 100% 83.3% 85.7% 100% 100% 92.3% 94.2% 1.10
DH04 100% 95.8% 7 100% 66.7% 100% 81.8% 100% 73.3% 85.2% 1.95
DH05 87.5% 91.7% 5 100% 100% 100% 90.9% 100% 100% 98% 2.90
DH06 91.7% 91.7% 8 100% 100% 71.4% 100% 100% 66.7% 86.7% 1.57
DH07 95.8% 100% 8 100% 60% 57.1% 81.8% 91.7% 81.8% 79.6% 1.84
DH08 77.8% 91.7% 4 100% 100% 100% 100% 90.9% 91.7% 95.8% 3.55
DH09 100% 100% 8 100% 100% 100% 91.7% 100% 100% 98% 1.90
DH10 100% 95.8% 7 100% 80% 100% 100% 90.9% 91.7% 93.9% 2.06
Mean 94.9% 95.1% 7.7 100% 89% 90% 93.7% 96.4% 88.9% 92.3% 2.06
SD 7.4% 3.4% 2.7 0% 14.8% 14.4% 7.1% 4.4% 10.9% 6% 0.73

MD

DP01 <70% <70% - - - - - - - - -

DP02 41.7% 83.3% 10 †66.7% 60% 66.7% 63.6% 63.6% †100% 65.2% 1.58

DP03 50% 50% 14 †100% †57.1% - - - - 72.7% 1.41

DP04 95.8% 95.8% 9 100% 100% 100% 100% 77.8% †100% 95.1% 1.51

DP05 95.8% 70.8% 7 100% 100% 85.7% 90.9% †100% 100% 95.6% 2.11
DP06 83.3% 77.8% 7 100% 85.7% 100% 100% 100% 84.6% 94.3% 2.18
DP07 <70% <70% - - - - - - - - -

DP08 87.5% 68.2% 10 100% 100% 85.7% 58.3% †40% †71.4% 71.1% 1.50

DP09 100% 72.2% 13 100% 100% 100% 81.8% †50% 0% 84.4% 1.15

DP10 79.2% 79.2% 13 †66.7% 40% 75% †63.6% 0% 0% 63% 1.20
DP11 <70% <70% - - - - - - - - -

DP12 83.3% 87.5% 12 †66.7% 100% 75% 81.8% †60% 0% 76.3% 1.15
DP13 <70% <70% - - - - - - - - -

DP14 66.7% 58.3% 9 †66.7% 100% 85.7% 58.3% †66.7% †60% 68.8% 1.62
DP15 83.3% 87.5% 13 100% 66.7% 87.5% 72.7% 100% 100% 88.2% 1.12

DP16 95.8% 87.5% 14 †66.7% 100% 75% 90.9% 91.7% 100% 89.8% 1.02
DP17 50% 33.3% 15 100% 83.3% 66.7% 45.5% - - 65.5% 1.01
DP18 95.8% 91.7% 7 100% 100% 100% 100% 100% 92.3% 98% 2.02
Mean 79.2% 74.5% 10.988.1% 85.2% 84.8% 77.5% 70.8% 67.4% 80.6% 1.47
SD 18.8% 16.9% 2.7 16% 19.9% 12% 17.7% 29.5% 40.8% 12.4% 0.40

Patients DP01, DP07, DP11 and DP13 were removed from the assessment because they did
not achieved a minimum accuracy of 70% in the calibration sessions.
Ns: number of sequences, Acc.: accuracy, OCM: output characters per minute. SD: standard
deviation.
1 Averaged OCM do not include those tasks that users could not accomplish, since total duration
would be unknown.
† Task not completed.
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Figure 5.10: Questionnaire results for the assistive social networks mobile application.
Boxplots of HS (green) and motor-disabled patients (orange) are shown, where mean
values are indicated as black dots. For visualization purposes, negative questions are
detailed first, followed by positive ones.



Chapter 6

Discussion

In this Doctoral Thesis, several aspects of practical P300-based BCIs have been

addressed. Firstly, BCI asynchrony was explored by proposing two different ap-

proaches. The thresholding approach was implemented and tested in a real applica-

tion with motor-disabled subjects, assuring its efficacy in a practical environment.

Then, an offline MSE approach was able to successfully characterize asynchronous

states, finding that control signals are significantly more complex and irregular

than non-control ones. Secondly, a novel multi-objective meta-heuristic was espe-

cially designed to select a customized set of channels for each user. The viability

of the proposed method was analyzed in terms of computational cost and con-

vergence, as well as by comparing the results with those yielded by other existing

single- and multi-objective algorithms. Thirdly, a practical asynchronous BCI web

browser was developed and tested with HS and MS subjects. Testing accuracies of

HS and MS patients reached 95.75% and 84.14%, respectively; exhibiting a suitable

control of the system. Lastly, a mobile BCI application to access social networks

was developed and assessed by HS and motor-disabled subjects. Results showed

that users could successfully control the BCI, reaching averaged online accuracies

of 92.3% and 80.6%, respectively. We consider that these applications contributed

to bridge the accessibility gap of Internet and mobile networks, making an impact

in the quality of life of the motor-disabled by improving their personal autonomy.

In this chapter, the aforementioned findings are discussed according to the flow of

hypotheses and results of previous chapters. At the end, the main limitations of

this thesis are presented.

83
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6.1 Assuring the asynchrony of practical systems

Assuring the asynchrony of the BCI is essential to provide a comprehensive self-

paced control of the system in a real environment. The thresholding approach

has demonstrated its viability in a practical setup, reaching averaged training

accuracies above 96% and 84% for HS and motor-disabled patients, respectively;

and avoiding a large number of incorrect selections in online sessions (Mart́ınez-

Cagigal et al., 2017, 2019a). This implies that the discrimination of non-/control

state signals based on SW-LDA scores is feasible. Furthermore, owing to the fact

that the method is embedded into the classification stage, it does not increase

the overall complexity of the signal processing pipeline. However, its greatest

advantage it is also its main defect. It is well known that the EEG presents a high

inter-session variability, which causes the need to recalibrate the ERP classifier

frequently. The dependence on the classifier forces to also update the thresholding

approach due to changes in classifier’s scores, which implies recording additional

non-control signals. Therefore, its performance is linked to the pattern recognition

stage, compromising the overall system as the number of sessions increase.

The aforementioned limitation of the thresholding method is overcome by the

MSE approach. It has been demonstrated that SampEn-based MSE can charac-

terize non-/control state signals, allowing a reliable discrimination between them,

which is also independent of the ERP classifier (Mart́ınez-Cagigal et al., 2019b). As

shown, both states behave similarly to dynamical changes in different MSE scales,

but control signals present a steeper slope. Thus, non-control signals are more reg-

ular in most scales, which implies that control signals are, from the point of view

of the information theory, more complex (Costa et al., 2002). It is noteworthy that

non-control signals become more unstable as the scale increases, whereas control

ones are generally more defined, showing smaller values of standard deviation. For

most subjects, these variations yielded significant differences (p–values < 0.05) in

almost all channels, favoring the discrimination between both states. Topographi-

cal results also showed an easier discrimination over the PFC, commonly associated

with planning complex cognitive behaviors, personality expression, decision mak-

ing and selective attention (Miller et al., 2002). This is consistent with the RCP

task, which implies a constant attention to identify target stimuli among other

background stimuli. In fact, oddball tasks were demonstrated to produce hemody-

namic changes in the dorsolateral PFC, associated with response strategies (i.e.,

mapping of the stimuli to responses) (Huettel and McCarthy, 2004). Another

recent study suggested that the elicitation of P300 waves are linked to complex
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processes such as memory, attention and decision making; somewhat related with

the PFC (Bojorges-Valdez and Yanez-Suarez, 2018). Although less intense, differ-

ences over V1 are also shown. Neurons of V1 fire action potentials whenever visual

stimuli appears in the receptive field and thus, a higher amount of neurons are ex-

pected to be activated in the control state (Standring, 2016). Since the feature

extraction process used raw signals including target and non-target stimuli, neu-

ral activation of V1 is expected to spread electrical activity across the frequency

spectrum. Entropy measures are thus able to follow that activation, increasing the

irregularity of control state signals.

The ability of SampEn to discriminate between asynchronous states is rein-

forced in the validation sessions, reaching an average accuracy of 94.4% in HS.

Even though the asynchronous detection is feasible for all scales, maximum differ-

ences were found in τ = 2, equivalent to reducing the sampling rate of the EEG

signal by half before applying the SampEn algorithm. In practice, it would not be

required to compute all MSE scales, but only to implement a decimation block,

followed by a SampEn feature extraction process. As shown, the total compu-

tational duration for 15 sequences was 196.8 ms. Since most P300-based BCIs

use pauses of more than 1 second between characters (Farwell and Donchin, 1988;

Schalk et al., 2004; Treder et al., 2011), the computational cost of the proposed

algorithm assures its viability in a practical online BCI assessment. Discrimina-

tion accuracies also depicted an increasing tendency as the number of sequences

increased, suggesting that the proposed method is dependent on the length of

the raw signals. Particularly, all subjects except AH04 and AH08 reached more

than 90% accuracy using 9 sequences; and even AH06, AH07 and AH09 reached

it using only 3 sequences. Although this tendency is clear for all subjects, some

users presented a sequential increase (e.g., AH01, AH05, AH08, AH09), while oth-

ers reached a standstill (e.g., AH03, AH10). This behavior reinforces the need

to perform individual calibrations and optimize BCI applications to each subject

separately.

Table 6.1 summarizes a comparison between previous asynchronous P300-based

BCI applications, emphasizing their asynchronous strategies. As shown, most of

the studies followed a thresholding approach, either LDA (Aloise et al., 2011; Bre-

itwieser et al., 2016; Mart́ınez-Cagigal et al., 2017, 2019a; Pinegger et al., 2015;

Tang et al., 2018) or SVM based (Li et al., 2013; Zhang et al., 2008). Despite

their suitable performances, the dependence on the ERP classifier makes them im-

practical in the long term due to the inherent inter-session variability of the EEG.

As aforementioned, threshold values should be updated each time the classifier
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Table 6.1: Comparison between asynchronous P300-based BCI applications.

Study Signal Paradigm Asynchronous management Subjects

Zhang et al. (2008) P300 Cells ROC thresholding using SVM
scores

4HS

Panicker et al. (2010) P300,
SSVEP

Hybrid Detection of SSVEPs using rela-
tive peak amplitude in PSD

10HS

Aloise et al. (2011) P300 RCP ROC thresholding using LDA
scores

11HS

Li et al. (2013) P300,
SSVEP

Hybrid ROC thresholding using SVM
scores (P300) and relative powers
(SSVEP)

8HS

Pinegger et al. (2015) P300 RCP Thresholding using LDA scores
and sum of spectral components

10HS

Breitwieser et al.
(2016)

P300,
SSSEP

Hybrid Thresholding using multi-class
LDA

14HS

Mart́ınez-Cagigal et al.
(2017)

P300 RCP ROC thresholding using LDA
scores

5HS,
16MS

He et al. (2017) P300 RCP Combination of two different SVM 8HS
Yu et al. (2017) P300,

SMR
MI, RCP SMR activate the RCP 11HS,

8HS
Aref and Huggins
(2012)

P300 RCP Certainty algorithm: t-test over
LDA scores

11HS,
19CP

Ma and Qiu (2018) P300 RCP ROC thresholding using relative
powers

4HS

Aydin et al. (2018) P300 HOS ROC thresholding using classifier
labels

10HS

Tang et al. (2018) P300 RCP ROC thresholding using LDA
scores

4HS

Santamaŕıa-Vázquez
et al. (2019)

P300,
SSVEP

RCP Oddball steady response detection 15HS

Mart́ınez-Cagigal et al.
(2019a)

P300 RCP ROC thresholding using LDA
scores

18HS,
10MDS

Mart́ınez-Cagigal et al.
(2019b)

P300 RCP SampEn features and LDA classi-
fication

10HS

SSVEP: steady-state visual evoked potentials, SSSEP: somatosensory evoked potentials, SMR: sensory-
motor rhythms, MI: motor imagery, RCP: row–col paradigm, ROC: receiver operating characteristic,
SVM: support vector machines, PSD: power spectral density, LDA: linear discriminant analysis, Sam-
pEn: sample entropy, CS: control subjects, MS: multiple sclerosis, CP: cerebral palsy, MDS: motor-
disabled subjects.

weights are modified, requiring additional EEG recordings of non-control state

observations. Other approaches added complementary spectral features (Ma and

Qiu, 2018; Pinegger et al., 2015) or employed hybrid paradigms (Li et al., 2013;

Panicker et al., 2010; Yu et al., 2017) to implement filter methods independent

of the ERP classifier. Yu et al. (2017) used SMR to activate RCP stimuli via

MI, including a selection command to stop them. However, SMR-based control is

considered unreliable and the extra command selection entails an increase of the

required time to handle the asynchrony, making the system even more demanding.

Li et al. (2013) and Panicker et al. (2010), by contrast, superimposed the RCP

with a flickering visual effect. This strategy was intended to generate SSVEPs

whenever users were paying attention to the stimuli, further detected using rela-

tive powers. An utterly different approach was followed by Pinegger et al. (2015)

and Ma and Qiu (2018), who hypothesized that the RCP also generates residual
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SSVEP components provided the stimuli are displayed at a constant rate. These

SSEVPs were identified in the frequency spectrum, providing supplementary fea-

tures to the LDA scores. Recently, Santamaŕıa-Vázquez et al. (2019) extended this

approach by proposing a novel filter method based on canonical correlation anal-

ysis that does not require the recording of non-control trials. Unfortunately, most

of these studies were intended to develop novel assistive applications, reporting

accuracies that depict the overall performance to predict correct characters, but

ignoring non-control ones. For that reason, a quantitative statistical comparison

cannot be performed among them.

To sum up, one wrapper (thresholding) and one filter (MSE) asynchrony meth-

ods have been proposed. The thresholding approach has demonstrated its viability

with motor-disabled subjects, yet it is strongly dependent on inter-session variabil-

ity (Mart́ınez-Cagigal et al., 2017, 2019a). Although this fact does not invalidate

thresholding-based approaches straightaway, it is time consuming, affects the us-

ability of the BCI and could be frustrating for users. Hence, strategies that do not

depend on the classifier scores, such as residual SSVEP detection or the proposed

entropy-based algorithm, should be preferred in the long-term. Although none of

them has been evaluated with a motor-disabled population, results obtained by HS

suggest the generalization is feasible. Among these methods, the SampEn-based

has demonstrated to be able to characterize non-/control signals and monitor their

dynamical changes to provide an asynchronous management independent of the

inter-session variability (Mart́ınez-Cagigal et al., 2019b). It is also believed that

performance could be improved by integrating other features from complementary

methods, such as spectral-based algorithms; however, this hypothesis has not been

explored yet.

6.2 A novel nature-inspired algorithm to select

relevant channels

Notwithstanding their still scarce application in BCIs, it has been demonstrated

that single- and multi-objective meta-heuristics are able to select optimal BCI

channel sets according to the features of each user, independent of the P300-

based paradigm (Mart́ınez-Cagigal et al., 2020). In further BCI sessions, the

supervisor should use the selected channels to avoid over-fitting, while reducing

the preparation time and the overall cost of the assessment.

In the light of the results, single-objective meta-heuristics such as GA, BDE
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and BPSO have succeeded in finding proper channel sets. In training phase, GA

converged the fastest, followed by BDE and finally BPSO. Moreover, the overall

complexity of the algorithms also follows this behavior, being GA the less com-

putationally intensive, followed by BDE and BPSO. However, the quality of their

optimized solutions F (s) were analogous, which explains the similarity of their

performances in testing phase. This behavior is consistent for all databases, re-

inforcing the generalization of the results across different paradigms. It could be

thus considered that GA is more fitted to the BCI channel selection problem, likely

due to its inherently discrete inner strategies. On average, GA, BDE and BPSO

reached 91.47% accuracy using 13.38 channels. The increase in accuracy compared

to the entire channel set (i.e., ALL) and the standard Krusienski’s P300 8-channel

set (i.e, KRU) was statistically significant for both (p-value < 0.05). Therefore, it

can be assured that customized channel sets are able to significantly improve the

performance, making channel selection a beneficial stage for BCI system. It should

be noted, however, that single-objective sets employed more channels than KRU.

In this regard, channel densities of the solutions may be easily modified by ad-

justing the importance of the aggregated objectives: minimization of the amount

of channels, f1(s); and maximization of the overall performance, f2(s) (equation

4.1).

Despite the possibility to tune the total number of channels to be selected,

single-objective meta-heuristics always return a single solution. Multi-objective

algorithms, by contrast, return a set of optimal solutions, each one with different

number of channels. The supervisor is then allowed to select one of them in func-

tion of the desired channel density. This fact poses a major advantage over tradi-

tional single-objective methods that should be taken into account if the supervisor

has enough time for the computation. Among the existing algorithms, NSGA-II

and SPEA2 reached similar Pareto-fronts, outperforming BMOPSO. Nonetheless,

some of their inner strategies are suboptimal in the BCI channel selection problem,

hindering the convergence of the algorithms. In this framework, solutions must

be dichotomous, making continuous-based operations futile or counter-productive,

such as crowding distances, distance soughts or transfer functions. Even repository

control approaches are worthless, since its maximum size is already limited by the

number of channels. Ultimately, all meta-heuristics must have been adapted to

the problem to a greater or lesser extent. DFGA, by contrast, have been espe-

cially designed for the BCI channel selection framework, and so its Pareto-front

is comparable to NSGA-II and SPEA2 while it converges faster. Channel ranks

of BMOPSO also exposed a lack of convergence to a global optimum, which was



6.2. A novel nature-inspired algorithm to select relevant channels 89

afterward reflected in testing results. Accuracies indicated that KRU was out-

performed using only 4 channels by DFGA, NSGA-II and SPEA2. Furthermore,

results showed that there was a point where performance came to a standstill,

making the use of more than 15–20 channels counter-productive.

From the channel ranks results it was observed that optimal channel sets differ

for each subject, confirming that a customized set benefits the subsequent per-

formance. In spite of the usefulness of KRU as a general rule-of-thumb solution

(Krusienski et al., 2008), results did not consider that combination optimal for any

case. In fact, KRU was outperformed by both single and multi-objective meta-

heuristics, even using only 4 channels in case of DFGA, NSGA-II and SPEA2.

This fact should not be surprising, since classifiers are always optimized for each

subject due to the inherent variability of the EEG signals (Wolpaw and Wolpaw,

2012a). In fact, the inter-subject variability of optimal channel sets have been re-

peatedly observed in the literature, suggesting that the concept of using a general

channel set for an entire population is suboptimal and should be avoided to the

extent possible (Chaurasiya et al., 2017; Gonzalez et al., 2013; Jin et al., 2010; Kee

et al., 2015). Since the selection of channels is somewhat related with the identifi-

cation of P300 waves, a possible explanation of this phenomenon could be related

with inter-subject differences between these potentials. It is documented that the

amplitude, latency, and even the topographic distribution of P300 waves vary de-

pending on: (i) individual differences (e.g., age, intelligence, personality, absolute

pitch), (ii) psychological (e.g., attention, motivation) and (iii) pharmacological

aspects (e.g., consumption of alcohol and other drugs), (iv) the paradigm (e.g.,

task complexity, target probability), (v) psychiatric disorders (e.g., schizophrenia,

autism, obsessive-compulsive disorder, psychopathy, dementia, etc.), and (vi) ex-

ternal factors (e.g., variations in cap positions) (Picton, 1992). In fact, the latter

is present in almost all recordings, where EEG caps do not correctly fit some users,

making some electrodes wobbly and producing noise. Taking into account all these

facts, it is not surprising that most relevant channels for classification are not the

same among different users, requiring a subject-optimized procedure to maximize

the BCI performance. Moreover, channel ranks showed that meta-heuristics had a

slight tendency to select electrodes over the occipital lobe. From a biological point

of view, this tendency is sound. The EEG response of these visual oddball task is

modeled as an ERP, composed by several components that are taken into account

when extracting and classifying the features. Due to the ability of V1 to process

information about visual stimuli, static and moving objects, it is thus expected

that occipital electrodes contain relevant discriminative information about target
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and non-target responses (Standring, 2016).

The main drawback of these meta-heuristics refers to the need of fixing hy-

perparameters whose values usually depends on the context of the optimization

problem. Convergence issues may arise if these values are poorly chosen. Thus,

the quality of a meta-heuristic should be assessed taking into account the amount

of required hyperparameters: the less parameters, the more probability to assure

a generalization of the results. In this sense, GA, DFGA, NSGA-II and SPEA2

only require mutation and crossover probabilities to be fixed, which are well stud-

ied in the literature and generally take values of 1/N and 0.90–0.95, respectively

(Deb, 2005; Deb et al., 2002; Yang, 2014). A similar approach is followed by BDE,

whose extra parameters are intended to apply a mutation procedure. However,

BPSO and BMOPSO add the maximum velocity, as well as the personal and global

confidences, which are problem-dependent. Although we followed the recommen-

dations of the literature, results expose a clear difficulty of BPSO and BMOPSO

to converge to an optimal solution. This fact suggests that their performances

could have been improved by means of an adaptive approach or a hyperparameter

optimization.

An analysis of the computational cost of these algorithms was also performed,

although its interpretation is tricky, forcing to consider several aspects at the

same time. The number of evaluations per generation varied depending on the

algorithm and thus, the meta-heuristics can only be compared in terms of the

duration of a single generation. In order to assure a fair comparison, all the al-

gorithms performed a total of 4000 evaluations, which implies that the number

of generations of each algorithm varied. However, the total time of execution

varies in practice according to the required number of generations to achieve a

suitable convergence, the search depth and the programming approach. Since an

intense search would inevitably generate repeated solutions, the use of hash maps

is mandatory to match the computed solutions with their fitnesses and avoid un-

necessary evaluations. In terms of asymptotic operations, all of the multi-objective

meta-heuristics showed a O(Nom
2) behavior (Curry and Dagli, 2014; Mart́ınez-

Cagigal et al., 2020; Tripathi et al., 2007), whereas the number of evaluations per

generation made NSGA-II the less time-consuming, followed by DFGA, SPEA2

and, finally, BMOPSO. The scarce computational cost of DFGA and NSGA-II,

together with their performances in testing phase, makes them excellent multi-

objective approaches to this problem. For the single-objective ones, GA and BDE

stood out owing to their convergence abilities and their low computation costs. In

any case, the overall duration of these algorithms restricts their application to the
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Table 6.2: Comparison between channel selection meta-heuristics in P300-based BCIs.

Study Database Ns Method Accuracy Nc

Kee et al. (2015) Comp. 15 GA 93.60% 22.3
NSGA-II 94.90% 25.7

Arican and Polat (2020) Comp. 15 BPSO 89.90% 8
Perseh and Sharafat (2012) Comp. 15 BPSO 85.00% 31
Gonzalez et al. (2013) Comp. 5 BPSO 67.50% 33.5
Mart́ınez-Cagigal and Hornero (2017b) Comp. 15 BPSO 92.00% 17

BA 96.00% 19
ABC 93.00% 24
BAS 92.00% 19
FA 94.00% 22

Chaurasiya et al. (2017) Custom, 9HS 15 MOBDE 92.80% 26.1
Jin et al. (2010) Custom, 11HS 15 BPSO 71.09% 7.63
Mart́ınez-Cagigal et al. (2020) Comp. 15 GA 92.00% 14

BDE 92.00% 14.5
BPSO 92.00% 14
DFGA∗ 94.50% 20
NSGA-II∗ 94.50% 20
SPEA2∗ 94.00% 16
BMOPSO∗ 92.50% 20

Center 10 GA 97.40% 12.4
BDE 97.90% 12.5
BPSO 96.80% 12.5
DFGA∗ 97.88% 7
NSGA-II∗ 98.46% 8
SPEA2∗ 97.72% 9
BMOPSO∗ 97.82% 16

RSVP 10 GA 84.60% 13.4
BDE 85.50% 13.4
BPSO 85.00% 13.7
DFGA∗ 85.73% 14
NSGA-II∗ 86.05% 7
SPEA2∗ 85.73% 8
BMOPSO∗ 84.80% 18

Ns: number of sequences, Nc: averaged number of channels, Comp.: III BCI Competition 2005 (dataset
II), HS: healthy subjects, GA: genetic algorithm, NSGA-II: non-sorting genetic algorithm 2, BPSO:
binary particle swarm optimization, BA: bees algorithm, ABC: artificial bee colony, BAS: binary ant
system, FA: firefly algorithm, MOBDE: multi-objective binary differential evolution, BDE: binary
differential evolution, DFGA: dual-front sorting algorithm, SPEA2: strength pareto evolutionary algo-
rithm 2, BMOPSO: binary multi-objective particle swarm optimization.
∗ The selected solution was the one that maximized the accuracy in the range Nc ∈ [5, 20].

calibration session, where the classifier’s weights are optimized for each subject.

According to the outcomes, the utility of meta-heuristics (GA, BDE, DFGA,

NSGA-II, SPEA2) to find an optimal combination of channels in P300-based BCIs

have been proven. In fact, the reached accuracies of our work are similar or even

higher than those reported previously. Table 6.2 depicts a comparison between pre-

vious channel selection meta-heuristics in P300-based BCIs. The most straightfor-

ward comparison can be made by considering accuracies from those that employed

the ‘BCI Competition III: dataset II’. Kee et al. (2015) reached 93.60% (22.3 ch.,

GA) and 94.90% (25.7 ch., NSGA-II). Arican and Polat (2020) reached 89.9%

(8 ch., BPSO). In our preliminary work, we obtained 92.00% (17 ch., BPSO),

96.00% (19 ch., BA), 93.00% (24 ch., ABC), 92.00% (19 ch., BAS) and 94.00%
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(22 ch., FA) (Mart́ınez-Cagigal and Hornero, 2017b). All of these studies used

15 sequences. Perseh and Sharafat (2012) and Gonzalez et al. (2013) obtained

85.00% (31 ch., BPSO) and 67.50% (33.5 ch., BPSO), respectively, using only 5

sequences. As can be seen, the comparison is difficult since each study reported

solutions with different number of channels or sequences. In our study, we reached

92.00% (14 ch., GA, BPSO; 14.5 ch., BPSO), and NSGA-II, SPEA2 and DFGA

achieved 90.00% with 7 channels, which increased until a maximum of 97.00% us-

ing 23 channels and 15 sequences (Mart́ınez-Cagigal et al., 2020). There were also

studies that tested their proposals with custom datasets, such as Chaurasiya et al.

(2017) (9HS, 15 sequences) and Jin et al. (2010) (11HS, 15 sequences), obtaining

92.80% (26.1 ch., MOBDE) and 71.09% (7.63 ch., BPSO), respectively. Besides

the ‘BCI Competition III: dataset II’ (2HS, 15 sequences), our study also reported

results with two additional databases: ‘Center Speller (008-2015)’ (13HS, 10 se-

quences) and ‘RSVP Speller (010-2015)’ (12HS, 10 sequences). To the best of our

knowledge, there are no previous studies that have tested any meta-heuristic with

any paradigm apart from RCP and thus, a direct comparison cannot be made. In

terms of yielded accuracies, our results for single-objective (averaged, CS: 97.36%,

12.46 ch.; RSVP: 85.03%, 13.5 ch.) and multi-objective (averaged, CS: 98.46%,

8 ch.; RSVP: 85.73%, 8 ch.) algorithms in these databases are similar to those

reported in the literature (Acqualagna and Blankertz, 2013; Treder et al., 2011).

To sum up the main findings, it was found that optimal channel sets showed

a high inter-subject variability, making the customization for each user essential

regardless of the employed paradigm. Moreover, inherently discrete algorithms

(DA, BDE, DFGA, NSGA-II, SPEA2) reached higher performances due to the

discrete nature of the framework. It is also noteworthy that the combination of

deterministic and stochastic approaches seemed to be beneficial for the convergence

of the algorithm, as shown by the proposed DFGA.

6.3 A web browsing application for real users

The most immediate BCI application is to somehow improve the quality of life of

those whose motor abilities are restricted. Unfortunately, BCI studies often lack of

a clinical validation with target users. In order to contribute to the practical BCI

literature, we proposed a novel asynchronous web browser to assist MS patients

(Mart́ınez-Cagigal et al., 2017). The web browser integrated a Google Chrome

extension that interpreted the commands selected by two RCP-based matrices,

while using an asynchronous thresholding approach.
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In the evaluation sessions, HS and MS patients reached averaged accuracies

of 95.75% and 84.14%, which proves the feasibility of the proposed application.

As expected, HS obtained higher accuracies with a fewer number of sequences

than MS patients, so the surfing speed of HS was higher. It is noteworthy that 3

MS patients (CP05, CP11, CP16) were removed from the evaluation due to low

calibration accuracies. This phenomenon is common in assessments with target

users because of poor P300 potentials (e.g., attenuated or even null response, vari-

able latencies) (Wolpaw et al., 2002), which again reinforces the importance of

validating BCI studies in real environments. It should be also taken into account

that some of these MS patients presented neurological damage that caused cog-

nitive disability besides motor limitations. As indicated in section 3.1, this led

to different degrees of sustained attention, a critical aspect for triggering P300

responses (Picton, 1992). Furthermore, although HS finished all tasks, not all MS

patients were able to finish them, which reflects a poorer control of the system.

However, 13 MS patients obtained accuracies greater than 80%, of which 2 did not

perform any mistake (Eval-I: CP02; Eval-II: CP04). All HS obtained accuracies

greater than 80%, and 3 of them reached a perfect control of the browser (Eval-I:

CH01, CH03; Eval-II: CH03, CH05). The comparison between both evaluation

sessions also indicates an interesting fact about the thresholding approach. Eval-

II (i.e., asynchronous) accuracies are higher than Eval-I (i.e., synchronous) ones

for both groups of participants, reaching an average improvement of 6.68% for MS

patients. This phenomenon suggests that, on subjects without motor or cogni-

tive capabilities, the introduction of the asynchronous approach does not imply an

improvement in terms of performance, but a less demanding control.

It should be noted that a bad optimized threshold can lead to a longer required

time to accomplish the tasks due to false negative errors. This fact was present

for CP02, who got perfect performances in T1.3 and T2.2 (same task), but the

required time to finish T2.2 was longer because 10% of the selections were false

negatives. As aforementioned in section 6.1, this problem was caused by the

inability of the threshold to follow nonstationary changes of the EEG. Thus, the

thresholding approach establish a tradeoff between browsing speed and selection

accuracy. Despite this phenomenon, performances were improved when threshold

was enabled, allowing users to avoid further mistakes when their P300 are not

powerful enough for being considered deliberate selections.

Questionnaire results lay bare the general satisfaction of HS and MS with the

web browsing application. They found the system interesting, intuitive and they

stated to be willing to participate in further studies. MS patients also indicated
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Table 6.3: Comparison between P300-based BCI web browsers.

Study Signal Selection Asynchronous Subjects Acc.
strategy management

Karim et al. (2006) SCP Dichotomous tree None 1ALS 80.00%
Bensch et al. (2007) SCP, Dichotomous tree None 4ALS N.r.

SMR 2HS N.r.
Mugler et al. (2010) P300 Node tagging Pause command 3ALS 72.00%

10HS 93.40%
Sirvent Blasco et al. (2012) P300 Cursor Pause command 4HS 93.00%
Yu et al. (2012) P300,

SMR
Cursor Absence of MI 7HS 93.21%

Mart́ınez-Cagigal et al. (2017) P300 Node tagging Thresholding 16MS 84.14%
5HS 95.75%

Acc.: accuracy, SCP: slow cortical potential, SMR: sensorimotor rhythms, MI: motor imagery, ALS:
amyotrophic lateral sclerosis, HS: healthy subjects, MS: multiple sclerosis, N.r.: not reported.

that they could imagine themselves using the BCI web browser in their daily life.

The main concern of MS patients was the navigation speed. However, browsing

speed is directly related with the optimal number of sequences for each user and,

in the end, with the classifier’s training accuracy. This issue does not appear in HS

responses, likely because they committed fewer mistakes and used fewer number

of sequences than MS. Participants also pointed out that they were sometimes

distracted by adjacent flashings. This issue, known as the ‘adjacent-distraction

problem’, is inherent to the RCP and cause selection errors to fall in cells that

belongs to the same row or column as the target command. In our evaluation,

the 100% and the 87.75% of the mistakes of HS and MS were of this kind, re-

spectively. Since the probabilities of randomly selecting one of those cells are

between 45%–67% (navigation matrix) or 29%–36% (keyboard matrix), it is clear

that most errors were due to this problem. Whether a modified RCP, such as the

checkerboard paradigm, could have reduced this number is still an open question

(Townsend et al., 2010).

In summary, the main strengths of our proposal were: (i) the reliability that

guarantees P300 potentials; (ii) the node tagging and double matrices strategies

that increases the navigation speed; and (iii) the asynchronous mode. Table 6.3

shows a comparison with previous BCI web browsers, in terms of control signals,

selection strategy, asynchronous management and testing accuracies. Besides the

use of P300 potentials and node tagging, which makes our proposal faster and

more self-sufficient than other SCP/SMR-based BCIs (Bensch et al., 2007; Karim

et al., 2006), the main advantage was the asynchronous approach. Previous studies

opted to implement a “read mode” command, which paused the application for a

fixed time (Mugler et al., 2010; Sirvent Blasco et al., 2012); used the absence of MI

to stop involuntary selections (Yu et al., 2012); or directly avoided the implemen-



6.4. Toward smartphone-oriented BCIs 95

tation of any asynchronous management (Bensch et al., 2007; Karim et al., 2006).

However, a “read mode” command increase the rigidity of the application, whose

pause can result too long or too short a time depending on the situation; and a

simultaneous SMR-based hybrid control makes the system even more demanding.

In our approach, users could experiment a free surfing without worrying about un-

desired selections from the RCP, due to a continuous attention monitoring through

our thresholding method. Although we observed a highly variable performance of

MS patients during the sessions, the yielded accuracy (84.14%) is higher than those

reported by previous attempts tested with ALS patients (Karim et al., 2006; Mu-

gler et al., 2010). Specifically, significant differences were found between our MS

results and the work of Mugler et al. (2010) (p–values < 0.05), which reinforces the

contribution of our work considering that the cognitive disabilities that commonly

appear in MS are rarely presented on ALS patients. HS results (95.75%) also over-

came previous testing with healthy participants, although the difference was not

statistically significant (Mugler et al., 2010; Sirvent Blasco et al., 2012; Yu et al.,

2012). These results reveal that the inclusion of an asynchronous management

significantly favors the applicability of the BCI system in a real environment.

6.4 Toward smartphone-oriented BCIs

Nowadays, smartphones constitute an important aspect of our lives. Their func-

tionalities, that cover from managing finances to reading news, including watching

videos, shopping, playing games or searching for information; facilitate many as-

pects of the everyday life. Particularly, more than the 56% of the time spent

with smartphones is dedicated to socializing (Ipsos MORI and Google, 2017) and,

unfortunately, the accesibility of these devices is still restricted for those that can-

not use accurately their hands and fingers. Therefore, we studied whether the

integration of BCI to control an smartphone is feasible (Mart́ınez-Cagigal et al.,

2019a).

A total of 4 MDS were discarded from the assessment because they could

not achieve a minimum of 70% accuracy in the calibration sessions. Since the

diseases were heterogeneous, the rationale behind this lies in indirect issues that

caused poor P300 responses. For instance, some users exhibited lack of sustained

attention, essential tremors, or nystagmus, among others; which indeed affects

the general performance of the system. It is noteworthy that this fact is always

present when testing with target users owing to the high inter-subject variability

of their symptoms, even for those that present the same disease. It also empathizes
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that evaluating with HS and patients are radically distinct experiences. From the

experience acquired by testing both the web browser and the social networking

applications, it could be suggested that a patient tested BCI cannot be fully gen-

eralized to other patients. Hence, the viability of a HS-tested BCI should not be

guaranteed for disabled patients under no circumstances.

As indicated in the results of the evaluation session, HS achieved an averaged

accuracy of 92.3%, whereas motor-disabled patients reached 80.6%. These results

are in accordance with the web browser assessment, which stated that patients

had a big handicap when controlling the BCI system, in comparison with HS.

Motor-disabled subjects also experimented a lower speed because of their higher

number of sequences, and not all of them were able to finish all the tasks. Differ-

ences between accuracies, number of sequences and average OCM of HS and MDS

were significant (p–values < 0.05). Despite the aforementioned issues, 80.6% is

considered sufficient for experimenting an actual control of a BCI (Kübler et al.,

2001). Noteworthy, it was observed that selection errors often caused more mis-

takes thereafter, probably due to despondency. A possible bypass could rely on

spelling dictionaries or processing error-related potentials.

Questionnaire results were similar to those obtained with the web browser,

showing a general satisfaction with the system. Users did not experiment impa-

tience, boredom, fatigue or stress; and patients could imagine themselves using the

application in their daily life. However, they demanded more speed and shorter

evaluation sessions. The latter also reveals an issue that should be taken into

consideration when designing the tasks, their duration and the structure of the

assessment sessions; which could be tiresome for some users due to individual

characteristics caused by their diseases. Even so, users were willing to carry out

more sessions and participate in similar studies.

Notwithstanding the growing popularity of smartphones, mobile BCIs are

scarce in the literature. Furthermore, to the best of our knowledge, there are

no previous studies that attempted to provide a high-level control of the device,

nor controlling any social network or their functionalities. Table 6.4 shows a

comparison among previous mobile BCIs, detailing the control signal, the target

operating system, their main functionalities and the final assessment accuracies.

Previous studies were focused to dial numbers (Chi et al., 2012; Wang et al., 2011),

call contacts (Campbell et al., 2010; Katona et al., 2014; Wang et al., 2011), spell

words (Elsawy et al., 2017; Obeidat et al., 2017), visualize the gallery (Elsawy

and Eldawlatly, 2015) or play simple games (Wu et al., 2014). Most of them used

P300 potentials, whereas some of them used SSVEPs (Chi et al., 2012; Wang et al.,
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Table 6.4: Comparison between mobile P300-based BCI applications.

Study Signal Target
OS

Main functionalities Subjects Acc.1

Campbell et al. (2010) P300 iOS Call contacts 3HS 88.89%
Wang et al. (2011) SSVEP Cell Dial numbers 10HS 95.90%
Chi et al. (2012) SSVEP Cell Dial numbers 2HS 89.00%
Katona et al. (2014) Conc. WP Accept/reject incoming

calls
5HS 75.00%

Wu et al. (2014) Conc. Android Play a simple racing game 5HS N.r.
Elsawy and Eldawlatly (2015) P300 Android Open pre-installed apps 6HS 79.17%

and visualize the gallery 87.50%
Elsawy et al. (2017) P300 Android Spell words 6HS 64.17%
Obeidat et al. (2017) P300 Android Spell words 14HS 90.00%
Mart́ınez-Cagigal et al. (2019a) P300 Android Full asynchronous control 18MDS 80.60%

of Twitter and Telegram 10HS 92.30%

OS: operating system, Acc.: accuracy, SSVEP: steady state visual evoked potential, Conc.: concen-
tration signal (derived from Neurosky EEG caps), Cell: cell phone, WP: Windows phone, HS: healthy
subjects, MDS: motor-disabled subjects, N.r.: not reported.
1 If a study provides several measurements, the highest online accuracy is shown.

2011) and Neurosky concentration (Katona et al., 2014; Wu et al., 2014) control

signals. Although the processing of the latter is simple and can be handled by

the headset itself, it is a commercial signal that only offers dichotomous decisions,

hindering its use for a high-level control of a smartphone. As far as we know, none

of them tested their proposals with motor-disabled patients, so their feasibility

with target users is compromised. Moreover, the averaged HS accuracy of our ap-

proach (92.30%) overcame those reported for P300-based studies (Campbell et al.,

2010; Elsawy and Eldawlatly, 2015; Elsawy et al., 2017; Obeidat et al., 2017), and

the results of MDS (80.60%) is also higher than those obtained by HS in (Katona

et al., 2014) and Elsawy and Eldawlatly (2015). In fact, significant differences

in performance were found between the latter and our study (p–values < 0.05).

The remaining studies did not provide unfolded accuracies for each user and thus,

statistical analysis could not be performed.

As shown, very few studies have attempted to control mobile devices through

BCIs, and none of them was focused on providing a high-level control of the device

nor social networking services. Our system provided a comprehensive control of

Twitter and Telegram, covering all their functionalities and simultaneously reach-

ing high accuracy results. For that reason, we could consider this study as a

precursor that demonstrated the viability of smartphone-oriented BCIs, opening

a new application field for BCIs aimed at increasing the quality of life of motor-

disabled people.
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6.5 Limitations of the study

Despite the utility of our proposals, the present Doctoral Thesis has some lim-

itations that should be discussed as well. The asynchronous management using

thresholding has demonstrated its feasibility with target users. However, the tech-

nique has a strong dependence on the ERP classifier, which forces the supervisor

to record additional non-control signals whenever the classifier is updated. That

wrapper dependence was overcome by the MSE-based proposal but, unfortunately,

it was not tested with motor-disabled patients. Moreover, the validation was made

using an offline LOO procedure, using more training trials in each iteration than

those that are generally used in practice. Therefore, the performance of the pro-

posed MSE-based asynchronous method is expected to decay slightly in a real

environment. Further endeavors should be focused on testing the method in an

online application.

Even though meta-heuristics have demonstrated their utility in finding optimal

channel sets for each user, they were only tested with HS subjects. Furthermore,

since the purpose of the study was focused on the channel selection procedure,

only basic feature extraction and classification algorithms were used. Whether

these results could be improved or not using more sophisticated algorithms is still

unknown. The proposed algorithms also entail high computational cost due to

their wrapper nature, restricting their application after the calibration session.

Moreover, hyperparameters were fixed according to the recommendations of the

literature, but not optimized for each subject. It should be also noted that the ‘III

BCI Competition’ database had more training trials than those that are usually

recorded in practice.

Regarding the assistive applications, their asynchronous managements were

composed by thresholding approaches. Owing to the results, MSE-based asyn-

chrony exhibited a higher offline performance than the thresholding approach and

thus, it is suggested that results could have been improved by using it. In both

applications, patients requested a higher speed. Whether the classifier’s perfor-

mance and the speed could have been improved by using more robust classifiers or

more training trials in the calibration session is an open question. Moreover, both

applications lacked of despondency bypassing, causing a mistake to propagate fur-

ther in some occasions. Regarding the social networking application, it should be

highlighted that signal processing stage required a laptop to be executed, which

favored the reliability but impaired the portability. In turn, it was tested with a

heterogenous motor-disabled population, where a population with a certain disease
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would have allowed to characterize its performance within that kind of patients.

Likewise, in both applications the patients not only presented motor-disabilites,

but also cognitive damage, which hindered the control of the BCIs.

The last limitation concerns the number of subjects that composed each

database. Although this limitation is commonly present in BCI studies due to the

difficulty to recruit motor-disabled patients, the sample size should be increased

to favor the generalization of the results.





Chapter 7

Conclusions

During the previous chapters of this Doctoral Thesis it has been laid bare the

common thread of the included studies: signal processing (i.e., asynchrony, chan-

nel selection) and assistive applications (i.e., web browser, social networking app)

of P300-based BCIs toward a real use of these devices by motor-disabled people.

These studies are intended to be a starting point to take the leap from laboratories

and provide an actual use of BCIs in real environments. Among the signal pro-

cessing approaches, it has been proposed two asynchronous methods to provide a

comprehensive control of the BCIs, and a multi-objective meta-heuristic to select

reduced but efficient customized channel sets. In fact, the asynchronous threshold-

ing method was implemented in the assistive applications: the web browser and

the mobile social networking app, whose feasibility has been assessed by target

users.

In this chapter, the original contributions of this compendium of publications

are highlighted in section 7.1. The next section 7.2 indicates the joint conclusions

of these studies. Lastly, future endeavors related to this research are enumerated

in section 7.3.

7.1 Contributions

The main contributions provided by this compendium of publications are listed

next:

1) Development of a thresholding asynchronous method based on SW-LDA

scores to monitor users’ attention while using P300-based BCIs. Evaluation
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of its feasibility with target users through its integration into two assistive

applications (Mart́ınez-Cagigal et al., 2017, 2019a).

2) Characterization of control and non-control state EEG signals during RCP

stimulation through entropy-based measures. The analysis in terms of reg-

ularity and complexity led to the proposal of a MSE-based asynchronous

method to avoid unintended selection of commands when using P300-based

BCIs (Mart́ınez-Cagigal et al., 2019b). To the best of our knowledge, this was

the first time that asynchronous states were characterized through entropy

measures and used to develop an asynchronous monitoring independent from

the ERP classifier.

3) Comparison of single and multi-objective meta-heuristics to select appropri-

ate sets of channels for each user. Although some existing algorithms were

previously applied to this problem, to the best of our knowledge, this was

the first time that their performances were compared, as well as evaluated

with different paradigms apart from RCP (Mart́ınez-Cagigal et al., 2020).

4) Proposal of DFGA, a novel multi-objective algorithm especially designed

for the P300-based BCI channel selection problem. The algorithm demon-

strated to reach similar or even higher performances than other approaches

(MOPSO, NSGA-II, SPEA2), exhibiting a faster convergence (Mart́ınez-

Cagigal et al., 2020).

5) Design, development and evaluation of an asynchronous BCI web browser to

assist motor-disabled people. The application was successfully tested with a

population of 16 MS and 5 HS users, demonstrating its viability with target

users (Mart́ınez-Cagigal et al., 2017).

6) Design, development and evaluation of an asynchronous mobile BCI to con-

trol social networks (Twitter and Telegram) for those whose command of

hands and fingers is limited. The system was assessed by a population of

18 motor-disabled and 10 HS, demonstrating its feasibility to bridge the

accessibility gap in current smartphones (Mart́ınez-Cagigal et al., 2019a).

7.2 Main conclusions

The analysis of the results (chapter 5) and its discussion (chapter 6) of the studies

as a whole allows to draw the main conclusions of this Doctoral Thesis, which are

enumerated below:
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1) A practical P300-based BCI should implement an asynchronous management

in order to avoid unintended command selections. This stage is essential to

provide a comprehensive control of the system and avoid the dependence of

supervisors, supporting the personal autonomy of the target users.

2) The integration of an asynchronous detection stage improves significantly

the performance of the users in assistive BCI applications. The amount of

selection mistakes is also reduced drastically.

3) EEG signals of users when attending to visual oddball stimuli are significantly

more complex and irregular that those obtained when ignoring them. These

differences allow to monitor their attention using entropy-based metrics.

4) Optimal channel sets depends strongly on the individual, showing a high

inter-subject variability. Therefore, an optimization for each user is benefi-

cial for the overall performance of the BCI, constituting a recommendable

procedure if enough time is available after the calibration.

5) Discrete multi-objective meta-heuristics are suitable to find optimal sets in

function of the number of electrodes, significantly outperforming the gen-

eral rule-of-thumb of using eight channels for P300-based BCIs. A balanced

combination of deterministic and stochastic techniques (e.g., DFGA) is also

beneficial for their convergence.

6) Performances of motor-disabled users are significantly lower than those ob-

tained by control subjects. Hence, assistive BCIs must be tested with target

users in order to assure their feasibility in a real setup.

7) P300-based social networking through smartphones and web browsing have

proven to be useful assistive applications for the motor-disabled. Their inte-

gration in the everyday life of dependent people is viable.

8) Opinions of the motor-disabled population reflect a general satisfaction with

the assistive applications. Patients imagine themselves using P300-based

BCIs in their daily life in the near future.

7.3 Future research lines

Several questions derived from this investigation may be the object of further

endeavors to complement our findings, or even to take care of other topics that do
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not belong to the scope of this Doctoral Thesis. In this regard, the most interesting

future research lines are discussed next.

Concerning the MSE-based asynchronous approach, the combination of the

proposed method with other complementary filter algorithms (e.g., spectral anal-

ysis) may improve its performance and constitutes an interesting future line of

investigation. Moreover, the fact that the MSE-based algorithm does not de-

pend on the ERP classifier leads us to encourage its assessment with a motor-

disabled population to favor the generalization of the results. Studying whether

the proposed feature is useful in characterizing other related aspects such as BCI

illiteracy or inter-session variability would be interesting as well. Regarding the

channel selection algorithms, the proposed meta-heuristics were evaluated using

a simple processing pipeline. Future work could be focused on (i) improving the

performance by complementing them with regularization techniques; or (ii) re-

ducing their computational cost by integrating embedded strategies into the ERP

classifiers. Another interesting future research could be the application of these

meta-heuristics to feature selection problems.

With respect of the applications, the asynchronous management of both (web

browser and social networking) employed the thresholding approach. Improve-

ments could be made by integrating the MSE-based proposal, which is indepen-

dent of the ERP classifier and avoids the recording of non-control data whenever

is updated. One natural way to continue our investigation would be the assess-

ment of these proposals with a larger motor-disabled database. Moreover, it would

be interesting to focus on disabilities that do not entail cognitive problems, such

as ALS or stroke; who constitute the fittest target users for BCIs. We also be-

lieve the general performance of the assistive applications may be improved by

using more complex classification algorithms that could follow the inter-subject

and inter-session variability of the ERPs; e.g., deep learning techniques. Finally, a

long-term longitudinal validation of these applications could give insight into how

socio-technological interactions and disease progression would affect the efficacy

of the BCI system.
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Abstract

Brain–computer interfaces (BCI) have traditionally worked using synchronous paradigms. In recent years, much effort
has been put into reaching asynchronous management, providing users with the ability to decide when a command
should be selected. However, to the best of our knowledge, entropy metrics have not yet been explored. The present
study has a twofold purpose: (i) to characterize both control and non-control states by examining the regularity of
electroencephalography (EEG) signals; and (ii) to assess the efficacy of a scaled version of the sample entropy algorithm
to provide asynchronous control for BCI systems. Ten healthy subjects participated in the study, whowere asked to spell
words through a visual oddball-based paradigm, attending (i.e., control) and ignoring (i.e., non-control) the stimuli.
An optimization stage was performed for determining a common combination of hyperparameters for all subjects.
Afterwards, these values were used to discern between both states using a linear classifier. Results show that control
signals aremore complex and irregular than non-control ones, reaching an average accuracy of 94.40% in classification.
In conclusion, the present study demonstrates that the proposed framework is useful in monitoring the attention of a
user, and granting the asynchrony of the BCI system.

Keywords: Sample entropy, multiscale entropy, brain–computer interfaces, asynchrony, event-related potentials,
P300-evoked potentials, oddball paradigm

1. Introduction

Brain–computer interfaces (BCI) are able to detect
users’ intentions from brain signals and convert them
into artificial commands that control an external de-
vice. BCI applications are intended to replace, restore,
enhance, supplement, or improve the natural central-
nervous-systemactivity of the user (Wolpaw andWolpaw,
2012). Such purposes make BCI systems especially suited
for improving the quality of life of motor-disabled peo-
ple, reducing their dependence, and favoring their social
and labor integration. These disabilitiesmay be caused by
traumas, neurodegenerative diseases, muscle disorders,
or any illness that impairs the neural pathways that con-
trol muscles or the muscles themselves (Wolpaw et al.,
2002). Although there are several ways to monitor the
brain activity of a user, electroencephalography (EEG)
is generally used due to its noninvasiveness, portability,
and low cost. Therefore, electric brain activity is recorded
by placing a set of electrodes on the user’s scalp (Wolpaw
et al., 2002).

Email addresses: victor.martinez@gib.tel.uva.es (Víctor Martínez-
Cagigal), eduardo.santamaria@gib.tel.uva.es (Eduardo Santamaría-
Vázquez), robhor@tel.uva.es (Roberto Hornero)

Since a user’s intentions are not directly reflected in
the raw EEG signal, BCI systems rely on the process-
ing of measurable changes related to cognitive tasks,
known as control signals (Nicolas-Alonso and Gomez-Gil,
2012). Event-related potentials, such as P300 responses,
are commonly used to assure the robustness of the sys-
tem regardless of disability. P300-evoked potentials are
the brain’s natural responses to infrequent and signif-
icant stimuli, elicited approximately 300 ms after their
onset (Wolpaw et al., 2002; Nicolas-Alonso and Gomez-
Gil, 2012). Owing to their exogenous nature, previous
training is not necessary, which makes a P300-based BCI
suitable for any person who presents a certain degree of
gaze control. In this sense, the row-col paradigm (RCP),
a particularization of the oddball visual paradigm, is the
most common setup to aid users in spellingwords or com-
mands (Farwell and Donchin, 1988). In this paradigm, a
matrix containing alphanumeric characters or commands
is displayed. Users just need to focus their attention
on the desired command while the matrix’s rows and
columns randomly flash. Whenever the target’s row or
column is intensified, P300 potential is generated. Hence,
the desired command can be determined by identifying
when these potentials have been elicited (Farwell and
Donchin, 1988; Wolpaw et al., 2002).
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The RCP is a synchronous process. Due to continu-
ous stimulation, the system makes a selection even if the
user does not pay attention to the visual stimuli (Pineg-
ger et al., 2015). In a real application, it is desirable that
users voluntarily decide when they want to select a com-
mand and when they do not. For instance, if the purpose
of the BCI system is to provide disabled users with an as-
sistive tool to surf the Internet, the application should
be able to detect if the user wants to select a naviga-
tion command or, by contrast, to calmly read a webpage
or watch a video (Martínez-Cagigal et al., 2017). A con-
ventional synchronous BCI could not monitor users’ at-
tention; thus, it continues selecting random commands
while users ignore the visual stimulation. Therefore,
the default synchronous mode of the RCP severely re-
stricts the applicability of a BCI system in a real envi-
ronment, requiring an external supervisor or the inclu-
sion of a read-mode command that pauses the RCP for a
fixed time. In order to overcome this limitation, the sys-
tem should be able to discern between the control state
(i.e., when users pay attention to the stimuli) and the
non-control state (i.e., idle state, when users ignore the
stimuli). In other words, the RCP-based system must be-
come an asynchronous application. In recent years, sev-
eral efforts have been made to achieve real asynchronous
control (Pfurtscheller, 2010). Most related P300-based
BCI studies rely on a threshold derived from classifiers’
scores, which are expected to be higher in the control
state than in the non-control state. These scores were ob-
tained from support vector machines (SVM) (Zhang et al.,
2008; Li et al., 2013; He et al., 2017) or linear discrim-
inant analysis (LDA) (Aloise et al., 2011; Aref and Hug-
gins, 2012; Breitwieser et al., 2016; Alcaide-Aguirre et al.,
2017; Martínez-Cagigal et al., 2017; Tang et al., 2018;
Martínez-Cagigal et al., 2019) classifiers using downsam-
pled raw signals from the stimuli onset as features (Zhang
et al., 2008; Panicker et al., 2010; Nicolas-Alonso and
Gomez-Gil, 2012; Li et al., 2013; Pinegger et al., 2015;
Martínez-Cagigal et al., 2017; Yu et al., 2017b; Martínez-
Cagigal et al., 2018; Aydin et al., 2018; Martínez-Cagigal
et al., 2019). Aydin et al. (2018) also used classifier labels
instead of scores to design different criteria to identify the
idle state. Other studies proposed spectral features to de-
tect both states, such as relative powers (Panicker et al.,
2010; Li et al., 2013;Ma andQiu, 2018) or sums of spectral
components (Pinegger et al., 2015). Among these com-
plementary metrics, recent studies have proposed mod-
ified BCI frameworks. Panicker et al. (2010); Li et al.
(2013) proposed novel asynchronous paradigms that in-
volve steady-state visually evoked potentials (SSVEP) and
P300 responses at the same time, using SSVEP to iden-
tify the idle state, and P300 responses to determine the
desired commands in real time. Breitwieser et al. (2016)
provided asynchronous control in a tactile-based BCI sys-
tem to detect both steady-state somatosensory evoked
potentials (SSSEP) and transient event-related potentials
(tERP). Lastly, Yu et al. (2017b,a) presented a hybrid sys-

tem that manages asynchronous control using motor im-
agery, while an RCP matrix controls the command selec-
tion.
Despite the recent interest in providing asynchronous

control in RCP-based BCI systems, to the best of our
knowledge, entropy metrics have not yet been explored.
In this context, we hypothesize that different entropy
metrics could provide insight into the dynamics of at-
tended and nonattended EEG signals, providing comple-
mentary information to discern between both states. Par-
ticularly, multiscale entropy (MSE) based on sample en-
tropy (SampEn) has demonstrated to be effective in es-
timating the complexity and regularity of physiological
time series (Richman and Moorman, 2000; Costa et al.,
2002, 2005; Humeau-Heurtier, 2015). Thus, differences
between the regularity of control and non-control EEG
signals could be expected to be found. Therefore, the
present study has a twofold purpose: (i) to characterize
control and non-control states by examining the regu-
larity of EEG signals; and (ii) to assess the efficacy of a
scaled version of SampEn to provide asynchronous con-
trol in P300-based BCI systems.

2. Materials and Methods

EEG signals show high intersubject variability and,
thus, BCI systems must be optimized for each subject
(Farwell andDonchin, 1988;Wolpaw et al., 2002; Nicolas-
Alonso and Gomez-Gil, 2012; Martínez-Cagigal et al.,
2017, 2018). The amplitude and latency of P300 responses
have been demonstrated to vary depending on individual
differences, such as age or personality, pharmacological
aspects, or even clinical disorders (Picton, 1992). There-
fore, channel and feature selection methods, as well as
classifiers, are always optimized in the first session of
each user. According to this rationale, classifiers of the
present study are separately trained and tested, return-
ing a final accuracy for each subject.
The methodological structure of the study is depicted

in the flowchart of Figure 1. Once the dataset was
registered and preprocessed, it was randomly divided
into optimization (30%) and validation (70%) datasets.
The optimization set was used to characterize the asyn-
chronous states and find an optimal combination of the
required hyperparameters that could work with all sub-
jects. These global values were thereafter used to test
the validation set for each user and assess the ability of
the framework to discriminate between control and non-
control states. Training and testing were employed under
a leave-one-out (LOO) procedure, intended to provide a
final accuracy for each user.

2.1. Dataset and Experimental Protocol
Ten control subjects (mean age 25.7 ± 3.09 years; 6

males, 4 females) were included in this study. All of them
gave their informed written consent to participate. Sub-
jects were asked to perform spelling tasks using a 6 × 6

2
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Figure 1: Methodological flowchart of the study. Once trials
were extracted, the dataset was divided into optimization and
validation sets. The former was intended to optimize a global
combination of hyperparametersm, r, and τ ; in the latter, these
values were applied to compute the final accuracy of each user.

RCPmatrix in two different sessions, shown in the Figure
2a. In the RCP paradigm, the matrix’s rows and columns
randomly flash (Farwell and Donchin, 1988). Users, who
were asked to stare at the desired command, elicited P300
responses when the row and the column that contained
that command were illuminated. Therefore, the desired
command could be determined by identifying these re-
sponses (Farwell andDonchin, 1988;Wolpaw et al., 2002).
In order to favor their concentration, users were also
asked to count how many times the desired command
flashed. For each user, a total of 120 characters were
spelled. Half of them were recorded following the afore-
mentioned protocol, intended to get the signal in the con-
trol state. For the other half, users were asked to read a
text while ignoring the flashings. Hence, these charac-
ters were intended to record the non-control state. Note
that a character comprised 15 sequences (i.e., repetitions)
of flashings, where a sequence comprises all flashes that
are required to highlight each row and column of the ma-
trix. Each flashing lasted 75 ms, followed by an inter-
stimuli interval of 100 ms. EEG signals were recorded us-
ing a g.USBamp amplifier (g.Tec, Austria) with a sampling
rate of 256 Hz. In all, 16 active electrodes were placed on
Fz, F3, F4, Cz, C3, C4, CPz, Pz, P3, P4, POz, PO3, PO4,
PO7, PO8, and Oz, using Fpz as a ground and the earlobe
as a reference according to the International 10–20 Sys-
tem distribution (Jasper, 1958). Since P300 responses are

thought to be more prominent over the visual cortex and
related with cognitive processing, electrodes were mainly
placed on the occipital and parietal lobes (Wolpaw et al.,
2002; Nicolas-Alonso and Gomez-Gil, 2012).
As a preprocessing stage, a band-pass filter in the range

of 0.1–30 Hz and a common average reference (CAR) spa-
tial filter were applied to the raw signals (Wolpaw et al.,
2002;Martínez-Cagigal et al., 2017, 2018). Afterward, tri-
als were extracted from the EEG signals for each chan-
nel following the procedure that is depicted in Figure 2b.
As can be seen, each trial integrates the signal from the
first sample to the last onset that belongs to the maxi-
mum considered sequence. For instance, the i-th trial
comprises the raw signal of all electrodes since the very
first recording sample of the character until the end of the
i-th sequence. Then, the dataset was randomly split up
into optimization (30%) and validation (70%) sets. These
ratios were maintained for each user, resulting in a total
of 36 characters for the optimization set and 84 charac-
ters for the validation set per user. It is noteworthy that
both sets were also balanced, including the same number
of control and non-control characters of each user.

2.2. Optimization Stage

The optimization stage was intended to find a global
combination of hyperparameters that favor the discrim-
ination between control and non-control states for all
users. To this end, features were first extracted by means
of MSE, and then classified with an LDA following a LOO
procedure. As indicated in Figure 1, the combination of
parameters was finally selected under a criterion of max-
imum performance.
MSE is a well-known nonlinear method that es-

timates the complexity of a signal according to
entropy changes along multiple time scales (Costa
et al., 2002). The algorithm sequentially computes
the entropy of a coarse-grained version of the origi-
nal signal, providing information about its dynamical
structure (Costa et al., 2002, 2005). If MSE is applied
on two different time series, and one of them provides
higher entropy values for most scales, it is considered to
be more complex (Costa et al., 2002, 2005). Typically,
the τ-th scaled coarse-grained signal is obtained by av-
eraging the samples of the time series inside consecutive
but nonoverlapped segments of length N/τ , where N
denotes the length of the signal (Costa et al., 2002). How-
ever, it was shown that this procedure may cause aliasing
and, thus, spurious components in the low-frequency
range (Valencia et al., 2009; Humeau-Heurtier, 2015).
In order to overcome this limitation, we decimated the
original signal by a factor of τ . That is, high frequencies
were reduced with a low-pass least-squares linear-phase
FIR filter, followed by a downsampling procedure that
only kept every τ-th sample (Valencia et al., 2009;
Humeau-Heurtier, 2015). Therefore, the MSE algorithm
computes the entropy of each signal as a function of τ
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Figure 2: (a) Row-col paradigm matrix employed in this study. Currently, the fifth column is being flashed; (b) Trial extraction
procedure of a single character in function of the number of sequences. Considering the i-th sequence, trial si is composed of the
signal from the first sample to the last onset of the i-th sequence. Therefore, a total of 15 trials were extracted for each character.

from the original time series (i.e., τ = 1), to the highest
considered scale (i.e., τ = 25) (Humeau-Heurtier, 2015).
SampEn is a single-scale entropy measure that esti-

mates the irregularity of one-dimensional temporal sig-
nals, assigning higher values to series that show larger
degrees of disorder (Richman andMoorman, 2000). Com-
pared to the approximate entropy algorithm, SampEn
eliminates the inherent bias caused by self-matching and
provides a result less dependent on signal length (Rich-
man and Moorman, 2000). For this reason, SampEn has
been widely used to compute the MSE and its variants
(Humeau-Heurtier, 2015). Briefly, the algorithm provides
a conditional probabilitymeasure that quantifies the like-
lihood that a template of m consecutive samples, which
alreadymatches another sequence, still matches it if their
lengths are increased in one sample (Humeau-Heurtier,
2015). Therefore, SampEn is defined as:

SampEn(m, r,N) = lim
N→∞

−lnA
m(r,N)

Bm(r,N)
, (1)

where m is the embedding dimension, r is the tolerance
factor, N is the length of the signal, and Am(r,N) and
Bm(r,N) are the probabilities of template matching for
m + 1 and m points, respectively. Considering a time
series x = [x1, x2, . . . , xN ], where template vectors of
length m are defined as xm(i) = [xi, xi+1, . . . xi+m−1], a
match between two templates xm(i) and xm(j) occur if
the distance between them is less than a certain toler-
ance value: d[xm(i),xm(j)] < R. Although there are a
variety of distance measures, Chebyshev distance is com-
monly used (Richman and Moorman, 2000). Moreover,
tolerance is used to be dependent of the standard devi-
ation of the signal (i.e., R = r · σx) (Richman and Moor-
man, 2000;Humeau-Heurtier, 2015). In practice, SampEn
is estimated as follows:

SampEn(m, r,N) = −ln
(N −m+ 1

N −m− 1
· A
B

)
, (2)

where A and B are the total number of templates of

lengthsm + 1 andm that meet the distance criterion for
each different combination of i and j, given i 6= j, re-
spectively. Since the total number of possible templates
of lengths m + 1 and m along the signal are N − m + 1
andN−m−1, respectively; normalization is also applied
to correct the estimation. As a result of the approxima-
tion of Equation (1), the variance of the entropy estima-
tor grows as the length of the signal decreases (Humeau-
Heurtier, 2015). Therefore, the longer the signal length,
the more reliable the outcome is. As a general rule of
thumb, the estimation of SampEn is considered accurate
if N ≥ 10m (Richman and Moorman, 2000; Humeau-
Heurtier, 2015).
MSE using a SampEn estimator was then applied to the

optimization dataset. Hyperparameters were varied ac-
cording to common ranges widely used in physiological
signals: embedding dimensions m = 1, 2; tolerances r
from 0.1 to 0.3 in steps of 0.05; and scales τ from 1 to
25 (Richman and Moorman, 2000). Scales that did not
meet the Richman & Moorman criterion (i.e., N ≥ 10m)
were not computed (Richman andMoorman, 2000). Since
entropies should be estimated in one-dimensional sig-
nals, MSE was calculated for each channel, returning a
final value per channel and trial. Note that trials were ex-
tracted following the procedure described in Section 2.1,
computing the MSE using different number of RCP se-
quences, from 1 to 15. Figure 3 depicts the MSE results
of the user U05 for illustrative purposes.
In order to determine a common optimal combination

of τ , m, and r for all users, an LOO procedure was per-
formed. LOO cross-validation is a deterministic tech-
nique that estimates how the results of a statistical model
generalize to an independent dataset (Witten and Frank,
2011). The algorithm sequentially classifies an obser-
vation with a model trained with the remaining ones.
This process is repeated until all observations have been
tested, returning the average of the prediction outcomes
as an estimation of the accuracy (Witten and Frank, 2011).
In this case, the LOO procedure integrated an LDA that
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classified control versus non-control observations, where
MSE results of each channel were included as features.
The accuracies for all trials, s1, s2, . . . , s15, were averaged
in order to get a single accuracy value for each combina-
tion of τ , m, and r. Lastly, the combination of hyperpa-
rameters that reached maximum accuracy was thereafter
considered optimal. Owing to the mix of users that com-
poses the optimization dataset, the optimal m, r, and τ
are expected to work properly regardless of subject.

2.3. Validation Stage

The validation stage was intended to assess the perfor-
mance of the proposed framework to determine the state
of the user and achieve asynchronous control of the sys-
tem. As can be noticed, since MSE was not computed to
consider any geometric feature of the curve, but to de-
termine an optimal scale τ , there is no point in calculat-
ing the MSE in the validation dataset. Instead, validation
signals for each user are first downsampled to optimal
scale τ . Afterward, features are the SampEn outcomes of
each channel using optimalm and r hyperparameters. An
LDA-based LOO procedure is finally used to estimate the
accuracy of the classification per user and sequence.

3. Results

Optimization results are depicted in Figure 4. As can
be seen, the estimated accuracies show a decreasing ten-
dency as the scale increases regardless of embedding di-
mension. According to the maximum-accuracy criterion,
the optimal combination of hyperparameters was found
to be m = 1, r = 0.3, and τ = 2. Figure 5 depicts
the spatial distribution of the significant differences that
were found between control and non-control SampEn
features in the optimization dataset (Wilcoxon signed
rank test), using the aforementioned optimal parameters.
It is noteworthy that the Benjamini–Hochberg False Dis-
covery Rate (FDR) correction was applied to counteract
the problem of multiple comparisons (i.e., 16 channels)
(Benjamini and Hochberg, 1995). As shown, significant
differences were mainly found in prefrontal and occipi-
tal electrodes.
The results of the validation stage are displayed in Ta-

ble 1 and Figure 6. The proposed framework reached a
mean accuracy of 94.40%±2.81% across subjects for 15 se-
quences. Figure 6 depicts the cumulative testing accura-
cies (control vs. non-control) as the number of sequence
increases for each subject. As can be seen, users gener-
ally showed an improvement in performance as more se-
quences are considered, reaching more than 90% of accu-
racy in every case. In order to guarantee the application
of the proposed framework in real time, computational
cost analysis is shown in the Table 2, which details the re-
quired time to compute the SampEn algorithm using dif-
ferent numbers of sequences. Analysis was made using

an Intel Core i7-7700 CPU@ 3.60GHz (32 GB RAM, Win-
dows 10, MATLAB®2018a), performing an average of 1000
iterations of the algorithm.

4. Discussion

Significant differences were found between control and
non-control states using features derived from MSE and
SampEn. Since the depicted behavior of Figure 3 is
representative of all subjects, SampEn values of control
states were slightly higher than those obtained in non-
control states. Moreover, this behavior is almost con-
stant as scales increase (i.e., amount of decimation). The
MSE values of both states show an increasing trend un-
til τ = 4, steadying themselves after that point. On
the one hand, this tendency implies that attending to an
RCP paradigm produces more irregular signals than ig-
noring the stimuli (Richman and Moorman, 2000). On
the other hand, although both states show a similar re-
sponse to dynamical changes in different scales, control
signals present a steeper slope. Therefore, control-state
signals can be consideredmore complex thannon-control
ones because they aremore irregular inmost scales (Costa
et al., 2002, 2005). It is also noteworthy that SampEn val-
ues of nonattending signals becomemore unstable as the
scale increases, raising the standard deviation. By con-
trast, attending signals are generallymore defined, show-
ing smaller values of standard deviation.
Regarding the optimization stage, it is noteworthy that

the performance of the method depends on the hyperpa-
rameters. Although MSE values do not seem to be af-
fected by tolerance, the embedding dimension and the
scale play an important role in the proposed framework.
As can be seen in Figure 4, performance showed a de-
creasing tendency as τ increased, regardless of the value
of r. As aforementioned, the standard deviation of non-
control MSE values increases with τ , while control MSE
values remain almost constant. Hence, the decrease in
performance for high scales is expected. Although accu-
racy values when m = 1 are not appreciably affected by
r, performance decays as r decreases when m = 2. This
behavior is also expected according to the SampEn algo-
rithm, since higher tolerance values increment the prob-
ability of finding template matchings and, thus, increas-
ing variability between different runs of the LOO pro-
cedure. In summary, the optimal embedding dimension
and tolerance parameters were found to be m = 1 and
r = 0.3, respectively, in accordance with previous studies
that used physiological signals (Richman and Moorman,
2000). Concerning the optimal τ = 2 scale, it is equivalent
to reducing the sampling rate of the EEG signal by half be-
fore applying the SampEn algorithm. This procedure can
be addressed as a feature-extraction stage that is com-
mon in P300-based BCI studies (Zhang et al., 2008; Pan-
icker et al., 2010; Nicolas-Alonso and Gomez-Gil, 2012; Li
et al., 2013; Pinegger et al., 2015; Martínez-Cagigal et al.,
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Figure 3: Multiscale sample entropy values from the optimization dataset corresponding to U05 across channels. Solid lines indicate
the average values for control (blue) and non-control (red) trials, whereas shaded areas indicate standard deviation. Embedding
dimension and tolerance parameters were fixed tom = 1 and r = 0.3, respectively.

2017; Yu et al., 2017b; Martínez-Cagigal et al., 2018; Ay-
din et al., 2018; Martínez-Cagigal et al., 2019).
In this context, the estimation of SampEn could be con-

sidered accurate when signal length is greater than ten to
the power of the embedding dimension (i.e., N ≥ 10m)
(Richman and Moorman, 2000; Humeau-Heurtier, 2015).
According to Figure 2, signal length depends on the num-
ber of sequences that are considered, as well as on the
amount of decimation. Since this limitation takes into
account the amount of raw samples, the maximum num-
ber of scales that can be computed in a reliable way are
thus limited by the number of sequences, the sampling
rate, the stimuli duration, the number of commands and,
in general, by any parameter that affects the duration of
a character trial. In a P300-based BCI common setup,
this constraint is not usually present for a high number
of sequences (i.e.,Ns), but it is recommended to compute
the maximal scale in each situation. In our study, the en-
tire number of 25 scales could be computed if Ns > 4,
reaching a maximum of four scales using only one se-
quence. Owing to fixing the optimal scale to τ = 2, the
constraint did not even limit the number of sequences in
our case.
Topographic results show significant differences for al-

most all users between the entropy values of control and
non-control states, mainly in the prefrontal lobe. The

prefrontal cortex is commonly associated with planning
complex cognitive behavior, personality expression, de-
cision making, and selective attention (Lebedev et al.,
2004). The latter is consistent with the oddball task,
which implies a constant attention of the user to iden-
tify the target stimuli among other background stimuli
(Nicolas-Alonso and Gomez-Gil, 2012). In fact, it was
demonstrated that visual oddball tasks produce hemody-
namic changes in the dorsolateral prefrontal cortex, asso-
ciated with the mapping of stimuli to responses (e.g., re-
sponse strategies) (Huettel and McCarthy, 2004). More-
over, a recent study suggested that complex processes
such as memory, attention, or decision making are linked
to the elicitation of the P300 component, which could be
modulated by frequency dynamics (Bojorges-Valdez and
Yanez-Suarez, 2018). There are also slight differences in
the occipital lobe, which comprises most of the anatom-
ical region of the visual cortex. Neurons of the primary
visual cortex fire action potentials when visual stimuli
appear in the receptive field (Goodale et al., 1982). It
is therefore expected that a higher number of neurons
are activated in the control state, when a user not only
perceives the target stimuli, but also repetitive flickering
stimuli. The task elicits P300-evoked potentials in the
parietal cortexwhen target stimuli are processed (Wolpaw
et al., 2002; Nicolas-Alonso and Gomez-Gil, 2012). How-
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Figure 4: Accuracy results of the optimization stage in function of different values of embedding dimension m, tolerance r, and
scale τ . Optimal combination of hyperparameters is marked with a cross, which corresponds tom = 1, r = 0.3, and τ = 2.

Figure 5: Wilcoxon signed-rank test p-values that show significant differences (i.e., from 0 to 0.05) between control and non-control
SampEn features in the optimization dataset. Hyperparameters were fixed to their optimal values. Note that p-values were adjusted
using the Benjamini–Hochberg False Discovery Rate (FDR) step-up procedure.

ever, sincewe extract features using the entire raw control
EEG signal, P300 are surpassed by nontarget stimuli. Re-
cent studies suggest that peripheral flickering stimuli in
the RCP task produce SSVEP responses (Panicker et al.,
2010; Pinegger et al., 2015; Ma and Qiu, 2018), which
propagate from occipital to prefrontal electrodes (Srini-
vasan et al., 2006). Note that these topographic results
measure significant differences between the irregularity
of control- and non-control-state EEG signals. Accord-
ing to previous analysis, attending to a RCP task should
activate a greater number of neurons than ignoring the
stimuli, spreading electrical activity across the frequency
spectrum. Therefore, entropy measures follow that spec-
tral activation, increasing the irregularity of the control
signals.
One of the most crucial obstacles of BCI systems is to

find methods that can be applied in real time. In relation
to this, we consider important to analyze the potential of
the proposed framework to determine the asynchronous
state upon which a character is selected. As indicated in
Table 2, the maximal computational time of the SampEn
algorithm is approximately 197 ms using 15 sequences.
Since most P300-based BCI studies use pauses of at least
two seconds after each character, the computational cost
of the proposed framework is perfectly acceptable (Schalk
et al., 2004; Martínez-Cagigal et al., 2017, 2018, 2019).
Concerning the validation stage, Figure 6 and Table 1

show an increasing tendency of the final accuracies for
all subjects as the number of sequences increases. There-
fore, it is clear that the proposed asynchrony approach is
dependent on the length of the signals, reaching an aver-
age accuracy of 94.40% for all subjects using 15 sequences.

7

112 Appendix A. Papers included in this Doctoral Thesis



Figure 6: Cumulative testing accuracies (control vs. non-control) as sequences increase for each subject. Lines indicate the number
of sequences, where a solid line implies an increase and a dashed line implies a decrease of accuracy.

Table 1: Testing accuracies of control vs. non-control states for each subject in function of the number of sequences.

Ns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U01 71.43% 77.38% 80.95% 85.71% 88.10% 88.10% 89.29% 90.48% 94.05% 94.05% 92.86% 92.86% 94.05% 95.24% 94.05%
U02 83.33% 88.10% 89.29% 85.71% 89.29% 89.29% 91.67% 91.67% 91.67% 90.48% 92.86% 91.67% 92.86% 94.05% 92.86%
U03 83.33% 82.14% 88.10% 83.33% 86.90% 90.48% 88.10% 90.48% 94.05% 92.86% 92.86% 92.86% 92.86% 92.86% 92.86%
U04 61.90% 78.57% 80.95% 75.00% 75.00% 75.00% 80.95% 80.95% 79.76% 80.95% 83.33% 90.48% 89.29% 91.67% 91.67%
U05 72.62% 70.24% 72.62% 78.57% 78.57% 82.14% 89.29% 89.29% 91.67% 91.67% 91.67% 94.05% 95.24% 96.43% 96.43%
U06 89.29% 94.05% 96.43% 96.43% 95.24% 94.05% 96.43% 95.24% 94.05% 95.24% 96.43% 96.43% 96.43% 97.62% 98.81%
U07 75.00% 89.29% 92.86% 95.24% 96.43% 96.43% 95.24% 95.24% 92.86% 94.05% 95.24% 95.24% 96.43% 96.43% 95.24%
U08 77.38% 80.95% 85.71% 86.90% 86.90% 88.10% 86.90% 84.52% 89.29% 89.29% 86.90% 89.29% 90.48% 89.29% 89.29%
U09 78.57% 90.48% 91.67% 88.10% 94.05% 90.48% 92.86% 95.24% 95.24% 92.86% 95.24% 95.24% 97.62% 95.24% 96.43%
U10 76.19% 86.90% 91.67% 95.24% 95.24% 92.86% 94.05% 92.86% 95.24% 97.62% 97.62% 96.43% 96.43% 96.43% 96.43%

Mean 76.90% 83.81% 87.02% 87.02% 88.57% 88.69% 90.48% 90.60% 91.79% 91.90% 92.50% 93.45% 94.17% 94.52% 94.40%
SD 7.58% 7.23% 7.11% 7.13% 7.23% 6.18% 4.59% 4.74% 4.61% 4.52% 4.38% 2.46% 2.77% 2.58% 2.81%

Ns indicates number of sequences.

In particular, all subjects except U04 and U08 reached
more than 90% accuracy using nine sequences. Further-
more, U06, U07, and U09 were even able to reach it using
only three sequences. Even though the increasing ten-
dency is clear for all subjects, the slope appreciably varies
among them. Some users present a sequential increase
(e.g., U01, U05, U08, U09), while others reach a standstill
(e.g., U03, U10). These results reinforce the fact that it
is important to perform individual calibrations and sep-
arately optimize BCI applications to each subject (Wol-
paw et al., 2002; Nicolas-Alonso and Gomez-Gil, 2012;
Martínez-Cagigal et al., 2018).

Table 3 depicts a comparison between previous asyn-
chronous P300-based state-of-the-art applications. As
shown, most of them follow a thresholding approach to
discern between control and non-control states (Zhang
et al., 2008; Aloise et al., 2011; Li et al., 2013; Pineg-
ger et al., 2015; Breitwieser et al., 2016; Martínez-Cagigal
et al., 2017; Aref and Huggins, 2012; Alcaide-Aguirre
et al., 2017; Ma and Qiu, 2018; Aydin et al., 2018; Tang
et al., 2018; Martínez-Cagigal et al., 2019). These thresh-
olds are usually derived from receiver operating charac-

teristic (ROC) curves that were fed using output scores of
SVM (Zhang et al., 2008; Li et al., 2013) or LDA (Aloise
et al., 2011; Pinegger et al., 2015; Breitwieser et al.,
2016; Martínez-Cagigal et al., 2017; Tang et al., 2018;
Martínez-Cagigal et al., 2019) classifiers. Note that these
classifiers use downsampled raw signals from the stim-
uli onset as input features (Zhang et al., 2008; Pan-
icker et al., 2010; Nicolas-Alonso and Gomez-Gil, 2012;
Li et al., 2013; Pinegger et al., 2015; Martínez-Cagigal
et al., 2017; Yu et al., 2017b; Martínez-Cagigal et al.,
2018; Aydin et al., 2018; Martínez-Cagigal et al., 2019).
Since they were trained in a calibration session to de-
tect P300 responses, these studies hypothesize that out-
put scores of non-control characters are lower than those
spelled in the control state. Therefore, the classifier that
is intended to detect the P300 responses is also intended
to discern between both asynchronous states. Notwith-
standing their usefulness as computationally simple so-
lutions, these approaches entail a clear drawback. Ow-
ing to the high intersession variability of the EEG sig-
nals, classifier weights should be updated from time to
time to assure suitable performance (Wolpaw et al., 2002;
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Table 2: Computational cost in milliseconds of the sample entropy algorithm in function of the number of sequences.

Ns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mean 0.82 3.46 8.24 14.64 22.57 32.51 43.66 54.92 69.70 86.33 104.87 125.24 146.41 170.58 196.78
SD 0.99 0.28 0.82 1.03 1.40 2.00 3.10 3.30 3.84 4.69 5.56 5.96 6.50 7.20 8.64

Ns indicates the number of sequences. These results are obtained after running the sample entropy algorithm 1000 times.

Nicolas-Alonso and Gomez-Gil, 2012; He et al., 2017;
Martínez-Cagigal et al., 2017, 2019). Since threshold val-
ues depend on classifier scores, they are no longer use-
ful if these weights are modified. Hence, additional con-
trol and non-control characters should be recorded in or-
der to update the thresholds, which would entail a great
amount of time. Other approaches add complementary
spectral features (Pinegger et al., 2015;Ma andQiu, 2018)
or implement hybrid paradigms (Panicker et al., 2010;
Li et al., 2013; Yu et al., 2017b) to develop filter meth-
ods that are independent of the P300 classifier. Some of
the hybrid paradigms superimpose the RCP oddball tech-
nique, intended to generate P300 responses, with a flick-
ering visual effect, intended to generate SSVEPs when
users are paying attention to the visual stimuli (Panicker
et al., 2010; Li et al., 2013). Therefore, asynchrony is
handled by the detection of SSVEPs using relative pow-
ers: control state if SSVEPs are present, non-control state
if SSVEPs are missing (Panicker et al., 2010; Li et al.,
2013). Pinegger et al. (2015); Ma and Qiu (2018) also
used SSVEP detection techniques to reach asynchronous
control, but their approach is utterly different. By con-
trast, they hypothesized that inherent RCP flashings also
generate residual SSVEP components when the stimuli
are displayed using a constant rate. These components
were identified in the frequency spectrum, providing sup-
plementary features to the LDA scores (Pinegger et al.,
2015). Finally, it is also worthy to mention the contri-
bution of Yu et al. (2017b), who implemented a hybrid
approach to reach a semiasynchronous BCI application.
Users activated the RCP flashings by regulating their cor-
tical activity through motor imagery. However, stopping
RCP was handled by a “stop” command, which increases
the required time to manage the asynchrony and makes
the system more demanding. Since the vast majority of
these previous studies were intended to provide an asyn-
chronous assistive application, instead of just evaluating
a novel method to reach asynchronous control, the pro-
vided accuracies reflect the final performance of the sys-
tem. In other words, results depict the performance of the
system to predict correct characters, while ignoring those
than are considered non-control. Unfortunately, control
versus non-control accuracies are not reported and, thus,
quantitative and statistical comparisons cannot be per-
formed with the present study. Despite this issue, it is
noteworthy that, to the best of our knowledge, there are
no studies that have previously investigated the ability
of entropy-based features to discern between both asyn-
chronous states. Moreover, since our approach is inde-

pendent of classifier, weights updates do not affect asyn-
chronous management, avoiding the need to record ex-
tra EEG signals (Zhang et al., 2008; Aloise et al., 2011; Li
et al., 2013; Pinegger et al., 2015; Breitwieser et al., 2016;
Martínez-Cagigal et al., 2017; Aref and Huggins, 2012;
Alcaide-Aguirre et al., 2017; Aydin et al., 2018; Tang et al.,
2018; Martínez-Cagigal et al., 2019). We also believe that
further endeavors could be aimed at complementing our
proposed entropy features with SSVEP-based ones, which
could presumably improve the final performance of asyn-
chronous P300-based BCI systems (Pinegger et al., 2015;
Ma and Qiu, 2018).

Owing to these outcomes, several insightful implica-
tions can be derived. First, it was demonstrated that a
scaled version of SampEn can follow the dynamic changes
of control and non-control EEG signals, providing a use-
ful tool to monitor the attention of the user. Further-
more, the proposed framework is not only able to work
in real time for P300-based BCI systems, but also may be
considered as a filter method. In other words, the met-
ric is independent of the classifier that determines the
selected command, in contrast with previous approaches
(Zhang et al., 2008; Aloise et al., 2011; Li et al., 2013;
Pinegger et al., 2015; Breitwieser et al., 2016; Martínez-
Cagigal et al., 2017; Aref and Huggins, 2012; Alcaide-
Aguirre et al., 2017; Ma and Qiu, 2018; Aydin et al.,
2018; Tang et al., 2018; Martínez-Cagigal et al., 2019).
Since our proposal does not rely on the classifier’s scores,
the command-oriented classifier can be updated without
requiring a further training of the asynchrony method.
Moreover, both states were also analyzed in this study,
showing that control-state signals are more irregular and
complex than non-control ones. Finally, a combination
of user-independent hyperparameters were determined.
To summarize, it was demonstrated that the proposed
SampEn-based framework is suitable for providing asyn-
chronous control in P300-based BCI systems.

In spite of these results, the present study has sev-
eral limitations. The proposed framework only employed
temporal features derived from the SampEn algorithm to
classify between control and non-control states. The per-
formance of this approach could be extended in the future
by integrating complementary spectral features in order
to improve its performance (Pinegger et al., 2015; Pan-
icker et al., 2010; Li et al., 2013; Breitwieser et al., 2016).
It is also noteworthy that the global combination of hy-
perparameters was defined using 10 control subjects who
are not the target users of BCI systems. A future endeavor
should be aimed at incrementing the database with both
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Table 3: Comparison between previous asynchronous P300-based brain–computer interface (BCI) applications.

Study Control Signal Experimental Paradigm Asynchrony Technique No. Subjects

Zhang et al. (2008) P300 Single cell ROC thresholding using SVM scores 4 CS
Panicker et al. (2010) P300 and SSVEP Hybrid: RCP-based Detection of SSVEPs using relative

peak amplitude in PSD
10 CS

Aloise et al. (2011) P300 RCP ROC thresholding using LDA scores 11 CS
Li et al. (2013) P300 & SSVEP Hybrid: oddball & SSVEP ROC thresholding using SVM scores

(P300) and relative powers (SSVEP)
8 CS

Pinegger et al. (2015) P300 RCP Thresholding using LDA scores and
sum of spectral components

10 CS

Breitwieser et al. (2016) P300 and SSSEP Hybrid: tactile & oddball Thresholding using multi-class LDA 14 CS
Martínez-Cagigal et al.
(2017)

P300 RCP ROC thresholding using LDA scores 5 CS, 16 MS

He et al. (2017) P300 RCP Combination of two different SVM 8 CS
Yu et al. (2017b,a) P300 and MI MI monitoring & RCP MI signal activates the RCP 11 CS, 8 CS
Aref and Huggins (2012);
Alcaide-Aguirre et al.
(2017)

P300 RCP Certainty algorithm: t-test over
LDA scores

11 CS, 19 CP

Ma and Qiu (2018) P300 RCP ROC thresholding using relative pow-
ers

4 CS

Aydin et al. (2018) P300 Hex-o-Spell ROC thresholding using classifier la-
bels

10 CS

Tang et al. (2018) P300 RCP ROC thresholding using LDA scores 4 CS
Martínez-Cagigal et al.
(2019)

P300 RCP ROC thresholding using LDA scores 18 CS, 10 MD

Present study P300 RCP LDA classification using
SampEn features

10 CS

SSVEP: steady-state visual evoked potentials, SSSEP: somatosensory evoked potentials, MI: motor imagery, RCP: row-col paradigm, ROC: receiver
operating characteristic, SVM: support vector machines, PSD: power spectral density, LDA: linear discriminant analysis, SampEn: sample entropy,
CS: control subjects, MS: multiple sclerosis, CP: cerebral palsy, MD: motor-disabled.

control and motor-disabled users in order to improve the
generalization of these results. Furthermore, the vari-
ability of the optimal hyperparameters was not addressed
in this study. Finally, it should be noted that the valida-
tion stagewas applied under an LOOprocedure. Although
this method is excellent to estimate the performance of a
statistical model, it requires more training trials in each
iteration than those that are commonly used in practice.
Moreover, owing to the limited number of subjects and
characters in the database, optimization could not be per-
formed using different users than in the validation proce-
dure.

5. Conclusions

In this study, differences between control and non-
control signal was analyzed using entropy metrics. Fur-
thermore, a method to discern between both states and
provide an asynchronous control of a P300-based BCI has
been proposed. Dataset was composed of the EEG sig-
nals of ten healthy subjects who were asked to perform
spelling tasks in a row-col paradigm, attending and ig-
noring the stimuli. Signals were then subdivided into
optimization and validation sets. The former was used
to determine a common optimal combination of hyper-
parameters by applying MSE features in a LOO proce-
dure. These parameters were thereafter fixed at m = 1,
r = 0.3, and τ = 2 for all subjects. Then, the latter
was used to test the ability of a scaled version of SampEn

to characterize both states. Multiscale analysis results
showed that control signals are more irregular and com-
plex than non-control ones, regardless of scale. These
features were also demonstrated to be suitable for classi-
fying both states, reaching an average accuracy of 94.40%.
From the experimental outcomes of this exploratory re-
search, we conclude that: (i) MSE measures could fol-
low the dynamic changes of control and non-control sig-
nals; (ii) the optimal combination of hyperparameters fa-
vors the discrimination between both states for all control
subjects; (iii) the proposed framework has the potential to
provide asynchronous control with high accuracies; and
(iv) the computational cost of the method is negligible,
reaching real-time processing.

Acknowledgments

This study was partially funded by projects DPI2017-
84280-R of Ministerio de Ciencia, Innovación y Univer-
sidades and the European Regional Development Fund
(FEDER), and the project “Análisis y correlación en-
tre el genoma completo y la actividad cerebral para la
ayuda en el diagnóstico de la enfermedad de Alzheimer”
(Inter-regional co-operation program VA Spain–Portugal
POCTEP 2014-2020) of the European Commission and
FEDER. V.M.-C. was in receipt of a PIF-UVa grant of the
University of Valladolid.

10

A.1. Mart́ınez-Cagigal et al. (2019b) 115



References

Alcaide-Aguirre, R. E., Warschausky, S. A., Brown, D., Aref, A., Huggins,
J. E., 2017. Asynchronous brain–computer interface for cognitive as-
sessment in peoplewith cerebral palsy. Journal ofNeural Engineering
14 (066001), 1–10.

Aloise, F., Schettini, F., Aricò, P., Leotta, F., Salinari, S., Mattia, D.,
Babiloni, F., Cincotti, F., 2011. P300-based brain–computer inter-
face for environmental control: an asynchronous approach. Journal
of Neural Engineering 8 (2), 025025.

Aref, A., Huggins, J., 2012. The P300-certainty algorithm: improving
accuracy by withholding erroneous selections. In: EEG and Clinical
Neuroscience Society Conference 2012.

Aydin, E. A., Bay, O. F., Guler, I., 2018. P300-Based Asynchronous Brain
Computer Interface for Environmental Control System. IEEE Journal
of Biomedical and Health Informatics 22 (3), 653–663.

Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate
: A Practical and Powerful Approach to Multiple Testing. Journal of
the Royal Statistical Society 57 (1), 289–300.

Bojorges-Valdez, E., Yanez-Suarez, O., 2018. Association between EEG
spectral power dynamics and event related potential amplitude on a
P300 speller. Biomedical Physics and Engineering Express 4 (2).

Breitwieser, C., Pokorny, C., Müller-Putz, G. R., 2016. A hybrid three-
class brain-computer interface system utilizing SSSEPs and transient
ERPs. Journal of Neural Engineering 13 (6).

Costa, M., Goldberder, A. L., Peng, C.-K., 2002.Multiscale Entropy Anal-
ysis of Complex Physiologic Time Series. Physical Review Letters
89 (6), 1–4.

Costa, M., Goldberger, A. L., Peng, C. K., 2005. Multiscale entropy anal-
ysis of biological signals. Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics 71 (2), 1–18.

Farwell, L. A., Donchin, E., 1988. Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain potentials.
Electroencephalography and Clinical Neurophysiology 70 (6), 510–
523.

Goodale, M. A., Ingle, D. J., Mansfield, R. J. W., 1982. Analysis of visual
behavior. Mit Press Cambridge, MA:.

He, S., Zhang, R., Wang, Q., Chen, Y., Yang, T., Feng, Z., Zhang, Y., Shao,
M., Li, Y., 2017. A P300-Based Threshold-Free Brain Switch and Its
Application inWheelchair Control. IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering 25 (6), 715–725.

Huettel, S. A., McCarthy, G., 2004. What is odd in the oddball task? Pre-
frontal cortex is activated by dynamic changes in response strategy.
Neuropsychologia 42 (3), 379–386.

Humeau-Heurtier, A., 2015. The multiscale entropy algorithm and its
variants: A review. Entropy 17 (5), 3110–3123.

Jasper, H. H., 1958. The ten-twenty electrode system of the interna-
tional federation. Electroencephalography and Clinical Neurophys-
iology 10, 371–375.

Lebedev, M. A., Messinger, A., Kralik, J. D., Wise, S. P., 2004. Represen-
tation of attended versus remembered locations in prefrontal cortex.
PLoS Biology 2 (11).

Li, Y., Pan, J., Wang, F., Yu, Z., 2013. A hybrid BCI system combin-
ing P300 and SSVEP and its application to wheelchair control. IEEE
Transactions on Biomedical Engineering 60 (11), 3156–3166.

Ma, Z., Qiu, T., 2018. Quasi-periodic fluctuation in Donchin’s speller
signals and its potential use for asynchronous control. Biomedizinis-
che Technik 63 (2), 105–112.

Martínez-Cagigal, V., Gomez-Pilar, J., Álvarez, D., Hornero, R., 2017. An
asynchronous P300-based Brain–Computer Interface web browser
for severely disabled people. IEEE Transactions on Neural Systems
and Rehabilitation Engineering 25 (8), 1332–1342.

Martínez-Cagigal, V., Santamaría-Vázquez, E., Gomez-Pilar, J.,
Hornero, R., 2019. Towards an accessible use of smartphone-based
social networks through brain-computer interfaces. Expert Systems
with Applications 120, 155–166.

Martínez-Cagigal, V., Santamaría Vázquez, E., Hornero, R., 2018. A
Novel Hybrid Swarm Algorithm for P300-Based BCI Channel Selec-
tion. In: Proceedings of the World Congress on Medical Physics &
Biomedical Engineering (Vol. 3) (IUPESM2018). Springer, Prague, pp.
41–45.

Nicolas-Alonso, L. F., Gomez-Gil, J., 2012. Brain computer interfaces, a
review. Sensors 12 (2), 1211–1279.

Panicker, R. C., Puthusserypady, S., Pryana, A. P., Sun, Y., 2010. Asyn-
chronous P300 BCI: SSVEP-based control state detection. European
Signal Processing Conference 58 (6), 934–938.

Pfurtscheller, G., 2010. The hybrid BCI. Frontiers in Neuroscience
4 (April), 1–11.
URL http://journal.frontiersin.org/article/10.3389/
fnpro.2010.00003/abstract

Picton, T. W., 1992. The P300 wave of the human event-related poten-
tial. Journal of Clinical Neurophysiology 9 (4), 456–479.

Pinegger, A., Faller, J., Halder, S.,Wriessnegger, S. C.,Müller-Putz, G. R.,
2015. Control or non-control state: that is the question! An asyn-
chronous visual P300-based BCI approach. Journal of Neural Engi-
neering 12 (1), 014001.

Richman, J. S., Moorman, J. R., 2000. Physiological time-series analysis
using approximate entropy and sample entropy. American Journal of
Physiology-Heart and Circulatory Physiology 278 (6), H2039–H2049.
URL http://www.physiology.org/doi/10.1152/ajpheart.
2000.278.6.H2039

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., Wolpaw,
J. R., 2004. BCI2000: A general-purpose brain-computer interface
(BCI) system. IEEE Transactions on Biomedical Engineering 51 (6),
1034–1043.

Srinivasan, R., Bibi, F. A., Nunez, P. L., 2006. Steady-state visual evoked
potentials: distributed local sources and wave-like dynamics are
sensitive to flicker frequency. Brain Topography 18 (3), 167–187.
URL papers3://publication/uuid/
FFD5DEE5-D729-4307-A600-6A24DCAA799F

Tang, J., Liu, Y., Jiang, J., Yu, Y., Hu, D., Zhou, Z., 2018. Toward
Brain-Actuated Mobile Platform. International Journal of Human-
Computer Interaction 00 (00), 1–12.
URL https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85052079123{&}doi=10.
1080{%}2F10447318.2018.1502000{&}partnerID=
40{&}md5=e273e7a6b25ac3cc9f818703ae1191a3

Valencia, F., Porta, A., Clari, F., 2009. Refined Multiscale Entropy : Ap-
plication to 24-h Holter Recordings of Heart Period Variability in
Healthy and Aortic Stenosis Subjects. IEEE Transactions on Biomed-
ical Engineering 56 (9), 2202–2213.

Witten, I. H., Frank, E., 2011. Data Mining: Practical Machine Learning
Tools and Techniques, 3rd Edition. Morgan Kaufmann.

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G.,
Vaughan, T. M., 2002. Brain-computer interfaces for communication
and control. Clinical Neurophysiology 113 (6), 767–91.

Wolpaw, J. R., Wolpaw, E. W., 2012. Brain-computer interfaces: princi-
ples and practice. OUP USA.

Yu, Y., Zhou, Z., Jiang, J., Yin, E., Liu, K., Wang, J., Liu, Y., Hu, D.,
2017a. Toward a Hybrid BCI: Self-Paced Operation of a P300-based
Speller byMerging aMotor Imagery-Based “Brain Switch” into a P300
Spelling Approach. International Journal of Human-Computer Inter-
action 33 (8), 623–632.
URL http://dx.doi.org/10.1080/10447318.2016.1267450

Yu, Y., Zhou, Z., Liu, Y., Jiang, J., Yin, E., Zhang, N., Wang, Z., Liu, Y.,
Wu, X., Hu, D., 2017b. Self-paced operation of awheelchair based on a
hybrid brain-computer interface combining motor imagery and P300
potential. IEEE Transactions on Neural Systems and Rehabilitation
Engineering 25 (12), 2516–2526.

Zhang, H., Guan, C., Wang, C., 2008. Asynchronous P300-based brain-
computer interfaces: a computational approach with statistical mod-
els. IEEE Transactions on Biomedical Engineering 55 (6), 1754–63.
URL http://www.ncbi.nlm.nih.gov/pubmed/18714840

11

116 Appendix A. Papers included in this Doctoral Thesis



Brain–Computer Interface Channel Selection Optimization using Meta-heuristics
and Evolutionary Algorithms

Víctor Martínez-Cagigal, Eduardo Santamaría-Vázquez, Roberto Hornero

Biomedical Engineering Group, E.T.S.I. Telecomunicación, University of Valladolid, Paseo de Belén 15, 47011, Valladolid, Spain

Applied Soft Computing
Volume -, -, Pages -, Under Review (R2)

Abstract

Many brain–computer interface (BCI) studies overlook the channel optimization procedure due to its inherent complex-
ity. However, a suitable channel selection procedure increases the performance and users’ comfort while reducing the
cost of the system. Evolutionary meta-heuristics, which have gained importance due to their excellent performances in
solving complex problems, have not been fully exploited yet in this context. The purpose of the study is two-fold: (1) to
propose a novel algorithm to find an optimal channel set for each user and compare its usefulness with other existing
meta-heuristics; and (2) to establish guidelines for adapting these optimization strategies to this framework. A total of
3 single-objective (GA, BDE, BPSO) and 3 multi-objective (NSGA-II, BMOPSO, SPEA2) existing algorithms have been
adapted and tested with 3 public databases: ‘BCI competition III–dataset II’, ‘Center Speller’ and ‘RSVP Speller’. Dual-
Front Sorting Algorithm (DFGA), a novel multi-objective discrete method especially adapted to the BCI framework, is
proposed as well. Results show that all the applied meta-heuristics reached accuracies that significantly outperformed
the entire set and the common 8-channel set of P300-based BCIs. DFGA shown a significant improvement of accuracy
of 3.9% over the 8-channel set using also 8 channels; and obtained similar accuracies than it using a mean of only 4.66
channels. Binary-based algorithms stood out because of their faster convergence, especially the DFGA. Topographic
results shown that optimal sets differed among users, which reinforces the need to customize a channel set for each of
them. The proposed method computes an optimal subset for each number of channels, allowing the user to select the
most suitable set for further BCI sessions.

Keywords: Brain–computer interface (BCI), channel selection, multi-objective optimization, evolutionary
algorithms, P300 event-related potentials.

1. Introduction

Brain–Computer Interfaces (BCIs) are communication
systems that allow users to control devices and applica-
tions using their own brain signals. These systems have
been successfully applied in order to improve the qual-
ity of life of motor-disabled people who suffer any dis-
ease that impairs the neural pathways that control mus-
cles or even the muscles themselves (Wolpaw and Wol-
paw, 2012). Electroencephalogram (EEG) is commonly
used to monitor the brain activity due to its portability,
non-invasiveness and low cost. Therefore, electric po-
tentials are recorded by placing electrodes over the users’
scalp (Wolpaw and Wolpaw, 2012).
Since the decoding of users’ intentions from the EEG

is not straightforward, many BCIs use exogenous signals
to handle the control of the system. In particular, P300
evoked potentials, which are positive peaks produced as

Email addresses: victor.martinez@gib.tel.uva.es (Víctor Martínez-
Cagigal), eduardo.santamaria@gib.tel.uva.es (Eduardo Santamaría-
Vázquez), robhor@tel.uva.es (Roberto Hornero)

a response to infrequent and significant stimuli at about
300 ms after their onset, are the key aspect of the most
known BCI-based spelling system (Wolpaw and Wolpaw,
2012). The ‘P300 Speller’ generates these signals through
the odd-ball paradigm in order to spell certain words or
commands. The application displays a matrix that con-
tains characters or symbols, whose rows and columns are
randomly flashing. Users, who have to focus attention on
a desired command, will generate a P300 potential when-
ever the row or the column that contains it is highlighted.
Hence, the selected command is determined by comput-
ing the intersection between the row and the column that
produced the potential (Farwell and Donchin, 1988).

Due to the low signal-to-noise ratio and the high inter-
session variability of these event-related potentials, sev-
eral repetitions of the same stimulus are required to de-
tect a reliable potential. Without a proper processing
stage, this high dimensional data may produce an over-
fitting of the classifier, resulting in a reduced perfor-
mance (Cecotti et al., 2011; Perseh and Sharafat, 2012).
The curse of dimensionality can be addressed by means
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of feature selection and extraction methods (Perseh and
Sharafat, 2012; Tahernezhad-Javazm et al., 2017), regu-
larized classifiers (Blankertz et al., 2011) or channel se-
lection procedures (Cecotti et al., 2011; Martínez-Cagigal
and Hornero, 2017b). Among them, only channel selec-
tion methods are able to reduce the cost of the system,
reduce the power consumption in EEG caps and increase
the users’ comfort (Cecotti et al., 2011). Nevertheless,
the selection of the most relevant sensors is not trivial,
since there are 2N subset combinations for anN-channel
cap, making the exhaustive search intractable in practice
(Cecotti et al., 2011). For this reason, most P300-based
studies overlook the optimization of the most relevant
channel subset and take a predefined 8-channel set as a
general rule of thumb (Krusienski et al., 2008). Notwith-
standing its usefulness as a quick solution, an optimiza-
tion for each user is beneficial owing to the intrinsic inter-
subject variability of the BCI systems.
Although there are well-known feature selectionmeth-

ods that could be applied to this problem, such as step-
wise regression (Jobson, 1991), fast correlation based
filters (Yu and Liu, 2003) or even elastic neural net-
works (Zou and Hastie, 2005), meta-heuristics have
demonstrated high performances solving complex op-
timization problems (Yang, 2014). Heuristics refer to
problem-specific strategies that iteratively improve a
candidate solution, whereas meta-heuristics general-
ize these strategies to problem-independent frameworks
(Yang, 2014; Bozorg-Haddad et al., 2017). Swarm intelli-
gence techniques and evolutionary algorithms, families
of population-based meta-heuristics, have been previ-
ously applied to channel selection optimization both in
motor imagery (MI) (Lv and Liu, 2008; Hasan and Gan,
2009; Hasan et al., 2010; Wei and Wang, 2011; Kee et al.,
2015; Aler and Galván, 2015; Franklin Alex Joseph and
Govindaraju, 2019; Zhang andWei, 2019; González et al.,
2019) and P300-based BCIs (Perseh and Sharafat, 2012;
Jin et al., 2010; Gonzalez et al., 2013, 2014; Kee et al.,
2015; Martínez-Cagigal and Hornero, 2017b; Chaurasiya
et al., 2017; Arican and Polat, 2020). Regarding the
P300-based BCI studies, most of them have used single-
objective algorithms that optimized the final classifica-
tion accuracy of the system (Jin et al., 2010; Perseh and
Sharafat, 2012; Gonzalez et al., 2013, 2014; Arican and
Polat, 2020). However, a channel selection procedure
should follow a two-fold objective: (i) to minimize the
number of selected channels, and (ii) tomaximize the sys-
tem’s performance. Some recent studies used a weighted
aggregation approach to combine both objectives into a
single one, but the simultaneous optimizationwasnot ex-
plored (Martínez-Cagigal and Hornero, 2017b; Martínez-
Cagigal et al., 2018; Zhang and Wei, 2019).
Traditional multi-objective approaches, which opti-

mize both objectives at the same time, have been ex-
plored in MI-based BCIs, such as multi-objective parti-
cle swarm optimization (MOPSO) (Hasan and Gan, 2009;
Hasan et al., 2010; Wei and Wang, 2011) or non-sorting

genetic algorithm II (NSGA-II) (Aler and Galván, 2015;
González et al., 2019). However, MI-based and P300-
based BCIs are completely different in terms of process-
ing and signal elicitation and thus, methodology and re-
sults cannot be generalized. By contrast, multi-objective
algorithms in P300-based BCIs are more limited. Kee
et al. (2015) compared the performance between several
single-objective genetic algorithms (GA) and NSGA-II
with 2 subjects, whereas Chaurasiya et al. (2017) em-
ployed a multi-objective binary differential-evolution al-
gorithmwith 9 subjects, reaching several subsets of chan-
nels that assured suitable classification performances.
Nevertheless, the number of subjects was limited, and
both databases were recorded using the row-col paradigm
(RCP). Nowadays, P300-based BCIs offer a wide range of
stimulation paradigms that elicit different event-related
responses and thus, the generalization of those results
to other setups is limited. Furthermore, despite their
scarce application in P300-based BCI studies, swarm in-
telligence and evolutionary computation are growing re-
search fields that integrate a large amount of different
algorithms that could be adapted to the channel selec-
tion problem. In fact, the vast majority of them have
not yet been applied in P300-based BCIs. To the best of
our knowledge, there are not studies that compare their
efficacy to select the most appropriate channel subset
or even establish the key aspects for their adaptation to
BCI systems, which is not trivial. Moreover, there is also
no study aimed at designing any multi-objective algo-
rithm customized for the P300-based BCI channel selec-
tion problem.
The objective of this study is two-fold: (1) to propose

a novel multi-objective method to find an optimal chan-
nel set especially suited for P300-based BCIs and compare
its usefulness with 6 additional meta-heuristics; and (2)
to establish guidelines for adapting these optimization
strategies to the channel selection problem. Although
there are many meta-heuristics that could be adapted to
this problem, only those that have direct or explicit con-
tribution to our proposed multi-objective meta-heuristic
were included in this comparison: GA, BDE and BPSO as
single-objective; and NSGA-II, SPEA2 and BMOPSO as
multi-objective. We have also tried to maintain diversity
in the way they deal to the updating of the population
for each iteration. The manuscript is organized as fol-
lows. Section 2 details the 3 different databases that were
used to test the algorithms. In section 3, the method-
ology is described, including pre-processing and feature
extraction, problem definition, 3 single-objective and 3
multi-objective meta-heuristics, and our proposed algo-
rithm. Sections 4 and 5 show the results anddiscuss them,
respectively; analyzing the convergence, selected chan-
nel distributions, assessment accuracies, hyperparame-
ters and computational cost. At the end of section 5, a
set of guidelines for adapting meta-heuristics to the BCI
channel selection problem is detailed, followed by the
contributions, limitations and future endeavors. To sum
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up, section 6 draws the final conclusions of the study.

2. Subjects

In order to improve the generalization of the results, al-
gorithms have been tested with three public P300-based
BCI databases that used different stimulation paradigms:
row-col paradigm (RCP), center speller (CS) and rapid se-
rial visual presentation (RSVP). Examples of stimulation
sequences for the paradigms are depicted in the figure 1.

2.1. BCI competition III: dataset II

The ‘BCI competition III: dataset II’ (Blankertz et al.,
2006) was recorded from 2 different healthy subjects (i.e.,
A and B) that were asked to spell words in 5 RCP sessions.
Signals were recorded using a 64-channel EEG cap with a
sampling frequency of 240Hz and band-pass filtered from
0.1 Hz to 60 Hz. Training and testing sets were composed
of 85 and 100 trials, respectively (Blankertz et al., 2006).
RCP is the most common P300-based spelling paradigm,
which consists of displaying a matrix that contains char-
acters or symbols. Users have to stare at the target com-
mand while the matrix’s rows and columns are randomly
flashing. Whenever the row or column that contains the
target is flickered, a P300 potential is generated. Hence,
the desired command can be identified by computing the
intersection between the row and the column that pro-
duced these P300 responses (Farwell and Donchin, 1988).
In this dataset, there are 12 different classes (i.e., rows
and columns), and 15 sequences (i.e., repetitions) were
used. Therefore, a trial is composed by 180 observations
(Blankertz et al., 2006).

2.2. Center Speller database

The ‘Center Speller (008-2015)’ database (Treder et al.,
2011) was recorded from 13 healthy subjects (i.e., C01-
C13) that were asked to perform spelling tasks using the
CS paradigm. Signals were recorded using a 63-channel
EEG cap with a sampling frequency of 250 Hz and band-
pass filtered from 0.016 Hz to 250 Hz. Training data
was composed of 17 trials, whereas testing data varied
between 32-49 trials, depending on the subject (Treder
et al., 2011). CS was originally designed to avoid eye
movements. The paradigm displays groups of commands
in the center of the screen, superimposedwith colored ge-
ometric shapes. The groups are randomly flickered until
the user selects one of them. Then, the commands that
were included inside the selected group are displayed in
the same way, allowing the user to select the final com-
mand (Treder et al., 2011). In practice, there are 12 differ-
ent classes (6 groups in 2 levels), and 10 sequences were
used. A trial is composed by 120 observations (Treder
et al., 2011).

2.3. RSVP Speller database

The ‘RSVP Speller (010-2015)’ database (Acqualagna
and Blankertz, 2013) was recorded from 12 healthy sub-
jects (i.e., R01-R12) that were asked to perform spelling
tasks using the RSVPparadigm. Signals were recorded us-
ing a 63-channel EEG cap with a sampling frequency of
1000 Hz, and then down-sampled to 200 Hz (Acqualagna
and Blankertz, 2013). However, since the fifth subject
only used 61 channels, electrodes P8 and O2 were ex-
cluded from the database for the sake of homogeneity.
Training data was composed of 24 trials, whereas test-
ing data (copy and free spelling) varied between 37-50 tri-
als, depending on the subject (Acqualagna and Blankertz,
2013). RSVP was also developed to exploit the foveal vi-
sual field and avoid eye movements by depicting sym-
bols in the center of the screen in a serial manner. The
database encompasses a vocabulary of 30 characters (26
letters and 4 symbols). In order to favor the identifica-
tion of the shapes, half of the letters were uppercase and
the other half lowercase, using 5 different colors. There-
fore, there are 30 classes, and 10 sequences were used,
resulting in 300 observations per trial (Acqualagna and
Blankertz, 2013).

3. Methods

3.1. Pre-processing and feature extraction

Before applying any optimization procedure, relevant
features of the EEG signals should be extracted for
each epoch (i.e., stimulus) and channel. In fact, pre-
processing, as well as feature extraction and selection
procedures influence the final accuracy in a high ex-
tent. Due to the purpose of the study, signal process-
ing stages were composed of a standard framework, in-
tended to isolate the channel selection procedure. We did
not applied any further pre-processing step besides the
aforementioned band-pass filtering embedded in each
database (Blankertz et al., 2006; Treder et al., 2011; Ac-
qualagna andBlankertz, 2013). Epochswere extracted us-
ing windows in the range [0, 800]ms from the stimuli on-
sets, and normalized using a z-score over a [−200, 0] ms
baseline (i.e., zero mean, unit standard deviation). As
stated in BCI literature, this range is large enough to cap-
ture the relevant event-related potentials, including the
P300 wave (Wolpaw and Wolpaw, 2012). These epochs
were then decimated to 25 Hz, keeping a total of 20 fea-
tures per stimulus and channel. It is noteworthy that
the decimation process encompasses a low-pass filtering
(to avoid aliasing), followed by a down-sampling proce-
dure (Martínez-Cagigal andHornero, 2017a,b). Hereafter,
epochs from different databases and sampling rates have
the same number of features. Note that, from the point
of view of a subsequent classifier, epochs are input obser-
vations.

3
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Figure 1: Examples of stimuli intensification sequences for the paradigms: (a) row-col paradigm, (b) center speller, (c) rapid serial
visual presentation.

3.2. Defining the optimization problem
The goal of an optimization algorithm is to provide a

suitable solution that satisfies the problem constraints
and optimizes (either maximizing or minimizing) one or
more objective functions to the greatest extent (Bozorg-
Haddad et al., 2017). Since we are considering an N-
channel selection problem, a possible solutionmay be de-
fined as x = [x1, x2, . . . , xN ], xi ∈ {0, 1}, where 1 and 0
represent the selection and rejection of a specific chan-
nel, respectively. Hence, the problem is constrained to
a discrete N-dimensional space, whose solutions are re-
stricted to binary positions. When a solution x is evalu-
ated, the features associated with the channels that sat-
isfy xi = 1 are concatenated as an input feature vector.
In a BCI channel selection problem, two main objec-

tives must be pursued: (i) to maximize the system’s per-
formance, and (ii) to minimize the number of channels.
Even though the modeling of the latter is straightfor-
ward (see equation 1), the system’s performance can be
estimated following several approaches. The most intu-
itive solution is to use the output training accuracy of
the classifier using a certain solution x (Jin et al., 2010;
Kee et al., 2015; Chaurasiya et al., 2017). However, due
to the limited number of trials, this method usually pro-
vides a low-resolution score (Colwell et al., 2014). The
resolution can be improved using methods based on the
stimuli, instead of the character trials. Previous stud-
ies have employed several approaches derived from the

confusion matrix of the stimuli classification (Perseh and
Sharafat, 2012; Gonzalez et al., 2013, 2014). Neverthe-
less, the area under ROC curve (AUC) is recommended
because it is able to successfully estimate the discrimina-
tive ability of a binary classifier using only training data
(Cecotti et al., 2011; Colwell et al., 2014). Therefore, the
objectives may be modeled as follows:

minF (x) =




f1(x) = 1−AUC(x)
f2(x) =

N∑
n=1

xn
, (1)

where f1(x) belongs to the first objective (i.e., minimize
the error of the system) and f2(x) to the second objec-
tive (i.e., minimize thenumber of channels). In this study,
AUC has been derived from a 5-fold cross-validated lin-
ear discriminant analysis (LDA) that is applied to the so-
lution x using the training dataset (Martínez-Cagigal and
Hornero, 2017a,b). That is, the features whose channels
satisfy xi = 0 are removed from the observations matrix,
which is the input of the LDA classifier. Training set is
then divided into 5 subsets and a cross-validation proce-
dure is applied (i.e., 4 subsets are used for training and the
remaining one for testing), returning a total of 5 AUCs.
Finally, AUC is computed as the average of all of them.
LDA was used as classifier due to its well-known excel-
lent performances in P300-based BCI and the lack of hy-
perparameters to optimize (Tahernezhad-Javazm et al.,
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2017; Blankertz et al., 2011; Kee et al., 2015; Aler and
Galván, 2015; Chaurasiya et al., 2017; Treder et al., 2011;
Martínez-Cagigal and Hornero, 2017b; Martínez-Cagigal
et al., 2017).

3.3. Single-objective meta-heuristics

Meta-heuristics produce acceptable solutions to com-
plex problems in a reasonable computation time (Yang,
2014). In particular, single-objective meta-heuristics it-
eratively produce these solutions following a certain ob-
jective. However, a BCI channel selection problem should
have a two-fold purpose. Thus, the multi-objective prob-
lem stated in equation (1) is then combined into a single-
objective one (Coello and Reyes-Sierra, 2006):

minF (x) = ω1f1(x) + ω2

(
f2(x)− 1

N − 1

)3

, (2)

where ω1 + ω2 = 1, and ω1 and ω2 are constants that
weigh the importance of each objective. Since we con-
sider that reaching suitable accuracies is more important
than drastically reducing the number of required chan-
nels, coefficients have been heuristically set to ω1 = 0.7
and ω2 = 0.3 (Martínez-Cagigal and Hornero, 2017a,b;
Martínez-Cagigal et al., 2018). In addition, after map-
ping the f2(x) from [1, N ] → [0, 1], its output is raised
to the 3-th power in order to empathize the search of
lightweight solutions. Note that the polynomial function
punishes more the search of solutions with high num-
ber of channels than a simple linear function. This func-
tion was heuristically chosen after a preliminary test-
ing (Martínez-Cagigal and Hornero, 2017a,b; Martínez-
Cagigal et al., 2018). The three single-objective meta-
heuristics that have been adapted to BCI framework are
described below.

3.3.1. Genetic Algorithm
One of the most well-known meta-heuristics is the

genetic algorithm (GA), originally developed by Holland
(1992). GAs have been modified to improve their abil-
ity to find the global optimum of a complex optimiza-
tion problem in many ways. GAs apply the Darwinian
principle of survival of the fittest individuals of a popu-
lation using recombination, selection and mutation op-
erators (Yang, 2014; Bozorg-Haddad et al., 2017). In this
study, a GA with elitism, binary tournament selection,
single-point crossover and bit string mutation has been
employed (Yang, 2014; Bozorg-Haddad et al., 2017).

3.3.2. Binary Differential Evolution
The differential evolution (DE) algorithm, originally

developed by Storn and Price (1997) for continuous func-
tions, has some similarities to GAs owing to its structure,
composed by mutation, crossover and selection. How-
ever, instead of making random mutation and crossover
schemes, DE combines the information of three randomly

chosen individuals. Binary DE (BDE) applies a discretiza-
tion of themutation formula in order to adapt it to binary
problems (Wang et al., 2012). The mutation of the i-th
channel of an individual x is performed as follows:

x′i =

{
ui, if rand ≤ pc or i = r
xi, otherwise , (3)

where rand ∼ U(0, 1), r is a random integer between
[1, N ], pc is the crossover rate, and ui is themutated chan-
nel, computed as:

ui =

{
1, if rand ≤ (1 + e

−2b(vi+F ·(yi−zi)−1/2)

1+2F )−1

0, otherwise
, (4)

where rand ∼ U(0, 1); v, y and z are randomly selected
individuals of the current population; F is the weighting
factor; and b > 0 is the bandwidth factor.

3.3.3. Binary Particle Swarm Optimization

Kennedy and Eberhart (1995) developed the Particle
Swarm Optimization (PSO) algorithm, a nature-inspired
meta-heuristic based on the social schooling and flocking
behavior of fishes and birds. The optimization is based
on adjusting the trajectories and positions of a set of par-
ticles (i.e., solutions) that “fly” over the search space,
whose movement have both deterministic and stochas-
tic components (Kennedy andEberhart, 1995; Yang, 2014;
Bozorg-Haddad et al., 2017). In this study, the standard
constraint of Clerc and Kennedy (2002) is used, which
leads to:

v′ = χ[v + ε1C1(l− x) + ε2C2(g − x)], (5)

χ =
2

φ− 2 +
√
φ2 − 4φ

, with φ = C1 + C2; (6)

where v′ is the updated velocity of a particle x; v is the
last velocity; ε1, ε2 ∼ U(0, 1); χ is the constraint multi-
plier; C1 and C2 are the personal and global confidence
constants, respectively; l is the best position found by the
particle; and g is the best global position found so far. It
is worthy to note that the standard constraint requires
that φ > 4 (Clerc and Kennedy, 2002; Poli et al., 2007).
Since the velocities are continuous, the algorithm should
be adapted to binary spaces. Binary PSO (BSPO) is usu-
ally achieved using a position transformation via trans-
fer functions (Kennedy and Eberhart, 1997; Mirjalili and
Lewis, 2013). In this study, the adaptation has been per-
formed following the expression:

x′i =

{
¬xi, if rand < T (v′i)
xi, if rand ≥ T (v′i)

, (7)

where rand ∼ U(0, 1), andT (t) = |t/
√
1 + t2| is a v-shaped

transfer function (Mirjalili and Lewis, 2013).
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3.4. Multi-objective meta-heuristics

In contrast to the single-objective strategies, multi-
objective meta-heuristics involve the simultaneous opti-
mization of more than one objective. Since these objec-
tives are usually conflicting among themselves, the con-
cept of dominance is introduced for determining the qual-
ity of each solution (Deb, 2005). It is said that a solution
y dominates a solution z (i.e., y � z) if ∀i : fi(y) ≤ fi(z)
and ∃j : fj(y) < fj(z). The Pareto-front, a curve that
contains optimal solutions (i.e., those that are not domi-
nated by any other solutions), is estimated by the multi-
objective algorithms, depicting the trade-off among the
objectives (Deb, 2005). Regarding the BCI channel selec-
tion problem, the Pareto-front returns a set of solutions
that have different number of required channels, allowing
the user to select one of them.

3.4.1. Non-Sorting Genetic Algorithm II
Themost popular approach for extendingGAs tomulti-

objective optimization problems is the Non-Sorting Ge-
netic Algorithm II (NSGA-II), proposed by Deb et al.
(2002). Crossover and mutation operators are the same
as GAs, whereas the selection operator is more complex.
Firstly, in order to estimate the quality of each chromo-
some, the algorithm establishes a hierarchy of Pareto-
fronts according to its dominance. The first Pareto-front
(i.e., rank = 1) is composed by the non-dominated chro-
mosomes of the current population. Then, the second
Pareto-front (i.e., rank = 2) is computed in the same
way, but ignoring the chromosomes of the first front. This
process is sequentially repeated until there are no chro-
mosomes left (Deb et al., 2002). However, the selection
of a parent population is not only based on the rank of
the chromosomes, but also on their crowding distances.
These metrics are included in order to spread the solu-
tions along the Pareto-front and avoid getting trapped in
local minima. The crowding distance of a chromosome
is computed as the average distance between its two ad-
jacent solutions with the same rank. Boundary solutions
are assigned an infinite distance value. Considering two
chromosomes, the solution with lower rank is preferred.
Whether both have the same rank, the less crowded so-
lution is preferred (i.e., higher distance value). The par-
ent population is sequentially filledwith the firsts Pareto-
fronts until the number of included solutions is greater
or equal than m/2. Then, parent solutions are truncated
based on the crowding distances until the number of so-
lutions is exactly m/2. Further information can be found
in Deb et al. (2002).

3.4.2. Binary Multi-Objective PSO
Due to its usefulness to solve complex optimization

problems, many authors have tried to adapt the PSO
algorithm to multi-objective environments (Coello and
Reyes-Sierra, 2006). Here, a Binary Multi-Objective PSO
(BMOPSO) approach is applied. Since the conflicting

objectives do not permit the establishing of an optimal
global solution g, the major adaptation should reside in
the way to select the leader of each particle. In this study,
a repository approach is employed. Non-dominated so-
lutions are stored in an external repository with “unlim-
ited” size. Note that its maximum size would be the max-
imum number of channels (i.e., the resolution of the BCI
problem). A particle’s leader is randomly selected from
the repository, and it is attached to the particle until the
leader is no longer part of the repository. In that case,
the leader is substituted by another randomly selected
one. In addition, a three-fold bit string mutation is also
used, which consists on dividing the swarm in three parts
and apply: (1) no mutation; (2) uniform mutation with
probability pm; (3) non-uniform mutation with proba-
bility pn = (1 − gen/ngen)5N (Reyes-Sierra and Coello,
2005).

3.4.3. Strength Pareto Evolutionary Algorithm 2
Zitzler et al. (2001) developed a multi-objective al-

gorithm that integrates the concepts of dominance and
crowding density in a single metric, called Strength
Pareto Evolutionary Algorithm 2 (SPEA2). In order to
compute the unified metric, the strength concept is in-
troduced. The strength Si is computed as the number of
solutions that the i-th particle dominates. Then, the uni-
fied fitness is calculated as follows:

Fi = Ri +
1

σk
i + 2

, (8)

where Ri is the sum of the strengths of the particles that
dominates i, and σk

i is the distance sought of the parti-
cle (i.e., distance to the k-nearest neighbor), where k =
b√me. Note that non-dominated individuals would have
R = 0 and thus, F < 1. SPEA2 also uses a repository with
fixed size that is updated following an environmental se-
lection procedure. Solutions are sorted according to their
F values, and the repository is filled with them. If the
number of solutions of the repository is higher than its
maximum size Nr, a truncation process is applied. Then,
the algorithm removes solutions from the repository ac-
cording to their σk (i.e., high σk values are preferred), in
order to preserve Pareto-front spreading (Zitzler et al.,
2001).

3.5. Our proposal: Dual-Front Genetic Algorithm

Even though there is a large variety of meta-heuristics
from single to multi-objective algorithms, all of them
should be adapted to the channel selection problem. The
BCI framework forces the algorithms to work with binary
solutions, involving the use of transfer functions in some
cases. These functions convert a defined alteration of
a solution into a probability of change, increasing the
stochasticity of the algorithm. Moreover, the conversion
can be addressed as a multivalued function of the type f :
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IR→ {0, 1}, whichmeans that there are infinite input val-
ues that produce exactly the same output, hindering the
local exploitation of new solutions. By extension, there
is no point in using operators based on continuous dis-
tances. Furthermore, since f2(x) already restricts the size
of multi-objective repositories toN , limitation strategies
(e.g., crowding, distance sought) also entail an unneces-
sary computational cost. In order to overcome these re-
straints, a novel multi-objective algorithm is proposed:
the Dual-Front Genetic Algorithm (DFGA). DFGA is spe-
cially designed to the BCI framework by means of five
key aspects: (i) deterministic initialization, (ii) elitism,
(iii) dual-front sorting, (iv) genetic operators, and (v) syn-
thetic solutions. DFGA pseudocode is depicted in the fig-
ure 2(f).

Deterministic initialization. Heuristics generally ini-
tialize the population by generating random solutions.
However, the use of deterministic initialization may re-
duce both the inter-run variability due to stochastic ef-
fects and a large amount of computation time. Although
deterministic algorithms are not likely to provide a global
optimum, DFGA considers their outputs as intermedi-
ate solutions. Regardless of their qualities, we hypoth-
esize that these solutions are equivalent to those that
will be eventually reached after several generations of a
randomly-initialized algorithm. In this study, backward
elimination (BE) is used to initialize the repository. The
algorithmbeginswith the full set of channels and sequen-
tially removes themost irrelevant one (Jobson, 1991). The
rejected channel in each step is the one that returns the
minimum f1(x) value if removed from the model x (i.e.,
its inclusion does not contribute to improve the system’s
performance). The algorithm continues removing chan-
nels until the set is empty. Note that this operation will
fill the repositoryR up with N solutions.

Elitism. In each generation, the repository is updated
following an elitist approach. As depicted in the figure
2(a), for each unique value of f2(x) (i.e., for each num-
ber of channels), the repository solution that minimizes
f1(x) is selected. Note that this operation is applied in
the repository, which includes both non-dominated and
dominated solutions, creating a balance between local
and global exploitation.

Dual-front sorting. Due to the deterministic initializa-
tion, the repository should have awell-defined curve from
the very beginning of the algorithm. This aspect leads to
a Pareto-front that is supposed to include solutions with
few number of channels. Traditionally, only the Pareto-
optimal solutions are considered in the selection stage.
Despite their convenience over dominated solutions, con-
sidering only the Pareto-frontwill lead to a local exploita-
tion of solutions with few channels. However, because of
the intrinsic fixed size of the repository in BCI problems
(i.e., limited to N ), the exploitation of solutions with a

greater number of channels is no longer an issue. Further-
more, it may favor the spreading of the Pareto-front and
the global search of DFGA. According to this rationale,
DFGA subdivides the repository into two sets: O (i.e., op-
timal set), which includes the non-dominated solutions;
and S (i.e., sub-optimal set), which includes the domi-
nated solutions. Dual-front sorting operation is shown in
figure 2(b). Then, binary tournament selection is applied
in both sets, selecting 2N/3 solutions from O, and N/3 so-
lutions from S. Note that a solutionmay be selectedmore
than once in the new population. Finally, these solutions
are combined in the population in order to suffer recom-
bination (i.e., crossover) and mutation, as shown in the
figure 2(c).

Genetic operators. Owing to the binary nature of the
search space, we consider that traditional genetic opera-
tors are themost convenient approach for generating new
solutions from a parent population. First, for each solu-
tion xi, single-point crossover is applied with probability
pc. That is, xi and another randomly picked solution xj

(i 6= j) are combined into x′i ← xi[1 : u] ∪ xj [u + 1 : N ],
where u ∼ rand ∈ [1, N ]. For each solution, bit-string
mutation is also computed with probability pm. In other
words, if the n-th bit of a solution x′i has to be mutated,
its value is flipped (i.e., x′′i [n] ← ¬x′i[n]). The procedure
is illustrated in the figure 2(d–e).

Synthetic solutions. When the values of pc or pm are too
high, the mutated population tends to exploit the middle
part of the repository. In other words, solutions with few
channels tend to add more channels, whereas crowded
solutions tend to decrease their number of channels. In
order to maintain a similar exploitation across the en-
tire repository spectrum, synthetic solutions are gener-
ated apart from the mutated population. However, a ran-
dom generation of solutions across this spectrumwill un-
necessarily increase the number of evaluations, slowing
down the algorithm. DFGA generates synthetic solutions
using a metric that is intended to maintain the most rel-
evant channels of the current repository. The rank of the
i-th channel is defined as the number of times that the
channel i is present in the repository (i.e., ri = |i ∈ R|).
DFGA iteratively creates solutions that have from 1 to
N − 1 channels by means of a roulette wheel selection
(i.e., fitness proportionate selection) based on the rank
values. It is worthy to mention that DFGA generates a
total ofN−1 solutions, since theN-th solution that con-
tains all the channels is already part of the repository.

4. Results

For comparison purposes, the number of individuals of
every single meta-heuristic was fixed to m = 20. Hyper-
parameters, detailed in table 1, were set following the rec-
ommendations of the literature (Deb et al., 2002; Wang
et al., 2012; Clerc and Kennedy, 2002). In order to assure
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Figure 2: Visual aids to clarify DFGA operations: (a) elitist repository updating, (b) dual-front sorting, (c) parent selection, (d)
single-point crossover, and (e) bit-string mutation. The pseudocode of the algorithm is depicted in (f).

Table 1: Method-specific hyperparameters.

Prm. Value Description Algorithm

m 20 No. individuals All

pm 1/N aMutation rate
GA, NSGA-II,
BMOPSO, SPEA2,
DFGA

pc 0.90 aCrossover rate GA, NSGA-II,
SPEA2, DFGA

F 0.80 bWeighting factor BDE
b N bBandwidth factor BDE
pde 0.20 bBDE crossover rate BDE
C1 2.05 cPersonal confidence BPSO, BMOPSO
C2 2.05 cGlobal confidence BPSO, BMOPSO
Vmax 1.00 cMaximum velocity BPSO, BMOPSO
aDeb et al. (2002), bWang et al. (2012), cClerc and Kennedy (2002).

a fair comparison among the algorithms, the number of
generations varied in function of the amount of evalua-
tions that were performed in a single iteration. Table 2
details the computational cost, including the amount of
evaluations per generation and the number of genera-
tions for each method. In total, 4000 evaluations were
performed. Furthermore, all the algorithms were com-
puted 20 times in order to avoid local minima. The ex-
periments were executed in an Intel Core i7-7700 CPU@
3.60 GHz, 32GB RAM, Windows 10 Pro, using MATLAB®
2018b.
A convergence analysis for single-objective meta-

heuristics is depicted in the figure 3. These averaged con-
vergence curves show the evolution of the aggregated ob-
jective function F (x) across the generations. Thus, they

Table 2: Approximate computational costs of single andmulti-
objective meta-heuristics.

Mtd. No. eval. Eval. time No. gen.

Si
n
gl
e GA 20 eval./gen. 785 ms/eval. 200 gen.

BDE 20 eval./gen. 810 ms/eval. 200 gen.
BPSO 20 eval./gen. 858 ms/eval. 200 gen.

M
ul
ti

NSGA-II 40 eval./gen. 331 ms/eval. 100 gen.
SPEA2 20 eval./gen. 835 ms/eval. 200 gen.
BMOPSO 20 eval./gen. 852 ms/eval. 200 gen.
DFGA 123 eval./gen. 591 ms/eval. 32 gen.

Mtd.: method, gen.: generation, eval.: evaluation.

estimate the ability of each method to search for an opti-
mal solution in the training phase. The detailed conver-
gence curves for each subject can be found in the supple-
mentary material. Concerning the multi-objective meta-
heuristics, the evolution of the computed Pareto-fronts
over the generations of the algorithms is depicted in the
figure 4, also in training phase.
Ranks of selected channels for both single and multi-

objective meta-heuristics are displayed in the figure 5,
including the common Krusienski’s 8-channel set. The
rank of a channel is defined as the normalized number
of times that the channel was selected in the repetitions.
For multi-objective algorithms, only the ranks of chan-
nels that belongs to the repository are included. Scalp
distributions of the averaged rank values over the meta-
heuristics are depicted for each subject as well.
In order to evaluate the real performance of the single-

objective algorithms using testing datasets, it is required

8
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Figure 3: Averaged convergence curves of single-objective meta-heuristics (GA, BDE and BPSO) for each database in function of
the F (x) aggregated function. Mean values are displayed with solid lines, whereas the 95% confidence interval of the subjects’
repetitions is indicated by the shaded area.

Table 3: Averaged testing accuracies and number of chan-
nels across users of the selected run for each single-objective
method.

Mtd. Competition Center RSVP
Acc. N Acc. N Acc. N

GA 92.0% 14.0 97.4% 12.4 84.6% 13.4
BDE 92.0% 14.5 97.9% 12.5 85.5% 13.4
BPSO 92.0% 14.0 96.8% 12.5 85.0% 13.7

ALL 92.0% 64.0 86.5% 63.0 80.3% 61.0
KRU 86.5% 8.0 95.2% 8.0 78.6% 8.0

Mtd.: method, Acc.: accuracy, N : no. of sequences. Results obtained
using the maximum number of sequences available for each database
(competition: 15, center: 10, RSVP: 10).

to select a single solution among the repetitions. There-
fore, the solution that reached the minimal F (x) value
was selected for each single-objective method. Table 3
summarizes the averaged testing accuracies and number
of channels of the selected solutions for each subject, in
function of the employed method, using the maximum
number of sequences available in each database. Regard-
ing the multi-objective algorithms, once the repetitions
are computed, the final Pareto-front for each subject is
composed by the non-dominated solutions among the re-
turned in each repetition. Testing accuracies (i.e., ratio of
correctly predicted characters) of the solutions that be-
longs to the final Pareto-fronts are shown in the figure 6,
again using themaximumnumber of sequences available.
Finally, computation costs of all algorithms are detailed
in the table 2.

5. Discussion

5.1. Convergence analysis

Regarding the single-objective meta-heuristics, results
show that the inherently discrete algorithms (i.e., GA and
BDE) converge to optimal solutions faster than BPSO, and
are able to reach the minimal objective value for every

single subject. Inherent discrete algorithms are under-
stood asmeta-heuristics that employs binarymethodolo-
gies to improve their solutions (i.e., mutation, crossover).
Even though BPSO shows a slower convergence than GA
or BDE, the reached F (x) values are almost analogous,
suggesting that BPSO, GA and BDE will show similar per-
formances in testing phase. It is also noteworthy that,
even though the averaged convergence of GA is faster
than BDE, the curve eventually reach a standstill over
the 100th generation, being overcome by BDE from than
point on.

Multi-objective meta-heuristics results show that
DFGA, NSGA-II and SPEA2 algorithms are able to reach
similar Pareto-fronts, outperforming BMOPSO. Besides
the proper performance of DFGA, NSGA-II and SPEA2
in training phase, they do not converge to their optimal
solutions in the same amount of time. DFGA converges
faster than the rest, likely due to its deterministic initial-
ization, which allows the algorithm to avoid evaluating
solutions that are far from reaching the optimal value.
Among the other two, NSGA-II converges faster than
SPEA2, whose trail spreads across higher non-optimal
f2(x) values. In contrast to the training performance of
the aforementioned algorithms, BMOPSO does not show
a suitable convergence. In fact, their final values are far
from matching the Pareto-fronts of DFGA, NSGA-II or
SPEA2. It is noteworthy that BMOPSO fronts keep high
f2(x) values, which demonstrates that the algorithm
has not been capable of improving solutions with a
small number of channels. Owing to this behavior, it is
not possible to assure that BMOPSO will reach proper
performances in testing phase.

Considering these convergence results, it might be ar-
gued that meta-heuristics that work with discrete solu-
tions (i.e., GA, BDE, DFGA, NSGA-II, SPEA2) show supe-
rior convergence results, which could be somewhat ex-
pected due to the nature of the problem. On the one hand,
it can be said that local search strategies that rely on mu-
tation, crossover and strength operators favor the conver-
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Figure 4: Evolution of Pareto-optimal solutions of the multi-objective meta-heuristics for each subject across all the repetitions:
DFGA (red), NSGA-II (blue), SPEA2 (yellow) and BMOPSO (green).

gence in the P300-based BCI channel selection problem
(Yang, 2014; Bozorg-Haddad et al., 2017; Zitzler et al.,
2001). On the other hand, the behavior of BPSO and
BMOPSO could imply that the discretization of continu-

ous solutions cannot follow small value changes, hinder-
ing the local exploitation of the continuous-based algo-
rithms if their hyperparameters have not been properly
fixed.
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Figure 5: Channel ranks of the selected and the Pareto-optimal solutions for single-objective (GA, BDE, BPSO) and multi-objective
(NSGA-II, BMOPSO, SPEA2, DFGA) meta-heuristics, respectively. Krusienski’s 8-channel set (KRU) is also included. Averaged scalp
distributions over the algorithms are depicted as well.
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Figure 6: Testing character accuracies of the final Pareto-fronts returned by multi-objective meta-heuristics (DFGA, NSGA-II,
SPEA2, BMOPSO) for the averaged subjects of each database. For comparison purposes, Krusienski’s set (KRU) is also depicted.

5.2. Channel distributions

Averaged channel ranks of the figure 5 show that meta-
heuristics in general have a slight tendency to mainly
select electrodes over the occipital lobe. However, the
optimal channel set is clearly different for each subject.
This behavior confirms the fact that a customized chan-
nel selection procedure prior to the BCI session bene-
fits the subsequent performance. Despite the Krusienski’s
(Krusienski et al., 2008) common 8-channel set is suitable
as a general rule of thumb, results have not considered
that combination optimal for any subject or database.
This fact is reinforced in the testing phase, where both
single-objective and multi-objective algorithm solutions
have outperformed the 8-channel set, as can be noticed
in the table 3 and the figure 6. Moreover, the computed
Pareto-fronts havenot generally kept solutionswithmore
than ∼ 20 channels. This fact suggests that a small set
of channels is able to reach similar or even better perfor-
mances than the entire set, reducing the dimensionality
and the computational cost of the BCI processing frame-
work.
According to the previous analysis, meta-heuristics

that converged faster for this optimization problem have
also succeeded in finding the most relevant channels for
each subject. As can be seen in the figure 5, GA, BDE,
BPSO, DFGA, NSGA-II and SPEA2 reiteratively select a
specific combination of channels, which is different for
each subject. By contrast, BMOPSO do not show clear dif-
ferences between channel ranks, which once again indi-
cates a lack of convergence to a global optimum.
From the well-defined electrodes that were repeatedly

selected for each subject, algorithms shown a special
focus on the occipital cortex. From a biological point
of view, this tendency is sound. As aforementioned,
the f1(x) objective is aimed to maximize the classifica-
tion performance between target and non-target event-
related stimuli, elicited through a visual odd-ball task.

The response is thereforemodeled as an event-related po-
tential (ERP) composed by several components, such as
P1, N1, P2, N2 or P3; which are taken into account when
extracting and classifying the features. Among them, P3
(i.e., P300) should be the most prominent one in the RCP
(Wolpaw and Wolpaw, 2012; Polich, 2007). The primary
visual cortex, highly specialized in processing informa-
tion about visual stimuli, static and moving objects; is
located at the posterior part of the occipital lobe (Stan-
dring, 2016). Hence, it is expected that occipital elec-
trodes contain relevant discriminative information about
target (i.e., ERP is present) and non-target signals (i.e.,
no ERP should be present) and thus, that they would
likely be selected in the channel selection process. Nev-
ertheless, the optimal channel sets are clearly different
among subjects, which is relative common in the litera-
ture (Jin et al., 2010;Gonzalez et al., 2013; Kee et al., 2015;
Chaurasiya et al., 2017). This fact should not be surpris-
ing, since classifiers are also optimized for each subject
because of the inter-subject and inter-session variability
of the EEG signals (Martínez-Cagigal et al., 2017). Even
though the rationale behind the fact that optimal channel
sets differ among subjects is not clear, it is believed that
EEG is highly sensitive to external factors, such as inter-
subject variations in the cap positions (Picton, 1992). In
fact, it is common that EEG caps does not correctly fit
some users, making some electrodes wobbly and produc-
ing noise. Furthermore, it should be taken into account
that EEG channels cannot pinpoint neural sources owing
to attenuation and volume conduction effects, being lim-
ited to a spatial resolution about 5 cm and hindering the
location of the aforementioned sources in certain brain
areas (Wolpaw and Wolpaw, 2012).

In short, we believe that most relevant channels for
classificationmay not necessarily be the same among dif-
ferent users. As with feature selection and classifica-
tion are calibrated for each subject, results show that the
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channel selection procedure should be subject-optimized
as well. Notwithstanding its usefulness as a prelimi-
nary approach, the common Kruskienski’s set (Krusien-
ski et al., 2008), which mainly locates channels over the
parietal and occipital cortex, appears to be a suboptimal
solution. It is noteworthy that our study is not intended to
propose a general distribution of electrodes for any user,
but to emphasize the need to customize the channel set
for each subject.

5.3. Testing assessment
Single-objective approaches return a single solution

with a specific number of channels, which minimizes the
general objective F (x). For this reason, averaged test-
ing accuracies of table 3 should be taken into consider-
ation together with the number of channels of each solu-
tion. According to the results, even though all the single-
objective meta-heuristics have reached higher accuracies
in comparison with the entire set and the Krusienski’s
8-channel set, BDE stands out considering the channel-
performance trade-off. BDE (competition: 92.0% with
14.5ch, center: 97.9% with 12.5ch, RSVP: 85.5% with
13.4ch) has reached the highest average accuracy with a
scarce channel set, followed by GA (competition: 92.0%
with 14.0ch, center: 97.4% with 12.4ch, RSVP: 84.6% with
13.4ch) and BPSO (competition: 92.0% with 14.0ch, cen-
ter: 96.8% with 12.5ch, RSVP: 85.0% with 13.7ch). Nev-
ertheless, all methods reach similar or even higher ac-
curacies than the entire set of channels, probably due to
the radical increase in dimensionality; outperforming as
well the accuracy obtained by the typical 8-channel set. It
is worthy to mention, however, that Krusienski’s set also
used less number of channels. In fact, the increase in test-
ing accuracy of the threemethods in comparison with the
entire set (i.e., ALL) and the Krusienski’s set (i.e., KRU)
is statistically significant for almost all subjects (i.e., p–
value< 0.05, Wilcoxon signed-rank test, false discovery
rate corrected by the Benjamini-Hochberg procedure). In
particular, the number of subjects (out of 27) that yielded
significant differences were: 23 (ALL vs. GA), 27 (ALL vs.
BDE), 22 (ALL vs. BPSO), 21 (KRU vs. GA, BDE or BPSO).
As expected, the difference among GA, BDE and BPSO re-
sults is not significant. A detailed table with the p–values
of each subject and comparison is included in the supple-
mentary material. Therefore, it can be assured that GA,
BDE and PSO outperformALL and KRU; and that their so-
lutions are similar in terms of reached accuracies.
The main advantage of the multi-objective meta-

heuristics in comparison with the single-objective ones is
that they return a set of optimal solutions for each num-
ber of channels, allowing the user to select the most ap-
propriate configuration. In fact, not only these solutions
indicate the number of channels that already reaches
the maximum performance, but also their scarce solu-
tions overcome the Krusienski’s set. According to the
figure 6, the typical 8-channel set is approximately out-
performed using only 4 channels by DFGA, NSGA-II and

SPEA2. These results are similar or even better than
the individual solutions reached by single-objective al-
gorithms. As can be noticed, DFGA, NSGA-II and SPEA2
reach similar performance results, which improve as the
number of channels increase. Those results also outper-
form BMOPSO, whose solutions, in spite of using more
channels, generally obtain lower accuracies. Results also
show that there is a point for each subject where accu-
racies come to a standstill. In particular, using more than
15 channels in the competition or RSVP databasesmay be
counter-productive; as well as using more than 20 chan-
nels in the center database. This fact reinforces the use-
fulness of dimensionality reduction techniques, such as
channel and feature selection or classifier regularization,
to assure a suitable testing performance in BCI systems.
Regarding previous studies, we consider that MI-based

(Lv and Liu, 2008; Hasan and Gan, 2009; Hasan et al.,
2010; Wei and Wang, 2011; Kee et al., 2015; Aler and
Galván, 2015; Franklin Alex Joseph and Govindaraju,
2019; Zhang and Wei, 2019; González et al., 2019) and
auditory potential (Gonzalez et al., 2014) BCI studies are
not comparable in terms of performance, since those con-
trol signals are generally less reliable than P300 poten-
tials and thus, obtain significantly lower accuracies. From
the P300-based BCI studies, the reached accuracies of
our work are similar or even higher than those reported
previously. The most straightforward comparison comes
from the III BCI Competition database (2 subjects), used
by (Kee et al., 2015; Arican and Polat, 2020; Gonzalez
et al., 2013; Perseh and Sharafat, 2012). Kee et al. (2015)
reached an average accuracy of 93.6% with 22.3 channels
using GA; and 94.9% with 25.7 channels using NSGA-II.
Arican and Polat (2020) reached an averaged accuracy of
89.90% with 8 channels using BPSO and a boosted tree
classifier. All of them used 15 sequences. A combina-
tion of wavelets and BPSO was also used by Perseh and
Sharafat (2012), obtaining 85% with 31 channels; and
Gonzalez et al. (2013), 67.5% with 33.5 channels using
only 5 sequences. As can be seen, it is hard to com-
pare the accuracies provided each study reported solu-
tions with different number of channels or sequences. In
our study, GA, BDE and BPSO yielded an averaged ac-
curacy of 92% with 14 channels; and NSGA-II, SPEA2
and DFGA achieved 90% with only 7 channels, which in-
creased until a maximum of 97% with 23 channels us-
ing 15 sequences. There are also studies with custom
databases, such as Chaurasiya et al. (2017) (9 subjects,
15 sequences), who obtained a mean of 92.8% with 26.1
channels using MOBDE; or Jin et al. (2010) (11 subjects,
15 sequences), who tested a chinese-basedRCPusing PSO
and LDA, reaching a mean of 71.09% with 7.63 channels.
Besides the III BCI Competition database (2 subjects),
our study also comprises the results with two additional
databases: Center Speller (13 subjects, 10 sequences), and
RSVP Speller (12 subjects, 10 sequences). However, no di-
rect comparison can be made since there are no previous
studies that have tested any meta-heuristic for selecting
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channels with any paradigm apart from RCP. In terms of
accuracy, our results for single-objective (center: 97.36%
with 12.46 channels, RSVP: 85.03% with 13.5 channels)
and multi-objective (center: 98.46% with 8 channels,
RSVP: 85.73% with 8 channels) algorithms are similar to
the performances reported in the literature (Treder et al.,
2011; Acqualagna and Blankertz, 2013).

5.4. Hyperparameters

The main drawback of the majority of meta-heuristics
rely on the need to fix hyperparameters, which usually
depends on the context of the problem. Poorly chosen
values may cause convergence issues, hindering the per-
formance of the algorithm (Yang, 2014). In this con-
text, the quality of a meta-heuristic must not be only as-
sessed according to the performance results, but also tak-
ing into account the number of required hyperparame-
ters. The less hyperparameters, the more probability to
assure the reliability and generalization of the results.
GA, DFGA,NSGA-II and SPEA2 only requiremutation and
crossover rates to be fixed. Fortunately, these parameters
are widely studied in the literature, commonly fixed at
1/N for themutation rate, and 0.90–0.95 for the crossover
rate (Deb et al., 2002; Deb, 2005; Yang, 2014). A sim-
ilar approach is followed in BDE, whose extra parame-
ters are intended to perform amutation procedure (Wang
et al., 2012). BPSO andBMOPSOadd threemore hyperpa-
rameters (i.e., personal and global confidences and max-
imum velocity). Although there are several approaches
that have tried to find global relations among their values,
in light of the results, further endeavors should be made
in order to make PSO algorithms problem-independent
(Clerc and Kennedy, 2002; Yang, 2014). Since these hy-
perparameters directly weighs the velocity of the parti-
cles, which is then used as an input of a transfer function,
care must be taken in order to limit their values in the
range [0, 1]. Otherwise, particles will not tend to improve
their solutions, limiting the global and local exploitation.
In this study, we have fixed the hyperparameters accord-
ing to the literature, as indicated in the table 1. These
values have yield suitable performances, but could have
been improved by means of a hyperparameter optimiza-
tion or following an adaptive approach. It is also wor-
thy to mention that the weights of the single-objective
approach to merge both objectives were heuristically set
to ω1 and ω2 to 0.7 and 0.3, respectively, in view or pre-
liminary results (Martínez-Cagigal andHornero, 2017a,b;
Martínez-Cagigal et al., 2018). Note that the difference
of values of ω1 and ω2 would cause a strengthen of solu-
tions in a certain f2(x) range, while avoiding the search in
other spaces. The supervisor could vary the ω1/ω2 ratio to
obtain different optimal solutions, simulating the search
over the f2(x) spectrum as multi-objective approaches
do.

5.5. Computational cost
A comparison between computational costs of differ-

ent meta-heuristics is tricky, forcing to consider several
aspects at the same time. On the one hand, the table 2
details the approximate duration of a generation and the
number of evaluations that comprised a generation. Note
that the number of evaluations per generation differs de-
pending on the meta-heuristic strategy and thus, algo-
rithms can only be compared in terms of the duration of
a single evaluation. For this reason, the number of gen-
erations of each algorithm has been adapted in order to
assure a fair comparison among them, so that every sin-
gle method performs a total of 4000 evaluations. On the
other hand, it is also essential to consider further issues,
such as the convergence of the algorithms, their search
depth and the programming approach. When abstracting
a meta-heuristic as a black box, the total time of the exe-
cution varies according to the required number of gener-
ations to reach a suitable convergence. These differences
usually affect the computational cost in a higher extent
than the individual duration of a evaluation, making it es-
sential to be taken into consideration. Moreover, a correct
implementation of these meta-heuristics should employ
a hash table to match the previously computed solutions
with their fitnesses. Note that an intense search depth
will inevitable generate repeated solutions. Thehashmap
acts as a remainder and allows avoiding unnecessary eval-
uations. Hence, it is noteworthy that the computation
time of the generations declines exponentially when the
algorithm goes on. Note that table 2 measurements were
made without considering any hash table (i.e., an initial
generation).
The overall complexity of DFGA in asymptotic nota-

tion behaves as O(NoN
2), where No is the number of

objectives. An analysis of the complexity of each DFGA
step is detailed in the supplementary material, which
demonstrates that the exponential increase in operations
is mainly due to the dual-front sorting procedure. How-
ever, this trend is similar to other recent multi-objective
algorithms, such as NSGA-II, SPEA2 and BMOPSO, whose
complexity behaves as O(Nom

2) (Tripathi et al., 2007;
Curry and Dagli, 2014a). Note thatm indicates the popu-
lation size which, in case of DFGA, equals to N (the no.
channels) due to the deterministic initialization. This
fact partly explains why DFGA performs a higher number
of evaluations in a single generation. It is also notewor-
thy that the presented asymptotic complexity analysis in-
volves only the advancing of a single generation, allowing
the comparison among different algorithms, since their
convergences are not deterministic (Curry and Dagli,
2014a). Moreover, these complexities indicates the worst
cases, which usually decrease as generations increase due
to the hash table implementation.
According to the table 2, NSGA-II and DFGA are the

least time-consuming, spending less than 600 ms per
evaluation with the selected hyperparameters. In addi-
tion, they have demonstrated excellent convergence abil-
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ities, making them excellent multi-objective approaches
to this problem. By contrast, BPSO and BMOPSO not
only are the most time-consuming algorithms, but also
their performances are inferior. For the single-objective
approaches, it is worthwhile to use GA or BDE, whose
convergence abilities balance out their evaluation costs.
In any case, the overall duration of these algorithms re-
strict their application to the calibration session, where
the weights of the classifier are optimized for each sub-
ject. Then, the selected channels should be further ap-
plied in the testing sessions.

5.6. Guidelines
A series of guidelines or practical recommendations for

the application of meta-heuristics to BCI systems may be
derived from the discussed results:

1. Multi-objective algorithms should be used instead of
single-objectivemeta-heuristics if computation time
is not an issue. Otherwise, it is preferable even using
deterministic algorithms, such as BE, to provide sub-
optimal but acceptable solutions.

2. Discrete algorithms that use mutation, crossover or
strength operators should be preferred (e.g., single-
objective: GA, BDE; multi-objective: DFGA, NSGA-
II, SPEA2).

3. Whether discretization is required to adapt a
continuous-based meta-heuristic to the BCI frame-
work, avoid using transfer functions and attempt to
redefine the equations (section 3.5). Still, if conver-
sion via transfer functions is used, care should be
taken with hyperparameters values. Assure that the
input of the function always lies within the range
[0, 1]. Otherwise, the probability of change of the
solutions would drastically increase, hindering the
convergence of the algorithm. Furthermore, dis-
tance metrics should not be employed after applying
the discrete transformation unless it is the Hamming
distance.

4. For single-objective algorithms, use an aggregation
approach to minimize two objectives at one: num-
ber of channels and performance error (section 3.2).
AUC-based modeling of the performance should be
preferred instead of accuracies in order to increment
the resolution of the objective values.

5. Multi-objective repository limitation strategies,
such as crowding distances or distance sought, are
not necessary in the BCI channel selection prob-
lem and should be avoided to prevent worthless
computational costs (section 3.5).

6. A hybrid meta-heuristic that also employs determin-
istic methods, such as DFGA, is preferred. DFGA has
reached similar accuracies than NSGA-II and SPEA2,
but converges faster (section 4).

7. A convergence detection method to stop the itera-
tions is recommended rather than using a maximum
generation limit for practical purposes (e.g., none or
petty changes along the n last generations).

8. Repeated solutions across generations are unavoid-
able. Make sure to implement a hash map (e.g., dic-
tionary) for matching previously computed solutions
with their fitnesses, in order to avoid further unnec-
essary evaluations.

5.7. Contributions, limitations and future endeavors
According to the experimental outcomes, it has been

demonstrated the utility of meta-heuristics to find an op-
timal combination of channels in P300-based BCI sys-
tems. The importance of selecting an optimal channel
set for each user has been highlighted as well. Moreover,
to the best of our knowledge, this is the first study that
provides a comprehensive comparison of different meta-
heuristics that can be applied to the BCI channel selection
problem. Previous studies have isolated the application
of BPSO, BDE, GA and NSGA-II, but no comparison has
been performed; whereas this manuscript has included
a total of 3 single-objective (i.e., GA, BDE, BPSO) and 4
multi-objective (i.e., DFGA, NSGA-II, SPEA2, BMOPSO)
algorithms. As a result, GA, BDE, BPSO, DFGA, NSGA-
II and SPEA2 have been reached high performances in
testing phase, outperforming the entire set and the com-
mon Krusienski’s 8-channel set in three databases with
different paradigms. Due to the characteristics of the
BCI framework, none of the well-known methods can be
applied in a productive way without a proper modifica-
tion. For that reason, DFGA, a newmulti-objective meta-
heuristic, has been especially designed to optimize chan-
nel or feature sets in BCI systems. In this way, the super-
visor may apply DFGA in the first session, select an ap-
propiate channel set and avoid placing extra electrodes
for the next BCI sessions. Furthermore, in order to ease
the application of meta-heuristics in these systems, a se-
ries of guidelines have been detailed. To sumup, themain
contributions of this study are the following: (i) proposal
of a novel multi-objective algorithm, DFGA, especially
designed for this problem, (ii) comparison of a total of 7
meta-heuristics to the P300-based BCI channel selection
problem, (iii) enumeration of a detailed set of guidelines
to adapt anymeta-heuristic for the channel selection, and
(iv) successful evaluation with three databases that em-
ploy different P300-based paradigms.
Despite the aforementioned strengths, several limita-

tions can be pointed out. Firstly, since the purpose of the
manuscript was focused on the channel selection proce-
dure, only basic feature extraction (i.e., down-sampling)
and classification (i.e., LDA) methods have been ap-
plied. Testing accuracies, especially those than belong
to crowded channel sets, could have been improved by
using regularization techniques (Perseh and Sharafat,
2012; Tahernezhad-Javazm et al., 2017; Blankertz et al.,
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2011). Moreover, the algorithms entail high computa-
tional costs. Further endeavors should be aimed at as-
signing stopping criteria that could avoid the compu-
tation of worthless generations, allowing a better esti-
mation of the total duration for each model. The com-
putational cost is mainly caused by the wrapper nature
of the algorithms, which evaluate the quality of a solu-
tion by training and testing different LDA models (Saeys
et al., 2007). Embedded techniques (e.g., heuristic search
methods), which look for optimal sets inside the classi-
fier constructor, are less intensive than wrappers (Guyon
and Elisseeff, 2003; Saeys et al., 2007). A future endeavor
could be aimed at developing new embedded techniques
that could reduce the computational cost by modifying
the training procedures of certain classifiers. In addition,
as it have been seen for some outlier subjects, the use of
this meta-heuristics could not improve the system’s per-
formance which, together with the computational bur-
den, could be viewed as a waste of time. Care should be
also taken when using transfer functions, such as those
used in BPSO or BMOPSO, since they could be fruitless to
the proper exploitation of the discrete space. Hyperpa-
rameters were fixed according to the recomendations of
the literature. However, an optimization of these values
would be beneficial to the final performance of the algo-
rithms. Adaptive approaches that vary the hyperparame-
ters in function of the generation could also enhance the
results. It should be also mentioned that the competition
database containsmore training trials than those that are
commonly in practice. Another future research line could
be focused on assessing the performance of these meth-
ods with less training trials. Finally, although it has not
been explored in study, results suggest that the proposed
meta-heuristics could be also applied to feature selection
problems.

6. Conclusions

A comprehensive comparison among 7 different meta-
heuristics applied to the P300-based BCI channel selec-
tion problem has been performed in this study. In partic-
ular, 3 single-objective and 4 multi-objective algorithms
have been included. Due to the discrete characteristics of
the BCI framework, themajority of themhave beenmodi-
fied in different ways in order to adapt them to the afore-
mentioned problem. For this reason, a series of guide-
lines or practical recommendations have been detailed as
an aid for further adaptations. A novel multi-objective
algorithm has been especially developed for BCI sys-
tems: DFGA. Methods have been tested with three pub-
lic databases that used different stimulation paradigms:
competition (2 users with 64ch., RCP), center speller (13
users with 63ch., CS paradigm) and RSVP speller (12 users
with 61ch., RSVP). Results show that meta-heuristics are
able to provide solutions that simultaneously use few
number of channels and reach high accuracies. In fact,

the entire set of channels and the common Krusienki’s 8-
channel set have been outperformed by the 7 methods,
demonstrating their usefulness to provide an optimized
channel set for each user.
The main findings of the study can be summarized as

follows:

1. Optimal channel sets show a high inter-subject vari-
ability, which makes essential the optimization for
each individual, instead of using a common set.

2. Inherently discrete algorithms (i.e., GA, BDE, DFGA,
NSGA-II, SPEA2) reach higher performances due to
the dichotomous nature of the problem.

3. Among single-objective meta-heuristics, GA, and
BDE provide suitable convergences and high accura-
cies. Regarding multi-objective algorithms, DFGA,
NSGA-II and SPEA2 provided competitive results.

4. A balanced combination of deterministic and
stochastic techniques is beneficial. DFGA reaches
an excellent performance, as well as NSGA-II and
SPEA2, but converges considerably faster to their
optimal solutions.

5. Hyperparameter tuning is crucial. BMOPSO could
not converge to an optimal solution, whereas it is
possible to guarantee the convergence of the rest in
a single run.
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Supplementary material

For the sake of replicability and completeness, addi-
tional methodological details and further analyses are in-
cluded in this supplementary material.

6.1. Computational complexity of DFGA
In this section, the computational complexity of the

proposedmulti-objective algorithm, DFGA, is analyzed in

terms of the asymptotic notation (i.e., Big O notation).
In order to present a detailed estimate of the complexity,
each step of the pseudo-code (see figure 2) is analyzed in
the following lines:

0. Backward elimination (BE). This step is executed
once, since it encompasses the deterministic initial-
ization of DFGA. Therefore, its complexity entirely
depends on the size of the solution (i.e., chromo-
some) – that is, the number of channels, N . BE se-
quentially removes one channel at a time. Hence, it is
straightforward that the complexity of the first iter-
ation would beO(1) (checking the f1(x) of the entire
set of channels). Then, the complexity of the second
iteration would beO(N), which linearly decreases to
O(N−(N−2)) = O(2) for theN-th iteration. The ag-
gregated complexity would beO(N2−N −∑N−2

i=2 i).

1. Dual-front sorting and parent selection. The
dual-front sorting divides the current repository into
the optimal O and sub-optimal S sets. In order to
do that, the algorithm first needs to check the domi-
nance of every single combination of couples of solu-
tions. This equals to the double of the binomial co-
efficient, since dominance must be checked in both
directions: O(2No ·

(
N
2

)
) = O(No(N

2 − N)), where
No is the number of objectives (in this case,No = 2).
Note that, in DFGA, the size of the repository is equal
to thenumber of channelsN . Afterward, binary tour-
nament selection is applied to select the parent pop-
ulation from the repository, adding a complexity of
O(N). Hence, the aggregated complexity of this step
would be O(NoN

2 +N(1−No)).

2. Genetic operators. Since the length of the parent
population is always N , single-point crossover re-
quires O(N) operations. By contrast, bit-string mu-
tation requiresO(N2) operations. Therefore, the ag-
gregated complexity would be O(N2 +N).

3. Synthetic solutions. The generation of synthetic
solutions is used to maintain a similar exploitation
over the entire repository spectrum. The computa-
tion involves N − 1 roulette wheel selections. This
well-known algorithm usually takes O(logN) opera-
tions, leading to an aggregated complexity ofO((N−
1) logN). However, the complexity of the roulette
wheel selection can be reduced to O(1) by means
of an “alias method” implementation, leading to an
aggregate complexity of O(N − 1) (Lipowski and
Lipowska, 2012).

4. Repository updating. In order to update the repos-
itory, fitnesses of the last repository, the parent pop-
ulation and the synthetic solutions must be checked,
leading to a complexity of O(N + N + N − 1) =
O(3N − 1).
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The computational complexity of DFGA would be O((2 +

No)N
2+(5−No)N−2−

∑N−2
i=2 i) including the initializa-

tion, orO((1+No)N
2+(6−No)N −2) if a generic gener-

ation is considered. Therefore, the overall complexity of
the algorithm behaves asO(NoN

2), influenced mainly by
the dual-front sorting procedure. However, care must be
taken when interpreting this analysis, since the complex-
ity presented here involves the advancing of a single gen-
eration, not the algorithm’s aggregated complexity. In
this way, evolutionary algorithms can be compared when
their convergence is not deterministic (Curry and Dagli,
2014b). It is noteworthy that O(NoN

2) complexity de-
notes the worst case, which usually decreases as the gen-
erations increase if a hash-map implementation is used.

6.2. Statistical analysis
The table 4 details the averaged accuracy results and

p–values for the single-objective meta-heuristics results.
Note that accuracies were averaged across the 20 rep-
etitions of the algorithms for each subject and that p–
values were obtained using a Wilcoxon signed-rank test.
Then, the False Discovery Rate (FDR) was corrected us-
ing the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995).

6.3. Individual convergence curves
The figure 7 shows the individual convergence curves

for the single-objective meta-heuristics for each subject,
which where omitted in the original paper for saving
space.
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Figure 7: Individual convergence curves of single-objective meta-heuristics (GA, BDE and BPO) for each database in function of
the F (x) aggregated function. Mean values are displayed with solid lines, whereas the 95% confidence interval of the subjects’
repetitions is indicated by the shaded area.
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Abstract

This paper presents an electroencephalographic (EEG) P300-based braincomputer interface (BCI) Internet browser. The
system uses the “odd-ball” row-col paradigm for generating the P300 evoked potentials on the scalp of the user, which
are immediately processed and translated into web browser commands. There were previous approaches for controlling
a BCI web browser. However, to the best of our knowledge, none of them was focused on an assistive context, failing
to test their applications with a suitable number of end users. In addition, all of them were synchronous applications,
where it was necessary to introduce a read-mode command in order to avoid a continuous command selection. Thus,
the aim of this study is twofold: 1) to test our web browser with a population of multiple sclerosis (MS) patients in
order to assess the use- fulness of our proposal to meet their daily communication needs; and 2) to overcome the
aforementioned limitation by adding a threshold that discerns between control and non-control states, allowing the
user to calmly read the web page without undesirable selections. The browser was tested with sixteen MS patients and
five healthy volunteers. Both quantitative and qualitative metrics were obtained. MS participants reached an average
accuracy of 84.14%, whereas 95.75% was achieved by control subjects. Results show that MS patients can successfully
control the BCI web browser, improving their personal autonomy.

Keywords: Brain-computer interface (BCI), smartphones, asynchronous control, social networks, P300 event-related
potentials, electroencephalography (EEG).

1. Introduction

The application of braincomputer interface (BCI) can
improve the quality of life of those who have a disabil-
ity that limits their ability to communicate, such as neu-
rodegenerative diseases, traumatic brain injuries, Guil-
lain Barré syndromes, degenerativemuscle disorders, and
other diseases that impair the neural pathways that con-
trol muscles or even the muscles themselves (Kübler and
Birbaumer, 2008; Kübler et al., 2007; Wolpaw et al., 2000,
2002). BCI applications establish a communication sys-
tem between the brain and the environment, translat-
ing the users intentions into device control commands.
Even though there are a variety of methods for monitor-
ing brain activity, electroencephalography (EEG) is com-
monly used due to its non-invasive nature. The electric
potentials are recorded by means of placing several elec-
trodes on the scalp (Wolpaw et al., 2000, 2002).
People who suffer multiple sclerosis (MS) are poten-

tial users of this kind of applications. MS is consid-

Email addresses: victor.martinez@gib.tel.uva.es (Víctor Martínez-
Cagigal), javier.gomez@gib.tel.uva.es (Javier Gomez-Pilar),
dalvgon@ribera.tel.uva.es (Daniel Álvarez), robhor@tel.uva.es
(Roberto Hornero)

ered the most common autoimmune disorder that affects
the central nervous system (World Health Organization,
2008). Twenty years after onset, up to 60% of the patients
experience motor disability (World Health Organization,
2008). Although most people with MS have a normal or
near-normal life expectancy, in rare cases, the disease can
be terminal. MS is primarily an inflammatory disorder
that leads to damage the myelin of brain and spinal cord
nerve cells (Compston and Coles, 2008). This damage dis-
rupts the ability of those neurons to communicate, result-
ing in a wide range of symptoms, including motor skill
problems, cognitive deficit, or even psychiatric disorders
(Compston and Coles, 2008).

MS patients could benefit from this technology for re-
ducing their dependence. Due to its advance over the
last few decades, Internet has caused a profound effect on
peoples lives, becoming a global means of daily commu-
nication. However, web browsers are designed for healthy
users, intended to be used with a keyboard and a mouse,
but not with a small number of input signals (Mankoff
et al., 2002). Therefore, it seems suitable to make the In-
ternet accessible for those whose ability to communicate
is restricted, in order to increase their autonomy, and thus
their quality of life.

DOI: https://doi.org/10.1109/TNSRE.2016.2623381
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There had been previously developed several attempts
for controlling web browsers with BCI applications. The
first ones used either slow cortical potentials (SCPs) or
sensorimotor rhythms (SMR) as control mechanisms and
were based on dichotomous approaches, using binary de-
cision trees for selecting or rejecting commands (Karim
et al., 2006; Bensch et al., 2007). Besides the slowness of
the aforementioned approach, those browsers needed a
supervisor who adjusted several parameters (e.g., reading
speed, length of the reading pause, address book entries,
etc.) (Karim et al., 2006; Bensch et al., 2007). In addi-
tion, both SCPs and SMR are endogenous signals, and it
was necessary a long time so that the user learned how to
control its own EEG activity (Karim et al., 2006; Bensch
et al., 2007; Hinterberger et al., 2004). A few years later,
Mugler et al. (2010) overcame the selection slow- ness
of the dichotomous approach developing a BCI browser
controlled via P300 evoked potentials based on the “odd-
ball” paradigm (Farwell and Donchin, 1988). These po-
tentials are produced in response to infrequent and par-
ticularly significant visual, auditory, or somatosensory
stimuli about 300 ms after its elicitation (Wolpaw et al.,
2002). Hence, training time was reduced because of their
exogenous nature and the number of input signals drasti-
cally increased (Mugler et al., 2010; Sirvent Blasco et al.,
2012). In addition, page links were tagged with an al-
phanumeric code and any link could be selected by en-
tering the corresponding code with the selection matrix
(Mugler et al., 2010). Sirvent Blasco et al. (2012) also used
P300 evoked potentials as a control mechanism. How-
ever, instead of using the page tagging approach, one
of the selection matrices was intended to work as a vir-
tual mouse, whose commands allowed the user to move
the cursor a variety of discrete pixel distances. Never-
theless, P300-based web browsers were synchronous pro-
cesses and thus, it was needed to introduce several “read
mode” commands for avoiding a continuous selection of
items when the user wanted to calmly read the webpage,
resulting in a rigid navigation (Mugler et al., 2010; Sirvent
Blasco et al., 2012). For a truly free surfing, however, the
synchronous mode is impractical because the system will
deliver a selection even if the user is not paying attention
to the stimulation (Pinegger et al., 2015). The latest BCI
web browser was developed by Yu et al (Yu et al., 2012).
The work was based on a two-dimensional BCI mouse
that used SMR imagery and P300 potentials for control-
ling the horizontal and vertical movements, respectively.
As stated above, its main limitation lied in the long re-
quired training time for learning to control the SMR ac-
tivity.
The purpose of this study is twofold: 1) to design, de-

velop and test a P300-based BCI web browser with a pop-
ulation of MS patients in order to assess the usefulness of
our proposal to meet their daily communication needs;
and 2) to provide the BCI web browser with an asyn-
chronous approach in order to overcome the aforemen-
tioned limitations, by setting up a threshold which deter-

Table 1: Demographic and clinical characteristics of the partic-
ipants

User Sex Age Motor
disability

Cognitive
ability

Sustained
attention
ability

MS

U01 30 F Non-existent Very high Very high
U02 31 M Non-existent High Very high
U03 43 M Mild Very high High
U04 47 F Moderate Normal High
U05 56 M Moderate Low Very low
U06 32 F Non-existent Normal Normal
U07 35 M Non-existent Very high Very high
U08 41 M Non-existent High High
U09 49 F Non-existent Normal Very high
U10 44 M Mild Normal Low
U11 41 F Moderate Normal High
U12 43 M Moderate Very high Normal
U13 44 M Non-existent High High
U14 52 M Moderate Very high Normal
U15 38 F Non-existent Normal High
U16 47 M Moderate Normal Normal

CS

C01 23 M - - -
C02 31 M - - -
C03 23 M - - -
C04 31 M - - -
C05 22 M - - -

CS: control subjects, MS: multiple sclerosis patients, F: female, and M:
male.

mines if the user is paying attention to the stimulation
(control state) or, otherwise, is ignoring it (non-control
state).

2. Subjects and methods

2.1. Subjects

Sixteen MS patients (mean age 42.06 ± 7.47 years; 10
males, 6 females) and five healthy control subjects (CS)
(mean age 26.00 ± 4.58 years; 5 males) were included in
this study. MS participants were patients from the Na-
tional Reference Centre on Disability and Dependence,
located in León (Spain). The study was approved by the
local ethics committee and all subjects gave their in-
formed consent for participating in the study. Table 1
summarizes the demographic and clinical characteristics
of all participants.

2.2. Description of the BCI Internet Browser

The application is composed of three different stages:
data acquisition, EEG processing stage, and web surfing
stage. As shown in Figure 1, data acquisition records the
EEG signal and delivers it to the EEG processing phase.
This stage controls the presentation of the stimuli and de-
termines the selected command, which is delivered to the
web surfing stage, responsible for interpreting the order
and displaying the desired feedback.
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Figure 1: Structure of the BCI web browser. Three different
stages compose the proposed system: data acquisition, EEG
processing and web surfing.

2.2.1. Data Acquisition
The first stage records and pre-processes the EEG sig-

nals using a spatial and temporal filtering. Those signals
were recorded using eight active electrodes placed on Fz,
Cz, Pz, P3, P4, PO7, PO8 and Oz, according to the Inter-
national 10–20 System distribution (Jasper, 1958), using
a FPz electrode as a ground and referencing the system to
the earlobe. This distribution is commonly used to record
P300potentials,mainly generated over the parietal cortex
(Krusienski et al., 2006;Aloise et al., 2011; Corralejo et al.,
2014). Electrodes were connected to a g.USBamp ampli-
fier (g.Tec, Guger Technologies, Austria) with a sampling
frequency of 256 Hz. Band-pass (0.1 Hz to 60 Hz) and
notch (50 Hz power interference) filters were applied. In
order to reduce the noise inside the recording, a com-
mon average reference (CAR) spatial filter was also ap-
plied. BCI2000 software (Schalk et al., 2004; Schalk and
Mellinger, 2010) was used to control the presentation of
the stimuli, record and save data on a laptop (Intel Core
i7 2.40 GHz, 8 GB RAM, Windows 8.1). The selection ma-
trices and the browser were displayed on an additional
panoramic monitor (23-in screen) adjacent to the laptop.

2.2.2. EEG Processing Stage
The second stage, implemented in C++, processes the

EEG signal received from the data acquisition. To this
end, the system evokes the P300 potentials by means
of the aforementioned “odd-ball” paradigm. In this
paradigm, a target infrequent stimulus, which has to be
attended, is presented among other more frequent back-
ground stimuli that have to be ignored (Wolpaw et al.,
2002; Farwell and Donchin, 1988). When the user re-

ceives the target stimulus, a P300 evoked potential ap-
pears on the parietal cortex about 300 ms later. It has
been widely documented that the amplitude of the P300
varies directly with the relevance of the eliciting events
and inversely with the appearance probability of the tar-
get stimulus (Wolpaw et al., 2002; Farwell and Donchin,
1988). Specifically, we have used an application of the
“odd-ball” paradigm known as row-col paradigm, whose
stimuli are visual: matrix rows and columns are randomly
flashed (Townsend et al., 2010). When the targets row
or column are illuminated, a P300 potential is generated,
used for figuring out what the desired command is (Wol-
paw et al., 2002;Mugler et al., 2010; Farwell andDonchin,
1988; Sirvent Blasco et al., 2012; Yu et al., 2012). More
specifically, each random stimulus lasts for 62.5 ms and
then the screen remains unvarying for 125250 ms [19].
The application displays the browser on the left side of

the screen and a selection row-col paradigm based ma-
trix on the right side. Specifically, Google Chromewas se-
lected as the target browser because it allows developers
to comfortably program extensions (i.e., small software
programs that can modify and enhance the functionali-
ties of the browser). In order to provide a free and com-
plete navigation, many com- mands are needed. Due to
the large number of commands, the application uses al-
ternatively two different matrices intended for different
purposes (Figure 2)). “Navigation matrix” is the default
one. Its small size (5×3) allows the user to quickly select
the commands and thus, it is intended for web browsing.
Hence, it contains navigation commands, such as scrolls,
home page, reload, history forward and backward, among
others. The other one is called the “keyboard matrix”
(9×5), which is intended to write e-mails or fill out forms.
For this reason, it contains all the alphanumeric charac-
ters and a variety of symbols commonly used on the In-
ternet.
Once all the rows and columns have been flashed, it is

needed to extract the most relevant features of the EEG
signal. Because of the high sampling rate of the record-
ings relative to the low frequency of the P300 response,
a dimensionality reduction for removing redundant fea-
tures is beneficial for the real-time classification [23]. In
this case, a subsampling of 20 Hz over an 800 ms win-
dow from the stimulus onset is applied [13], [19]. There-
fore, each stimulus is considered a vector f of 128 fea-
tures: 16 samples (20 Hz · 0.8 s) × 8 channels. As a re-
sult, the feature matrix of each character epoch would be
x = [fT

1 ,fT
2 , . . . ,fT

m], with m = (Nr + Nc) × Ns (sum of
rows and columns×number of sequences).
The feature matrix is the input of the classification

phase, which aims to determine the command the user
wants to select. A linear classifier is used to determine
whether there is a P300 potential in each stimulus or
not. In this study, we used a step-wise linear discrim-
inant analysis (SWLDA), a linear classifier that projects
the data simultaneously minimizing the within-class co-
variance and maximizing the between-class covariance
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Figure 2: User application interface: current selection matrix is displayed on the right side of the screen and a Wikipedia web page
on the left side. Selection matrix can be commuted by the user between navigation matrix (left) and keyboard matrix (right). As
shown in the buffer (a), the user has previously selected “01” and thus, potential selections (b) are highlighted in green, while the
rest of them (c) are colored in grey. In this shot, the fourth row of the current selection matrix is being illuminated (d).

(Keinosuke, 1990). In addition, the algorithm selects the
most suitable features to be included in a multiple dis-
criminant model, optimized for each user, reducing the
dimensionality of the projection weight vector w. How-
ever, this solution and least-square regression are equiv-
alent for binary classification tasks (Krusienski et al.,
2008). The step-wise method decides to add or to re-
move a feature from the model by means of a combina-
tion of forward selection (add if pvalue < pin ) and back-
ward elimination (remove if pvalue > pout ) steps, respec-
tively (Krusienski et al., 2006, 2008). Therefore, signifi-
cant differences ( pvalue < 0.05) betweenmodels with and
without the current evaluated feature are assessed to de-
termine whether it provides discriminative information
to the model or not. In this case, the discriminant func-
tion was restricted to contain a maximum of 60 features
(Sirvent Blasco et al., 2012; Krusienski et al., 2006; Aloise
et al., 2011; Corralejo et al., 2014; Krusienski et al., 2008),
and the selection/elimination criteria was set up as pin =
0.10 and pout = 0.15, commonly applied in P300-based
BCI studies (Krusienski et al., 2006; Corralejo et al., 2014;
Krusienski et al., 2008; Sellers and Donchin, 2006; Sellers
et al., 2006). Once the optimum weight vector w is com-
puted, under the assumption that noise is normally dis-
tributed with equal covariances for both classes, the out-
put of SWLDA is a log-likelihood ratio to belong to the
positive class (i.e., presence of P300) (Narsky and Porter,
2013). This ratio is computed as the Euclidean distance
between the projected data and the projectedmean of the

positive class, as follows:

l = ∥⟨w,x⟩ − ⟨w,µ1⟩∥, (1)

where w denotes the weight vector, x the feature matrix
and µ1 the mean of the positive class. In order to predict
the selected item, it is necessary to turn the l ∈ Rm×1 vec-
tor into amatrixP ∈ RNr×Nc that indicates the probabil-
ity of selecting each cell. Thus, for each matrix item pi,
the average of the log-likelihood scores of all the stimuli
that belong to the same row and column is computed, as
indicated in (2). Once the matrixP is calculated, the pre-
dicted item is the one that provides the maximum proba-
bility, pchar = maxP .

pi =
1

2Ns

NrNc∑

i=1

li∈row∪col (2)

As stated above, row-col paradigm based selection ma-
trices are synchronous processes. This means that the
system will deliver a selection whether the user is pay-
ing attention to the stimulation (i.e., control state) or
not (i.e., non-control state) Pinegger et al. (2015); Aloise
et al. (2011). In this study, we have developed an asyn-
chronous approach by placing a threshold (T ) that is in-
tended to distinguish between both states. When enough
control and non-control state registers are recorded, the
probability of the predicted item for each character epoch
(pchar) is stored and labeled. In other words, two vectors
are created by concatenating the predicted item proba-
bilities for each character, which corresponds to control
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Figure 3: Threshold estimation for U07 user. (Left) ROC curve
using different threshold values for the same subject data. Op-
timum threshold T (asterisk) was calculated as the point that
maximizes the sensitivity and specificity pair (i.e., minimum
Euclidean distance from (0,1) coordinates). (Right) Boxplots for
control (C) and non-control (N) normalized probabilities of the
predicted characters and users optimum threshold T (dash-dot
black line).

and non-control selections. Due to the absence of atten-
tion, non-control probabilities are expected to be smaller
than control ones and thus, it is expected that a con-
stant threshold could discern between both states. There-
fore, control and non-control vectors are fed as two differ-
ent classes into a receiver operating characteristic (ROC)
curve, a graphical plot that illustrates the performance of
a binary classifier system as its discrimination threshold
varies. The curve is created by plotting the true positive
rate (i.e., sensibility) against the false positive rate (i.e.,
1-specificity) for a set of threshold values. The custom
threshold value for each user is chosen offline (i.e., be-
fore the evaluation sessions) as the point that fulfills the
maximization of the sensitivity and specificity pair, look-
ing for the best performance when distinguishing non-
control and control states, as shown in Figure 3. Then,
in online evaluation sessions, the probability of each new
predicted item pchar is compared with the threshold value
T : if pchar > T , the selection is classified as control state;
if pchar ≤ T , the selection is classified as non-control
state. Finally, if the user intention is classified as a con-
trol state selection, it is delivered to theweb surfing stage.
Otherwise, the system considers it as a warning and asks
the user for trying to select the command again.

2.2.3. Web Surfing Stage
The third andfinal stagewas implemented in JavaScript

as a Google Chrome extension. It is intended to receive
and translate the user selections into browser commands
and return a suitable feedback (Figure 2).
Firstly, the extension calculates howmanynodes are on

the current web page, where a node is any kind of click-

able object, such as links, buttons or forms, among others.
Then, those nodes are coded with the minimum number
of digits using numbers from 0 to 5. As can be seen Fig-
ure 2, those numbers are included in the navigation ma-
trix in order to increase the manageability of the applica-
tion. Additionally, the “TAG” toggle controls the display-
ing of those codifications in form of tags allocated close
to each link.
Thus, any link on the page can be executed by introduc-

ing its coding only using the navigation matrix (Mugler
et al., 2010). Moreover, the application avoids the inser-
tion of an additional “return” key to confirm the selection
by automatically executing the link provided that the user
has selected the needed number of characters, increasing
the web surfing speed.
Feedback is provided to the user in several ways. On the

one hand, when tag displaying is enabled, the extension
initializes a buffer on the upper left corner of the screen
that indicates what numbers were previously selected. In
case of a selection error, user can remove the last selec-
tion with the left arrow command. On the other hand,
potential selections (i.e., selections whose coding starts
with the previously selected numbers) are highlighted in
green, as shown in Figure 2.

2.3. Evaluation Procedure

During the assessment, all participants were sat down
on a comfortable chair or on their own wheelchair, in
front of a panoramic screen. Each user carried out four
different sessions: two calibration sessions (Cal-I and
Cal-II) and two evaluation sessions (Eval-I and Eval-II).

2.3.1. Calibration Sessions
The first calibration session was divided in two parts:

classifier optimization and threshold calibration. Clas-
sifier optimization approximately lasted 24 min, and it
was divided in 4 trials of 6 items (i.e., words composed of
six characters). Users were asked for sequentially paying
attention to those items while the matrix was flashing.
Fifteen sequences were used (i.e., each row and column
was illuminated 15 times in a single trial), so each desired
character was highlighted 30 times. In order to keep the
attention on the task, users were recommended to count
howmany times the target itemwas being flashed. In this
initial session, only the keyboard matrix was displayed.
Then, SWLDA was performed for assigning the optimum
weights and number of sequences for each user. This cus-
tom classifier was used during the rest of the assessment.
Threshold calibration was composed of 8 trials with 6

items: half of those trials were intended to record the
control state and the rest of them the non-control state.
Navigation matrix was used in order to reduce the task
time. Due to the variation on the optimum number of se-
quences for each user, the duration of this task differed
between users (average trial duration, ME 3:12±1:08min,
CS 2:58±0:51 min). Control state was recorded with the
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same procedure as the classifier optimization: asking the
users for focusing their attention on specific series of
commands. However, non-control state recordings fol-
lowed a different procedure. A wide text was displayed on
the left of the screen while navigation matrix was flash-
ing. Users were asked to ignore the stimuli and read the
text.
The second calibration session was only composed of

another threshold calibration. That was necessary be-
cause the amplitude and latency of the P300 potentials
usually vary between sessions, owing to the variation of
the cap position on the scalp, user attention, attitude,
among others (Picton, 1992). Therefore, recording the
intensity of control and non-control state potentials in
two different days increases the robustness of the asyn-
chronous threshold customized for each user. The final
threshold value was calculated as the average of both op-
timal thresholds.
Whether a user did not reach a minimum of 70% classi-

fication accuracy in the first calibration session, the clas-
sifier calibration was repeated in the second one. If after
both sessions the user could not obtainmore than 70%ac-
curacy, considered as the minimum rate for experiment a
satisfactory performance, the user was discarded of the
assessment (Mugler et al., 2010; Corralejo et al., 2014).
This case occurred three times in the MS subject group.

2.3.2. Evaluation sessions
Both evaluation sessions were intended to assess the

quality of the web browser by means of setting differ-
ent tasks. Nonetheless, threshold was not applied in the
first one in order to determine if there is an improvement
when it is applied (i.e., in the second one).
The first evaluation session was made up of five differ-

ent tasks that required the use of the web browser. The
four first ones were intended to assess the control state
and the last one was only intended to assess the non-
control state behavior. As pointed out earlier, tasks du-
ration varied between users due to the optimal number of
sequences for each one. However, a mean average time
and its standard deviation are provided. The evaluation
tasks were the following:
1) Link selection. Users had to scroll up and down
a Wikipedia page and select one link (6 items, MS
4:01±1:31 min, CS 2:33±0:24 min).

2) Google searching. Users had to select the Google
search form, write “BCI” inside it and select “ENTER”
for running the search (8 items, MS 6:00±1:28 min,
CS 4:28±1:03 min).

3) Publishing a tweet. Users had to select the Twit-
ter form, write a two-character tweet and send it (6
items, MS 4:13±1:19 min, CS 2:38±0:31 min).

4) Writing an e-mail. Users had to read an inbox
mail and reply it (13 items, MS 8:18±3:31 min, CS
6:18±2:13 min).

5) Passive reading. Users had to read a piece of news
while ignoring the stimuli (10 items, MS 5:17±1:56

min, CS 4:17±0:45 min).
The second evaluation session was intended to assess

the behavior of the web browser when threshold is en-
abled. It wasmade up of three slightly different tasks that
involve the use of control and non-control states, alter-
nating web page reading and web surfing:
1) Reading and link selection. Users had to scroll a
Wikipedia page, read the information and select one
link (8 items, MS 4:44±1:08min, CS 4:18±1:44min).

2) Publishing a tweet. Same procedure as Eval-I (6
items, MS 3:44±1:00 min, CS 3:25±1:28 min).

3) Active reading. Users had to read a piece of news,
scrolling down the web page if needed (4 items, MS
2:20±0:55 min, CS 1:58±0:35 min).

The number of steps and the timeneeded to accomplish
those tasks was recorded, as well as the mistakes and se-
lections needed for solve them. With this information, a
quantitative testing was performed, obtaining the users’
accuracies and the false negative rate (FNR) for each task,
defined as the ratio of false negatives (i.e., correct selec-
tion classified as non-state selection) to the total number
of selections.
Also, a qualitative testing was performed in order to ac-

quire a more accurate evaluation of the BCI web browser.
At the end of the last session, users were asked for ful-
filling a questionnaire. The survey consisted on 20 items
to be ranked in a 7-point Likert scale that assessed the
browser interface, its speed, the difficulty for selecting
a command, the duration of sessions, users motivation,
their expectations and their previous experience with
BCI applications, among others. Additionally, one open-
ended question allowed users to make personal sugges-
tions for further improvement.

3. Results

3.1. Quantitative analysis

The results of the copy-spelling calibration sessions are
presented in Table 2. The optimum number of sequences,
the number of committed errors and calibration sessions
accuracies for each user are shown. Accuracy is defined
as the ratio of the number of correct selections in control
statemode to the number of all performed selections, tak-
ing into account all the extra-selections made to correct
the wrong ones. As can be seen, three MS patients could
not obtain aminimumof 70%classifier accuracy and thus,
they were removed from subsequent assessment. Also, as
could be expected, CS users obtained a higher accuracy
and a lower number of sequences than MS patients.
Tables 3 and 4 show the results of the evaluation tasks.

For each task, the duration and the accuracy are pre-
sented. In addition, Table IV also indicates the FNR for
each user and task. At the end of both tables, average ses-
sion accuracy is shown for further comparison of the sys-
tem behavior when threshold is disabled (Eval-I) or en-
abled (Eval-II).
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Table 2: Copy-spelling calibration sessions results

User Cal-I Cal-II Ns

Accuracy WS(1) Accuracy WS(1)

MS

U01 87.50% 3 79.17% 5 10
U02 91.67% 2 87.50% 3 6
U03 41.67% 14 75.00% 6 15
U04 79.17% 5 95.83% 1 13
U05 <70% - <70% - -
U06 83.33% 4 66.67% 8 15
U07 83.33% 4 91.67% 2 7
U08 83.33% 4 70.83% 7 6
U09 75.00% 6 95.83% 1 10
U10 91.67% 2 75.00% 6 13
U11 <70% - <70% - -
U12 66.67% 8 70.83% 7 9
U13 83.33% 4 66.67% 8 8
U14 87.50% 3 87.50% 3 10
U15 91.67% 2 75.00% 6 6
U16 <70% - <70% - -

Mean 80.45% 5.14 79.81% 4.85 9.85
SD 13.65% 3.57 10.60% 2.54 3.29

CS

C01 100.0% 0 100.0% 0 7
C02 100.0% 0 91.67% 2 11
C03 100.0% 0 100.0% 0 6
C04 100.0% 0 91.67% 2 10
C05 100.0% 0 91.67% 2 9

Mean 100.0% 0 95.00% 1.2 8.60
SD 0.00% 0 4.56% 1.1 2.07

CS: control subjects, MS: multiple sclerosis patients, WS: wrong
selections,Ns: optimal number of sequences for each subject.
(1) Each session was composed of a total number of 24 selections.
(2) Mean and SD were calculated regardless of the discarded users
(i.e., those who could not reach a minimum of 70% accuracy in both
calibration sessions).

3.2. Qualitative analysis

Satisfaction questionnaire results are shown in Table 5.
It is noteworthy to mention that, in general, participants
were quite satisfied with the BCI browser. All positive
statements were rated above the mean value (4, neutral)
and almost all negative ones were rated below it. As can
be seen, the exceptions were the statements 3 and 13.
The third statementwas intended to evaluate the speed

of the browser. Some MS patients indicated that, in their
opinion, it took much too long to surf the Internet with
the BCI browser. In the thirteenth statement, both groups
of users declared to be slightly happy that the assessment
sessions were over.
Regarding the open-ended question, MS patients sug-

gested increasing the command selection speed, adding
a tab key command, trying to make the flashing less an-
noying, planning shorter sessions or trying to reduce the
minimum number of sequences. CS users added that the
number of symbols could be increased, for instance, by
using other nested matrix. Also, they pointed out that
sometimes they unintentionally focused their sight on
adjacent cells.

4. Discussion

The application was assessed by sixteen MS patients
and five CS users in four different days: two calibration
and two evaluation sessions. Calibration sessions were
intended to calculate the optimal SWLDA weights, num-
ber of sequences and threshold for each user, whereas
evaluation sessions were intended to assess the BCI web
browser completing different tasks. Moreover, a qualita-
tive analysis wasmade giving a satisfaction questionnaire
to the users.
As aforementioned above, three MS subjects were re-

moved from the assessment due to their low classifier ac-
curacy (<70%). This might be because their P300 evoked
potentials were too attenuated and/or their latency was
too variable. In addition, users could not be able to hold
the attention while stimuli were presented. It is not sur-
prising with regard to the U05 user owing to his lack of
sustained attention capability, as shown in Table 1. How-
ever, the clinical characteristics of users U11 and U16 do
not show an apparent reason for this behavior. Figure 4
shows twoP300potentials recorded in thePz electrode for
control and non-control states. It can be noticed that the
P300 potentials of this kind of users were quite noisy and
almost undetectable due to their low amplitude, which
would explain the poor performance of their classifier.
CS users obtained higher calibration accuracy than MS

patients in both sessions. Furthermore, their optimal
number of sequences was lower thanMS patients, so their
browser surfing speed was higher. This is reflected in the
questionnaire, specifically in the third statement, where
CS users stated that it does not take too long to surf the
Internet with the BCI browser, whereas MS patients re-
quested a higher speed.
Regarding the first evaluation session, although all CS

users could finish all tasks, it is worthy to note that not
all MS patients were able to finish them. As expected
due to its large number of minimal sequences, the fourth
task, writing an e-mail, ended up as the most difficult
one for both type of users, reaching the lower local ac-
curacies (CS 90.96%, MS 71.11%). In contrast, link selec-
tion and publishing a tweet tasks were the easiest ones for
CS and MS users, respectively. Average accuracies show
that CS users got a better control of the browser (accu-
racy of 94.23%) than MS patients (accuracy of 77.46%).
Nonetheless, even though some MS patients could not
finish the tasks, five MS patients obtained average ac-
curacies greater than 80%, and one of them (user U02)
reached a perfect accuracy in all tasks (average accuracy
of 100.00%). In the case of CS users, all of them obtained
average accuracies greater than 80%, and two of them,
C01 and C03, reached a perfect control of the browser (av-
erage accuracy of 100.00%).
In relation to the assessment of the threshold in Eval-I

passive reading task, both type of users reached high ac-
curacies (CS 96.00%, MS 85.77%). In fact, three CS users
and three MS patients obtained a perfect accuracy, which
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Table 3: Assessment results for the first evaluation session

User(1) Link selection Google searching Tweet publishing E-mail writing Passive reading Average
TIM ACC TIM ACC TIM ACC TIM ACC TIM ACC accuracy(2)

MS

U01 3:35 100.0% 6:05 100.0% 5:20 77.78% 15:04 66.67% 5:30 90.00% 79.54%
U02 2:22 100.0% 4:02 100.0% 4:24 100.0% 5:17 100.0% 3:18 100.0% 100.0%
U03 N.c. 25.00% 6:42 85.71% N.c. 57.14% N.c. - 8:15 100.0% 61.11%
U04 2:48 100.0% 4:45 100.0% 2:49 100.0% 6:24 92.86% 7:09 87.50% 96.97%
U06 4:20 87.50% 8:05 72.73% 4:49 77.78% 8:54 75.00% 8:15 87.50% 77.27%
U07 4:45 72.73% N.c. 40.00% 3:37 83.33% N.c. 50.00% 3:51 60.00% 63.33%
U08 3:12 100.0% 6:20 100.0% 4:50 88.89% 6:58 100.0% 3:18 90.00% 97.20%
U09 7:35 100.0% N.c. 70.00% 3:20 100.0% N.c. 62.50% 5:30 50.00% 82.35%
U10 3:41 100.0% N.c. 66.67% 5:01 75.00% N.c. 62.50% 7:09 100.0% 76.00%
U12 N.c. 66.67% 8:00 72.73% 7:02 63.64% N.c. 53.33% 4:57 90.00% 62.79%
U13 N.c. 71.43% 4:26 88.89% 2:13 100.0% 7:12 80.00% 2:45 90.00% 83.78%
U14 3:48 75.00% N.c. 75.00% 3:08 57.14% N.c. 46.15% 5:30 80.00% 62.50%
U15 N.c. 42.86% 5:31 70.00% 3:57 75.00% N.c. 64.29% 3:18 90.00% 64.10%

Mean 4:01 80.09% 6:00 80.13% 4:13 81.21% 8:18 71.11% 5:17 85.77% 77.46%
SD 1:31 24.48% 1:28 17.84% 1:19 15.93% 3:31 18.67% 1:56 14.94% 14.24%

CS

C01 2:16 100.0% 3:40 100.0% 2:14 100.0% 3:39 100.0% 3:39 100.0% 100.0%
C02 2:51 00.00% 5:56 75.00% 3:16 100.0% 9:06 75.00% 5:00 100.0% 82.50%
C03 2:00 100.0% 3:16 100.0% 2:00 100.0% 4:20 100.0% 3:20 100.0% 100.0%
C04 2:50 100.0% 4:45 100.0% 2:50 100.0% 6:06 92.31% 4:41 90.00% 96.97%
C05 2:50 100.0% 4:44 100.0% 2:50 83.33% 8:18 87.50% 4:46 90.00% 91.67%

Mean 2:33 100.0% 4:28 95.00% 2:38 96.67% 6:18 90.96% 4:17 96.00% 94.23%
SD 0:24 0.00% 1:03 11.18% 0:31 7.45% 2:13 10.39% 0:45 5.48% 7.39%

TIM: task duration, ACC: task accuracy for each user, “n.c.” (not completed) means that the user could not finish the task and thus, the task duration
is not defined.
(1) MS patients U05, U11 and U16 were removed from the assessment because they could not obtain a minimum accuracy of 70% in calibration
sessions.
(2) This average accuracy includes only the evaluation tasks that do not use the threshold (i.e., it does not include the passive reading results).

Figure 4: Average P300 potentials for control and non-control states recorded during the calibration sessions over the Pz electrode.
User U05 (a) was discarded of the assessment due to his low classifier accuracy. His P300 potential is noisy and barely recognizable,
in contrast to the user U07 (b), whose P300 potential has normal amplitude and latency.

a priori suggest that the use of threshold could improve
the BCI browser performance.

In the second evaluation session, eight MS patients ob-
tained average accuracies greater than 80%, and one of
them (user U04) reached a perfect control of the browser.
CS users achieved accuracies greater than 80% and 2
of them (users C03 and C05) obtained a perfect perfor-
mance. Regarding the FNR, threshold causes an average
of 4.61%±8.71% and 10.87%±14.33%of false negative er-
rors to the total number of selections for CS and MS sub-
jects, respectively. In addition, average accuracies of the

second evaluation session (threshold enabled) are higher
(CS 95.75%, MS 84.14%) than the obtained in the first
one (CS 94.23%, MS 77.46%). However, it is noteworthy
to mention that the improvement in terms of accuracy
for CS subjects between both evaluation sessions is not
significantly higher (Wilcoxon signedrank test, pvalue=
0.63), probably because of their small number of overall
errors. Therefore, the threshold avoided less uncertain
selections for CS subjects than for MS ones. It suggests
that, on subjects with full physical and cognitive capa-
bilities, the introduction of the control state threshold

8

A.3. Mart́ınez-Cagigal et al. (2017) 145



Table 4: Assessment results for the second evaluation session

User Reading & Link Tweet publishing Active reading Avg.
TIM FNR ACC TIM FNR ACC TIM FNR ACC ACC(1)

U01 6:05 0.30 92.31 N.c. 0.00 44.44 1:45 0.00 100.0 76.92
U02 4:02 0.25 91.67 2:31 0.13 85.71 2:48 0.00 100.0 92.00
U03 N.c. 0.13 100.0 N.c. 0.13 62.50 2:39 0.00 100.0 85.00
U04 3:50 0.00 100.0 2:48 0.00 100.0 1:53 0.00 100.0 100.0
U06 5:42 0.00 77.78 3:45 0.00 85.71 4:30 0.00 85.71 82.61
U07 N.c. 0.40 100.0 3:21 0.22 88.89 1:29 0.00 100.0 95.65
U08 3:22 0.00 70.00 3:42 0.09 81.82 2:08 0.00 75.00 76.00
U09 N.c. 0.17 83.33 N.c. 0.36 92.86 N.c. 0.00 75.00 86.67
U10 N.c. 0.08 63.64 N.c. 0.14 71.43 N.c. 0.00 75.00 68.18
U12 N.c. 0.17 33.33 N.c. 0.00 75.00 N.c. 0.33 83.33 72.00
U13 5:24 0.33 91.67 5:24 0.20 100.0 1:54 0.00 100.0 96.30
U14 N.c. 0.18 72.73 4:37 0.00 100.0 1:56 0.00 100.0 87.50
U15 N.c. 0.07 85.71 N.c. 0.56 66.67 N.c. 0.00 75.00 75.00

Mean 4:44 0.16 81.71 3:44 0.14 81.16 2:20 0.03 83.93 84.14
SD 1:08 0.13 18.78 1:00 0.17 16.69 0:55 0.09 11.77 10.08

C01 2:58 0.00 100.0 2:17 0.00 83.33 1:29 0.00 100.0 94.44
C02 7:02 0.23 92.31 5:20 0.10 100.0 2:44 0.00 60.00 89.29
C03 2:40 0.00 100.0 2:04 0.00 100.0 1:20 0.00 100.0 100.0
C04 4:32 0.00 100.0 4:36 0.25 87.50 2:20 0.00 100.0 95.00
C05 4:18 0.11 100.0 2:48 0.00 100.0 1:55 0.00 100.0 100.0

Mean 4:18 0.07 98.46 3:25 0.07 94.17 1:58 0.00 92.00 95.75
SD 1:44 0.10 3.44 1:28 0.11 8.12 0:35 0.00 17.89 4.48

MS patients indicated as Uxx, control subjects indicated as Cxx;
TIM: task duration, ACC: accuracy for each user, AVG ACC: averaged
accuracy, FNR: false negative rate (defined as the ratio of false negatives
to the total number of selections), “N.c.” (not completed) means that
the user could not finish the task and thus, the task duration is not
defined.
(1) MS patients U05, U11, and U16 were removed from the assessment
because they could not obtain a minimum of 70% calibration accuracy.

does not provide an improvement in terms of accuracy,
although it may provide a less demanding control. Re-
garding MS patients, there is an improvement of 6.68%
between both sessions, although it does not provide a sig-
nificant difference (Wilcoxon Signedrank Test, pvalue=
0.11). Nonetheless, despite these advantages, a bad op-
timized threshold can lead to an increased required time
to finish the proposed task due to false negative errors.
This fact is clearly present in subject C02, who reached
a perfect accuracy in the shared publishing a tweet task
in both sessions. The required time for finishing the task
was increased in the second one, since a 10% of the total
selections were false negatives. This problem is caused
by the inability of the threshold to follow the nonstation-
ary changes of the EEG, which compromises a tradeoff
between browser speed and selection accuracy. However,
MS patients results reinforce the fact that the BCI browser
performance is improved when the threshold is enabled,
allowing end users to avoid selection mistakes when the
intensity of their P300 potentials is not high enough for
being considered as a strong deliberate selection.
Even though we are comparing the evaluation sessions

in overall terms in order to assess the possible improve-
ments when threshold is enabled, only one task (publish-
ing a tweet) is strictly the same in both sessions. Due to

the absence of threshold in the first session, none of the
tasks involved the use of non-control state. Owing to the
fact that the asynchrony management is one of the main
contributions of the paper, we decided to slightly vary the
first session tasks in order to involve changes between
both states. For this reason, although the tasks are al-
most the same in both sessions, two of the second session
tasks require commutations between the states, which in-
creases the number of minimum selections and thus, the
time to accomplish the tasks. Only one task remains unal-
tered, which is intended to be used for comparing the web
browser performance when threshold is either enabled or
disabled.
In fact, results from the shared task show a clear dis-

tinction between CS and MS users. In case of CS users,
accuracy decreases from the first session (96.67%±7.45%)
to the second one (94.17%±8.12%). As expected, the
slightly higher amount of errors and the 7% rate of
false negatives lead to an increase of the mean required
time to accomplish the task (from 2:38±0:31 min to
3:25±1:28 min). Regarding the MS patients, accuracy
remains practically the same (from 81.21%±15.93% to
81.16%±16.69%), although the required time decreases
(from4:13±1:19min to 3:44±1:00min). In addition, only
a 14% of errors were false negatives. This behavior is
caused by an increase of the number of users that could
not finish the task, likely due to the intersession variabil-
ity of the EEG, which cannot be followed by the constant
threshold. Those nonstationary changes of the EEG are
emphasized as more sessions are carried out without up-
dating the custom classifier of each user and actually con-
stitute one of the main limitations of the current BCI sys-
tems (Shenoy et al., 2006; Nicolas-Alonso et al., 2015).
Regarding the qualitative analysis results, as afore-

mentioned, participants were quite satisfied with the BCI
browser. However, thirteenth statement results show that
the users were slightly happy that the assessment ses-
sions were over. This fact reveals that its participation
on the study implied an effort, which is an important as-
pect to take into consideration when the contents and
duration of the sessions are planned. Nevertheless, it is
worth to note that users were willing to participate in
further studies. As previously stated, for MS patients,
the item with the lowest rating was the speed. However,
browser speed is directly related to classifier accuracy,
which is calculated in the calibration sessions. Amore ro-
bust classifier, either using a more sophisticated training
algorithms or havingmore training samples, could obtain
higher calibration accuracy. Thus, it could reduce the op-
timal number of sequences in order to experience a faster
navigation. This issue does not appear in CS users, proba-
bly because their number of sequenceswas lower and they
committed fewer mistakes than MS patients. In contrast,
the top-rated aspect was the application interface, due to
its simplicity and user-friendliness.
Users also pointed out that, sometimes, they uninten-

tionally focused their attention on adjacent cells. This is-
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Table 5: Questionnaire results for the post-study assessment of the BCI web browser

Statement CS MS
Mean SD Mean SD

1 I am not used to surf the Internet 1.2 0.4 3.2 2.3
2 I have found interesting to use the BCI web browser 6.4 0.5 6.2 0.9
3 In my opinion, it takes much too long to surf the Internet with the BCI browser 4.0 1.0 4.8 0.9
4 My expectations for the browser were completely met 6.4 0.5 5.7 1.2
5 I was bored during the assessment sessions 2.8 1.3 2.7 2.0
6 I can imagine myself using this browser in my daily life 3.4 1.1 4.6 1.7
7 I became impatient during the assessment sessions 2.2 0.8 2.8 1.8
8 I found the assessment sessions entertaining 5.2 0.4 5.4 1.2
9 It was stressful to concentrate when it was required 2.0 1.0 2.9 1.7
10 I would gladly carry out more testing sessions with the BCI browser 6.6 0.5 5.6 1.2
11 The assessment sessions made me feel tired 2.8 1.8 3.0 1.9
12 User interface is intuitive and easy to understand 5.4 2.1 5.9 1.3
13 I am happy that the assessment sessions are over 4.6 0.9 4.2 1.9
14 I found it easy to select keyboard matrix commands 4.6 1.7 5.3 1.3
15 I found it difficult to select navigation matrix commands 2.4 1.1 2.5 1.3
16 I like computers and information technologies 6.0 1.0 4.9 2.4
17 Flickering stimuli are annoying 1.8 0.8 3.7 2.1
18 I would love to participate in other similar studies 6.0 1.0 5.2 1.5
19 The duration of the assessment sessions was too long 3.0 1.0 2.4 1.4

CS: control subjects, MS: multiple sclerosis patients.
Each statement was rated on a 7-point Likert scale where 0 means “strongly disagree”, 4 means “neutral” and 7 means “strongly agree”.

sue is known as the adjacency-distraction problem and is
inherent in the row-col paradigm (Townsend et al., 2010).
As its name suggests, adjacent non- target flashes dis-
tract users and cause selection errors, which are com-
monly found in adjacent cells or in those that belong to
the targets row and column. Specifically, the percentage
of this kind of selection errors out of the total number of
errors are 100% (out of 14 errors) and 87.57% (out of 141
errors) for CS and MS users, respectively. The probabili-
ties of randomly selecting one of those cells in the nav-
igation and keyboard matrices are 44.66%–66.66% and
28.88%–35.55% (depending on the position of the tar-
get cell), respectively. Therefore, it is clear that most er-
rors are due to this problem. A possible solution to the
adjacency-distraction problem is to use the checkerboard
paradigm, which solves both this and the double-flash
problem (Townsend et al., 2010).

Table ?? shows a comparison between previous BCI
browsers and our present study. Besides the fact that
P300 evoked potentials and node tagging makes the pro-
posed browser faster and more self-sufficient than other
previous approaches (Karim et al., 2006; Bensch et al.,
2007), the main advantage is the asynchrony manage-
ment. In this study, a control state threshold was imple-
mented, avoiding the use of a constant supervision or a
rigid “read command” (Karim et al., 2006; Bensch et al.,
2007;Mugler et al., 2010; Sirvent Blasco et al., 2012). This
approach allows users to calmly experiment a free surf-
ing navigation while the system continuously detects the
users intentions based on their attention. It is notewor-
thy to mention that strictly speaking, due to the nature
of the “odd-ball” paradigm, the application actually re-
mains synchronous. The use of this control state thresh-
old removes undesired selections when the user is ignor-

ing the stimuli, but it does not avoid synchronous selec-
tions, owing to the fact that the matrices keep flashing.
Nevertheless, it is common to classify applications that
use control state detection strategies as “asynchronous
BCIs”, which is a widely used term in the BCI literature
(Pinegger et al., 2015; Aloise et al., 2011; Zhang et al.,
2008; Panicker et al., 2011; Pan et al., 2013). This strategy
makes the control smoother and probably less demand-
ing, which is an advantage for end users who are suffering
from physical limitations. In addition, our approach was
tested with a bigger patient database than previous stud-
ies (Karim et al., 2006; Bensch et al., 2007; Mugler et al.,
2010), whereas our CS subject pool is limited in compari-
son with (Mugler et al., 2010) and (Pinegger et al., 2015).
However, CS subjects are not potential users of this kind
of applications and thus, their results cannot be general-
ized to any disease.

Regarding the web browser performance, the differ-
ences in the accuracies obtained by CS users and MS pa-
tients suggest that the reason lies on the symptoms of
the disease. For the MS patients, it has been observed
a highly variable classifier performance during the ses-
sions. Nevertheless, previous studies stated that P300-
based BCI systems can be controlled by severely disabled
people, regardless of their degree of disability (Kübler
and Birbaumer, 2008; Kübler et al., 2007; Corralejo et al.,
2014; Picton, 1992). As can be seen, notwithstanding
its lower performance compared to CS subjects, MS pa-
tients average accuracy (84.14%) is higher than the ones
reported in the previous approaches tested by ALS pa-
tients (Karim et al., 2006; Mugler et al., 2010; Sirvent
Blasco et al., 2012). Significant differences are found be-
tween our work and the accuracies provided by Mugler et
al (Mugler et al., 2010) when using a Mann-Whitney U–
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Table 6: Comparison between previous BCI browsers and present study

Author Control signal Type of signal Functionalities Assessment
Link selection Asynchrony Subjects Accuracy

Karim et al. (2006) SCP Endogenous Dichotomous tree Supervision 1 ALS 80.00%

Bensch et al. (2007) SCP/SMR Endogenous Dichotomous tree Supervision 4 ALS -
2 CS -

Mugler et al. (2010) P300 Exogenous Node tagging Read command 3 ALS 72.00%
10 CS 93.40%

Sirvent Blasco et al. (2012) P300 Exogenous Virtual cursor Read command 4 CS 93.00%

Yu et al. (2012) P300/SMR Both Virtual cursor Not needed 7 CS 93.21%

Present study P300 Exogenous Node tagging Threshold 16 MS 84.14%
5 CS 95.75%

Test (pvalue= 0.0193). However, although care must be
taken owing to the differences between both diseases, ac-
curacies show a higher overall performance for the dis-
abled subject population in comparison with other pre-
vious studies. Additionally, the cognitive disability that
commonly appears in MS patients is rarely presented on
ALS patients, since their neurologic damage is generally
focused onmotor neurons. For this reason, it is suggested
to test the BCI web browser with ALS patients as a fu-
ture line of research in order to get a better comparison
between both diseases. Similarly, CS users average accu-
racy (95.75%) is also slightly higher than those reported in
previous approaches (Mugler et al., 2010; Sirvent Blasco
et al., 2012; Yu et al., 2012), although it is not significantly
different (Mann-Whitney U–Test, p-value> 0.05). These
results reveal that the use of a threshold for discerning
between control and non-control states could be a use-
ful contribution for further asynchronous BCI P300-based
systems. In addition, a control state threshold appears
to be a more comfortable solution for users than a “read
mode” command, because it eliminates the need for be-
ing attentive to select a command when the user wants
to rest or to read a web page. Even though these results
show that our BCI web browser has successfully allowed
severely disabled people to experiment a truly free Inter-
net surfing, we can point out some limitations. As previ-
ously indicated, the major drawback of this kind of appli-
cations is the classifier performance variability between
sessions and users. Reducing this variability and increas-
ing the classification accuracy by usingmore suitable pro-
cessing techniques in both feature extraction and selec-
tion could improve the robustness of the system (Shenoy
et al., 2006; Nicolas-Alonso et al., 2015). In addition, con-
trol state threshold is calculated directly over the SWLDA
scores and thus, it depends on the classifier performance
of each user. Using algorithms that are not dependent
on the classifier, such as residual steady-state visually
evoked potentials, could improve the application perfor-
mance (Pinegger et al., 2015; Aloise et al., 2011; Zhang
et al., 2008). Another limitation is the impossibility to al-
ternate between lower case and capital letters, essential

for fulfilling user and password forms, and it should be
a further improvement. To conclude, although we have
included a significant amount of symbols, an additional
nested matrix with extra symbols (e.g., tab key, amper-
sand, slashes, brackets, etc.) would contribute to access
any web page in the address bar.

5. Conclusion

An asynchronous P300-based BCI web browser has
been designed, developed and evaluated. The systempro-
cesses the EEG signal of the users, and P300 potentials are
elicited using a visual “odd-ball” row-col paradigm com-
posed of two different matrices, which contains naviga-
tion and keyboard commands. Those commands are sent
to a Google Chrome extension, which traduces them and
gives visual feedback to the users. The browser has been
tested with five CS users and sixteen MS patients. Re-
sults show that our BCIwebbrowser can successfullymeet
their daily communication needs, allowing end users to
surf the Internet in an intuitive way. In addition, the av-
erage accuracies achieved by CS and MS users (95.75%
and 84.14%, respectively) are higher than that reported
in previous approaches. In fact, significant differences
have been found (p-value> 0.0193) between our results
and the accuracies reported in previous studies for dis-
abled subjects. However, care must be taken owing to
the fact that end users suffered from different diseases.
Therefore, control state threshold appears to be an appro-
priate solution for developing further asynchronous BCI
systems.
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Abstract

This study presents an asynchronous P300-based Brain–Computer Interface (BCI) system for controlling social net-
working features of a smartphone. There are very few BCI studies based on these mobile devices and, to the best of our
knowledge, none of them supports networking applications or are focused on an assistive context, failing to test their
systems with motor-disabled users. Therefore, the aim of the present study is twofold: (i) to design and develop an
asynchronous P300-based BCI system that allows users to control Twitter and Telegram in an Android device; and (ii)
to test the usefulness of the developed system with a motor-disabled population in order to meet their daily communi-
cation needs. Row-col paradigm (RCP) is used in order to elicitate the P300 potentials in the scalp of the user, which are
immediately processed for decoding the user’s intentions. The expert system integrates a decision-making stage that
analyzes the attention of the user in real-time, providing a comprehensive and asynchronous control. These intentions
are then translated into application commands and sent via Bluetooth to the mobile device, which interprets them and
provides visual feedback to the user. During the assessment, both qualitative and quantitative metrics were obtained,
and a comparison among other state-of-the-art studies was performed as well. The system was tested with 10 healthy
control subjects and 18 motor-disabled subjects, reaching average online accuracies of 92.3% and 80.6%, respectively.
Results suggest that the system allows users to successfully control two socializing features of a smartphone, bridging
the accessibility gap in these trending devices. Our proposal could become a useful tool within households, rehabilita-
tion centers or even companies, opening up new ways to support the integration of motor-disabled people, andmaking
an impact in their quality of life by improving personal autonomy and self-dependence.

Keywords: Brain-computer interface (BCI), smartphones, asynchronous control, social networks, P300 event-related
potentials, electroencephalography (EEG).

1. Introduction

Brain–Computer Interfaces (BCI) are able to establish a
communication system between our brains and the envi-
ronment, making it possible to control devices with our
brain signals. Such bypassing requires the monitoring
of brain activity, which is commonly accomplished using
electroencephalography (EEG) due to its portability, non-
invasiveness, and low-cost (Wolpaw et al., 2000). Hence,
electric potentials are recorded by placing a set of elec-
trodes over the user’s scalp (Wolpaw et al., 2000, 2002).
The main motivation of BCI systems has always been
to improve the quality of life of motor-disabled people,
which usually contributes to reduce the accessibility gap
in different fields. Thus, end users can take advantage

Email addresses: victor.martinez@gib.tel.uva.es (Víctor Martínez-
Cagigal), eduardo.santamaria@gib.tel.uva.es (Eduardo Santamaría-
Vázquez), javier.gomez@gib.tel.uva.es (Javier Gomez-Pilar), rob-
hor@tel.uva.es (Roberto Hornero)

of this novel technology to reduce their dependence, re-
gardless of their disability. Thesemotor-disabilities could
have been caused by neurodegenerative diseases, trau-
mas, muscle disorders, or any illness that impair the neu-
ral pathways that control muscles or the muscles them-
selves (Wolpaw et al., 2000, 2002; Kübler et al., 2007;
Kübler and Birbaumer, 2008). Moreover, BCI systemsmay
use a wide variety of control signals to detect the user’s
intentions in real time (Wolpaw et al., 2002). In partic-
ular, exogenous signals, such as P300 evoked potentials,
are commonly used to assure the efficacy of the systems
with any motor-disabled user. These potentials are pro-
duced in response to infrequent and particularly signifi-
cant stimuli about 300ms after their onset (Wolpaw et al.,
2002).

The rapid growth of the Internet in the last decades
has caused a huge impact on people’s lives, bringing en-
tirely new ways of everyday communication. This impact
has been enlarged by the popularity of the smartphones,
which provide a continuous Internet connection. In fact,
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it is estimated that there are 4.9 billion of unique mobile
users in the world, reaching a market penetration of 66%
(Kemp, 2017). Their functionalities cover from manag-
ing finances to reading news, including watching videos,
shopping, playing games or searching for information.
However, it is worthy to note that more than the 56% of
the time spent is dedicated to socializing (i.e., social me-
dia and instant messaging), both in everyday and work-
ing environments (Ipsos MORI and Google, 2017). Cur-
rently, there are 2.8 billion of active social media users,
and 91.4% of them access social media with their smart-
phones or tablets (IpsosMORI andGoogle, 2017). Despite
this development, the accessibility of these devices is still
restricted for motor-disabled people that are unable to
use accurately their hands and fingers.
Motor disabilities comprise the limitations on peo-

ple’s physical functioning that hinder their full and effec-
tive interaction with the environment and society (World
Health Organization, 2011). These impairments may be
caused by: (i) neurodegenerative diseases, such as mul-
tiple sclerosis, amyotrophic lateral sclerosis, Friedreich’s
ataxias, etc.; (ii) congenital conditions, such as cere-
bral palsy, polymalformative syndromes, myotonic dys-
trophies, etc.; or (iii) traumas, such as strokes or spinal
cord injuries, among others. It is estimated that the world
average prevalence rate of disability for adult people is
15.6%, which ranges from 11.8% in higher income coun-
tries to 18.0% in lower ones (World Health Organization,
2011). Moreover, diseases and traumas are not the only
cause that can lead to develop a motor disability, but
also the natural ageing contributes in a high extent. In
fact, older people are disproportionately represented in
disability populations and thus, everybody is suscepti-
ble to develop a motor disability at some point in their
lives (World Health Organization, 2011). In this respect,
BCI applications represent a novel technology fromwhich
disabled people can benefit to reduce their dependence.
From an expert and intelligent systems point of view,

BCIs utilize artificial intelligent techniques to replace, re-
store, enhance or supplement the natural central nervous
system outputs of their users (Hill andWolpaw, 2016). To
this end, BCIs should comprise a decision-making stage
that interprets neural activity and determines users’ in-
tentions or emotions. Moreover, several BCIs include an
adaptive engine that learns from the experience, modify-
ing classifier weights and features while the user controls
the system (Atkinson and Campos, 2016). These systems
can be trained to react to changes in the EEG signals that
could reflect: (i) emotions (Blondet et al., 2013; Atkinson
andCampos, 2016), (ii) road drowsiness (Da Silveira et al.,
2016), (iii) driving stress (Chen et al., 2017), (iv) men-
tal effort (Zammouri et al., 2018), (v) attention (Aloise
et al., 2011; Pinegger et al., 2015; Martínez-Cagigal et al.,
2017a), (vi) motor imagery (Wolpaw et al., 2002), or (vii)
event-related responses (Luck, 2014), among others. Ac-
cordingly, BCIs play a potential role as knowledge-based
systems in many clinical and industrial applications.

In recent years, some studies have attempted to apply
BCI systems to mobile devices with the aim of control-
ling a wheelchair (Jayabhavani et al., 2013), robots (Ma
et al., 2015), or detecting the user’s emotions (Blondet
et al., 2013). Despite the popularity of the smartphones
and tablets these days, there are very few studies in the
scientific literature that aim to control any of their func-
tionalities. These studies are limited to dial numbers in
cell phones (Wang et al., 2011; Chi et al., 2012), accept in-
coming calls (Katona et al., 2014), call contacts (Campbell
et al., 2010;Wang et al., 2011), spell words (Obeidat et al.,
2017; Elsawy et al., 2017), or play a simple racing game
(Wu et al., 2014). Possibly the work of Elsawy and El-
dawlatly (2015) is the one that relates more closely to the
topic, which allows users to open pre-installed apps and
visualize the image gallery. Nevertheless, to the best of
our knowledge, none of those studies has been focused on
providing a high-level control of a smartphone or tablet,
normaking social apps accessible to disabled people. Fur-
thermore, it is well known that disabled users generally
reach lower accuracies than healthy users (Wolpaw et al.,
2002; Sellers and Donchin, 2006; Martínez-Cagigal et al.,
2017a) and thus, the assessment of BCI systems with end
users is essential for ensuring a fair evaluation. Since
these studies have not been tested with a disabled pop-
ulation, their reliability may be compromised in real life
situations.
The purpose of this study is twofold: (i) to design and

develop a practical BCI-based application that allows dis-
abled people to access social media with any smartphone
or tablet; and (ii) to evaluate it with a population of
motor-disabled people in order to assess the usefulness
of our proposal to meet their daily communication needs.
With the objective of providing a comprehensive social
networking support, we consider that the system should
implement both a social network and an instant messag-
ing applications. In this case, the application will pro-
vide a complete control of Twitter and Telegram, which
currently have more than 317 and 100 millions of mo-
bile active users, respectively (Kemp, 2017). Moreover,
the application will monitor users’ attention and apply a
dynamic asynchronous control management (Martínez-
Cagigal et al., 2017a). As a result, the expert system will
only deliver conscious selections, eliminating the need of
read-mode commands or external supervisors.

2. Subjects

Eighteen motor-disabled subjects (MDS, mean age:
47.63 ± 9.53 years; 11 males, 8 females) and ten healthy
control subjects (CS, mean age: 26.10 ± 3.45 years; 8
males, 2 females) were included in this study. MDS partic-
ipants were recruited from the National Reference Centre
on Disability and Dependence, located in León (Spain).
All subjects gave their informedwritten consent to partic-
ipate in the study, previously approved by the local ethics
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Table 1: Demographic and clinical data of the participants

User Sex Age DD Disease

M
ot
or
-D
is
ab
le
d
su
bj
ec
ts

M01 F 48 90% Stroke
M02 M 46 80% Spinal cord injury
M03 F 38 93% Friedreich’s ataxia
M04 M 39 98% Spinal cord injury
M05 F 49 78% Friedreich’s ataxia
M06 M 31 76% Cerebral palsy
M07 M 52 99% Cerebral palsy
M08 M 44 90% Friedreich’s ataxia
M09 M 47 69% Cerebral palsy
M10 M 67 87% Cerebral palsy
M11 M 62 86% Myotonic dystrophy
M12 M 47 90% Polymalformative syndrome
M13 F 66 94% Friedreich’s ataxia
M14 F 40 88% Friedreich’s ataxia
M15 M 38 98% Spinal cord injury
M16 M 50 80% Spinal cord injury
M17 F 42 89% Cerebral palsy
M18 F 45 84% Spinal cord injury

Co
n
tr
ol
su
bj
ec
ts

C01 M 25 0% -
C02 M 25 0% -
C03 M 24 0% -
C04 M 25 0% -
C05 M 25 0% -
C06 M 32 0% -
C07 M 24 0% -
C08 M 25 0% -
C09 F 23 0% -
C10 F 33 0% -

F: female, M: male, DD: degree of disability.

committee. Table 1 summarizes the clinical and demo-
graphic characteristics of all participants. As can be no-
ticed, all MDS present moderate or high degrees of mo-
tor disability (mean: 86.42% ± 8.58%), caused by differ-
ent diseases: stroke (1), spinal cord injuries (5), Friedre-
ich’s ataxias (5), cerebral palsies (5), polymalformative
syndrome (1), and myotonic dystrophy (1).

3. Methods

As shown in Fig. 1, the developed BCI application in-
volves three main entities, which communicate among
themselves: (i) the user, which involves the EEG signal ac-
quisition; (ii) the laptop, which generates the visual stim-
uli, processes the signal, decodes the user’s intentions
and translates them into commands; and (iii) the mobile
device, which interprets those commands and provides
visual feedback to the user. The methodology that is ap-
plied to each stage, as well as the evaluation procedure,
are described below.

3.1. Signal acquisition

EEG signals fromusers were recorded using eight active
electrodes, placed on Fz, Cz, Pz, P3, P4, PO7, PO8 and Oz,
according to the International 10–20 System distribution
(Jasper, 1958). The system was referenced to the earlobe,

Figure 1: Structure of the BCI social network application. The
EEG signal of the user is sent to the laptop, which processes
it, decodes the user’s intentions and translates them into com-
mands in real time. These commands are finally sent to the de-
vice (i.e., smartphone or tablet) via Bluetooth, which interprets
them and provides visual feedback to the user.

using the Fpz electrode as a ground. Electrodes were con-
nected to a g.USBamp amplifier (g.Tec, Guger Technolo-
gies, Austria) with a sampling frequency of 256 Hz. As a
pre-processing stage, band-pass (0.1–60 Hz), notch (50
Hz) and common average reference (CAR) filters were ap-
plied. BCI2000 platform was used to record the data, dis-
play and process the stimuli (Schalk et al., 2004).

3.2. Signal processing

The exogenous nature of P300 evoked potentials avoids
training (Wolpaw et al., 2002). Furthermore, the num-
ber of different commands that can be selected by the
user is extremely large whether the odd-ball paradigm is
used (Farwell and Donchin, 1988; Wolpaw et al., 2002;
Martínez-Cagigal et al., 2017a). In this paradigm, an in-
frequent target stimulus, which has to be attended, is pre-
sented among other distracting background stimuli that
have to be ignored. When the user attends to the target
stimulus, a P300 potential appears mainly on the pari-
etal and occipital cortex (Farwell andDonchin, 1988;Wol-
paw et al., 2002; Martínez-Cagigal et al., 2017a). We used
an extension of the odd-ball paradigm, known as row-
col paradigm (RCP), for decoding the users’ intentions
(Townsend et al., 2010). In the RCP, a matrix contain-
ing the commands that control the BCI application is dis-
played, whose rows and columns are randomly flashed.
The user, who has to stare at the desired command, will
generate a P300 potential when the target’s row or col-
umn is illuminated (Farwell and Donchin, 1988; Wol-
paw et al., 2002; Townsend et al., 2010; Martínez-Cagigal
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et al., 2017a; Martínez-Cagigal and Hornero, 2017; Obei-
dat et al., 2017).
Social media apps in general and, particularly, Twitter

and Telegram, have some key functionalities that should
be controlled. In this regard, owing to the fact that not
only the RCPmatrices have to include control commands,
but also alphanumeric characters and symbols, our appli-
cation uses alternatively two different matrices: (i) main
matrix, and (ii) keyboard matrix (see Fig. 2). The first one
is intended to control the main functionalities of Twitter
and Telegram, such as loading the home view, opening
a new tweet or chat, visualizing a profile or contact, tog-
gling between both social networks or scrolling the cur-
rent view. The second one, by contrast, is intended to
write texts and fill out forms. Both matrices can be freely
toggled between themselves if the user selects the com-
mand “MTX”.
Due to the high sampling rate of the EEG recordings

relative to the low frequency of the P300 potential re-
sponse, a dimensionality reduction is beneficial for the
real-time classification (Krusienski et al., 2008). In or-
der to extract the most relevant features of the EEG sig-
nal, a sub-sampling of 20 Hz is applied on the first 800
ms from the stimulus onset (i.e., 16 samples per stimu-
lus and channel). Then, channels are concatenated, re-
turning a vector of 128 features per stimulus (Corralejo
et al., 2014; Martínez-Cagigal et al., 2017a). Afterwards,
the extracted feature vectors of each stimulus are pro-
cessed by a linear classifier, which determines the pres-
ence (i.e., positive class) or the absence (i.e., negative
class) of a P300 evoked potential. Step-wise linear dis-
criminant analysis (SWLDA) was used in this study, with
pin = 0.10 and pout = 0.15 as selection/elimination cri-
teria and a maximum of 60 selected features for each in-
put vector (Krusienski et al., 2006, 2008; Corralejo et al.,
2014; Martínez-Cagigal et al., 2017a; Martínez-Cagigal
and Hornero, 2017). Even though SWLDA has a sim-
ple implementation, it delivers similar performances and
lower computational cost in comparison with more com-
plex methods, which makes it a popular algorithm for
the P300 classification problem (Krusienski et al., 2006,
2008; Blankertz et al., 2011; Zhang et al., 2016; Martínez-
Cagigal et al., 2017b). This method calculates a pro-
jection of the input data that simultaneously minimizes
thewithin-class andmaximizes the between-class covari-
ances (Keinosuke, 1990). Thus, the probability score of
finding a P300 in the i-th illumination is computed us-
ing the Euclidean distance between the projected data
and the projected mean of the positive class (Narsky and
Porter, 2013), as follows:

li = 1− ‖〈w,xi〉 − 〈w, µi〉‖ (1)

where w is the weight vector, computed in a calibration
session; xi denotes the feature vector, and µi the mean of
the positive class. The probability of selecting a certain
command j is computed as the average of the scores of all

the stimuli that belong to its row and column, as indicated
in (2). Therefore, the output selected command is the one
that provides themaximum average probability (i.e., ps =
maxp) (Martínez-Cagigal et al., 2017a).

pj =
1

N

∑
li∈row∪col (2)

RCP-based matrices are synchronous processes, which
means that the system will deliver a selection even if
the user is not paying attention to the visual stimula-
tion (Aloise et al., 2011; Pinegger et al., 2015; Martínez-
Cagigal et al., 2017a). This fact severely restricts the au-
tonomy of the application, needing an external supervi-
sor or implementing a read-mode command that could
pause the system for a fixed number of seconds. In our ap-
plication, we have implemented a dynamic asynchronous
control management by monitoring the user’s attention
(Martínez-Cagigal et al., 2017a). The method works as
follows: (i) EEG signals of the user paying attention (i.e.,
control state) and ignoring (i.e., non-control state) the
stimuli are recorded in a calibration session; (ii) the sig-
nals are processed and the final selected command prob-
abilities ps are stored in both control and non-control
arrays; (iii) the arrays are fed into a receiver operating
characteristic (ROC) curve for determining the optimum
threshold that maximizes the sensitivity-specificity pair;
(iv) the custom threshold value T for each user is then
used online. In the online sessions, the selected com-
mand probability is compared with the threshold in real-
time. If ps > T , the selection is accepted and the com-
mand is sent via Bluetooth to the mobile device; other-
wise, the selection is rejected and the system encourages
the user to try to select the command again.

3.3. Application
It has been recently reported that 98.8% of the smart-

phones that are sold these days either use Android or iOS
(International Data Corporation, 2017). In fact, Android
has an 83.4% of the worldwide smartphone market share,
while iOS has a 15.4% (International Data Corporation,
2017). For this reason, and taking into account that An-
droid is a free open platform, we have developed our ap-
plication for this operating system. Whether the applica-
tion is used for the first time, the user is asked to login
the Twitter account and to register the telephone num-
ber to Telegram. Switching between both services is also
handled by a toggle command that can be selected by the
user. Fig. 3 shows several snapshots of the final applica-
tion, whose main functionalities are described below.

Twitter. Defined as a popular free social networking ser-
vice that allows users to broadcast public small messages
(up to 280 characters), known as tweets. Although it was
originally developed as an online service, itsmobile activ-
ity reaches more than 317 million of active users, which
makes Twitter one of the most installed social network-
ing services in smartphones or tablets nowadays (Kemp,
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Figure 2: Evaluation setup from the point of view of the user: (a) EEG acquisition unit, (b) laptop that monitors the EEG signal,
processes it and generates the stimuli; (c) smartphone on a small tripod, close enough to the user for receiving the visual feedback;
(d) panoramic screen that displays the stimuli. Both matrices are depicted: (left) main matrix, whose first row is currently flashed;
and (right) keyboard matrix, which can be toggled by the user through the “MTX” command.

Figure 3: Snapshots of the BCI social networking application: (a) Twitter’s profile timeline, (b) dialog for writing tweets, (c) tweet
view, (d) Telegram’s conversation list, (e) Telegram’s group, and (f) contact list.

2017). Our BCI application implements the entire set
of Twitter functionalities, including both the possibil-
ity of interacting with: (i) “tweets”, writing, answering,
“retweeting”, or making them as favorite; and (ii) ac-
counts, surfing among profiles, or sending direct mes-
sages.

Telegram. Defined as a non-profit cloud-based instant
messaging service that allows users to send encrypted
messages and exchange files of any type in real-time.
Even though it has a desktop version, its popularity is
extended thanks to the mobile application, which has
more than 100 million of active users and has become the
most popular instant messaging app in several countries
(Kemp, 2017). Our BCI application covers its main func-
tionalities, including the possibility of interacting with
individual chats, groups and channels through real-time
messages, or creating new chats with any contact that is

stored in the device.

3.4. Evaluation procedure

The evaluation setup is depicted in Fig. 2. During
the assessment, participants were sat on a comfortable
chair or on their own wheelchair, in front of a panoramic
screen, as well as in front of a smartphone on a small tri-
pod. The screen was connected to a laptop (Intel Core i7
@ 2.6 GHz, 16 GB RAM, Windows 10), which executed
the signal processing stage and sent the commands to
the mobile device (Samsung Galaxy S7, 4GB RAM, An-
droid 7.0) via Bluetooth. The assessment was composed
by three different sessions: the first two intended to cal-
ibrate the system, and the last one intended to evaluate
the BCI application.

Calibration 1. The first session was intended to com-
pute the optimal parameters for each user, such as the
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number of sequences (i.e., repetitions of the stimuli), the
classifier’s weight vector, and the asynchronous thresh-
old value. Firstly, users were asked to pay attention to 6
items in 4 different trials (i.e., to spell 4 words composed
of 6 characters). Due to its larger size, the keyboard ma-
trixwas used and thenumber of sequenceswas fixed in 15.
During this calibration, users were encouraged to count
how many times the target character was being flashed,
in order to keep attention to the task. After these runs,
SWLDA was trained, returning the weight vector and the
most appropriate number of sequences for each user. The
latter is computed as the minimal number of repetitions
that reaches a 100% of accuracy using the training data.
Hereinafter, the trained SWLDA model and the optimal
number of sequences for each userwere used in the online
sessions. Note that training data was composed of 5400
observations per subject (6 items× 4 trials× 15 seq. × [7
rows + 8 columns]). Then, the first stage of threshold cali-
brationwas performed. Composed of 8 trials with 6 items,
the calibrationwas intended to record signals of both con-
trol and non-control states. Thus, users were asked to pay
attention to 4 trials, and to ignore the flashings of the re-
maining 4 (e.g., by reading a text).

Calibration 2. The second sessionwas intended to finish
the threshold calibration for increasing the overall per-
formance. The objective was to record additional data
in order to create a most robust asynchronous thresh-
old that could be adapted to the inter-session variability
of the participants (Picton, 1992; Martínez-Cagigal et al.,
2017a). Hence, users were asked to spell 4 trials and ig-
nore 4 trials more, all of them composed by 6 items. It is
noteworthy that both stages of the threshold calibration
were performed using the main matrix, aiming to reduce
the task time due to its smaller size. Then, thresholds
for both sessions were calculated as the optimal points
of the ROC curves using control and non-control classes.
Finally, the optimal threshold value was computed as the
average of them.

Evaluation. The third sessionwas intended to assess the
performance and the quality of the developed BCI system.
The evaluation session, strictly online, was made up of 6
different tasks, whose difficulty increased progressively.
It is worthy tomention that the duration of each task var-
ied among users due to their different optimal number
of sequences. These tasks are described below, together
with the ideal number of selections and the matrices that
are required to finish them.

i) Toggling betweenTwitter andTelegram. UsingTwit-
ter, users had to scroll down and up the timeline and
toggle to Telegram (3 items, main matrix).

ii) Retweeting a tweet. Using Twitter, users had to scroll
down the timeline, select one tweet and retweet it (4
items, main matrix).

iii) Writing a new tweet. UsingTwitter, users had to open
the form to write a new tweet and spell “hello” (7

items, both matrices).
iv) Checking the profile and answering a tweet. Using

Twitter, users had to visit their own profile, select
the last tweet and answer “great!” (11 items, both
matrices).

v) Creating a new chat. Using Telegram, users had to
select one contact, create a new chat, and spell “how
are you?” (11 items, both matrices).

vi) Chatting with someone. Using Telegram, users had
to select one chat from the conversations list, in
which the interlocutor had said: “hi! how are you?”,
and reply with “fine, and you?” (12 items, both ma-
trices).

During the evaluation session, both quantitative and
qualitative metrics have been registered. With regard to
the quantitative measures, the number of correct selec-
tions, errors, sequences and the time that it takes to ac-
complish each task have been noted down. As a result,
accuracies and output characters per minute (OCM) for
each task have been calculated. Accuracy is defined as the
percentage of correct selections to the total number of se-
lections. It is worthy to note that the selections that have
not overcome the asynchronous threshold have not been
considered errors, since they have not been sent to the fi-
nal device. OCM, calculated by dividing the total number
of selections by the duration of the task, is an online met-
ric that estimates the true communication rate of the sys-
tem (Speier et al., 2013). Although information transfer
rate (ITR) has traditionally been used in this respect, sev-
eral authors pointed out that ITRmakes assumptions that
are usually incorrect in online BCI systems (Speier et al.,
2013; Yuan et al., 2013). ITR assumes that: (i) all possible
selections are equally probable, (ii) the system is memo-
ryless, and (iii) a synchronous paradigm is used. In on-
line systems where users are allowed to correct selection
errors, ITR may return counterintuitive results when two
different users type the same word and one shows lower
speed, but returns a higher ITR. Since correcting an er-
ror implies to successfully spell two or more commands,
the ITR increases because the decrease in accuracyweighs
less than the increase in extra selections. Moreover, ITR
requires the number of possible selections (i.e., n), as well
as the reached accuracy. Despite that the latter is a global
metric, n varies if more than one RCPmatrix is used, hin-
dering the generalization of ITR values. In addition, ITR
assumes that commands are sequentially selected follow-
ing a constant speed, without pauses. Therefore, the es-
timation is biased in asynchronous-based BCI systems. It
is also noteworthy that the ITR estimation is incorrect if
the subject did not perform any error, returning an infi-
nite value. According to this rationale, ITR is replaced by
OCM considering the nature of the proposed BCI system.
Regarding the qualitative testing, users were asked to

fulfill a questionnaire at the end of the session. The sur-
vey was composed of 20 items that had to be ranked in a
7-point Likert scale (Likert, 1932). These items assessed
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the subjective opinions of the users in regard to the appli-
cation speed, interface, accessibility, the duration of the
sessions, the users’ motivation and their expectations,
among others. Moreover, an additional open-ended ques-
tion was included to collect their personal suggestions
for further improvements. It is noteworthy that optimal
number of sequences and trained SWLDA models, previ-
ously computed in the calibration sessions for each sub-
ject, were used thereinafter in the online evaluation ses-
sion.

4. Results

Results of the calibration sessions are depicted in Ta-
ble 2, where training accuracies, optimal number of se-
quences, and percentage of error selections in control-
state recordings are detailed for each user. As can be no-
ticed, 4 MDS could not obtain training accuracies higher
than 70%. Since 70% is usually considered as the mini-
mal acceptable accuracy in the BCI literature, they were
discarded from the subsequent assessment (Kübler et al.,
2001; Kleih et al., 2010; Corralejo et al., 2014; Martínez-
Cagigal et al., 2017a). Quantitative results of the evalua-
tion sessions are shown in theTable 3, including the dura-
tion, the final accuracy and the OCM of each task. More-
over, their averages and the number of sequences of each
user are also detailed. Questionnaire results are finally
depicted in Table 4, which specifies the statements and
the ranks provided by the users. Values range from 1 (i.e.,
totally disagree), to 7 (i.e., totally agree), where 4 means
a neutral response. Note that positive and negative state-
ments are alternated in order to reduce the acquiescence
bias (Likert, 1932). With regard to the final open-ended
question, two users demanded to get rid of the conduc-
tive gel, and one user demanded more speed.

5. Discussion

Four MDS were discarded from the assessment due to
their low training accuracy (<70%) (Kübler et al., 2001;
Kleih et al., 2010; Corralejo et al., 2014; Martínez-Cagigal
et al., 2017a), probably because their P300potentialswere
too attenuated or their latencies were too variable (Ta-
ble 2). Since there are subjects with the same diseases
that do not show this effect, the rationale behind it lies in
indirect problems related to attention capability or gaze
control. In particular, M01 exhibited lack of sustained at-
tention capability; M07 suffered from essential tremors;
M11 was unable to open his eyes properly; and M13 re-
ported nystagmus, which causes involuntary eye move-
ments, resulting in limited vision and lack of control over
gaze. Fig. 4 depicts two sample ERPs recorded over chan-
nels Pz and Cz, one from M16, who could finish all tasks;
and the other one from M07, who was discarded from the
assessment. In contrast to the response of M16, the P300
potential ofM07 is quite noisy and unrecognizable, which

Table 2: Calibration sessions results

User Classifier Threshold
TA Ns A1 A2

M01 67.0% 15 - -
M02 89.0% 10 41.7% 83.3%
M03 92.0% 14 50.0% 50.0%
M04 100% 9 95.8% 95.8%
M05 100% 7 95.8% 70.8%
M06 100% 7 83.3% 77.8%
M07 8.0% 15 - -
M08 100% 10 87.5% 68.2%
M09 100% 13 100% 72.2%
M10 100% 13 79.2% 79.2%
M11 57.0% 15 - -
M12 100% 12 83.3% 87.5%
M13 56.0% 15 - -
M14 100% 9 66.7% 58.3%
M15 100% 13 83.3% 87.5%
M16 100% 14 95.8% 87.5%
M17 89.0% 15 50.0% 33.3%
M18 100% 7 95.8% 91.7%

C01 100% 11 100% 91.7%
C02 100% 6 100% 97.2%
C03 100% 13 95.8% 95.8%
C04 100% 7 100% 95.8%
C05 100% 5 87.5% 91.7%
C06 100% 8 91.7% 91.7%
C07 100% 8 95.8% 100%
C08 100% 4 77.8% 91.7%
C09 100% 8 100% 100%
C10 100% 7 100% 95.8%

The prefix “M” stands for motor-disabled subjects, whereas “C” indi-
cates the control subjects; “TA” stands for training accuracy; Ns indi-
cates the number of sequences of each user; and “A1” and “A2” indicate
the accuracy in the first and second threshold sessions, respectively.

would explain the poor performance of his classifier in the
training stage.
Unsurprisingly, quantitative results of the evaluation

session (Table 3) show that CS obtained higher overall
accuracies (92.3% ± 6.3%) than MDS (80.6% ± 12.9%).
In fact, this difference in performance was demonstrated
to be significant (Wilcoxon Signed-rank Test, p-value =
0.0375). Furthermore, the required number of sequences
for CS was significantly lower (Wilcoxon Signed-rank
Test, p-value = 0.0155) than for MDS, which used 7.7
± 2.7 and 10.93 ± 2.84 sequences, respectively. Con-
sequently, the bits per minute rate for CS (2.06 ± 0.73)
was also higher than for MDS (1.47 ± 0.40), producing
also significant differences (Wilcoxon Signed-rank Test,
p-value = 0.0498). The less number of sequences, the
higher output bits per minute. This assures a faster navi-
gation through the application and thus, CS took less time
thanMDS to finish the tasks. These findings reinforce the
necessity of assessing the reliability of BCI systems with
end users.
With regard to the complexity of these tasks, the aver-

age durations of the Table 3 show a clear increase as the
users advance through the tasks, especially for CS. How-
ever, the average accuracies for each of them does not
show a constant decreasing, which could be expected at
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Table 3: Evaluation session results

User Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
Ns

Avg. Avg.
Dur. Acc. OCM Dur. Acc. OCM Dur. Acc. OCM Dur. Acc. OCM Dur. Acc. OCM Dur. Acc. OCM acc, OCM

M02 01:52 66.7% 1.61 04:55 60.0% 2.04 06:09 66.7% 1.46 06:09 63.6% 1.79 08:59 63.6% 1.22 01:02 100% 1.94 10 65.2% 1.58
M03 03:06 100% 1.29 04:42 57.1% 1.49 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 14 72.7% 1.41
M04 01:05 100% 2.76 02:29 100% 2.42 04:36 100% 1.52 06:32 100% 1.68 09:12 77.8% 0.98 03:11 100% 1.57 9 95.1% 1.51
M05 01:05 100% 2.76 01:27 100% 2.76 03:35 85.7% 1.95 05:05 90.9% 2.16 04:31 100% 1.99 05:39 100% 1.94 7 95.6% 2.11
M06 01:33 100% 1.94 03:37 85.7% 1.94 03:04 100% 2.28 04:40 100% 2.36 05:31 100% 2.17 05:50 84.6% 2.23 7 94.3% 2.18
M08 01:33 100% 1.94 02:04 100% 1.94 05:07 85.7% 1.37 08:18 58.3% 1.45 03:29 40.0% 1.44 04:49 71.4% 1.45 10 71.1% 1.50
M09 02:01 100% 1.49 03:22 100% 1.49 06:39 100% 1.05 10:07 81.8% 1.09 05:35 50.0% 1.07 n.c. n.c. n.c. 13 84.4% 1.15
M10 02:01 66.7% 1.49 03:22 40.0% 1.49 07:43 75.0% 1.04 09:20 63.6% 1.18 n.c. n.c. n.c. n.c. n.c. n.c. 13 63.0% 1.20
M12 01:52 66.7% 1.61 03:43 100% 1.61 07:07 75.0% 1.12 09:20 81.8% 1.18 11:02 60.0% 0.91 n.c. n.c. n.c. 12 76.3% 1.15
M14 01:05 66.7% 2.76 02:16 100% 1.76 05:38 85.7% 1.24 09:08 58.3% 1.31 06:26 66.7% 1.86 05:05 60.0% 1.97 9 68.8% 1.62
M15 02:01 100% 1.49 04:02 66.7% 1.49 07:02 87.5% 1.14 10:07 72.7% 1.09 11:58 100% 1.00 10:30 100% 1.05 13 88.2% 1.12
M16 02:10 66.7% 1.38 02:54 100% 1.38 07:75 75.0% 1.01 10:54 90.9% 1.01 12:53 91.7% 0.93 11:19 100% 0.97 14 89.8% 1.02
M17 02:20 100% 1.29 04:39 83.3% 1.29 10:08 66.7% 0.89 11:40 45.5% 0.94 n.c. n.c. n.c. n.c. n.c. n.c. 15 65.5% 1.01
M18 01:05 100% 2.76 01:27 100% 2.76 03:35 100% 1.95 05:27 100% 2.02 06:26 100% 1.86 06:48 92.3% 1.91 7 98.0% 2.02

Mean 01:46 88.1% 1.90 03:13 85.2% 1.85 06:01 84.8% 1.39 08:13 77.5% 1.48 07:31 77.2% 1.40 07:49 89.8% 1.67 10.93 80.6% 1.47
SD 00:35 16.6% 0.60 01:09 20.7% 0.49 02:02 12.5% 0.43 02:22 18.4% 0.47 03:10 22.4% 0.48 03:15 14.9% 0.44 2.84 12.9% 0.40

C01 01:42 100% 1.76 02:16 100% 1.76 05:38 100% 1.24 07:47 90.9% 1.41 08:05 90.9% 1.30 09:12 91.7% 1.36 11 93.8% 1.38
C02 00:56 100% 3.23 01:14 100% 3.23 03:04 85.7% 2.28 04:40 100% 2.36 04:51 100% 2.17 05:31 100% 2.27 6 97.9% 2.37
C03 02:01 100% 1.49 04:02 83.3% 1.49 07:43 85.7% 0.908 10:07 100% 1.09 10:30 100% 1.00 13:01 92.3% 1.14 13 94.2% 1.10
C04 01:05 100% 2.76 02:10 66.7% 2.77 03:35 100% 1.95 05:27 81.8% 2.02 05:39 100% 1.55 09:43 73.3% 2.12 7 85.2% 1.95
C05 00:47 100% 3.87 01:02 100% 3.87 02:33 100% 2.74 03:54 90.9% 2.83 04:03 100% 2.61 04:36 100% 2.97 5 98.0% 2.90
C06 00:56 100% 4.30 01:14 100% 3.23 03:04 71.4% 2.28 06:14 100% 1.12 08:05 100% 1.30 09:12 66.7% 1.36 8 86.7% 1.57
C07 01:14 100% 2.42 02:04 60.0% 2.42 03:35 57.1% 1.95 05:27 81.8% 2.02 06:53 91.7% 1.50 07:22 81.8% 1.74 8 79.6% 1.84
C08 00:37 100% 4.84 00:50 100% 4.84 02:03 100% 3.42 03:07 100% 3.53 03:14 90.9% 3.26 03:41 91.7% 3.40 4 95.8% 3.55
C09 01:14 100% 2.42 01:39 100% 2.42 04:06 100% 1.71 06:38 91.7% 1.81 05:39 100% 1.86 06:26 100% 1.94 8 98.0% 1.90
C10 01:05 100% 2.76 01:49 80.0% 2.77 03:35 100% 1.95 05:27 100% 2.02 05:27 90.9% 1.86 06:26 91.7% 2.02 7 93.9% 2.06

Mean 01:10 100% 2.99 01:50 89.0% 2.88 03:54 90.0% 2.04 05:53 93.7% 2.02 06:15 96.4% 1.84 07:31 89.0% 2.03 7.7 92.3% 2.06
SD 00:25 0.0% 1.08 00:55 15.6% 0.98 01:39 15.1% 0.71 02:00 7.5% 0.76 02:10 4.6% 0.68 02:48 11.5% 0.72 2.7 6.3% 0.73

The prefix “M” stands for motor-disabled subjects, whereas “C” indicates the control subjects; “Dur.” indicates the task duration; “Acc.” indicates
the task accuracy for each user; “OCM” stands for Output Characters per Minute; Ns indicates the number of sequences of each user; and “n.c.”
stands for “not completed”, which means that the user could not finish the task and thus, durations, accuracies and OCM are not defined. Note that
users M01, M07, M11 and M13 were discarded from the assessment because they could not obtain a minimum accuracy of 70% in the calibration
sessions.

Table 4: Questionnaire results

No. Statement MDS CS
Mean SD Mean SD

1 I found interesting to use the BCI social networking application 6.07 1.07 6.00 0.94
2 I found it difficult to control the system 2.86 1.79 2.70 1.34
3 My expectations for the application were completely met 5.29 1.64 5.90 0.99
4 I was bored during the assessment sessions 2.14 1.56 3.50 1.96
5 I found the assessment sessions entertaining 5.57 1.65 4.80 1.40
6 I can imagine myself using this BCI application in my daily life 4.29 2.34 2.60 1.84
7 It was stressful to concentrate when it was required 3.00 1.75 2.60 1.71
8 The application works smoothly 4.71 1.44 5.80 1.03
9 The duration of the calibration sessions was too long 2.43 1.74 3.70 1.89
10 User interface is intuitive and easy to understand 4.79 1.76 5.70 1.16
11 It takes much too long to control the BCI application 4.14 1.83 4.20 1.40
12 I would love to participate in other similar studies 6.43 0.76 5.20 1.62
13 I found it difficult to select the desired commands 2.93 1.90 2.80 1.23
14 I would gladly carry out more testing sessions with the BCI application 6.00 1.47 4.80 1.62
15 I did not find the flickering effect annoying 4.07 1.59 5.10 1.85
16 The duration of the evaluation session was too long 2.14 1.56 3.60 1.51
17 I would not need a manual for controlling Twitter and Telegram with this system 4.93 1.77 5.90 1.73
18 I am happy that the sessions are over 4.07 1.59 4.90 1.29
19 I think that this system could improve the social media accessibility 5.86 1.41 6.40 0.70
20 I became impatient during the sessions 2.07 1.69 3.40 1.51

Statements were ranked in a 7-point Likert scale, where 1 means a complete disagreement, 4 a neutral response, and 7 a complete agree-
ment.

first glance. The first task was easily completed by all the
participants (CS: 100% ± 0.0%; MDS: 88.1% ± 16.6%).

The second task was also completed by all the partici-
pants, even though they reached lower accuracies (CS:
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Figure 4: Event-related responses recorded in the first calibration session of twomotor-disabled subjects: (a) M16, who could finish
all tasks; and (b) M07, who was discarded due to its low classifier accuracy (<70%). Average curves of target stimuli (solid lines)
and non-target stimuli (dashed lines) are depicted over the channel Pz (blue and yellow). Shaded areas indicate the 95% confidence
interval of the aforementioned stimuli. Average curves over the channel Cz are also shown (grey). Note that a band-pass filter
between 1–15 Hz has been applied for visualization purposes.

85.2% ± 20.7%; MDS: 89.0% ± 15.6%) and took three
times more to finish than the first one. The third task was
a struggle for M03, which could not finish it, probably be-
cause it was the first task that involved the use of both
RCP matrices (CS: 90.0%± 15.1%; MDS: 84.8%± 12.5%).
Like the previous one, the fourth task only was a problem
for the same user, even though the duration increased ap-
preciably (CS: 93.7% ± 7.5%; MDS: 77.5% ± 18.4%). The
fifth task began to be challenging, and three MDS were
not able to complete it (CS: 96.4%± 4.6%; MDS: 77.2%±
22.4%). Finally, the sixth task was by far themost difficult
one, causing that five MDS could not finish it (CS: 89.0%
± 11.5%; MDS: 89.8%± 14.9%). Note that, despite of the
highest presumed difficulty of the latter, MDS accuracies
in the sixth task are higher than that obtained in the fifth
one. This is because the metrics are only computed for
the users that could finish the task, reducing the perfor-
mance variability, as indicated by the standard deviation.
As revealed above, although all CS were able to finish all
tasks, there were several MDS who faced problems to fin-
ish them. In particular, the two most challenging tasks
involved the use of both matrices and spelling long sen-
tences in order to communicate via Telegram chats. It was
observed that a selection error often causes more mis-
takes thereafter, probably due to despondency. This is-
sue could be solved by integrating a spelling dictionary or
processing error-related potentials (ErrP) (Schalk et al.,
2000).
Concerning the qualitative analysis, questionnaire re-

sults show that participants were quite satisfied with the
BCI application. All the positive statements were valued
above the neutral response (i.e., 4), and all the negative
statements but two were valued below it. These state-
ments were the 11th, which concerns the required time
to control the application; and the 18th, which means
that some users were slightly happy that the assessment
sessions were over. The former discloses a request to in-

crease the speed of the system. Nevertheless, the speed is
directly related to the classifier performance, which de-
pends on the user’s calibration sessions. A more robust
classifier, either because it would be based on a more
sophisticated processing framework or because it would
be trained with more data, could reach higher accuracies
with fewer number of sequences, providing a faster nav-
igation (Zhang et al., 2016). The latter reveals that the
participation of several users implied an effort, a fact that
should be taken into consideration when designing the
tasks, their duration and the structure of the assessment
sessions. However, users reported that they were willing
to carry more sessions and to participate in further sim-
ilar studies. Moreover, results show that these users did
not experienced impatience, boredom, fatigue or stress.
In addition, it is worthy to mention that the 6th state-
ment was also valued below the neutral response for CS.
This fact reveals that CS cannot imagine themselves us-
ing the BCI application in their daily life, which was ex-
pected because of their full physical and cognitive capa-
bilities. Conversely, MDS do imagine themselves using
the developed application as a daily tool, which reinforces
the practicality of the system.
As pointed earlier, notwithstanding the growing pop-

ularity of smartphones, there are very few studies that
have attempted to control their functionalities by inte-
grating a BCI system. Table 5 shows these studies, which
have been focused to dial numbers (Wang et al., 2011; Chi
et al., 2012), accept incoming calls (Katona et al., 2014),
call contacts (Campbell et al., 2010; Wang et al., 2011),
play simple games (Wu et al., 2014), spell words (Obeidat
et al., 2017; Elsawy et al., 2017) or open pre-installed apps
and visualize the gallery (Elsawy and Eldawlatly, 2015). It
is noteworthy that none of themhas been focused on pro-
viding a high-level control of a smartphone, nor control-
ling social network functionalities. Moreover, the table 5
exposes one of the main drawbacks of the BCI literature,

9

158 Appendix A. Papers included in this Doctoral Thesis



Table 5: Comparison among state-of-the-art studies

Study Control EEG cap Target SO Processing Main N Sub. Accuracy(1)signal functionalities

Campbell et al. (2010) P300 EPOC iOS Mobile Call contacts 3 CS 88.89%(Emotiv)

Wang et al. (2011) SSVEP Custom Cell phone Computer Dial numbers 10 CS 95.90%headband

Chi et al. (2012) SSVEP Custom dry Cell phone Cell phone Dial numbers 2 CS 89.00%electrode

Katona et al. (2014) Conc. Mindset Windows Headset Accept/reject incoming calls 5 CS 75.00%(Neurosky) phone

Wu et al. (2014) Conc. Mindset Android Headset Play a simple racing game 5 CS -(Neurosky)

Elsawy and Eldawlatly (2015) P300 EPOC Android Mobile Open pre-installed apps and 6 CS 79.17%(2)
(Emotiv) visualize the gallery 6 CS 87.5%

Elsawy et al. (2017) P300 EPOC Android Mobile Spell words 6 CS 64.17%(Emotiv)

Obeidat et al. (2017) P300 EPOC Android Mobile Spell words 14 CS 90.00%(Emotiv)

Present study P300 g.USBamp Android Computer Full asynchronous control 10 CS 92.30%
(g.Tec) of Twitter and Telegram 18 MDS 80.60%

“P300” refers to the P300 evoked potentials, “SSVEP” stands for steady-state visual evoked potentials, and “Conc.” denotes a Neurosky
concentration signal; “N” indicates the number of subjects; “CS” stands for control subjects, and “MDS” stands for motor-disabled
subjects.
(1) Whether the study provides several accuracies for different experiments, the table shows the highest online reached performance.
If accuracy is not provided directly, it is estimated from other data.
(2) The first accuracy belongs to the opening pre-intalled apps functionality, whereas the second one belongs to the visualizing appli-
cation.

whose studies usually fail to prove the usability of their
systems with end users. In fact, none of the aforemen-
tioned applications has been tested with motor-disabled
users, who are the ones that would presumably benefit
from them. It is alsoworthy tomention that none of these
studies provides an asynchronous control, which implies
that, in a real situation, an external supervisor should be
present to pause the application when required. For this
reason, one of the main objectives of this study is to eval-
uate our proposal with a population of 18MDS in order to
assess its usefulness to meet their daily communication
needs.

Among the studies depicted in Table 5, P300 evoked
potentials are the most prevalent control signals (Camp-
bell et al., 2010; Elsawy and Eldawlatly, 2015; Obeidat
et al., 2017; Elsawy et al., 2017). However, the customized
Neurosky concentrationmetric is also used as an endoge-
nous control signal (Katona et al., 2014; Wu et al., 2014),
and steady-state visual evoked potentials (SSVEP) as ex-
ogenous ones (Wang et al., 2011; Chi et al., 2012). Even
though the signal processing of the former is simple and
can be handled by the headset itself, the Neurosky con-
centration signal can only be used to make dichotomous
decisions. In other words, the systems of Katona et al.
(2014) and Wu et al. (2014) could only discriminate two
different EEG states, hindering the use of this signal for
providing a high-level control of a complex system, such
as the smartphones. Regarding the latter, it is worthy
to mention that the SSVEP-based studies were both fo-
cused to dial numbers in cell phones (Wang et al., 2011;
Chi et al., 2012). SSVEP signals are based on a mimetic
mechanism: when the retina is excited by a visual stimu-
lus that flickers at a constant frequency, the brain gener-

ates an oscillatory response at the same frequency (Wol-
paw et al., 2002; Pastor et al., 2003; Capilla et al., 2011;
Luck, 2014). The main advantage of the SSVEP signal is
its exogenous nature, which makes a training phase un-
necessary. Moreover, the signal also provides high per-
formances, as the results show (Wang et al., 2011; Chi
et al., 2012). However, the most reliable flickering fre-
quencies belongs to the low beta band (i.e., 13–19 Hz)
(Volosyak et al., 2011), whichmaximize the risk of epilep-
tic seizures and visual fatigue (Pastor et al., 2003). Fur-
thermore, the standardization of vertical refresh rate of
LCD screens also restricts the number of simultaneously
displayed frequencies (Volosyak et al., 2009). Therefore,
the number of possible commands is limited. With regard
to the P300-based studies, the use of a wireless headset
with saline electrodes allows them to integrate a simple
signal processing stage in thefinal devices (i.e., iOS orAn-
droid). However, although this solution favors the users’
comfort and the practicality of the system, it also sets up
a trade-off between portability and performance. In fact,
the CS average accuracy of our study (92.30%) is higher
than the ones reported in all these previous approaches,
probably due to the use of: (i) gel-based active electrodes,
(ii) a more complex signal processing module, and (iii)
a larger stimulation screen. Significant differences have
been foundbetweenour study outcomes and the results of
the opening apps system of Elsawy and Eldawlatly (2015)
(Wilcoxon Signed-rank Test, p-value = 0.0088); and the
mobile speller of Elsawy et al. (2017) (Wilcoxon Signed-
rank Test, p-value = 0.0007). The remaining P300-based
studies do not provide unfolded accuracy results for each
user and thus, statistical analysis could not be performed.
Furthermore, it is worthy to mention that no comparison
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with disabled subjects could have been made because of
their lack of assessment with end users.
From the experimental outcomes, several insightful

implications can be derived. On the one hand, this
study may be considered as one of the first precursors of
smartphone-based BCIs. As aforementioned, there are
very few studies that have attempted to control mobile
devices with BCI systems, and none of them was focused
on providing a high-level control of a certain applica-
tion. Our systemprovides a comprehensive control of two
different social networks, covering all their functionali-
ties and simultaneously reaching high accuracy results.
To this end, users can select 72 different commands, ar-
ranged in two different RCP matrices. On the other hand,
the present study has been tested with a population of
both motor-disabled and control subjects and thus, the
viability of the system has been demonstrated. Unfortu-
nately, BCI-based studies usually fail to test their systems
with real users, making it impossible to infer their reli-
ability in a real context. Therefore, to the best of our
knowledge, the present study is the first approach that
has been proved its practicality to control a mobile BCI
system by real users. These outcomes suggest that the
developed system would be extended, in the near future,
to assist individuals, companies or institutions that could
be benefited from it. Consequently, personal autonomy
and social integration of motor-disabled users could be
improved, making an impact in their quality of life. To
sum up, the main strengths of our proposal are:
i) Comprehensive control of Twitter and Telegram in
Android platforms using brain signals.

ii) Ability to discriminate among a total of 72 different
commands, arranged in two RCP matrices.

iii) Asynchronous control management by means of at-
tention monitoring.

iv) Suitable performance accuracies.
v) Robustness, due to the evaluation with both control
and motor-disabled populations.

Despite the results show that our BCI application al-
low users to successfully control Twitter and Telegram in
an Android device, we can point out the following weak-
nesses:
i) Signal processing stage requires a laptop to be exe-
cuted, which favors the reliability of the system, but
impairs portability. Further research can overcome
this limitation by using a wireless headset and inte-
grating the processing stage into the final device.

ii) Asynchronous management is based on a wrapper
method that depends on the LDA classifier and con-
sequently, on the training performance of each user.
Future endeavorsmust be focused on developing new
asynchrony filter methods, such as SSVEP-based ap-
proaches independent of inter-session effects (Aloise
et al., 2011; Pinegger et al., 2015; Wang et al., 2016;
Jiao et al., 2017).

iii) Lack of despondency bypassing, causing a mistake to
occasionally result inmore errors in the following se-

lections. A future research line could be aimed to im-
plement a spelling dictionary or processing ErrPs to
avoid extra selection errors (Cruz et al., 2018).

iv) Heterogeneous motor-disabled population. Al-
though the application was tested with 18 MDS, and
all of them can be considered end users of BCI sys-
tems, a future homogenization could be suitable for
characterizing the performance of the system within
a certain disease.

6. Conclusion

An asynchronous P300-based BCI system to control so-
cial networking applications of smartphones or tablets
has been designed, developed and tested with both
healthy and motor-disabled users. The system monitors
the EEG signal of the user, while a RCP matrix containing
the application commands flashes its rows and columns
in order to generate P300 evoked potentials on the user’s
scalp. The selected commands are sent in real-time to
the final Android device via Bluetooth, which interprets
themandprovides visual feedback to the user. The system
has been tested with 10 CS and 18 MDS. The assessment
was composed of two calibration stages and one evalua-
tion session, where the users had to complete 6 different
tasks, sorted by difficulty. Both quantitative and qual-
itative metrics were obtained, reaching average accura-
cies of 92.3% for CS and 80.6% for MDS. To the best of
our knowledge, this is the first BCI study aimed to con-
trol social networking applications in a comprehensive
way. Significant differences have been found among our
accuracy results and that reported in other related stud-
ies, which obtained lower performances. Therefore, our
P300-based BCI socializing system proves to be a suitable
solution for motor-disabled users, allowing them to meet
their daily communication needs.
In spite of the positive results, future researchwork can

be suggested. Future endeavors should be aimed to: (i)
embed the signal processing stage in the final device, (ii)
design an asynchronousmanagement independent of the
classifier, (iii) implement a dictionary that suggests com-
monwords to the users based on their previous selections,
(iv) process ErrPs to identify prediction errors and avoid
wrong selections in real-time, and (v) test the application
with a homogenized disabled population in order to study
the performance within a certain disease.
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July 2 - July 3, 2018.
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July 18 - July 19, 2019.
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terface”, XXXVIII Congreso Anual de La Sociedad Española de Ingenieŕıa

Biomédica (CASEIB 2020), Virtual conference (Spain), November 25 -

November 27, 2020.

B.2 International internship

Three-month research internship at the Institute of Neural Engineering (INE),

Graz University of Technology (TU Graz), Graz, Austria.

i. Purpose of the internship

The main purpose of the research stay was to investigate whether it was

possible to decode continuous movements of the upper-limb from the EEG,

aiming at controlling an assistive robotic arm in real-time. The work was

part of the project “Feel Your Reach” of the Europe Research Council (ERC),

focused on developing EEG-based BCI-controlled neuroprosthesis. To carry

out that objective, the developed study encompassed: (1) a state-of-the-art

revision of non-linear decoding algorithms, (2) coding of different Kalman
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filters in MATLAB®; (3) integration of the final algorithms into an online

paradigm, (4) pilot testing of the system with 2 HS, (5) real testing with 5

HS, (6) analysis of the results (quantitative, qualitative, brain sources), and

(7) presentation.

ii. Methodological summary

In a nutshell, the experimental paradigm that was carried out was the follow-

ing. The subject was comfortably seated in front of a screen that displayed a

white dot following a pre-defined trajectory in 2D. Three main devices com-

prised the BCI: (i) the EEG acquisition equipment (64 channels, 500 Hz); (ii)

the LeapMotion (LM), which monitored the position of user’s hand using in-

frared image processing; and (iii) the JACO robot, an assistive robotic arm.

The latter was controlled by both the EEG and LM, and the task of the user

was to follow the trajectory with the JACO’s hand as best as they could. At

the beginning, JACO was entirely LM-controlled. After a few trials of cali-

bration, the BCI began to rely on the EEG, reducing the control of LM until

it became fully EEG-controlled. Motion and ocular artifacts were corrected.

Non-linear decoding was performed using partial least squares (PLS) regres-

sion and square-root unscented Kalman filtering (SQ-UKF). Correlations

between actual and decoded movements were generally above chance level,

suggesting that the proposed system was suitable for decoding real-time arm

movements.

iii. Quality indicators of the institution

Founded in 1811 by Archduke John of Austria, the TU Graz is one of the

main universities of Austria. This public university is part of the network

Austrian Universities of Technology and reaches suitable positions in in-

ternational rankings (Shanghai: 151-200, Times High Education: 351-400).

The INE of TU Graz has become an institution of international renown in

the field of BCI systems. In fact, the well-known ‘Graz BCI’ was the first

BCI system to debut in the history of neuroscience, 20 years ago. Since

then, the INE has performed a strong research focused on developing as-

sistive BCI applications. The head of the INE, Dr. Gernot M”uller-Putz,

who was also the supervisor of the internship, was the principal investigator

of two European projects that took place during the research stay (“More-

Grasp” EU Project; “Feel Your Reach”, ERC-COG H2020). In the last 10

years, the INE has participated in 10 international and 8 national projects;

published more than 193 JCR articles, 419 conferences, 36 book chapters;
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and defended 9 doctoral theses. In light of this intense research, the INE or-

ganizes the “Graz BCI Conference” once every three years since 2006, which

attracts BCI researchers from around the world.

B.3 Awards and honors

03/2016: Secondary Award in the University-Business Challenge

(TCUE2015-16), for the project entitled “Navegador web accesible

controlado mediante BCI basado en potenciales P300”.

09/2016: Prize for Special Achievement in the Master’s Degree in ICT

Research, due to the obtaining of the highest marks of his class.

12/2017: Award in Innovative Solutions for the Improvement of the

Quality of Life (‘Ageing’ group modality), for the project enti-

tled “Plataforma Brain-Computer Interface de Entrenamiento Cogni-

tivo para Atenuar los Efectos del Envejecimiento”, conducted by Vı́ctor

Mart́ınez-Cagigal, Javier Gomez-Pilar and Roberto Hornero.

09/2019: Second prize in the IFMBE Scientific Challenge at the MEDI-

CON 2019, for the project entitled “Deep learning architecture based

on the combination of convolutional and recurrent layers for ERP-based

brain-computer interfaces”, conducted by Eduardo Santamaŕıa-Vázquez,

Vı́ctor Mart́ınez-Cagigal, Javier Gomez-Pilar, and Roberto Hornero.





Apéndice C

Resumen en castellano

C.1 Introducción

La idea de establecer una conexión entre nuestros cerebros y el entorno, aśı como

la posibilidad de controlar dispositivos mediante nuestras señales cerebrales, ha

fascinado a la humanidad durante el último siglo. El descubrimiento del electro-

encefalograma (EEG) por Hans Berger, el trabajo inicial de Jacques Vidal y los

progresos en la investigación neurocient́ıfica actual poco a poco hacen esta idea

cada vez más factible. Hoy en d́ıa, la ciencia a ficción empieza a convertirse en reali-

dad. Durante los últimos 25 años, numerosos grupos de investigación han dedicado

esfuerzos a decodificar señales neuronales y provocar el desarrollo de los sistemas

brain–computer interface (BCI), entendidos como sistemas de comunicación que

traducen las intenciones del usuario en comandos de un dispositivo externo. Inva-

sivos y no invasivos, dependientes e independientes, exógenos y endógenos, activos

y pasivos, śıncronos y aśıncronos; existen multitud de sistemas BCI que constante-

mente se ven mejorados por la academia y, sin embargo, la mayor parte de ellos aún

no son lo suficientemente fiables como para abandonar los laboratorios y permitir

su uso en entornos reales.

Desde un punto de vista práctico, un sistema BCI debeŕıa ser idealmente no

invasivo, portátil, fiable, cómodo y robusto ante distintos entornos y artefactos ex-

ternos. Por esta razón, las técnicas invasivas como la electrocorticograf́ıa (ECoG)

o la tomograf́ıa por emisión de positrones (PET); y las voluminosas e inasequi-

bles, como la magnetoencefalograf́ıa (MEG), la imagen por resonancia magnética

funcional (fMRI) o la espectroscoṕıa de infrarrojo cercano funcional (fNIRS) nor-

malmente quedan relegadas al campo de la investigación. En esta Tesis Doctoral,
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por tanto, se tratan los sistemas BCI basados en EEG, debido a su naturaleza

no invasiva, su bajo coste y su portabilidad. En el EEG se colocan una serie de

electrodos sobre el cuero cabelludo del usuario, permitiendo recoger la actividad

eléctrica conjunta de millones de neuronas al mismo tiempo. No obstante, los elec-

trodos solamente son sensibles a la actividad de neuronas superficiales organizadas

perpendicularmente (i.e., giros), ignorando completamente aquellas que forman los

surcos cerebrales, aśı como las presentes en estructuras subcorticales. Este hándi-

cap hace del EEG una señal burda, donde las intenciones del usuario se encuentran

sepultadas bajo ruido eléctrico y actividades neurológicas no relacionadas. Deco-

dificar las intenciones de usuario directamente de la señal EEG, por tanto, es muy

complejo técnicamente. Para ello, los sistemas BCI dependen de las señales de

control: estrategias que provocan cambios en el EEG detectables a través de un

procesado de la señal adecuado. Entre ellas destacan los ritmos sensoriomotores

(SMR), los potenciales corticales lentos (SCP), los potenciales evocados visuales

de estado estable (SSVEP) y los potenciales evocados P300.

Por una parte, los SMR y SCP se basan en autorregular la actividad cerebral de

manera voluntaria. Los usuarios, por tanto, requieren de un entrenamiento exhaus-

tivo para aprender a realizarlo, e incluso muchos de ellos no llegan a adquirir un

control suficiente para trabajar con un sistema BCI. Este aspecto, sumado al he-

cho de que estas señales normalmente solo permiten tomar decisiones dicotómicas,

restringen su uso práctico a la investigación o a terapias basadas en neurofeedback.

Por otra parte, los SSVEP y los potenciales evocados P300 no requieren entre-

namiento por parte de los usuarios, puesto que se basan en provocar respuestas

naturales del cerebro ante distintos est́ımulos externos. Ambas permiten alcanzar

precisiones superiores al 90 % con facilidad, siendo éstas las señales de control más

adecuadas para sistemas BCI orientados a controlar aplicaciones o dispositivos ex-

ternos. La generación de SSVEPs se basa en mostrar un conjunto de opciones que

parpadeen a distintas frecuencias, provocando que la frecuencia de la opción a la

que atienda el usuario se vea reflejada en el espectro de la señal EEG. No obstante,

las frecuencias más fiables pertenecen a la banda beta baja (i.e., 13–19 Hz), lo que

incrementa la fatiga visual y maximiza el riesgo de ataques de epilepsia fotosensi-

ble. Asimismo, el número de comandos posibles está ligeramente limitado por la

frecuencia de muestreo de las pantallas LCD. Los potenciales evocados P300, por

el contrario, se basan en la aparición de est́ımulos inesperados para los usuarios,

maximizando su precisión cuantas más opciones posibles existan. Este aspecto ha

provocado que los sistemas BCI basados en P300 estén siendo utilizados actual-

mente por personas con graves discapacidades motoras en su vida diaria. Dado
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que la presente Tesis Doctoral busca contribuir en la literatura de los sistemas

BCI desde un punto de vista práctico, todos los estudios incluidos en este compen-

dio de publicaciones tratan sobre sistemas basados en potenciales evocados P300,

debido a las razones mencionadas.

A pesar del gran avance de los sistemas BCI no invasivos en las últimas décadas,

existen cuatro limitaciones principales que dificultan su uso práctico por parte de

personas con grave discapacidad, relacionadas con: (1) el hardware, (2) la fiabilidad,

(3) la validación, y (4) la sincrońıa. El hardware actual limita enormemente la

portabilidad y comodidad de sistema. Idealmente, un sistema BCI debeŕıa ser

totalmente portable, inalámbrico, ser fácil de configurar, no requerir gel conductor,

trabajar varias horas sin mantenimiento y funcionar correctamente en los distintos

escenarios de la vida real. La fiabilidad hace referencia a la alta variación entre

sesiones y sujetos de la precisión de sistema. Aunque normalmente mejora con

la práctica, el rendimiento nunca llega a ser similar al de un control muscular.

Otro problema es la ausencia de validación. Muchos de los estudios de sistemas

BCI en la literatura carecen de una evaluación con sujetos reales (i.e., personas

con grave discapacidad) y, por tanto, su viabilidad no puede ser asegurada. Es

conocido ampliamente que los sujetos de control obtienen mejores rendimientos que

los sujetos con grave discapacidad, siendo inadecuado generalizar los resultados.

Finalmente, cabe destacar que los sistemas BCI deben evolucionar hacia un estado

aśıncrono. Los sistemas BCI tradicionales son śıncronos, es decir, no monitorizan

la atención de usuario y provocan la generación de respuestas incluso cuando éste

no desea generarlas. En la práctica este efecto se traduce en env́ıos involuntarios

de comandos cuando el usuario no está prestando atención al sistema. La mayor

parte de las aplicaciones de asistencia, por tanto, no proveen al usuario de un

control total del sistema, requiriendo la presencia constante de un supervisor.

En esta Tesis Doctoral se presenta un compendio de cuatro publicaciones in-

dexadas en el Journal Citation Reports (JCR) entre los años 2017 y 2020. Dos de

ellas se centran en el procesado de señal: (1) asincrońıa mediante métricas basadas

en entroṕıa (Mart́ınez-Cagigal et al., 2019b), y (2) metaheuŕısticas para seleccio-

nar canales relevantes (Mart́ınez-Cagigal et al., 2020); mientras que en el resto se

detalla el diseño, desarrollo y evaluación de aplicaciones BCI aśıncronas que per-

miten el control de: (3) un navegador web (Mart́ınez-Cagigal et al., 2017), y (4)

redes sociales (Twitter y Telegram) en un smartphone (Mart́ınez-Cagigal et al.,

2019a).
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C.2 Hipótesis y objetivos

A pesar del creciente interés cient́ıfico en los sistemas BCI durante las últimas

décadas, las limitaciones mencionadas los han relegado a un uso en laboratorios

con propósitos académicos. La hipótesis de partida de esta Tesis Doctoral baraja

la posibilidad de que las limitaciones de los sistemas BCI que dificultan su apli-

cación práctica en entornos reales puedan atenuarse. En particular, la sincrońıa

puede abordarse dotando al sistema BCI de un control dependiente únicamente

del usuario. Un control aśıncrono puede alcanzarse siempre y cuando el sistema

sea capaz de determinar si el usuario quiere seleccionar un comando (i.e., estado

de control) o no (i.e., estado de no-control). En este sentido, se hipotetiza que

los potenciales evocados P300 no se presentan en el estado de no-control, dismi-

nuyendo la probabilidad a posteriori del clasificador. Asimismo, dado que puede

considerarse que el estado de control es más exigente que el de no-control, también

se hipotetiza que determinadas medidas basadas en entroṕıa pueden caracterizar

la irregularidad de las señales EEG y proveer información que ayude a discriminar

entre ambos estados. Con respecto al hardware, la selección de canales relevantes

permitiŕıa reducir el coste del equipo y el consumo de enerǵıa, aśı como incremen-

tar la comodidad de usuario. En este aspecto se hipotetiza que las metaheuŕısticas

basadas en algoritmos evolutivos son capaces de hallar los canales relevantes para

cada usuario en sistemas P300-BCI, puesto que su utilidad resolviendo problemas

de optimización complejos ha sido extensamente demostrada. Paralelamente, se

espera que estos métodos ayuden a evitar el exceso de dimensionalidad y maximi-

zar la precisión del sistema, contribuyendo a la fiabilidad de mismo. Finalmente,

cabe destacar que la viabilidad de los sistemas deberá ser evaluada mediante su

aplicación con usuarios reales. Por esa razón, se hipotetiza si un navegador web

P300-BCI aśıncrono es capaz de proveer a las personas con grave discapacidad de

una tecnoloǵıa viable para acceder a Internet. Por extensión, también se hipotetiza

si un sistema P300-BCI aśıncrono permite controlar plenamente distintas redes

sociales (i.e., Twitter y Telegram) en un smartphone. Para validar estas hipótesis,

esta Tesis Doctoral propone el uso de distintas metodoloǵıas para contribuir en el

desarrollo de sistemas BCI prácticos en un entorno real.

Definidas las hipótesis, el objetivo general es diseñar, desarrollar y evaluar

novedosas técnicas de procesado de señal y aplicaciones de asistencia para proveer

sistemas P300-BCI a personas con grave discapacidad. Para llevar a cabo este

objetivo, se han alcanzado los siguientes objetivos espećıficos:

I. Revisar la bibliograf́ıa y los últimos avances relacionados con los sistemas
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BCI no invasivos, poniendo un énfasis especial en métodos de selección de

canales y gestión de la asincrońıa, aśı como en el desarrollo de aplicaciones

de asistencia.

II. Construir una base de datos de señales EEG pertenecientes al estado de

control y no-control para abordar el problema de la asincrońıa en sistemas

P300-BCI, aśı como reclutar una población de usuarios con graves discapa-

cidades motoras para validar las aplicaciones de asistencia.

III. Implementar los métodos más apropiados para optimizar los canales para

cada usuario, discriminar entre los estados aśıncronos e identificar potenciales

P300; aśı como investigar la idoneidad de distintas mejoras.

IV. Diseñar y desarrollar dos aplicaciones aśıncronas de asistencia para controlar:

(1) un navegador web, y (2) redes sociales en un smartphone.

V. Evaluar la habilidad de los métodos seleccionados para optimizar los canales

de cada usuario y para alcanzar un estado aśıncrono en sistemas P300-BCI

mediante su testeo en nuestra base de datos y otras de acceso público. Validar

las aplicaciones de asistencia desarrolladas con la base de datos de sujetos

con grave discapacidad, aśı como con sujetos de control.

VI. Aplicar análisis estad́ısticos de los resultados para evaluar la fiabilidad de

cada una de las propuestas, aśı como comparar y discutir los resultados para

extraer conclusiones oportunas, incluyendo una comparación exhaustiva con

otros estudios relacionados.

VII. Diseminar los resultados principales y las conclusiones de los estudios en

revistas JCR indexadas, aśı como en caṕıtulos de libros y conferencias inter-

nacionales y nacionales.

C.3 Sujetos

Dado que los propósitos de los distintos art́ıculos que forman el compendio vaŕıan,

se han usado distintas bases de datos durante el proceso de realización de esta

Tesis Doctoral. En la tabla C.1 se recogen las especificaciones de las bases de da-

tos empleadas. Para el estudio de asincrońıa, se recogieron señales de 10 sujetos

de control (HS) atendiendo e ignorando el row-col paradigm (RCP) (Mart́ınez-

Cagigal et al., 2019b). En el estudio de selección de canales se emplearon 3 bases

de datos públicas con señales de equipos EEG de alta densidad. En cada una de
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Cuadro C.1: Especificaciones de los sujetos de cada estudio.

Estudio Pacientes Sujetos de
control

Paradigma Nº de
canales

Mart́ınez-Cagigal et al. (2019b) 0 10 RCP 16

Mart́ınez-Cagigal et al. (2020)
0 2 1RCP 64
0 13 2CS 63
0 12 3RSVP 61

Mart́ınez-Cagigal et al. (2017) 16 MS 5 RCP 8

Mart́ınez-Cagigal et al. (2019a) 18 MDS4 10 RCP 8

MS: esclerosis múltiple, MDS: sujetos con grave discapacidad motora, RCP: row-col paradigm,
CS: center speller, RSVP: rapid serial visual presentation.
1 ‘BCI Competition III: dataset II’ (Blankertz et al., 2006).
2 ‘Center Speller (008-2015)’ (Treder et al., 2011).
3 ‘RSVP Speller (010-2015)’ (Acqualagna and Blankertz, 2013).
4 1 accidente cerebrovascular, 2 lesiones de médula espinal, 5 ataxias de Friedreich, 5 parálisis
cerebrales, 2 distrofias musculares.

ellas se emplearon paradigmas oddball distintos, con el fin de favorecer la gene-

ralización de los resultados: RCP (2HS), center speller (CS, 13HS) y rapid serial

visual presentation (RSVP, 12HS) (Mart́ınez-Cagigal et al., 2020). Las aplicacio-

nes de asistencia no solo fueron evaluadas por sujetos de control, sino también

por usuarios con graves discapacidades motoras, reclutados a través del Centro de

Referencia Estatal de Discapacidad y Dependencia de San Andrés del Rabanedo

(León). El sistema BCI para controlar el navegador web fue evaluado por 5HS y

16 usuarios con esclerosis múltiple (MS) (Mart́ınez-Cagigal et al., 2017), mientras

que la aplicación móvil de redes sociales se testeó con 10HS y 18 usuarios que

presentaban distintas discapacidades motoras (MDS).

C.4 Métodos

La metodoloǵıa de los distintos estudios comparte la misma estructura general,

compuesta por las etapas de: (1) pre-procesado; (2) extracción, (3) selección y (4)

clasificación de caracteŕısticas; y (5) análisis estad́ıstico. A esta estructura se le

añaden los métodos de asincrońıa, selección de canales y la etapa de aplicación

dependiendo del estudio en particular.

Como pre-procesado, todas las señales sufrieron un proceso de acondiciona-

miento para disminuir la presencia de artefactos mediante filtros frecuenciales

(paso-banda 0.1–60 Hz, ranura a 50 Hz) y espaciales (referencia de media común)

(Krusienski Dean J., 2012). La extracción de caracteŕısticas se realizó a través de

un proceso de decimación (fd =20–25 Hz), seguido por un enventanado (0–800 ms,
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z-scored baseline -200–0 ms) y una concatenación (Krusienski Dean J., 2012). Esta

metodoloǵıa busca extraer las caracteŕısticas temporales más relevantes después

de cada est́ımulo, con el fin de detectar posibles event-related potentials (ERP).

La selección de caracteŕısticas se realizó mediante una regresión paso-a-paso (SW)

con criterios de inclusión y exclusión: p < 0,10 y p > 0,15, respectivamente (Job-

son, 1991). Posteriormente, se empleó un análisis discriminante lineal (LDA) para

determinar la probabilidad de aparición del P300 en cada observación (Bishop,

2006). Con el fin de determinar si los cambios en los resultados arrojan diferen-

cias significativas, se aplicaron diversos test estad́ısticos no paramétricos. Para las

comparaciones pareadas (i.e., dependientes), se empleó el test de rangos con signo

de Wilcoxon; mientras que para las no pareadas (i.e., independientes) se utilizó el

test U de Mann-Whitney (Narsky and Porter, 2013). Los p-valores de cada uno de

los tests fueron adaptados contra el efecto de múltiples comparaciones mediante

el método de Benjamini-Hochberg de corrección de la false discovery rate (FDR)

(Benjamini and Hochberg, 1995).

Para alcanzar un estado aśıncrono se emplearon dos técnicas distintas: (i)

umbralización (Mart́ınez-Cagigal et al., 2017, 2019a) y (ii) entroṕıa muestral

(Mart́ınez-Cagigal et al., 2019b). En las aplicaciones de asistencia se desarrolló

y evaluó el método de (i) umbralización. Esta técnica asume que los scores del cla-

sificador LDA son más bajos cuando el usuario no presta atención a la estimulación

visual (i.e., estado de no-control) que cuando śı lo hace (i.e., estado de control). Una

vez registradas las señales de control y no-control, se introducen los scores de las

celdas seleccionadas en una curva receiver operating characteristic (ROC) y se de-

termina el valor de umbral óptimo que maximice el par sensibilidad-especificidad.

Cada vez que el paradigma seleccione un comando, se compara su score con el

umbral, enviándolo a la aplicación final si lo supera, o evitando la selección si no

lo hace (Mart́ınez-Cagigal et al., 2017). El método basado en (ii) entroṕıa mues-

tral, por el contrario, es totalmente independiente del clasificador. Dado que la

estimación de la entroṕıa es más precisa cuantas más muestras de la señal existan,

la extracción de caracteŕısticas realizada difiere de la estructura general. En este

caso, la época i seŕıa la señal decimada desde la primera estimulación hasta el últi-

mo flash de la secuencia i. De esta manera, se asegura que para cada observación

se consideran todas las muestras disponibles del comando actual. Posteriormente,

se caracterizaron las señales de control y no-control mediante la aplicación de la

entroṕıa multiescala (MSE) (Costa et al., 2005). La optimización de los hiper-

parámetros se llevó a cabo a través de una validación cruzada dejando uno fuera.

Tras la aplicación de la entroṕıa muestral (SampEn), se utilizó un clasificador LDA
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para monitorizar la atención del usuario (Mart́ınez-Cagigal et al., 2019b).

La selección de canales se llevó a cabo a través de la aplicación de un conjunto

de metaheuŕısticas mono y multiobjetivo. En todas ellas se buscó maximizar el

rendimiento del sistema (i.e., área bajo la curva ROC) y simultáneamente minimi-

zar el número de canales. Los algoritmos mono-objetivo empleados fueron: genetic

algorithm (GA), binary differential evolution (BDE), y binary particle swarm op-

timization (BPSO); mientras que los multiobjetivo fueron: non-sorting genetic al-

gorithm II (NSGA-II), binary multi-objective PSO (BMOPSO), y strength pareto

evolutionary algorithm 2 (SPEA2). No obstante, todas las métricas mencionadas

tuvieron que ser adaptadas al contexto de la selección de canales en sistemas BCI,

puesto que muchas de sus estrategias internas son subóptimas o incluso fútiles

(e.g., distancias continuas o de multitud, funciones de transferencia, control del

repositorio, etc.). Por esta razón, en Mart́ınez-Cagigal et al. (2020) se diseñó el

dual-front sorting genetic algorithm (DFGA), un algoritmo multiobjetivo espećıfi-

camente diseñado para este problema de optimización que mezcla técnicas deter-

ministas y estocásticas y evita todas las estrategias subóptimas para favorecer la

convergencia.

C.5 Resultados y discusión

Los dos métodos de asincrońıa desarrollados han demostrado su utilidad tanto pa-

ra discriminar entre estados de control y no-control en aplicaciones de asistencia

(umbralización) como para caracterizar ambos estados en términos de complejidad

y regularidad de las señales EEG (MSE, SampEn). La umbralización alcanzó pre-

cisiones de entrenamiento para los HS del 96.66 % y 96.74 % en la evaluación del

navegador web y de la aplicación de redes sociales; mientras que para los usuarios

con grave discapacidad se alcanzaron precisiones del 86.77 % y 84.31 %, respectiva-

mente (Mart́ınez-Cagigal et al., 2017, 2019a). Su implementación en aplicaciones

de asistencia, por tanto, es viable. No obstante, el método depende totalmente del

clasificador ERP, lo que conlleva registrar señales de ambos estados cada vez que

se actualice el mismo. Este procedimiento, de hecho, se realiza con frecuencia de-

bido a la gran variabilidad inter-sesión del EEG, lo que supone un incremento del

tiempo de calibración. El método basado en la entroṕıa muestral, por el contrario,

es independiente del clasificador. Se ha observado una mayor irregularidad y com-

plejidad en las señales de control, favoreciendo la discriminación entre los estados

aśıncronos, sobre todo en la zona prefrontal del córtex. Este método alcanzó una

precisión del 94.4 %, con un coste computacional de 196.8 ms para 15 secuencias, lo
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que lo convierte en una alternativa viable en tiempo real (Mart́ınez-Cagigal et al.,

2019b). Hasta donde llega nuestro conocimiento, no existen estudios previos que

hayan tratado de caracterizar los estados aśıncronos mediante métricas basadas en

entroṕıa. Otros estudios proponen técnicas de umbralización (Aloise et al., 2011;

Breitwieser et al., 2016; Tang et al., 2018; Zhang et al., 2008), el uso de otras

señales de control en paradigmas h́ıbridos (Li et al., 2013; Panicker et al., 2010;

Yu et al., 2017), o análisis espectrales (Ma and Qiu, 2018; Pinegger et al., 2015;

Santamaŕıa-Vázquez et al., 2019).

La optimización de canales relevantes mediante metaheuŕısticas basadas en al-

goritmos evolutivos han obtenido resultados con alta precisión para todas las bases

de datos, superando de manera significativa al conjunto de 8 canales propuesto por

Krusienski et al. (2008) (KRU) y al set de todos los electrodos (ALL). Los algorit-

mos mono-objetivo (GA, BDE, BPSO) alcanzaron, de media, un 91.47 % de preci-

sión usando 13.38 canales (Mart́ınez-Cagigal et al., 2020). Sin embargo, no ofrecen

un control al supervisor sobre el número total de canales a seleccionar, a diferencia

de los métodos multiobjetivo. Estos últimos retornan un conjunto de soluciones

óptimas, cada cual con un número distinto de canales. Entre ellos, DFGA mostró

una convergencia excelente, seguido por NSGA-II y SPEA2; y los tres métodos

superaron a la solución KRU usando la mitad de canales (Mart́ınez-Cagigal et al.,

2020). BMOPSO, sin embargo, no convergió adecuadamente, cayendo en mı́nimos

locales y mostrando una deficiencia en la optimización global de los objetivos. Se

observó una gran variabilidad inter-sujeto en el conjunto de canales seleccionados,

lo que pone de manifiesto la necesidad de optimizar individualmente el conjun-

to de canales para cada usuario, en lugar de usar la misma configuración para

todos ellos. No obstante, los algoritmos mostraron una ligera tendencia a seleccio-

nar canales sobre el lóbulo occipital, donde se encuentra el córtex visual primario

(Mart́ınez-Cagigal et al., 2020). La mayor parte de aproximaciones previas en la

literatura emplean técnicas mono-objetivo, a pesar de la limitación mencionada

(Arican and Polat, 2020; Gonzalez et al., 2013; Jin et al., 2010; Mart́ınez-Cagigal

and Hornero, 2017b; Perseh and Sharafat, 2012). Los estudios con técnicas multi-

objetivo son escasos (Chaurasiya et al., 2017; Kee et al., 2015). No obstante, hasta

donde llega nuestro conocimiento, ningún estudio ha testeado metaheuŕısticas en

otros paradigmas distintos al RCP, ni tampoco han propuesto ningún algoritmo

espećıficamente diseñado para la optimización de canales relevantes en sistemas

BCI. DFGA, por tanto, constituye una aproximación novedosa y viable para au-

mentar el rendimiento, reducir el coste del equipo y favorecer la comodidad de los

usuarios.
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La primera de las aplicaciones de asistencia, el navegador web, resultó apro-

piada para su uso por parte de personas con grave discapacidad. La aplicación se

controlaba mediante dos matrices RCP distintas: ‘navegación’, que permit́ıa un

control general de la aplicación mediante selecciones rápidas debido a su pequeño

tamaño; y ‘teclado’, orientada a rellenar formularios y escribir texto (Mart́ınez-

Cagigal et al., 2017). La navegación se realizaba bajo una estrategia de etiquetado

de nodos, asignando una codificación a cada uno de los elementos de la web. El

usuario, por tanto, introdućıa la codificación numérica mediante las matrices RCP

para seleccionar el nodo deseado. El testeo se llevó a cabo durante 2 sesiones de ca-

libración (clasificador y umbral aśıncrono) y 2 de evaluación (śıncrona y aśıncrona).

Durante estas últimas se realizaron un total de 8 tareas con dificultad incremental,

con el fin de evaluar la capacidad de los usuarios para controlar la aplicación. Se

obtuvo una precisión media del 95.75 % para los HS y del 84.14 % para los sujetos

MS, lo que demuestra la viabilidad de la aplicación (Mart́ınez-Cagigal et al., 2017).

Tres sujetos MS fueron descartados durante la calibración por sus bajas respues-

tas P300 (i.e., potenciales atenuados o nulos, latencias variables), probablemente

debido a sus caracteŕısticas cĺınicas. Este hecho pone de manifiesto la importancia

de evaluar los sistemas BCI con sujetos reales, puesto que es bien sabido que los

HS obtienen precisiones más altas que aquellas personas que presentan enferme-

dades neurodegenerativas. Aun aśı, las precisiones obtenidas por los MS superan

significativamente las reportadas en estudios previos evaluados por sujetos con es-

clerosis lateral amiotrófica (Karim et al., 2006; Mugler et al., 2010). Asimismo, la

precisión de los HS también supera otras aproximaciones previas (Mugler et al.,

2010; Sirvent Blasco et al., 2012; Yu et al., 2012), sugiriendo que la inclusión de la

etapa aśıncrona favorece la aplicabilidad de los sistemas BCI en entornos asisten-

ciales. Los cuestionarios reflejaron la satisfacción de los usuarios con el sistema,

encontrándolo interesante, intuitivo y declarando que podŕıan imaginarse usándolo

como herramienta durante su vida diaria.

La aplicación BCI móvil para controlar las redes sociales en el smartphone se

desarrolló utilizando de las APIs de Twitter y Telegram. Al igual que para el na-

vegador, se emplearon dos matrices RCP para controlar la aplicación. Se utilizó

el etiquetado de nodos para todas aquellas funcionalidades que no pod́ıa ser con-

troladas mediante comandos RCP. El testeo estuvo compuesto por dos sesiones

de calibración (clasificador y umbral) y una de evaluación aśıncrona, compuesta

por 5 tareas que deb́ıan completar los usuarios. Un total de 4 participantes MDS

se descartaron en la calibración por obtener precisiones inferiores al 70 %, causa-

das por respuestas P300 atenuadas (Mart́ınez-Cagigal et al., 2019a). Se observó
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una baja capacidad de atención sostenida, temblores involuntarios y nistagmo

en algunos usuarios, lo cual afectó a la precisión del sistema. Este tipo de pro-

blemas suelen presentarse en las evaluaciones con usuarios reales, dificultando la

generalización de los resultados de sistemas testeados únicamente con HS. Se ob-

tuvieron precisiones medias del 92.3 % para los HS, y de 80.6 % para los MDS.

Estos últimos también experimentaron una velocidad de selección de comandos

significativamente inferior, puesto que el número de secuencias óptimo para ellos

fue más alto. Los resultados de los cuestionarios reflejaron una satisfacción gene-

ral con el sistema, indicando que no experimentaron fatiga, estés o aburrimiento;

y que pod́ıan imaginarse utilizando la aplicación en su vida diaria. No obstante,

los usuarios demandaron una mayor velocidad y sesiones de evaluación de menor

duración (Mart́ınez-Cagigal et al., 2019a). A pesar de la creciente popularidad de

los smartphones, existen pocas aproximaciones previas en la literatura BCI dedi-

cadas a controlar alguna funcionalidad de estos dispositivos. De hecho, más del

56 % del tiempo dedicado a los smartphones se emplea en socializar (Ipsos MORI

and Google, 2017). Hasta donde alcanza nuestro conocimiento, no existe ningún

estudio previo que permita utilizar estos dispositivos a un alto nivel o controlar

alguna red social mediante un sistema BCI. Existen estudios que permiten llamar

a contactos (Campbell et al., 2010; Chi et al., 2012; Wang, 2010), aceptar llama-

das entrantes (Katona et al., 2014), abrir aplicaciones preinstaladas (Elsawy and

Eldawlatly, 2015), deletrear palabras (Elsawy et al., 2017; Obeidat et al., 2017) o

controlar un juego sencillo (Wu et al., 2014). Sin embargo, ninguna de ellas ha sido

testeada con personas con grave discapacidad, e incluso los resultados obtenidos

para los HS son inferiores a los alcanzados en nuestro estudio. Por esta razón,

nuestra aproximación puede considerarse como uno de los estudios precursores en

el control de dispositivos móviles mediante sistemas BCI, orientados a su uso por

parte de personas con grave discapacidad.

C.6 Conclusiones

A ráız de los resultados obtenidos en la presente Tesis Doctoral se pueden extraer

las siguientes conclusiones:

1) Un sistema BCI basado en potenciales P300 práctico debe implementar una

etapa de asincrońıa para evitar selecciones de comandos involuntarias. Este

proceso es esencial para proveer al usuario de un control completo sobre

el sistema y evitar la dependencia en supervisores externos, favoreciendo la
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autonomı́a de los usuarios objetivo.

2) La integración de la etapa de detección aśıncrona mejora significativamente

el rendimiento de los usuarios en aplicaciones BCI de asistencia. La cantidad

de errores cometidos se reduce drásticamente.

3) Las señales EEG de los usuarios mientras atienden a las estimulaciones visua-

les en paradigmas oddball son significativamente más complejas e irregulares

que cuando las ignoran. Estas diferencias permiten monitorizar la atención

del usuario mediante técnicas basadas en entroṕıa.

4) El conjunto de canales óptimo depende en gran medida en el individuo,

reflejando una alta variabilidad inter-sujeto. Por tanto, una optimización

personalizada para cada usuario es beneficiosa para el rendimiento general

del sistema BCI, y constituye una práctica recomendada si se dispone del

tiempo necesario tras la calibración.

5) Las metaheuŕısticas multiobjetivo discretas son apropiadas para encontrar

conjuntos de canales óptimos en función del número de electrodos a usar, y

superan significativamente a la indicación general de emplear 8 canales en

los sistemas P300-BCI. Una combinación balanceada entre técnicas determi-

nistas y estocásticas (e.g., DFGA) favorece la convergencia.

6) Los rendimientos de las personas con graves discapacidades motoras son

significativamente más bajos que los obtenidos en sujetos de control. Por

tanto, los sistemas BCI de asistencia deben evaluarse con usuarios objetivo

para asegurar su viabilidad en un entorno real.

7) Las aplicaciones BCI para controlar un navegador web y redes sociales móvi-

les han demostrado su utilidad como asistencia a personas con grave disca-

pacidad. Su integración en la vida diaria de personas dependientes es viable.

8) Las opiniones de los participantes reflejan una satisfacción general con las

aplicaciones de asistencia propuestas. Los pacientes se imaginan usando los

sistemas P300-BCI en su vida diaria en un futuro cercano.
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Berger, H., 1929. Über das Elektroenzephalogramm des Menschen. Archiv für psychiatrie und

nervenkrankheiten 87 (1), 527–570.

183



184 Bibliography

Bishop, C. M., 2006. Pattern recognition and machine learning. springer.

Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K. R., 2011. Single-trial analysis and

classification of ERP components - A tutorial. NeuroImage 56 (2), 814–825.

Blankertz, B., Müller, K.-R., Krusienski, D. J., Schalk, G., Wolpaw, J. R., Schlögl, A.,
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