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Abstract

In some real inventory systems, item sales can be adjusted to a stable demand rate along the inventory cycle.
For instance, home appliances, electrical products, lounge furniture, home water supply, etc., are items with a
stable demand rate. In this work, we analyze an inventory system for an item of this type, where the demand
rate is constant. Shortages are allowed, and it is assumed that a fraction of demand during the stock-out
period is backlogged. It is supposed that the shortage costs (backorder cost and lost sales cost) have an affine
structure: a fixed cost plus a linear cost that depends on the period of time where shortages exist. In this
paper, instead of the maximization of the profit per unit time, or the minimization of the average inventory
cost per unit time, the objective is the maximization of the return on inventory investment, which is a quotient
defined as the average profit divided by the average inventory cost. The optimal inventory policy is obtained
in a closed form under this new perspective. Moreover, it is shown that the optimal policy that maximizes the
return on inventory investment is, in general, different from the one that maximizes the profit per unit time. In
addition, the new optimal perspective offers some advantages. The optimal inventory policy that maximizes
the return on investment does not depend on the unit selling price. Therefore, the inventory manager does not
need to change his/her inventory policy if this price changes. These advantages are not usually present when
the objective is the maximization of the profit per unit time. Numerical examples are provided to illustrate
the theoretical results developed in this work. A sensitivity analysis of the optimal policy with respect to the
system input parameters is also developed.
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1. Introduction

Most existing inventory models in the literature consider as their objective to determine the optimal
inventory policy that maximizes the profit per unit time or minimizes the cost per unit time. Some
recent papers in this line are Zhao et al. (2021) and Xu et al. (2021), which consider the profit
maximization problem, and Meneses et al. (2021), which uses cost minimization. However, one of
the main objectives for a company in managing assets (an inventory is considered as such) is to
maximize the profitability of their investments to generate profits. In general, inventories may be
considered a short-term investment. Thus, they can be treated as a current asset on the balance
sheet. A classical measurement of profitability is the return on investment (ROI), defined as the
ratio between the obtained profit in each inventory cycle and the sum of all the costs involved
in managing the inventory (purchasing cost, ordering cost, holding cost, backordering cost, etc.).
Although it could exist doubts about what should be considered an investment, it seems better to
us to include all the costs of the inventory system, to evaluate profitability.

Eilon (1957) studied the consequences of selecting a lot-size assuming, among others, the criteria
of maximizing the return (ratio of profit to investment) or maximizing the rate of return (taking into
account the time in which this yield is effected). Eilon (1959) presented a method for determining
the economic order quantity when the goal is to maximize the rate of return per unit time for a mul-
tiproduct schedule. Tate et al. (1964) analyzed several ways to maximize the return and concluded
that the lot size that minimizes the total cost is equal to or greater than the lot size that maximizes
any of the alternative returns. Schroeder and Krishnan (1976) discussed the suitability of the ROI
as an appropriate criterion for many types of inventories and derived optimal decision rules for
some common assumptions. Trietsch (1995) showed that the conclusion of Tate et al. (1964) was
not always appropriate and concluded that the adoption of the ROI policy instead of the economic
order quantity (EOQ) by some firms can reduce the volatility of business cycles. Otake et al. (1999)
developed an ROI model and determined the global optimal policy when there exists an option
to invest in setup operations. Chen (2001) presented an inventory model under ROI maximization
for intermediate firms and determined the optimal quantity, the best price, and the optimal quality
level. Otake and Min (2001) formulated and analyzed an inventory problem with variable quality,
employing the criterion of ROI maximization, and they determined the unique global optimal so-
lution. More recently, Marchioni and Magni (2018) studied the coherence of the average ROI and
the net present value (NPV), concluding that the average ROI can be reliably associated with NPV,
providing consistent pieces of information.

In some real inventory systems, demand for items is approximately stable over time. Thus, the
assumption that the demand rate is constant along the inventory cycle can be useful to represent
the behavior of those items. For example, home appliances, electrical products, lounge furniture,
home water supply, etc., are items with an approximately stable demand rate. For this reason, there
are many works in the literature on inventory control that have considered this hypothesis in the
development of their models. Another common feature in some inventory models is to allow short-
ages. In that situation, some clients are willing to wait to the next replenishment of products, while
others are not agreeable to waiting and they decide to buy items from other vendors. As it is well
known, in the area of marketing and logistic business, stock-out might generate different effects,
depending on the type of good and the relevance of its utility for the customer. In such a situation,
either demand can be backordered until a new order arrives to the inventory system, or demand
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during the stock-out period may be lost. Thus, in this last situation, customers decide to cancel their
orders and generate lost sales. Inventory management looks at the holding cost, ordering cost, and
shortage cost. The return on inventory investment could be maximized if planned shortages are as-
sumed. If the sum of the ordering and holding costs is significantly greater than the shortage cost,
then permitting shortages may be a good business practice, because the ROI could be incremented
without losing business. This has motivated several researchers to consider, in the model, that a
fraction of demand is lost along the stockout period, while the remaining fraction is backordered.

The first authors who accepted this partial backlogging situation in their inventory models were
Montgomery et al. (1973), Rosenberg (1979), and Park (1982). Their models were later extended in
several ways bySan-José et al. (2009a, 2009b). Also, Pentico and Drake (2009) presented an alter-
native approach to modeling the EOQ inventory problem with partial backordering, determining
the optimal values for when and how much to order. Drake and Pentico (2010) extended their Pen-
tico and Drake (2009) model for the deterministic EOQ with fixed partial backordering, allowing
the possibility of offering a discounted price to customers who order items during the stockout pe-
riod, in order to keep some of those who would otherwise be lost sales to backorder. Toews et al.
(2011) also extended the Pentico and Drake (2009) model for the EOQ with fixed partial backo-
rdering, allowing the fraction of backordered demand to increase linearly as the time until delivery
decreases. Taleizadeh et al. (2012) developed an EOQ model with partial backordering for three
scenarios with a special sale price. Taleizadeh et al. (2013a) considered an EOQ model with partial
backordering in which a fraction of purchasing cost must be paid at the beginning of the inventory
cycle, and the remaining amount can be paid later. Taleizadeh and Pentico (2013) proposed EOQ
inventory models with partial backordering for two scenarios with an announced price increase.
Taleizadeh et al. (2013b) developed an EOQ model with multiple partial prepayments and partial
backordering. Taleizadeh (2014) studied an EOQ model with partial backordering and partial con-
secutive prepayments for a deteriorating product. Pentico et al. (2014) presented two heuristics for
the basic economic order quantity and economic production quantity with partial backordering
by using the time between orders and the percentage of demand filled from stock as the decision
variables. Taleizadeh and Pentico (2014) developed a solution procedure for the EOQ model with
all-unit discounts and fixed partial backordering. Taleizadeh et al. (2015) determined the optimal
inventory policy for an EOQ model in which the supplier offers incremental quantity discounts.
Pentico et al. (2015) studied the accuracy of approximating the EOQ with a backordering rate,
which is either an exponential or a rational function of the time remaining until the backorder can
be filled, by the EOQ with either a constant or linear backordering rate. Sharifi et al. (2015) de-
veloped an EOQ model for imperfect quality items with partial backordering and screening errors.
Wang et al. (2015) extended the EOQ inventory model with fixed partial backlogging to imper-
fect quality items, using the time interval as a decision variable. Taleizadeh et al. (2016) studied
an EOQ inventory model with partial backlogging and imperfect products, which are valuable and
repairable. Taleizadeh (2017a) studied the lot-sizing problem under partial backordering and pre-
payment when the buyer may face disruption. Diabat et al. (2017) presented an EOQ model in
supply chains with partial downstream delayed payment and partial upstream advance payment
for perishable products. Taleizadeh (2017b) developed the vendor-managed inventory policy with
partial backordering for evaporating products. Lin (2018) included the sustainability concept in the
EOQ inventory model with partial backlogging, integrating environmental and economic perspec-
tives. Lashgary et al. (2018) considered an economic order quantity model with a hybrid payment
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policy offered by the supplier. Godichaud and Amodeo (2019) developed three EOQ models for dis-
assembly systems with two-level bills of material. Other recent research articles based on the EOQ
inventory model with partial backlogging are, for example, Krommyda et al. (2019), Thinakaran
et al. (2019), and Taleizadeh et al. (2020). A common characteristic of all the papers cited above is
that the demand rate is a known constant.

An interesting reasoning about the affine structure of the shortage cost can be seen in Hadley and
Whitin (1963, p. 18). Montgomery et al. (1973) were the first to include a fixed cost per backordered
unit in the inventory models with partial backordering. That fixed cost caused the nonconvexity of
the cost function, so they could not guarantee that their proposed solution was optimal. Perhaps
that may be why not many research papers use this shortage cost structure. Among other authors
who have also used an affine structure in the backorder cost are Rosenberg (1979), Drake and
Pentico (2010), San-José and García-Laguna (2009); San-José et al. (2014, 2015, 2017), and Sicilia
et al. (2009, 2012). Table 1 summarizes some characteristics of the previously cited papers.

In this paper, an inventory model with partial backlogging, considering maximizing the ROI as
the goal, is developed. To the best of our knowledge, this problem has not been investigated in the
literature and it is interesting because inventory managers can wish to know the inventory policy
that leads to obtain the maximum return on their investments. In addition, by allowing a partial
backlogging in the inventory model, customer behavior is better represented and makes the model
more realistic.

The main contribution of this work is to determine the optimal inventory policy that maximizes
the return on inventory investment, assuming that only a fixed fraction of the demand during the
stock-out period is satisfied with the arrival of the next replenishment. This last assumption makes
the model more realistic, because considering the proportion of demand which is backordered, a
variety of real practical situations can be modeled. As we will see later, the inventory policy that
maximizes ROI is, in general, different from the other one that maximizes the profit per unit time.

The rest of this article is organized as follows. Section 2 presents the problem description, the
basic assumptions, and notation. Section 3 provides the mathematical formulation of the model.
Section 4 develops the theoretical results which determine the optimal inventory policy. Section 5
studies the behavior of the policy that maximizes the return on inventory investment with respect to
the policy that maximizes the profit per unit time. Also, in this section, a numerical sensitivity anal-
ysis of the optimal policy and of the maximum return on inventory investment with respect to the
system input parameters are developed. Finally, Section 6 gives some conclusions and suggestions
for future research lines.

2. Problem description

Consider a situation in which a firm with limited resources wants to invest in different projects.
Faced with this circumstance, the objective of the manager is to select those projects that provide
a greater ROI. Assume that one of the projects consists of commercializing (purchasing, holding,
replenishing, and sale) a particular item, whose demand is approximately stable over time. We sup-
pose, as in Axsäter (2015, p. 50), that the unit holding cost per unit time has two components.
The first term is a fixed cost independent of the purchasing cost (warehouse rental, taxes, insur-
ances, etc.), and the second component is a variable cost depending on the unit purchasing cost.
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Table 1
Summary of literature

Backorder cost

Paper
ROI
model

Constant
demand rate

No
shortage

Partial
backlogging Linear Affine

Goodwill lost
sale cost

Chen (2001) � �
Diabat et al. (2017) � � Constant
Drake and Pentico (2010) � � � Constant
Eilon (1957, 1959) � � �
Godichaud and Amodeo

(2019)
� Constant

Krommyda et al. (2019) � � � Constant
Lashgary et al. (2018) � � � Constant
Lin (2018) � � � Constant
Marchioni and Magni (2018) � �
Montgomery et al. (1973) � � �
Otake and Min (2001) � � �
Otake et al. (1999) � � �
Park (1982) � � � Constant
Pentico and Drake (2009) � � � Constant
Pentico et al. (2014, 2015) � � � Constant
Rosenberg (1979) � � �
San-José and García-Laguna

(2009)
� �

San-José et al. (2009a) � � � Constant
San-José et al. (2009b, 2014) � � � Affine
San-José et al. (2015) � � � Constant
San-José et al. (2017) � � Affine
Schroeder and Krishnan

(1976)
� � �

Sharifi et al. (2015) � � � Linear
Sicilia et al. (2009, 2012) � � � Constant
Taleizadeh (2014, 2017a,

2017b)
� � � Constant

Taleizadeh and Pentico (2013,
2014)

� � � Constant

Taleizadeh et al. (2012, 2013a,
2013b, 2015, 2016)

� � � Constant

Taleizadeh et al. (2020) � � Constant
Tate et al. (1964) � � �
Thinakaran et al. (2019) � � � Constant
Toews et al. (2011) � � � Constant
Trietsch (1995) � � �
Wang et al. (2015) � � � Constant
This paper � � � � Affine

When shortages of this item occur, some customers are willing to wait for the arrival of the next
replenishment, while other customers are not willing to wait and go to buy items from other sellers.
As usual in practice, customers make the decision to wait until the next order or not, accord-
ing to the possible compensation they would receive from the firm, if they decide to wait. It seems
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reasonable that this compensation depends on the time that customers would have to wait to satisfy
their demand. Therefore, both in the case of backorders and in the case of lost sales, the commer-
cial prestige rests on the time elapsed until the arrival of the next order. As a result, we can suppose
that both, backorder unit cost and lost sale unit cost, include a fixed cost and a variable cost which
is proportional to the length of the shortage time. In general, the unit shortage cost for a patient
customer willing to wait is different from another impatient customer unwilling to wait. Thus, four
parameters must be considered to determine the shortage costs. Also, we assume a known ordering
cost, and that the unit holding cost per unit time has a fixed term and a variable component, which
depends on the unit purchasing cost. Then, the inventory model proposed in this paper is based on
the following assumptions:

(1) The item is a single product with a constant demand rate.
(2) The replenishment is instantaneous, and the inventory system is continuously reviewed.
(3) Shortages are allowed, and they are partially backordered.
(4) Ordering cost is fixed regardless of the lot size.
(5) The holding cost is a function based on average inventory.
(6) The backorder cost per unit has a constant cost and a cost which is proportional to the length

of time for which backorder exists. Similarly, the unit goodwill cost also includes a fixed cost
and a cost which is proportional to the length of time for which lost sales exist.

The notation to be used is summarized in Table 2.

Table 2
Notation

λ Demand rate per unit time (> 0).
K Ordering cost (> 0).
c Unit purchasing cost (> 0).
s Unit selling price (s ≥ c).
h0 Fixed unit holding cost per unit time.
i Fraction of the variable holding cost per unit time (> 0).
h Unit holding cost per unit time, that is, h = h0 + ic (> 0).
ω0 Constant cost per backordered unit (≥ 0).
ω Shortage cost per backordered unit and per unit time (≥ 0).
η0 Constant goodwill cost per lost unit (≥ 0).
η Unit goodwill cost per unit time (≥ 0).
ρ Fraction of demand which is backordered (0 ≤ ρ ≤ 1).
β0 Fixed average shortage cost per unit, that is, β0 = ω0ρ + η0(1 − ρ ).
β1 Time-dependent average shortage cost, that is, β1 = ωρ + η(1 − ρ ).
T Length of the inventory cycle where the net stock is positive (≥ 0 , decision variable).
� Length of the inventory cycle when net stock is less than or equal to zero (≥ 0, decision variable).
α Inventory cycle, that is, α = T + � (> 0).
I (t) Net inventory level at time t, with 0 ≤ t ≤ α.
S Maximum level of the stock, that is, S = λT (≥ 0).
b Demanded quantity during the stock-out period, that is, b = λ� (≥ 0).
Q Lot size per cycle, that is, Q = S + ρb = λ(T + ρ�) (≥ 0).
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3. The model

At the beginning of the inventory cycle, there are S units in stock. Next, the inventory level decreases
due to customer demand. At time t = T , the inventory level is zero. Later, the inventory drops into
shortage and begins the stock-out period of length �. At the end of that period, the net inventory
level is −ρb, where b = λ� is the total quantity demanded during the stock-out period and ρ

represents the fraction of backordered demand. Next, to meet the pending demand and replenish
the inventory, Q = S + ρb units are ordered.

From the previous hypotheses, it can easily be seen that the net inventory level I (t) is described
by

I (t) =
{

S − λt = λ(T − t) if 0 ≤ t < T
λρ(T − t) if T ≤ t < α.

At I (T ) = 0, the maximum inventory level is S = λT and the lot size is Q = λ(T + ρ�).
The total profit per cycle PC(T, �) is the difference between the revenue per cycle sQ =

sλ(T + ρ�) and the sum of the ordering cost K, the purchasing cost cQ = cλ(T + ρ�), the
holding cost, the backordering cost, and the lost sale cost per cycle. The holding cost per cy-
cle is given by HC(T ) = ∫ T

0 hI (t)dt = ∫ T
0 (h0 + ic)I (t)dt = (h0 + ic)λT 2/2. The backorder cost is

BC(�) = ∫ T+�

T (ω0ρλ − ωI (t))dt = ω0λρ� + ωλρ�2/2, and the goodwill lost sale cost is given by
LC(�) = ∫ T+�

T (η0(1 − ρ )λ + η
∫ t

T (1 − ρ )λdu)dt = η0λ(1 − ρ )� + ηλ(1 − ρ )�2/2. Thus, the total
profit in a cycle is

PC(T, �) = (s − c)λ(T + ρ� ) − (K + HC(T ) + BC(� ) + LC(� )).

Therefore, the return on inventory investment (ROI) is given by

ROI (T, �) = PC(T, �)
CC(T, �)

, (1)

where CC(T, �) is the total cost during an inventory cycle. This cost is given by CC(T, �) = cλ(T +
ρ�) + K + HC(T ) + BC(�) + LC(�).

4. The optimal policy

To find the optimal inventory policy that maximizes the return on inventory investment, we con-
sider two possible situations, depending on the value of the fraction ρ of demand which is backo-
rdered. Thus, we have to study the following alternative cases: (i) ρ > 0 and (ii) ρ = 0 (full lost sales
case). Next, we analyze the case when ρ > 0.
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4.1. Backlogging case (ρ > 0)

Since ρ > 0 and T + � > 0, it follows that Q = λ(T + ρ�) > 0 and, after a few algebraic manip-
ulations, the ROI defined by Equation (1) can be expressed in the form

ROI (T, �) = s
c + AI (T, � )

− 1, (2)

where AI (T, �) represents the average inventory cost per unit of item, without considering the
purchasing cost. That is,

AI (T, � ) = 1
Q

(K + HC(T ) + BC(� ) + LC(� ))

= 1
λ(T + ρ� )

(
K + (h0 + ic)λ

T 2

2
+ β0λ� + β1λ

�2

2

)
,

where β0 = ω0ρ + η0(1 − ρ ) and β1 = ωρ + η(1 − ρ ).
From (2), it is clear that the optimal inventory policy that minimizes AI (T, �) is the same as the

optimal policy that maximizes the return on inventory investment ROI (T, �). Thus, our goal is to
solve the nonlinear problem

min
(T,� )∈	

AI (T, � ), (3)

where 	 = {(T, �) | T ≥ 0, � ≥ 0 and T + � > 0}.
Note that, in this inventory system, the average inventory cost per unit of item, AI (T, �) is dif-

ferent from the minimum inventory cost per unit time, CC(T, �)/α. Thus, as we show in Section 5,
the optimal inventory policy that maximizes the return on inventory investment is different from
the one for the minimization of the inventory cost per unit time.

To solve the problem (3), we first assume � ∈ [0, ∞) to be fixed and T ≥ 0 to be variable. Thus,
we consider the function AI� (T ) = AI (T, �). It is immediate that the function AI� (T ) is strictly
convex and attains its minimum at the point

T ∗
� =

√
2K + 2β0λ� + λ

(
β1 + (h0 + ic)hρ2

)
�2

λ(h0 + ic)
− ρ�, (4)

with the value

Z(�) = AI� (T ∗
� )

=
√

2K (h0 + ic)
λ

+ 2β0(h0 + ic)� + (h0 + ic)
(
β1 + (h0 + ic)ρ2

)
�2 − (h0 + ic)ρ�

= (h0 + ic)T ∗
� . (5)
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The first derivative of Z(�) is given by

Z′(�) = β0(h0 + ic) + (h0 + ic)
(
β1 + (h0 + ic)ρ2

)
�√

2K (h0+ic)
λ

+ 2β0(h0 + ic)� + (h0 + ic)
(
β1 + (h0 + ic)ρ2

)
�2

− (h0 + ic)ρ.

After some algebraic manipulations, this derivative can be rewritten as

Z′(�) = L(�)
λM(�)N(�)

,

where

L(�) = λβ1
(
β1 + (h0 + ic)ρ2)�2 + 2λβ0β1� + λβ2

0 − 2K (h0 + ic)ρ2, (6)

M(�) = T ∗
� + ρ� and N(�) = β0 + (β1 + (h0 + ic)ρ2)� + (h0 + ic)ρM(�).

As M(�) > 0 and N(�) > 0 for all � ≥ 0, we get sign (Z′(�)) = sign (L(�)). Next, we provide
a result to calculate the optimal value of the decision variable �.

Theorem 1. Let β0 = ω0ρ + η0(1 − ρ ), β1 = ωρ + η(1 − ρ ), and 
 = λβ2
0 − 2K (h0 + ic)ρ2. The op-

timum stock-out period �∗ is determined as follows:

A. If 
 > 0, then �∗ = 0.
B. If 
 = 0 and β1 > 0, then �∗ = 0.
C. If 
 = 0 and β1 = 0, then the function Z(�) is reduced to Z(�) = √

2K (h0 + ic)/λ for all � ≥ 0,
and, consequently, the optimum stock-out period is any point on the interval [0, ∞).

D. If 
 < 0 and β1 > 0, then the optimum stock-out period �∗ is attained at the point

�1 = 1
β1 + (h0 + ic)ρ2

⎛⎝√
2K (h0 + ic)ρ2

(
β1 + (h0 + ic)ρ2

) − λβ2
0 (h0 + ic)ρ2

λβ1
− β0

⎞⎠.

E. If 
 < 0 and β1 = 0, then inf�≥0 Z(�) = lim�→∞ Z(�) = β0/ρ. In this case, the best inventory
policy is �∗ = ∞.

Proof. See Appendix A. �
Remark 1. Note that β1 represents the average shortage cost per unit and per unit time. What does

 mean? Since λ
 = (β0λ)2 − (ρ

√
2K (h0 + ic)λ)2, it follows that λ
 is the difference between the

square of the fixed average cost per unit of time (excluding the loss of profit) if the demand is all
short, β0λ, and the square of the fraction of backordered shortage of the optimum cost if there is
no shortage, ρ

√
2K (h0 + ic)λ. Then, 
 represents the above difference per demanded unit.

4.2. Full lost sales case (ρ = 0)

Now, we assume that all shortages are lost sales, that is, ρ = 0. In this case, if T = 0, then Q =
0 and, from (1), we obtain that the ROI is ROI (0, �) = −1 for all � > 0. On the other hand,
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ROI (T, �) > −1 for all T > 0. Thus, we can assume that T > 0 and, as in the previous subsection,
our aim is to minimize the average inventory cost per unit of item AI (T, �). In this case, as ρ = 0,
we have β0 = η0 and β1 = η. Thus, the function Z(�) is simplified to

Z0(�) =
√

2K (h0 + ic)
λ

+ 2η0(h0 + ic)� + (h0 + ic)η�2.

Next, we show how to determine the optimal policy in this situation of full lost sales.

Theorem 2. Let T0 = √
2K/(λ(h0 + ic)). The inventory policy (T ∗, �∗) that maximizes the return on

inventory investment ROI (T, �) can be determined as follows:

1. If η0 + η > 0, then T ∗ = T0 and �∗ = 0.
2. Otherwise (i.e., η0 = η = 0), each point of the ray R = {(T0, �), � ≥ 0} is an optimal policy.

Proof. See Appendix A. �
Remark 2. In the case that all shortages are lost sales and there exists a positive goodwill cost,
the inventory policy that maximizes the return on inventory investment coincides with the optimal
policy of the classic lot size system.

4.3. Some results related to the optimal policy

Next, we present various results which show the optimal values of other variables in the inventory
system.

Corollary 1. In the cases (i) 
 > 0 and (ii) 
 = 0 and β1 > 0, we have

1. The optimal stock-in period is T0 =
√

2K
λ(h0+ic) .

2. The optimal inventory cycle is α0 = T0.

The optimal lot size is Q0 =
√

2Kλ
h0+ic .

3. The minimum average inventory cost per unit of item is AI0 =
√

2K (h0+ic)
λ

.

4. The maximum return on inventory investment is ROI0 = (s−c)λ−
√

2K (h0+ic)λ

cλ+
√

2K (h0+ic)λ
.

Proof. See Appendix A. �
Remark 3. The cases considered in Corollary 1 assume that the fixed average shortage cost per
unit must be greater or equal than the fraction of backlogged demand times the optimal cost of
the system without shortage. In these cases, the optimal inventory policy consists of not allowing
shortages and the optimal lot size is the economic order quantity.

Corollary 2. If 
 = 0 and β1 = 0, then

1. The optimal stock-in period is T0 =
√

2K
λ(h0+ic) .
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2. The optimal inventory cycle is α = T0 + �, for all � ≥ 0.

The optimal lot size is Q =
√

2Kλ
h0+ic + λρ�, for all � ≥ 0.

3. The minimum average inventory cost per unit of item is AI0 =
√

2K (h0+ic)
λ

.

4. The maximum return on inventory investment is ROI0 = (s−c)λ−
√

2K (h0+ic)λ

cλ+
√

2K (h0+ic)λ
.

Proof. See Appendix A. �
Remark 4. The case considered in Corollary 2 is unlikely to occur in a real-world situation, because
the shortage cost does not depend on the time that customer should wait until the next order arrives,
and, furthermore, the shortage unit cost has to match the fraction of backlogged demand times the
optimal cost of the system without shortage.

Corollary 3. If 
 < 0 and β1 > 0, then

1. The optimal stock-in period is

T1 =
√

2K
λ(h0 + ic)

− β2
0

(h0 + ic)
(
β1 + (h0 + ic)ρ2

)√
β1

β1 + (h0 + ic)ρ2
+ β0ρ

β1 + (h0 + ic)ρ2
.

2. The optimal inventory cycle is

α1 =
√

2K
λ(h0 + ic)

− β2
0

(h0 + ic)
(
β1 + (h0 + ic)ρ2

) β1 + (h0 + ic)ρ√
β1

(
β1 + (h0 + ic)ρ2

) − β0(1 − ρ )
β1 + (h0 + ic)ρ2

.

3. The optimal lot size is

Q1 =
√

2Kλ

(h0 + ic)
− (λβ0)2

(h0 + ic)
(
β1 + (h0 + ic)ρ2

)√
β1 + (h0 + ic)ρ2

β1
.

4. The minimum average inventory cost per unit of item is

AI1 =
√

2K (h0 + ic)
λ

− β2
0 (h0 + ic)

β1 + (h0 + ic)ρ2

√
β1

β1 + (h0 + ic)ρ2
+ β0(h0 + ic)ρ

β1 + (h0 + ic)ρ2
.

5. The maximum return on inventory investment is

ROI1 =
√

λ((s−c)(β1+(h0+ic)ρ2)−β0(h0+ic)ρ)−
√

(2K(β1+(h0+ic)ρ2)−λβ2
0 )(h0+ic)β1√

λ(c(β1+(h0+ic)ρ2)−β0(h0+ic)ρ)+
√

(2K(β1+(h0+ic)ρ2)−λβ2
0 )(h0+ic)β1

.

Proof. See Appendix A. �
Remark 5. If 
 < 0 and β1 > 0, it is obvious that ROI1 > ROI0 (see Lemma 1 in Appendix A for
more details). That is, the optimal return on inventory investment is greater than the corresponding
return on inventory investment associated with the EOQ model without shortage.
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Note that if 
 < 0 and β1 = 0, then Theorem 1 shows that the best inventory policy is �∗ = ∞.
Obviously, this solution should be interpreted as the absence of an inventory system (see, for in-
stance, Sicilia et al., 2009). For this reason, we have not considered this situation in the previ-
ous corollaries.

5. Comparison of the best ROI policy with the maximum profit policy

In this section, we use several numerical examples to show that, in general, the optimal inventory
policy for maximizing the return on inventory investment ROI is different from the optimal policy
for maximizing the profit per unit time.

San-José et al. (2009b) determined the optimal policy (T #, �#) that maximizes the average profit
per unit of time (i.e., the function B(T, �) = PC(T, �)/α) for the inventory system with the same
assumptions as the one studied here.

Note that if ρ = 1 (full backordering case), then the optimal inventory policy that maximizes the
return on inventory investment ROI (T, �) is the same as the optimal policy that maximizes the
average profit per unit time and also minimizes the total cost per unit time. However, this is not
generally true when there is partial backlogging (0 < ρ < 1) in the inventory system.

For example, let us consider the following parameters for the inventory problem: λ = 1000, K =
1000, c = 4, s = 8, h0 = 0.8, i = 0.3, ω0 = 0.25, ω = 2, η0 = 0, η = 0, and ρ = 0.6. Then h = 2,
β0 = 0.15 , β1 = 1.2, and 
 = −1417.5. Applying Corollary 3 proposed in this paper, we obtain
that the inventory policy that maximizes the ROI is T ∗ = T1 = 0.835125 and �∗ = �1 = 0.710125.
However, using Theorem 1 of San-José et al. (2009b), we obtain the inventory policy that maximizes
the profit per unit time, which is T # = 0.989093 and �# = 0.190155.

In this same situation of partial backlogging, the differences between the two optimal policies can
be even more pronounced. For instance, assume the same parameters as in the previous example,
but modifying the values of ω and ρ to ω = 0 and ρ = 0.5, respectively. Now, β0 = 0.125, β1 = 0,
and 
 = −984.375. From Theorem 1 given above, we obtain that the best policy that maximizes
the ROI is �∗ = ∞ (shortage period is very large) and, from (4), T ∗ = 0.125. However, applying
Theorem 1 of San-José et al. (2009b), we deduce that the inventory policy that maximizes the profit
per unit time is T # = 1 and �# = 0 (shortage period is null).

These differences between the two optimal policies can also occur in the case of full lost sales
(ρ = 0). It is enough for this to now consider the following values for the parameters: λ = 1000,
K = 2000, c = 4, s = 8, h0 = 6, i = 0.5, η0 = 0.05, η = 0, and ρ = 0. Then h = 8, β0 = η0 = 0.05,
and β1 = η = 0. Applying Theorem 2 proposed in this paper, we get T ∗ = 0.707107 and �∗ = 0.
However, from Theorem 1 given by San-José et al. (2009b), it is concluded that the inventory policy
that maximizes the average profit is T # = 0.50625 and �# = ∞.

In summary, the two approaches generally lead to different inventory policies. This is due, among
other reasons, to the fact that the inventory policy that maximizes the ROI does not depend on the
unit purchasing cost or the unit selling price, unlike what happens with the optimal inventory policy
of the maximum profit problem. Obviously, using one or the other approach will rest on what is the
ultimate objective of the inventory manager.

In Appendix B, it is also compared the optimal inventory policy that maximizes the ROI with
the one that maximizes the NPV. Thus, in that appendix, we have solved a numerical example
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which shows that the optimal solution for maximizing the ROI is different from the optimal policy
obtained using the NPV approach.

5.1. Numerical sensitivity analysis

Let us consider a firm, which is dedicated to the storage and commercialization of chemical prod-
ucts. It supplies liquid nitrogen in bulk (among other formats) to small plants in different industrial
sectors (food, health, cosmetics, etc.). The inventory manager wishes to maximize the ROI from
storing this product. It can be accepted that the inventory system of that product satisfies the as-
sumptions made in this paper. Thus, its demand is roughly stable over time. The inventory system
allows shortages, but not all the customers have the same behavior towards them. There are some
customers who cannot wait for the next order, while other customers who are willing to wait to
meet their demand in the system. It can be assumed that, at any time, the fraction of backordered
demand ρ is fixed.

To illustrate the behavior of the optimal inventory policy that maximizes the ROI for this firm,
we include the following numerical example.

Example 1. We consider a unit purchasing cost c = 10, and a unit selling price s = 20 currency
units. The demand rate is λ = 1000 items per unit time. The replenishment cost for the inventory,
including shipping and handling costs, is K = 500 currency units. In addition, the storage of a
unit has a fixed cost h0 = 1.5 currency units and a carrying charge i = 30% of the purchasing cost.
Thus, the holding cost per unit and per unit time is h = 4.5 currency units. Also, we suppose that
the backorder cost parameters are ω0 = 0.1 and ω = 5, and there is no goodwill cost, that is, η0 =
η = 0.

If ρ = 0, applying Theorem 2, we obtain that the maximum return on inventory investment is at-
tained at any point of the ray R = {(0.471405, �), � ≥ 0}. In this case, the policy that maximizes the
total inventory profit per unit time is unique and is the vertex of the ray, that is, T # = 0.471405 and
�# = 0. In this case, the maximum inventory profit per unit time is B# = B(T #, �#) = 7878.68.

However, if ρ > 0, then β1 = 5ρ > 0, 
 = −4490ρ2 < 0 and, now applying Theorem 1, we ob-
tain �∗(ρ ) = �1(ρ ). The optimal policy (T #, �#) that maximizes the average profit per unit time
B(T, �) and the optimal inventory policy (T ∗, �∗) that maximizes the return on inventory invest-
ment ROI (T, �) are shown in Table 3 for different values of the fraction of backordered demand
ρ. The value �ROI (%) is defined as �ROI = 100[ROI (T ∗, �∗)/ROI (T #, �#) − 1].

From these results, we can make the following comments: if ρ > 0 increases, then (i) the optimal
stock-in period T ∗ and the optimal stock-out period �∗ are strictly decreasing; (ii) the maximum
return on inventory investment ROI∗ is strictly increasing; (iii) there is a value, say ρ̃, such that
�ROI is strictly increasing when ρ < ρ̃, while �ROI is strictly decreasing if ρ > ρ̃; and (iv), as
expected, the profit per unit time is less for the solution with a maximum ROI than for the one
with maximum profit. This implies that the solution with maximum ROI has, in general, a total
inventory cost per unit of time (i.e., CC(T, �)/α) less than the solution for the problem of maximum
profit per unit time.

Example 2. Next, we analyze the fluctuations of the optimal inventory policies when some varia-
tions or changes in the parameters of the inventory system are allowed. Thus, first we consider the
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Table 3
Numerical results associated with Example 1

ρ T ∗ �∗ B(T ∗, �∗) ROI∗(%) T # �# B(T #, �#) ROI#(%) �ROI (%)

0 0.471405 � ≥ 0 B0(�)
a

64.9985 0.471405 0.00000 7878.68 64.9985 0.00000
0.1 0.453317 0.387985 4656.20 66.1140 0.471405 0.00000 7878.68 64.9985 1.71610
0.3 0.422929 0.360637 5488.22 68.0223 0.471405 0.00000 7878.68 64.9985 4.65205
0.7 0.377663 0.319897 7158.55 70.9477 0.471405 0.00000 7878.68 64.9985 9.15282
0.8 0.368578 0.311720 7576.98 71.5472 0.471306 0.010219 7879.12 65.4630 9.29402
0.85 0.364292 0.307863 7786.28 71.8315 0.458536 0.112567 7936.59 69.1817 3.83015
0.9 0.360163 0.304146 7995.63 72.1062 0.431664 0.189442 8057.51 71.1011 1.41365
0.95 0.356181 0.300563 8205.03 72.3719 0.395605 0.249520 8219.78 72.1448 0.31481
1 0.352339 0.297105 8414.47 72.6292 0.352339 0.297105 8414.47 72.6292 0.00000

aB0(�) = 1000( 10
√

2−3√
2+3�

).

Table 4
Effects of the parameters λ and ρ

� �T ∗(%) ��∗(%) �ROI∗(%) �T #(%) ��#(%) �B#(%)

λ +20% −8.50129 −9.04674 2.93532 −8.69383 −100.000 22.8082
+10% −4.54061 −4.83194 1.55889 −4.63382 −100.000 11.3720
+5% −2.35138 −2.50225 0.804757 −2.38960 −100.000 5.67539
−5% 2.53460 2.69722 −0.861454 2.51122 130.293 −5.64217

−10% 5.27752 5.61612 −1.78676 5.16274 267.864 −11.2507
−20% 11.5156 12.2545 −3.86471 10.9849 569.943 −22.3655

ρ +20% −3.57472 −3.80408 1.22558 −17.7836 2443.61 4.78693
+10% −1.83994 −1.95799 0.629258 −5.85916 1475.92 1.57715
+5% −0.933776 −0.993687 0.318938 −1.87484 825.219 0.504664
−5% 0.962823 1.02460 −0.327973 0.0208934 −100.000 −0.00562401

−10% 1.95624 2.08175 −0.665428 0.0208934 −100.000 −0.00562401
−20% 4.04163 4.30094 −1.37073 0.0208934 −100.000 −0.00562401

same parameters as in Example 1 together with the fraction of backordered demand ρ = 0.8. Then,
we evaluate the percentage variations of the optimal policies assuming different values in each of
the parameters while keeping all the others fixed. More specifically, for each input parameter, we
have varied its value by ±20%, ±10%, and ±5%. As a result, Table 4 shows the effects of the pa-
rameters related to the demand, that is, the demand rate λ and the fraction of backlogged demand
ρ. From these computational results, we can establish the following managerial insights:

1. The optimal inventory policy that maximizes the return on inventory investment ROI is more
sensitive to fluctuations in the demand rate λ than to changes in the fraction of backordered
demand ρ.

2. The policy that gives a major ROI is more sensitive to negative than a positive variations in the
parameter λ. This is also true for the parameter ρ.

3. The maximum ROI is not very sensitive to the changes considered. This does not usually happen
regarding the maximum inventory profit per unit of time when changes in λ occur.
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4. The maximum ROI decreases (increases) when the value of one of the two parameters decreases
(increases). However, the stock-in and the stock-out periods decrease (increase) when the value
of each parameter increases (decreases).

5. When the parameter λ varies, the behavior of the best stock-in period in the two policies is
similar. However, it does not usually happen regarding the stock-out period.

Table 5 contains the percentage variations of the optimal policies with respect to the parameters
K, h0, i, ω, ω0, c, and s. From these computational results, we can establish the following managerial
insights:

1. As expected, the optimal policy obtained maximizing the ROI does not depend on the param-
eter s. However, this does not usually happen if the goal is the maximization of the profit per
unit time.

2. Changes in the constant cost per backordered unit (w0) have little effects on the policy that
maximizes ROI .

3. The maximum ROI is very insensitive to changes in the parameters K , h0, i, ω, or ω0. However,
it is very sensitive to changes in the purchasing cost or the selling price.

4. The maximum ROI increases (decreases) when the value of the selling price s increases (de-
creases), while it decreases (increases) when the value of any of the other parameters increases
(decreases).

6. Conclusions

In this article, an inventory model with the constant demand rate and fixed partial backlogging is
studied. We assume that the shortage costs (backorder cost and goodwill lost sales cost) have an
affine structure: a fixed cost plus a linear cost that depends on the period of time when shortages
exist. Instead of the maximization of the profit per unit time or the minimization of the average
inventory cost per unit time, we consider the maximization of the return on inventory investment,
defined as the ratio given by the average profit/average inventory cost, as our objective. In many
real-world situations, a firm cannot have enough financial resources to invest in several projects, at
least one of them being the commercialization of some product (purchase, holding, replenishing,
and sale). Thus, the optimal inventory policy that maximizes the ROI is a better alternative to the
one that maximizes the profit per unit time because, although this criterion reduces the profit, it
requires a lower investment cost in inventory management. Therefore, it is more affordable. The
optimal inventory policies are determined in a closed form for the different possible cases of the
inventory system. Also, it is shown that the optimal policy that maximizes the return on inventory
investment is, in general, different from the one that maximizes the profit per unit time. Moreover,
the policy that maximizes the ROI does not depend on the unit selling price, and, hence, the in-
ventory manager does not need to change his/her inventory policy if this price changes. However,
this does not usually happen if the objective is the maximization of the profit per unit time. The
numerical sensitivity analysis shows that the maximum return on inventory investment ROI∗ is not
very sensitive to changes in the parameters related to demand (the demand rate per unit time and
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Table 5
Effects of the parameters K, h0, i, ω, ω0, c and s

� �T ∗(%) ��∗(%) �ROI∗(%) �T #(%) ��#(%) �B#(%)

K +20% 9.31191 9.90936 −3.13480 8.95745 464.749 −2.41114
+10% 4.76203 5.06756 −1.61341 4.66921 242.258 −1.25684
+5% 2.40940 2.56398 −0.819046 2.38863 123.932 −0.642964
−5% −2.47048 −2.62899 0.845661 −2.51169 −100.000 0.676089

−10% −5.00694 −5.32818 1.72014 −5.11185 −100.000 1.37599
−20% −10.3010 −10.9619 3.56596 −10.5386 −100.000 2.83675

h0 +20% −4.45262 2.04021 −0.652186 −3.29573 163.498 −0.848235
+10% −2.28129 1.03862 −0.332455 −1.67455 83.1685 −0.431482
+5% −1.15494 0.524073 −0.167868 −0.844095 41.9485 −0.217630
−5% 1.18471 −0.533886 0.171253 0.858048 −42.6964 0.221511

−10% 2.40045 −1.07788 0.346001 1.73037 −86.1610 0.447007
−20% 4.93038 −2.19747 0.706447 3.53146 −100.000 0.907297

i +20% −8.49750 3.94041 −1.25643 −6.38728 316.203 −1.64047
+10% −4.45262 2.04021 −0.652186 −3.29573 163.498 −0.848235
+5% −2.28129 1.03862 −0.332455 −1.67455 83.1685 −0.431482
−5% 2.40045 −1.07788 0.346001 1.73037 −86.1610 0.447007

−10% 4.93038 −2.19747 0.706447 3.53146 −100.000 0.907297
+20% 10.4266 −4.57265 1.47472 7.43967 −100.000 1.85345

ω +20% 3.33127 −13.7125 −1.13095 0.00342069 −16.5188 −0.000920763
+10% 1.77327 −7.37542 −0.603346 0.00186284 −9.00304 −0.000501440
+5% 0.916293 −3.83325 −0.312144 0.000974887 −4.71373 −0.000262416
−5% −0.982145 4.16299 0.335482 −0.00107522 5.20443 0.000289423

−10% −2.03770 8.70173 0.697088 −0.00226715 10.9804 0.000610270
−20% −4.40575 19.1395 1.51230 −0.00508633 24.6701 0.00136912

ω0 +20% 0.484800 −0.767299 −0.165253 0.0129833 −38.4680 −0.00349479
+10% 0.242854 −0.383166 −0.0828098 0.00725151 −19.1946 −0.00195194
+5% 0.121541 −0.191462 −0.0414508 0.00381459 −9.58749 −0.00102679
−5% −0.121768 0.191220 0.0415426 −0.00418995 9.56801 0.00112784

−10% −0.243763 0.382199 0.0831771 −0.00875306 19.1167 0.00235612
−20% −0.488433 0.763432 0.166722 −0.0189900 38.1563 0.00511166

c +20% −8.49750 3.94041 −36.0248 −9.09245 1135.67 −26.1988
+10% −4.45262 2.04021 −19.4944 −4.16487 604.667 −13.2905
+5% −2.28129 1.03862 −10.1657 −1.95623 312.701 −6.69901
−5% 2.40045 −1.07788 11.1214 1.73078 −100.000 6.79278

−10% 4.93038 −2.19747 23.3407 3.53146 −100.000 13.5991
−20% 10.4266 −4.57265 51.8000 7.43967 −100.000 27.2370

s +20% 0.00000 0.00000 47.9536 0.0208934 −100.000 50.7614
+10% 0.00000 0.00000 23.9768 0.0208934 −100.000 25.3779
+5% 0.00000 0.00000 11.9884 0.0208934 −100.000 12.6861
−5% 0.00000 0.00000 −11.9884 −0.628566 456.657 −12.5226

−10% 0.00000 0.00000 −23.9768 −1.98704 875.444 −24.8487
−20% 0.00000 0.00000 −47.9536 −6.40137 1624.95 −49.0440

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies



L.-A. San-José et al. / Intl. Trans. in Op. Res. 0 (2021) 1–23 17

the fraction of backordered demand). However, it is very sensitive to changes in the purchasing cost
or in the selling price.

With respect to future research, the model can be extended in several ways. For example, (i) to
consider a power demand pattern and obtain the optimal policy for this situation; (ii) to analyze
the case of perishable or deteriorating items; (iii) to study the case of integer lot size; (iv) to assume
a finite rate of replenishment; (v) to develop the inventory system with a price-dependent demand
rate; and (vi) to consider stochastic demand in the system.
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Appendix A

In this appendix, we give the proofs of the main results.

Proof of Theorem 1
First, from (6), we obtain L(0) = 
. According to the definition of the function L(�), two cases are
feasible: (i) β1 > 0 and (ii) β1 = 0.

(i) Suppose β1 > 0. Since the first derivative of L(�) is L′(�) = 2λβ1[β0 + (β1 + (h0 + ic)ρ2)�] >

0, the function L(�) is strictly increasing with lim�→∞ L(�) = ∞.
Thus, if 
 = L(0) ≥ 0 (cases A and B), then L(�) > 0 for all � > 0 and, therefore, the func-

tion Z(�) is strictly increasing on its domain. Consequently, it attains its minimum at the point
�∗ = 0.

If 
 < 0 (case D), as L(�) is strictly increasing with lim�→∞ L(�) = ∞, then L(�) has a
unique root on the interval (0, ∞). A trivial verification shows that this root is �1. Moreover,
since L(�) < 0 for � ∈ (0, �1) and L(�) > 0 for � > �1, it follows that Z(�) attains its mini-
mum at �1.

(ii) Now, we consider that β1 = 0. From (6), we obtain L(�) = 
 for all � ≥ 0.
Hence, if 
 > 0 (case A), then the function Z(�) is strictly increasing on (0, ∞) and, there-

fore, attains its minimum at �∗ = 0.

If 
 = 0 (case C), then Z(�) =
√

β2
0/ρ2 + 2(h0 + ic)β0� + (h0 + ic)2ρ2�2 − (h0 + ic)ρ� =

β0/ρ = √
2K (h0 + ic)/λ for all � ≥ 0. Therefore, the minimum is attained at any point in the

interval [0, ∞).
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Finally, if 
 < 0 (case E ), then the function Z(�) is strictly decreasing with lim�→∞ Z(�) =
β0/ρ. �

Proof of Theorem 2

The derivative of the function Z0(�) is Z′
0(�) = (h0 + ic)(η0 + η�)√

2K (h0+ic)
λ

+ 2η0(h0 + ic)� + (h0 + ic)η�2
. There-

fore

1. If η0 + η > 0, then Z′
0(�) > 0 for all � ∈ [0, ∞) and Z0(�) is a strictly increasing function on

the interval [0, ∞). Hence, it attains its minimum at the point �∗ = 0 and, from (4), the length
of the inventory cycle with positive net stock is T ∗ = T ∗

0 = √
2K/(λ(h0 + ic)) = T0.

2. If η0 = 0 and η = 0, then Z0(�) = √
2K (h0 + ic)/λ for all � ≥ 0. As Z0(�) is a constant

function on [0, ∞), it reaches its minimum at any point � ≥ 0. Finally, from (4), T ∗ =√
2K/(λ(h0 + ic)) = T0. �

Proof of Corollary 1
If 
 > 0, we can distinguish two scenarios: (a) ρ > 0 and (b) ρ = 0. In the first one, we are in case
(A) of Theorem 1 and, in the second, as necessarily η0 > 0, we are in case (1) of Theorem 2. Thus,
in both scenarios, we have that the optimal inventory policy is �∗ = 0.

If 
 = 0 and β1 > 0, we fall into case (B) of Theorem 1 when ρ > 0, and in case (1) of Theorem 2
when ρ = 0. Therefore, in this situation, we also obtain �∗ = 0.

The rest of the proof follows from (4), (5), the relation Q = λ(T + ρ�), and (2). �

Proof of Corollary 2
It follows immediately, taking into account that we are now in case (C) of Theorem 1 when ρ > 0,
and in case (2) of Theorem 2 if ρ = 0. �

Proof of Corollary 3
The optimal stock-in period follows from (4). The optimal inventory cycle α1 is calculated as
α1 = T1 + �1. The economic lot size follows from Q = λ(T + ρ�), the minimum average inven-
tory cost per unit of item follows from (5) and the maximum return on inventory investment follows
immediately from (2). �
Lemma 1. If 
 < 0 and β1 > 0, then ROI1 > ROI0.

Proof. It is obvious that (ρ
√

2Kh/λ − β0)2 > 0. This last inequality is equivalent to

β2
0 − 2ρβ0

√
2Kh
λ

> −2Kh
λ

ρ2 ⇔ h
β1 + hρ2

(
β2

0 − 2ρβ0

√
2Kh
λ

)
> − 2Kh2ρ2

λ
(
β1 + hρ2

)
⇔ 2Kh

λ
+ h

β1 + hρ2

(
β2

0 − 2ρβ0

√
2Kh
λ

)
− β2

0β1h(
β1 + hρ2

)2 >
2Kh
λ

− 2Kh2ρ2

λ
(
β1 + hρ2

) − β2
0β1h(

β1 + hρ2
)2 .
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Thus, we have

(√
2Kh
λ

− β0hρ

β1 + hρ2

)2

>

(
2Kh
λ

− β2
0 h

β1 + hρ2

)
β1

β1 + hρ2
. (A1)

Taking into account that 
 < 0, it follows that ρ > 0 and β0 <
√

2Kh/λρ, hence β0/ρ <
√

2Kh/λ .
Since β1 > 0, we have hρ2/(β1 + hρ2) < 1. Thus, we see that β0hρ/(β1 + hρ2) < β0/ρ <

√
2Kh/λ.

Hence, Equation (A1) is equivalent to

√
2Kh
λ

− β0hρ

β1 + hρ2
>

√
2Kh
λ

− β2
0 h

β1 + hρ2

√
β1

β1 + hρ2

and, taking into account that h = h0 + ic, we have AI0 > AI1. Now, from (2), the lemma
follows. �

Appendix B

In this appendix, we develop a mathematical model to represent the inventory system analyzed in
this paper, but now under the NPV approach. As we will see later, the objective functions pro-
posed in the previous sections are very different from the objective function corresponding to the
NPV criterion.

A NPV model

From the formulation of the NPV given by Dural-Selcuk and Cimen (2013) and the hypotheses
given in Section 2, a NPV model for an inventory system with constant demand, under linear
holding cost h0, partial backlogging, and affine shortage costs can be developed as follows.

The revenue and the relevant inventory costs of the system for each cycle are obtained below.

• Revenue: s(
∫ T

0 λe−rtdt + λρ�e−r(T+�) ) = sλ( 1−e−rT

r + ρ�e−r(T+�) ), where r denotes the discount
rate.

• Ordering cost: K
• Purchasing cost: cQ
• Holding cost: h0

∫ T
0 λ(T − t)e−rtdt = h0

λ
r2 (e−rT + rT − 1)

• Backordering cost: ω0λρ�e−r(T+�) + ωe−r(T+�)
∫ T+�

T λρ(t − T )er(T+�−t)dt = ω0λρ�e−r(T+�) +
ωλρe−rT

r2 (1 − (1 + r�)e−r� )

• Lost sale cost: η0λ(1 − ρ )�e−r(T+�) + ηλ(1−ρ )e−rT

r2 (1 − (1 + r�)e−r� ).
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Thus, the NPV of the corresponding total profit of the inventory system is

sλ
(

1 − e−rT

r
+ ρ�e−r(T+� )

)
− K − cλ(T + ρ� ) − h0

λ

r2

(
e−rT + rT − 1

)
−β0λ�e−r(T+� ) − β1λe−rT

r2

(
1 − (1 + r�)e−r�)

,

where, let us remember that, β0 = ω0ρ + η0(1 − ρ ) and β1 = ωρ + η(1 − ρ ).
If we now consider a planning horizon of length H , the NPV for this planning horizon is (see

Gurnani, 1983):(
1 − e−rH

1 − e−r(T+�)

){
sλ

(
1 − e−rT

r
+ ρ�e−r(T+� )

)
− K − cλ(T + ρ� )

−h0
λ

r2

(
e−rT + rT − 1

) − β0λ�e−r(T+� ) − β1λe−rT

r2

(
1 − (1 + r�)e−r�)}

.

Therefore, the NPV for an infinite planning horizon is given by(
1

1 − e−r(T+�)

){
sλ

(
1 − e−rT

r
+ ρ�e−r(T+� )

)
− K − cλ(T + ρ� )

−h0
λ

r2

(
e−rT + rT − 1

) − β0λ�e−r(T+� ) − β1λe−rT

r2

(
1 − (1 + r�)e−r�)}

.

In order to compare the NPV approach to the profit per unit time and the return on inventory
investment, we use the concept of annuity stream (see Van der Laan and Teunter, 2002). Thus, the
total annuity stream for our inventory system is given by

AS(T, �) =
{

r
1 − e−r(T+�)

}{
sλ

(
1 − e−rT

r
+ ρ�e−r(T+� )

)
− K − cλ(T + ρ� )

−h0
λ

r2

(
e−rT + rT − 1

) − β0λ�e−r(T+� )

−β1λe−rT

r2

(
1 − (1 + r�)e−r�)}

.

Therefore, the inventory problem would be to determine the policy (T, �) such that maximizes the
annuity stream AS(T, �).

Numerical example
Consider the same parameters as in Example 1 of Section 5 , but modifying the value of i to
i = 0.15. As usual in the literature, we suppose that the discount rate r is equal to the inventory op-
portunity cost rate i. Thus, we have λ = 1000, K = 500, c = 10, s = 20, h0 = 1.5, i = 0.15, ω0 = 0.1
, ω = 5, η0 = 0, η = 0, and r = 0.15.
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Table B.1
Comparison of optimal policies under NPV, ROI and maximum profit criteria

ρ T ∗ �∗ B(T ∗, �∗ ) ROI∗(%) T # �# B(T #, �# ) ROI#(%) T N �N B(T N , �N ) ROIN (%)

0.00 0.577350 � ≥ 0 B0(�)
a

70.4732 0.577350 0.000000 8267.95 70.4732 0.569136 0.000000 8267.77 70.4706
0.10 0.562606 0.317564 5613.06 71.1183 0.577350 0.000000 8267.95 70.4732 0.569136 0.000000 8267.77 70.4706
0.30 0.536444 0.301866 6275.70 72.2752 0.577350 0.000000 8267.95 70.4732 0.569136 0.000000 8267.77 70.4706
0.70 0.494122 0.276473 7600.85 74.1801 0.577350 0.000000 8267.95 70.4732 0.569136 0.000000 8267.77 70.4706
0.80 0.485133 0.271080 7932.00 74.5902 0.577350 0.000000 8267.95 70.4732 0.569136 0.000000 8267.77 70.4706
0.85 0.480835 0.268501 8097.55 74.7869 0.575962 0.033620 8272.11 71.5431 0.569136 0.000000 8267.77 70.4706
0.90 0.476658 0.265995 8263.07 74.9785 0.555598 0.128177 8333.21 73.7982 0.569136 0.000000 8267.77 70.4706
0.92 0.475021 0.265013 8329.28 75.0537 0.542377 0.159811 8372.87 74.3397 0.565005 0.008611 8279.86 70.7915
0.94 0.473402 0.264041 8395.48 75.1282 0.526864 0.188636 8419.41 74.7447 0.553078 0.029763 8315.87 71.5476
0.96 0.471800 0.263080 8461.67 75.2019 0.509301 0.214980 8472.10 75.0377 0.539315 0.049797 8358.64 72.2208
0.98 0.470217 0.262130 8527.86 75.2749 0.489858 0.239096 8530.43 75.2350 0.523843 0.068826 8407.65 72.8194
1.00 0.468650 0.261190 8594.05 75.3471 0.468650 0.261190 8594.05 75.3471 0.506748 0.086946 8462.53 73.3483

aB0(�) = 1000( 10−√
3

1+√
3�

).

Table B.1 of this appendix shows, for different values of the fraction of the backordered demand,
the following inventory strategies: the optimal policy (T ∗, �∗) that maximizes the return on inven-
tory investment, the policy (T #, �#) that maximizes the average profit per unit time, and the policy
(T N, �N ) that maximizes the annuity stream. As expected, the policy (T N, �N ) is different from
the one that maximizes the return on inventory investment.

From this numerical example, we can make the following comments: (i) the policy (T N, �N )
provides lower ROI than the inventory policy (T #, �#) that maximizes the profit per unit time;
(ii) the policy that maximizes the annuity stream is not very sensitive to fluctuations in the frac-
tion of backordered demand ρ; (iii) in the strictly partial backlogging case (0 < ρ < 1), the policy
(T N, �N ) is closer to the policy (T #, �#) that maximizes the profit per unit time, than to the policy
(T ∗, �∗) that maximizes the return on inventory investment; (iv) the optimal stock-out period with
the NPV approach never is greater than those obtained with the other two criteria; and (v) in the
backlogging case (ρ > 0), the policy that maximizes the annuity stream provides greater profit per
unit time than the one that maximizes the return on inventory investment, except for high values of
the parameter ρ.
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