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A B S T R A C T

This work is devoted to presenting and applying a novel methodology that estimates a linear
physical model, represented by full-rank mass, stiffness and damping matrices, capable of
replicating the dynamic behaviour of an incomplete modal model. No hypothesis is made with
respect to the damping matrix, so the procedure is applicable assuming any linear viscous
damping model. It is shown that, if the number of considered modes satisfies a certain restriction
with respect to the number of degrees of freedom, the problem has infinite solutions that
differ in their exogenous eigenvalues. By controlling their effect on the dynamic behaviour
of the model in the frequency range of interest, a proper final solution is obtained. The
methodology is applied to a three-degrees-of-freedom discrete model and a discretized cantilever
beam. Comparisons are made in both frequency and time domains which reveal that the
methodology provides physical models that accurately replicate the dynamic behaviour of the
incomplete modal model. Even for complete models, where the solvability condition is not
met, the methodology manages to provide meaningful results in some situations. To prove the
usefulness of the estimated models, a mass is added on one DOF of both examples to show
that they reproduce the same effects as the original modified ones. Finally, in the interests of
reproducibility, all models and algorithms presented in this article have been made publicly
available.

. Introduction

One desirable requirement in structural engineering is the ability to build up computational models capable of accounting for the
ehaviour of a certain structure as close as possible to reality. This enables the engineer to refine its design, accurately predicting
ts response when different kinds of loads are applied, specially those that cannot be tested, such as earthquakes. In addition, the
tructural behaviour can be simulated in different scenarios, such as the structure undergoing some kind of structural modification,
amage or having a vibration mitigation device incorporated.

When the dynamic behaviour is of interest, it is hard to accurately predict the structural properties before building. Only a
trictly balanced amount of mass, stiffness and damping of the structural elements can provide a realistic dynamic response and,
ven if a highly detailed model is elaborated taking into account all the structural and non-structural sources of mass and stiffness,
hus leading to huge models that are very cumbersome to work with, it is still very hard to accurately determine the damping
ontribution of each structural element. Therefore, it is a common practice for the final computational model, truly representing
he dynamic behaviour of the structure, to be issued after having carried out a series of dynamical tests to the real, already built
tructure.
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The relationship between the experimental data and the computation model divides the main existing techniques into two large
roups: those which aim to improve or update an already existing computational model to fit the data; and those intended to estimate
new model from the data. The first group of algorithms, usually referred to as Model Updating techniques [1–3], normally provides
ood results after a potentially long iterative updating process. The final results depend on the quality and size of the starting model,
hich must contain a sufficient number of adjustable parameters to fully adapt its response to the experimental data [4,5].

On the other hand, the techniques whose purpose is to directly estimate a model from the experimental data, commonly known
s Model Parameter Extraction techniques, aim to develop a set of mathematical entities that, combined, reproduce the behaviour
f the structure in the frequency range of interest. One example of this, assuming a linear behaviour, is the modal model, which, by
eans of a set of natural frequencies, damping ratios and scaled mode shapes, is able to predict the time response of the structure

or any kind of applied load [6,7]. The goodness of the estimation, in this case, depends on the quality of the measurements and
he ability to extract the modal model from the experimental data. In addition, although suitable for simulating a wide range of
ctions, some typical engineering tasks, such as structural modification or vibration mitigation devices tuning, may be difficult to
ndertake through purely mechanical approaches.

This work aims to go one step further to estimate a linear physical model from a given modal model. A physical model is
omposed of mass, stiffness and damping matrices, similar to those that can be assembled through any other computational approach,
uch as the Finite Element Method. Being issued from a modal model and not from the assembly of smaller matrices associated to
pecific structural elements, they can potentially have any internal form, thus giving them the ability to better adapt the measured
ynamics. The problem can first be addressed by considering the same number of modes 𝑚 as measured degrees of freedom 𝑛
complete models), as in [8], but this is not often the case. Assuming that a sufficient number of sensors have been used to measure
he modal properties of the structure, spatial incompleteness cannot occur [9]. It is common for the number of identified modes to be
ewer than the number of monitored degrees of freedom, and it is necessary to deal with incomplete modal models. Berman [10,11]
arned about the solution to this problem not being unique and some authors [12,13] have explored it since then by inverting,
r pseudo-inverting, the orthogonality properties of the mode shapes. This approach can easily be applied if viscous proportional
amping is assumed, since it eases the formulation thanks to the real-valued mode shapes. However, some authors addressing
omplex-valued mode shapes proposed transforming them into real-valued ones [14] or choosing another kind of approach [15,16].
n fact, the damping matrix has traditionally been the most complicated one to estimate and most recent works in this topic have
ocused on this [17–21]. In these works, both the mass and stiffness matrices are assumed to be previously known or estimated by
ther means, such as a finite element model.

In this paper, the problem of estimating the three matrices of a physical model from an incomplete complex-valued modal
odel is addressed, so a general damping model is assumed. The methodology, PhysEx (named after the terms PHYSical parameter
Xtraction), is developed by analysing the different requirements that the physical matrices must meet in order to reproduce the
bjective dynamic behaviour. These requirements are coded as a set of linear equations that must be solved for the elements of the
hysical matrices. It is demonstrated that, if the number of considered modes is fewer than a fraction of degrees of freedom, the
roblem does not have a unique solution. In this case, the infinite possible solutions differ in the so-called exogenous modes, i.e., the
odes that mathematically belong to the physical model which are not the objective modes to reproduce. By controlling their effect

n the dynamic behaviour in the frequency range of interest, a final unique solution can be calculated through an optimization
rocess. As a result, a set of full rank physical matrices is obtained, even if the initial modal model is incomplete. As will be seen in
he corresponding section, although the terms which compose the matrices do not have any direct physical meaning, the estimated
hysical models are useful to perform some tasks. As a proof, a certain amount of mass is added to the estimated mass matrix to
how that this reproduces the same effects as the addition of the same amount of mass to the original model. Future works will
e devoted to covering different structural modifications, such as stiffness and damping modifications, as well as the addition and
uning of inertial mitigation devices.

The article is structured as follows: Section 2 presents the essential modal analysis background. The methodology is developed in
ections 3 and 4 gives two application examples consisting in a three-degrees-of-freedom discrete model and a discretized cantilever
eam. A dataset containing all the models and code developed in MATLAB for this work is available in [22] for reproducibility
urposes. Finally, Section 5 ends the article by summing up the main conclusions.

. Theoretical background

The linear behaviour of a discretized structure can be described using its mass (𝐌), damping (𝐂) and stiffness (𝐊) matrices as
hown in Eq. (1), where 𝐪(𝑡) and 𝐅(𝑡) are column vectors standing for, respectively, the 𝑛 degrees of freedom (DOF) used to describe

the motion of the structure and the external forces acting on them. The dot operand (̇) stands for a time derivative.

𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) +𝐊𝐪(𝑡) = 𝐅(𝑡) (1)

When a non-proportional linear damping model is assumed, the system of equations in Eq. (1) cannot be directly uncoupled
hrough its modal properties [6]. One way to proceed is by transforming the equations to the state space, by means of the state
ector 𝐱(𝑡) = [𝐪𝑡(𝑡) �̇�𝑡(𝑡)]𝑡 and an input vector 𝐮(𝑡) = [𝐅𝑡(𝑡) ∅]𝑡, leading to Eq. (2), where ∅ stands for a matrix of zeros of a proper
imension.

𝐀�̇�(𝑡) + 𝐁𝐱(𝑡) = 𝐮(𝑡)

𝐀 =
[

𝐂 𝐌
]

𝐁 =
[

𝐊 ∅
]

(2)
2

𝐌 ∅ ∅ −𝐌
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The system of equations in Eq. (2) can be uncoupled by means of its 𝑛 complex conjugate pairs of eigenvectors (�̃�𝑟, �̃�
∗
𝑟 ), where

= 1..𝑛 and ∗ stands for the complex conjugation. They can be calculated, together with their corresponding eigenvalues (𝑠𝑟, 𝑠∗𝑟 ), by
olving the eigenproblem in Eq. (3). For the viscous damping model, the eigenvalues have the form 𝑠𝑟 = −𝜔𝑟𝜁𝑟 + j𝜔𝑟

√

1 − 𝜁2𝑟 , where
j stands for the imaginary unit, 𝜔𝑟 is the natural frequency (in rad/s) and 𝜁𝑟 is the viscous damping ratio.

(𝐀𝑠𝑟 + 𝐁)�̃�𝑟 = 0 (3)

It is worth noting that, due to the form of the state vector 𝐱(𝑡), the eigenvectors �̃�𝑟 are composed of the mode shapes (𝜽) and their
elocities, related to the mode shapes through the corresponding eigenvalue, so �̃�𝑟 = [𝜽𝑡𝑟 𝑠𝑟𝜽𝑡𝑟]

𝑡. This relationship can be expressed
s a matrix as shown in Eq. (4), where 𝐒 is the eigenvalue matrix, a diagonal matrix containing all the eigenvalues 𝑠𝑟 and their
omplex conjugates 𝑠∗𝑟 , Θ̃ is the eigenvector matrix whose columns are the eigenvectors �̃�𝑟 and their complex conjugates �̃�∗𝑟 ordered
ccording to 𝐒, and Θ is the modal shape matrix, whose columns are the mode shapes 𝜽𝑟 and their complex conjugates 𝜽∗𝑟 , also
rdered according to 𝐒.

Θ̃ =
[

Θ

Θ𝐒

]

(4)

The diagonalization of the system in Eq. (2) can be performed thanks to the orthogonality properties with respect to the matrices
and 𝐁, expressed in Eq. (5). By taking advantage of the internal forms of 𝐀, 𝐁 and Θ̃, the orthogonality properties can also be

xpressed in terms of the mass (𝐌), damping (𝐂), stiffness (𝐊) and mode shape (Θ) matrices, as shown in Eq. (6). Matrices �̃� and
̃ are both diagonal modal matrices, satisfying �̃�−1�̃� = −𝐒 [6]. It is usual to scale the mode shapes so that matrix �̃� is an identity

atrix of dimension 2𝑛, and thus �̃� equals −𝐒, a common assumption that is also adopted in this article.

Θ̃𝑡𝐀Θ̃ = �̃�
Θ̃𝑡𝐁Θ̃ = �̃� (5)

Θ𝑡𝐂Θ + 𝐒Θ𝑡𝐌Θ +Θ𝑡𝐌Θ𝐒 = �̃�
Θ𝑡𝐊Θ − 𝐒Θ𝑡𝐌Θ𝐒 = �̃� (6)

. Methodology

The methodology proposed in this work, PhysEx, which is developed in the next subsections, provides a means to estimate
hysical models, and is composed of a set of three full-rank 𝑛 × 𝑛 physical matrices, useful for the typical applications in structural
ngineering, from a set of 𝑚 experimentally estimated modes. Note that the number of degrees of freedom of the resulting physical
odel 𝑛 equals the number of monitored points during the measurement of the 𝑚 modes, so the measured mode shapes are expressed

nly in those degrees of freedom. Both quantities usually differ, and this work focuses on the case in which 𝑚 ≤ 𝑛.
The method is applied in two stages. In the first one, a system of linear equations is built to take into account the three main

onditions that the sought matrices should meet. The first stage ends by imposing a nonlinear inequality condition, so an optimization
rocess, which is the second stage, must be carried out to solve the problem.

.1. Development of the system of equations

The desirable set of physical matrices should fulfil certain conditions to provide an acceptable dynamic behaviour. In this work,
he following three main conditions are considered:

1. The three physical matrices must be symmetric. This condition affects the internal form of the three matrices, forcing them
to satisfy Eq. (7), where 𝐏 may be any estimated physical matrix 𝐌𝑒, 𝐂𝑒 or 𝐊𝑒 and subindices 𝑖 and 𝑘 stand for the row and
column, respectively.

𝐏𝑖𝑘 − 𝐏𝑘𝑖 = 0 ∀𝑖 ≠ 𝑘, (𝑖, 𝑘) ≤ 𝑛 (7)

2. The physical model must satisfy the eigenvalue problem in Eq. (3), which can be rewritten in terms of the physical matrices
and the mode shapes as shown in Eq. (8). As the complex eigenvalues of a set of real-valued symmetric matrices always
appear in conjugate pairs, this condition is enough to be met for the 𝑚 pairs (𝑠𝑟, 𝜽𝑟).

(𝐌𝑒𝑠
2
𝑟 + 𝐂𝑒𝑠𝑟 +𝐊𝑒)𝜽𝑟 = 0 𝑟 ≤ 𝑚 (8)

3. If the previous conditions are met, the modal matrices �̃� and �̃� happen to be diagonal and satisfy �̃�−1�̃� = −𝐒. Therefore,
the only remaining necessary condition is the mode shape scaling, i.e., the estimated physical matrices, together with the
measured modal parameters, must satisfy Eq. (9). As in the previous condition, this one must only be fulfilled for the 𝑚 pairs
(𝑠𝑟, 𝜽𝑟).

𝜽𝑡𝐂𝑒𝜽𝑟 + 2𝑠𝑟𝜽𝑡𝐌𝑒𝜽𝑟 = 1 𝑟 ≤ 𝑚 (9)
3

𝑟 𝑟
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Note that the positiveness of the matrices is not taken into account. This is further commented at the end of the first example.
All the presented conditions, which are linear with respect to the physical properties, can be rewritten in the form of a system of

quations, 𝐀𝑝𝐱𝑝 = 𝐛𝑝, where 𝐱𝑝 contains the 3𝑛2 elements of the physical matrices (the unknowns of the problem) and the internal
orm of 𝐀𝑝 and 𝐛𝑝 depends on the conditions being accounted for. After processing the symmetry conditions, the corresponding
ows of 𝐀𝑝 will contain 1 and −1 in the appropriate locations; the associated terms in 𝐛𝑝 will be 0. For the eigenproblem conditions,
he corresponding terms in 𝐀𝑝 will contain elements of different mode shapes, some of them multiplied by one eigenvalue; the
orresponding terms in 𝐛𝑝 will be 0 again. Finally, the terms of 𝐀𝑝 associated to the scaling equations will be products of mode
hape elements, some of them multiplied by their corresponding eigenvalue; the associated values in 𝐛𝑝 are 1 this time.

Finally, note that after computing conditions 2 and 3, Eq. (8) and (9), many terms in the matrix 𝐀𝑝 and vector 𝐛𝑝 will be complex
alues, so, in general, the solution of the system will also be complex. This leads to complex physical matrices, which is something to
e avoided to guarantee proper results when solving the system of differential equations in Eq. (1). To overcome this issue, the subset
f complex equations 𝐀𝑝𝑐𝐱𝑝 = 𝐛𝑝𝑐 can be split into their real and imaginary parts, so (Re

(

𝐀𝑝𝑐
)

+ jIm
(

𝐀𝑝𝑐
)

)𝐱𝑝 = Re
(

𝐛𝑝𝑐
)

+ jIm
(

𝐛𝑝𝑐
)

,
where the subindex 𝑐 stands for the subset of complex-valued equations and Re () and Im () stand for real and imaginary parts,
respectively. Given that 𝐱𝑝 must be a real-valued vector, the previous complex equations must be satisfied for their real and
imaginary parts separately, leading to Eq. (10), where all terms in 𝐀𝑞 and 𝐛𝑞 are real-valued and 𝐀𝑝𝑟 and 𝐛𝑝𝑟 account for the
real-valued equations in 𝐀𝑝𝐱𝑝 = 𝐛𝑝. Note that this operation is to be carried out only with the eigenvalue and scaling conditions
(that are inherently complex-valued), doubling their number of associated equations. Symmetry equations are not affected by this
modification (and, thus, included in 𝐀𝑝𝑟 and 𝐛𝑝𝑟).

𝐀𝑞𝐱𝑝 = 𝐛𝑞
⎡

⎢

⎢

⎣

𝐀𝑝𝑟
Re

(

𝐀𝑝𝑐
)

Im
(

𝐀𝑝𝑐
)

⎤

⎥

⎥

⎦

𝐱𝑝 =
⎡

⎢

⎢

⎣

𝐛𝑝𝑟
Re

(

𝐛𝑝𝑐
)

Im
(

𝐛𝑝𝑐
)

⎤

⎥

⎥

⎦

(10)

Summing up, the symmetry equations are associated to the out-of-diagonal terms of the three physical matrices, adding a
total of 3𝑛(𝑛 − 1)∕2 equations. There are 𝑛 eigenproblem equations for each of the 𝑚 modes, making a total of 2𝑛𝑚 eigenproblem
equations, accounting for the modification in Eq. (10) as they are complex equations. Finally, there are 2 m real-valued scaling
equations associated to the 𝑚 diagonal elements of �̃�. Therefore, the total number of necessary independent equations is, a priori,
3𝑛(𝑛−1)∕2+2𝑚(𝑛+1), which can only be exactly solved for the 3𝑛2 unknowns only if the number of equations is less than or equal to
the number of unknowns, leading to the restriction in Eq. (11), which couples the number of degrees of freedom 𝑛 and the number
of considered modes 𝑚. In any other case, the conditions can only be approximately met.

𝑚 ≤ 3
4
𝑛 (11)

Note that the previous three conditions would also have been satisfied if the same approach had been directly applied to the
hole set of orthogonality expressions in Eq. (6). However, in that case, the apparent number of equations would have been 8𝑚2

twice (2𝑚)2), leading to a very different, and wrong, solvability condition to the relation between 𝑚 and 𝑛. Finally, it is interesting
o note that, for this methodology to be successfully applied, the required amount of modal information is limited by the solvability
ondition, and the usual belief that a better identification can be performed if the amount of information available is greater, cannot
e applied here. If it is not met, unacceptable results may be obtained. So, in order to improve them, more DOFs need to be monitored
o increase the order of the estimated physical matrices (𝑛) or the number of considered modes (𝑚) must be reduced, so that the
stimated physical model will be valid in a narrower frequency band.

.2. Solution to the system of equations

A solution to the resulting system of equations can always be found if the restriction in Eq. (11) is met. However, if 𝑚 is strictly
lower than 3𝑛∕4, the system of equations is underdetermined and there is an infinite number of solutions, not all of them being
suitable for engineering purposes. When dealing with incomplete models, one major problem that may arise is the characteristics of
the exogenous modes, i.e., the modes that appear in the estimated model, which mathematically belong to it and can add unexpected
and undesirable dynamic effects. This problem could reach the point of some exogenous modes having negative damping, which is
terrible for time domain simulations. By controlling the effect of those exogenous modes, an optimal solution can be calculated.

Let 𝐱𝑝𝑎 and 𝐱𝑝𝑏 be two particular solutions to the real-valued system of equations in Eq. (10), and 𝐱𝑝𝑑 their difference, so
𝑝𝑎 = 𝐱𝑝𝑏 + 𝐱𝑝𝑑 . Substituting 𝐱𝑝𝑎 in the system of equations leads to 𝐀𝑞𝐱𝑝𝑎 = 𝐀𝑞(𝐱𝑝𝑏 + 𝐱𝑝𝑑 ) = 𝐛𝑞 and, given that 𝐱𝑝𝑏 also verifies
t (𝐀𝑞𝐱𝑝𝑏 = 𝐛𝑞), then 𝐀𝑞𝐱𝑝𝑑 = 0, which is the definition of the kernel of 𝐀𝑞 . This means that, if the system of equations is
nderdetermined, so there is an infinite number of solutions, it is possible to obtain any solution to the system of equations from
nother one by adding a vector belonging to the kernel of 𝐀𝑞 . A first solution can easily be obtained by means of the Moore–Penrose
seudo-inverse, which provides the solution with the minimum Euclidean norm. Then, the general solution can be expressed as
hown in Eq. (12), where 𝐰𝑞 contains a linear combination of the base vectors of ker

(

𝐀𝑞
)

.

𝐱𝑝 = 𝐀+
𝑞 𝐛𝑞 + ker

(

𝐀𝑞
)

𝐰𝑞 (12)

The previous approach has a serious advantage in terms of the number of unknowns, having transformed a problem of 3𝑛2

ariables into a problem of (3𝑛∕2 − 2𝑚)(𝑛 + 1) variables, the difference between the number of columns and the number of rows in
4
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𝐀𝑞 . Note that this value may be slightly higher if numerical linear dependencies appear in the system of equations. In any case,
the number of terms in 𝐰𝑞 is always fewer than 3𝑛2 and always lead to a solution to the system of equations, i.e., a set of physical
matrices containing, at least, the desired dynamic behaviour. This improvement can significantly reduce the computational effort
and time when finding the final solution to the problem. Also note that, if the system of equations is overdetermined (because the
condition in Eq. (11) is not met), then ker

(

𝐀𝑞
)

does not contain any vector and a solution of the system of equations can be found
through 𝐱𝑝 = 𝐀+

𝑞 𝐛𝑞 , which corresponds to the best fit to all the conditions in the least squares sense [23].
To get the final physical properties, an optimization problem is carried out. The objective is to obtain a solution of 𝐰𝑞 that

minimizes the interference of the exogenous modes, making sure that none of them have a negative damping value. Amongst the
different objective functions that could be sought to achieve that, two of them are presented in the following section.

3.3. Objective functions

3.3.1. Exogenous natural frequency minimization
It is known that if a physical model is directly obtained from the orthogonality conditions of an incomplete modal model [12,13],

it contains exactly the desired modes with no exogenous modes, since their natural frequencies are equal to zero. This is due to the
physical matrices being rank-deficient and, by definition, the last singular values of a rank-deficient matrix are zero, and so are the
corresponding eigenvalues [23]. In that sense, the objective function proposed in this subsection is intended to minimize the natural
frequencies of the exogenous modes in order to make the final physical model approach a rank-deficient one as much as possible.
When a highly restrained optimization problem is solved, as it is the case here, it is unlikely that the objective function will be
perfectly satisfied. For this reason, the odds of any exogenous natural frequency being exactly zero are really low and, in general,
it can be assumed that the obtained physical matrices will not be rank-deficient. The exogenous natural frequencies may eventually
remain close, or even inside, the frequency band of interest, affecting the dynamic behaviour of the model. To mitigate that, the
natural frequencies are inversely weighted by their corresponding damping ratios to help dampen the exogenous eigenvalues and
reduce their effect on the structural response. This objective function can be formulated as stated in Eq. (13), where the natural
frequencies have been expressed as |𝑠𝑟| and the damping ratios as −Re

(

𝑠𝑟
)

∕|𝑠𝑟|, the | ⋅ | operator being the absolute value of a real
number and the modulus of a complex number.

𝐽 =
𝑛
∑

𝑟=𝑚+1

|

|

|

|

|

|𝑠𝑟|
2

−Re
(

𝑠𝑟
)

|

|

|

|

|

(13)

The outer absolute value is needed to prevent the negative and small Re
(

𝑠𝑟
)

values from becoming large negative 𝐽 values,
dominating the minimization process; although the negative parts of 𝑠𝑟 are imposed as a nonlinear constraint in Section 3.4, due to
the internal numerical constraint tolerances of the optimization algorithm.

3.3.2. Frequency response function approach
Another approach is to minimize the error between two sets of Frequency Response Functions (or FRFs): the set calculated by

means of the experimental modal model and the set associated to the estimated physical model.
The FRF matrix 𝐇(𝜔) can be calculated from the experimental modal properties through Θ̃Λ(𝜔)Θ̃𝑡 [6], where Λ(𝜔) is a 2𝑚×2𝑚

diagonal matrix containing the terms 1∕(j𝜔 − 𝑠𝑟), one for each eigenvalue including their complex conjugates, and 𝜔 stands for the
excitation frequency in rad/s. On the other hand, the relationship between the estimated physical matrices and the FRF matrix 𝐇𝑒(𝜔)
is stated as (−𝐌𝑒𝜔2 + j𝐂𝑒𝜔 +𝐊𝑒)−1, where a non-linear relationship can be appreciated.

In the scenario in which the physical matrices exactly represent the same behaviour as the modal model in the frequency range
of interest, both 𝐇(𝜔) and 𝐇𝑒(𝜔) should be equal for every 𝜔 inside that frequency range. This means that 𝐇(𝜔)𝐇(𝜔)−1𝑒 = 𝐈𝑛, where
𝐈𝑛 is the identity matrix of dimension 𝑛. This fact leads to the expression in Eq. (14), which represents a linear relationship between
the experimental modes and the physical matrices to be estimated. Note that this equation is not automatically met after Eq. (8)
has been imposed due to the physical matrices 𝐌𝑒, 𝐂𝑒 and 𝐊𝑒 also containing some exogenous modes, the influence of which (on
the frequency range of interest) is to be reduced by means of the optimization procedure.

Θ̃Λ(𝜔)Θ̃𝑡(−𝐌𝑒𝜔
2 + j𝐂𝑒𝜔 +𝐊𝑒) = 𝐈𝑛 (14)

This relationship can be rewritten in the form of a system of linear equations 𝐀f rf𝐱𝑝 = 𝐛f rf and, making use of Eq. (12), the cost
function in Eq. (15) is obtained, where 𝑁 stands for the number of elements in vector Γ. As it is a linear relationship, this expression
is faster to compute than a regular nonlinear least squares optimization. It is also recommended to build 𝐀f rf and 𝐛f rf by selecting
a sufficient number of well separated frequencies 𝜔 inside the frequency range of interest, to make sure that an overdetermined
system is built and that the exogenous modes do not affect any region of the frequency band of interest.

𝐽 =
𝑁
∑

𝑖=1
|𝛤𝑖|

Γ = 𝐀f rfker
(

𝐀𝑝
)

𝐰𝑝 + 𝐀f rf𝐀+
𝑝 𝐛𝑝 − 𝐛f rf

(15)
5
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3.4. The optimization strategy

Although both previous objective functions can lead to exogenous natural frequencies not affecting the range of interest, it is
till mathematically possible for their associated damping values to be negative. To avoid this, it is important to add a nonlinear
onstraint to the optimization process, forcing the algorithm to check the real parts of 𝑠𝑟 on every iteration to make sure they remain

negative.
The addition of a nonlinear constraint may complicate the overall optimization process, since the algorithm must look for feasible

points (i.e., vectors 𝐰𝑝 that satisfy it) and minimize the objective function at the same time. Also, not providing a feasible initial
oint can worsen this issue, leading to bad optimization results when the number of variables is moderately large. To avoid this,
he optimization procedure is split into two stages:

1. The optimization algorithm is first run including the nonlinear constraint, but with a null objective function (𝐽 = 0). In this
way, the objective function convergence is guaranteed from the beginning of the process and the algorithm can focus on
finding a feasible point. This stage can be run several times using different randomly generated initial vectors to obtain a set
of feasible initial points to be used in the second stage.

2. The second stage consists in running the optimization algorithm to minimize the selected objective function and starting from
one of the feasible initial points found in the previous stage. With this approach, the algorithm can now focus on minimizing
the objective function and just make sure it does not exit the feasible region from which it starts.

The previous strategy does not ensure finding the global minimum, but provides different solutions that satisfy the constraints
nd minimizes the objective function inside the feasible region. Among them, the solution that provides the least objective function
alue is kept as the solution to the problem. Alternatively, a global optimization procedure could be applied, but this is not covered
n this work. Here, the fmincon function is used to perform the different optimization. This function provides several gradient-
ased algorithms, such as the Interior-Point or the Trust-Region-Reflective, among others, from which the first is selected due to
ts versatility and ability to deal with medium to large sized optimization problems. All of them are prepared to deal with linear
nd nonlinear constraints, penalizing the objective function if any of them is not met. More details about the algorithm itself can
e found in [24] and more details about the specific implementation of the methodology in MATLAB can be found in the provided
ode [22].

.5. Performance indicators

In order to ease the comparisons between the different models that are to be obtained in Section 4, some indicators are proposed
o account for the accomplishment of the various conditions commented in the previous subsections.

.5.1. Symmetry indicator
To measure the extent to which the estimated matrices are symmetric, the indicator in Eq. (16) is proposed, where ‖ ⋅ ‖𝐹 stands

or the Euclidean matrix norm (also known as the Frobenius norm) and the subindex 𝑑 stands for the main diagonal of the matrix
e.g., 𝐌𝑒𝑑 = diag

(

𝐌𝑒
)

). This indicator accounts for the relative deviation of the upper triangular matrix with respect to the lower
ne. A smaller value of 𝜆𝑠𝑦 indicates a better symmetry and a value of 0 indicates a perfect symmetry.

𝜆𝑠𝑦 =
1
3

(

1
2

‖𝐌𝑒 −𝐌𝑡
𝑒‖𝐹

‖𝐌𝑒 −𝐌𝑒𝑑‖𝐹
+ 1

2
‖𝐂𝑒 − 𝐂𝑡

𝑒‖𝐹

‖𝐂𝑒 − 𝐂𝑒𝑑‖𝐹
+ 1

2
‖𝐊𝑒 −𝐊𝑡

𝑒‖𝐹

‖𝐊𝑒 −𝐊𝑒𝑑‖𝐹

)

(16)

It is important to note that, if one or more estimated physical matrices turn out to be diagonal, its corresponding denominator
in Eq. (16) may become null, thus leading to numerical issues. As shown later, if the solvability condition in Eq. (11) is met, the
terms of the estimated physical matrices will have no direct physical meaning and the strategy proposed in this work to obtain them
will rarely lead to such a situation, unless it is enforced by some additional conditions. If such is case, the corresponding terms in
Eq. (16) should be removed in order to avoid the aforementioned numerical issues.

3.5.2. Eigenvalues and eigenvectors indicator
To measure how well the eigenvalues 𝑠𝑟, with 𝑟 = 1..𝑚, are reproduced by the estimated physical model, the expression in

Eq. (17) is proposed. This indicator calculates the mean relative distance between the expected complex eigenvalue 𝑠𝑟 and the
estimated one, 𝑠𝑟, which can be calculated as the closest one to 𝑠𝑟. When a perfect correspondence exists between the calculated
nd desired eigenvalues, then 𝜆𝑠 = 0.

𝜆𝑠 =
1
𝑚

𝑚
∑

𝑟=1

|𝑠𝑟 − 𝑠𝑟|
|𝑠𝑟|

(17)

The measurement of how well the mode shapes are replicated by the physical model can be done through the expression in
q. (18), where the superindex 𝐻 accounts for the conjugate transpose. This expression is based on the Modal Assurance Criterion
MAC) that is calculated for each pair of desired mode shape 𝜽𝑟 and the corresponding calculated mode shape 𝜽𝑟. The first 1 in

Eq. (18) is included to make 𝜆𝜃 vary between 0 (perfect correspondence) and 1 (no correspondence).

𝜆𝜃 = 1 − 1
𝑚

𝑚
∑

𝑟=1

|𝜽𝐻𝑟 𝜽𝑟|
2

(𝜽𝐻𝑟 𝜽𝑟)(𝜽
𝐻
𝜽𝑟)

(18)
6
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Fig. 1. Schema of the 3 DOF discrete model.

Table 1
Natural frequencies (𝜔𝑟, in rad/s), damping ratios (𝜁𝑟, in %) and modal coordinates (𝜃𝑟𝑖, scaled
to matrix 𝐴) of the original 3 DOF discrete model.

𝜔𝑟 𝜁𝑟 𝜃𝑟1 𝜃𝑟2 𝜃𝑟3
1 6.55 2.82 −0.025 − 0.810j −0.107 + 0.556j 0.111 − 0.103j
2 14.53 13.07 −0.427 − 0.171j −0.643 − 0.091j 0.558 + 0.235j
3 23.11 3.53 0.219 − 0.205j 0.047 − 0.489j 0.007 − 0.846j

3.5.3. Scaling indicator
The last indicator accounts for the ability of the damping and mass matrices to provide a proper scaling of the modes, as stated

n Eq. (6). The indicator in Eq. (19) is defined, which gets the value of zero only if the estimated matrices and the experimental
ode shapes exactly satisfy Eq. (6).

𝜆𝑠𝑐 =
1
𝑚

𝑚
∑

𝑟=1
|𝜽𝑡𝑟𝐂𝑒𝜽𝑟 + 2𝑠𝑟𝜽𝑡𝑟𝐌𝑒𝜽𝑟 − 1| (19)

4. Application examples

4.1. 3 DOF discrete model

The PhysEx procedure is now tested by means of the three-DOF discrete model shown in Fig. 1, with the following properties:
𝑚1 = 2 kg, 𝑚2 = 1.75 kg, 𝑚3 = 1.5 kg, 𝑐1 = 0.3 Ns/m, 𝑐2 = 0.5 Ns/m, 𝑐3 = 4.1 Ns/m, 𝑘1 = 530 N/m, 𝑘2 = 320 N/m and 𝑘3 = 150 N/m.
This ensemble of properties provide the physical matrices shown in Eq. (20) for a DOF vector 𝐪(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡)]𝑡 and the
modal properties shown in Table 1. Note that the damping matrix is not proportional to the mass and the stiffness matrices, so the
mode shapes are complex and general damping approaches must be used to estimate a physical model. For the frequency domain
comparison, only accelerances, i.e., the relationship between a force input and an acceleration output, are computed assuming a
force applied on the DOF 𝑥2. Time domain comparisons are made through the impulse response applying the input on the same

OF.

𝐌 =
⎡

⎢

⎢

⎣

2.00 0 0
0 1.75 0
0 0 1.50

⎤

⎥

⎥

⎦

𝐂 =
⎡

⎢

⎢

⎣

0.80 −0.50 0
−0.50 4.60 −4.10
0 −4.10 4.10

⎤

⎥

⎥

⎦

𝐊 =
⎡

⎢

⎢

⎣

850 −320 0
−320 470 −150
0 −150 150

⎤

⎥

⎥

⎦

(20)

First, a complete model estimation is made. The estimated physical matrices, obtained using the information of Table 1, are
hown in Eq. (21), where it is shown that they match well enough with the original ones. When the three modes are considered,
he restriction in Eq. (11) concerning the number of modes is not met and the kernel of 𝐀𝑞 has null dimension, so the system
f equations is over determined and it can only be solved by pseudo-inverting matrix 𝐀𝑞 . This implies that the provided solution
s the best fit to all linear restrictions, only approximately satisfying them, which is evidenced in matrices 𝐌𝑒 and 𝐂𝑒 not being
erfectly symmetric, as is also shown in the first row of Table 2. Here, the value of 𝜆𝑠𝑦 accounts for the lack of symmetry, the
pper triangular matrices of the physical matrices being, on average, 6.38% different from the lower triangular ones. The rest of
7

he indicators provide reasonably good results, but the indicator values are higher than the rest of the cases which do satisfy the
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Fig. 2. Accelerance comparison of the complete model for the DOFs (a) 𝑥1 and (b) 𝑥3.

estriction in Eq. (11).

𝐌𝑒 =
⎡

⎢

⎢

⎣

1.997 0.001 −0.002
0.002 1.745 −0.002
−0.003 −0.001 1.491

⎤

⎥

⎥

⎦

𝐂𝑒 =
⎡

⎢

⎢

⎣

0.792 −0.478 −0.014
−0.477 4.692 −4.103
−0.012 −4.102 4.063

⎤

⎥

⎥

⎦

𝐊𝑒 =
⎡

⎢

⎢

⎣

848.1 −318.9 −0.536
−318.9 −468.9 −149.3
−0.536 −149.3 149.0

⎤

⎥

⎥

⎦

(21)

As stated by Lancaster [25], a complete and generally damped modal model only provides a symmetric and real-valued set of
physical matrices if the mode shape matrix Θ can be expressed in terms of an orthogonal matrix 𝐆 so Θ = Θ𝑅(𝐈𝑚 − j𝐆), where the
subscript 𝑅 stands for the real part and 𝐈𝑚 represents an identity matrix of dimension 𝑚 × 𝑚. In this case, the matrix 𝐆 is shown
in Eq. (22) and the product with its transpose is shown in Eq. (23), revealing that it is almost an orthogonal matrix, thus leading
to almost symmetric and real-valued estimated physical matrices. However, structures not satisfying the solvability condition in
Eq. (11) or the one proposed by Lancaster will not provide such meaningful results, as can be seen in the second example.

𝐆 =
⎡

⎢

⎢

⎣

0.992 0.122 0.008
−0.117 0.970 −0.215
−0.034 0.213 0.978

⎤

⎥

⎥

⎦

(22)

𝐆𝐆𝑡 =
⎡

⎢

⎢

⎣

0.999 0.001 0.000
0.001 1.001 0.001
0.000 0.001 1.003

⎤

⎥

⎥

⎦

(23)

Fig. 2 shows the accelerance comparison between the original model and the estimated physical model in terms for the DOFs 𝑥1
and 𝑥3. As can be seen, there is a total correspondence between both responses in the frequency range of interest, so they can be
said to be dynamically equivalent. This is a consequence of the good values obtained for the rest of the indicators in the first row of
Table 2. Although the restriction in Eq. (11) is not met, in this case this is not so bad as the dynamics seems to be reproduced well
enough. As will be shown in the next example, this is not usually true. The same conclusions can be drawn from the time domain
comparison of Fig. 3, where the impulse response of DOF 𝑥3 is compared.

The intended application scenario of the proposed methodology is the one in which the number of considered modes satisfy
Eq. (11), leading to incomplete models. In this case, PhysEx provides a set of three matrices that accurately satisfy the linear and
nonlinear restrictions. However, the specific values that make up the matrices depend on the initial points used for the first stage
of the optimization. This may lead to an infinite number of solutions, all suitable for engineering purposes, such as simulation or
structural modification.

Now, the estimated models resulting from considering only modes 1 and 2 are shown. Since two objective functions have been
defined, two models are proposed: ‘‘1,2(f)’’ is associated to the FRF objective function and ‘‘1,2(w)’’ to the minimum exogenous
8

frequency objective function. Eq. (24) shows the physical matrices associated to these models, where the subindex 𝑓 stands for the
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Fig. 3. Time domain comparison of the complete model.

Table 2
Values of the indicators calculated for each estimated physical model.
Case 𝜆𝑠𝑦 𝜆𝑠 𝜆𝜃 𝜆𝑠𝑐
1,2,3 0.0638 3.04 × 10−6 6.34 × 10−7 2.16 × 10−3

1,2(f) 1.89 × 10−8 1.51 × 10−9 6.61 × 10−15 1.38 × 10−6

1,2(w) 4.53 × 10−10 1.51 × 10−9 6.55 × 10−15 1.38 × 10−6

1(f) 1.74 × 10−15 1.42 × 10−14 3.33 × 10−16 2.33 × 10−14

1(w) 2.26 × 10−16 3.45 × 10−15 0 1.00 × 10−15

model ‘‘1,2(f)’’ and the subindex 𝑤, for the model ‘‘1,2(w)’’. As can be seen, both sets of matrices are quite different from each other
nd from the original matrices of Eq. (20). It is interesting to note that the internal terms of these matrices do not have any direct
hysical meaning, much like a set of condensed matrices that lack a straightforward correspondence with the physical elements they
epresent. In addition, the estimated physical matrices have very different exogenous modes, which accentuates the differences in
heir internal terms. In spite of this, however, these physical matrices can still be treated as mass, stiffness and damping matrices,
ince they couple the accelerations, velocities and displacements of the considered DOFs, so they have a meaning as a whole. Finally,
hey are useful for the purposes of this work, since they contain the desired dynamic behaviour and, as will be shown later, they
ccurately predict the effect of mass modifications.

The exogenous eigenvalues are −2.69 × 10−5 rad/s and −337.04 rad/s for ‘‘1,2(f)’’ and −6.05 × 10−5 rad/s and −1.41 × 10−4 rad/s
for ‘‘1,2(w)’’. Their associated natural frequencies are well outside the frequency range of interest, although their damping ratio is
100% and their contribution to the time domain response would be low in any case. Note that two eigenvalues are obtained in each
case because the size of the eigenvalue problem (Eq. (3)) is 2𝑛, so the two imposed eigenvalues determine a total of 4 (including
heir complex conjugates) with two exogenous ones remaining. Even if both models accurately represent the dynamic behaviour of
nterest, the FRF objective function lets the exogenous natural frequencies evolve towards large values or small values; whereas the
inimum eigenvalue objective function imposes the evolution of the exogenous natural frequencies towards zero. In both cases, the

our indicator values are very close to zero (rows 2 and 3 in Table 2), so they can be considered suitable models.

𝐌𝑒𝑓 =
⎡

⎢

⎢

⎣

1.453 −0.787 0.830
−0.787 2.870 −0.592
0.830 −0.592 1.645

⎤

⎥

⎥

⎦

𝐌𝑒𝑤 =
⎡

⎢

⎢

⎣

−92.90 57.19 −9.103
57.19 −32.74 5.506
−9.103 5.506 0.603

⎤

⎥

⎥

⎦

𝐂𝑒𝑓 =
⎡

⎢

⎢

⎣

383.4 −232.6 38.77
−232.6 142.3 −25.38
38.77 −25.38 6.434

⎤

⎥

⎥

⎦

𝐂𝑒𝑤 =
⎡

⎢

⎢

⎣

−138.0 −41.95 61.71
−41.95 104.9 −53.14
61.71 −53.14 17.06

⎤

⎥

⎥

⎦

𝐊𝑒𝑓 =
⎡

⎢

⎢

⎣

592.2 104.1 −190.3
104.1 41.34 −0.412
−190.3 −0.412 108.5

⎤

⎥

⎥

⎦

𝐊𝑒𝑤 =
⎡

⎢

⎢

⎣

58.08 76.15 −32.31
76.15 102.1 −30.10
−32.31 −30.10 84.91

⎤

⎥

⎥

⎦

(24)

Fig. 4 shows a comparison between the original accelerances and the ones corresponding to models ‘‘1,2(f)’’ and ‘‘1,2(w)’’ for the
OFs 𝑥1 and 𝑥3. As expected, the estimated physical models accurately represent the dynamic behaviour of the retained modes. In the

requency domain, the curves associated to the estimated models approximate the original FRFs well enough in the surroundings
f the first two modes, the ones under consideration. The same can be observed in the time domain comparison, Fig. 5, where
he responses of the different estimated models are also very similar and the response of the original model is, to some extent,
eproduced. Naturally, the transient contribution associated to the third mode is not present in the response of the estimated models,
9

ut once this contribution is damped in the response of the original model, all three behave in much the same way.



Journal of Sound and Vibration 510 (2021) 116277A. Magdaleno and A. Lorenzana

a
c
t
i
i

Fig. 4. Accelerance comparison of the incomplete model considering the first two modes for the DOFs (a) 𝑥1 and (b) 𝑥3.

Fig. 5. Time domain comparison of the incomplete model considering the first two modes.

Similar conclusions can be drawn when only one mode, for example the first one, is considered, and models ‘‘1(f)’’ and ‘‘1(w)’’
re estimated using both objective functions. The estimated physical matrices are shown in Eq. (25) and they are full-rank matrices,
ontaining only the dynamic behaviour of the relevant mode. These matrices are again different from the original ones in Eq. (20) and
hose estimated by considering two modes (Eq. (24)) due to the reasons explained above. The fulfilment of the linear requirements
s almost full, as the indicator values reveal in rows 4 and 5 in Table 2 (note that 0 values are provided in Matlab when the result
s below a certain tolerance, which is, by default, 2.22 × 10−16). In this case, different exogenous eigenvalues are obtained for

each objective function: −4.89 × 105, −76.18 and −0.0055 ± 0.27j rad/s for ‘‘1(f)’’ and −0.014, −0.031, −0.032 and −0.039 rad/s
for ‘‘1(w)’’. Once again, the great difference between the exogenous eigenvalues leads to substantially different sets of estimated
matrices. Figs. 6 and 7 show the comparison in the frequency and time domains respectively, and a good matching between the
original and the estimated FRFs can be seen in the surroundings of the first natural mode. The time domain comparison shows how
the estimated models behave like a single DOF system, approaching the original model response as the contribution of modes 2 and
3 dissipates over time.

𝐌𝑒𝑓 =
⎡

⎢

⎢

⎣

−1.134 2.129 0.198
2.129 −3.358 0.718
0.198 0.718 1.835

⎤

⎥

⎥

⎦

𝐌𝑒𝑤 =
⎡

⎢

⎢

⎣

14.21 −0.275 −2.815
−0.275 −12.60 8.378
−2.815 8.378 −2.696

⎤

⎥

⎥

⎦

𝐂𝑒𝑓 =
⎡

⎢

⎢

⎣

−131.0 160.7 −60.03
160.7 245.6 −181.6
−60.03 −181.6 119.6

⎤

⎥

⎥

⎦

𝐂𝑒𝑤 =
⎡

⎢

⎢

⎣

−0.966 −1.879 3.488
−1.879 −6.163 −0.000
3.488 −0.000 1.758

⎤

⎥

⎥

⎦

𝐊𝑒𝑓 =
⎡

⎢

⎢

⎣

5.342 10.98 74.70
10.98 76.65 28.68
74.70 28.68 −5.234

⎤

⎥

⎥

⎦

𝐊𝑒𝑤 =
⎡

⎢

⎢

⎣

3.654 8.654 12.59
8.654 20.40 29.53
12.59 29.53 42.50

⎤

⎥

⎥

⎦

(25)
10
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Fig. 6. Accelerance comparison of the incomplete model considering the first mode for the DOFs (a) 𝑥1 and (b) 𝑥3.

Fig. 7. Time domain comparison of the incomplete model considering the first mode.

Table 3
Modified natural frequencies and damping ratios calculated for each estimated incomplete
physical model compared to the modified original one.
Case 𝜔1 (rad/s) 𝜁1 (%) 𝜔2 (rad/s) 𝜁2 (%)

Original 5.90 3.03 14.0 11.4
1,2(f) 5.90 3.06 14.0 11.6
1,2(w) 5.90 3.04 14.0 11.6
1(f) 5.91 3.09
1(w) 5.91 3.14

Finally, to show the usefulness of the incomplete estimated physical models, whose internal elements differ greatly from the
riginal model, a structural modification is performed on them. More specifically, a mass of 𝛿𝑚 = 0.5 kg is added to the third DOF,
hich represents 33% of its original mass, 𝑚3. To do so, 𝛿𝑚 is directly added to the element in the position (3,3) of the original and

he estimated mass matrices. It is worth noting that this task can be performed in a similar way for all the mass matrices estimated
ia PhysEx, regardless of the physical meaning of their internal terms. Table 3 shows a comparison of the two first modified natural
requencies and damping ratios for the original and the incomplete models. As can be seen, even if the terms of the mass matrices
o not have any direct physical meaning, the same mass modification provides almost the same effects on the incomplete models
s on the original one.

The accelerance comparisons of the modified models with the original unmodified one are shown in Figs. 8 (models 1,2(f) and
,2(w)) and 9 (models 1(f) and 1(w)). As can be seen, the incomplete models accurately reproduce the modified dynamic behaviour
nside their corresponding frequency range.

As a final remark, it is interesting to note that the positiveness of the physical matrices has not been imposed during the
11

evelopment of the methodology. For this reason, none of the presented estimated physical matrices are necessarily positive. For
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Fig. 8. Accelerance comparison of the modified incomplete models considering the first two modes for the DOFs (a) 𝑥1 and (b) 𝑥3.

Fig. 9. Accelerance comparison of the modified incomplete models considering the first mode for the DOFs (a) 𝑥1 and (b) 𝑥3.

nstance, the eigenvalues of the mass matrix associated to the model 1,2(w) are −128.3, 1.792 and 1.481, leading to an indefinite
atrix; or 1(f), which has the eigenvalues −4.688, 0.004 and 2.030, resulting in another indefinite matrix. In spite of this, these
atrices are still useful to perform frequency and time domain simulations as well as structural modifications, as shown.

.2. Cantilever beam

In this section, an example of a discretized continuous structure is shown. The planar Euler–Bernoulli cantilever beam of Fig. 10
s discretized in four elements with similar properties: a length of 𝐿 = 1 m, a Young’s Modulus of 𝐸 = 2.1 × 1011 Pa, a density of
= 7850 kg/m3, a cross section area of 𝐴 = 3.7 × 10−5 m2 and a moment of inertia with respect to the axis perpendicular to the
lane of the structure of 𝐼z = 3.2 × 10−9 m4. The resulting 8 DOF physical matrices can be consulted in annex (Eq. (A.1)), where
t can be seen that the coherent mass matrix is selected and, as the non-proportional damping matrix, a diagonal one is proposed
𝐂 = diag (0.32)). The terms in these matrices are ordered according to the following DOF vector: 𝐪 = [𝑣1 𝜙1 𝑣2 𝜙2 𝑣3 𝜙3 𝑣4 𝜙4]𝑡. The
ssembled matrices provide the modal properties set shown in Table 4, where only the first four are shown. Table 5 provides the
orresponding mode shape values associated to the transverse DOFs (𝑣𝑖). Graphical comparisons are now done only in the frequency
omain, the input force being applied on 𝑣4, assuming that a high correspondence of the FRFs leads to similar time domain results.

Of the original 8 DOF used to assemble the matrices in Eq. (A.1), in the following, only the 𝑣𝑖 DOFs are considered, since
isplacements and accelerations are magnitudes that can be measured more easily than angular ones during modal tests. To do
his, only the mode shape coordinates associated to 𝑣𝑖 (shown in Table 5) are used as input to the PhysEx algorithm. The resulting
12

hysical models will then consist of a set of 4 × 4 physical matrices containing, in each case, the selected dynamic behaviour. Thus,
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Fig. 10. Diagram of the discretized cantilever beam.

Table 4
First four natural frequencies (𝜔𝑟, in rad/s) and damping ratios (𝜁𝑟, in %) of the original and
condensed cantilever beam models.

Original Condensed

𝜔𝑟 𝜁𝑟 𝜔𝑟 𝜁𝑟
1 10.57 9.94 10.57 9.95
2 66.33 3.69 66.43 3.73
3 187.0 2.50 189.3 2.61
4 369.0 1.69 371.3 1.52

Table 5
Transverse modal coordinates (𝜃𝑟𝑖, 𝑟 = 1..4, scaled to matrix 𝐴) of the original 8 DOF cantilever
beam.
Mode 𝜃𝑟1 𝜃𝑟3 𝜃𝑟5 𝜃𝑟7
1 −0.0282 + 0.0274j −0.0978 + 0.0964j −0.1884 + 0.1879j −0.2850 + 0.2875j
2 −0.0480 + 0.0473j −0.0808 + 0.0822j −0.0131 + 0.0177j 0.1155 − 0.1132j
3 −0.0500 + 0.0500j 0.0000 + 0.0030j 0.0397 − 0.0407j −0.0695 + 0.0683j
4 0.0340 − 0.0350j −0.0357 + 0.0355j 0.0315 − 0.0300j −0.0481 + 0.0481j

the complete model cannot be directly compared with the original assembled 8 × 8 matrices, but rather with the ones dynamically
condensed to the four degrees of freedom of interest. In fact, PhysEx, like other approaches, can be seen as a way of directly
computing a sort of dynamically condensed physical model by using only the available modal information in the reduced number
of measured DOFs.

In this work, the expressions in Eq. (26) from [26] are used to calculate the condensed 4 DOFs model from the original 8 DOFs
model. These expressions are obtained by partitioning the original 8 DOFs matrices into the rows and columns associated to the
master degrees of freedom (𝑚) and the condensed or slave ones (𝑠). As specified in that work, those expressions, obtained by means of
a dynamic condensation matrix, lead to a condensed model that accurately reproduces the dynamic behaviour in a frequency range
below a certain frequency threshold, 𝜔𝑐 , the minimum natural frequency of the slave model, i.e., the original model with its master
DOFs fixed. In this case, for the model in Fig. 10, the threshold frequency is equal to 781.4 rad/s, so it is expected to reproduce
the first four modes well enough. The resulting condensed matrices are shown in Eq. (27) and the corresponding condensed modal
properties are shown in Table 4, where a slight difference in relation to the original ones is noticeable. This may not make a great
difference in terms of time or frequency response, but it may complicate the comparison between this model and the one obtained
using PhysEx, which tries to accurately reproduce the original modal model.

𝐌𝑐 = 𝐌𝑚𝑚 −𝐊𝑚𝑠𝐊−1
𝑠𝑠 𝐌𝑠𝑚 −𝐌𝑚𝑠𝐊−1

𝑠𝑠 𝐊𝑠𝑚 +𝐊𝑚𝑠𝐊−1
𝑠𝑠 𝐌𝑠𝑠𝐊−1

𝑠𝑠 𝐊𝑠𝑚

𝐂𝑐 = 𝐂𝑚𝑚 −𝐊𝑚𝑠𝐊−1
𝑠𝑠 𝐂𝑠𝑚 − 𝐂𝑚𝑠𝐊−1

𝑠𝑠 𝐊𝑠𝑚 +𝐊𝑚𝑠𝐊−1
𝑠𝑠 𝐂𝑠𝑠𝐊−1

𝑠𝑠 𝐊𝑠𝑚

𝐊𝑐 = 𝐊𝑚𝑚 −𝐊𝑚𝑠𝐊−1
𝑠𝑠 𝐊𝑠𝑚

(26)

𝐌𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0.238 0.036 −0.016 0.007
0.036 0.254 −0.024 −0.017
−0.016 0.024 0.270 0.046
0.007 −0.017 0.046 0.081

⎤

⎥

⎥

⎥

⎥

⎦

𝐂𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0.600 −0.043 −0.138 0.023
−0.043 0.797 −0.320 0.053
−0.138 −0.320 1.350 −0.652
0.023 0.053 −0.652 0.909

⎤

⎥

⎥

⎥

⎥

⎦

𝐊𝑐 =

⎡

⎢

⎢

⎢

⎢

1.264 −0.794 0.299 −0.050
−0.794 0.964 −0.644 0.175
0.299 −0.644 0.665 −0.245

⎤

⎥

⎥

⎥

⎥

× 104

(27)
13

⎣

−0.050 0.175 −0.245 0.108
⎦
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Table 6
Values of the indicators calculated for each estimated physical model.
Case 𝜆𝑠𝑦 𝜆𝑠 𝜆𝜃 𝜆𝑠𝑐
1,2,3,4 0.249 2.23 × 10−4 0.108 4.87 × 10−2

1,2,3(f) 9.13 × 10−4 4.44 × 10−7 4.86 × 10−6 1.50 × 10−4

1,2,3(w) 2.47 × 10−7 4.44 × 10−7 4.86 × 10−6 1.50 × 10−4

1,2(f) 9.45 × 10−13 4.44 × 10−13 0 1.37 × 10−12

1,2(w) 3.88 × 10−14 1.67 × 10−13 0 9.25 × 10−13

As with the previous example, the complete 4 DOF model is first estimated to check the performance of PhysEx when the
estriction in Eq. (11) is not met. Using the modal properties issued by the 8 DOF model (Tables 4 and 5), Eq. (28) shows the
hysical matrices of the estimated model by pseudo-inverting matrix 𝐀𝑞 in Eq. (10). As can be seen, the resulting matrices are

roughly similar to the condensed ones, but they are not perfectly symmetric, as the Lancaster condition (Eq. (29)) is not perfectly
met either. The first row of Table 6 shows the values of all indicators for this case. It is noticeable how the values of all them are
higher than the rest of the cases, which will be shown below. Apart from the lack of symmetry, there is a sufficient correspondence
in the eigenvalues, but the high value of 𝜆𝜃 indicates that there is no proper correspondence between the desired modes and the
estimated ones. In this sense, the dynamic condensation procedure provides a set of perfectly symmetric matrices by sacrificing some
precision in the reproduced modal properties; whereas PhysEx tries to meet all the characteristics at once, not exactly satisfying any
of them when the restriction in Eq. (11) is not fulfilled.

Fig. 11, which shows the accelerance comparison of DOFs 𝑣2 and 𝑣4, reveals the differences between the original model, the
ondensed model and the estimated one. The difference in the amplitude of the estimated model with respect to the other ones is
ue to the non-correspondence of the mode shapes, but its peaks match the original ones in frequency as it reproduces the objective
ynamics more precisely. On the other hand, the amplitude of the condensed model follows the original amplitude closer, but there
s a slight difference in the position of the peaks evidenced in Table 4.

𝐌𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0.237 0.038 −0.026 0.012
0.037 0.269 −0.003 −0.017
0.128 −0.163 0.378 −0.002
0.094 −0.129 0.122 0.050

⎤

⎥

⎥

⎥

⎥

⎦

𝐂𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

1.274 −0.958 0.567 0.301
−0.956 2.170 −1.455 −0.279
0.526 −1.352 2.155 −0.295
0.307 −0.258 −0.448 0.574

⎤

⎥

⎥

⎥

⎥

⎦

𝐊𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

1.266 −0.835 0.316 −0.046
−0.835 1.060 −0.693 0.176
0.316 −0.693 0.674 −0.235
−0.046 0.176 −0.235 0.100

⎤

⎥

⎥

⎥

⎥

⎦

× 104

(28)

𝐆𝐆𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

1.0126 0.0218 −0.0044 −0.0044
0.0218 1.0135 0.0232 0.0214
−0.0044 0.0232 0.9887 0.0023
−0.0044 0.0214 0.0023 0.9861

⎤

⎥

⎥

⎥

⎥

⎦

(29)

When only three modes are considered (modes 1, 2 and 3 in this case), the restriction in Eq. (11) is barely satisfied, so a higher
ulfilment of the general characteristics is expected. It is interesting to note that, even if 𝑚 = 3𝑛∕4, the system of equations in this case
s underdetermined and the optimization procedure needs to be carried out. This is due to some numerical linear dependencies that
ay arise when the number of equations grows. If this were not the case, a unique solution would exist to the system of equations

Eq. (10)) and no control would exist over the exogenous eigenvalues, so the final solution may not be suitable for engineering
urposes and one mode should be discarded. As revealed in the second and third rows of Table 6, both objective functions provide
odels that satisfy all the linear requirements well enough. If the FRF objective function is used, the model ‘‘1,2,3(f)’’ is estimated

nd provides the two exogenous real eigenvalues −8.1339 × 106 rad/s and −0.2285 rad/s, 100% damped. The minimum exogenous
igenvalue function leads to the ‘‘1,2,3(w)’’ model having the two exogenous real eigenvalues −0.0848 × 10−5 rad/s and −0.4272
10−5 rad/s, 100% damped as well. Fig. 12 shows the accelerance comparison between the original model and the two estimated

nes, revealing a very good correspondence in the amplitude of the three considered modes (note that the deviation around the
hird mode in Fig. 12(a) is caused by the absence of influence of the fourth mode). The matrices for this case can be consulted in
he annex, which are very different from the original ones presented above, as happened in the previous example.

When only two modes are considered, the restriction in Eq. (11) is largely met, so the general characteristics are almost perfectly
ulfilled, as evidenced in rows 4 and 5 of Table 6. In this case, the model ‘‘1,2(f)’’ contains, as exogenous eigenvalues, −22.04,
14

21.44 and −0.2032 ± 2.9764j rad/s; whereas those belonging to the model ‘‘1,2(w)’’ are all real: −0.170, −0.0246, −0.035 and
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Fig. 11. Accelerance comparison of the complete cantilever model for the DOFs (a) 𝑣2 and (b) 𝑣4.

Fig. 12. Accelerance comparison of the incomplete cantilever model, considering the modes 1, 2 and 3, for the DOFs (a) 𝑣2 and (b) 𝑣4.

−0.0391 rad/s. Fig. 13 shows the accelerance comparison between the original model and the two estimated ones, revealing again
a good correspondence in the amplitude of the two considered modes.

Finally, a lumped mass equal to 𝛿𝑚 = 0.40 kg is added to the tip of the beam. The same value is added to the corresponding
diagonal position of the mass matrices associated to the original model and the estimated ones 1,2,3(w) and 1,2(w), although the
other ones could also be used and would provide similar results. Since only the DOF 𝑣4 is affected, in the case of the original 8DOF
model, 𝛿𝑚 is summed at the position (7,7) of its mass matrix; while for the remaining ones, it is directly added to the term at the
position (4,4). The resulting first three modified natural frequencies and damping ratios are compared in Table 7. As can be seen, the
mass addition causes similar effects on the incomplete models and the original one. Slight differences can be appreciated, especially
for mode three, most probably due to the absence of not measured modes.

An accelerance comparison of the modified models is shown in Fig. 14, where the FRFs of DOFs 𝑥2 and 𝑥4 of the modified original
and incomplete models are compared to the original unmodified model. As can be seen, as anticipated by the results in Table 7, the
incomplete models accurately reproduce the effects due to the mass modification, even if the terms of their mass matrices do not
have any direct physical meaning.

5. Conclusions

This work has been devoted to developing and exemplifying a novel approach to estimate full-rank physical matrices from an
15

incomplete modal model when a general viscous damping model is considered. A thorough analysis has been carried out to determine
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D

Fig. 13. Accelerance comparison of the complete cantilever model, considering the modes 1 and 2, for the DOFs (a) 𝑣2 and (b) 𝑣4.

Fig. 14. Accelerance comparison of the modified incomplete models estimated by means of the eigenvalue approach considering the first two modes for the
OFs (a) 𝑥2 and (b) 𝑥4.

Table 7
Modified natural frequencies and damping ratios calculated for each estimated incomplete
physical model compared to the modified original one.
Case 𝜔1 (rad/s) 𝜁1 (%) 𝜔2 (rad/s) 𝜁2 (%) 𝜔3 (rad/s) 𝜁3 (%)

Original 6.82 6.51 52.3 2.51 158.3 1.75
1,2,3(w) 6.82 6.62 52.4 2.78 161.0 2.13
1,2(w) 6.82 6.66 52.9 2.89

the conditions that the physical matrices should satisfy in order to provide a useful model and it has been demonstrated that, if
the number of modes is less than 3∕4 the number of measured DOFs, the problem has infinite solutions; otherwise, only the best
fit to all conditions can be obtained by pseudo-inverting the system matrix. To obtain a final solution for an incomplete model,
an optimization process is carried out using different objective functions to show that both lead to solutions that satisfy the linear
conditions, differing in the exogenous eigenvalues, although they always have an associated positive damping. The selection of the
most suitable objective function must be done by the engineer for each particular case.
16
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The procedure was first applied to a discrete 3-DOF model, which has demonstrated the abilities of PhysEx to reproduce the
riginal physical matrices when a complete model is considered, even if not all the linear constraints are perfectly satisfied. However,
s expected, when an incomplete one is considered, both objective functions accurately reproduce the desired dynamic behaviour,
ut treating the exogenous eigenvalues differently. In those cases, the physical matrices differ, not only from the original ones, but
lso from each other. This is due to the presence of the exogenous modes, which are also different from one model to another, leading
o the internal elements of the estimated physical matrices not having a direct physical meaning. However, these matrices can still
e treated as mass, damping and stiffness matrices because they represent the mathematical coupling between the accelerations,
elocities and displacements, respectively. In any case, they contain the desired modes and the frequency and time domain responses
it the original responses as far as they are able to. As a consequence, the same mass modification can be applied to both the original
nd the estimated model and very similar effects are predicted from each one.

Finally, a discretized cantilever beam has been analysed. Apart from the conclusions that have also been drawn from the previous
xample, this example has shown the differences between the dynamic condensation procedure, which does not exactly respect the
riginal modes but provides a set of perfectly symmetric matrices, and PhysEx, which always tries to simultaneously meet all the
inear constraints, even when the solvability condition is not met, resulting in different physical models. This example has also
hown a situation in which the number of modes is exactly 3∕4 the number of DOFs. It may happen that, even in those cases, some

numerical linear dependencies lead to an underdetermined system of equations and the optimization procedure needs to be applied,
although for a small number of variables. This fact could potentially lead to situations in which the solvability condition is not
theoretically met but, thanks to the numerical characteristics of the problem, the system ends up being underdetermined.
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Appendix. Model matrices
17

This appendix contains some physical matrices, not necessary to follow the main ideas of this article.
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A.1. 8 DOFs original model of the cantilever beam

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.216 0.037 −0.009
0.006 0.009 −0.002

0.037 0.009 0.216 0.037 −0.009
−0.009 −0.002 0.006 0.009 −0.002

0.037 0.009 0.216 0.037 −0.009
−0.009 −0.002 0.006 0.009 −0.002

0.037 0.009 0.108 −0.015
−0.009 −0.002 −0.015 0.003

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.320
0.320

0.320
0.320

0.320
0.320

0.320
0.320

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

16128 −8064 4032
5376 −4032 1344

−8064 −4032 16128 −8064 4032
4032 1344 5376 −4032 1344

− 8064 −4032 16128 −8064 4032
4032 1344 5376 −4032 1344

−8064 −4032 8064 −4032
4032 1344 −4032 2688

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.1)

A.2. Matrices of the estimated cantilever model considering 3 modes

Eq. (A.2) shows the matrices obtained by applying PhysEx with the FRF objective function and Eq. (A.3) shows the resulting
matrices after applying PhysEx with the minimum eigenvalue objective function.

𝐌𝑒𝑓 =

⎡

⎢

⎢

⎢

⎢

⎣

0.091 0.131 −0.016 0.025
0.131 0.225 −0.031 −0.017
−0.016 −0.031 0.367 0.026
0.025 −0.017 0.026 0.085

⎤

⎥

⎥

⎥

⎥

⎦

𝐂𝑒𝑓 =

⎡

⎢

⎢

⎢

⎢

⎣

1.451 −1.564 1.135 −0.356
−1.564 1.686 −1.224 0.384
1.135 −1.224 0.889 −0.279
−0.356 0.384 −0.279 0.088

⎤

⎥

⎥

⎥

⎥

⎦

× 103

𝐊𝑒𝑓 =

⎡

⎢

⎢

⎢

⎢

⎣

1.270 −0.530 −0.110 0.130
−0.530 0.400 −0.010 −0.078
−0.110 −0.010 0.047 −0.014
0.130 −0.078 −0.014 0.024

⎤

⎥

⎥

⎥

⎥

⎦

× 103

(A.2)

𝐌𝑒𝑤 =

⎡

⎢

⎢

⎢

⎢

⎣

−367.7 396.5 −287.7 90.34
396.5 −427.0 8.378 −97.36
−287.7 310.1 −2.696 70.67
90.34 −97.36 70.67 −22.09

⎤

⎥

⎥

⎥

⎥

⎦

𝐂𝑒𝑤 =

⎡

⎢

⎢

⎢

⎢

⎣

−2.758 1.671 −0.307 −0.098
1.671 −0.396 −0.688 0.426
−0.307 −0.688 1.209 −0.532
−0.098 0.426 −0.532 0.215

⎤

⎥

⎥

⎥

⎥

⎦

× 103

𝐊𝑒𝑤 =

⎡

⎢

⎢

⎢

⎢

⎣

0.321 0.586 −0.185 −0.103
0.586 1.081 −0.359 −0.191
−0.185 −0.359 0.149 0.072
−0.103 −0.191 0.072 0.037

⎤

⎥

⎥

⎥

⎥

⎦

× 103

(A.3)
18



Journal of Sound and Vibration 510 (2021) 116277A. Magdaleno and A. Lorenzana

m

R

A.3. Matrices of the estimated cantilever model considering 2 modes

Eq. (A.4) shows the matrices obtained by applying PhysEx with the FRF objective function and Eq. (A.5) shows the resulting
atrices after applying PhysEx with the minimum eigenvalue objective function.

𝐌𝑒𝑓 =

⎡

⎢

⎢

⎢

⎢

⎣

5.564 −6.016 4.680 −1.638
−6.016 5.799 −3.536 1.090
4.680 −3.536 2.038 −0.386
−1.638 1.090 −0.386 0.152

⎤

⎥

⎥

⎥

⎥

⎦

𝐂𝑒𝑓 =

⎡

⎢

⎢

⎢

⎢

⎣

333.7 −498.5 444.6 −156.0
−498.5 730.2 −645.1 224.9
444.6 −645.1 569.1 −198.1
−156.0 224.9 −198.1 69.46

⎤

⎥

⎥

⎥

⎥

⎦

𝐊𝑒𝑓 =

⎡

⎢

⎢

⎢

⎢

⎣

758.9 578.7 100.5 −340.9
578.7 420.7 −166.5 −76.57
100.5 −166.5 325.3 −140.7
−340.9 −76.57 −140.7 162.8

⎤

⎥

⎥

⎥

⎥

⎦

(A.4)

𝐌𝑒𝑤 =

⎡

⎢

⎢

⎢

⎢

⎣

−55.68 −55.15 106.9 −46.54
−55.15 15.71 15.29 −9.912
106.9 15.29 −89.36 43.37
−46.54 −9.912 43.37 −20.51

⎤

⎥

⎥

⎥

⎥

⎦

𝐂𝑒𝑤 =

⎡

⎢

⎢

⎢

⎢

⎣

−111.2 −97.41 75.98 −5.363
−97.41 −62.22 108.2 −40.36
75.98 108.2 −59.77 −5.257
−5.363 −40.36 −5.257 18.44

⎤

⎥

⎥

⎥

⎥

⎦

× 103

𝐊𝑒𝑤 =

⎡

⎢

⎢

⎢

⎢

⎣

298.0 395.9 21.01 −177.1
395.9 530.0 38.28 −231.8
21.01 38.28 18.47 −0.757
−177.1 −231.8 −0.757 107.5

⎤

⎥

⎥

⎥

⎥

⎦

× 103

(A.5)
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