
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

ANALYSIS OF CO2 AND CH4 TEMPORAL PATTERNS 

AND THE VALLADOLID URBAN PLUME INFLUENCE 

OVER THE UPPER SPANISH PLATEAU 

Beatriz Fernández Duque  

PhD. Thesis 
 



 

 

 

PROGRAMA DE DOCTORADO EN FISICA  

 

 

 

 

TESIS DOCTORAL: 

 

 

ANALYSIS OF CO2 AND CH4 TEMPORAL 

PATTERNS AND THE VALLADOLID URBAN 

PLUME INFLUENCE OVER THE UPPER SPANISH 

PLATEAU 

 
 

ANÁLISIS DE LOS PATRONES TEMPORALES DE CO2 Y CH4 Y 

DE LA INFLUENCIA DEL PENACHO URBANO DE VALLADOLID 

EN LA MESETA NORTE CASTELLANA 

 

 

 

 
Presentada por Beatriz Fernández Duque para optar al 

grado de  

Doctora por la Universidad de Valladolid 

 

 

 

 

Dirigida por: 

Dra. María Luisa Sánchez Gómez 

Dr. Isidro A. Pérez Bartolomé 



   

 

    

 

Analysis of CO2 and CH4 temporal patterns and the Valladolid 

urban plume influence over the upper Spanish plateau 

 

PhD Student:  

 Beatriz Fernández Duque 
 

Supervisors: 

Dra. María Luisa Sánchez Gómez  Dr. Isidro A. Pérez Bartolomé 
Dept. Applied Physics  Dept. Applied Physics 
University of Valladolid  University of Valladolid 
Paseo de Belén, 7, 47011. Valladolid (Spain)  Paseo de Belén, 7, 47011. Valladolid (Spain) 
 

Supervisor of the international stay: 

Dr. Alfredo Rocha 

Dept. Physics 

University of Aveiro 

Campus Universitário de Santiago, 3810-193 Aveiro (Portugal) 

 

External reviewers: 

Dra. Mastura Mahmud 

Dept. Social, Environmental and 

Developmental Sustainability Research 

Universiti Kebangsaan 

Malaysia 

43600 UKM, Bangi, Selangor (Malaysia) 

 

 

Doctorate program:  

 Doctorate in Physics 

 Faculty of Sciences. University of Valladolid (Spain) 

 

Place of publication: Valladolid, Spain 

Year of publication: 2021 

Printed by: LLAR digital 

Design: Deankruger from Pixabay (cover) and Beatriz Fernández Duque (main text and 

graphical material). 

    

Dra. Florinda Artuso 

Dept. Diagnostics and metrology Laboratory 

Italian National Agency for New 

Technologies Energy and 

Sustainable Economic Development 

Lungotevere Thaon di Revel, 76  

00196, Rome (Italy) 



   

 

 
   I    

 

General index          

Acknowledgements / Agradecimientos 1 

1. Abstract / Resumen 3 

1.1. Abstract 3 

1.2. Resumen 5 

2. Introduction 9 

2.1. An overview 9 

2.2. CO2 18 

2.3. CH4 22 

2.4. The importance of accurate CO2 and CH4 mixing ratio measurements  24 

2.5. CIBA station characteristics 27 

2.6. Time series 29 

2.7. Valladolid urban plume analysis 34 

2.8. Motivation of the study 36 

3. Objectives 41 

3.1. General objective 41 

3.2. Specific objectives 41 

4. Material and methods 43 

4.1. Site description 43 

4.2. Monitoring station 45 

4.3. Instrumentation 45 

4.4. Database 49 

4.5. Software employed 51 

4.6. Mathematical equations used 53 

4.7. Statistical techniques 60 

4.8. Graphical summary techniques 64 

4.9. Validation methods 67 

5. List of Original Contributions 69 

6. Original Contributions 71 

6.1. Harmonic function for describing CO2 and CH4 temporal patterns: Original 

Contribution I 

71 

6.2. Kernel functions for describing CO2 and CH4 temporal patterns: Original 

Contribution II 

83 

6.3. Local regression functions for describing CO2 and CH4 temporal patterns: 

Original Contribution III 

101 

6.4. Valladolid urban plume influence on the final CO2 and CH4 mixing ratios at 

CIBA: Original Contribution IV 

115 

7. General results 133 

7.1. CO2 and CH4 temporal analysis 133 

7.2. Back-trajectory analysis 136 



    

 

 
   II    

 

 

7.3. Validation indicators 137 

8. General discussion 139 

8.1. Temporal pattern evolution 139 

8.2. Mathematical equations for analysing temporal patterns 153 

8.3. Valladolid urban plume analysis 159 

9. Conclusions / Conclusiones 167 

9.1. Conclusions 167 

9.2. Conclusiones  172 

10. References 177 

11. Appendices 217 

11.1. Acronyms 217 

11.2. List of tables and figures 218 

 



   

 

 
   1    

 

Acknowledgements / Agradecimientos          

This thesis has been carried out at the Department of Applied Physics of the University of 

Valladolid under the frame of the project CGL2014-53948-P and the predoctoral contract BES-

2015-074254 funded by the Spanish Ministry of Economy and Competitiveness and co-

financed by the European Regional Development Fund (FEDER). The University of Valladolid 

and the Santander Bank have also financed this work throughout two grants for attending 

international conferences in which some of the results of this thesis have been presented. I 

would like to acknowledge all these institutions for their support and financial contribution.  

 

La presente tesis doctoral se ha desarrollado bajo la supervisión de la Dra. María Luisa 

Sánchez Gómez y el Dr. Isidro A. Pérez Bartolomé a quienes debo agradecer la oportunidad 

brindada para formarme en el seno del Grupo de Contaminación Atmosférica (GCA). 

Agradecerles la confianza depositada en mí desde el primer momento y sus incansables 

ánimos al hacerme creer que todo es posible con esfuerzo y dedicación. Gracias por todos 

los conocimientos transmitidos y por su apoyo incondicional en cada uno de mis pasos. 

 

De igual modo, me gustaría agradecer a mis compañeros del GCA, Mª Ángeles y Nuria por la 

adquisición de los datos y sus ánimos en el transcurso de estos años, a Javier Peláez por 

resolver los problemas de mantenimiento surgidos durante la realización de las medidas y a 

Alberto por su apoyo y buen humor. 

 

To my international supervisor, Dr. Alfredo Rocha at the University of Aveiro (Portugal) for 

giving me the chance of being part of the Atmospheric Processes & Modelling (APM) group. 

Thanks to all the members of APM for investing part of your time in me.  

 

Al Departamento de Física Aplicada por permitirme iniciarme en las labores docentes 

completando de este modo mi formación predoctoral, así como a todos sus miembros que se 

han interesado por el desarrollo de la presente tesis.  

 

A mi familia y amigos. Mención especial merecen mis padres, porque sin su apoyo 

incondicional nunca hubiera podido llegar hasta aquí. A mi hermana Verónica por sentirse tan 

orgullosa de mí como yo de ella. Y por supuesto a Jordán por estar conmigo en cada reto y 

compartir todas mis ilusiones.  

 

 
Beatriz Fernández Duque 



    

 

 
   2    

 

 



   

 

 
   3    

 

1. Abstract / Resumen          

1.1. Abstract 

Since the Industrial Revolution, the atmospheric mole fractions of greenhouse gases have 

changed due to human activities, leading to an increase in the average temperature of the 

planet. Determining greenhouse gases at regional background sites is crucial vis-à-vis 

assessing what impact anthropogenic emissions have on the atmospheric environment. 

However, observational studies are still scarce at such background sites. The current thesis 

first seeks to improve existing knowledge concerning the evolution of the two major 

greenhouse gases (CO2 and CH4) in terms of trends, growth rate and seasonal variations in 

the lower atmosphere. Secondly, the effect of the Valladolid urban plume on the final CO2 and 

CH4 mixing ratios recorded at the Low Atmosphere Research Centre (CIBA) was analysed in 

order to better understand its impact on the final mixing ratios recorded at the station. To 

achieve this goal, dry continuous CO2 and CH4 mixing ratios were carried out over five and a 

half years (from 15 October 2010 to 29 February 2016) at 8.3 m. height using a Picarro G1301 

analyser at a remote rural site at the CIBA station on the upper Spanish plateau. This is the 

first study conducted at the CIBA station with such lengthy records, employing a database 

collected with a high precision instrument and differentiating between diurnal and nocturnal 

records. Firstly, in order to analyse temporal patterns, the time series was conveniently 

detrended and deseasonalised from the observed values so as to capture the intrinsic 

dynamics of the time series associated to different phenomena. In order to accurately describe 

CO2 and CH4 temporal evolution over time, three scientific works employing different 

mathematical functions were performed. The use of different mathematical functions enabled 

detection of possible bias caused by the method applied and provided a comparison among 

the mathematical functions employed in terms of ease of use, computational cost involved in 

the calculations and final data fit. The first paper used a harmonic equation comprising a third-

degree polynomial (trend) plus a series of four harmonics (seasonal cycle), each made up of 

a constant and a variable part along the time series. The second paper applied an 

Epanechnikov, a Gaussian, a biweight, a triangular, a tricubic and a rectangular kernel function 

to extract the salient features of the CO2 and CH4 temporal patterns. Moreover, a novel method 

for simultaneously determining the optimal bandwidths of kernel functions for the long and 

short-term based on experimental contour plots of R2 values was proposed. The third paper 

was grounded on the hypothesis that local linear regressions were able to capture CO2 and 

CH4 temporal evolution equally as well as quadratic linear regressions. The results derived 

from the temporal analysis point to different behaviour between day and night CO2 and CH4 

measurements, with the highest mixing ratios during the night-time when atmospheric mixing 
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and turbulent processes are low. A seasonal pattern was also inferred for the study period for 

both gases, revealing summer minima, partially due to greater summertime photosynthesis as 

regards CO2 and to maximum OH concentration during the summer as regards CH4. A simpler 

cycle was found for CH4, showing only a maximum for diurnal and nocturnal data in winter, 

partially due to the low presence of OH radicals. However, a different behaviour between 

diurnal and nocturnal data was revealed by CO2 observations. As regards nocturnal CO2 data, 

two maxima, one in spring and another in autumn, were reported. These two maxima were 

linked to an increase in rainfall which corresponded to a period of maximum vegetation growth, 

thus increasing respiration rates. For CO2 daytime records, only the spring peak was detected. 

The mixing ratios of the abovementioned gases at the CIBA station were comparable to those 

at other background sites around the world. Increasing growth rates were obtained for both 

gases over the whole study period. The slight differences among mixing ratios at different sites 

may be mainly attributable to the impacts of anthropogenic emissions near the background 

sites and to regional atmospheric transport. Secondly, it should be considered that assessing 

the link between atmospheric mixing ratios and wind direction data can help to identify possible 

pollution sources, thereby giving additional information to the previous temporal patterns 

described. Unfortunately, the influence of urban plumes on the final measurements recorded 

at rural stations is an issue which has rarely been touched upon in detail. Thus, in order to 

provide a full understanding of the temporal patterns at the CIBA station, a fourth scientific 

paper considering CO2 and CH4 mixing ratio data measured at CIBA, surface wind direction 

data and back-trajectories at 500 m a.g.l. computed with the METEX model, was produced to 

analyse the impact of the Valladolid urban plume on the final mixing ratio measured at the 

station. The final south-westerly component of the urban mean back-trajectory, its longer time 

spent travelling over the Iberian Peninsula and its recirculation in the final 24 h before impacting 

the CIBA station, might result in more pollutants being dragged to the station. As a result, the 

highest CO2 and CH4 values were detected for southern sectors, showing what effect the 

Valladolid plume has on final CO2 and CH4 measurements. Finally, the results derived from 

the current thesis prove crucial in terms of understanding the processes that govern CO2 and 

CH4 trend and cycle evolution. Describing the gases in this way would enable more effective 

mitigation policies to be planned in order to achieve the goal of reducing the amount of 

greenhouse gases in the atmosphere.  

 

Keywords: CO2, CH4, temporal patterns, rural background station, harmonic function, kernel 

functions, bandwidth, local regression functions, air mass modelling, METEX model. 
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1.2. Resumen 

Desde la Revolución Industrial, las concentraciones de los gases de efecto invernadero han 

aumentado debido a diversas actividades antrópicas, provocando con ello el aumento de la 

temperatura media del planeta. La determinación de gases de efecto invernadero en 

estaciones de fondo es crucial para evaluar el impacto de las emisiones antropogénicas en la 

baja atmósfera. Sin embargo, estos estudios aún son escasos en estaciones de fondo. La 

presente tesis doctoral busca, en primer lugar, mejorar el conocimiento existente sobre la 

evolución de los dos principales gases de efecto invernadero (CO2 y CH4) en términos de 

tendencias, tasa de crecimiento y variaciones estacionales en la troposfera. En segundo lugar, 

se pretende analizar el efecto del penacho urbano de Valladolid en las concentraciones de 

CO2 y CH4 registradas en el Centro de Investigación de la Baja Atmósfera (CIBA). Para 

alcanzar este doble objetivo, se registraron las concentraciones en seco de CO2 y CH4 durante 

cinco años y medio (del 15 de octubre de 2010 al 29 de febrero de 2016) a 8,3 m. de altura 

mediante el empleo de un analizador de precisión, el Picarro G1301, en un emplazamiento 

rural remoto en la estación del CIBA en la meseta norte castellana. Este es el primer estudio 

realizado en la estación del CIBA con una base de datos tan amplia, tomada mediante un 

instrumento de alta precisión y diferenciando entre los datos diurnos y nocturnos. En primer 

lugar, a fin de analizar los patrones temporales, se destendenció y desestacionalizó la serie 

temporal para capturar la dinámica intrínseca de la serie temporal. Con el objetivo de describir 

con precisión los patrones temporales de CO2 y CH4 se llevaron a cabo tres amplios estudios 

en los que se emplearon diferentes funciones matemáticas. El empleo de diferentes funciones 

matemáticas permitió la detección de posibles sesgos causados por el método empleado, así 

como una comparación entre las funciones empleadas en términos de facilidad de uso, coste 

computacional y grado de ajuste de cada una de las funciones con los datos experimentales. 

El primer artículo empleó una ecuación armónica formada por un polinomio de tercer grado 

para expresar la tendencia y una serie de cuatro armónicos para expresar la evolución 

estacional de los datos. Cada uno de los armónicos constaba de una parte constante y una 

parte variable con el tiempo. El segundo artículo aplicó 6 funciones de kernel para analizar los 

patrones temporales del CO2 y el CH4. Las 6 funciones de kernel empleadas fueron: 

Epanechnikov, Gaussiana, cuártica, triangular, tricúbica y rectangular. Del mismo modo, esta 

segunda contribución propuso un método novedoso y sencillo para determinar 

simultáneamente los anchos de banda óptimos para analizar la tendencia y el ciclo estacional 

basado en gráficos de contorno en los que se emplean los valores de R2 valores como 

estadístico robusto para la toma de decisiones. El tercer artículo se basó en la hipótesis de 

que las regresiones locales lineales eran capaces de capturar la evolución temporal del CO2 

y el CH4 con la misma precisión que las regresiones locales cuadráticas. Los resultados 
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derivados de estas tres primeras contribuciones originales pusieron de manifiesto un 

comportamiento diferente entre las medidas diurnas y las nocturnas de CO2 y el CH4, 

obteniendo las máximas concentraciones durante la noche cuando los procesos turbulentos 

y de mezcla son mínimos debido a la estabilidad atmosférica en esta parte del día. En lo que 

respecta al ciclo estacional, las concentraciones mínimas se encontraron en verano debido a 

la actividad fotosintética en el caso del CO2 y a la máxima concentración de OH en el caso del 

CH4. De igual modo, cabe destacar que el ciclo estacional del CH4 es más simple que el del 

CO2, mostrando el mismo comportamiento para los datos diurnos y nocturnos, presentando 

un único máximo en invierno debido a la baja presencia de radicales OH en dicha estación. 

Sin embargo, las observaciones de CO2 revelaron un comportamiento distinto entre la serie 

diurna y nocturna. En cuanto a la serie nocturna para el CO2, se encontraron dos máximos, 

uno en primavera y otro en otoño. Estos dos máximos se vincularon al aumento de las 

precipitaciones en estas estaciones, lo que conllevó a un período de máximo crecimiento de 

la vegetación, aumentando con ello las tasas de respiración. Por su parte, la serie diurna del 

CO2, sólo mostró un máximo en primavera. Cabe destacar que se obtuvieron tasas de 

crecimiento crecientes para ambos gases durante el período de estudio. Además, las 

concentraciones de ambos gases en la estación del CIBA fueron comparables a las de otras 

estaciones de fondo en otras partes del mundo. Las ligeras diferencias en las concentraciones 

del CO2 y el CH4 de la estación del CIBA con respecto a otras analizadas en la bibliografía se 

debieron principalmente a los impactos de las emisiones antropogénicas cercanas a las 

estaciones de medida y al transporte de masas de aire desde zonas más contaminadas. 

Finalmente, es importante evaluar la relación entre las concentraciones de CO2 y el CH4 

atmosféricas en relación con la dirección del viento a fin de identificar posibles fuentes de 

contaminación, aportando información adicional a los patrones temporales ya descritos en las 

tres primeras contribuciones. Por tanto, la cuarta contribución original se centró en analizar la 

relación existente entre la dirección del viento en superficie y en altura (retrotrayectorias a 500 

m. calculadas con el modelo METEX) con las concentraciones finales de CO2 y CH4 

registradas en la estación del CIBA para analizar el efecto del penacho urbano de Valladolid 

en las concentraciones finales registradas. El componente suroeste de la retrotrayectoria 

media para los sectores urbanos en las últimas 24 horas antes del impactar en la estación, el 

mayor tiempo de transporte dentro de la Península Ibérica y el mayor factor de recirculación, 

supusieron un mayor arrastre de contaminantes hacia el CIBA. Como resultado, las mayores 

concentraciones de CO2 y CH4 se detectaron para los sectores sur poniendo de manifiesto el 

efecto del penacho urbano de Valladolid en las concentraciones finales. Por último, los 

resultados arrojados por la presente tesis doctoral ayudaron a comprender los procesos que 

gobiernan la tendencia y los ciclos estacionales del CO2 y CH4. Esta caracterización de ambos 



  Abstract / Resumen 

 

   7    

 

gases pretende contribuir a la planificación de políticas de mitigación de cambio climático más 

efectivas para lograr el objetivo de reducir la concentración de gases de efecto invernadero 

en la atmósfera.  

 

Palabras clave: CO2, CH4, patrones temporales, estación de fondo rural, función armónica, 

funciones kernel, ancho de banda, funciones de regresión local, modelado de masa de aire y 

modelo METEX. 
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2. Introduction          

2.1. An overview 

Over the last century, climate change has become a subject of great interest and is recognized 

as one of the major global challenges facing mankind in the 21st century (Almeida et al., 2017; 

Anderson et al., 2016; del Río et al., 2005; Hernández-Ceballos et al., 2016; IPCC, 2019). 

Climate change, and its impact on the earth’s surface, together with the increase in greenhouse 

gases, radiation budget and changes in global temperatures, has increasingly attracted the 

attention of researchers in different areas as it has an important environmental, social and 

economic impact from a local to a global scale (del Río et al., 2005; Ramos et al., 2012). Some 

of the most devastating effects of climate change include warming in cities and their 

surroundings (urban heat island), desertification, loss of biodiversity (Espinosa et al., 2018; 

Miller et al., 2017), changing rainfall patterns or greater frequency of some extreme events 

(IPCC, 2019) such as wildfires (Halofsky et al., 2020). Moreover, climate change will also have 

adverse effects on livelihoods, food security, habitats, and land degradation (IPCC, 2019). 

Greenhouse gases from anthropogenic activities are the most significant driver of climate 

change to have been observed since the mid-20th century (IPCC, 2013). Due to the effects of 

climate change, over the last third of the twentieth century, an international awareness of the 

danger involved and of the need to take measures to prevent global warming has emerged. 

The following subsections briefly point out the most important international climate change 

instruments and agreements adopted with regard to regulating greenhouse gas emissions in 

an effort to tackle climate change.  

 

2.1.1. International instruments and agreements for regulating greenhouse gas emissions 

2.1.1.1. The Intergovernmental Panel on Climate Change (IPCC) 

In 1988 the World Meteorological Organization (WMO) and the United Nations Environment 

Program (UNEP) created the Intergovernmental Panel on Climate Change (IPCC) to analyse 

the problem of global climate change. The IPCC is a group open to all members of the United 

Nations and WMO (IPCC, 2020a). The function of the IPCC is not to conduct its own research 

but to analyse, in a comprehensive, objective, open and transparent way, the relevant 

scientific, technical and socioeconomic information required to understand the scientific 

elements involved in climate change caused by human activities, its possible repercussions 

and the possibilities of attenuation and/or adaptation (IPCC, 2020a). In addition, through their 

evaluations, the IPCC seeks to identify the strength of scientific agreement in different areas 

and indicates where further research is needed. The IPCC is made up of three different working 

https://www.ipcc.ch/about/
https://www.ipcc.ch/about/
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groups. Working Group III is responsible for assessing different options for limiting greenhouse 

gas emissions to mitigate climate change. 

 

In 1990, the IPCC published its First Assessment Report and confirmed the scientific elements 

that raised concern about climate change. It pointed out the need to reduce greenhouse gas 

(GHG) emissions by 67% by 2025 in order to reach a global emissions reduction of 20% 

compared to 1985 levels (IPCC, 1992). Following the First IPCC Report, the United Nations 

General Assembly decided to prepare a Framework Convention on Climate Change in 1992 

(IPCC, 1995). This United Nations Framework Convention on Climate Change (UNFCCC) 

came into force legally in 1994 and provided the starting point for the Kyoto Protocol. The main 

goal of the UNFCCC was to stabilise the greenhouse gas mixing ratio amount in order to avoid 

or limit anthropogenic interference in the climate system, ensure food production and allow 

economic development to continue in a sustainable manner. The supreme body of the United 

Nations Framework Convention on Climate Change is the Conferences of the Parties (COP), 

comprising all the state parties who meet annually at world conferences in order to take 

decisions aimed at achieving the objectives of tackling climate change. The first COP was held 

in 1995 in Berlin with the aim of initiating negotiations to reduce emissions beyond 2000 

through quantitative objectives and specific deadlines (Roberts, 2016). To date, 25 COPs have 

been held, with the last having taken place in December 2019 in Spain.  

 

In 1995, the Second Assessment Report provided scientific material for the Kyoto Protocol 

negotiations derived from the Convention on Climate Change held in 1992 in Brazil (IPCC, 

1995). 

 

In 2001, the Third Assessment Report highlighted the existence of climate change and its main 

impacts and consequences, providing scientific and technical issues that would prove useful 

for implementing effective policy design (IPCC, 2001). 

 

In 2007, the Fourth Assessment Report went a step further by stating that climate system 

warming was indisputable and was mainly due to the increased concentration of greenhouse 

gases as a result of human activities mainly linked to the use of fossil fuels, changes in land 

use and some agricultural practices. Moreover, the Fourth Report revealed a growing trend in 

extreme events and stated that temperature increases, heat waves, and heavy rainfall events 

were becoming increasingly frequent (IPCC, 2007). 
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In 2014, the Fifth Assessment Report reported that anthropogenic GHG emissions had 

reached their highest ever levels (IPCC, 2014).  

 

The IPCC is currently working on the Sixth Assessment Report, which will be finished in the 

first half of 2022. In this report a refinement of the methodology employed in the previous IPCC 

reports is expected (IPCC, 2020b). 

 

2.1.1.2. International agreements 

The Kyoto Protocol was the first legal international agreement linked to the regulation of 

greenhouse gas emissions. The justificatory arguments of the Kyoto Protocol began at the 

third conference of the parties (COP3) of the United Nations Framework Convention on 

Climate Change in Kyoto (Japan) in 1997, ending at Buenos Aires in 2004 (COP10) (Lövbrand, 

2009; Roberts, 2016). This international agreement sought a reduction in greenhouse gas 

emissions in industrialized countries (Roberts, 2016). The Kyoto Protocol was initially in effect 

from 2008 to 2012 (Klimenko et al., 2019; Roberts, 2016). It was the first binding agreement 

on the fight against climate change, and established legally binding emission reduction targets. 

In November 2009, the Protocol was ratified by 192 countries which jointly account for 86.8% 

of all greenhouse gas emissions (Klimenko et al., 2019). In it, industrialized countries 

committed to reduce greenhouse gas emissions by 5.2% before 2012 compared to 1990 levels 

(Klimenko et al., 2019). Finally, a reduction of around 9.6% in greenhouse emissions from 

2008 to 2012 compared to 1990 levels for most countries was achieved, virtually twice the 

initial amount (Klimenko et al., 2019). As regards EU countries, a reduction in GHG emissions 

was observed as a result of economic restructuring in eastern Europe in the 1990s (Balsalobre 

et al., 2015). However, outside EU borders the Protocol had little impact since the United 

States failed to ratify it and Canada abandoned it at the Durban conference in 2011 (COP17) 

(Corti, 2017; Klimenko et al., 2019). Furthermore, the Protocol left out the developing countries. 

In general, virtually only Australia, New Zealand and Japan joined the European model, 

together with Russia's late incorporation, albeit with doubtful long-term effects (Corti, 2017). 

 

The Kyoto Protocol was initially expected to end in 2012. Hence the 15th Conference of the 

Parties (COP 15) of the United Nations Framework Convention on Climate Change (UNFCCC) 

held in Copenhagen in 2009 sought to reach an international agreement that would establish 

a framework to replace the Kyoto Protocol. Unfortunately, the Copenhagen Accord did not 

enable a new agreement to reduce emissions to be reached after 2012 (Corti, 2017; Roberts, 

2016). The main reason for the failure of the Copenhagen Accord was the 2008 global financial 

crisis which undermined economies as well as confidence in development models, added to 
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which emerging countries were not willing to adopt a scheme that could jeopardize their growth 

(Corti, 2017; Griffiths et al., 2020; Hu et al., 2020; Klimenko et al., 2019). However, two 

important advances were made at the COP15. Firstly, it showed the need to limit the increase 

in global temperature to 2ºC from pre-industrial levels as well as the need to limit global 

emissions based on the results to come out of the Fourth Assessment Report of the IPCC 

(IPCC, 2007). Secondly, many countries signed up to the agreement and developing countries 

adopted an active role in the negotiations by making minor commitments to reduce greenhouse 

gas emissions (Corti, 2017). Another notable facet of the Copenhagen Accord was the fact 

that political agreement was reached between key world leaders: the United States, China, 

India, Brazil, and South Africa, especially the first two with a decline in European Union 

leadership (Corti, 2017). However, the main developing countries, such as China or India, did 

not accept measurement, information and verification of their emissions by third parties who 

were seeking increased transparency. 

 

In 2011, the COP17 held in Durban (South Africa), resulted in the decision to replace the Kyoto 

Protocol with another protocol designed to establish concrete actions to combat climate 

change (Roberts, 2016). A working group was formed to develop the text of the global 

agreement that served as the basis for the agreement which would ultimately be signed at the 

Paris conference. In the frame of the COP17, Europe adopted a more neutral stance, 

mediating between the two great powers: the US and China, and providing concrete action 

measures (Corti, 2017). 

 

In 2012, the Qatar Conference of the Parties (COP18) established a second period for the 

Kyoto Protocol, covering the 2013-2020 period (Roberts, 2016). 

 

In 2013, the Warsaw Conference of the Parties (COP19) presented the updated draft of the 

international agreement that would be worked on at the 2015 Paris Conference (COP21) 

(Lörcher et al., 2015). 

 

In 2015, the 21st Conference of the Parties (COP 21) of the United Nations Framework on 

Climate Change (UNFCCC) took place in Paris, ending with the adoption of the Paris 

Agreement by the 195 UNFCCC countries (Boffino et al., 2019). The Paris Agreement 

establishes the global framework for combating climate change from 2020, promoting a 

transition towards a low-emission economy in the fight against climate change (Boffino et al., 

2019; Pauw et al., 2019). This agreement establishes a plan to reduce emissions of CO2 and 

other greenhouse gases, aiming to keep global temperature increases to below 2ºC relative to 
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pre-industrial levels and to even pursue efforts to limit temperature increases to 1.5°C above 

pre-industrial levels (Anderson et al., 2016; Arioli et al., 2020). To date, 178 countries have 

ratified the agreement (Simsek et al., 2019). It is worth noting that China, one of the major 

emitters (Chen et al., 2020; Guo et al., 2020), ratified the agreement that set the goal of 

reducing carbon emissions per unit of the Gross Domestic Product by 60-65% compared to 

2005 levels (Morris et al., 2019). The European Union (which accounts for 7.57% of global 

emissions) ratified the agreement, with the aim of reducing 2005 levels by 43% before 2030 

(Parry, 2020). As regards Spain, a reduction in its emissions by around 20-30% from 2005 

emissions was adopted, with special emphasis on the transport and building sector (Parry, 

2020). The Paris Agreement came into force in 2020 after the end of the second period of the 

Kyoto Protocol (Roberts, 2016).  

 

2.1.1.3. International agreements in the framework of the European Union 

The European Union has already proposed measures through the Energy Roadmap 2050 

document to reduce greenhouse gas emissions by at least 40% (Đozić et al., 2019), although 

it actually aims to reduce them to 80–95% below 1990 levels by 2050 (Energy Roadmap 2050, 

2012; Rečka et al., 2017). The Energy Roadmap 2050 document of the European Commission 

aims to promote economically cost-effective scenarios to adapt the European Union's 

economy to a competitive and sustainable low-carbon economy model while ensuring the 

security of energy supply (Đozić et al., 2019; Energy Roadmap 2050, 2012). As stated in the 

Energy Roadmap 2050 (2012) document, solutions to curb greenhouse gas emissions need 

many years of preparation if they are to begin to be fruitful, such that decision-making should 

be implemented quickly. In this sense, the Energy Roadmap 2050 document establishes the 

need for concrete strategies to be established after 2020 in order to reach reduction and 

decarbonisation objectives. 

 

2.1.2. Global greenhouse gas emissions 

The link between greenhouse gases and climate warming has caught the attention of 

scientists, politicians and the general public, via the well-known ‘‘greenhouse effect’’ in which 

molecules of gas in the atmosphere intercept infrared radiation from the Earth's surface and 

part of the absorbed energy is re-radiated back to the surface, increasing the Earth’s mean 

temperature (Anderson et al., 2016). This process is schematically shown in Figure 1.   
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Figure 1. Distribution of energy from the Sun to the Earth (Riza et al., 2011). 

 

The origin of climate change is found in the mass emission into the atmosphere of so-called 

greenhouse gases (GHG). The Intergovernmental Panel on Climate Change (IPCC) points to 

anthropogenic emissions as the main cause of the climate variations observed in recent 

decades. Climate change is a global problem of exponential nature (occurring in accordance 

with the intensity of human activities and their emissions) and is persistent since, even if 

measures were implemented today, it would take many decades to reduce the vast amount of 

GHG in the atmosphere. At a global scale, the key greenhouse gases emitted by human 

activities are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and fluorinated gases 

(F-gases) (Hartmann, 1994; IPCC, 2014; Jiménez et al., 2015). Figure 2 depicts the 

percentage of anthropogenic GHG gases from 1970 to 2010. 

 

As can be seen in Figure 2, the main GHG contributor is CO2 followed by CH4. Both gases 

together contributed over 90% of all GHG emissions in the atmosphere for the period 1970-

2010 (IPCC, 2014). It is important to point out that during the 1980s, CFCs contributed around 

25% of climate forcing (Hartmann, 1994). However, important restrictions were adopted 

through the Montreal Protocol to reduce the amount of CFCs in the atmosphere in order to 

preserve the ozone layer. This led to a decrease in CFCs but reinforced CO2 contribution. 

Furthermore, CO2 and CH4 are considered to be long-lived gases in the atmosphere (IPCC, 

2007), which means that they need a long time to achieve a new equilibrium or steady state in 

response to a perturbation (i.e. their time of residence) (Hartmann, 1994). However, the 

difference in terms of years for both gases should be noted, since time residence for CO2 is in 

the range of 50-200 years, whereas time residence for CH4 is around 10 years (Beck et al., 
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2018; Fiore et al., 2015; Hartmann, 1994; Hill et al., 2016; Lee et al., 2020; Prather et al., 2012). 

Furthermore, in recent decades, there has been growing scientific consensus that the increase 

in the concentrations of several key long-lived greenhouse gases is contributing to an overall 

global warming effect via the radiative forcing effect (IPCC, 2014; Jiménez et al., 2015; 

Sorribas et al., 2019). CO2 and CH4 are the largest radiative forcing contributors, accounting 

for 69% (2.044 Wm-2) and 18% (0.512 Wm-2), respectively, of total radiative forcing by all long-

lived greenhouse gases in 2018 (NOAA, 2020b). It should be remembered that the effects of 

GHG emissions on the energy balance of the atmosphere are cumulative over their 

atmospheric lifetimes (Rella et al., 2013). Due to lower CH4 lifetime in the atmosphere, a 

quicker stabilization or reduction in its emissions, compared to CO2, is possible (Saunois et al., 

2020). 

 

Figure 2. Anthropogenic greenhouse gases between 1970-2010 (IPCC, 2014).  

 

As regards global emissions by economic sector, those which lead to major impacts are shown 

in Figure 3 and are the following (IPCC, 2014):  

• Electricity and Heat Production: the burning of coal, natural gas, and oil for electricity 

and heat is the largest single source of global greenhouse gas emissions. 

 

• Agriculture, Forestry, and other Land Use (AFOLU): cultivation of crops, livestock and 

deforestation are the main emissions from the AFOLU sector. This estimate does not 

include the CO2 that ecosystems remove from the atmosphere by sequestering carbon 

in biomass, dead organic matter, and soils.  

 

• Industry: primarily fossil fuels burned in industry for energy. However, emissions from 

chemical, metallurgical, and mineral transformation processes not associated with 

https://www.esrl.noaa.gov/gmd/aggi/aggi.html
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#electricity
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#land-use-and-forestry
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#industry
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energy consumption, and emissions from waste management activities are also 

included. 

 

• Transportation: involves fossil fuels burned for road, rail, air, and marine transportation. 

Almost all of the world’s transportation energy comes from petroleum-based fuels, 

mainly gasoline and diesel. 

 

• Buildings: refers to onsite energy generation and burning fuels for heating in buildings 

or cooking in homes.  

 

• Other Energy: refers to all emissions from the energy sector which are not directly 

associated with electricity or heat production, such as fuel extraction, refining, 

processing, and transportation. 

 

Figure 3. Anthropogenic GHG emissions by economic sectors in 2010 (IPCC, 2014).  

 

The main greenhouse gas emitting countries are China, the United States, the European Union 

and India, as shown in Figure 4. Moreover, as stated by Agrawal (2019), global greenhouse 

gas emissions reached approximately 37.15 billion tonnes of CO2 in 2018.  

As regards European Union (EU27) emissions (Figure 5), Germany, France, Italy, Poland, and 

Spain (which also reflects GHG contribution from Andorra) are the main GHG emitting 

countries.  

 

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#transportation
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#commercial-and-residential
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Figure 4. Percentage of total emissions of greenhouse gases by countries at a global 

scale referring to 2015 data from EDGAR (2020). 

 

 

Figure 5. Percentage of total emissions of greenhouse gases for EU countries 

referring to 2015 data from EDGAR (2020). 
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Since CO2 and CH4, are the two most important greenhouse gases in terms of abundance and 

radiative forcing, understanding and quantifying their mixing ratios at different scales is crucial 

for assessing realistic pathways to mitigate climate change (Curcoll et al., 2019; Jiménez et 

al., 2015; Sauonis et al., 2020). Hence, the two next sections are focused on pointing out the 

main characteristics of their cycles and their mixing ratio evolution over time. 

 

2.2. CO2 

2.2.1. The CO2 cycle 

The major anthropogenic CO2 sources are global fossil fuel emissions (EFF) which include the 

combustion of fossil fuels through a wide range of activities (e.g. transport, the heating and 

cooling industry, fossil fuel industry and natural gas flaring), the production of cement and other 

industrial emissions (Friedlingstein et al., 2019). The second most important CO2 sources are 

emissions from land use, land use change and forestry activities (ELUC) (Friedlingstein et al., 

2019; Li et al., 2014). ELUC emissions reflect the net sum of emissions (e.g. deforestation, land 

clearing for agriculture, degradation of soils) and removals (e.g. reforestation) due to 

anthropogenic activities (Friedlingstein et al., 2019). As regards the main CO2 sinks, prominent 

are terrestrial CO2 sinks (SLAND), which refers to some natural CO2 reservoirs (e.g. soils, plants 

or permafrost) (Friedlingstein et al., 2019). The second most important natural CO2 sinks are 

the oceans (SOCEAN) (Friedlingstein et al., 2019). Figure 6 depicts the main CO2 global sources 

and sinks. 

 

Figure 6. Schematic representation of CO2 sources and sinks for the most recent available decade 

data (2009-2018) (modified from Friedlingstein et al., 2019). 
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Accurate assessment of CO2 emissions and distribution in the atmosphere is important vis-à-

vis gaining a better understanding of the global carbon cycle in order to support the 

development of climate policies and to mitigate and tackle climate change (Curcoll et al., 2019; 

Le Quéré et al., 2016). However, as many authors have pointed out (e.g. Bergamaschi et al., 

2010; Ciais et al., 2000; Hase et al., 2015; Hu et al., 2018) the distribution of CO2, as well as 

its sources and sinks, is still poorly constrained at a regional scale (Curcoll et al., 2019). Hence, 

as stated by Sreenivas et al. (2016), atmospheric CO2 measurements are crucial in order to 

understand the carbon cycle. 

 

2.2.2. The history of measuring CO2 

The first relevant scientific contribution as regards climate change was proposed by the 

mathematician and physician Joseph Fourier in 1827, who established that the Earth was 

getting warmer because the atmosphere was trapping heat as if under a pane of glass 

(Anderson et al., 2016; Weart, 1997). This process is currently well known as the “greenhouse 

effect”. At this time, Fourier considered water vapour to be the main gas responsible for this 

warming process. However, in 1859 the Irish physician John Tyndall found that other gases, 

such as methane and carbon dioxide, also block infrared radiation (Anderson et al., 2016; 

Fleming, 2000; Weart, 1997). The geologist Arvid Högbom pointed out in 1894 that human 

activities were adding CO2 to the atmosphere at a rate roughly comparable to natural 

geochemical processes (AIP, 2020). 

 

Högbom’s research provided the physician Arrhenius with a starting point to speculate in his 

pioneering work of 1896 about the possibility of a society releasing higher quantities of carbon 

dioxide that would increase the global warming effect (Hawkins et al., 2013; Weart, 1997). 

Arrhenius conducted tedious and time-expensive calculations of how carbon dioxide 

intercepted radiation in the atmosphere (Anderson et al., 2016; Fleming, 2000). Although 

Arrhenius could only make a rough estimation of CO2 feedback effects with the available data, 

according to his calculations, doubling the amount of carbon dioxide would raise the planet’s 

average surface temperature by around 5-6°C (Anderson et al., 2016; Weart, 1997). In this 

sense, Arrhenius’ work proved to be crucial in terms of pointing to the possible effect of 

increasing amounts of CO2 in the atmosphere (Weart, 2006). Arrhenius’s work served as a 

starting point for Chrowder Chamberlin who, in 1896, stated that the level of CO2 in the 

atmosphere changes over time and that considering these dynamics of the carbon cycle 

influences the climate (Fleming, 2000; Weart, 2006). Nevertheless, many authors cast doubt 

on the existence of global warming due to an increase in the CO2 mixing ratio abundance in 

the atmosphere. For example, the Swedish physicist Knut Ångström who, in 1990, measured 
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the passage of infrared radiation through a tube filled with carbon dioxide, concluded that 

adding or reducing the quantity of carbon dioxide in the tube barely altered the amount of 

radiation that got through the tube. Furthermore, the conviction that the Earth automatically 

regulated itself by absorbing these gases through the oceans and/or vegetation was also an 

important reason to deny the greenhouse effect (AIP, 2020). Such was the line taken by the 

mathematician Lotka (1924) who considered the sea as a vast equalizer able to absorb up to 

95% of all the carbon dioxide in the atmosphere, such that fluctuations could easily be reduced 

(Weart, 1997).  

 

However, some scientists disagreed with the view that changes in CO2 would have no effect 

on climate, which encouraged them to carry out studies to demonstrate this. In 1931, the 

physician O. Hulburt conducted tedious calculations which supported Arrhenius’s estimation 

that doubling (or halving) CO2 would bring an increase (decrease) of around 4°C (AIP, 2020). 

In 1938, the engineer Stewart Callendar analysed 147 land-based stations to rebuild global 

temperature series for different regions for around 50 years, showing that the Earth’s land 

surface was warming due to manmade burning of fossil fuels, due to the so-called “Callendar 

Effect” (Anderson et al., 2016; Hawkins et al., 2013; Weart, 2006). Callendar suggested that 

the production of carbon dioxide by the combustion of fossil fuels was largely responsible for 

climate change, reviving interest in the issue of climate change and its link to CO2 (Hawkins et 

al., 2013).  

 

The vastly improved techniques which emerged in the 1940s enabled a revision of the old 

measurements with gases in a tube carried out by Ångström (Weart, 1997). It should be 

pointed out that in the old spectrographs used by Ångström, the bands of water vapour and 

carbon dioxide overlap (AIP, 2020). However, Hulburt and Callendar found that at low pressure 

and temperature, CO2 and H2O absorption lines do not exactly overlap but that there were two 

sets of narrow lines where radiation can get through (Weart, 1997). Scientists therefore 

considered it important to calculate absorption for radiation passing through the atmosphere 

in each layer and not as a whole (Weart, 1997).  

 

The idea that CO2 from human activity could never become a problem was overturned even 

further during the 1950s by a series of costly observations. In 1952, the theoretical physician 

Lewis D. Kaplan conducted extensive numerical computations with digital computers, pointing 

out that adding more CO2 to the upper atmosphere could change the balance of radiation. In 

1955, the theoretical physicist Gilbert Plass’s calculations showed that adding carbon dioxide 

to the atmosphere would increase the infrared radiation intercepted (Weart, 2006). However, 
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in 1955, the chemist Hans Suess reported an increase of around only one percent of fossil 

carbon in the atmosphere by analysing wood trees grown over the past century, concluding 

that oceans were taking up most of the carbon that came from burning fossil fuels (Weart, 

1997). The matter would not rest there, thanks in particular to Roger Revelle, director of the 

Scripps Institute of Oceanography in California who had spent his whole career studying the 

chemistry of the oceans (Munk, 1997). Revelle stated that seas were not able to absorb all the 

carbon dioxide in the atmosphere (Weart, 2006). Suess and Revelle studied how carbon 

moves through the air, ocean, minerals, soils, and living organisms in order to determine how 

much of the CO2 produced from fossil fuels was absorbed by oceans or vegetation (Weart, 

1997). Measurements of radioactive carbon travel finally showed that oceans were not able to 

absorb all the carbon dioxide that human industry was pouring out (Weart, 1997).  

 

By the mid-1950s, researchers felt that it was important to measure the concentration of CO2 in 

the atmosphere far more accurately. In addition, new funding became available in connection 

with the International Geophysical Year (1958), allowing Revelle and Suess to commence a 

major measurement programme aimed at establishing baseline CO2 values around the world, 

and enabling these values to be checked over time (Weart, 1997). However, the programme 

needed costly and precise measurements collected at background sites far from disturbances. 

Charles Keeling was the geochemist responsible for starting the programme in 1958, 

measuring CO2 in the pristine air of Antarctica and at the top of the Mauna Loa volcano in 

Hawaii (Weart, 1997). Due to the lack of funds the Antarctic station was closed, but Keeling 

managed to keep the Mauna Loa measurements going (Weart, 1997). In 1960, with only two 

full years of Mauna Loa data collected, a regular seasonal cycle was already evident, showing 

how the planet breathes in the Northern Hemisphere (Keeling, 2008). The record documented 

a global rising trend attributable to the burning of fossil fuels worldwide (Keeling, 2008) and 

provided well-known evidence of the greenhouse effect (Weart, 1997). By the early 1960s, 

many scientists had become seriously concerned that warming might not just be a moderate 

natural cycle but the onset of an abrupt rise (Weart, 1997). Keeling ’s curve, jagged but 

inexorably rising, was soon widely cited by scientific review panels and science journalists 

(Keeling, 2008; Marx et al., 2017). Keeling therefore heralded both the end and the beginning 

in the influence of increasing CO2 and its effect on climate change. 

 

2.2.3. CO2 mixing ratio evolution over time 

The data collected from Keeling’s measurement programme is the longest continuous record 

of direct atmospheric CO2 in the world and provided compelling evidence that the 

concentration of CO2 in the atmosphere was rising (Keeling, 2008). Apart from the 
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measurements collected at Mauna Loa by Keeling from May 1958, NOAA started its own 

CO2 measurements in May 1974, running parallel with those made by Scripps (NOAA, 2020c). 

A global average value is obtained for a specific time interval by fitting a smoothed curve as a 

function of time to each observation station. CO2 mole fraction is expressed as parts per million 

(ppm), indicating that one out of every million molecules in an air-dry sample is CO2. Figure 7 

reflects the CO2 mixing ratio evolution over time from the last glacial period to the present time, 

giving also a prediction for two future periods.  

 

Figure 7. CO2 mixing ratio evolution over time (data from Da et al., 2019; Keeling, 2007; NOAA, 

2020a; c; d; Visconti, 2016). 

 

2.3. CH4 

2.3.1. The CH4 cycle 

As already mentioned, reducing CH4 emissions is an effective option for climate change 

mitigation, especially on decadal timescales (Saunois et al., 2020). In order to better 

understand the CH4 cycle, Figure 8 shows the main sources and sinks for the 2008-2017 

decade in accordance with the most recent global methane budget data (Sauonis et al., 2020). 

Global anthropogenic CH4 sources are in the range of 50-65% (Sauonis et al., 2020), with 

around two thirds originating from the Northern Hemisphere (Lelieveld, 2006). The main 

anthropogenic CH4 sources include fermentation in livestock, manure management, waste 

water treatment, landfills, gas, coal mining (Sauonis et al., 2020), and biomass burning when 

incomplete combustion occurs (Sánchez et al., 2014). The main natural CH4 sources are 

wetlands (Lee et al., 2020), peatlands, wild animals, digestion processes in termites, 

microorganisms living in the oceans, forest fires, CH4 carbohydrates and permafrost (Saunois 

et al., 2020). It is important to bear in mind that permafrost can be exposed to either aerobic 

or anaerobic soil conditions, which determine the form (CO2 and CH4) and magnitude of carbon 

https://www.esrl.noaa.gov/gmd/ccgg/trends/
https://www.esrl.noaa.gov/gmd/ccgg/trends/history.html
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released into the atmosphere (Song et al., 2020). Although many scientific studies point out 

that greenhouse gas production of permafrost under aerobic conditions is higher (producing 

CO2), the importance of CH4 production in anaerobic conditions vis-à-vis the climate forcing of 

greenhouse gases is also very important, as highlighted by Knoblauch et al. (2018) (Song et 

al., 2020). Oxidation of CH4 by OH radicals in the troposphere is the major sink and accounts 

for 90% of CH4 loss in the atmosphere (Beck et al., 2018; Fang et al., 2013).  

 

Figure 8. Schematic representation of CH4 sources and sinks for the most recently available 

decade data (2008-2017) (modified from Saunois et al., 2020). 

 

It should be pointed out that there is still considerable debate about the individual contributions 

of CH4 sources and their variability, which is evidenced by the mismatch of bottom-up and top-

down estimates of total CH4 emissions, as reflected in Figure 8 (Beck et al., 2018). To address 

this topic, new research should be encouraged at different scales so as to improve and update 

the global methane budget (Sauonis et al., 2020). 

 

2.3.2. The history of measuring CH4 

The Global Monitoring Division of NOAA’s Earth System Research Laboratory started 

measuring the CH4 mixing ratio in 1983 at a globally distributed network of air sampling sites 

(Dlugokencky et al., 1994). A global average is constructed exactly in the same way as is done 

with CO2 measurements (NOAA, 2020e). Prior to 1983, methane levels were obtained from 

ice core data from Antarctica (2º Institute, 2020).  

 

https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/
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2.3.3. CH4 mixing ratio evolution over time 

Figure 9 reflects CH4 mixing ratio evolution over time from the last glacial period to the present 

day, and also gives a prediction for 2030. CH4 is expressed as parts per billion (ppb), which 

indicates that one out of every billion molecules in an air-dry sample is CH4. 

 

Figure 9. CH4 mixing ratio evolution over time (data from Beck et al., 2018; Ganesan et al., 2019; 

IPCC, 2013; NOAA, 2020e). 

 

As can be seen from Figure 9, CH4 mixing ratio values during the Holocene, the last inter-

glacial period, were around 100 ppb, and have increased rapidly due to industrialization (Beck 

et al., 2018; Ganesan et al., 2019). Due to human influence on the Earth’s system, current CH4 

levels in the atmosphere have increased by a factor of around 2.5 relative to preindustrial levels 

(Beck et al., 2018) and are expected to reach almost 2700 ppb in ten years’ time if the current 

energy scenario continues (IPCC, 2014). 

 

2.4. The importance of accurate CO2 and CH4 mixing ratio measurements 

CO2 and CH4 mixing ratios should be measured using a common scale in order to avoid, or at 

least reduce, bias in outputs. For this purpose, the World Meteorological Organization (WMO) 

established requirements for the inter-laboratory compatibility of atmospheric greenhouse gas 

measurements, correcting the effect of water vapour for obtaining dry samples (Reum et al., 

2019). Furthermore, the characteristics of greenhouse gases at regional background sites are 

crucial for assessing the impact of anthropogenic emissions, ecosystems and climate change 

on the atmospheric environment (Cheng et al., 2019) since they are relatively well isolated 

from major urban and industrial emissions. 

 

2.4.1. The importance of drying the samples 

CO2 and CH4 are both reported as dry air mole fraction defined as the number of molecules of 

CO2 or CH4, respectively, divided by the number of all molecules in air, including CO2 and CH4, 

after water vapour has been removed (Yver Kwok et al., 2015; Rella et al., 2013). In order to 

https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/
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achieve the goal of inter-laboratory compatibility established by the Global Atmosphere Watch 

programme of the World Meteorological Organisation (WMO/GAW) (i.e. accuracy of ± 0.1 ppm 

for CO2 and ± 2 ppb for CH4 measurements) it is necessary to dry the samples to very low 

levels of water vapour (i.e. dew point <−25 ºC) (Rella et al., 2013). However, when water 

vapour is removed from a sample of ambient air, via evaporation or condensation processes, 

two major drawbacks emerge. First, it should be taken into account that the mole fraction of 

the other gases in the sample is also affected via dilution by water vapour (Rella et al., 2013). 

Second, drying the sample gas to low levels of water vapour can be expensive and time-

consuming.  

 

Traditional methods for measuring CO2 and CH4 mole fractions of greenhouse gases consist 

of non-dispersive infrared (NDIR) spectroscopy for CO2 and gas chromatography for CH4 

(Rella et al., 2013; Schmidt et al., 2014; Yver Kwok et al., 2015). However, both methods 

evidence major drawbacks such as the frequent calibrations required to obtain high-precision 

measurements and the high level of expertise needed when employing the gas 

chromatography methodology (Yver Kwok et al., 2015). Fortunately, advances in optical 

measurement techniques, in particular cavity ring down spectroscopy (CRDS), have led to the 

development of greenhouse gas analysers capable of simultaneous measuring CO2, CH4 and 

H2O. Unlike non-dispersive infrared (NDIR) spectroscopy and gas chromatography 

techniques, which suffered from significant uncorrected interference from water vapour, CRDS 

instruments allow for accurate greenhouse gas measurements able to meet WMO/GAW inter-

laboratory compatibility goals (Rella et al., 2013). CRDS analysers can directly measure the 

water vapour content of the air at the same time as carbon dioxide and methane are also 

measured. Thus, the dry mixing ratios of CO2 and CH4 can be directly quantified by correcting 

the H2O content in the air (Rella et al., 2013). Other notable features of cavity ring down 

spectroscopy technology are its infrequent calibration as well as low maintenance and few 

consumables required compared to gas chromatography and NDIR sensors (Yver Kwok et al., 

2015).  

 

For about 10 years, CRDS analysers have been developed and commercialized by a few 

companies (Crosson, 2008; Peltola et al., 2014). The Picarro G1301 model, which is the 

equipment used in the current study, was the first commercial instrument of CRDS sensors 

(Crosson, 2008). CRDS sensors are based on an optical technology in which direct 

measurement of infrared absorption loss in a sample cell is used to quantify the mole fraction 

of the gas (Rella et al., 2013). The CRDS technique is based on measurements of time not of 

absorbance. Thus, any fluctuations in laser intensity have no effect on the measurement, 
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unlike conventional spectrometers and gas analysers. More details concerning the CRDS 

techniques are given in the material and methods section. 

 

2.4.2. Background stations 

Background stations are those located in remote areas, far from highly populated areas and 

relatively well isolated from major urban and industrial emissions (Calvo et al., 2012). 

Moreover, road traffic is moderate in surrounding areas. Background stations experience a 

well-mixed atmosphere (van der Wal et al., 1997), representing atmospheric conditions under 

a specific climate pattern, vegetation composition and economic area (Cheng et al., 2018). 

Atmospheric background mixing ratios thus reflect regional atmospheric conditions and are 

closely related with regional emissions (Cheng et al., 2017; 2018).  

 

In contrast to studies in urban areas, studies on greenhouse gases at background stations 

provide relevant information on the influence of anthropogenic emissions, which are limited in 

this type of station, but which are also helpful for addressing the potential influence of long-

range transport of air masses from other areas and which can lead to important variations in 

background mixing ratios in rural areas (Calvo et al., 2012; Cheng et al., 2019; Di Gilio et al., 

2015). Atmospheric background mixing ratio levels can therefore play a significant role in 

understanding regional source–sink patterns (Cheng et al., 2018).  

 

Given their critical importance, a number of studies on CO2 and CH4 have been carried out at 

several background sites worldwide (e.g. Curcoll et al., 2019; Feng et al., 2019; Guha et al., 

2015; Pu et al., 2014; Wang et al., 2016; Yang et al., 2019) in order to provide useful 

information to study their temporal patterns at background levels (Bamberger et al., 2017; 

Schibig et al., 2015; Schmidt, 2003). However, more observational studies at such background 

sites are still required in order to increase current knowledge concerning the temporal evolution 

of CO2 and CH4 worldwide (Cheng et al., 2019; Curcoll et al., 2019) so as to establish 

appropriate thresholds for policy decisions. The CIBA station is, to the best of our knowledge, 

the background station in Castilla y León with the longest time series record of CO2 and CH4 

mixing ratios and the only one in the Iberian Peninsula included in the international Carbon 

Cycle Surface Flasks network, led by the National Oceanic & Atmospheric Administration 

(NOAA), from May 2009 (labelled as CIB station). Thus, maintenance of the station and the 

characterization of CO2 and CH4 temporal patterns is crucial due to its regional 

representativeness in terms of atmospheric conditions and regional emissions.  
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2.5. CIBA station characteristics 

Briefly, the main characteristics that make the CIBA station an ideal place to monitor CO2 and 

CH4 evolution are the following: 

1. Castilla y León, the region where the station is located, is considered one of the 

cleanest atmospheric areas in south-western Europe, according to Burgos (2016b). 

 

2. The station is labelled as a regional background station and, therefore, observations 

from the CIBA station could be considered as representative of the whole region.  

 

3. The station is located in a remote semi-arid area mostly surrounded by croplands, 

which is the main vegetation in the region of Castilla y León (Paredes, 2013) and, 

therefore, representative of regional vegetation composition. 

 

4. The sampling site is located in a flat area; hence, it is easy to access and to maintain 

the equipment. 

 

5. The regular topographical characteristics of the area also make atmospheric circulation 

consistent. 

 

The CIBA station has proven to be an ideal emplacement node in the region for a wide number 

of scientific atmospheric studies, the most relevant of which are listed in Section 5.1.  

 

2.5.1. Previous studies at the CIBA 

First, one of the most prominent studies was conducted by San José et al. (1985) in which the 

mathematical limits of Businger’s functions, which are designed to calculate two important 

turbulent parameters - friction velocity and the Monin-Obukhov length - were analysed. 

 

Second, the studies conducted by Cuxart et al. (2000) merit particular attention. Cuxart et al. 

(2000) studied the properties of the Stable Atmospheric Boundary Layer at the CIBA station 

during September 1998 under the “SABLES98” project. The goal of the project was to study 

the stable boundary layer in flat conditions and to look for the presence of low-level jets. As a 

continuation of the “SABLES98” project, Terradellas et al. (2001) introduced wavelet methods 

to study the atmospheric boundary layer under stable conditions. Furthermore, Conangla and 

Cuxart (2006) continued with the characterization of low-level jets by employing captive balloon 

soundings as well as turbulence measurements performed with high-frequency data. Finally, 

Cuxart et al. (2008) studied low-level jets, combining observational data at the CIBA station 

and modelling experiments. 
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Third, Yagüe et al. (2007) showed preliminary results concerning the characterization of wave 

events at the CIBA station in the context of the Stable Atmospheric Boundary Layer Experiment 

in Spain 2006, the so-called “SABLES2006” project. As a continuation of the “SABLES2006” 

project, Viana et al. (2009) described the generation and propagation of a gravity-wave 

episode through tower, RASS-SODAR, microbarometric, satellite imagery and automatic 

station data. In the same line, Viana et al. (2010) illustrated drainage or katabatic flows as a 

common source of internal gravity waves. Furthermore, wavelet techniques were applied to 

sonic anemometer records to study the interaction between turbulence and larger-scale 

motions. Finally, Udina et al. (2013) reproduced the internal gravity waves generated during 

the “SABLES2006” project and their origin through mesoscale meteorological modelling. 

 

Fourth, Soler et al. (2014) analysed eight atmospheric density current fronts at the CIBA station 

within the framework of the “INTERCLE” project, designed to study and parameterise heat, 

humidity and momentum exchanges in the stable boundary layer. The study was conducted 

from September 2002 to November 2003, using observational data and numerical simulations 

through the Weather Research and Forecast (WRF) Model. The equipment used was located 

on the 100-m high tower equipped with fast-response sonic anemometers and conventional 

sensors which measure wind speed and direction, air temperature and relative humidity at 

different heights, as well as soil temperature and atmospheric pressure at the surface. 

 

Fifth, other important analyses conducted outside the framework of major projects at the 

station include those carried out by Bravo et al. (2008) who analysed the performance of two 

different mesoscale models during two nights at the CIBA station. In addition, Román-Cascón 

et al. (2012; 2016a; b; 2019) performed climatology studies of radiation fog events through 

robust statistical analysis in order to evaluate the robustness of different methodologies 

designed to forecast radiation fog events.  

 

Finally, the University of Valladolid Atmospheric Pollution Group, within which the current 

thesis has been carried out, has been involved since the CIBA’s creation in many scientific 

topics. To mention but a few, these include the description of daily wind speed evolution at the 

station through measurements using sodar equipment (Pérez et al., 2004a) or the identification 

of cyclical processes in wind speed and temperature data using autocorrelation analysis 

(Pérez et al., 2004b). In addition, Sánchez et al. (2008) analysed the daily and seasonal 

variation of surface ozone mixing ratio data at the station from February 2000 to December 

2005. Other important studies are those involving a daily, seasonal and inter-annual variability 

description of atmospheric CO2 mixing ratio data for an eight-year period using a MIR 9000 
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continuous infrared analyser (Sánchez et al., 2010). Sánchez et al. (2014) also studied diurnal 

and seasonal CH4 mixing ratio patterns from June 2010 to May 2012 using a high precision 

cavity ringdown spectroscopy technique. An interesting comparison between CO2 

concentrations at a suburban site in the city of Valladolid and the rural site of the CIBA station 

was also conducted by García et al. (2012). Some of the most recent studies of the group 

involve those concerning the analysis of the role played by meteorological variables in CO2 

and CH4 trend and seasonal evolution (Pérez et al., 2017; 2018b; 2019). To conclude, several 

backward analyses have been conducted in order to link their characteristics to the final CO2 

and CH4 mixing ratio measured at the CIBA station (García et al., 2016; Pérez et al., 2017; 

2018a; 2019). The current thesis aims to study CO2 and CH4 temporal patterns by employing 

different statistical techniques whilst at the time exploring the possible influence of the city of 

Valladolid on final CO2 and CH4 mixing ratio values collected at the CIBA station. For that 

reason, the following section (2.6) is devoted to analysing what a time series is as well as the 

most common methods used to study it.  

 

2.6. Time series 

A time series is a set of recorded values of a specific variable collected at regular time intervals 

in chronological order over a long period of time (Chatfield, 1995; Everitt et al., 2010). A time 

series is basically made up of three different components; namely the trend, the seasonal 

component, and the random error. Generally, a time series (Yt) is expressed as follows (Bianchi 

et al., 2019; Chham et al., 2019; Fan et al., 2003): 

Yt = Tt + Pt + Rt [1] 

where t is the time and Yt are the observations. The two first components of equation 1 are 

commonly referred to in the ample literature as temporal pattern indicators (Cui et al., 2011; 

Fang et al., 2020; Fernandez-Cortes et al., 2006; Li et al., 2020). On the one hand, Tt 

represents the trend component which stands for the long-term variations that provide 

information concerning changes in annual evolution by simply ignoring the seasonal cycle of 

the time series. It should be mentioned that the trend is frequently discussed through the 

growth rate indicator which reflects the mixing ratio evolution over time. The current thesis also 

employs the growth rate indicator to analyse mixing ratio evolution over time. Pt is the short-

term referred to as the seasonal component which expresses the cycles (i.e. regular 

fluctuations) occurring within the time series, and providing information about changes in the 

intra-annual evolution. As the presence of trends in a time series hinders the identification of 

periodicities, they should be removed in order to identify periodicities within a dataset. Finally, 

Rt is a stochastic component reflecting the mean of the residuals. In this case, and following 
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other authors such as Fan et al. (2003) or Fernandez-Cortes et al. (2006), the mean of the 

residuals is assumed to be constant and equal to zero.  

 

The main goals of a time series analysis are [1] to describe and analyse its evolution over time, 

[2] to forecast future events, and [3] to control future events through intervention (Fan et al., 

2003). The current thesis is focused on the first objective.  

 

The first step when analysing a time series is to plot the data in order to visually analyse the 

data pattern. If a trend or seasonal pattern is observed, it is crucial to analyse both components 

of the time series separately (Fan et al., 2003) in a detrending or deseasonalised process. The 

detrending (deseasonalised) process involves subtracting the trend (seasonal) component of 

the time series from the original values of the series; hence, the seasonal (trend) component 

can be analysed separately (Everitt et al., 2010).  

 

To display data graphically in a simple way, data should be smoothed so as to remove, by 

averaging, the extreme values of the time series, identifying peaks and troughs as well as data 

symmetry (Fan et al., 2003; Gramacki, 2018; Wand et al., 1995; Wasserman, 2006). 

Smoothing techniques involve fitting a mathematical equation to a set of observations to 

highlight any unusual structure, which allows conclusions to be drawn from well-designed 

graphics (Everitt et al., 2010). Temporal series usually require special methods for their 

analysis due to the presence of serial correlation between the individual observations. Since 

reducing emissions is one of the major concerns of energy and environmental protection 

policies worldwide, robust estimations are crucial when assessing CO2 and CH4 temporal 

evolution. There are many different approaches for smoothing time series data (Cheng et al., 

2018; Fang et al., 2015) although most are based on moving averages values. Despite the 

great use of autoregressive moving average models for analysing time series, there are many 

phenomena that cannot be adequately described by this method (Everitt et al., 2010). In this 

sense, Everitt et al. (2010) consider harmonic regression functions as an alternative for 

analysing time series. However, harmonic functions, as with all parametric functions (i.e. the 

form of the probability laws is specified) might occasionally prove to be too rigid due to their 

restriction of a function belonging to a parametric family, which could lead to inappropriate 

conclusions (Fan et al., 2003). However, the rigidity of parametric regressions can be 

overcome by removing the restriction that a function should belong to a parametric family. This 

approach leads to what is commonly referred to as non-parametric regression techniques (i.e. 

the form of the probability laws is not completely specified). Indeed, there is a long tradition in 

applying non-parametric methods in time series analysis to decompose them (Fan et al., 2003; 
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Krisp et al., 2009; Peña et al., 2001; Wasserman, 2006). The main motivation for a non-

parametric approach regression is to let the data decide which function fits them best without 

the restrictions imposed by a parametric function. However, the gain in flexibility comes at the 

price of finding the optimal (given certain criteria) bandwidth (Gramacki, 2018; Müller, 1988; 

Peña et al., 2001).  

 

Nevertheless, parametric and non-parametric regressions should not be seen as competitors, 

since in many cases a non-parametric regression estimate will suggest a simple parametric 

function, while in other cases it will be clear that the underlying regression function is so 

complicated that no reasonable parametric function would be adequate (Wand et al., 1995). 

For these reasons, the current thesis employed both parametric and non-parametric functions, 

as shown in Figure 10.  

 

Figure 10. Schematic representation of the smoothing mathematical methods used in the current 

thesis. 

 

2.6.1. Parametric equations 

2.6.1.1. Harmonic regression equations 

Harmonic functions employ a k-degree polynomial function in order to obtain the trend 

component of a time series (Fernandez-Cortes et al., 2006; Peña et al., 2001). As regards the 

seasonal component, harmonic functions employ a sum of sine and cosine terms to the time 

series (Everitt et al., 2010; Peña et al., 2001). 

 

In parametric polynomial regression the degree of the polynomial is the smoothing parameter 

(Wand et al., 1995) for determining the trend. Thus, a decision involving the degree of the 
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polynomial trend and the trigonometric polynomial should first be taken. Fitting a higher-order 

polynomial will possibly reduce bias although, on the other hand, variance will increase since 

more parameters must be locally estimated.  

 

2.6.2. Non-parametric equations 

The practical implementation of the kernel density estimator and the local weighted method 

first require optimal determination of the bandwidth value (Wand et al., 1995). The bandwidth 

(h) is a smoothing parameter that controls the amount of smoothing applied to the data and 

the size of the local neighbourhood data points considered in the estimation (de Haan 1999; 

Gramacki, 2018; Hernández-Ceballos et al., 2019; Wand et al., 1995; Wasserman, 2006). It is 

important to bear in mind that high h values lead to an estimator with major bias but small 

variance, resulting in smoother shapes (i.e. over-smoothing), thereby suppressing some 

details of the time series (Wasserman, 2006). On the other hand, low h values lead to an 

estimator with small bias but large variance, resulting in a more irregular shape (i.e. under-

smoothing) dominated by noise or large peaks, making it difficult to locate true peaks 

(Wasserman, 2006). An optimal bandwidth will thus be achieved when changes in bias and 

variance balance out (Peña et al., 2001). Figure 11 shows the effect of different bandwidth 

values on kernel density estimations. 

 

Figure 11. Kernel Density estimation employing different bandwidth values (Krisp et al., 2009).  

 

The field of bandwidth selection remains unresolved, although there is a considerable amount 

of ground-breaking research into the problem. Bandwidth selection aims to find a simple 

method to make automatic bandwidth selection, which would prove to be extremely useful 
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when kernel estimators are used as components of larger statistical procedures (Wand et al., 

1995). Briefly, it is possible to point to two different approaches to select optimal bandwidth. 

The first consists of applying mathematical equations which aim to find a reasonable bandwidth 

for a wide range of situations, but without any guarantee of being close to the optimal 

bandwidth for the specific dataset. These are motivated by the need to have fast automatically 

generated kernel estimates and to provide a reasonable starting point for choosing the 

smoothing parameter (Wand et al., 1995). However, they require substantial computational 

resources. On the other hand, a trial and error approach, which is highly recommended for 

exploratory analysis, is one possible solution for easy bandwidth determination (Wilks, 2019).  

 

2.6.2.1. Kernel regression equations 

Kernel regression smoothing is a distribution method for smoothing data by using kernel 

density estimators (Everitt et al., 2010; Wasserman, 2006). The accuracy of the kernel 

estimators strongly depends on the bandwidth value (Gramacki, 2018). Kernel regressions 

offer a large family of curves to choose from for increasing data flexibility (Wand et al., 1995). 

Figure 12 (next page) shows the different kernel functions analysed in the current thesis. More 

details concerning kernel density estimation can be found in Devroye and Györfi (1985), Scott 

(1992) and Silverman (1986) (Fan et al., 2003).  

 

2.6.2.2. Local regression equations 

The decomposition of a time series into trend and seasonal components by locally weighted 

scatterplot smoothing (lowess) was introduced into the statistical literature by Cleveland (1979) 

and Stone (1977) (Peña et al., 2001). Locally weighted regression, usually known as lowess, 

is a robust method of regression analysis in which polynomials of degree one (linear) or two 

(quadratic) are used to approximate the regression function in particular “neighbourhoods” of 

the space of the exploratory variables. This mathematical procedure is used to guard against 

deviant points distorting the smoothed points. Essentially, the process involves an adaptation 

of iteratively reweighted least squares (Everitt et al., 2010). 
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Figure 12. Smoothing kernels employed in contribution II. It should be noted that u= [(t-ti)/h], 

where t is the time expressed in days and h is the bandwidth, which is also expressed 

in days. Kernel functions are mathematically described in section 4.6.2.1. 

 

2.7. Valladolid urban plume analysis 

Once in the atmosphere, the primary process favouring the transport and dispersion of 

substances is wind regimes (Hernández-Ceballos et al., 2019). As stated by Liu et al. (2000), 

wind direction determines the travel direction of an air species and the receptor which is 

affected at a given time. After emission, pollutants can be quickly dispersed and diluted, 

resulting in low concentrations levels, or they can be concentrated in a relatively small volume, 

which leads to episodes of high mixing ratio values (Brancher et al., 2017). As Brancher et al. 

(2017) stated, one of the main purposes of studying atmospheric behaviour is to 

mathematically describe the spatiotemporal distribution of substances emitted into the 

atmosphere.  

 

2.7.1. Transport of air masses 

Ninety percent of the atmosphere’s mass lies within just 15 km of the surface (Liu et al., 2000), 

in the lower atmosphere. The lower atmosphere comprises the troposphere, which is governed 

by turbulent mixing of air and where weather and air pollution problems occur (Liu et al., 2000; 
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Visconti, 2016). The troposphere is divided into the planetary boundary layer (PBL), which 

extends from the Earth's surface to about 3,000 m a.g.l. (Hernández-Ceballos et al., 2013), 

and the free troposphere, extending from about 3,000 m a.g.l. to the tropopause (Brancher et 

al., 2017). This thesis focuses on analysing the temporal patterns of CO2 and CH4 within the 

lower troposphere, and more specifically within the planetary boundary layer since this is the 

region which contains most emission sources of air pollutants (Turner, 1994). Indeed, most 

gases from anthropogenic activities or natural processes enter the atmosphere through the 

PBL (Brancher et al., 2017). The transport of a pollutant emitted into the PBL suffers the action 

of mechanical turbulence (wind speed and topography) and thermal turbulence (heating and 

cooling of the Earth's surface) (Di Gilio et al., 2015). The mathematical equations governing 

air mass movements might be extremely complex since they involve the three classical 

conservation equations: mass, momentum, and energy (Fraile et al., 2006). Air transport 

methods make use of the meteorological models available to explain the transport of air mass 

parcels (Fraile et al., 2006). The main differences between the meteorological model available 

concern the approach used when applying the equations and the temporal and spatial scales 

employed (Brancher et al., 2017; Fraile et al., 2006). 

  

Air trajectory analysis is a scientific tool that is mainly used to characterize wind flow patterns 

(e.g. Calvo et al., 2012), to identify the source regions of atmospheric pollutants (e.g. Dimitriou 

et al., 2017a) or to analyse the relation between air mass properties and final mixing ratio of 

different air species (e.g. Burgos et al., 2016a; Dimitriou et al., 2017b; Hernández-Ceballos et 

al., 2013; Lozano et al., 2012; Sorribas et al., 2015; 2019; Toledano et al., 2007; Velasco-

Merino et al., 2018) due to the role that meteorology plays in the formation, dispersion, 

transport and dilution processes of air species. 

 

In meteorological studies, trajectory is defined as the pathway of an infinitesimal air parcel 

through a centreline of an advected air mass with time (Hernández-Ceballos et al., 2019). The 

back-trajectory is then the pathway previously travelled by the air mass before arriving at a 

certain point (Hernández-Ceballos et al., 2013). This is useful because it provides information 

about whether the air has previously been in touch with a source of pollution, thereby 

supporting data interpretation (Megido et al., 2017). The outputs of the model are the 

geographic coordinates of the air mass position, at hourly intervals, from the moment chosen 

until the arrival time, and which can be plotted on a map so as to better visualize the air paths 

followed (Fraile et al., 2006). 

 

The current thesis used a flexible tool for air trajectory calculation called the METEX model, 

which consists of a Lagrangian and a Eulerian approach. As stated by Brancher et al. (2017), 
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Lagrangian models describe variations in concentration in relation to the moving fluid when air 

plumes divide into simpler elements (Zannetti, 1993). Eulerian models, which are a common 

way of describing heat and mass transfer phenomena, describe the behaviour of air species 

in relation to a fixed coordinate system (Brancher et al., 2017). Moreover, the METEX model 

is also a receptor model since it is designed to search for possible sources that could contribute 

to the mixing ratio recorded at the receptor point (Fraile et al., 2006), established in the current 

thesis as the CIBA station.  

 

2.7.2. CO2  and CH4 episode determination 

In order to identify the CO2 and CH4 mixing ratio episodes that occurred during the study 

period, a mixed methodology based on statistical and air trajectory analysis was employed. 

Calculation of the statistical 90th percentile value for the mixing ratio data as a threshold 

enabled rapid identification of the highest values over the time series (Hernández-Ceballos et 

al., 2015a; Lozano et al., 2012; San Miguel et al., 2019), which were considered episodes. 

Only episodes were considered for analysing the possible influence of the Valladolid urban 

plume on the final CO2 and CH4 mixing ratio data measured at the CIBA station. Once the 

episodes were determined, they were first linked to their incoming wind surface direction. 

Second, back-trajectories were computed at the CIBA station, linking the final CO2 and CH4 

mixing ratio collected at the station with the back-trajectory paths so as to confirm the possible 

influence of the urban plume of the nearby city of Valladolid at 500 m height a.g.l. 

 

Computing back-trajectories together with surface wind observations sought to combine 

regional and local approaches for analysing the possible influence of the Valladolid urban 

plume on the final CO2 and CH4 mixing ratio measured at the CIBA station. As stated by 

García-Mozo et al. (2017), differences between mixing ratio values allows for a distinction to 

be drawn between local and external contributions, thus giving a clearer idea of the origin of 

the mixing ratio measured at the station. However, as pointed out by Hernández-Ceballos et 

al. (2014b), attempts at quantitative analysis using backward trajectory models are scarce. 

Thus, the current thesis aims to highlight the usefulness of these methods for identifying the 

possible origin of pollution sources. 

 

2.8. Motivation of the study 

In the absence of rapid emission reductions, an escalation in the climate change process is 

expected (IPCC, 2019), partially due to the influence of human activities on the environment 

(Megido et al., 2017), such as the increased burning of fossil fuel, which is exacerbating the 
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greenhouse effect because of a rise in the GHG mixing ratio in the atmosphere (Anderson et 

al., 2016). In order to reach the main goal of the Paris Agreement, emissions of greenhouse 

gases must be drastically reduced. As many authors have stated, the ongoing climate crisis 

demands the quantification of greenhouse emissions as a first step towards obtaining data for 

important assessment reports (e.g. IPCC) which serve as a guideline for implementing an 

effective climate policy (Arioli et al., 2020). By the same token, long-term studies of the 

evolution of GHG in the atmosphere are essential vis-à-vis evaluating the effectiveness of the 

environmental policies implemented.  

 

As already described, CO2 and CH4 are the two most important greenhouse gases involved in 

climate change. As a result, identifying and understanding their temporal patterns is crucial for 

predicting different climate change scenarios using various Earth system models (Friedrich et 

al., 2020; Wang et al., 2020). An understanding of CO2 and CH4 temporal patterns could 

suggest specific methods, thereby making model selection more efficient by adding or 

removing the trend or the seasonal component and thus enabling a more precise modelling 

result. Moreover, CO2 and CH4 temporal patterns may be useful to modellers as input data in 

order to compare modelled values with reliable observations from a representative background 

station (Arioli et al., 2020; Wang et al., 2020). Finally, this information is valuable for society as 

a whole, which is now greatly concerned about climate change and its possible consequences. 

 

Despite the importance of analysing CO2 and CH4 temporal patterns, important gaps in our 

knowledge persist in this field, mainly due to; [1] lack of data, which can become a serious 

challenge for climate solutions, [2] the choice of adequate calculation methods for determining 

temporal patterns. The main motivation of the present thesis is therefore to overcome both of 

these gaps in our knowledge. 

 

First, in order to overcome the lack of data, it should not be forgotten that data collection needs 

to be improved in terms of availability, coverage, resolution, quality, and reliability (Arioli et al., 

2020). To overcome the challenge of data availability and coverage, the number of stations 

needs to be increased, since the number of measurements and their spatial coverage are still 

insufficient in certain European regions (Marquis and Tans, 2008), especially in the north-

western part of the Mediterranean area (Curcoll et al., 2019). As regards data resolution, 

Curcoll et al. (2019) pointed out the importance of regional or local studies to assess the extent 

to which ecosystems influence climate change. In this way, it is important to note that rural 

background stations are ideal emplacements for determining GHG temporal patterns, since air 

species footprints are more distinguishable due to the reduced local emission sources in the 

surrounding areas (Arioli et al., 2020). Finally, in order to meet the need for high quality and 
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reliable time series it is crucial to use high precision technology to measure air species mixing 

ratios. Studies at the CIBA station are particularly important due to the crucial role that the 

station plays since it is a background station and is therefore representative of the region of 

study. Furthermore, the station is equipped with high precision technology to measure CO2 

and CH4 mixing ratios in real time.  

 

Second, in order to overcome the problem of the calculation method chosen to examine the 

temporal series (i.e. trend, growth rate, and seasonal analysis) of the CO2 and CH4 mixing 

ratio, the current thesis proposed the analysis of different statistical techniques. As stated by 

Nakazawa et al. (1997), it is important to study the same database applying different statistical 

methods in order to determine which of them is best able to capture the salient features of the 

time series. At the same time, an evaluation of database consistency can be assessed by 

comparing the results obtained from the different methods employed. In addition, use of the 

methods employed here at other background stations is another of the main motivations of the 

current thesis. Hence, all the methods used pursue simple implementation (i.e. easy to use, 

quick and with low computational requirements) which encourage their use, thus achieving 

greater coverage of the worldwide evolution of CO2 and CH4, and improving our understanding 

of how these two important greenhouse gases develop in the lower atmosphere.  

 

The current thesis therefore aims to describe, analyse and quantify CO2 and CH4 temporal 

patterns (i.e. annual and intra-annual changes) over the upper Spanish plateau for five and a 

half years at a background regional station where few studies on this topic have been 

conducted to date. The current thesis constitutes an extension of previous studies in the 

sampling area carried out by the research group (e.g. Pérez et al., 2016; 2017; 2018b), 

although they used a smaller database (e.g. Sánchez et al., 2014), collected data using less 

precise measuring equipment (e.g. Sánchez et al., 2010) or did not distinguish between diurnal 

and nocturnal data (e.g. Pérez et al., 2016; 2017; 2018b), which the current thesis does do.  

 

More specifically, the motivation of the contributions that make up the current thesis are as 

follows: 

✓ As regards harmonic analysis (contribution I), the main motivation was based on the 

need to use a harmonic equation to analyse temporal patterns whilst at the same time 

capturing the salient features of the time series. 

 
✓ As regards the kernel smoothing analysis (contribution II), since the most crucial task 

in the kernel smoothing regression involves determining an optimal bandwidth (de 
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Haan, 1999), contribution II aimed to establish a simple and fast method for determining 

this whilst at the same time demanding low computational resources. Moreover, 

analysing the influence of different kernel functions when determining temporal 

patterns was another important motivation, since some authors do not consider the 

chosen kernel function to be a key point (e.g. de Haan, 1999; García-Portugués et al., 

2014) whereas others do (e.g. Nakazawa et al., 1997; Rodríguez-Cortés et al., 2015). 

Moreover, since most of the papers in the literature have applied either the 

Epanechnikov or Gaussian kernel, few scientific papers compare the efficiency of 

different kernels on a dataset (Gramacki, 2018), such that we consider it interesting to 

address this issue in the present study. Finally, since the Gaussian kernel involves a 

higher computational cost due to all of the observations being considered (Wilks, 2019), 

we considered it interesting to cut the interval calculation to (-3, 3) and also to (-1,1) so 

as to assess whether a decrease in computational time may be observed without any 

loss of data accuracy. 

 

✓ As regards the local smoothing regression technique (contribution III), an analysis 

concerning the differences between the local linear and local quadratic approach was 

conducted in order to determine the possible superiority of either approach in 

determining the salient features of the temporal series. 

 
✓ Finally, a backward trajectory analysis (contribution IV) was conducted in order to 

analyse the possible influence of the Valladolid urban plume as well as its urban 

emissions on the final CO2 and CH4 measurements collected at the CIBA station.  

 

A concept map of the thesis including all of the original contributions is shown in Figure 13 

(next page).  



Introduction    

 

 
   40    

 

 

Figure 13. Concept map of the thesis including all of the original contributions in Roman 

numerals. 
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3. Objectives          

3.1. General objective 

The main goal of the current thesis is to characterize the temporal patterns (i.e. annual trends, 

growth rate and seasonal cycles) of a five and a half year long CO2 and CH4 mixing ratio time 

series over the upper Spanish plateau using different mathematical functions. In addition, 

differentiation between diurnal and nocturnal data was carried out in order to obtain a better 

knowledge of both scenarios. This is the first CO2 and CH4 temporal analysis at the sampling 

site based on such a long-term dataset with emphasis on the differentiation between diurnal 

and nocturnal data. Finally, determining the influence of the Valladolid urban plume effect on 

the final CO2 and CH4 measurements collected at the monitoring station also formed part of 

the general objective.  

 

3.2. Specific objectives 

I 
To apply a harmonic equation considering a third-degree polynomial plus four 

harmonics considering the amplitude variable over time in order to better analyse the 

temporal patterns of the dataset (original contribution I).  

  

II 
To provide an easy, quick and reproducible method to determine the optimal 

bandwidth for a kernel function (original contribution II). 

  

III 
To analyse the ability of six kernel functions to capture the salient features of the time 

series (original contribution II). 

  

IV 
To study the ability of local linear and quadratic regressions to describe CO2 and CH4 

temporal patterns (original contribution III). 

  

V 
To compare the efficiency of different mathematical functions for describing the 

CO2 and CH4 temporal patterns of the time series (not considered in the articles). 

  

VI 
To determine the influence of the Valladolid urban plume on the final CO2 and CH4 

mixing ratio dataset (original contribution IV). 
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4. Material and methods          

4.1. Site description 

The area of study corresponds to a semi-arid Mediterranean rural area located in the large 

region of Castilla y León. This area is referred to as the Upper Spanish plateau. Castilla y León, 

located in the North-West of Spain (Figure 14), is one of the Spanish regions with the lowest 

population density. It covers an area of 94,222 km2, which is about one fifth of the whole 

country (del Río et al., 2007). It is the largest region in Spain and the third largest in Europe, 

and has a population of around 2.5 million people (European Commission, 2020). Castilla y 

León is characterized by prevalent clean atmospheric conditions with the occurrence of long-

range transport pollutants of anthropogenic origin. Thus, the area of study is adequate for this 

kind of study (Bennouna et al., 2016). Except to the west, the region is surrounded by large 

mountain systems which are around 2,000-2,500 m height.  

 

Figure 14. Location of the region and the monitoring station of the study. 

 

As shown in Figure 15, Castilla y León is surrounded to the north by the Cantabrian mountain 

range, to the east by the Iberian System, to the south by the Central System and to the north-

west by the Galician Massif (Pérez et al., 2018c). Internal waves associated with a katabatic 
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flow from the Guadarrama mountain range 100 km southeast of the CIBA station are also 

noticeable in the area (Cuxart et al., 2000). The Duero River flows along the south-eastern part 

of the region towards its western part, extending across Portugal to the Atlantic Ocean. The 

monitoring station is located on a smaller plateau within the Upper Spanish plateau, known as 

Montes Torozos, which is an almost flat area of 800 km2 (Conangla and Cuxart, 2006; Román-

Cascón et al., 2012; Soler et al., 2014).  

 

Figure 15. Characterization of the monitoring station in terms of main water bodies, mountain 

ranges and nearest populated cities.  

 

The plateau rises some 50 m above an extensive region of homogeneous flat terrain (Cuxart 

et al., 2000). The change in height across the plateau is only around 5 m from northwest to 

southeast and around 30 m along 50 km from the northeast to the southwest, with a negative 

slope in the southwest direction (Cuxart et al., 2000). The two major cities near the CIBA station 

are Valladolid (304,000 inhabitants), which is 24 km to the southeast, and Palencia (80,000 

inhabitants), which is 40 km to the northeast. Climatologically speaking, a Mediterranean 

continental climate characterizes the area. Indeed, the area of study is labelled as a warm 

summer Mediterranean climate (Csb) following the Köppen–Geiger climate classification 

(Kottek et al., 2006; Román-Cascón et al., 2016a). This climate consists of maximum 

temperatures in the hot summer and minimum temperatures in the long cold winter, and there 

are frequent hard frosts. In terms of rain, the area is characterized by wet springs and autumns 

stemming from cold and warm fronts arriving from the Atlantic with westerly winds, and dry 
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summers punctuated only by rains in the form of sudden storms and showers caused by 

convection (Fernández-Raga et al., 2010; García et al., 2012; Román Cascón et al., 2016a; 

Sánchez et al., 2003; 2014). Finally, it should be pointed out that agricultural crops, grass, 

scattered coniferous stands and Mediterranean shrubs make up the surrounding vegetation.  

 

4.2. Monitoring station 

The temporal CO2 and CH4 time series on which the current thesis is based was obtained from 

the Low Atmosphere Research Centre (CIBA station) and covers a five and a half year period 

(October 2010-February 2016). The CIBA station (lat: 41º 48´ 49´´N; long: 4º 55´59´´W, alt: 

845 m a.s.l.) was founded in 1978 by the University of Valladolid and current Spanish 

Meteorological Agency (AEMET) (Cuxart et al., 2000). The station is currently managed by the 

Department of Applied Physics of the Faculty of Sciences at the University of Valladolid 

(Spain). The monitoring station has formed part of the Carbon Cycle Surface Flasks Network, 

managed by the Global Monitoring Division (GMD) of the National Oceanic & Atmospheric 

Administration (NOAA) since May 2009. The GMD network certifies the quality of the data used 

in the current thesis. This cooperative air sampling network began in 1967 at Niwot Ridge 

(Colorado). Currently, the network is a global project comprising 229 stations in 50 different 

countries, although in Spain there are only two stations which take surface flask 

measurements: the Izaña Observatory in the Canary Islands and the CIBA station in the Upper 

Spanish plateau. The gas species under consideration at the CIBA station for the flask 

campaign are: CO2, CH4, CO, H2, N2O, SF6 and the isotopes δ13CCO2 and δ18OCO2.  

 

4.3. Instrumentation 

A Cavity Ring-Down Spectroscopy (CRDS) analyser (G1301, Picarro Inc., USA) installed at 

the CIBA station was the equipment used to obtain CO2 and CH4 mixing ratios. The analyser 

is based on optical absorption spectroscopy of the sample gases to determine the mixing ratio 

(Tang et al., 2015). The analyser presents quick response, high linearity and precision (± 0.02 

ppm for CO2 and ± 1 ppb for CH4) and requires minimal calibration. Furthermore, the 

equipment requires no consumables and no sample preparation or drying. Figure 16 shows 

an aerial view of the CIBA station and its instrumentation.  

The Picarro analyser comprises two different parts, as shown in Figure 17: 

A. The Power Vacuum Unit (PVU) contains a computer and a diaphragm pump to draw 

the sample gas through the instrument. In this component, AC power is converted to 

DC power. 
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B. The Data Acquisition System (DAS) contains the spectrometer and the sample 

chamber. From this part of the equipment the spectroscopic information is sent to the 

computer. This part converts spectroscopic data into mixing ratio data and controls the 

operation of the system. The gas mixing ratio data, expressed in ppm, are displayed in 

real-time and continuously stored in the analyser’s internal hard drive. Users can 

connect remotely with the analyser and control it through a standard remote desktop 

connection. 

 

Figure 16. (a) PNOA image courtesy of © ign.es showing an aerial view of the CIBA station and the 

surrounding vegetation composition, (b) building with the instrumentation, (c) NOAA 

standard calibration gases (d) Picarro analyser G1301. 

 

Figure 17. Main connections of the Picarro analyser G1301. 
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The analyser employs a near-infrared laser to measure the spectral signature of a molecule 

sample (Tang et al., 2015). CRDS instruments have the spectral resolution and absolute 

wavelength precision required to isolate and uniquely measure these spectral lines (Rella et 

al., 2013). Moreover, CO2, CH4 and H2O absorption lines are well separated from other 

absorption features as well as from one another (Yver Kwok et al., 2015). Furthermore, since 

the laser is systematically tuned over the target absorption line during each 1 Hz measurement 

cycle, the intensity of the line is very accurately determined. It is important to note that the line 

intensity (i.e. extinction) is linearly dependent on the mixing ratio of molecules in the cavity 

(Woelk, 2009). Even weaker lines corresponding to molecular species containing low 

quantities can be measured with a high signal (Woelk, 2009). Basically, the procedure can be 

summarized as follows: 

1. Light from a semiconductor laser diode is directed into an optical resonator cavity 

containing the gas sample (Rahn et al., 2008). The sampling cavity, which serves as a 

compact flow cell with a volume of less than 10 standard cm3, contains three highly 

reflective (>99.999%) mirrors which trap the light from the laser, as shown in Figure 

18a (Rella et al., 2013). 

 

2. The sampling cavity is automatically and precisely temperature and pressure stabilized 

(Crosson, 2008). This ensures accurate measurements over long periods of time with 

minimal use of the standard calibration gases since the characteristics of the spectral 

lines do not vary at constant temperature and pressure conditions (Rella et al., 2013). 

 

3. Gas molecules absorb the energy of light from the laser at a particular wavelength and 

generate molecular vibration and rotation. Since the frequency of the vibration and 

rotation movement is a function of the atom’s mass, each molecule has a unique near-

infrared absorption spectrum consisting of well-defined lines at different frequencies 

(i.e. wavelengths) (Rella et al., 2013). 

 

4. The light re-circulates many times through the sample, travelling from and to the three 

mirrors within the cavity, creating a very long effective path length for the light to interact 

with the sample (Crosson, 2008; Yver Kwok et al., 2015). The air sample circulates 

inside a cavity of only 25 cm in length, where the average path length that any photon 

effectively travels can be over 20 kilometres. This long path length allows for 

measurements at a very high precision (Rella et al., 2013). 

 

5. When the optical frequency matches the resonance frequency of the cavity, energy 

builds up in the cavity (Rahn et al., 2008). 
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6. When the signal from the detector reaches a steady state condition (i.e. the build-up is 

maximum), the laser is switched off (Figure 18c) (Woelk, 2009).  

 

7. Since the mirrors do not have perfect reflection power, the light intensity inside the 

cavity slowly leaks out (Woelk, 2009) and the energy exponentially decreases from the 

cavity in time, or “rings down”, with a characteristic decay time.  

 

8. Energy decay is then measured, as a function of time, on a photodiode located behind 

one of the mirrors (Yver Kwok et al., 2015).  

 

9. The decay (or ring-down) time not only depends on cavity loss but also on the presence 

of any absorber species inside the cavity (Yver Kwok et al., 2015). As stated by the 

Beer-Lambert law, the absorption per unit length at the peak of a spectral line is 

proportional to the number of molecules in the gas sample (i.e. the response of the 

instrument is linear to increases in mole fraction) (Rella et al., 2013). The instrument 

records sub-picometer wavelength targeting on a microsecond timescale. The resulting 

spectrograms are analysed using nonlinear spectral pattern recognition routines, and 

the outputs of these routines are converted into gas mixing ratio data almost 

instantaneously (Rella et al., 2013).  

 

10. When the laser is at a wavelength where the gas in the cavity is strongly absorbing, the 

ring-down time is short (Figure 18c) (Rahn et al., 2008).  

 

11. The ring-down time is continuously repeated at several well-controlled points in 

wavelength. The mixing ratio is determined by a multi-parameter fit and is proportional 

to the gas mixing ratio (Crosson, 2008b; Jung et al., 2013). Higher concentrations of 

the target analyte molecule in the cavity correspond to shorter ring-down times (Yver 

Kwok et al., 2015). 

 

Figure 18. Schematic diagram of the CRDS working system (modified from Crosson, 2008b; Jung 

et al., 2013). (a) Light from a laser is trapped in a three-mirror cavity, (b) laser shut off 

after the process, and (c) measured absorption intensity and laser light decay over time. 
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The CRDS technique is therefore a measurement of time not of absorbance. Thus, any 

fluctuations in laser intensity have no effect on the measurement, unlike conventional 

spectrometers and gas analysers (Rahn et al., 2008). 

 

4.4. Database 

The database used in the current thesis consists of five and a half years (15 October 2010 to 

29 February 2016) of CO2 and CH4 mixing ratio values collected with the Picarro analyser 

(G1301). Data collection is mostly complete (84% of availability), and consists of 79,263 data 

points. The few gaps that do exist are due to maintenance of the equipment or power failure. 

As regards the original contributions I, II and III, data were averaged in half-hour intervals. 

Furthermore, the dataset was divided into a diurnal and a nocturnal dataset in order to analyse 

and compare both scenarios. Differentiation between diurnal and nocturnal data was based on 

considering the GMT hour from the National Geographic Institute of Spain. As regards 

contribution IV, data were averaged in one-hour intervals and no differentiation between 

diurnal and nocturnal data was carried out. Furthermore, contribution IV considered surface 

wind direction data obtained from the Agroclimatic Information System for Irrigation website 

service (SIAR in its Spanish acronym).  

 

The Medina de Rioseco monitoring station was considered (lat: 41º 51´ 36´´N; long: 5º 

4´14´´W, alt: 731 m a.s.l.) since it is the closest meteorological station to the CIBA station (14 

km NW) with data available for the study period. The station provides semi-hourly weather 

data at a height of 2 m a.g.l. Since the terrain in the region is very homogeneous, the conditions 

at both the CIBA station and the Medina de Rioseco station can be assumed to be roughly the 

same. Thus, wind direction surface data were used to link the CO2 and CH4 mixing ratio data 

with the arrival wind surface direction, detecting those wind surface direction sectors in which 

mixing ratio data are higher. 

 

4.4.1. Data acquisition 

Dry air mixing ratios of CO2 and CH4 are continuously collected and recorded by the Picarro 

analyser in the computer. The analyser software includes a valve sequencer to automatically 

control external solenoid valves to measure at 1.8, 3.7 and 8.3 m a.g.l. The valve level changes 

each 10-min. Thus, 10-min of continuous measurements were taken at each of the three levels, 

with around 28 measurements per minute. It should be taken into account that the first 20 data 

in each level were not considered in order to avoid the discontinuities produced in the recorded 

data when the valve level changed (Pérez et al., 2012). Thus, around 260 measurements were 
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considered and averaged for each height level, representing semi-hourly data. Figure 19 

shows the operating scheme for the CO2 and CH4 data acquisition. 

 

Figure 19. Operating schematic diagram of the Picarro G1301. 

 

Contribution I analysed the statistical differences between the three level measurements and  

concluded there were no statistically significant differences at 95% confidence level when 

using the Fisher Least Significant Difference test. Thus, only the highest mixing ratio data (i.e. 

measured at 8.3 m height a.g.l.) were considered, since these are less influenced by soil 

roughness and soil activity. 

 

4.4.2. Data processing 

The analyser was calibrated fortnightly by injecting three standard synthetic gas mixtures 

calibrated by the Global Monitoring Division (GMD) of the National Oceanic & Atmospheric 

Administration (NOAA). Since the Picarro is extremely accurate, it is only necessary to use 

three calibration standards to calibrate the equipment; two points determine the calibration line 

and the third intermediate is used as a control point. Table 1 shows the characteristics of each 

standard gas employed for calibration.  

Table 1. Characteristics of the three NOAA calibration gas standards used.  

Gas standard [CO2] (ppm) [CH4] (ppb) 

1 452.56 1990.4 

2 399.27 1842.0 

3 348.55 1631.0 

 

Each standard gas was measured for five minutes and data were recorded. The first 

measurements were not considered in order to avoid discontinuities due to the settling-in effect 

(Vardag et al., 2014). No significant drift was observed in the two-week period between 



  Material and methods 

 

   51    

 

calibrations, showing the high linearity and signal stability of the equipment. The calibration 

process is explained in detail in contribution II and is schematized in Figure 20.  

 

Figure 20. Calibration schematic process of the Picarro G1301. 

 

In addition, linear regressions between NOAA’s standard synthetic gases (Table 1) and the 

experimental values (i.e. those measured by the Picarro analyser) were used to determine 

their linear relationship through linear regression analysis in order to obtain the calibration 

equations for CO2 and CH4, which are the following: 

CO2 C = 1.00341 CO2 − 0.17870 [2] 

CH4 C = 0.99197 CH4 + 0.01249 [3] 

where C indicates the corrected value. 

 

4.5. Software employed 

4.5.1. Matlab© (I) 

This was used to linearly estimate the unknown coefficients of the multiple harmonic regression 

function (i.e. the explanatory variables) used to analyse CO2 and CH4 (i.e. the continuous 

response variable) temporal patterns.  
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4.5.2. Fortran (I, II, III, IV) 

This was first used to separate diurnal from nocturnal data taking into account the GMT hour 

from the National Geographic Institute of Spain. Secondly, Fortran software was also used to 

implement the routines to obtain the trend (I, II, III), the growth rate (I, II, III), and the seasonal 

component (I, II, III) of the time series by using a harmonic equation (I), a kernel regression 

method (II) and a local regression method (III). Thirdly, it was used to obtain the continuous 

distribution functions (IV) as well as the distances, direction and recirculation factor of each 

back-trajectory (IV). 

 

4.5.3. Statgraphics Centurion XVII (I, II, III, IV) 

Used to conduct statistical analysis in all the original contributions. 

 

4.5.4. Excel (I, II, III, IV) 

Used to conduct statistical analysis and mathematical calculations.  

 

4.5.5. METEX model (IV) 

The Meteorological Data Explorer (METEX) web-model software, developed at the Centre for 

Global Environmental Research (CGER) is a powerful tool that allows for the online 

computation of air mass trajectories in just one submission (Zeng et al., 2010). The METEX 

model is a Lagrangian method based on the Petterssen method to calculate a parcel’s 

movement (CGER METEX, 2020). The meteorological input data used to compute the 

backward trajectories were obtained from the Climate Forecast System version 2 developed 

at the Environmental Modeling Center at National Centers for Environmental Prediction 

(NCEP). It is a fully coupled model representing the interaction between the Earth’s 

atmosphere, oceans, land, and sea ice. It became operational at NCEP in March 2011. This 

series uses data with a three-hour time resolution and a spatial resolution of 0.5x0.5 degrees 

at 27 different pressure levels ranging from 1 to 1000 hPa. Computation of back-trajectories 

using wind fields and pressure data allows us to know the approximate three-dimensional flow 

path of an air parcel (Hernández-Ceballos et al., 2013). 

 

The current thesis computed 96-hourly kinematic back-trajectories arriving at the CIBA station 

between October 2010 and February 2016 at 500 m height a.g.l. by using the METEX air 

modelling software tool in order to analyse the impact of the Valladolid urban plume on the 

final CO2 and CH4 mixing ratio measured at CIBA. As stated in Lozano et al. (2012), the 

trajectory is simply the integration of the particle position vector in space and time that is 

http://db.cger.nies.go.jp/metex/index.html
http://db.cger.nies.go.jp/metex/index.html
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interpolated as the native horizontal coordinate system of meteorological data to an internal 

terrain coordinate following a vertical coordinate system during computation. The final position 

is computed from the average velocity at the initial position and the first-guess position (García-

Mozo et al., 2017). METEX provides the coordinates (longitude and latitude) and height (in 

metres above ground level, a.g.l) of every trajectory calculated at 1-h intervals. Therefore, each 

96 h trajectory is composed of 96 end-point positions. The 96 end-point positions are the 

position of the Lagrangian particles at a certain hour within the 96 h duration. The back-

trajectories were then plotted on maps in order to visualize the atmospheric paths to the 

monitoring station. All data processing, statistical analyses and visualization were performed 

with Fortran, Statgraphics Centurion XVII and Sigmaplot 11 software. 

 

4.5.6. Sigmaplot 11 (I, II, III, IV) 

Used to depict the figures presented in all the original contributions. 

 

4.6. Mathematical equations used 

Different mathematical equations were applied to the dataset in order to separately analyse 

the trend, the growth rate, and the seasonal component of the time series; that is to say, the 

temporal patterns of the dataset. 

 

4.6.1. Parametric equations 

4.6.1.1. Harmonic equation (I) 

A harmonic equation was employed to evaluate the trend, the seasonal cycle and the growth 

rate of the CO2 and CH4 mixing ratio data. The proposed equation comprises a polynomial 

term which express the long-term trend of the series and a sequence of four harmonics which 

express the seasonal cycle whilst retaining information about changes in amplitude. The first 

derivative of the polynomial trend expresses the growth rate of the series. The harmonic fitted 

curve used in contribution I to analyse temporal patterns is the following: 

y = ∑ ait
i + ∑ ∑ (bjk tk cos(j2πt) + cjk tk sin(j2πt))1

k=0
4
j=1

3
i=0  [4] 

where y reflects CO2 or CH4 mixing ratio data, t is time expressed as a fraction of year, j reflects 

the four harmonics used and k reflects the term in which amplitude is constant with time (k=0) 

and when it is variable over time (k=1). 
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The unknown coefficients of the multiple harmonic regression were linearly estimated running 

MATLAB© software. Independent variables were time (t, t2, t3) and the series of harmonics tk 

cos(j2πt) and tk sin(j2πt).  

 

The sequence of four harmonics (j) provides information about the yearly cycle. On the one 

hand, the two first harmonics refer to annual behaviour. The first (wt) expresses annual 

behaviour and the second (2wt) reinforces this information, sharpening the peaks and troughs. 

On the other hand, the two last harmonics refer to seasonal behaviour. The third harmonic 

(3wt) expresses four-month changes, and the fourth (4wt) quarterly information. 

 

4.6.1.2. Probability continuous distribution functions (IV) 

A distribution function for a continuous random variable, is defined as the curve described by 

a mathematical equation which denotes the probability that the variable falls within a particular 

interval by means of areas under the curve (Everitt et al., 2010). All of the absolutely continuous 

functions used in contribution IV are skewed distributions and are described below. 

 

4.6.1.2.1. Gamma distribution function 

The gamma distribution is a generalization of the exponential distribution and is given by the 

following equation: 

f(x) =
(x β⁄ )α−1exp(−x β⁄ )

βΓ(α)
, x, α, β > 0 [5] 

where α represents the shape (i.e. degrees of freedom of the distribution) and β represents 

the scale parameter. The α and β calculation procedure is as follows:  

D = ln(x̅) −
1

N
∑ ln(xi)

N
i=1  [6] 

 

α =
1+√1+4D 3⁄

4D
 [7] 

 

β = (
x̅

α
) [8] 

 

4.6.1.2.2. Weibull distribution function 

The Weibull distribution is another generalization of the exponential distribution expressed by 

equation 9: 

f(x) = (
α

β
) (

x

β
)

α−1

exp [− (
x

β
)

α

] , x, α, β > 0 [9] 
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where α and β have the same meaning as for the gamma function and are calculated according 

to the method of moments:  

α = (
σx

x̅
)

−1.086

  (1 ≤ α ≤ 10) [10] 

 

x̅ = βΓ (1 +
1

α
) [11] 

 

4.6.1.2.3. Gumbel distribution function 

The Gumbel distribution function is given by the following equation: 

f(x) =
1

β
exp {−exp [−

(x−ζ)

β
] −

(x−ζ)

β
} [12] 

This function presents a maximum at x=ζ, and β is the scale factor. The estimation equations 

of both parameters are the following: 

ζ = x̅ − γβ [13] 

where γ=0.57721 is Euler’s constant (Wilks, 2019). 

β =
σx√6

π
 [14] 

 

4.6.1.2.4. Inverse Gaussian distribution function 

The inverse Gaussian distribution is described by: 

f(x) = √
λ

2πx3 exp {− [
λ(x−μ)2

2μ2x
]} [15] 

where λ reflects the shape, and μ the scale parameter. Both parameters can be calculated in 

accordance with the Lo Brano et al. (2011) procedure: 

λ = N [∑ xi
−1 − N2(∑ xi

N
i=1 )

−1N
i=1 ]

−1

 [16] 

μ =
1

N
∑ xi

N
i=1   [17] 

 

4.6.1.2.5. Lognormal distribution function 

The lognormal distribution function is a positively skewed function which is expressed by the 

following equation: 
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f(x) =
1

xσy√2π
exp [−

(lnx−μy)
2

2σy
2 ] , x > 0 [18] 

where μy and 𝜎𝑦
2, respectively, refer to the mean and standard deviation of the log-transformed 

variable y=ln(x) (Wilks, 2019). 

 

4.6.1.2.6. Rayleigh distribution function 

The Rayleigh distribution is a special and simplified case of the Weibull distribution where the 

shape parameter is assumed to be equal to two (Celik, 2004; Lo Brano et al., 2011). The 

Rayleigh distribution function is described by: 

f(x) =
x

β2 e
−0.5(

x

β
)

2

 [19] 

where β is the scale parameter, which is obtained according to the following expression: 

β = (
1

2N
∑ xi

2N
i=1 )

1

2
 [20] 

Since wind direction is a circular variable, circular statistics are required (Fernández-Guisuraga 

et al., 2016). The following three equations were used in the current thesis in order to obtain 

the distance, direction, and recirculation factor of the trajectories computed in original 

contribution IV.  

 

4.6.1.3. Distance and direction trajectory analysis (IV) 

The distance of every trajectory point B (x,y) to point A (x1,y1), which reflects the CIBA station, 

was obtained with the aid of point C, which reflects the North Pole. Points A, B and C together 

form a spherical triangle (Figure 21), where arcs a and b are part of the meridians. Arc c, which 

represents the distance between A and B, was calculated by taking into account the Earth’s 

surface curvature by applying spherical trigonometry instead of Euclidean geometry. To fulfil 

this goal, the Sinnott equation was used by equation 21 (Snyder, 1987):  

sin (
c

2
) = {sin2 [

(y−y1)

2
] + cos y1 cos y sin2 [

(x−x1)

2
] }

1/2

 [21] 

where 𝑦 and 𝑦1 are the latitude (in degrees) of each trajectory point and the CIBA station, 

respectively, 𝑥 and 𝑥1 are the longitude (in degrees) of each trajectory point and the CIBA 

station, respectively, and arc c is the distance (in m) between each trajectory point (B) and the 

CIBA station (A). 
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The longitude between the CIBA station (A) and each trajectory point (B) is obtained with the 

angle associated with point C by applying equation 22. 

cos(c) = cos(b) cos(a) +  sin(b) sin(a) cos(c) [22] 

The direction for each trajectory point was finally calculated from angle A. 

 

Figure 21. Spherical triangle formed by the CIBA station (A), one trajectory point (B), and the 

North Pole (C) to calculate the distance and direction of each trajectory point. 

 

4.6.1.4. Recirculation factor (IV) 

The recirculation factor is helpful for characterizing air pollution transport potential. The 

recirculation factor (RF) was calculated following the Allwine and Whiteman (1994) procedure. 

First, the wind run (S) was calculated as the total distance travelled by the air parcel in 

accordance with equation 23. 

S = ∑ Si
24
i=1  [23] 

where Si is the distance between the consecutive hourly positions. Since trajectories are 

considered arcs of circumferences on the Earth’s surface, the distances between the 

consecutive hourly positions could be obtained by applying the Sinnott expression (equation 

21) and the Earth’s radius (Synder, 1987). The recirculation factor (RF) could then be 

calculated by using equation 24. 

RF = 1 −
L

S
 [24] 
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where, the resulting transport distance (L) is the minimum distance between the beginning and 

end of each trajectory. RF values vary between 0 and 1. A high RF value indicates that a site 

is prone to recirculation. 

 

4.6.2. Non-parametric equations 

4.6.2.1. Kernel regression functions (II) 

The fitting smoothing function employed to calculate the average CO2 and CH4 mixing ratio, y, 

is defined by the following expression proposed by Henry et al. (2002):  

y (t, h) =
∑ K(

t−ti
h

)yi
N
i=1

∑ K(
t−ti

h
)N

i=1

  [25] 

where t is time expressed in days, h is bandwidth expressed in days, N is the number of 

observations, K is the kernel function, and yi reflects the mixing ratio in a specific time period 

ti, expressed in days. 

 

The kernel function determines the shape of the data while h determines their interval 

calculation (Everitt et al., 2010). In the kernel estimation, greater weight is given to mixing ratio 

data yi observed at times ti closer to time t where the average mixing ratio y(t, h) is obtained, 

whereas less weight is given to distant mixing ratio observations (Wand et al., 1995). The 

different kernel functions analysed in the current thesis are the following: 

4.6.2.1.1. Epanechnikov kernel function 

The Epanechnikov kernel is defined by: 

K (
t−ti

h
) = (

3

4
) (1 − (

t−ti

h
)

2

)            − 1 ≤
t−ti

h
≤ 1 [26] 

 

4.6.2.1.2. Biweight kernel function 

The biweight kernel is defined by: 

K (
t−ti

h
) = (

15

16
) (1 − (

t−ti

h
)

2

)
2

           − 1 ≤
t−ti

h
≤ 1 [27] 

 

4.6.2.1.3. Gaussian kernel function 

The Gaussian kernel is calculated by: 
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K (
t−ti

h
) = (2π)−1/2 exp (−0.5 (

t−ti

h
)

2

)           − ∞ ≤
t−ti

h
≤ ∞  [28] 

 

4.6.2.1.4. Rectangular kernel function 

The rectangular kernel is obtained by: 

K (
t−ti

h
) = (

1

2
)            − 1 ≤

t−ti

h
≤ 1 [29] 

 

4.6.2.1.5. Triangular kernel function 

The triangular kernel is expressed by: 

K (
t−ti

h
) = 1 − |

t−ti

h
|            − 1 ≤

t−ti

h
≤ 1 [30] 

 

4.6.2.1.6. Tricubic kernel function 

The tricubic kernel is expressed by: 

K (
t−ti

h
) = (

70

81
) (1 − |

t−ti

h
|

3

)
3

           − 1 ≤
t−ti

h
≤ 1 [31] 

 

4.6.2.2. Local regression equations (III) 

4.6.2.2.1. Local linear regression equation (III) 

The local linear regression function employed in contribution III may be stated as follows: 

y = a0 + a1t [32] 

where t is time expressed as a fraction of years, a0 is obtained by applying equation 33, and 

a1 by applying equation 34:  

a0 = yẃ − a1tẃ [33] 

a1 =
∑ wi(ti−tẃ)(yi−yẃ)N

i=1

∑ wi(ti−tẃ)2N
i=1

 [34] 

where wi are the weights, defined by the Epanechnikov function due to its simplicity, yi is the 

mixing ratio in a time period ti, 𝑡�́� reflects the time mean value, and 𝑦�́� the mixing ratio mean 

value. The fitting variable is only the time.  
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4.6.2.2.2. Local quadratic regression equation (III) 

The local quadratic regression equation employed in contribution III may be expressed as 

follows: 

y = b0 + b1t + b2t2 [35] 

where t is time expressed as a fraction of years, and b0, b1 and b2 are the regression 

coefficients given by equation 36: 

b = (XTWX)−1XTWy [36] 

where y is the matrix of the mixing ratio data, W is the diagonal matrix containing the weights 

calculated by using the Epanechnikov function, and matrices X and b are defined as follows: 

X = (

1 t1 t1
2

1 t2 t2
2

… … …
1 tn tn

2

) [37] 

b = (
b0

b1

b2

) [38] 

The fitting variables in this method are the independent variables (time), their squares, and 

their cross-products.  

 

4.7. Statistical techniques (I, II, III, IV) 

4.7.1. Fisher Least Significant Difference test (I) 

Since the Picarro (G1301) analyser collects data from three different height levels (i.e. 1.8, 3.7 

and 8.3 m a.g.l.), the differences between the data of the three levels were analysed by 

employing Fisher’s least significant difference (LSD) test with 95% confidence. This test helps 

to identify the dataset whose means are statistically different. The analysis was performed 

using the Statgraphics Centurion XVII software (Statpoint Technologies, Warrenton, USA). No 

statistical differences were found between the three levels, either for diurnal or nocturnal data 

with a confidence interval of 95%. 

 

4.7.2. Linear regressions (I, III, IV) 

Simple linear regressions describe the linear relationship between two variables, namely “x” 

and “y”, where “x” is the independent, or predictor variable, and “y” is the dependent or 

predictand continuous variable (Wilks, 2019). In this mathematical procedure, the line 
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producing the least error for predictions of “y” given observations of “x” is chosen (Wilks, 2019). 

Linear regressions were employed to obtain CO2 and CH4 monthly mean trend values (mixing 

ratio values vs time) in contribution I. Contribution III applied linear regressions to the semi-

hourly mixing ratios for the percentile values to characterize CO2 and CH4 diurnal and nocturnal 

scenarios. Contribution IV detrends CO2 and CH4 time series to calculate the main statistics 

and to fit them to different distribution functions. Finally, contribution IV determines the CO2 

and CH4 tercile and seasonal trend and intercept values by fitting linear regressions.  

 

4.7.3. Numerical summary measures (II, III, IV) 

A list of simple robust and non-robust summary measures has been used in contributions II, 

III and IV without major computational requirements. The numerical summaries listed in this 

section can be divided into measures of location, spread, symmetry, and peakedness (Wilks, 

2019). For each section, robust and non-robust statistics were used. It should be noted that 

(non) robust statistics are those statistical procedures and tests that (do not) work reasonably 

well even when the assumptions on which they are based are slightly transgressed (Everitt et 

al., 2010). The descriptive statistics listed below give rough and general information about data 

distribution and are commonly used to compare different datasets and to analyse whether they 

are characteristically similar or very different (Walford, 2011). 

 

4.7.3.1. Location 

These measures refer to the central tendency or general magnitude of the data values (Wilks, 

2019). The statistics referring to the location used in the current thesis are listed below. 

 

4.7.3.1.1. Mean (non-robust) 

The mean is the central value of a dataset and is calculated as follows (Wilks, 2019): 

x̅ =
1

n
∑ xi

N
i=1  [39] 

where n is the number of data and xi are each discrete data within the dataset. 

 

4.7.3.1.2. Median (robust) 

The median (Q2) is the most common robust measure of central tendency (Wilks, 2019). The 

median represents the value that separates the upper half of the data from the lower half.  
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4.7.3.2. Spread 

Statistics referring to the degree of dispersion around the central value (Wilks, 2019). The 

closer an observation is to the central value the less deviation it has (Everitt et al., 2010). The 

statistics that refer to the spread employed in the current thesis are set out below. 

 

4.7.3.2.1. Minimum (non-robust) 

Statistic referring to the minimum value of the dataset (Wilks, 2019). 

 

4.7.3.2.2. Maximum (non-robust) 

Statistic referring to the maximum value of the dataset (Wilks, 2019). 

 

4.7.3.2.3. Standard deviation (non-robust) 

The standard deviation is the conventional measure of scale of a dataset which measures the 

amount of variation or dispersion of a dataset. The standard deviation is expressed as follows 

(Wilks, 2019): 

s = √
1

n−1
∑ (xi −  x̅)2N

i=1  [40] 

where n is the number of data, xi are each discrete data within the dataset, and �̅� is the mean 

of the dataset. 

 

4.7.3.2.4. Upper quartile (robust) 

The upper quartile (Q3) represents the data above which the 25% highest data in a dataset 

are found, i.e. it is the middle value between the median (Q2) and the maximum value of the 

dataset (Wilks, 2019).  

 

4.7.3.2.5. Lower quartile (robust) 

The lower quartile (Q1) represents the data below which the 25% lowest data in a dataset are 

found, i.e. it is the middle value between the median (Q2) and the minimum value of the 

dataset.  

 

4.7.3.2.6. Interquartile range (robust) 

The most common and simplest robust measure of spread is the interquartile range (IQ), which 

is a good index of the spread in the central part of a dataset since it simply specifies the range 

of the central half of the data. The fact that the interquartile range only considers the third and 
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first quartile makes this measure quite resistant to outliers. It is calculated as follows (Wilks, 

2019): 

IQ = Q3 −  Q1 [41] 

where Q3 and Q1 are the upper and the lower quartile, respectively. 

 

4.7.3.3. Symmetry 

The statistics listed below reveal the balance distribution of the data around the centre value 

(Wilks, 2019). The two statistics used to refer to the symmetry are the following: 

4.7.3.3.1. Standard skewness (non-robust) 

Standard skewness is defined as the third moment of descriptive statistics and reflects the lack 

of symmetry in a probability distribution (Walford, 2011). A distribution presents positive 

(negative) skewness when it has a long tail to the right (left) meaning that there are less (more) 

numbers greater than the mean (Everitt et al., 2010; Walford, 2011). A large skewness value 

reflects that the values at one extreme exert a disproportionate influence (Walford, 2011). 

Standard kurtosis is obtained by applying equation 42 (Wilks, 2019). 

γ =
1

n−1
∑ (

xi− x̅

s
)

3
n
i=1  [42] 

where n is the number of data, 𝑥𝑖 are each discrete data, �̅� is the mean, and s is the sample 

standard deviation. 

 

4.7.3.3.2. Yule-Kendall index (robust) 

One robust alternative for calculating the skewness of a distribution data is by calculating the 

Yule-Kendall index (equation 43), which is computed by comparing the distance between the 

median and each of the two quartiles (Wilks, 2019). A right (left) skewness is characterized by 

a positive (negative) Yule-Kendall index value, which means that the distance between the 

median is greater from the upper (lower) quartile than from the lower (upper) quartile (Wilks, 

2019).  

γYK =
Q1− 2 Q2+ Q3

IQ
 [43] 

where Q1 is the lower quartile, Q2 the median, Q3 the upper quartile, and IQ the interquartile 

range. 
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4.7.3.4. Peakedness 

The two statistics used to refer to the peakedness shape of the data are the following: 

4.7.3.4.1. Standard kurtosis (non-robust) 

Standard kurtosis is defined as the fourth moment of descriptive statistics and is a method to 

quantify whether one dataset is more or less peaked than another (Walford, 2011). For normal 

distribution, the kurtosis is known as mesokurtic, while distributions with higher values are 

known as leptokurtic, with those with lower values being referred to as platykurtic distributions 

(Westfall, 2014). Standard kurtosis is obtained by applying equation 44 (McAlevey, 2018). 

k =
1

n−1
∑ (

xi− x̅

s
)

4
n
i=1  [44] 

where n is the number of data, 𝑥𝑖 are each discrete data, �̅� is the mean, and s is the sample 

standard deviation. 

 

4.7.3.4.2. Robust kurtosis (robust) 

A simple procedure for calculating the robust kurtosis in a distribution data is by employing 

equation 45 proposed by Sachs (1978) based on quartiles and decile statistics. For the normal 

distribution, the kurtosis presents a value of 0.263, and is considered a mesokurtic distribution, 

while distributions with higher values are referred to as platykurtic and those with lower values 

are known as leptokurtic (Sachs, 1978). 

kR =
Q3− Q1

2(DZ9− DZ1)
 [45] 

where Q3 is the upper quartile, Q1 the lower quartile, DZ9 the 9th decile, and DZ1 the 1st decile. 

 

4.7.4. Terciles analysis 

Tercile calculation involves calculating a dataset division that produces three equal parts of the 

total dataset in a series of continuous values. Contribution IV used a tercile data division in 

order to analyse and compare their trend and intercept values.  

 

4.8. Graphical summary techniques (I, II, III, IV) 

4.8.1. Box plots (I, III) 

Boxplots are very widely used graphics to present a quick sketch of data distribution (Wilks, 

2019). Boxplots show a large amount of information at a glance (e.g. the full range of the data, 

the symmetry of the data or the resistance to any outliers that might be present in the dataset) 
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(Wilks, 2019). In this type of graph, each box represents the interquartile range. The band in 

the box corresponds to the median value whereas the bottom (top) line of the box shows the 

lower quartile (upper quartile) value. The whiskers depict the range from the 10 th to the 90th 

percentiles, while isolated dots indicate the 5th and 95th percentiles (i.e. the outliers of the 

dataset). A schematic diagram of the box plots is shown in Figure 22. 

 

Figure 22. Box plot schematic diagram (Wilks, 2019). 

 

4.8.2. Mixing ratio rose plots (IV) 

Although not shown in the original contribution, mixing ratio rose plots were used in contribution 

IV to identify surface wind direction sectors in which the 90 th CO2 and CH4 mixing ratio 

percentile values were higher. This was done in order to clarify the possible influence of the 

Valladolid urban plume on the final CO2 and CH4 measurements collected at the CIBA station. 

 

4.8.3. Histograms (IV) 

Histograms are accurate and easy representations of numerical data distribution. They are an 

estimation of the probability distribution of a continuous variable. The data range is divided into 

class intervals and the number of data falling into each interval is counted (Gramacki, 2017; 

Larry, 2006). The heights of the bars in the histogram are proportional to the count in each bin 

(Larry, 2006). Histogram plots are extremely useful tools for analysing nonlinear variables such 

as wind direction. Since wind direction changes continuously, it needs to be described in a 

statistical way as a random variable. The CO2 and CH4 mixing ratio histogram used in IV (not 

shown in the original contribution) consists of a series of rectangles whose widths were defined 
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taking into account the 16-wind surface direction sectors considered, and whose heights reveal 

the proportion of the whole dataset depicted in each bar in percentages (i.e. the relative 

frequency) (Wilks, 2019). Local maxima identification of the most frequent wind surface 

direction sectors was performed using histograms in contribution IV (not shown in the original 

contribution). 

 

4.8.4. Percentile analysis 

Percentile calculation involves calculating a dataset division that produces 100 equal parts of 

the total dataset in a series of continuous values (Everitt et al., 2010). A monthly and a semi-

hourly graphical percentile evolution was carried out in contribution III in order to analyse the 

evolution of CO2 and CH4 over time and compare it with the seasonal cycle. Furthermore, some 

percentiles are useful to depict the box-plot graphs in all the contributions (I, II, III, and IV). 

Finally, CO2 and CH4 episodes and their seasonal cycle evolution were determined through a 

percentile analysis in contribution IV. 

 

4.8.5. Contour plots 

Contour plots are topographical maps drawn from data involving observations on three 

variables. One variable is represented on the horizontal axis, the second on the vertical axis, 

while the third is represented by isolines (i.e. lines of constant value). These plots are helpful 

in data analysis, especially when searching for maxima or minima in the dataset (Everitt et al., 

2010). Determining an optimal bandwidth procedure (contribution II) was based on the use of 

contour plots. Different bandwidth combinations, reflecting the trend (h1) in the x axis and 

seasonality (h2) in the y axis were tested depending on the R2 values (the isolines) calculated 

between experimental and theoretical CO2 and CH4 mixing ratio values. Large h1 values 

combined with small h2 values and vice-versa, as well as intermediate values of both 

bandwidths were analysed. Bandwidth values ranged between 100 and 1000 days, with 

intervals of 100 days, for h1 and were in the range of 20 to 160 days for h2, with intervals of 

20 days from level to level. The isolines plotted in the contour plot display the spatial distribution 

of R2 values by applying the bandwidths established for the trend (h1) and for the seasonal 

component (h2). Each isoline shows a curve in which the R2 value is constant. By using R2 

values as the statistic to determine the bandwidths, the arbitrariness of the method is 

substantially reduced. When the lines are close to one another, they reflect major changes in 

R2 values. In contrast, when they are further apart, the change is more gradual, and R2 values 

are more stable within this region. Hence, the region in which no abrupt changes in isolines 

was detected was chosen as the optimal bandwidth for the dataset. As a result of the contour 

analysis, a bandwidth of 500 days for determining the trend and the growth rate and a 
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bandwidth of 80 days for determining the seasonal component was considered when the 

kernel and the local regression methods were used to analyse temporal series evolution 

(contributions II and III).  

 

4.9. Validation methods 

4.9.1. Pearson product-moment coefficient of linear correlation (r-values) (II, III, IV) 

This is a measure of association between two variables, “x” and “y”. The Pearson product-

moment coefficient of linear correlation is usually known as the “Pearson correlation 

coefficient” or simply as “r-values”. One way to view the Pearson correlation coefficient is as 

the ratio of the sample covariance of the two variables to the product of the two standard 

deviations. The Pearson correlation coefficient is neither robust nor resistant (Wilks, 2019). It 

is not robust because a strong but nonlinear relationship between the two variables “x” and “y” 

may not be recognized. It is not resistant since it can be extremely sensitive to one or a few 

outlying point pairs. The calculation procedure for r-critical values is fully explained in IV. 

Pearson correlation coefficient values were calculated following equation 46. 

Correl (x, y) =
 ∑ (xi− x̅) (yi− y̅)N

i=1  

√∑ (xi− x̅)2  ∑ (yi− y̅)2N
i=1

N
i=1

 [46] 

where xi are the experimental values, yi the theoretical values, and the �̅� and �̅� coefficients, 

respectively, the mean values of experimental and theoretical values. 

 

4.9.2. r- critical values (II, III, IV) 

The r-critical values represent the value that a Pearson correlation coefficient value (r-value) 

must exceed in a sample of size n to be statistically significant at the p-value considered. The 

critical value determination then depends on sample size. Larger samples will be less subject 

to irregular sampling variations, such that the calculated critical values decline for a large 

amount of data: that is, smaller maximum deviations from the fitted theoretical distribution are 

tolerated for larger sample sizes. The r-critical values are the minimum required to reject the 

null hypothesis (Wilks, 2019). To calculate the r-critical values, the t-critical values for different 

p-values should first be obtained by using the t-Student inverse cumulative distribution function 

(Rouaud, 2017). r-critical values can then be calculated by using equation 47 (Sachs, 1978).  

r =
t

√t2+n−2
 [47] 

where t is the t-critical value, n is the number of data, and 2 is the degree of freedom, since we 

assume a two-tail distribution.  
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4.9.3. Coefficient of determination (R2 values) (I, III) 

The coefficient of determination is defined as the proportion of the variance in the dependent 

variable that is predictable from the independent variable. Contributions I and III used the R2 

values in order to determine the goodness of the hypothesis, since it provides a measure of 

how well observed outcomes are replicated by the functions, based on the proportion of 

outcomes explained by the functions. Contribution II used the R2 values to determine the 

optimal bandwidth values for analysing the CO2 and CH4 temporal patterns. In addition, R2 

values were used in contribution II as the goodness of fit indicator to analyse the efficacy of 

each function kernel so as to examine the trend and the seasonal component of the time series. 

The R2 values were calculated as the square of the sample Pearson product-moment 

coefficient of linear correlation (r-values) between the observed outcomes (the experimental 

data obtained with the Picarro analyser) and the observed predictor values (the theoretical 

values). 
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5. List of Original Contributions         

The current thesis is based on four original contributions, which are referred to in the text with 

Roman numerals (I-IV) published in different international indexed journals. Those 

contributions are listed below:  

 

I Fernández-Duque, B.; Pérez, I.A.; Sánchez, M.L.; García, M.Á.; Pardo, N., 2017. 

Temporal patterns of CO2 and CH4 in a rural area in northern Spain described by a 

harmonic equation over 2010–2016. Science of the Total Environment, 593-594, 1–

9. doi: 10.1016/j.scitotenv.2017.03.132 

 
 

II Fernández-Duque, B.; Pérez, I.A.; García, M.A.; Pardo, N.; Sánchez, M.L., 2019. 

Annual and seasonal cycles of CO2 and CH4 in a Mediterranean Spanish 

environment using different kernel functions. Stochastic Environmental Research and 

Risk Assessment, 33, 915–930. doi:10.1007/s00477-019-01655-5 

 
 

III Fernández-Duque, B.; Pérez, I.A.; García, M.A.; Pardo, N.; Sánchez, M.L., 2020a. 

Local regressions for decomposing CO2 and CH4 time-series in a semi-arid 

ecosystem. Atmospheric Pollution Research, 11, 213–223. doi: 

10.1016/j.apr.2019.10.012 

 
 

IV Fernández-Duque, B.; Pérez, I.A.; García, M.Á.; Pardo, N.; Sánchez, M.L., 2020b. 

Statistical urban plume analysis using observations and air mass modelling at a rural 

station in the northern Spanish plateau. Air Quality Atmosphere and Health, 13, 1343–

1350 . doi: 10.1007/s11869-020-00889-5 
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6. Original Contributions          

6.1. Harmonic function for describing CO2 and CH4 temporal patterns: Original 

Contribution I 

 

Fernández-Duque, B.; Pérez, I.A.; Sánchez, M.L.; García, M.Á.; Pardo, N. (2017) 

Temporal patterns of CO2 and CH4 in a rural area in northern Spain described by a 

harmonic equation over 2010–2016. Science of the Total Environment, 593-594: 1–9. 

doi: 10.1016/j.scitotenv.2017.03.132. 

 

Análisis de los patrones temporales de CO2 y CH4 en un emplazamiento rural 

del Norte de España a través de una ecuación armónica durante 2010-2016 

 

Resumen 

Esta contribución pretende mejorar el conocimiento actual sobre la evolución del CO2 y CH4 

en términos de tendencias, tasa de crecimiento y variaciones estacionales a nivel troposférico. 

Para ello, se midieron las concentraciones en seco del CO2 y CH4 durante cinco años y medio 

(del 15 de octubre de 2010 al 29 de febrero de 2016) a tres alturas distintas (1,8; 3,7 y 8,3 m.) 

con ayuda de un analizador Picarro en el Centro Investigación de la Baja Atmósfera (CIBA), 

ubicado en un emplazamiento rural de la meseta norte castellana. A fin de tener un mejor 

conocimiento de los patrones atmosféricos entre el día y la noche, la serie general de datos 

se subdividió en una serie diurna y una serie nocturna. La ecuación matemática propuesta 

para analizar los patrones temporales de la serie de datos fue una ecuación armónica, 

formada por un polinomio, que expresaba la tendencia de los datos y por una serie de 

armónicos, que expresaban el ciclo estacional. Las series diurna y nocturna mostraron un 

comportamiento diferente entre sí para ambos gases. Ambos gases revelaron un aumento en 

sus tasas de crecimiento durante los 5,5 años analizados. El CO2 mostró una tendencia de 

crecimiento más acelerada en otoño, mientras que las tendencias del CH4 fueron superiores 

durante el invierno. Finalmente, las amplitudes de la serie nocturna fueron superiores a las de 

la serie diurna, excepto en invierno para ambos gases y en otoño para el CH4. 

 

Palabras clave: meseta norte castellana, gases de efecto invernadero, series de armónicos, 

serie diurna y serie nocturna.      
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6.2. Kernel functions for describing CO2 and CH4 temporal patterns: Original 

Contribution II 

 

Fernández-Duque, B.; Pérez, I.A.; García, M.A.; Pardo, N.; Sánchez, M.L. (2019) Annual 

and seasonal cycles of CO2 and CH4 in a Mediterranean Spanish environment using 

different kernel functions. Stochastic Environmental Research and Risk Assessment, 

33: 915–930. doi: 10.1017/s00477-019-01655-5. 

 

Ciclos anuales y estacionales de CO2 y CH4 en un entorno mediterráneo 

español a través del uso de diferentes ecuaciones de kernel 

 

Resumen 

Dicha contribución se basa en datos semihorarios de concentraciones de CO2 y CH4 

registrados con un analizador Picarro G1301 entre 2010 y 2016 en el Centro de Investigación 

de la Baja Atmósfera (CIBA). Los principales objetivos del estudio fueron estudiar los patrones 

temporales del CO2 y CH4 mediante el uso de 6 funciones kernel así como analizar la 

idoneidad de cada una de las funciones para la serie de datos analizada. Las 6 funciones 

empleadas fueron: Epanechnikov, Gaussiana, cuártica, triangular, tricúbica y rectangular. La 

selección óptima del ancho de banda es crucial cuando se emplean funciones kernel. Por ello, 

esta contribución desarrolló un método sencillo para determinar simultáneamente el ancho de 

banda óptimo para analizar la tendencia y la estacionalidad de la base de datos a través del 

uso de gráficos de contorno utilizando los valores de R2 como estadístico robusto en la toma 

de decisiones. El incremento lineal de la tasa de crecimiento para ambos gases se atribuyó 

principalmente al ciclo de la biosfera terrestre y de cambios en el régimen de la circulación de 

la atmósfera. Por su parte, el ciclo estacional reveló una variación cíclica con mínimos en el 

verano para ambos gases debido al mínimo biológico (CO2) y a las mayores concentraciones 

de OH (CH4). Los dos máximos nocturnos hallados para el CO2, uno en primavera y otro en 

otoño, se vincularon con el aumento de las precipitaciones en ambas estaciones. En cuánto 

al CH4, el máximo se encontró en invierno cuando las concentraciones de OH son mínimas. 

Finalmente, la función cuártica resultó ser ligeramente superior para analizar la tendencia y la 

Gaussiana y la triangular para analizar el ciclo estacional. 

 

Palabras clave: tendencia, ciclo estacional, rural, funciones de kernel, ancho de banda y 

gráficos de contorno. 
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6.3. Local regression functions for describing CO2 and CH4 temporal patterns: 

Original Contribution III 

 

Fernández-Duque, B.; Pérez, I.A.; García, M.A.; Pardo, N.; Sánchez, M.L. (2020) Local 

regressions for decomposing CO2 and CH4 time-series in a semi-arid ecosystem. 

Atmospheric Pollution Research, 11: 213–223. doi: 10.1016/j.apr.2019.10.012. 

 

Regresiones locales para descomponer una serie temporal de CO2 y CH4 en un 

ecosistema semiárido 

 

Resumen 

Las regresiones locales se han utilizado ampliamente para descomponer series de datos 

atmosféricos. Esta tercera contribución se basa en la hipótesis de que las regresiones locales 

lineales son capaces de explicar la evolución temporal del CO2 y el CH4 en un ecosistema 

semiárido de la meseta norte castellana de la misma manera que lo harían las regresiones 

locales cuadráticas. Así, esta contribución pretende analizar la evolución temporal del CO2 y 

el CH4 a través de regresiones locales lineales y cuadráticas y comparar los resultados 

obtenidos con ambos métodos. Las concentraciones mínimas para ambos gases se 

encontraron a finales de verano, mientras que las máximas se encontraron en invierno. Al 

aplicar el método de regresión local lineal se obtuvieron unas tasas de crecimiento de 1.98 

ppm año-1 para el CO2 y de 11 ppb año-1 para el CH4. Alternativamente, al aplicar el método 

de regresión local cuadrático se obtuvieron unas tasas de crecimiento de 2.24 ppm año -1 para 

el CO2 y de 10.34 ppb año-1 para el CH4. Los coeficientes de correlación de Pearson (r-valor) 

mostraron valores aceptables para ambos métodos (0.21-0.40) teniendo en cuenta la amplia 

base de datos con la que cuenta el estudio. Los resultados obtenidos indicaron que tanto el 

método lineal como el cuadrático fueron capaces de analizar satisfactoriamente la evolución 

de los patrones temporales de CO2 y CH4 sin resultar ninguno de los dos métodos superior. 

 

Palabras clave: regresión local lineal, regresión local cuadrática, ancho de banda, series 

destendenciadas y r-valor. 
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6.4. Valladolid urban plume influence on the final CO2 and CH4 mixing ratios at 

CIBA: Original Contribution IV 

 

Fernández-Duque, B.; Pérez, I.A.; García, M.Á.; Pardo, N.; Sánchez, M.L. (2020) 

Statistical urban plume analysis using observations and air mass modelling at a rural 

station in the northern Spanish plateau. Air Quality, Atmosphere & Health, 13: 1343–

1350. doi: 10.1007/s11869-020-00889-5. 

 

Análisis estadístico del penacho urbano a través de las observaciones y el 

modelado de masas de aire en una estación rural en la meseta Norte de 

España 

 

Resumen 

La influencia de los penachos urbanos en las concentraciones registradas en las estaciones 

de monitorización rurales es un tema escasamente abordado hasta la fecha. Un mayor 

conocimiento de la influencia de fuentes locales y regionales en las concentraciones finales 

de CO2 y CH4 atmosférico proporcionaría a los agentes políticos herramientas para una mejor 

toma de decisiones a la hora de elaborar políticas eficaces de mitigación contra el cambio 

climático. La principal motivación de esta contribución consiste en analizar el impacto del 

penacho urbano de Valladolid en las concentraciones finales de CO2 y CH4 registradas 

mediante un aparato de precisión (Picarro G1301) en una estación rural de la meseta norte 

castellana (CIBA). Para ello, se analizó la relación entre las concentraciones finales de CO2 y 

CH4 y la dirección del viento en superficie a fin de identificar posibles fuentes contaminantes , 

De igual modo se analizó la relación entre las concentraciones finales y la dirección del viento 

en altura mediante el empleo del modelo lagrangiano METEX para complementar los 

resultados encontrados en superficie. Las mayores concentraciones se detectaron en los 

sectores de dirección Sur para ambos gases poniendo de manifiesto el efecto del penacho 

urbano de Valladolid (localizado en dicho sector) en las concentraciones finales de CO2 y CH4. 

Finalmente, se ajustaron 6 funciones de distribución a los datos experimentales de CO2 y CH4 

obteniendo ajustes satisfactorios con todas ellas, aunque ligeramente superiores para las 

distribuciones Gamma, Gumbel y Lognormal. 

 

Palabras clave: modelado de masas de aire, CO2, CH4, modelo METEX, funciones de 

distribución y retrotrayectorias. 
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7. General results          

7.1. CO2 and CH4 temporal analysis (I, II, III) 

7.1.1. Global evolution 

Different behaviour between diurnal and nocturnal data was found, with the highest values 

appearing during the night, both for CO2 and CH4. Table 2 shows slightly higher global mean 

values when the harmonic and the local functions were employed. These differences are 

greater in the case of CH4. However, no important differences between all the functions 

employed were found.  

 

Table 2. Mean values for all the functions used in the study. 

Mathematical function 
CO2 (ppm) CH4 (ppb) 

Daytime Night-time Daytime Night-time 

Harmonic 399.24 404.83 1906.63 1913.27 

Epanechnikov kernel 396.65 402.64 1893.29 1904.09 

Biweight kernel 396.62 402.60 1893.25 1903.67 

Gaussian kernel 396.86 402.89 1893.86 1906.62 

Gaussian (-3,3) kernel 396.86 402.89 1893.86 1906.62 

Gaussian (-1,1) kernel 396.67 402.70 1893.35 1904.69 

Rectangular kernel 396.69 402.73 1893.40 1904.98 

Triangular kernel 396.62 402.61 1893.17 1903.94 

Tricubic kernel 396.64 402.60 1893.33 1903.60 

Local linear 399.65 405.89 1905.82 1919.66 

Local quadratic 399.48 405.59 1904.05 1917.45 

 

7.1.2. Trend evolution 

Trend mean values were well-defined, positive and consistent over time, regardless of which 

mathematical function was chosen (Table 3). However, as regards the local method, some 

graphical discrepancies between the linear and the quadratic approach were found at the ends 

of the dataset (III). Slightly lower mean trend values were obtained with the harmonic equation. 

Again, the highest values were found in the nocturnal record. 
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Table 3. Trend mean values for all the functions used in the study. 

Mathematical function 
CO2 (ppm) CH4 (ppb) 

Daytime Night-time Daytime Night-time 

Harmonic 392.30 398.18 1873.51 1882.21 

Epanechnikov kernel 399.27 405.54 1903.03 1917.33 

Biweight kernel 399.17 405.44 1902.28 1916.44 

Gaussian kernel 398.81 404.92 1900.76 1914.12 

Gaussian (-3,3) kernel 398.81 404.92 1900.76 1914.13 

Gaussian (-1,1) kernel 399.09 405.26 1901.56 1915.76 

Rectangular kernel 399.06 405.20 1901.32 1915.55 

Triangular kernel 399.16 405.44 1902.15 1916.51 

Tricubic kernel 399.16 405.42 1902.29 1916.28 

Local linear 399.74 406.01 1906.44 1920.41 

Local quadratic 399.50 405.54 1904.27 1917.44 

 

Taking into account a statistical approach concerning the trend values, an increase in the 

central data trend (i.e. the mean and the median) over the study period should be pointed out. 

Moreover, greater data dispersion was seen for measurements taken during the middle period 

(2010-2014), since the standard deviation and interquartile range were higher in this period. 

Furthermore, symmetry indicators such as the Yule-Kendall index, showed a general right-

skewness distribution, which means there are more data between the median and the upper 

quartile. As regards peakedness, almost negative standard kurtosis values were found for the 

data series, showing that our data distribution presents lighter and flatter tails than the normal 

distribution (DeCarlo, 1997). Robust kurtosis values above 0.263 were considered as negative 

robust kurtosis (Sachs, 1978). Negative robust kurtosis values were found for both CO2 and 

CH4 in most years, indicating that data distribution for the study period presents a wider peak 

(flatness) than normal distributions (II). 

 

7.1.3. Growth rate evolution 

Growth rate values were obtained by calculating the first derivative of the trend. An increasing 

graphical growth rate pattern over the years was obtained with the harmonic function (I). 

However, the kernel functions revealed an increasing graphical pattern only from 2010 to 2014, 

which was then followed by a decreasing graphical pattern (II). As regards the local quadratic 

method, it showed a general increasing pattern over time although with some oscillations in 

the borders (III). Positive growth rate values were found with slope mean values of around 2 
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ppm year-1 for CO2 and 8 ppb year-1 considering all the functions listed in Table 4, except for 

the Gaussian function when it is limited for the interval calculation (-3,3), and which showed 

lower growth rate values. The same graphical behaviour was depicted for daytime and night-

time records for both gases. Generally higher nocturnal growth rate values were obtained for 

the nocturnal dataset. 

 

Table 4. Growth rate mean values for all the functions used in the study. 

Mathematical function 
CO2 (ppm year-1) CH4 (ppb year-1) 

Daytime Night-time Daytime Night-time 

Harmonic 2.32 2.15 11.90 10.32 

Epanechnikov kernel 1.69 1.81 6.73 6.83 

Biweight kernel 1.75 1.83 7.18 7.13 

Gaussian kernel 0.88 0.97 3.45 3.48 

Gaussian (-3,3) kernel 0.89 0.99 3.48 3.51 

Gaussian (-1,1) kernel 1.58 1.69 6.09 6.25 

Rectangular kernel 1.52 1.62 5.76 5.92 

Triangular kernel 1.73 1.83 7.05 7.03 

Tricubic kernel 1.75 1.84 7.12 7.11 

Local linear 1.98 1.97 12.56 9.45 

Local quadratic 2.06 2.42 11.38 9.30 

 

7.1.4. Seasonal evolution 

CO2 evolution showed a maximum in the coldest period of the year (typically in late November-

December), followed by another maximum in spring (late April – early May) which was only 

detectable for nocturnal records. Minimum mixing ratio values were obtained in summer (in 

August). As regards the CH4 cycle, this was simpler and less pronounced than the CO2 cycle. 

The highest mean mixing ratio values occurred during the winter season (December), while 

the lowest values occurred during the summer season (July). In addition, during the coldest 

months (i.e. late autumn, winter, and early spring), monthly values for the median, the first and 

the third quartile were above the same statistics calculated for all observations. CH4 mixing 

ratios were more confined within the interquartile range than the CO2 mixing ratio values (III). 

Furthermore, a different behaviour in the amplitude evolution was inferred when analysing CO2 

and CH4; with higher nocturnal CO2 amplitudes (I, II), although no major differences were 

inferred between diurnal and nocturnal CH4 amplitude results (I, II). Furthermore, the kernel 

regression function revealed amplitude values that were twice their respective values when 
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the harmonic equation was used. Moreover, an increase in CO2 autumnal amplitude was found 

during the night (I). Finally, the maximum CO2 value occurred earlier over the whole study 

period (I), while an increase in the minimum CO2 value over time was also found (III). 

 

7.2. Back-trajectory analysis (IV) 

7.2.1. Influence of air mass origin on CO2 and CH4 levels 

Higher mixing ratio values, considering all the raw data, were detected for both gases in the 

southern sectors (urban sectors), and were around 5 ppm higher for CO2 and around 31 ppb 

higher for CH4 in urban sectors. Furthermore, a directional analysis conducted through a 

histogram analysis revealed a peak located at around 220º associated with frequent surface 

wind direction from the southern sectors. This peak proved to be a prevailing wind direction in 

the sampling area. After detrending mixing ratios with simple linear regressions, 90 th percentile 

values (i.e. episodes) were calculated for the 16-surface wind direction sectors established. 

CO2 influence sectors were specifically found for the ESE, SE, and SSE sectors, with a mean 

value that was 8 ppm higher than the remaining sectors. With regard to CH4, SE and SSE wind 

sectors showed mixing ratio values nearly 60 ppb higher than for the remaining sectors. Since 

the 90th percentile values revealed higher detrended mixing ratios for the southern sectors for 

both gases a possible influence of the city of Valladolid (located 24 km southeast to the CIBA) 

on the final CO2 and CH4 measurements was inferred. Thus, two different wind direction 

sectors were considered in order to analyse Valladolid’s influence by computing the back-

trajectories using the METEX model: [1] on the one hand, urban trajectories, which were 

expected to be influenced by the city of Valladolid urban plume, [2] on the other hand, rural 

trajectories which were not expected to be influenced by any major local sources in the area. 

The mean back-trajectory for the urban and for the rural sectors showed a westerly component 

due to the synoptic flow affecting the Iberian Peninsula. However, when the back-trajectories 

impacted the Peninsula, the rural mean back-trajectory formed an Atlantic arc over the 

Cantabrian range while the urban mean back-trajectory reached the Iberian Peninsula through 

the south-south-western wind surface sectors.  

 

7.2.2. Statistical back-trajectory analysis 

Almost all the mean statistical values for the urban sectors were below the mean statistical 

values for the rural sectors, both for CO2 and for CH4. However, as regards CO2, the mean 

standard deviation for the whole study period and the mean interquartile range were around 2 

ppm higher for urban sectors. The mean, median and interquartile range increased by around 

2 ppm from 2011 to 2014 for the urban sectors, while the interquartile range decreased by 
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around 4 ppm for the same period in the rural sectors. Finally, the robust kurtosis increased 

for the same interval period for urban sectors, contrary to what occurred in rural sectors, 

although these changes were not above 0.1 ppm in any case since they are detrended values. 

Moreover, both sectors presented slightly leptokurtic distributions. As regards CH4, the mean 

values for the whole study period for the standard deviation, interquartile range and Yule 

Kendall index were higher for urban sectors. As for CO2 results, CH4 robust kurtosis mean 

values showed leptokurtic data distributions (i.e. data are more concentrated with regard to the 

mean value and the two tails than a normal distribution, which reveals a higher occurrence of 

outliers), although they were close to the mesokurtic distributions for CH4 data. Finally, CO2 

and CH4 presented right-skewed distributions for urban and rural sectors, i.e. there are more 

mixing ratio data above the mean value. A mean mixing ratio for the whole study period of 

406.34 ppm for CO2 was calculated for urban sectors, compared to the 401.55 ppm calculated 

for rural sectors. As regards CH4, a mean value of 1936.69 ppb for urban sectors and 1905.64 

ppb for rural sectors was obtained. In almost all cases, tercile analysis showed slightly higher 

CO2 slope (mixing ratio vs time) and intercept values for urban sectors. As regards CH4 urban 

slope values, they were more than twofold, five-fold and nearly nine-fold their corresponding 

rural values for the first, second, and third tercile, respectively. As for seasonal analysis, the 

highest slope and intercept values were almost always found in the urban sectors. Urban 

intercept values were around 7 ppm for CO2 and nearly 10 ppb for CH4 higher than their 

corresponding values in rural sectors. Finally, it should be noted that the rural mean back-

trajectory impacted the Iberian Peninsula after 68 hours travelling, whereas the urban mean 

back-trajectory impacted the Peninsula after just 56 hours travelling. However, urban back-

trajectories travelled greater daily distances. As regards recirculation factor values, although 

most statistics were lower for urban sectors, the maximum recirculation factor value and its 

range were higher.  

 

7.3. Validation indicators (I, II, III, IV) 

R2 values, r-values and r-critical values were used as validation indicators to evaluate the 

goodness of the techniques used in the different contributions. As regards contribution I, R2 

values were used to evaluate the monthly trend fit analysis. As a result, R2 values around 1 for 

CO2 and around 0.97 for CH4 were obtained, showing no major differences between either 

CO2 and CH4 or between diurnal or nocturnal data fit. Furthermore, contribution I evaluated 

the annual amplitude growth rate evolution by again using R2 values and showed a virtually 

perfect positive correlation for amplitude evolution over time. As regards contribution II, R2 

values, r-values and r-critical values were used as validation methods to evaluate the accuracy 

of each kernel function used. As a result, all the kernels studied were statistically significant, 
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with a p-value < 0.001. However, slightly better fits were obtained with the biweight kernel, 

although a worse fit was obtained with the Gaussian function since it employs the total real 

number line. Similar R2 values for the Gaussian and the Gaussian limited to (- 3,3) were found. 

In contrast, R2 values increased when the Gaussian was limited to (- 1,1) giving a better data 

fit, while computational time was cut by half. As regards seasonality, the Gaussian and the 

triangular kernel gave a better data fit. On the other hand, the worse fit was obtained with the 

rectangular and the Gaussian kernel limited to (-3,3). Shortening the interval calculation for the 

Gaussian kernel to (-1,1) did not prove as effective as for the trend. A better data fit was 

obtained for CO2 data, both for the trend and the seasonality results. However, while slightly 

higher R2 values were found for the diurnal trend values, no major differences were found for 

the diurnal and nocturnal seasonal values. Graphically, most of the kernel functions overlap, 

although two different groups were detected: [1] the first comprised the Gaussian and the 

Gaussian limited (-3,3), and [2] the remaining functions. As regards the growth rate graphical 

output, the same two groups from the trend graphical output were found, although there was 

also a third group formed by the rectangular and Gaussian kernel limited (-1,1) (II). With regard 

to contribution III, r-values were calculated in order to assess the accuracy of the trend and the 

seasonal component by using the local linear and local quadratic method. As a result, virtually 

the same r-values (around 0.30) were obtained both for the trend or the seasonal component 

with the two methods. All the r-values were statistically significant, with a p-value < 0.001. The 

highest r-value was obtained for the CO2 trend estimation by applying the quadratic method, 

whereas the lowest r-value was obtained for the CH4 trend estimation with the linear method. 

Furthermore, slight statistical differences (p-value < 0.05) between the initial (T1) and the 

smoothed trend (T2) were found, except for CH4 and diurnal CO2 data when the quadratic 

method was used (III). Finally, contribution IV evaluated the goodness of fit of each distribution 

function by means of the r-values, which proved highly satisfactory for p-values = 0.001. 

Results indicated that CO2 and CH4 data best fitted the Gumbel, the Erlang and the lognormal 

distributions, whereas some discrepancies were noticeable with the Gamma and Rayleigh 

distributions. Better fits were found for CO2 data as well as for rural data.   
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8. General discussion          

8.1. Temporal pattern evolution 

8.1.1. Global CO2 and CH4 evolution 

The mean annual mixing ratio at the CIBA station from 2010 to 2016 was 399.24 ± 5.05 ppm 

for CO2 and 1906.63 ± 25.70 ppb for CH4 during the daytime, and 404.83 ± 6.28 ppm (CO2) 

and 1913.27 ± 24.32 ppb (CH4) during the night-time. The mean concentrations found for CO2 

closely follow global values, 394.90 ppm, considering monthly data, while CH4 concentrations 

at CIBA, which represent 1816.49 ppb, are above global mean values (NOAA, 2016). In 

general terms, it should be mentioned that the lowest mixing ratio values are linked with large-

scale hemisphere and global background mixing ratio evolution, whereas the highest values 

are usually linked with local emissions (Pérez et al., 2020). More specifically, the highest CH4 

mixing ratio values reported at the CIBA station are partially due to the greater sensitivity from 

CH4 emission sources at the monitoring station. Moreover, the highest nocturnal values were 

the result of stable nocturnal conditions and greater temperature inversions. By contrast, the 

convection mixing conditions during the daytime accounted for the lowest CO2 and CH4 values. 

In addition, most of the measurements taken during the study period lay in a central range, 

between the 30th and 60th percentile, showing few outliers in data distribution, and reflecting 

regular cycles at the CIBA station. The percentile analysis indicated good symmetry in the 

frequency distributions, since the 50th percentile value did not differ much from the average 

value. Finally, it should be noted that CO2 presented more noticeable seasonal differences, 

which could be because of the greater variability in raw CO2 data, due partially to the fact that 

the biological activity response depends on a large number of variables, whereas raw CH4 data 

are more stable.  

 

The CIBA station also revealed sharp differences between day and night. The lowest CO2 and 

CH4 mixing ratios were found during the day whereas the highest values were found at night, 

in agreement with Martins et al. (2016) and with other Northern Hemisphere mean values (Pu 

et al., 2014). These differences are most marked in the growing season (Pérez et al., 2009c). 

During the daytime, at the CIBA station, more intense solar radiation and thermal turbulence 

induces stronger vertical mixing (Fang et al., 2014) as well as the expansion of the boundary 

layer, which reaches its maximum height in the middle of the day (809 m), contributing to the 

dilution (García et al., 2016) and dispersion of both gases and decreasing their mixing ratio 

(Domínguez-López et al., 2015; Hernández-Ceballos et al., 2015b). CO2 uptake and higher 

photochemical reactions during the day are also considered to be important causes of the 
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lowest CO2 and CH4 concentrations, respectively (Lee et al., 2012). As regards CH4, the more 

intense vertical mixing during the daytime drives CH4 transport into higher atmospheric layers 

where chemical reactions with OH, chlorine, and excited oxygen are more active, thereby 

increasing atmospheric dilution, as reported by Ginzburg et al. (2011), and thus decreasing 

the CH4 mixing ratio. However, at night, radiation loss at ground level leads to a shallow stable 

boundary layer (Fang et al., 2013; Hernández-Paniagua et al., 2015), which reaches 405 m at 

CIBA, trapping CO2 and CH4 emissions between the ground and the top of the boundary layer 

and increasing their mole fraction values (Fang et al., 2013; García et al., 2012). Atmospheric 

mixing is low (Haszpra et al., 2008) and turbulent processes decrease. The stable atmospheric 

stratification conditions at night dampen vertical dispersion and favour the accumulation of 

locally-emitted pollutants. Frequent strong thermal inversions also play an important role in 

trapping CO2 and CH4 emissions between the ground and the top of the boundary layer, thus 

increasing their mole fraction values (Pérez et al., 2009b). As regards the CO2 nocturnal 

maximum, night-time respiration is another important source contributor (Lee et al., 2012). In 

the case of CH4, higher concentrations might be explained by the prevalence of easterly and 

northerly winds in the area at night. Bearing in mind that Palencia is to the northeast, that 

Valladolid is to the southeast and that there is an urban landfill in the south-southeast sector, 

the highest CH4 concentrations during the night-time are in agreement with the main CH4 

sources in the surrounding area (García et al., 2008; 2016; Sánchez et al., 2014). Additionally, 

García et al. (2008) reported lower wind speed overnight, which may favour the accumulation 

of emissions from local sources, as also stated (Hernández-Ceballos et al., 2015b).  

 

To analyse the CO2 and CH4 temporal evolution recorded at the CIBA station from 2010 to 

2016, the current thesis conveniently detrended and deseasonalised the time series from the 

observed values, as recommended by Nakazawa et al. (1997) in order to capture the intrinsic 

dynamics of the time series that can be associated to different phenomena (Chham et al., 

2019). As the presence of trends in the time series prevents any periodicities from being 

identified, removing these trends is a prerequisite for identifying periodicities (Bianchi et al., 

2019). Once the CO2 and CH4 series is decomposed, the trend term reveals whether the mixing 

ratio increased or decreased over the period analysed, while the periodic term indicates which 

processes occur within the time series (Bianchi et al., 2019). A brief discussion concerning the 

temporal patterns is given below.  

 

8.1.2. CO2 and CH4 trend analysis 

The long term (i.e. the trend) of the equations used in the current thesis informs us about the 

inter-annual changes in a time series. The positive and almost linear trends reported for both 
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gases were also described by Buchholz et al. (2016). The greater increasing trend reported 

during autumn was linked with higher autumn temperatures in recent years, as a main 

consequence of climate change, which leads to increased respiration rates, in agreement with 

Piao et al. (2008) and Zhang and Zhou (2013). Furthermore, as regards CH4 trend results, 

anthropogenic causes have a major impact on autumn and winter emissions.  

 

CO2 mean mole fractions at CIBA were around 399 ppm (392 ppm when applying the harmonic 

function) during the daytime and 405 ppm (398 ppm with the harmonic function) during the 

night-time. These values concur with global CO2 values, which were around 395 ppm for the 

same period (NOAA, 2017a). As regards CH4, daytime mole fractions were approximately 

1902 ppb (1874 ppb with the harmonic function) and around 1916 ppb (1882 ppb with the 

harmonic function) during the night-time. These results were in agreement with CH4 mole 

fraction values for latitudes above 30º N, which were over 1900 ppb in 2015 (Pérez et al., 

2017), and with global CH4 mole fraction values, which were around 1800 ppb for the same 

study period (NOAA, 2017b).  

 

The upward trend reported for both gases can easily be explained on a global scale by the 

high annual increase in fossil fuel emissions, particularly in the northern temperate region 

(Anderson et al., 2016; Piao et al., 2017). CO2 mixing ratio trends at different background sites 

in China have significantly increased over the past decade, with the rapid economic 

development and extensive increase in energy consumption likely to be the main causes 

(Cheng et al., 2019). On a smaller scale, the bulk of the Spanish economy is based on sectors 

that release large amounts of CO2 into the atmosphere (Gutiérrez et al., 2008), contributing to 

the increasing CO2 mean trend values over time. Furthermore, CH4 emissions are the second 

main source of greenhouse gas emissions in Spain, as reported by Gutiérrez et al. (2008). The 

increasing trend pattern inferred over time at the CIBA station was already described by García 

et al. (2016) and may partially be linked to a rise in anthropogenic emissions from industrial 

activities and from the urban landfill near the monitoring station.  

 

8.1.3. CO2 and CH4 growth rate analysis 

As stated by Zhu and Yoshikawa-Inoue (2015), research into the growth rate requires a long 

recording period. The current thesis analysed a database spanning five and a half years which, 

according to Barlow et al. (2015), is sufficient since they consider periods of over a year and a 

half to be a good growth rate indicator. The positive CO2 and CH4 slopes, which agree well 

with the increases occurring worldwide, are mainly the result of emissions that have continued 

to grow rapidly in recent years. The range of average growth rate values, considering neither 

the Gaussian kernel when it is limited to the interval calculation (-3, 3), nor when it is not limited, 



General discussion    

 

 
   142    

 

was narrow. However, both when limited to (- 3,3) and when not limited, the Gaussian function 

showed very different results compared to the other kernel functions. Yet when the Gaussian 

was limited to (-1,1), values doubled and approached those of the other functions, thereby 

improving the data fit. 

 

CO2 mean results yielded a positive linear increase of 1.65 ppm year−1 during the daytime and 

1.74 ppm year−1 during the night-time, with a net growth rate (whole series) of 1.69 ppm year−1 

when considering all the mathematical functions employed. The net CO2 growth rate obtained 

was slightly lower than the mean CO2 growth rate value found for different stations worldwide 

(Table 5). However, differences among the three mathematical functions used can be inferred. 

The local linear regression function reported a net CO2 growth rate value of 1.98 ppm year−1, 

which is in line with the 2.02 ppm year−1 mean CO2 growth rate value for all the studies 

presented in Table 5. It should be noted that, whereas the harmonic and the local quadratic 

regression estimated a slightly higher net CO2 growth value, the kernel regressions estimated 

a lower net CO2 growth value, with the local linear regression being the method which best 

approximated the mean values reported in Table 5. However, regardless of the mathematical 

function employed, CO2 growth rate values were more accelerated in later years, which might 

be the result of a rise in anthropogenic emissions from fossil fuel consumption, which has 

increased globally from 1920 until the present (Le Quéré et al., 2016). Moreover, local CO2 

emissions of anthropogenic activities in the surrounding area contribute to these values, 

although the contribution is only small compared to global background values. The nocturnal 

increase could be partially attributed to changes in climatology, such as the impact of heat and 

drought on vegetation, which leads to decreased vegetation CO2 uptake through 

photosynthesis and increases in the respiration rate (Artuso et al., 2009; Heimann and 

Reichstein, 2008). Chamard et al. (2003) noticed a correlation between a faster CO2 growth 

rate and a slower uptake by the biosphere, as we also observed (see Figure 1b and Figure 2a 

in contribution III).  
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Table 5. CO2 growth rate values at different sites (modified from Pérez et al., 2017). 

Site 
Growth rate 

(ppm year-1) 
Period Reference 

Mt. Cimone, Italy 1.66 1979-1991 Cundari et al. (1995) 

Lampedusa, Italy 1.9 1992-2007 Artuso et al. (2009) 

Egham, UK 2.45 2000-2012 
Hernández-Paniagua et al. 

(2015) 

Mace Head, Ireland 1.9 2000-2011 
Hernández-Paniagua et al. 

(2015) 

Cabaw, The Netherlands 2.00 2005-2009 Vermeulen et al. (2011) 

Beromünster, Switzerland 2.58 2012-2016 Satar et al. (2017) 

Hegyhátsál, Hungary 
1.4 1981-1986 

Haszpra et al. (2008) 
2.1 2003-2007 

Pallas, Finland 2.5 1996-2000 Aalto et al. (2002) 

Pakistan 2.097 2002-2012 ul-Haq et al. (2017) 

Central Siberia, Russia 2.02 2006-2013 Timokhina et al. (2015) 

Seven sites in China 1.7-3.6 2003-2006 Zhang et al. (2008) 

Northeast China 1.7 2003-2010 Wu et al. (2012) 

Shangdianzi, China 2.7-3.8 2009-2013 Fang et al. (2016) 

Tsukuba, Japan 2.0 1992-2003 Inoue et al. (2006) 

Rishiri, Japan 2.1 2007-2012 
Zhu and Yoshikawa-Inoue 

(2015) 

Mt. Bachelor, Oregon 1.48 2012-2014 McClure et al. (2016) 

Point Barrow, Alaska 1.44 1983-1985 Tans et al. (1989) 

Maitri (Antarctica) 1.3 2002-2003 Jain et al. (2005) 

Different sites in the 

Northern Hemisphere 
2.04 1997-2006 Liu et al. (2015) 

Globally averaged 

measures 

1.9 2013-2014 WMO Greenhouse Gas 

Bulletin (2015) 2.06 2004-2014 

 

For CH4, a mean growth rate of 7.52 ppb year−1 for diurnal data, and 6.94 ppb year−1 for 

nocturnal outputs was found, meaning a net growth rate of 7.23 ppb year−1 considering all the 

data series. The CIBA station net growth rate value doubled the one reported at Mt. Zeppelin 

(Table 6) partially due to the remote location of the Norway station as well as the difference in 

the time period analysed. Moreover, as pointed out by Sánchez et al. (2014), the contribution 

of livestock in the region may be one reason why the mean growth rate is greater at the CIBA 

station compared to some non-disturbed areas. However, the impact of livestock in the region 

is not as strong as at the Beromünster tower in Switzerland (Table 6), which explains the higher 

CH4 growth rate values in comparison with the CIBA values. Despite these exceptions, the net 

growth rate obtained at the CIBA station was in agreement with those obtained at most 

sampling sites worldwide. It should be noted that the kernel functions (except the Gaussian 
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not limited and limited to -3,3) were those which most approximated the mean CH4 growth rate 

values reported at different sites worldwide (Table 6). The harmonic and local regression 

functions  reported higher values than those reported in Table 6. Moreover, daytime and night-

time series seem to be mainly influenced by the increase in local anthropogenic emissions 

from industrial activities, fuel burning and fugitive emissions from the urban landfill near the 

CIBA station. In addition, the ever-expanding human population has led to increased amounts 

of organic waste that release CH4 into the atmosphere through anaerobic decomposition, 

thereby contributing to the observed rise (Haszpra et al., 2008). One final point to take into 

account is a decreasing CH4 pattern, mainly from 2015 to 2016 and which agrees with global 

CH4 growth rate values, since a decrease of around 3 ppb year-1 was obtained on a global 

scale (NOAA, 2017c). Kim et al. (2015) also showed consistent changes in the global growth 

rate of annual CH4 mole fractions, with ups and downs from 1980 to 2010, although the reasons 

are not yet fully understood. 

 

Table 6. CH4 growth rate values at different sites (modified from Pérez et al., 2017). 

Reference Site 
Growth rate 
(ppb year-1) 

Period 

Vermeulen et al. (2011) Cabaw, The Netherlands 7.4 2005-2010 
Satar et al. (2017) Beromünster, Switzerland 9.79 2012-2016 
Pedersen et al. (2005) Mt. Zeppelin, Norway 3.34-3.63 1998-2005 
Fang et al. (2016) Shangdianzi, China 6-10 2009-2013 
Nisbet et al. (2014) Globally averaged 6 2007-2013 
Bergamaschi et al. (2013) 30 sites worldwide 6.0 2007-2010 

 

8.1.4. CO2 and CH4 seasonal cycle 

Seasonal cycles showed considerable inter-annual variability with harmonic cycles, which is 

typical of remote locations, according to Hernández-Paniagua et al. (2015), as well as periodic 

behaviour and regular variations. The current thesis highlights that the evolution of CO2 and 

CH4 was clearly affected during the day and throughout the year.  

 

8.1.4.1. CO2 and CH4 seasonal evolution 

As regards CO2 and CH4 seasonal behaviour, it should be noted that the lowest mixing ratios 

for both greenhouse gases were found in the summer season. The minimum mixing ratio 

values occurred when hemispheric CO2 uptake draws down global CO2 mixing ratios and when 

CH4 is oxidised by OH radicals through the hemisphere (Cheng et al., 2019; Pérez et al., 2020). 

Al-Anzi et al. (2016) also explained this behaviour because of the higher planetary boundary 

layer that reinforces pollutant transport and the dispersion process. During this season, solar 

radiation is also higher, producing good dilution from surface and thus a decrease in CO2 and 



  General discussion 

 

   145    

 

CH4 concentrations (García et al., 2012; Pérez et al., 2009b). Moreover, atmospheric transport 

flows should also be considered when seeking to understand seasonal patterns. Clean air 

masses approaching the monitoring station from the Atlantic are more frequent in summer, 

which explains CO2 and CH4 troughs during this season (García et al., 2016). The opposite is 

found for the winter season, when gases are confined within the shallow planetary boundary 

layer, which reaches its minimum yearly value (458 m during the daytime and 380 m during 

the night-time) due to lower atmospheric dispersion. Furthermore, fossil fuel burning for 

heating during winter also has an important effect in terms of increasing the final mixing ratio 

values. As regards CO2 values, lower CO2 uptake through photosynthesis in winter should not 

be ignored. Nor should plant respiration which, as stated by Pérez et al. (2016), is greater in 

winter. In addition, the lower production of OH radicals during winter also contributes to 

maximum values being reached during this season. Finally, Artuso et al. (2009) found an 

important influence of industrialized western Europe at the Lampedusa station from 1992 to 

2007 in winter, when the vegetation sink is less effective. The same air mass origin during 

winter was attributed to our sampling site, since García et al. (2016) reported that the main 

pollutant sources lie in Europe, thereby explaining the higher CO2 mole fractions during winter. 

Furthermore, different seasonal behaviour was inferred for CO2 and CH4.  

 

As regards the CO2 seasonal cycle, it is mainly dominated by the physiological activity of plants 

and soil respiration. On the one hand, diurnal CO2 mixing ratios are highest in winter (maximum 

in December with 403 ppm) and lowest in summer (August 391 ppm). The CO2 daytime cycle 

was characterized by a decline from December to August and a subsequent rise. CO2 mixing 

ratios decrease more rapidly as of spring due to more intense photosynthetic activity. 

Coniferous trees and Mediterranean shrubs surrounding the site are particularly vigorous from 

May to July, promoting photosynthesis as the days grow longer and explaining the lowest CO2 

values found in August. The lowest CO2 mixing ratio values during the summer may also be 

related with the intense summer heat during this season that induces alternating wind currents 

(Notario et al., 2014). This is in line with the findings reported by Oney et al. (2017), who found 

that the biosphere over the Swiss plateau tends to become a net CO2 source when 

temperatures are above 20ºC (Berhanu et al., 2017). The peak in December might be due to 

the cumulative effects of CO2 emission via root respiration, as suggested by Wu et al. (2012). 

This pattern was consistent with those of many northern hemispheric locations (e.g., Wu et al., 

2012; Zhang et al., 2008). In addition, nocturnal CO2 mole fractions increased from August to 

April, and then strongly decreased from May to August. This cycle was in line with that reported 

by Barichivich et al. (2013). Thus, two nocturnal CO2 peaks are detected. The first is found in 

spring (April: 412 ppm) when the increase in temperature and precipitation regime lead to the 

period of maximum vegetation growth (Sánchez et al., 2005). Thus, respiration processes (Lee 
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et al., 2012; Pérez et al., 2016) and CO2 soil emissions (Buragiene et al., 2015) play an 

important role, leading to higher mixing ratio values at night. Furthermore, this CO2 maximum 

is related with strong temperature inversions at the sampling site, which help to trap CO2 

emissions in the highly stable stratified mixing layer during the night-time, particularly during 

the growing season and autumn (García et al., 2012). Pérez et al. (2009b) documented the 

influence of the Valladolid plume over the site in spring, and reported an increased gas 

concentration. The second maximum occurs in autumn (November, 406 ppm), as reported by 

Sánchez et al. (2003). These authors attribute this fact to local soil disturbances caused by 

ploughing the soil while preparing the land for seeding and to an increase in the amount of 

precipitations, as also pointed out by García et al. (2008). According to Sun et al. (2014), this 

peak seems to be linked to increased ecosystem productivity as well as soil microbial activity 

and respiration processes (Kirschke et al., 2013), which are greater during the cold season 

(Dalsøren et al., 2016; Hernández-Paniagua et al., 2015). Moreover, at this time of year the 

Palencia plume has an impact on the site although it has less of an impact on the CIBA station 

than the Valladolid plume due to Palencia’s smaller population, its greater distance from the 

station and the lower amounts of industrial emissions (Pérez et al., 2009a; b; 2012). 

Furthermore, this second peak is also related with local emissions from vehicles, industrial 

activities and domestic heating, as suggested by García et al. (2016). The two CO2 nocturnal 

peaks detected were also previously found by Chamard et al. (2003) who reported two maxima 

on the same dates (the first peak was detected in mid-May and the second in mid-November) 

on the island of Lampedusa (Italy) from 1992 to 2001. Furthermore, a cycle with two maxima 

was also described by Hatakka et al. (2003) for CO2 mole fractions at Pallas, Finland, from 

1997 to 2003. Finally, the nocturnal CO2 minimum was found in summer (August 394 ppm), 

as occurs during the daytime, and was linked to a biological minimum attributed to slight plant 

and soil agricultural activities which, together with higher temperatures and low soil moisture, 

lead to lower respiration rates. Lower anthropogenic emissions during the summer due to the 

absence of heating and the reduction in traffic and industrial activities should also be 

considered (García et al., 2012). The CO2 seasonal cycle described in the current thesis 

agrees with the CO2 seasonal values reported for different observatories in the Northern 

Hemisphere (Table 7). It is important to bear in mind that a differentiation between diurnal and 

nocturnal values was analysed in the current thesis: hence, two maxima should be considered; 

one in November/December, and the other (only detectable in the night record) in April. Table 

7 shows how the peak located in March/April is detectable at many of the sites analysed, whilst 

the November/December peak was mostly linked to sites surrounded by agricultural 

vegetation, as is the case with the main vegetation system at the CIBA station. Finally, the 

minimum CO2 value was mainly located in August for all sites.  
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As regards CH4 seasonal evolution, a simpler and less pronounced cycle was reported, 

revealing positive values from summer to winter, and negative values from winter to summer, 

for both daytime and night-time records. Meteorological conditions play an important role in 

the CH4 cycle, since higher temperatures induce greater levels of OH radicals, which are the 

main CH4 natural sink. Furthermore, the greater dispersion and convective processes 

occurring during the summer should be also considered. Thus, the CH4 maximum was reached 

in December (around 1940 ppb) while the CH4 minimum was found in July (around 1880 ppb). 

Additionally, biomass burning that begins around October in the upper Spanish plateau might 

influence the CH4 cycle, as Fang et al. (2013) have suggested for other sites. In general terms, 

it should be noted that the CH4 pattern described at CIBA is in line with most research 

campaigns conducted at different sites in the Northern Hemisphere, as reflected in Table 8, 

even with different types of climate pattern and vegetation cover. However, although the CIBA 

cycle was in line with that observed at the Mauna Loa Observatory (MLO), it should be noted 

that mixing ratio values at CIBA were higher than those at MLO due to the greater sensitivity 

from emission sources at CIBA. Sánchez et al. (2014) reported almost 200 kt year-1 CH4 

emissions due to livestock in the region, which partially explains the higher CH4 values at the 

CIBA station. Furthermore, OH radical concentration decreases with latitude in the Northern 

Hemisphere (Kim et al., 2015). MLO is located closer to the equator, such that the 

photochemical effect is stronger, causing lower CH4 mole fractions than at the CIBA station. 

 

8.1.4.2. Amplitude evolution 

The difference between the maximum and minimum value (peak-to-trough) is defined as the 

amplitude of a cycle. This parameter may be considered as a biological activity indicator 

(Barlow et al., 2015) although it is also influenced by local sources/sinks (Li et al., 2014). 

 

Despite an increase in the minimum CO2 value over time being inferred, an increasing trend 

in the seasonal CO2 amplitude was observed, in agreement with other observations in the 

Northern Hemisphere (Graven et al., 2013; Sánchez et al., 2010) such as those reported by 

Graven et al. (2013), Barichivich et al. (2013), and Keeling et al. (1996) at the Point Barrow 

station (71ºN, Alaska). As Graven et al. (2013) stated, increases in CO2 amplitude in northern 

latitudes are strongly linked with the terrestrial biosphere. This amplitude increase could be 

linked with the increasing global warming pattern that has brought forward the onset of spring  
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(Burrows et al., 2011), lengthening the vegetation growing season (Barichivich et al., 2013) in 

northern latitudes (Jeong et al., 2011; Piao et al., 2011). Earlier and longer growing seasons 

are generally associated with increased ecosystem carbon sequestration because more days 

are available for carbon uptake and biomass growth (Richardson et al., 2010). However, a 

number of studies have shown that earlier spring growth induces soil water depletion. This 

counteracts higher early spring carbon assimilation by enhancing mid-summer drought 

conditions (Angert et al., 2005; Buermann et al., 2007; Ciais et al., 2005; Hu et al., 2010; Ma 

et al., 2012; Peng et al., 2011; Piao et al., 2011; White and Nemani, 2003; Zhang et al., 2008) 

at mid to high northern latitudes, thereby inhibiting CO2 plant uptake due to water stress 

(Barichivich et al., 2013). Thus, the increase in the minimum CO2 value over time could be the 

result of drier and hotter summers, which induce stress in the vegetation (Angert et al., 2005) 

and therefore reduce plant productivity (Ahlström et al., 2015; Barichivich et al., 2013; 

Buermann et al., 2007; Piao et al., 2011). According to Graven et al. (2013) fossil fuels, 

wildfires and ocean CO2 fluxes contribute barely a few percent to seasonal CO2 amplitude 

trends, although changes in transport may cause important secondary effects. However, 

further studies are needed to confirm such a hypothesis since, as Forkel et al. (2016) stated, 

a quantitative explanation of the amplitude of the trend evolution is still lacking. This could be 

partially due to the shorter records from other ground monitoring stations, which rarely extend 

back to the 1950s (Graven et al., 2013). Mean CO2 amplitude at the CIBA station during the 

daytime was 7.81 ppm and 11.45 ppm during the night-time. These results were in agreement 

with most of the amplitude values reported in Table 7 at different sites in the Northern 

Hemisphere. However, some discrepancies were found with certain locations analysed in 

Table 7, due to different local features, such as Hegyhátsál, the LAN station, Mt. Rishiri, and 

Fraserdale. The magnitude difference between the CIBA station and the Hegyhátsál site could 

be partially related with the lower planetary boundary layer height at Hegyhátsál, which is 

typically 50–200 m during the night versus the 405 m during the night at the CIBA station, 

which contributes to the formation of large amplitude values (Haszpra et al., 2008). As regards 

the LAN station (China), it should be noted that the heating seasons in China last for several 

months. Therefore, fossil fuel combustion for heating might result in more CO2 emissions, 

which would account for the higher CO2 amplitude values reported. Finally, a latitudinal 

decreasing amplitude pattern toward the south in the Northern Hemisphere should not be 

ignored (Zhu and Yoshikawa-Inoue, 2015). According to Graven et al. (2013), the higher the 

latitude in the Northern Hemisphere the greater the CO2 amplitude changes that were reported. 

In this sense, seasonal CO2 amplitude north of 45°N represented around 0.9 ± 0.1% year-1 

over the past 50 years, whereas the seasonal CO2 amplitude increase was smaller between 

35° and 45°N and was not distinguishable south of 35°N (Graven et al., 2013).  
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As regards CH4 amplitude, a decreasing pattern over time was noticed although no major 

differences between daytime (41.54 ppb) and night-time (41.75 ppb) amplitude values were 

detected. The mean value of CH4 amplitude found in the current thesis is in line with most of 

the sites analysed in Table 8, except for those located in intensive agricultural systems (e.g. 

Haszpra et al., 2008; Vermeulen et al., 2011; Zhang and Zhou, 2013) due to high CH4 

emissions at those sites. Maximum CH4 amplitude values appeared in spring and winter, which 

could be attributed to the strong temperature inversions in these seasons at the CIBA station. 

The lowest amplitudes occur in summer, which may be associated to photochemical reactions. 

 

8.2. Mathematical equations for analysing temporal patterns 

Harmonic, kernel and locally weighted regressions proved to be useful mathematical equations 

for smoothing scatter diagrams to allow any structure to be seen more clearly in order to 

analyse CO2 and CH4 temporal patterns over the upper Spanish plateau. However, it is 

important to briefly discuss some important decisions to be taken when applying these 

methods in any time series.  

 

8.2.1. Harmonic regression 

As Table 9 shows, many authors have previously applied harmonic functions to describe the 

behaviour of pollutants in the troposphere. Nakazawa et al. (1997) suggested that the data 

trend should be fitted by a polynomial term of suitable degree, whereas the seasonal cycle 

may be described by a series of harmonic terms. Thus, the current thesis developed a function 

considering a third-degree polynomial to better fit the experimental data, plus a series of four 

harmonics to describe the CO2 and CH4 mixing ratio evolution in terms of annual and inter-

annual changes. The two first harmonics refer to annual behaviour. The first, expresses annual 

behaviour and the second reinforces this information, sharpening the peaks and troughs. The 

two last harmonics give the seasonal evolution. The third harmonic refers to four-month 

changes, and the fourth to quarterly information. The main contribution of the equation 

proposed was to consider the amplitude of each harmonic as a constant and as a variable 

term along the time series since, to the best of our knowledge, the variable term has not been 

widely studied. Researchers who have employed four harmonics have not considered the 

amplitude variable over time (see Table 9), resulting in a worse fit of the data, since CO2 and 

CH4 concentrations are time-dependent variables. In contrast, those who have developed a 

harmonic equation in which amplitude depends on time have not considered four harmonics 

(see Table 9), which implies a loss of interannual information in the cycle. It is important to 

note that the term in which the amplitude is constant with time represents the general features 

of the seasonal cycle, and accounts for around 87% of the seasonal cycle (Sánchez et al., 
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2010). However, the term in which the amplitude is variable along the time series reinforces 

the information of the constant term, thereby providing a better data fit and offering more 

accurate results. Thus, considering the amplitude constant and variable over time is crucial. 

 

Table 9. Harmonic equations used in different studies worldwide (modified from Pérez et al., 

2017). 

Site Trend Harmonic part Time Reference 

CIBA station, 

Spain 
Linear One harmonic 

Constant 

and variable 

Sánchez et 

al. (2008) 

CIBA station, 

Spain 
Linear Two harmonics 

Constant 

and variable 

Sánchez et 

al. (2010) 

Lampedusa, Italy Exponential Two harmonics Constant 
Chamard et 

al. (2003) 

Lampedusa, Italy Exponential Two harmonics Constant 
Artuso et al. 

(2009) 

Northeast China Linear Two harmonics 
Constant 

and variable 

Wu et al. 

(2012) 

Different sites in 

the Northern 

Hemisphere 

Linear Two harmonics 
Constant 

and variable 

Liu et al. 

(2015) 

Pallas, Finland Linear Three harmonics Constant 
Aalto et al. 

(2002) 

Tsukuba, Japan Fourth order Three harmonics Variable 
Inoue et al. 

(2006) 

Cabaw, The 

Netherlands 
Linear Four harmonics Constant 

Vermeulen 

et al. (2011) 

Central Siberia, 

Russia 
Linear Four harmonics Constant 

Timokhina et 

al. (2015) 

Point Barrow, 

Alaska 
Linear Four harmonics Constant 

Tans et al. 

(1998) 

Mt. Waliguan, 

China 
Second order Four harmonics Constant 

Fang et al. 

(2013) 

Shangdianzi, 

China 
Second order Four harmonics Constant 

Fang et al. 

(2016) 

Eastern North 

Carolina (1992-

1997) 

Second order Four harmonics Constant 
Bakwin et al. 

(1998) 

Northern 

Wisconsin (1994-

1997) 

Second order Four harmonics Constant 
Bakwin et al. 

(1998) 

 

8.2.2. Kernel regressions 

The kernel and local regression functions compensate the influence of neighbouring data by 

assigning higher values to data which are nearby and smaller values to data that are further 

away (Krisp et al., 2009). In order to employ the kernel and locally weighted regression, the 
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optimal bandwidth and kernel function must first be chosen (Hernández-Ceballos et al., 2019). 

However, there are no standards concerning such selections (Hernández-Ceballos et al., 

2019).  

 

8.2.2.1. Chosen bandwidth  

The bandwidth is the distance around a case at which its influence is felt, and plays the role of 

the smoothing parameter fitting the data (de Haan, 1999; Hernández-Ceballos et al., 2019). 

Unfortunately, there is no single best method that can be universally applied to optimally 

determine the bandwidth (De Smith et al., 2007; Gramacki, 2018; Krisp et al., 2009) although 

one of the most widely used is a trial-and-error method (Fan et al., 2003; Hernández-Ceballos 

et al., 2019; Krisp et al., 2009). Krisp et al. (2009) consider that providing visual techniques to 

detect spatial patterns in data is essential vis-à-vis visually finding the most appropriate 

bandwidth for each particular dataset by detecting features of interest. For that reason, Krisp 

et al. (2009) based the chosen bandwidth on the display of maps so as to visually analyse the 

effect of different ranges of bandwidth values by using kernel regression equations.  

 

Based on Krisp et al. (2009), the current thesis proposed a method drawing on contour plots 

to find the optimal bandwidth. The isolines plotted in the contour plot display the R2 values 

between the theoretical mixing ratios obtained with the kernel regression equation and 

observations for each bandwidth combination. Each isoline shows a curve in which the R2 

value is constant. By applying a trial and error bandwidth selection, large bandwidth values 

were first tested. Their values were then reduced until fluctuations in the R2 values disappeared 

in the contour plot. Thus, and as recommended by many authors (e.g. Carlos et al., 2010; Fan 

et al., 2003; Krisp et al., 2009; Wasserman, 2006), a data-driven choice, which kept the aim of 

the study closely in mind, was considered in order to establish bandwidth values. In this case, 

the trend bandwidth value (h1) should show annual changes, and the seasonal bandwidth 

value (h2) should show changes within a season. As Krisp et al. (2009) point out, experience 

with the data greatly improves the chosen bandwidth. Thus, Graven et al. (2012), who 

considered a period of 730 days and Pérez et al. (2017) who employed a bandwidth of 1000 

days to detrend the data, were considered as a starting point. The bandwidth value was 

therefore established based on the experience combined with a trial and error test and taking 

into account a statistical parameter (R2 values), which made the method more feasible by 

substantially reducing its arbitrariness. The h1 and h2 values were therefore chosen in the 

region where the contour lines were furthest apart, showing no abrupt changes in the isolines 

and where R2 values are more stable. 
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Bandwidth values ranged between 100 and 1000 days for h1 and between 20 and 160 days 

for h2. Choosing high bandwidth values suppressed some details of the dataset. In other 

words, the estimate created substantial bias (Krisp et al., 2009). Hernández-Ceballos et al. 

(2019) do not recommend the use of large bandwidth values since this might introduce noise 

into the dataset. In contrast, when we used small bandwidth values, irregular and wiggly 

isolines were obtained, making it impossible to establish a stable area for R2 values in the 

contour plot. The same oscillatory behaviour when applying small bandwidth values was 

obtained by Fan et al. (2003) and Krisp et al. (2009) due to the more significant impact of local 

data on the kernel estimation, which resulted in estimations that displayed substantial variance 

and which were dominated by noise. Even though Wand et al. (1995) stated that the larger the 

h, the better the estimation, we obtained smoother shapes in the contour plot for intermediate 

values. The inflexion point for our dataset was therefore established by choosing a 500-day 

bandwidth for h1 and 80 days for h2. This bandwidth finally chosen was in agreement with 

Krisp et al. (2009) and Peña et al. (2001), who consider intermediate bandwidth values to be 

the best solution in terms of reaching a compromise between bias and variance. Moreover, the 

h1 and h2 values proposed in the current thesis seem to be reasonable, since h1 (500-days) 

is around one and a half years which, according to Barlow et al. (2015), is a good indicator to 

express annual changes, and h2 (80 days) represents virtually one whole season. These 

values agree well with the results of Pérez et al. (2017), who considered a bandwidth of 500 

days for h1 and 60 days for h2. According to this method, a region of possible bandwidth 

combination could be suggested rather than a single unique point, in line with Rodríguez-

Cortés et al. (2015), who considered an interval of optimal bandwidth values after testing 

different bandwidth combinations. However, due to the narrow interval calculation for h1 (100 

days) and h2 (20 days), no major changes were obtained for alternative surrounding h1 and 

h2 values, in agreement with Grange et al. (2016), who reported that within a central range of 

bandwidths the final output is quite insensitive to the scaling values. 

 

8.2.2.2. Kernel regression function 

Many authors (e.g. Fan et al., 2003; Peña et al., 2001; Wasserman, 2006) consider the choice 

of the kernel function to be of minor importance compared to the choice of the bandwidth. Fan 

et al. (2003) consider that as long as kernel functions are symmetric and unimodal, any kernel 

function performs nearly the same when the optimal bandwidth is chosen. It is important to 

note that all the kernel functions employed in contribution II are symmetric and that all of them, 

except the rectangular kernel, are also unimodal. Thus, in line with Fan et al. (2003) all of them 

should behave in the same way if the optimal bandwidth has been chosen. However, the 

choice of the kernel function is extremely important since it is the weighting function and is also 
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linked with the degree of smoothness (Table 10). It should be noted that all the kernel functions 

employed have finite support [−1, 1], while the Gaussian kernel has much longer effective 

support, since all the observations have non-zero weight. Thus, even with the same bandwidth, 

the Gaussian kernel can approximate the density in a different way, since it uses a different 

amount of information (Härdle, 1991). 

 

Table 10. Characteristics of the kernel functions employed in contribution II (Peña et al., 

2001; Wand et al., 1995; Wilks, 2019). 

Kernel 

function 
aK(u) 

Support [u for 

which K(u) > 0] 
Efficiency 

Degree of 

smoothness 

Epanechnikov (3/4) (1-u2) -1 < u < 1 1.0000 1 

Biweight (15/16) (1-u2)2 -1 < u < 1 0.9939 2 

Gaussian (2π)-1/2exp (- 0.5u2) - ∞ < u < ∞ 0.9512 ∞ 

Rectangular 1/2 -1 < u < 1 0.9295 0 

Triangular 1 – |u| -1 < u < 1 0.9859 1 

Tricubic (70/81) (1 – |u|3)3 -1 < u < 1 0.9870 3 
au= [(t-ti)/h] 

 

However, the functions in the data fit were verified in order to check how well the theoretical 

data describe the measurements (Fan et al., 2003). First, the r-values of all the kernel functions 

employed were higher than the r-critical values for the dataset and were statistically significant 

at a 0.001 level. Second, R2 values were employed to study how close the estimated value, 

obtained with kernel functions, was to the experimental data. All the kernels were reliable and 

fitted the data correctly, in line with Fan et al. (2003) and García-Portugués et al. (2014) who 

reported minimal differences among different kernel functions when the optimal bandwidth was 

chosen. Furthermore, according to de Haan (1999), when an optimal bandwidth has been 

chosen for one type of kernel function, the same bandwidth for other kernels will show similar 

smoothing characteristics, and it is possible to switch between kernels without reconsidering 

the optimal bandwidth. However, slight differences among the kernels used were found. These 

are described below: 

First, as regards the trend and the growth rate data, although most of the functions overlap 

their distributions in the graphical output, the Gaussian and the Gaussian limited to (- 3,3) 

behave differently from the rest of the functions. It should be borne in mind that the Gaussian 

kernel considers all of the observations unlike the rest of the kernel functions employed. Since 

the statistical weight outside the interval (-3,3) for the Gaussian kernel is nearly 0, both 

functions are virtually the same. Moreover, the Gaussian kernel is the function that fits the data 

the worst, which is partially due to the lower efficiency of this kernel (Table 10). Furthermore, 

because the Gaussian kernel employs all of the observations, it is computationally expensive. 
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Slightly better adjustments were obtained with the biweight kernel, in line with Hernández-

Ceballos et al. (2019) and Peña et al. (2001), who also consider it to be a good kernel option. 

Furthermore, and in line with Table 10, the biweight kernel is the one that combines the highest 

efficiency (Wand et al., 1995; Wilks, 2019) with the highest degree of smoothing, which makes 

this kernel the most effective (Müller, 1988; Peña et al., 2001). These results concur with those 

obtained by Rodríguez-Cortés et al. (2015), who advocate the importance of the kernel 

function chosen in the data fit. 

 

Second, as regards the seasonal component, the Gaussian kernel provided the best 

description for CO2 daytime and CH4 night-time data, whereas the triangular function provided 

a better fit for CH4 daytime and CO2 night-time results. In contrast, the rectangular function 

provided the worst data fit in almost all the cases, which might partially be due to the lowest 

efficiency of the kernel and to its lowest degree of smoothness (Table 10). Wand et al. (1995) 

point to the scant use of the rectangular kernel due to the fact that its density estimate is 

constant, which  results in a poor data fit. Finally, it should not be ignored that the rectangular 

kernel exhibit jumps at the endpoints of its support (Müller, 1988), which also decreases the 

data fit.   

 

Third, similar R2 values for the Gaussian and the Gaussian limited to (-3,3) were found for the 

trend, growth rate and seasonal component, whereas R2 values increased when using the 

Gaussian limited to (-1,1), which gave a better data fit. In addition, by shortening the Gaussian 

kernel to (-1,1), computational time was reduced by half without any loss of accuracy in data 

fitting, since observations in the range of (- 1,1) receive a weight of between 0.4 and 0.2, while 

observations in the range of (- 3,3) decrease their statistical weight to 0.0039 and are virtually 

0 for the remaining observations (Casas, 2010). 

 

Finally, R2 values were higher for daytime than for night-time records. Moreover, the CO2 data 

fit is better than the CH4 data fit, which is in agreement with the results presented by Pérez et 

al. (2017). 

 

8.2.3. Local weighted regressions 

As regards the local weighted method, the Epanechnikov kernel was employed because of its 

simplicity and low computational effort, since only a fraction of the observations in the 

neighbourhood of the calculation points were considered. The linear method explained as 

much variation in CO2 and CH4 temporal patterns as the quadratic method did (see Tables 5 

and 7 in contribution III). Hence, although authors such as Breaker et al. (2016) and Cleveland 
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et al. (1990) suggest that quadratic regressions might offer a better fit for data that have a 

curvature in their pattern, the results presented here point to a similar model fit for both 

methods. Since the linear method is easier to run computationally, while still being able to 

accurately reproduce data patterns as well as provide adequate smoothed points and an 

acceptable data fit, it might eventually replace the quadratic regression method. 

 

8.2.4. Analysis among the mathematical equations employed for analysing the temporal patterns 

Although the mathematical functions employed in the current thesis fit the experimental data 

well, some differences among them should be pointed out in terms of [1] smoothness, [2] 

computational cost and time calculation, [3] ease of use, and [4] data accuracy. Firstly, 

smoother trend curves were obtained with the harmonic function as well as with the Gaussian 

kernel since all the data contribute to the calculations, while the remaining kernel functions and 

the local weighted functions only consider data inside the bandwidth. Since the kernel and 

local regression functions are based on local calculations, they are more sensitive to gaps in 

the time series. Furthermore, the border effect of kernel and local functions causes less smooth 

graphical outputs at the start and end of the series. Secondly, the harmonic method proved to 

be the quickest in its computation although it considers all of the data in contrast to the kernel 

and the local, which only consider an interval calculation. The kernel method took longer than 

the harmonic regression and, particularly, the Gaussian kernel when it is not limited and when 

it is limited to (-3,3). However, as previously pointed out, shortening the Gaussian interval 

calculation to (-1,1) proved to be highly effective since, although it makes this function as costly 

in computational terms as the rest of the kernels analysed, it reduces computational time. In 

any case, the local regressions, and particularly the local quadratic regression, proved to be 

the slowest function method. In the same line, the harmonic function required the lowest 

computational resources, whereas the local quadratic regression was the most costly in 

computational terms. Thirdly, the harmonic regression function emerged as the easiest to 

implement, whereas the local quadratic regression was the most complicated due to the matrix 

calculation. Finally, although all the functions fit the dataset well, the harmonic functions 

revealed their superiority, since they gave the highest R2 values. As regards the kernel and 

local regression functions, all the functions reported very similar but lower R2 than those 

reported by the harmonic function.      

 

8.3. Valladolid urban plume analysis 

Although the CIBA station is a regional background site, scattered anthropogenic emissions 

could partly lead to the increase in the CO2 and CH4 mixing ratios. In addition, as stated by 

Cheng et al. (2019), local sources or regional transport might contribute to the presence of 
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CO2 and CH4 episodes (i.e. high mixing ratio values). Thus, an air mass analysis is 

recommended in order to ascertain the possible influence of the urban plume of the nearby 

city of Valladolid on the final CO2 and CH4 mixing ratio measured at the CIBA station.  

 

8.3.1. CO2 and CH4 episode determination 

In order to identify the CO2 and CH4 mixing ratio episodes which occurred during the study 

period, a statistical method based on the percentile calculation was applied, in line with other 

authors (e.g. Bianchi et al., 2019; Dimitriou, 2015; Domínguez-López et al., 2015; Hernández-

Ceballos et al., 2015a; Lozano et al., 2012; Mitsakou et al., 2008). Calculating the 90th 

percentile value as a threshold enabled rapid identification of the highest values over the time 

series (Hernández-Ceballos et al., 2015a; Lozano et al., 2012; San Miguel et al., 2019), which 

were considered episodes. Only episodes were considered for analysing the possible influence 

of the Valladolid urban plume on the final CO2 and CH4 mixing ratio values measured at the 

CIBA station. Once in the atmosphere, the primary process favouring the transport and 

dispersion of substances is wind regimes (Hernández-Ceballos et al., 2019). As stated by Liu 

et al. (2000), wind direction determines the travel direction of an air specie and the receptor 

affected at a given time.  

 

Firstly, in order to determine the possible influence of the Valladolid urban plume on the final 

CO2 and CH4 mixing ratio measured at the CIBA station, episodes were plotted in a mixing 

ratio rose plot that linked the mixing ratio values with their incoming wind surface direction 

measured at the Medina de Rioseco weather station, in line with the method followed by Plaza 

et al. (2016). As stated by Yi and Hwang (2014), polar plots are useful graphs that give us an 

initial approximation to identifying the most likely sources, since they are located in the wind 

directions with the highest mixing ratio values. The highest mixing ratio values for both gases 

were obtained for the southern wind direction sectors, which coincides with the location of the 

city of Valladolid. Thus, the southern sectors were labelled as urban sectors, since the 

Valladolid plume could be noticed, and the remaining sectors were labelled as rural sectors, 

since no important sources were found.  

 

Secondly, it should be noted that areas were not only affected by emissions where the 

emissions occurred but also by the contribution of air mass transport (Adame et al., 2012; 

Calvo et al., 2012; Cheng et al., 2019; Di Gilio et al., 2015). Calculating back-trajectories over 

a region provides useful guidance in estimating the transport and dispersion of air masses 

(Hernández-Ceballos et al., 2019; Toledano et al., 2007). Thus, in an effort to confirm the 

possible influence of sources from southern sectors, back-trajectories at 500 m height for the 
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previous 96-h were computed at the CIBA station, linking the back-trajectory paths with the 

final CO2 and CH4 mixing ratio measured at the station. Back-trajectories were calculated 

separately for rural and urban sectors using the METEX model so as to gain an overview of 

the features of long-range transport between the two wind sectors, in line with Dimitriou et al. 

(2017a). The current thesis used the kinematic operational model which, according to Stohl 

(1998), is more accurate than other operational methods such as the isobaric or isentropic 

methods (García-Mozo et al., 2017; Hernández-Ceballos et al., 2013). The kinematic 

operational model, which is widely used (e.g. García-Mozo et al., 2017; Hernández-Ceballos 

et al., 2013; 2015a; 2019; Lozano et al., 2012; Sorribas et al., 2015), considers that an air 

parcel trajectory is given by the vertical pressure velocity and horizontal wind component 

(Pérez et al., 2017). Moreover, Fraile et al. (2006) point out that the origin of an air parcel 

impacting a particular site is influenced by the altitude height considered in the back-trajectory 

calculation. The current thesis computed back-trajectories at 500 m a.g.l., since many authors 

have deemed this height to be the best for charting the behaviour of air masses circulating 

within the planetary boundary layer (PBL) (Adame et al., 2012; Domínguez-López et al., 2015; 

Hernández-Ceballos et al., 2013; 2016; Lozano et al., 2012). Furthermore, Domínguez-López 

et al. (2015) do not recommended calculating back-trajectories at atmospheric levels below 

500 m a.g.l. due to the small NCEP file resolution. Finally, it should be noted that the backward 

time covered also influences the final results (Donnelly et al., 2017; Hernández-Ceballos et al., 

2015) since too short a time may miss the emission sources and important air mass route 

crossings while too long a time introduces uncertainty into the analysis and produces 

misleading results. Isakar et al. (2016) consider that a week may be too long for integration 

time, and suggest shorter exposition times so as to obtain more detailed conclusions, 

particularly with regard to anthropogenic activities near the sampling site. In general, 

computing back-trajectories of over five days in length is not recommended due to the great 

uncertainty involved in the backward calculation procedure. Thus, the current thesis computed 

96-hourly back-trajectories, since many authors consider this to be sufficient to cover air mass 

movement in the Iberian Peninsula and surrounding areas and to represent synoptic air flows 

without introducing too much noise (e.g. Borge et al., 2007; Dimitriou et al., 2017b; Domínguez-

López et al., 2015; Lozano et al., 2012; San Miguel et al., 2019).  

 

8.3.2. Influence of air mass origin on CO2 and CH4 levels 

Mean trajectories for the study period were obtained in order to simplify data analysis 

(Domínguez-López et al., 2014; Hernández-Ceballos et al., 2013; 2015a; Lozano et al., 2012; 

San Miguel et al., 2019). Furthermore, due to the large number of back-trajectories computed, 

the influence of each trajectory’s error calculation on the uncertainty in the overall results was 

minimized (Hernández-Ceballos et al., 2013). All the back-trajectories contained in the 
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southern sectors were then averaged to show the mean urban back-trajectory whereas the 

remaining back-trajectories (those not lying in the southern sectors) were averaged to show 

the mean rural back-trajectory. Urban trajectories were expected to be influenced by the city 

of Valladolid urban plume, whereas rural trajectories are not influenced by any major local 

sources in the area. The pathway drawn by the mean back-trajectory allowed for a more refined 

interpretation of air mass arrival in the study area (Adame et al., 2012). As stated by García-

Mozo et al. (2017), differences between mixing ratio values provide a distinction between local 

and external contributions, giving a clearer idea of the origin of the mixing ratio measured at 

the station. The contrast between the lowest mixing ratios found for the rural sectors and the 

highest mixing ratios found for the urban sectors could be explained in terms of [1] the 

trajectories’ paths, [2] the time and distance travelled by the back-trajectories, and [3] the 

recirculation factor.  

 

[1] It is important to note that the air parcels of both wind sectors have a westerly component, 

mainly due to the influence of the Azores anticyclone located between 30 and 45° N, to the 

west of the Iberian Peninsula (Fernández-Raga et al., 2010). The Azores anticyclone induces 

nearly zonal trajectories from the west to the east, typical of mid-latitude Northern Hemisphere 

sites (Adame et al., 2015; Hernández-Ceballos et al., 2016; Notario et al., 2014), which 

explains the high frequency of westerly air mass arrivals at the monitoring station. Furthermore, 

many authors have also highlighted the effect of the orography (e.g. Hernández-Ceballos et 

al., 2015a; 2016; 2019; Izquierdo et al., 2017; Pérez et al., 2018a; Valverde et al., 2016) on 

the transport, accumulation and dispersal of air substances. The mountain ranges surrounding 

the monitoring station led to restrictions in the movement of the arriving flow. The western 

direction is free from orographic barriers, while the eastern direction presents a more complex 

topography. The Iberian and Central ranges substantially condition the airflow reaching the 

site, while the Cantabrian range exerted less of an effect (Pérez et al., 2015a). Despite the 

initial westerly air flow for the rural and urban sectors, some differences between the two 

sectors could be inferred.  

 

The mean rural trajectory comes from the Atlantic Ocean, and enters through the north of the 

Iberian Peninsula via the Cantabria Sea. This finding is in agreement with Notario et al. (2014) 

who also detected frequent air trajectories coming from the North, with an annual occurrence 

of around 20% in Castilla La Mancha (Spain). The arrival of northern circulations over the 

Iberian Peninsula is mainly related with two different synoptic configurations: (1) the presence 

of an intensive low system over western Europe, from the Mediterranean area to Scandinavia, 

which is usually reinforced by the Azores anticyclone, and (2) the presence of an intensive 
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high system over the British Isles connecting the north with the south of western Europe 

(Hernández-Ceballos et al., 2013). The western and northern origin of the rural mean back-

trajectory exerts an important influence on the lowest mixing ratio detected for the rural sectors 

since, as stated by many authors (e.g. Alonso-Blanco et al., 2018; Donnelly et al., 2017; 

Fernández-Camacho et al., 2016; García et al., 2012; Ghasemifard et al., 2019; Kim et al., 

2015; Lozano et al., 2012; Pérez et al., 2018c; Srivastava et al., 2015), trajectories with an 

oceanic or marine origin load low levels of pollutants. Moreover, the eastern North Atlantic was 

listed as one of the cleanest regions in the Northern Hemisphere according to a study of air 

mass modelling at the Mace Head station in Ireland (Pérez et al., 2015b). In the same line, 

northern advections (Lozano et al., 2012) are also considered to be clean air flows which lead 

to low final mixing ratios. Finally, it should be pointed out that in the rural sectors there were 

no important anthropogenic sources in close vicinity to the CIBA, which also explains the lower 

mixing ratio values found in those sectors.  

 

The mean urban back-trajectory comes from the west, and travels from the Atlantic Ocean and 

west of the Iberian Peninsula, entering through the southern sectors. Since urban trajectories 

also have an initial flow from the Atlantic Ocean, they would be expected to carry clean air 

(Ghasemifard et al., 2019). However, the mean urban air trajectory changed direction in the 

last 24-hours prior to reaching the CIBA station, and headed towards the southern sectors. 

Even at the CIBA station, where the wind flow is not influenced by mountainous relief, wind 

twist angles also exert an influence due to the combined effects of the Coriolis force (owing to 

the Earth's rotation), the friction force generated by the Earth's surface roughness, and the 

pressure gradient force (Liu et al., 2019). Under their influences, the wind direction twists along 

height, leading to a spiral-shaped wind flow, which is commonly known as the Ekman spiral 

(Liu et al., 2019). Since back-trajectories were computed at 500 m height a.g.l., the Ekman 

spiral effect is noticeable. As height increased, there is a directional clockwise shift in the 

Northern Hemisphere (Hernández-Ceballos et al., 2016). Liu et al. (2019) showed that wind 

direction can veer up to 60º clockwise over the first 1000 m in height. Taking this deviation into 

account, the air flow corresponding to the previous day impacting the CIBA station, as regards 

urban sectors, which show a SSW origin (cyan line in Figure 23), would have a SE origin after 

correcting the twist angle of 60º in an anti-clockwise direction, as pointed out by Liu et al. 

(2019). Since the city of Valladolid is located in the SE wind sector, the Valladolid urban plume 

is expected to increase the final CO2 and CH4 mixing ratio values recorded at the station. 

Moreover, this continental flow is expected to be linked to lower wind speed values (Pérez et 

al., 2018b) and therefore higher final mixing ratio values. These results were in line with those 

reported by other authors (e.g. García et al., 2016; Lozano et al., 2012; Pérez et al., 2018a) 

who stated that local trajectories (i.e. trajectories confined within the Peninsula) are normally 
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characterized by stagnant conditions, leading to higher mixing ratio values. Finally, it should 

be mentioned that Pérez et al. (2009b) obtained higher results for the Richardson number for 

the Valladolid sector, which implies lower mixing with the environment and, therefore, less 

dilution effect resulting in higher mixing ratios in the southern wind sectors. 

 

[2] As pointed out by Likuku (2006), the time required for air masses to travel before reaching 

a specific site is strongly correlated with the final mixing ratio recorded (Lozano et al., 2012). 

In this sense, the rural mean back-trajectory requires more time and a greater distance to 

impact the Iberian Peninsula. Thus, as Adame et al. (2015) stated, the pollutant mixing ratio 

for rural sectors was diluted along its longer path over the Atlantic, leading to lower mixing 

ratios. Moreover, the longer straight trajectories, normally linked with ocean trajectories 

(Notario et al., 2014), imply higher wind speed values (Pérez et al., 2018b), thus increasing 

the dispersive conditions and leading to relatively good air quality (Baldasano et al., 2014; 

Dimitriou et al., 2018), which also explains the lower final mixing ratios in rural sectors. As 

regards the urban sectors, the higher mean distance travelled by the mean back-trajectory was 

expected to induce a greater dilution effect due to its mixing with ambient air (Adame et al., 

2015; Fiedler et al., 2009), leading to lower mixing ratio values, in contrast to the highest mixing 

ratios found for the urban sectors. The influence of Valladolid on the final CO2 and CH4 mixing 

ratios detected in the urban sectors could explain this fact, reinforcing the initial hypothesis 

concerning the presence of urban emissions coming from southern directions matching the 

city of Valladolid (around 300,000 inhabitants) and located 24 km SE of the CIBA station, as 

also pointed out by Pérez et al. (2015c). This concurs with Notario et al. (2014), who stated 

that air pollution emissions from urban and industrial areas have a regional or even a global 

effect. Furthermore, as regards CH4, according to Ghasemifard et al. (2019) anthropogenic 

sources are the main sources of CH4 contribution in Western Europe. The monitoring station 

is also influenced by the urban landfill which lies in the same direction as Valladolid, some 20 

km from the station and whose fugitive emissions were around 7.11 kt year-1 for 2011 (Sánchez 

et al., 2014). Hernández-Paniagua et al. (2015) also linked the presence of a local landfill with 

high CO2 and CH4 mixing ratios at Egham in the UK. It should not be forgotten that the CIBA 

station is located in a region where livestock plays an important role (García et al., 2016; 

Sánchez et al., 2014). Sánchez et al. (2014) reported almost 200 kt year-1 CH4 emissions due 

to livestock in the region, which partially explains the higher CH4 values at the CIBA station. 

Although the urban mean back-trajectory travelled a longer distance than the rural mean back-

trajectory when considering the 96-h computed, it should be noted that a shorter time and 

distance is required by the urban mean back-trajectory to reach the Iberian Peninsula. This 

means that the urban air mass has less mixing over the clean Atlantic Ocean whilst, in contrast, 
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it spends more time within the Iberian Peninsula, dragging more continental pollutants (Pérez 

et al., 2009b) and contributing to the highest CO2 and CH4 mixing ratio values in the southern 

sectors. 

 

[3] Recirculation is an event in which polluted air is initially carried away from the source, and 

later returns to the initial point, leading to higher mixing ratio values. Recirculation depends on 

changes in wind direction (Kumar et al., 2013), which influences pollutant dispersion 

(Dekhtyareva et al., 2016). The lower the recirculation factor values, the lower the expected 

mixing ratio results. Despite the lower mean and median recirculation values found for 

southern sectors compared to rural sectors, the curve path of the mean urban back-trajectory 

for the last 24-hours before impacting the CIBA station (Figure 23) indicates air mass 

recirculation (van Drooge et al., 2016). The SE wind sector was linked to the lowest wind speed 

and, as stated by Surkova (2013), recirculation is more active where wind speed is low, leading 

to the accumulation of emission products around the source. This agrees with the more 

complex behaviour of the Valladolid urban plume, which exhibits a meandering trajectory as 

well as recirculation processes, as reported by Pérez et al. (2011). This partially accounts for 

the higher mixing ratio values found for the southern sectors. Finally, maximum and range 

values were higher for urban sectors, which could be due to the presence of sporadic episodes 

with high mixing ratio values from urban sectors.  

 

Statistical analysis of the urban and rural sectors also reflected the strength of the Valladolid 

urban plume and its effects on the final CO2 and CH4 mixing ratios measured at the CIBA 

station. On the one hand, CO2 and CH4 standard deviation and interquartile values showed 

greater data dispersion around the mean values for the urban sectors, which could explain the 

presence of sporadic episodes with high mixing ratio values in the urban sectors. The highest 

slope and intercept mixing ratio values for the urban sectors also reflect the influence of the 

Valladolid urban plume. It should be noted that the slope refers to the trend which mainly 

reflects the anthropogenic causes contributing to the already mentioned increase in 

greenhouse gases in recent years (Bergamaschi et al., 2013; Haszpra et al., 2008). These 

results are in line with those found by Pérez et al. (2009b), who reported mixing ratio median 

values that were 8 ppm higher in the Valladolid sector compared to the rest of sectors. This 

influence seems to be more evident for CH4, which can be explained by fugitive emissions 

from the nearby city of Valladolid landfill. Finally, the six distribution functions employed in our 

dataset to analyse the CO2 and CH4 mixing ratio at the CIBA station fit the experimental data 

well (p-values = 0.001). However, some differences were seen among the functions used. The 

best data fit was obtained using the Gamma distribution, whereas the worst data fit was 

obtained when using the Inverse Gaussian, regardless of the sector or gas under study. 
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Moreover, as Celik (2004) and Jamil et al. (1995) showed, a similar behaviour between the 

Rayleigh and the Weibull distributions was detected for our dataset. Due to this similar 

behaviour, there is no reason to prefer one method over another. Furthermore, the best fit was 

obtained for the rural sectors due to the more confined CO2 and CH4 values, whereas urban 

sectors are characterized by the presence of CO2 and CH4 episodes (i.e. high mixing ratio 

values), which explain the worse data fit obtained. To conclude, as Menon et al. (2018) state, 

the statistical distribution function to which the experimental data can fit depends on the 

location, the pollutant features and the meteorological synoptic situations. 

 

Figure 23. Urban and rural mean back-trajectories at 500 m a.s.l. computed with the METEX 

model at the CIBA station during the period Oct 2010–Feb 2016. 

 

Finally, it should be pointed out that the computation of back-trajectories together with surface 

wind observations sought to combine regional and local approaches which, together with the 

geographical distribution of the sources, allowed a possible identification of the sources 

responsible (Hernández-Ceballos et al., 2014a; b). It is important to take into account that air 

modelling tools (Donnelly et al., 2017; Katsoulis, 1999) give a rough approximation of air mass 

history since calculating air mass trajectories is based purely on meteorological fields which 

only show the movement path of air masses (Hernández-Ceballos et al., 2019; Webster et al., 

2012). Therefore, observations are crucial for assessing and improving the quality of plume 

transport results (Schumann et al., 2011). 
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9. Conclusions / Conclusiones  

9.1. Conclusions 

The main goal of the current thesis is to characterize the temporal patterns of a five and half 

year CO2 and CH4 mixing ratio time series over the upper Spanish plateau using different 

mathematical functions. Briefly, a linear growth rate evolution showed increases of around 2 

ppm year-1 for CO2 and 7 ppb year-1 for CH4, which are partially due to anthropogenic emissions 

from fossil fuel consumption and other industrial activities on a global and local scale. 

Moreover, regular intra-annual variations for the CO2 and CH4 evolution were reported. Only 

one maximum was found for CO2 in December for diurnal records, whereas at night two 

maximums were found; the first in April and the second in November linked to the increase in 

precipitation, which increases the respiration rate due to greater vegetation development. The 

minimum CO2 mixing ratio was observed in late summer, both for diurnal or nocturnal records, 

when vegetation uptake reaches its maximum activity. As regards CH4, peaks were found in 

December when OH concentration is minimum, and troughs were found in July when OH 

concentration is maximum. These cycles were the result of many overlapping factors mainly 

related with biological ecosystem changes (soil humidity, respiration process, amount of 

precipitation), anthropogenic local sources (urban plumes, urban landfill and surrounding 

agricultural activities), and atmospheric patterns (height of the planetary boundary layer or 

turbulent processes). Finally, major differences between day and night-time records were also 

detected. The lowest mixing ratio values were found during the daytime, partially due to thermal 

turbulence and higher planetary boundary layer height, which increases dispersion processes. 

In contrast, the highest values at night were linked to stable stratification, lower planetary 

boundary layer height and thermal inversions that trap emissions near the ground. Focusing 

on CO2, the influence of the terrestrial ecosystem was apparent, and contributed to lower 

values during the daytime due to photosynthesis, and higher values at night-time due to soil 

and plant respiration. As regards CH4, minimum mixing ratio values were found during the day 

when OH production was maximum, contrary to what occurred at night.  

 

In addition, the results presented in the previous sections point to the following conclusions, 

which are aligned with the six specific objectives considered for the current thesis. 

 

I 
The harmonic function composed of a third-degree polynomial plus a series of four 

harmonics proved to be optimal for describing CO2 and CH4 mixing ratio evolution in 

terms of annual and inter-annual changes. The main contribution of the equation 



Conclusions / Conclusiones    

 

 
   168    

 

proposed was that the amplitude of each harmonic was considered as a constant and 

as a variable term with time since, to the best of our knowledge, the variable term with 

time has not been widely employed when four harmonics are considered. Although 

the term in which the amplitude is constant with time represents the general features 

of the seasonal cycle, the term in which the amplitude is variable over time reinforces 

the information. This endows the data with a better fit and offers more accurate 

results, since CO2 and CH4 mixing ratios are time-dependent variables. Thus, 

considering both constant and variable amplitude over time is crucial. 

  

II 
Selecting the optimal bandwidth proves key in kernel regressions in terms of 

achieving good data interpretation. The current thesis recommends choosing the 

bandwidth based on the special characteristics of the dataset and not based on the 

typical values used in the literature. Thus, a novel procedure based on a visual 

selection of bandwidth values using contour plots was proposed. The method 

combined good theoretical properties since it was based on a statistical parameter 

(R2 values) with strong practical performance, low computational resources and low 

calculation speed, whilst also proving easy to use. One of the most notable 

contributions of the method proposed was that it allowed two optimal bandwidths to 

be determined at the same time; one for considering the trend and the other for 

considering the seasonal component. However, although the method proved to be 

optimal, further inquiry is needed to gain a more precise bandwidth determination. 

  

III 
No major differences affecting temporal pattern interpretation were found among the 

six kernel functions employed. However, slightly better fits were obtained with the 

biweight kernel since it is the one that combines the greatest efficiency with the 

highest degree of smoothness. In contrast, the rectangular function provided the 

worst data fit in almost all cases, which might partially be due to the lowest efficiency 

of the kernel and to its lowest degree of smoothness. Moreover, the rectangular kernel 

presents jumps at the endpoints of its support, thereby also decreasing its data fit. 

The differences between the kernels for the seasonal component were lower than 

those for the trend, which could be due to the more regular intra-annual variations. 

Since R2 values were very similar for the six kernels, we recommend using those 

which involve less computational effort. It is important to point out that all the kernels 

employed entail virtually the same computational effort, except the Gaussian kernel, 

which needs additional run-time since it employs all the observations. Shortening the 
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interval calculation to (- 3,3) did not prove successful either in terms of decreasing 

calculation speed or for an increase in R2 values, since the statistical weight outside 

the interval (-3,3) is nearly 0. As a result, this function is nearly the same as when the 

interval calculation is not limited. However, when the interval calculation was limited 

to (-1,1), R2 values increased substantially and approached the values obtained with 

the other kernel functions for the trend and growth rate. In addition, time calculation 

was reduced by half without losing accuracy in data fitting since observations outside 

the (- 1,1) range receive a very low statistical weight for the observations. As regards 

the seasonal component, R2 did not improve. As a result, in general terms limiting the 

interval calculation to (- 1,1) significantly increased the flexibility of the Gaussian 

kernel, making its calculation computationally feasible. 

  

IV 
The use of the Epanechnikov weight when applying local linear and quadratic 

regressions led to easier and lower computational implementation, making it feasible 

to run our long time series. However, running the quadratic regression was 

computationally more expensive than running the linear method. The results 

presented in the current thesis indicate that both the linear and the quadratic method 

capture the CO2 and CH4 temporal pattern evolution well and that neither emerged 

as superior. Thus, the local linear method might eventually replace the local quadratic 

method given its simpler operation and the less expensive calculations involved. 

  

V 
Some differences among the three mathematical regression functions employed 

were found in terms of [1] smoothness, [2] computational cost and time calculation, 

[3] ease of use, and [4] data accuracy. Firstly, smoother trend curves were obtained 

with the harmonic and the Gaussian kernel function since all the data contribute to 

the calculations, whereas the remaining kernel functions and the local weighted 

functions are based on local calculations and are therefore more sensitive to gaps in 

the time series. Furthermore, the border effect of kernel and local functions causes 

less smooth graphical outputs at the start and end of the series. Secondly, the 

harmonic method proved to be the quickest in its computation and the one that 

requires fewest computational resources. The kernel method requires more time 

calculation than the harmonic regression. This is also particularly true of the Gaussian 

kernel method when it is not limited or when it is limited to (-3,3). In any case, local 

regressions, and particularly the local quadratic regression, required the highest 

computational resources and time calculation. Thirdly, the harmonic regression 
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function proved to be the easiest to implement, whereas the local quadratic 

regression was the most complicated due to the matrix calculation involved. Finally, 

although all the functions fit the dataset well, the harmonic function revealed its 

superiority due to the highest R2 values obtained. As regards the kernel functions and 

the local regression functions, all the functions reported very similar R2, although 

these were lower than those reported by the harmonic function.  

  

VI 
The contrast between the lowest mixing ratios found for the rural sectors and the 

highest mixing ratios for the urban sectors was explained by the trajectories’ paths, 

and by the time and distance travelled by the back-trajectories until they impacted the 

CIBA station. Although an initial westerly flow was observed for both sectors, a 

different path between urban and rural back-trajectories was found when they impact 

the Iberian Peninsula, since urban trajectories showed a south-southwesterly 

component, whereas rural sectors showed a northerly component. Urban trajectories 

spent longer travelling over the Iberian Peninsula, which results in more pollutants 

being dragged than in rural trajectories, which have a more oceanic and marine 

character and are therefore expected to be cleaner. Furthermore, the recirculation of 

the urban mean back-trajectory in the final 24 h before impacting the CIBA station 

should not be ignored, as this might increase the pollutant levels dragged. The highest 

mixing ratios found for the urban sectors therefore reflect the influence of the 

Valladolid urban plume. Furthermore, the METEX model proved to be a quick and 

easy technique that requires few computational resources for analysing the influence 

of the Valladolid urban plume on the final CO2 and CH4 levels measured at the rural 

CIBA station. 

 

Overall, the current thesis has demonstrated the effectiveness of applying harmonic, kernel 

and local weighted regressions to describe the temporal variability of CO2 and CH4 in a 

Mediterranean background station of the northern Spanish plateau between 2010 and 2016, 

thereby fulfilling the main objective of this doctoral thesis. However, the mathematical functions 

used should not be seen as competitors. In fact the current thesis considers it interesting to 

employ more than one function so as to ensure results are consistent and free from bias. In 

addition, the combination of CO2 and CH4 observations, wind surface data and the computation 

of back-trajectories emerged as a very useful method for understanding urban plume effects 

on CO2 and CH4 temporal patterns. The results obtained in the current thesis are crucial vis-

à-vis understanding the processes that govern CO2 and CH4 cycles, which is essential for 

implementing an effective climate policy to deal with climate change. Although these types of 
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studies are site-dependent due to the specific local conditions occurring over each site, they 

are necessary in order to better understand the evolution of mixing ratio change over certain 

areas, particularly those collected at background stations, such as the CIBA station. Further 

investigation, coupled with a denser monitoring network, is needed to better understand and 

assess the evolution of these gases over time. Thus, we consider it important to extend the 

use of the statistical methods employed in the current thesis in order to determine the temporal 

patterns of these gases in other areas. Their application may improve current knowledge of 

temporal patterns worldwide and help to gain a better insight into how gases evolve in the low 

atmosphere. In addition, the results presented here could be greatly improved by extending 

the data series. Hence, maintaining the CIBA monitoring station proves crucial in terms of 

providing a better understanding and assessment of how these gases evolve over time. 
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9.2. Conclusiones 

El objetivo principal de la presente tesis fue caracterizar los patrones temporales de una base 

de datos de concentraciones de CO2 y CH4 que abarca 5,5 años en un emplazamiento ubicado 

en la meseta norte castellana mediante el empleo de diferentes funciones matemáticas. El 

incremento encontrado de las tasas de crecimiento de 2 ppm año-1 para el CO2 y de 7 ppb 

año-1 para el CH4 se debió en gran parte a las emisiones antropogénicas a escala global y/o 

local. Por otro lado, se detectaron variaciones intraanuales periódicas en la evolución de 

ambos gases. En el caso del CO2 sólo se detectó un máximo en diciembre para los datos 

diurnos mientras que para los datos nocturnos se detectaron dos máximos, uno en abril y otro 

en noviembre vinculados ambos al aumento del régimen hídrico que llevó consigo un aumento 

en la tasa de respiración debido al mayor desarrollo de la vegetación. Las concentraciones 

mínimas de CO2 se observaron a finales de verano, tanto en los datos diurnos como en los 

nocturnos, cuando la absorción de CO2 por parte de la vegetación alcanza sus mayores tasas. 

En lo referente al CH4, los máximos se encontraron en diciembre cuando la concentración de 

OH es mínima, mientras que las concentraciones de CH4 fueron mínimas en el mes de julio 

cuando la concentración de OH es máxima. Los ciclos de CO2 y CH4 fueron el resultado de 

varios factores superpuestos como son los cambios en los ecosistemas biológicos (humedad 

en el suelo, tasas de respiración o régimen hídrico), fuentes locales antropogénicas (penachos 

urbanos o actividades antrópicas circundantes) y cambios atmosféricos (altura de la capa 

límite de la atmosfera o presencia de procesos turbulentos). De igual modo cabe destacar el 

diferente comportamiento entre los registros diurnos y nocturnos para ambos gases. Los 

valores más bajos de concentración se encontraron durante el día, debido en parte a la 

turbulencia térmica y a la mayor altura de la capa límite de la atmósfera aumentando con ello 

los procesos dispersivos. Por el contrario, los valores más elevados de concentración se 

detectaron durante la noche debido en parte a la estable estratificación que se produce en 

dicha parte del día, una menor altura de la capa límite de la atmósfera y a las mayores 

inversiones térmicas que atrapan las emisiones producidas cerca del suelo. Centrándonos en 

el CO2, la influencia de los ecosistemas terrestres es aparente, contribuyendo a los valores 

más bajos durante el día debido a los procesos fotosintéticos, mientas que los valores más 

altos registrados durante la noche se debieron a la respiración del suelo y de las plantas. En 

cuanto al CH4, los valores mínimos de concentración detectados durante el día se deben a la 

máxima producción de radicales OH durante dicha parte del día, al contrario de lo que ocurre 

durante la noche.  
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A continuación, se resumen las principales conclusiones presentadas en los apartados 

anteriores y que se encuentran alineadas con los seis objetivos específicos de la presente 

tesis doctoral.  

 

I 
La función armónica compuesta por un polinomio de tercer grado y una serie de 

cuatro armónicos resultó ser óptima para describir la evolución de los patrones 

temporales de las concentraciones de CO2 y CH4. La principal contribución de la 

ecuación propuesta fue que la amplitud de cada armónico se consideró como un 

término constante y otro variable con el tiempo, ya que, hasta dónde sabemos el 

término variable con el tiempo no ha sido ampliamente utilizado en este tipo de 

funciones cuando se consideran 4 armónicos como en nuestro caso. A pesar de que 

el término en el que la amplitud es constante en el tiempo representa las 

características generales del ciclo estacional, el término en el que la amplitud es 

variable con el tiempo refuerza dicha información logrando con ello un mejor ajuste 

de los datos y ofreciendo resultados más precisos ya que las concentraciones de 

CO2 y CH4 varían en función del tiempo. Por lo tanto, considerar la amplitud con 

términos constantes y variables en el tiempo es vital. 

  

II 
La selección del ancho de banda óptimo resulta clave en las regresiones de kernel 

para una buena interpretación de los datos. La presente tesis recomienda elegir el 

ancho de banda en función de las características especiales del conjunto de datos 

disponible y no en función de los valores típicos utilizados en la literatura. Por lo tanto, 

se propuso un procedimiento novedoso basado en la selección visual de los valores 

de ancho de banda mediante el empleo de gráficos de contorno. El método propuesto 

se basa en un parámetro estadístico (R2) requiriendo bajos recursos 

computacionales, baja velocidad de cálculo y de fácil uso. Una de las aportaciones 

más destacadas del método propuesto es que permite determinar dos anchos de 

banda simultáneamente, uno para considerar la tendencia y otro para considerar el 

componente estacional. Sin embargo, aunque el método demostró ser óptimo, se 

necesitan más investigaciones al respecto para lograr una determinación más 

precisa del ancho de banda. 

  

III 
No se encontraron diferencias significativas que afecten a la interpretación de los 

patrones temporales de CO2 y CH4 al aplicar las 6 funciones de kernel al conjunto de 

datos. Sin embargo, se obtuvieron ajustes ligeramente superiores con la función 
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cuártica ya que es la función que combina la mayor eficiencia con el mayor grado de 

suavidad. En cambio, la función rectangular proporcionó el peor ajuste en casi todos 

los casos, lo que podría deberse a la menor eficiencia del núcleo y a su menor grado 

de suavidad. Además, la función rectangular presenta saltos en los extremos de su 

intervalo de cálculo lo que dificulta el ajuste a los datos experimentales. Las 

diferencias entre las funciones empleadas para analizar el ciclo estacional fueron 

menores que las encontradas para analizar la tendencia, lo que podría deberse a la 

mayor regularidad de las variaciones intraanuales. Dado que los valores de R2 fueron 

muy similares para las 6 funciones, recomendamos utilizar aquellas que implican un 

menor esfuerzo computacional. En este sentido, cabe destacar que prácticamente 

todas las funciones empleadas conllevan el mismo esfuerzo computacional, excepto 

la función Gaussiana que necesita un tiempo de ejecución adicional ya que considera 

todas las observaciones para el cálculo. Reducir el intervalo de cálculo a (-3,3) para 

no tener en cuenta todas las observaciones en el cálculo no llevó consigo una 

disminución en la velocidad del cálculo ni un aumento en los valores de R2, ya que el 

peso estadístico fuera del intervalo de cálculo (-3,3) es casi 0, por lo que dicha función 

se comporta prácticamente igual que la Gaussiana cuando su intervalo de cálculo no 

se encuentra limitado. Sin embargo, cuando el intervalo de cálculo se limitó a (-1,1), 

los valores de R2 aumentaron notablemente y se acercaron a los valores obtenidos 

con las otras funciones de kernel reduciéndose además el tiempo de cálculo a la 

mitad. Por ello, en términos generales podemos concluir que limitar el intervalo de 

cálculo en la función Gaussiana a (-1,1) aumenta significativamente la flexibilidad de 

dicha función haciendo su cálculo computacionalmente más factible. 

  

IV 
El empleo del peso de Epanechnikov al aplicar las regresiones locales lineales y 

cuadráticas llevo consigo una implementación computacional más sencilla facilitando 

su uso en series temporales tan extensas como la nuestra. Sin embargo, cabe 

destacar que la regresión local cuadrática es computacionalmente más costosa que 

la regresión local lineal. Los resultados obtenidos en la contribución III pusieron de 

manifiesto que tanto el método lineal como el cuadrático fueron capaces de analizar 

satisfactoriamente la evolución de los patrones estacionales del CO2 y el CH4 sin 

resultar ninguno de ellos superior. Por lo tanto, las regresiones locales lineales 

podrían eventualmente reemplazar a las regresiones locales cuadráticas debido a su 

mayor simplicidad y al menor coste computacional. 
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V 
Al analizar los tres grandes grupos de funciones matemáticas empleadas para 

analizar los patrones temporales del CO2 y el CH4 se encontraron algunas diferencias 

en términos de [1] suavidad, [2] tiempo de cálculo y coste computacional, [3] facilidad 

de uso y [4] precisión de los resultados. En primer lugar, la función armónica y el 

núcleo Gaussiano son las dos únicas funciones de las analizadas en la presente tesis 

que consideran el conjunto total de observaciones y no sólo un intervalo como hacen 

el resto. Este hecho lleva consigo que las curvas de tendencia obtenidas con ambas 

funciones sean más suaves que con el resto de las funciones que al basarse en 

cálculos locales son más sensibles a posibles huecos en la serie temporal. Además, 

el efecto de borde de las funciones de kernel y locales también provoca que los 

resultados gráficos obtenidos con dichas funciones sean menos suaves al principio 

y al final de la serie. En segundo lugar, la función armónica resultó ser el método de 

cálculo más rápido y el que requiere menos recursos computacionales. Las funciones 

de kernel requieren un mayor tiempo computacional, especialmente el núcleo 

Gaussiano cuando no está limitado o cuando lo está de (-3,3). En cualquier caso, las 

regresiones locales resultaron ser las funciones que requieren mayores recursos 

computacionales y mayores tiempos de cálculo, especialmente las regresiones 

locales cuadráticas. En tercer lugar, la función armónica resultó ser la más fácil de 

implementar, mientras que la regresión local cuadrática fue la más complicada 

debido al cálculo matricial implícito. Finalmente, aunque todas las funciones se 

ajustaron correctamente al conjunto de datos analizados, destacar la superioridad de 

las funciones armónicas, reflejando valores de R2 más elevados que el resto de las 

funciones. En cuanto a las funciones de kernel y las regresiones locales, todas ellas 

reportaron valores de R2 muy similares entre ellas, pero menores a las reportadas 

por la función armónica. 

  

VI 
El contrastre encontrado entre las concentraciones mínimas de los sectores rurales 

y las concentraciones máximas de los sectores urbanos tiene su explicación en los 

recorridos de las retrotrayectorias, así como el tiempo y la distancia recorrida por 

estas hasta impactar en la estación del CIBA. Si bien se observó un flujo de aire inicial 

procedente del Oeste tanto para los sectores rurales como para los urbanos, al 

impactar en la Península Ibérica las retrotrayectorias medias de ambos sectores se 

comportaron de manera muy diferente, mostrando un componente sur-suroeste para 

los sectores urbanos y un componente Norte para los sectores rurales. De igual 

modo, la retrotrayectoria media urbana invirtió más tiempo de transporte en la 

Península Ibérica, lo que se traduce en el arrastre de más contaminantes que la 
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retrotrayectoria media rural que tiene un carácter oceánico y marino y por tanto más 

limpia. Además, no se debe ignorar la recirculación de la retrotrayectoria media 

urbana en las 24 horas antes de impactar en el CIBA, ya que esto podría incrementar 

los niveles de los contaminantes arrastrados. Por tanto, se puede concluir que las 

concentraciones máximas de CO2 y CH4 encontradas en los sectores urbanos fueron 

el resultado del reforzamiento del penacho urbano de Valladolid y sus efectos en la 

estación del CIBA. Finalmente, el modelo METEX demostró ser una técnica rápida y 

sencilla que requiere escasos recursos computacionales para analizar la influencia 

del penacho urbano de Valladolid en los niveles finales de CO2 y CH4 medidos en la 

estación rural del CIBA.  

 

A modo de colofón, la presente tesis ha demostrado la efectividad de aplicar regresiones 

armónicas, de kernel y locales ponderadas para describir la variabilidad temporal de CO2 y 

CH4 en una estación de fondo de la meseta norte castellana entre 2010 y 2016 alcanzando 

de esta forma el principal objetivo de la tesis. Pese a las diferencias encontradas entre las 

diferentes funciones matemáticas empleadas, estas no deben ser vistas como competidoras, 

de hecho, consideramos interesante emplear más de una función para asegurar que los 

resultados arrojados sean consistentes y reducir posibles sesgos. Además, la combinación de 

las observaciones de CO2 y CH4, los datos de velocidades del viento en superficie y en altura 

(a través del cálculo de retrotrayectorias) resultó ser una metodología útil para comprender 

los efectos del penacho urbano de la ciudad de Valladolid en los patrones temporales de CO2 

y CH4. Los resultados obtenidos en la presente tesis sirven para comprender los procesos que 

gobiernan los ciclos de CO2 y CH4, lo cual es fundamental para implementar políticas eficaces 

de mitigación contra el cambio climático. A pesar de que este tipo de estudios dependen del 

lugar de estudio debido a las condiciones locales específicas de cada emplazamiento, son 

necesarios para comprender mejor la evolución de los patrones estacionales de las 

concentraciones de ambos gases en determinados emplazamientos, especialmente en las 

estaciones de fondo, como es la estación del CIBA. Debe destacarse la necesidad de llevar a 

cabo más estudios de este tipo, así como ampliar la red de estaciones de monitorización para 

analizar la evolución de estos gases a lo largo del tiempo. Por tanto, consideramos importante 

extender el uso de los métodos estadísticos empleados en la presente tesis para determinar 

los patrones temporales de estos gases a otras áreas de estudio y lograr una mayor 

comprensión de la evolución de estos gases en la troposfera. Finalmente, los resultados aquí 

presentados podrían verse enormemente mejorados si se ampliase la serie de datos 

disponible, por lo que mantener la estación del CIBA es vital para analizar la evolución del 

CO2 y el CH4 a lo largo del tiempo. 
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11. Appendices          

11.1. Acronyms 

Table Ap1. Main abbreviations used throughout the thesis. 

Abbreviation Description 

AEMET Spanish Meteorological Agency 

AFOLU Agriculture, Forestry and Other Land Use 

CGER Centre for Global Environmental Research 

CIBA Centro de Investigación de la Baja Atmósfera 

COP Conferences of the Parties 

CRDS Cavity Ring-Down Spectroscopy 

DAS Data Acquisition System 

EFF Fossil fuel emissions 

ELUC Emissions from land use, land use change and forestry activities 

EU27 European Union 

GHG Greenhouse gas 

GMD  Global Monitoring Division 

IPCC Intergovernmental Panel on Climate Change 

Lowess Locally weighted scatterplot smoothing 

LSD Least Significant Difference 

m. a.s.l. meters above sea level 

m. a.g.l. meters above ground level 

METEX Meteorological Data Explorer 

MLO Mauna Loa Observatory 

NCEP National Centers for Environmental Prediction 

NDIR Non-dispersive infrared 

NOAA National Oceanic & Atmospheric Administration 

PBL Planetary boundary layer 

ppm parts per million 

ppb parts per billion 

PVU Power Vaccum Unit 

SIAR Agroclimatic Information System for Irrigation 

SLAND Terrestrial CO2 sinks 

SOCEAN Ocean sink 

UNEP United Nations Environment Program 

UNFCCC United Nation Framework Convention on Climate Change 

WMO/GAW 
Global Atmosphere Watch programme of the World Meteorological 

Organization 

WRF Weather Research and Forecast 

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#land-use-and-forestry
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11.2. List of tables and figures 

*All tables and figures cited in the main text are listed in this section. The tables and figures of the original 

contributions are only provided in the corresponding Original Contribution. 

 

11.2.1. List of tables 

➢ Table 1. Characteristics of the three NOAA calibration gas standards used. [pp. 50] 

➢ Table 2. Mean values for all the functions used in the study. [pp. 133] 

➢ Table 3. Trend mean values for all the functions used in the study. [pp. 134] 

➢ Table 4. Growth rate mean values for all the functions used in the study. [pp. 135] 

➢ Table 5. CO2 growth rate values at different sites (modified from Pérez et al., 2017). 

[pp. 143] 

➢ Table 6. CH4 growth rate values at different sites (modified from Pérez et al., 2017). [pp. 144] 

➢ Table 7. CO2 evolution over different Northern Hemisphere sites (modified from Pérez et al., 

2016). [pp. 148] 

➢ Table 8. CH4 evolution over different Northern Hemisphere sites (modified from Pérez et al., 

2016). [pp. 151] 

➢ Table 9. Harmonic equations used in different studies worldwide (modified from Pérez et al., 

2017). [pp. 154] 

➢ Table 10. Characteristics of the kernel functions employed in contribution II (Peña et al., 2001; 

Wand et al., 1995; Wilks, 2019). [pp. 157] 

 

11.2.2. List of figures 

➢ Figure 1. Distribution of energy from the Sun to the Earth (Riza et al., 2011). [pp. 14] 

➢ Figure 2. Anthropogenic greenhouse gases between 1970-2010 (IPCC, 2014). [pp. 15] 

➢ Figure 3. Anthropogenic GHG emissions by economic sectors in 2010 (IPCC, 2014). [pp. 

16] 

➢ Figure 4. Percentage of total emissions of greenhouse gases by countries at a global 

scale referring to 2015 data from EDGAR (2020). [pp. 17] 

➢ Figure 5. Percentage of total emissions of greenhouse gases for EU countries referring 

to 2015 data from EDGAR (2020). [pp. 17] 

➢ Figure 6. Schematic representation of CO2 sources and sinks for the most recent available 

decade data (2009-2018) (modified from Friedlingstein et al., 2019). [pp. 18] 

➢ Figure 7. CO2 mixing ratio evolution over time (data from Da et al., 2019; Keeling, 2007; 

NOAA, 2020a; c; d; Visconti, 2016). [pp. 22] 

➢ Figure 8. Schematic representation of CH4 sources and sinks for the most recently available 

decade data (2008-2017) (modified from Saunois et al., 2020). [pp. 23] 

➢ Figure 9. CH4 mixing ratio evolution over time (data from Beck et al., 2018; Ganesan et al., 

2019; IPCC, 2013; NOAA, 2020e). [pp. 24] 
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➢ Figure 10. Schematic representation of the smoothing mathematical methods used in the 

current thesis. [pp. 31] 

➢ Figure 11. Kernel Density estimation employing different bandwidth values (Krisp et al., 

2009). [pp. 32] 

➢ Figure 12. Smoothing kernels employed in contribution II. [pp. 34] 

➢ Figure 13. Concept map of the thesis including all the original contributions in Roman 

numerals. [pp. 40] 

➢ Figure 14. Location of the region and the monitoring station of study. [pp. 43] 

➢ Figure 15. Characterization of the monitoring station in terms of main water bodies, mountain 

ranges and nearest populated cities. [pp. 44] 

➢ Figure 16. (a) PNOA image courtesy of © ign.es showing an aerial view of the CIBA station and 

the surrounding vegetation composition, (b) building with the instrumentation (c) NOAA 

standard calibration gases (d) Picarro analyser G1301. [pp. 46] 

➢ Figure 17. Main connections of the Picarro analyser G1301. [pp. 46] 

➢ Figure 18. Schematic diagram of CRDS working system (modified from Crosson, 2008b; Jung 

et al., 2013). (a) Light from a laser is trapped in a three-mirror cavity, (b) laser shut off after the 

process, and (c) measured absorption intensity and laser light decay over time. [pp. 48] 

➢ Figure 19. Operating schematic diagram of the Picarro G1301. [pp. 50] 

➢ Figure 20. Calibration schematic process of the Picarro G1301. [pp. 51] 

➢ Figure 21. Spherical triangle formed by the CIBA station (A), one trajectory point (B) and the 

North Pole (C) to calculate the distance and direction of each trajectory point. [pp. 57] 

➢ Figure 22. Box plot schematic diagram (Wilks, 2019). [pp. 65] 

➢ Figure 23. Urban and rural mean back-trajectories at 500 m a.s.l. computed with the METEX 

model at the CIBA station during the period Oct 2010–Feb 2016. [pp. 166] 
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