
Computer Methods and Programs in Biomedicine 207 (2021) 106143

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

A clinically viable vendor-independent and device-agnostic solution

for accelerated cardiac MRI reconstruction

Elena Martín-González

a , Elisa Moya-Sáez

a , Rosa-María Menchón-Lara

a ,
Javier Royuela-del-Val c , César Palencia-de-Lara

b , Manuel Rodríguez-Cayetano

a ,
Federico Simmross-Wattenberg

a , ∗, Carlos Alberola-López

a

a Laboratorio de Procesado de Imagen (Image Processing Laboratory), Universidad de Valladolid, Valladolid 47011, Spain
b Departamento de Matemática Aplicada, Universidad de Valladolid, Valladolid, Spain
c Health Time Group, Córdoba, Spain

a r t i c l e i n f o

Article history:

Received 18 December 2020

Accepted 25 April 2021

Keywords:

Magnetic resonance imaging

GPU

OpenCLIPER

OpenCL

a b s t r a c t

Background and objective : Recent research has reported methods that reconstruct cardiac MR images ac-

quired with acceleration factors as high as 15 in Cartesian coordinates. However, the computational cost

of these techniques is quite high, taking about 40 min of CPU time in a typical current machine. This de-

lay between acquisition and final result can completely rule out the use of MRI in clinical environments

in favor of other techniques, such as CT. In spite of this, reconstruction methods reported elsewhere can

be parallelized to a high degree, a fact that makes them suitable for GPU-type computing devices. This

paper contributes a vendor-independent, device-agnostic implementation of such a method to reconstruct

2D motion-compensated, compressed-sensing MRI sequences in clinically viable times.

Methods: By leveraging our OpenCLIPER framework, the proposed system works in any computing device

(CPU, GPU, DSP, FPGA, etc.), as long as an OpenCL implementation is available, and development is sig-

nificantly simplified versus a pure OpenCL implementation. In OpenCLIPER, the problem is partitioned in

independent black boxes which may be connected as needed, while device initialization and maintenance

is handled automatically. Parallel implementations of both a groupwise FFD-based registration method, as

well as a multicoil extension of the NESTA algorithm have been carried out as processes of OpenCLIPER.

Our platform also includes significant development and debugging aids. HIP code and precompiled li-

braries can be integrated seamlessly as well since OpenCLIPER makes data objects shareable between

OpenCL and HIP. This also opens an opportunity to include CUDA source code (via HIP) in prospective

developments.

Results : The proposed solution can reconstruct a whole 12–14 slice CINE volume acquired in 19–32 coils

and 20 phases, with an acceleration factor of ranging 4–8, in a few seconds, with results comparable to

another popular platform (BART). If motion compensation is included, reconstruction time is in the order

of one minute.

Conclusions : We have obtained clinically-viable times in GPUs from different vendors, with delays in some

platforms that do not have correspondence with its price in the market. We also contribute a paral-

lel groupwise registration subsystem for motion estimation/compensation and a parallel multicoil NESTA

subsystem for l1 − l2 -norm problem solving.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

G

M

(

h

0

∗ Corresponding author.

E-mail addresses: emargon@lpi.tel.uva.es , marcma@lpi.tel.uva.es (E. Martín-

onzález), emoysae@lpi.tel.uva.es (E. Moya-Sáez), rmenchon@lpi.tel.uva.es (R.-M.

enchón-Lara), j.royuela.v@htime.org (J. Royuela-del-Val), palencia@mac.uva.es

C. Palencia-de-Lara), manrod@lpi.tel.uva.es (M. Rodríguez-Cayetano),

f

c

ttps://doi.org/10.1016/j.cmpb.2021.106143

169-2607/© 2021 The Authors. Published by Elsevier B.V. This is an open access article u
edsim@tel.uva.es , fedesim@lpi.tel.uva.es (F. Simmross-Wattenberg),

arlos@lpi.tel.uva.es (C. Alberola-López).

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cmpb.2021.106143
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106143&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:emargon@lpi.tel.uva.es
mailto:marcma@lpi.tel.uva.es
mailto:emoysae@lpi.tel.uva.es
mailto:rmenchon@lpi.tel.uva.es
mailto:j.royuela.v@htime.org
mailto:palencia@mac.uva.es
mailto:manrod@lpi.tel.uva.es
mailto:fedsim@tel.uva.es
mailto:fedesim@lpi.tel.uva.es
mailto:carlos@lpi.tel.uva.es
https://doi.org/10.1016/j.cmpb.2021.106143
http://creativecommons.org/licenses/by/4.0/

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

1

m

f

d

d

a

f

i

a

t

c

i

p

s

a

i

P

w

n

f

a

s

a

e

t

t

p

h

v

t

a

c

r

p

v

o

s

v

l

t

N

O

i

a

w

i

s

p

p

i

t

c

c

H

i

v

C

l

l

t

u

p

C

s

h

m

t

t

e

s

l

i

l

v

t

m

k

o

d

C

o

l

v

s

i

p

i

d

A

t

2

i

r

t

t

B

c

s

2

d

b

r

t

r

s

a

t

C

a

c

c

G

s

. Introduction

Magnetic resonance (MR) is a high-quality and highly versatile

edical imaging modality. Not only anatomical images with dif-

erent contrasts can be acquired, but also a number of properly-

esigned pulse sequences provide additional information, such as

iffusion, perfusion, fMRI and a few others. Dynamic imaging is

lso possible and MR currently constitutes the golden standard for

unctional studies of the heart [1] . However, its major drawback

s its inherent slowness relative to other alternatives such as CT

nd US. A complete study in MRI may take 30–45 min, whereas CT

akes a few minutes and US is observed in real time. This has the

onsequence of patient discomfort, which leads to motion artifacts

n the images, the need of synchronization for dynamic studies and

oses additional difficulties for imaging non-cooperative patients,

uch as children or the elderly.

This being the case, the MR community is doing a consider-

ble effort to increase the velocity of MR acquisition and to dimin-

sh the need of additional hardware (such as navigators, ECG or

PG synchronization, etc.). Apart from improvements in the hard-

are of the scanners —that provide higher and more homoge-

eous fields, more intense and faster gradients, etc.—, many dif-

erent software solutions have been described, which include par-

llel imaging (PI) and compressed sensing (CS). In terms of recon-

truction [2] , different algorithms are capable of reconstructing im-

ges from undersampled k-space information; leaving aside mod-

rn deep learning-based approaches, for which their bottleneck is

he training stage, classical algorithms are optimization-based and

hey may be computationally demanding, depending on their com-

lexity. Hence fast implementations and appropriate computing

ardware make a difference so as to obtain solutions in clinically

iable times. Here, clinical viable time is interpreted as the time

aken to reconstruct an image that is compatible with repeating an

cquisition —whenever the reconstruction is considered of insuffi-

ient quality— without causing an unacceptable overload in clinical

outine 1 . The MR reconstruction workload turns out to be highly

arallelizable so proper implementations on natively-parallel de-

ices, such as (but not limited to) GPUs, are currently playing an

utstanding role.

Many different attempts have been reported to speed up recon-

truction algorithms by means of parallel devices. Section 2 pro-

ides an overview of the field. As of today, the field of paral-

el computing has seen a tremendous growth of tailored solutions

hat work exclusively on a particular vendor GPU, namely, nVidia.

evertheless, other alternatives exist. One of them is OpenCL [4] ;

penCL is an open standard for parallel computing, similar in

ts objectives to the nVidia-exclusive language CUDA, but covers

 much wider set of computing devices (including nVidia GPUs)

hile ensuring that source code and data are unique, thus avoid-

ng the need for code and data replication among prospectively

upported devices. However, it is generally regarded as more com-

licated and less mature than CUDA. As a matter of fact, OpenCL

rogrammers must deal on their own with device selection and

nitialization, memory management, kernel loading and compila-

ion, host-device interaction, and administration overload.

Another example is HIP [5] ; this initiative helps developers in

onverting CUDA source code into a more portable form, so that it

an run on both nVidia and AMD GPUs. However, as of today, the

IP API is not compatible with OpenCL, so data objects defined

n OpenCL cannot be used as parameters to HIP kernels and vice-

ersa, even though OpenCL data is undistinguishable from HIP (or

UDA) data in the GPU memory.
1 Issues related to DICOM interoperability are a step further and well-known so-

utions are available [3] . We concentrate on operations on the reconstruction prob-

em once all the necessary data is available.

c

b

2
The framework OpenCLIPER [6] was developed to address all

hese shortcomings of OpenCL. In this paper, OpenCLIPER has been

sed to provide a parallel implementation of our previous pro-

osal [7] on 2D cardiac cine imaging. This algorithm combines

S with Groupwise Motion Compensation (MC) to achieve CINE

equences with acceleration factors (AFs) of 8–15x, which show

igher quality than other methods with pairwise approaches for

otion compensation. Nevertheless, in its non-parallel version,

he post-acquisition reconstruction takes a significant computation

ime (about 40 min in a Core i7-4790 CPU for the full heart cov-

rage), which is far from being clinically viable. In this paper, we

how how OpenCLIPER eases dramatically the process of paral-

elizing a complex algorithm previously programmed in a script-

ng language. 2 As a byproduct, we have enlarged the OpenCLIPER

ibrary with additional parallel functionality, such as a groupwise

ersion of a registration algorithm based on free form deforma-

ions (FFD) [8] or a multicoil parallel adaptation of the NESTA opti-

ization algorithm [9] . None of these algorithms, to the best of our

nowledge, are currently available on GPUs. A comparison with an-

ther popular framework (BART, see Section 2) is included. In ad-

ition, we show how to seamlessly incorporate HIP code to Open-

LIPER by solving the integration difficulty referred to above; this

pens up the possibility of using CUDA code in our framework —as

ong as this code can be converted to HIP— at programmer will.

The rest of this paper is organized as follows: Section 2 re-

iews the subject of current parallel implementations of under-

ampled MRI reconstruction algorithms. Section 3 describes the

nnards of our proposed implementation. Section 4 evaluates our

roposal performance in various computing devices and compares

t, as previously mentioned, with another popular framework. The

iscussion can be found in Sections 5 and 6 concludes the paper.

 number of appendices of both mathematical and algorithmic de-

ails have been included for the sake of self-completeness.

. Related work

The field of MR reconstruction is very active and quite an activ-

ty has been focused on algorithm implementation on GPUs. Two

ecent survey papers [10,11] give a general overview of the field;

he former is dedicated to GPU-based medical image reconstruc-

ion while the latter is specifically targeted to MR reconstruction.

oth survey papers, however, have a similar structure as for their

ommon topic; they review FFT-based methods, either for Carte-

ian and non-Cartesian data, PI and CS-based applications. The

018 survey also includes a section on reconstruction based on

eep-learning, probably spurred by the enormous activity that has

een reported in the last two years. Both papers also quote some

ecent work on multi-GPU solutions. The reader is kindly invited

o consult the references therein.

Apart from particular implementations of reconstruction algo-

ithms, the field has been enriched with a number of libraries,

ome examples of which are AGILE [12] , BART [13] , Gadgetron [14]

nd Impatient [15] , to explicitly mention four of them. Addi-

ional libraries are mentioned in our former publication on Open-

LIPER [6] . These libraries are conceived to ease the process of

lgorithm prototyping and testing; Gadgetron shows additional

lient-server characteristics, where the server takes care of the re-

onstruction process while the client focuses on data handling, i.e.,

adgetron could be considered both as a library and as a network

ervice.

The common ground of these references, both in terms of spe-

ific algorithms and of reconstruction toolkits, is that they are

ased on the CUDA language and, consequently, they are vendor
2 OpenCLIPER code available at http://opencliper.lpi.tel.uva.es/ .

http://opencliper.lpi.tel.uva.es/

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

d

i

m

i

n

s

t

a

p

C

a

t

n

r

p

s

e

b

t

e

a

m

t

n

h

f

w

t

w

a

h

I

r

G

R

m

s

r

c

w

3

3

d

t

w

i

p

s

a

m

m

p

b

f

t

t

f

i

t

T
f

fi

m

i

s

A

o

i

c

G

e

t

t

(

r

t

b

r

N

i

t

o

t

a

i

a

p

d

i

s

3

p

n

t

A

3

p

m

c

o

T

w

T
c

c

a

e

o

v

t

ependent. nVidia, since its onset in 2007 with the release of

ts CUDA application programming interface [16] , has become the

ain supplier in the field of parallel computing with GPUs, both

n academia and in industry. Its mainstream condition is accompa-

ied, however, with some unavoidable consequences which can be

ummarized in two, namely, the need of code duplication should

he application be run in GPU and in CPU (or in any other device),

nd the need of data replication in the platforms in which the ap-

lication is deployed.

Alternatives to this technology are also available, mainly, Direct

ompute issued by Microsoft and, as previously stated, OpenCL,

n open source project led by the Khronos Group [11] . The lat-

er has the benefits of being both open-source and device ag-

ostic; the second feature makes it comply with the write-once

un-anywhere (WORA) paradigm. An additional solution has been

roposed, which is a domain specific computational image recon-

truction language, referred to as Indigo [17] . It provides a front-

nd with a number of image reconstruction facilities, as well as a

ack-end that is responsible to evaluate the operators provided by

he front-end on a particular platform. As long as different back-

nds are available, the language will follow the WORA paradigm,

lthough as of today it seems limited to CUDA as for GPU imple-

entation.

As we mentioned in the Introduction, in this paper we illus-

rate how OpenCLIPER can be used to find a solution to a 2D dy-

amic cardiac image reconstruction algorithm, that makes whole-

eart single breath-hold reconstruction possible [18] in clinically

easible times. Our algorithm makes use of an optimizer, for which

e have used NESTA [9] as well as FFD [8] for motion compensa-

ion. Further algorithmic details of the method are described else-

here [7,19] . As for the NESTA algorithm, we are only aware of

 GPU version, which was recently described in Dinh et al. [20] ;

owever, in that implementation, a single coil is apparently used.

n our implementation, multiple coils are employed and the algo-

ithm is fully parallel in the coils as well. As for the FFDs, some

PU-based implementations were described in Modat et al. [21] ,

uijters et al. [22] , Du et al. [23] , Ellingwood et al. [24] , Punithaku-

ar et al. [25] ; however, these proposals are pairwise and device-

pecific. We show in Royuela-del Val et al. [7] that a groupwise

egistration has added benefits in terms of reconstruction quality;

onsequently, the implementation we have carried out is group-

ise and specifically targeted for cardiac cine MRI.

. The proposed system

.1. The algorithm

CINE cardiac MR images can be reconstructed from highly un-

ersampled data while keeping a very high level of detail from

he fully-sampled images. A state-of-the-art algorithm on this topic

as published in Royuela-del Val et al. [7] and later enhanced

n Royuela-del Val et al. [19] . Briefly described, the algorithm de-

arts from the multi-coil k-space subsampled information b and

olves a CS reconstruction problem which gives the resulting im-

ge sequence m i , at iteration step i , as

 i = arg min

m

|| b − Em || 2 l 2
+ λ|| �T �m || l 1 (1)

 i is a vectorized stack of image frames, one frame per cardiac

hase. E is the encoding operator that includes the multiplication

y the coil sensitivities S, the intra-frame spatial Fourier trans-

orm F and the application of the undersampling mask A . � is the

emporal total variation (tTV) operator. T � is the groupwise (GW)

ransformation for motion compensation (MC) that registers all the

rames in the sequence to a common reference and λ is a regular-

zation parameter. Appendix A describes a matrix formalization of

hese data structures and operators. As for m , the transformation
0

3
 � is the identity, since there is no data from which motion in-

ormation can be estimated. Then, the iterative refinement process

nds m i with T � obtained by the heart motion estimation (ME) on

 i −1 . The whole process continues until a predefined number of

terations is met. In this manuscript, the number of ME/MC recon-

truction iterations was set to two.

The ME/MC is carried out by means of elastic registration [26] .

s previously stated, we use FFDs [8] ; Appendix B provides details

n the ME/MC process. B-splines serve the purpose of interpolat-

ng the deformation field (see Eq. (B.3)) from a given control point

onfiguration to give rise to a dense field. Specifically, we apply a

W paradigm in which no particular frame is selected as a refer-

nce, but the reference is built along the optimization process as

he average of the transformed images. As for the metric to be op-

imized, we have used the sum of the intensity square differences

SSD) with respect to the reference image (see Eq. (B.1)); this met-

ic is enlarged with smoothness terms so as to force a realistic mo-

ion field solution (see Eq. (B.2)).

Eq. (1) is minimized with the well-known NESTA algorithm

ased on Nesterov’s method [9] . A detailed pseudocode of the MRI

econstruction algorithm can be found in Appendix C . Specifically,

esterov’s method iteratively minimizes a function f by estimat-

ng three sequences x k , y k and z k . The x k sequence corresponds to

he sequence we want to estimate (m i in the Eq. (1)), and it is

btained from a weighted sum of the other two sequences. Nes-

erov’s method can be used for the minimization of both smooth

nd nonsmooth convex functions if using the appropriate smooth-

ng techniques. In [9] , the l1 -norm in Eq. (1) is component-wise

pproximated by the well-known Huber function f μ(x) , which de-

ends on a smoothing parameter μ; this parameter is iteratively

ecreased during the optimization process. The starting guess x 0
s the result of applying the adjoint encoding operator (E H) to the

ubsampled k-space (x 0 = E H b).

.2. Parallel implementation

Our parallel implementation is coded in OpenCL [4] , and all

arallel operations are programmed as OpenCL kernels. In the

ext two subsections we provide details on the ME/MC stage and

he NESTA algorithm. Pseudocode for the latter is included in

ppendix C .

.2.1. Groupwise registration

The registration procedure is determined by the values of the

arameters θu in Eq. (B.3) . These parameters are obtained by mini-

izing the metric defined in Eq. (B.2) . In this section we will con-

entrate on the implementation of the most resource-demanding

peration, which turns out to be finding the gradient of Eq. (B.1) .

he gradient is, in essence, calculated as follows:

∂ V (x)

∂θ
=

∂ V (x)

∂m

· ∂m

∂ T (x)
· ∂ T (x)

∂θ
(2)

here V (x) is the metric, m represents the image sequence and

 (x) the transformation. Notice that x will be a grid point (with

oordinates given as row and column numbers r, 1 ≤ r ≤ N 1 , and

, 1 ≤ c ≤ N 2 , respectively). In addition, each parameter θ is associ-

ted to each of the frames (with index n , 1 ≤ n ≤ N t) as well as to

ach of the control points (with coordinates, say (r u , c u)) and each

f the directions of variation, namely, horizontal (index l = 1) and

ertical (l = 2); these indices will be borne in mind for the deriva-

ives.

The first factor in equation Eq. (2) can be written:

∂ V (x)

∂m r,c,n
=

2

N t

(

m

(n)
(
T (n) (x)

)
r,c

− 1

N t

N t ∑

n ′ =1

m

(n ′) (T (n ′) (x)
)

r,c

)

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

Fig. 1. Functional units of the proposed reconstruction system. Gray boxes represent necessary albeit unproductive work, which is taken care of by OpenCLIPER. White

boxes represent actual, productive work. Each white box is abstracted as a process , which may be composed of several other processes. U , U H , E , E H are the internal NESTA

operators. tTV: temporal Total Variation; GW: Groupwise Registration.

w

T
w

i

s

t

T
e

N

o

w

a

a

f

s

o

c

3

c

p

t

a

n

a

t

o

t

s

2

l

l

u

t

t

n

a

c

t

c

t

c

i

t

a

c

m

g

b

p

i

v

fi

(

c

m

3

a

t

i

t

ith m

(n) (x) the n th frame in sequence m , evaluated at pixel x , and

(n) (x) it the transformed position of pixel x in that phase. m

(n)

ill be also referred to as the n th frame. This equation is computed

n parallel for the N 1 × N 2 × N t pixels.

The second factor in Eq. (2) is the image gradient with re-

pect to the transformation. The actual operations we perform are

he interpolation of the gradient of each frame m

(n) at position

(n) (x) . The interpolation is carried out within a region of inter-

st, say χm

, so the number of operations launched in parallel is

 1 χm
× N 2 χm

× N t , where the two first factors are the dimensions

f region χm

.

The last factor in Eq. (2) is the gradient of the transformation

ith respect to the variables θu to be optimized; since these vari-

bles enter Eq. (B.3) as factors, their derivative is straightforward

nd can be precomputed.

Hence, the calculation of the gradient of Eq. (2) will be per-

ormed parallelizing along the rows and columns affected by the B-

plines (r s and c s), the frame dimension (n), the rows and columns

f the control points (r u and c u) and the spatial dimension (l), as

an be seen below:

∂ V (x)

∂θ r s ,c s ,n,r u ,c u ,l
=

∂ V (x)

∂m r s ,c s ,n,l
· ∂m

∂ T (x) r s ,c s ,n,l

· ∂ T (x)

∂θ r s ,c s ,r u ,c u
.

.2.2. NESTA

A matrix formalism of data structures and operators (the en-

oding operator E and the sparsifying operator U) used in NESTA is

resented in Appendix A ; this formalism makes it simple to derive

he adjoint operators. However, in practice, high data dimension-

lity implies that storage of matrices associated with operators is

ot feasible due to memory requirements. Consequently, operators

re implemented by means of functions and the latter have been

he focus of our parallelization effort. Specifically, for the encoding

perator E the following parallelizations were made: 1) Multiplica-

ion by the coil sensitivities S is performed parallelizing along the

patial dimensions (i.e., N × N operations launched in parallel).
1 2

4
) The by-frame spatial Fourier transform F is performed paral-

elizing along the coils and frames dimensions (i.e., C × N t paral-

el operations) using the clFFT [27] library. 3) Application of the

ndersampling mask A is performed parallelizing along the spa-

ial dimensions (i.e., N 1 × N 2 parallel operations). Note that in S,

he coils and frames dimensions could have also been parallelized;

evertheless, we empirically verified that this did not constitute

 performance gain, presumably caused by the limited number of

ores in the hardware. As for the adjoint encoding operator E H ,

he following parallelizations were made: 1) Multiplication by coil

onjugate sensitivities S H and, 2) by-frame spatial inverse Fourier

ransform F

H , Both of them were parallelized analogously to their

ounterparts S and F , respectively. 3) Summation of the resulting

mage sequence in each coil is parallelized along the spatial and

emporal dimensions (i.e., N 1 × N 2 × N t operations launched in par-

llel).

Regarding the sparsifying operator U = �T �, the temporal total

yclic variation � is performed parallelizing along the spatial di-

ensions (i.e., N 1 × N 2 operations launched in parallel) and the T �
roupwise transformation for MC is performed parallelizing along

oth the spatial and the frame dimensions (i.e. N 1 χm
× N 2 χm

× N t

arallel operations). Similarly, the adjoint sparsifying operator U

H

s parallelized along the same dimensions as U .

Finally, matrix operations needed in NESTA, such as scaling a

ector by a constant or addition of two vectors, are performed ef-

ciently by the clBLAST library [28] . Thus, all the algorithm steps

see Appendix C for details) can be straightforwardly computed by

ombining operators E and U , their adjoints E H and U

H , and a few

atrix operations.

.3. Algorithm implementation on a generic parallel device

We have translated the original method into an actual device-

gnostic software solution which (a) finishes in clinically viable

imes, comparable to other popular reconstruction frameworks, (b)

s suitable for execution in parallel devices, and (c) complies with

he WORA paradigm (see Section 2) so neither code nor data

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

n

S

p

F

g

3

r

w

f

p

t

(

i

p

C

b

a

p

l

s

F

w

(

s

k

C

p

i

o

t

h

a

I

m

t

c

a

b

p

m

p

o

p

n

t

S

i

m

c

v

p

(

f

s

3

b

k

n

i

i

m

p

c

3

t

d

s

p

k

p

c

l

i

n

j

p

v

s

s

e

b

b

i

a

c

w

w

h

s

M

n

c

p

o

Listing 1. Accessing attributes of complex data structures. Note how data proper-

ties (sizes, strides and number of coils in this particular case) are available from

kernel code without passing them explicitly as kernel arguments.
eed be duplicated for CPU/GPU or any other device. As stated in

ection 1 , we make extensive use of our framework OpenCLIPER to

rovide this solution.

In this section we provide details on this implementation;

ig. 1 shows a diagram of our system functional units that will

uide us through the description that follows.

.3.1. Generalities

Together with the core algorithm —enclosed within the dashed

ectangle in Fig. 1 and its operations represented by rectangles

ith white background—, several other tasks must be carried out

or the system to be functional by itself. These tasks are not only

art of the initialization process but they are also active while

he actual processing is taking place. All these administrative tasks

shaded boxes in Fig. 1) are dealt with by OpenCLIPER with min-

mal programmer intervention. While the system is at work, data

asses through several transformations (called processes in Open-

LIPER) that need to be connected appropriately. Each process may

e seen as a black box with a single input, a single output and

n arbitrary set of parameters. This specification allows prospective

rogrammers to interconnect and compose processes arbitrarily, as

ong as outputs from one are compatible with inputs to the next,

ince their interfaces must all comply with this specification.

An appropriate computing device must be selected (top row in

ig. 1). Since OpenCL supports a wide range of them, an additional

orkload is the need to detect the available platforms and devices

which may be from different vendors), and to choose the most

uitable among them. Moreover, once a device has been selected,

ernels must be loaded and compiled for the chosen device. Open-

LIPER simplifies these tasks significantly: kernel loading and com-

iling is done without user intervention when a process demands

t, caching them as necessary so time is dedicated to compilation

nly once per device (and driver version). Platform/device detec-

ion and selection may be either specified by the programmer (via

ints such as device type, model, supported CL version, etc.) or,

lternatively, left to the framework by just a single line of code.

n the latter case —or, in the former, whenever the specified hints

atch several candidate devices—, the a priori fastest device is au-

omatically chosen.

All compute-intensive transformations are performed in the

omputing device, so the system takes full advantage of its par-

llel capabilities and hence clinically viable execution times may

e achieved (see quantification in Section 4). The algorithms im-

lemented in OpenCLIPER, which are themselves processes, are

ade up from several other processes which may be reused at

rogrammer discretion. In this sense, OpenCLIPER provides a pool

f frequently used processes as a ready-to-use toolbox; for exam-

le, Hadamard matrix multiplication, fast Fourier transform, chan-

el integration, image sum, etc. These tools make the implemen-

ation of more involved processes —such as the two described in

ection 3.2 — easy.

With respect to the four blocks on top of the NESTA Process

n Fig. 1 , after the selection of the most appropriate device (either

anually or automatically), kernel loading is delayed until a pro-

ess requires it. At that time, a previously compiled (i.e. cached)

ersion of the kernel is sought. If it does not exist yet, kernel com-

ilation is automatically triggered and the kernel cache is updated

loading of cached kernels is typically two orders of magnitude

aster than on-the-fly compilation). Compilation logs (if any) are

hown to the user for debugging purposes.

.3.2. Input and output

MRI data loading is done in a single code line with OpenCLIPER

y a front-end function (see leftmost side of Fig. 1). As of today,

-space lines are input by means of a.clf file (and its accompa-

ying.hdr file); Matlab format file is also allowed. Output formats
5
nclude the two formats just mentioned as well as other popular

mage formats (JPEG, PNG, etc).

To maximize utilization of the computing device, data objects

ay be loaded and saved concurrently while the device is busy

rocessing other objects. Since MRI data files are often large, this

an save a noticeable amount of processing time per patient.

.3.3. Data structures

A common burden in GPU computing lies in the need to keep

rack of pointers to data objects and their properties: number of

imensions, sizes and strides along each of them, data types and

izes (complex, float, integer, etc.), and passing them to the com-

uting device. This is typically done by adding arguments to the

ernels, but kernel argument space is usually limited by the com-

uting hardware (apart form adding more burden for the user to

all their kernels). OpenCLIPER simplifies this burden by encapsu-

ating all data properties within the buffer in the computing device

n a way that is transparent to the kernel programmer (i.e. there is

o offset between the object pointer and the real data). Thus, users

ust have to pass a single pointer to the data object to have all its

roperties readily available for the kernel code. OpenCLIPER pro-

ides support for data with an arbitrary number of frames, coils,

ensitivity maps, sampling masks and data dimensionality for the

pecial case of MRI data, and arbitrarily complex data for the gen-

ral case. Our framework also provides methods to traverse data

uffers along any given dimension. This functionality is provided

y generating index and size tables for each data object, as shown

n Fig. 1 .

An additional feature of OpenCLIPER is that all sub-objects in

 data object (e.g. sensitivity maps for each coil) are mapped

ontiguously in device memory and properly adjusted to hard-

are alignment, so kernel programmers can assume a linear layout

hen processing compound data objects. Data transfers between

ost and device are driven by the DMA controller to maximize

peed.

Listing 1 shows a simple OpenCL kernel which sums a set of

R images along the coil dimension. It can be seen how a ker-

el can access attributes from input and output buffers (such as

oil or frame strides, sizes, and so on) just by passing their natural

ointer as arguments with no need to worry about header offsets

r the like. All attribute access functions are O (1) as long as all ND

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

a

(

3

r

w

3

b

g

h

fi

t

s

d

v

o

w

m

r

1

o

(

t

fi

4

h

o

d

b

w

s

t

3

t

a

w

Listing 2. Passing OpenCLIPER data objects to HIP libraries.

r

d

t

p

s

E

s

A

i

b

(

o

E

(

f

a

t

t

r

u

g

s

A

3 Release downloaded on February 25, 2020, from https://github.com/mrirecon/

bart/releases/tag/v0.5.00
rrays in the given object have the same number of dimensions

 O (n) otherwise).

.3.4. Additional support for researchers

OpenCLIPER has also been designed as a development tool for

esearchers. Hence, it includes a number of additional utilities,

hich we now enumerate:

1. 1D, 2D and 3D objects in device memory, either standalone or

as a movie, can be graphically presented to the user at any time

by a simple call to pointerToObject- > show() method;

scaling and video velocity facilities are provided at programmer

convenience. OpenCV [29] is currently used to display windows

on the desktop.

2. Similarly, any object in device memory can be saved for further

inspection in Matlab or any other supported format at any time.

3. When compiling in debug mode, device and host are automati-

cally synchronized in every process so that run-time errors trig-

ger exactly at the responsible kernel, so fault location detection

should be immediate.

4. When OpenCL kernels are compiled on the fly (as opposed to

loading a previously cached version), errors may show up when

the host program is run. If this is the case, kernel compilation

errors are automatically shown to the user.

5. In the case of program abortion, the full stack backtrace is

shown to the programmer.

6. OpenCLIPER includes facilities to gather profiling data and gen-

erate statistical reports as well.

7. A memory map of data objects in device memory may be ob-

tained at any time.

.3.5. Incorporation of HIP and CUDA functionality

As stated in the introduction, HIP [5] is an interesting effort to

ridge the gap between GPUs vendors by providing facilities to mi-

rate CUDA code into a reusable form in other platforms. However,

andling exchange is still an issue; specifically, data objects de-

ned in one language (HIP/OpenCL) cannot be used as parameters

o kernels written in the other language (OpenCL/HIP). We have

olved this problem by providing a HIP handle to every OpenCL

ata object defined through the OpenCLIPER API. This way, de-

elopers may invoke calls to HIP libraries on pure OpenCL data

bjects and, consequently, OpenCLIPER may benefit from libraries

ritten in CUDA for which a HIP implementation is also available.

As an example, Listing 2 shows how an OpenCLIPER data object

ay be passed seamlessly to the rocFFT library [30] and use its

esult as an OpenCLIPER object again. After initialization (lines 11–

5), a vector of complex numbers is created as an OpenCL memory

bject (lines 17–20) and its corresponding HIP handle is obtained

line 23). The next code section is pure HIP code in which the ob-

ained handle is used to feed the rocFFT library (lines 25–31) and,

nally, the FFT result is saved as a Matlab file (line 34).

. Evaluation

We have executed several reconstructions to test the be-

aviour of our platform. Reconstructions have been carried out

n 7 healthy volunteers courtesy of King’s College London. These

ata are 2D Cartesian, fully sampled dynamic short axis cine

reath-hold ECG-triggered acquisitions in a 1.5 T Philips scanner

ith a bSSFP sequence. Some relevant parameters of the acqui-

itions include flip-angle 60 ◦, TR/TE = 3/1.5 ms, spatial resolu-

ion 2 × 2 mm

2 , slice thickness 8 mm, 20 cardiac phases, FOV

20 × 320 mm

2 , 12–14 slices and the number of channels is be-

ween 19 and 32, depending on the subject. Both sensitivity maps

nd k-space data from all coils were provided to us. These datasets

ere retrospectively subsampled with a Gaussian variable-density
6
andom undersampling pattern along the phase encoding direction

escribed in Asif et al. [31] for different values of acceleration fac-

or (AF). Hence, for the experiments carried out we have fully sam-

led images which have been used as a reference for measuring

ome quality indices (QIs).

First, we have compared our platform with BART [13] to solve

q. (1) . As for OpenCLIPER we have used NESTA. As for BART, 3

ince NESTA is not available in that platform, we have used the

DMM method [32] . As for these comparisons, T � in Eq. (1) is the

dentity due to the fact that BART does not incorporate —to the

est of our knowledge— a groupwise ME/MC implementation.

Three experiments have been conducted, namely (a) AF = 4

AF4), (b) AF = 4 plus coil compression (AF4CC) from 19–32 to half

f the channels (9–16), and (c) AF = 8 (AF8). The parameter λ in

q. (1) has been chosen to maximize the structural similarity index

SSIM) [33] in the BART reconstruction. Table 1 shows SSIM values

or the three experiments. Thus, λ = 0 . 01 has been used for BART

nd OpenCLIPER reconstructions. For the sake of fairness, since the

wo optimization algorithms are different, we have chosen the in-

ernal NESTA parameters (namely, both μ and the stopping crite-

ion, see lines 5 and 12 in Appendix C) to guarantee that SSIM val-

es are comparable for ADMM and NESTA reconstructions; this is

raphically shown in Fig. 2 a, with boxplots of SSIM along all the

lices of all the patients. Boxplots have been grouped in pairs, i.e.,

F4 for OpenCLIPER and BART, and the same structure goes for

https://github.com/mrirecon/bart/releases/tag/v0.5.00

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

Fig. 2. Boxplots of SSIM (a), NCC (b), and SER (c) for experiments AF4, AF4CC, and AF8 on both OpenCLIPER which makes use of NESTA, and BART (which uses ADMM). No

significant differences have been found.

7

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

Fig. 3. Example of reconstructions using BART and OpenCLIPER for the experiments AF4, AF8, and AF8 with ME/MC; the latest only for OpenCLIPER. Fully sampled images

are shown as reference. End-systole and end-diastole frames are shown in each case, as well as the intensities along time of the vertical profile marked with red line in

reference images. Last row shows the error images (mean squared error, MSE, between reference and reconstructed image). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Table 1

Mean SSIM values evaluated on undersampled BART reconstruc-

tions for a single slice of all patients and the three experiments

(AF4, AF4CC, and AF8). Maximal values (bold highlighted) in-

dicate the optimal regularization weight (λ in Eq. (1)) for the

experiments.

Reg. Term AF4 AF4CC AF8

λ = 10 −5 0.8776 0.8923 0.8200

λ = 10 −4 0.8832 0.8979 0.8293

λ = 10 −3 0.9037 0.9201 0.8642

λ= 0 . 01 0.9056 0.9229 0.8719

λ = 0 . 1 0.8955 0.9133 0.8592

λ = 1 0.8951 0.9128 0.8589

A

a

h

f

t

c

f

e

p

r

a

O

t

v

e

A

o

2

R

b

t

o

A

(

o

R

(

t

F

p

p

s

f

s

t

T

m

k

w

i

a

t

s

N
F4CC as well as for AF8, as indicated in the horizontal labelling

nd in the legends on the figures. For completeness, different QIs

ave been analyzed. Fig. 2 also includes the corresponding boxplots

or the normalized cross correlation (NCC, Fig. 2 b) and the signal

o error ratio (SER, Fig. 2 c). Mann Whitney tests, 4 show no signifi-

ant differences in any of these parameters between the compared

rameworks. Additionally, Figs. 3 and 4 show two reconstruction

xamples for two different patients. In both cases, the fully sam-

led reconstructed images are shown as reference with the images

econstructed using BART and OpenCLIPER for the experiments AF4

nd AF8; for the latter, ME/MC reconstruction is also shown for

penCLIPER Ẇith these parameter setting, execution times in iden-

ical computer load situations have been compared. To deal with

ariability, each experiment has been run one hundred times for

ach patient.

Four platforms with four different GPUs have been employed.

ll of them are standard PC-class workstations based on Intel Core
4 Function wilcox.test in RStudio. i

8
r AMD Ryzen processors. The exact GPU models are GeForce

080Ti and Quadro RTX 60 0 0 from nVidia, and Radeon RX 480 and

adeon RX 5700XT from AMD. For reference, some tests have also

een carried out using a CPU as the computing device in a 70-

hread Intel Xeon server. Notice that BART can only be run on CPU

r nVidia GPUs, so no further comparison could be done between

MD and nVidia as for BART performance.

Fig. 5 shows boxplots of execution times on the GeForce 2080Ti

a) and RTX60 0 0 (b) for the three experiments, with the same

rdering as in Fig. 2 . As for a comparison betweeen nVidia and

adeon, Fig. 6 shows boxplots of the AMD Radeon RX 5700XT

GFX1010) and the nVidia Quadro RTX 60 0 0 in the same condi-

ions as in the previous experiment. In terms of performance, the

FT implementation used by the reconstruction algorithm plays a

rominent role. BART uses the nVidia’s well-known proprietary im-

lementation cuFFT, whereas OpenCLIPER uses the AMD’s open-

ource implementation clFFT. While the former is highly optimized

or nVidia GPUs, the latter is conceived to be run on every pos-

ible computing device and hence lacks of any specific optimiza-

ion. This results in clFFT being slower than cuFFT, as shown in

able 2 . OpenCLIPER compensates this with performance enhance-

ents in other areas, such as parallel loading/saving of data and

ernel caching (see Section 3.3). 5

Fig. 7 shows boxplots of SSIM for AF8 on OpenCLIPER with and

ithout ME/MC; whereas boxplots for NCC and SER are shown

n Fig. 8 . Results of the unilateral Mann-Whitney test for SSIM

re significant (p = 0.008) for ME/MC. If a unilateral signed rank

est is run per patient, differences favor ME/MC in six out of the

even patients tested. Mann-Whitney tests are also significant for

CC and SER (p = 0 . 006 and p = 0 . 007 , respectively). The price
5 In our previous work [34] , FFT times reported were overestimated since they

ncorporated an additional synchronization of the device command queue.

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

Fig. 4. Example of reconstructions using BART and OpenCLIPER for the experiments AF4, AF8, and AF8 with ME/MC; the latest only for OpenCLIPER. Fully sampled images

are shown as reference. End-systole and end-diastole frames are shown in each case, as well as the intensities along time of the vertical profile marked with red line in

reference images. Last row shows the error images (mean squared error, MSE, between reference and reconstructed image). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Boxplots for experiments AF4, AF4CC, and AF8 on (a) GeForce 2080Ti and (b) RTX60 0 0. Times reported are per whole slice stack.

Fig. 6. Boxplots of computing time for AMD Radeon RX 5700XT (GFX1010) and nVidia Quadro RTX 60 0 0 (RTX60 0 0) for the three experiments. Notice that red-shaded boxes

coincide with the red-shaded boxes in Fig. 5 . Times reported are per whole slice stack. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

9

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

Table 2

Performance comparison between cuFFT and clFFT libraries on various devices. A single

experiment consists in transforming a K-space dataset (160 × 160 images, 19 coils, 20

frames, complex floats) 10 0 0 times. Each experiment is run 100 times on each library

and device. For each combination we show mean execution times (mean) and their

standard deviation (std), both in seconds.

cuFFT clFFT

Device mean std mean std

GeForce 2080Ti 0.6299 0.001 0.6518 0.0227

Quadro RTX 6000 0.5880 0.0016 0.6413 0.0020

Radeon RX 5700XT N/A N/A 0.8276 0.0015

Fig. 7. Boxplots of SSIM for AF8 on OpenCLIPER with (right, green) and without (left, red) ME/MC. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Fig. 8. Boxplots of NCC (a) and SER (b) for AF8 on OpenCLIPER with (right, green) and without (left, red) ME/MC. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

t

d

t

(

a

l

c

C

5

c

2

v

c

h

p

t

m

i

l

t

w

h

s

i

i

d

e

o

j

v

M

q

l

i

c

w

i

o

t

o pay is the increase in computation time, which reaches a me-

ian equal to 62.12 s and (q 1 , q 3) = (53 , 72 . 13) for 2080Ti, with q i
he i th quartile. For RTX60 0 0 the median is 60.16 and (q 1 , q 3) =
50 . 74 , 69 . 24) (times reported are per whole slice stack).

Finally, we have also run an experiment on CPU with both BART

nd OpenCLIPER; the experiment is AF4CC with a randomly se-

ected patient, ten repetitions. As for the former, the median exe-

ution time is 24.58 s ((q 1 , q 3) = (24 . 84 , 24 , 45)) while for Open-

LIPER median is 16.33 and (q 1 , q 3)= (16.09,16.59).

. Discussion

OpenCLIPER reveals itself as a device agnostic platform for re-

onstruction of MR dynamic images. We have shown results for

D although the code is prepared for higher dimensionality pro-

ided that sufficient memory is available. Fig. 5 shows that our

omputing times are comparable to those needed by BART; this

as been tested in two nVidia devices with different memory ca-

acities. Results are not point-by-point comparable since optimiza-

ion methods used by both approaches are different. However, we

eant to be fair by assuring that both platforms gave rise to

mages with similar qualities; optimization parameters were se-

ected to this end, a goal that seems accomplished according to
10
he evidence shown in Fig. 2 . As for computing times themselves,

e observe that our times are fairly similar to those from BART;

ence, no obvious losses are appraised by using OpenCLIPER de-

pite some administrative tasks need to be handled, as pointed out

n Section 3.3.1 , due to its device agnostic character; this overload

s represented in Fig. 1 by the shaded blocks located outside the

ashed box that contains the core of the reconstruction algorithm.

BART cannot be tested in AMD devices; hence only OpenCLIPER

nters the comparisons in Fig. 6 . The figure shows that a device

ne order of magnitude more economical can do a remarkable

ob. Therefore, OpenCLIPER makes it possible that an affordable de-

ice is used for image reconstruction in viable clinical times. When

E/MC enters the algorithm the computing time needed reaches a

uantity of about one minute for a multislice reconstruction, a de-

ay that seems also realistic in a clinical setting. Whether ME/MC

s worth taking depends on the acceleration factor; for the AF = 8

ase we have employed in our experiments, statistical differences

ere found.

The execution on CPU revealed that BART needed extra time for

mage reconstruction with respect to OpenCLIPER. Since no obvi-

us differences were found on the nVidia devices, chances are that

his is due to the fact that BART, when executed on the CPU, par-

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

a

t

e

(

b

s

h

i

F

o

i

i

6

p

t

a

f

u

w

a

p

n

v

c

l

p

g

d

t

m

l

f

t

g

t

D

S

A

R

C

P

O

y

t

w

A

N

a

o

r

N

i

U

A

o

o

t

a

b

b

s

t
llelizes only the FFT part of the reconstruction (making use of the

hreading support in the FFTW library), whereas in OpenCLIPER,

very process’ kernels are executed in parallel. Additionally, clFFT

the OpenCL version of FFT used by OpenCLIPER), has been used in

oth CPU and GPU experiments since kernel code is unique.

The FFT algorithm is exhaustively used in each reconstruction

tep. Hence, optimized implementations of this algorithm should

ave an appreciable impact in the overall reconstruction comput-

ng time. Our HIP interface could be an alternative to use other

FT libraries written in CUDA (cuFFT, which is known to be highly

ptimized for nVidia devices, might be one of such alternatives if

ts source code were available). Nevertheless, interfacing overload

s non-negligible and this requires further investigation.

. Conclusion and further work

In this paper, a 2D MRI cardiac reconstruction system has been

resented. This system is a) clinically viable in terms of execu-

ion times, and b) suitable for any computing device which has

n OpenCL implementation, including CPUs, GPUs, FPGAs and DSPs

rom main vendors. The use of our framework OpenCLIPER allowed

s to partition the problem in independent black boxes (processes)

hich are then connected as needed and executed in parallel on

ny capable device, while the source code remains unique for all

rospective computing devices. Device initialization and mainte-

ance is reduced to a minimum as well, while providing rele-

ant development and debugging aids. Administrative but time-

onsuming tasks such as data loading/saving and kernel compi-

ation are parallelized or cached so as to minimally affect overall

erformance. HIP code (and prospectively CUDA code) can be inte-

rated in developments whenever needed as OpenCLIPER makes

ata objects shareable between OpenCL and HIP. We also con-

ribute a parallel groupwise registration subsystem for motion esti-

ation/compensation and a parallel multicoil NESTA subsystem for

1 − l2 problem solving.

Further work includes extending the 2D reconstruction to the

ree-breathing 3D problem, which poses additional issues due to

ypical data volumes that extend far beyond the capacity of a sin-

le computing device memory, along with much higher processing

imes.

eclaration of Competing Interest

The entire research has been funded by the Government of

pain; the authors declare that they have no conflict of interest.

cknowledgements

This work is supported by MINECO under grant TEC2017-82408-

. In addition, the authors acknowledge the Asociación Española

ontra el Cáncer (AECC) and its Scientific Foundation for its grant

RDVL19001MOYA. We also acknowledge European Social Fund,

perational Programme of Castilla y León, and the Junta de Castilla

 León, through the Ministerio de Educación. We express our grati-

ude to Dr. Claudia Prieto, King’s College London, for kindly sharing

ith us the data in the experiments.

ppendix A. Notation and main operators

We aim to reconstruct a sequence of 2D images of size N 1 ×
 2 and N t temporal frames. Data has been acquired using a coil

rray of C elements from M samples of a discretized k-space grid

f size K = K 1 K 2 . The different terms included in Eq. (1) can be

epresented by the following matrices:

1. Multi-coil k-space subsampled data b is a vector of size M × 1 .
11
2. Reconstructed image m is a vector of size N × 1 , where N =

N 1 N 2 N t .

3. E = AF S is the encoding operator, which can be represented as

a matrix of size M × N.

(a) S is a matrix of size NC × N given by:

S =

⎛

⎜ ⎜ ⎝

S 1
S 2
. . .

S C

⎞

⎟ ⎟ ⎠

where S c , 1 ≤ c ≤ C, is a diagonal matrix of size N × N whose

diagonal elements represent the sensitivity maps of the coil

c at a spacial location.

(b) F is a matrix of size M × NC given by:

F =

⎛

⎜ ⎜ ⎝

F 1 0 . . . 0

0 F 2 . . . 0

. . .
. . .

. . .
. . .

0 0 . . . F C

⎞

⎟ ⎟ ⎠

where F c , 1 ≤ c ≤ C, is matrix of size KN t × N representing

the coefficients of Fourier transform.

(c) A is a matrix of size M × M given by:

A =

⎛

⎜ ⎜ ⎝

A 1 0 . . . 0

0 A 2 . . . 0

. . .
. . .

. . .
. . .

0 0 . . . A C

⎞

⎟ ⎟ ⎠

where A c , 1 ≤ c ≤ C, is a diagonal matrix of size K N t × K N t

whose diagonal elements take the value 1 if the entry cor-

responds to a sensed k-space location and 0 otherwise. Note

that A 1 = A 2 = ... = A C , since the sampling mask is the same

for all coils.

4. U = �T � is the sparsifying operator, which can be represented

as a matrix of size N × N. In this case, the operator is composed

of two matrices:

(a) � is a matrix of size N × N given by:

� =

⎛

⎜ ⎜ ⎜ ⎜ ⎝

I 0 0 . . . −I
−I I 0 . . . 0

0 −I I . . . 0

. . .
. . .

. . .
. . .

. . .
0 0 . . . −I I

⎞

⎟ ⎟ ⎟ ⎟ ⎠

where I is a identity matrix of size N 1 N 2 × N 1 N 2 . This ma-

trix computes the temporal finite differences, i.e., tTV op-

erator. We have added a cyclical extension with respect

to [26] based on the cardiac cycle periodicity.

(b) T � is a matrix of size N × N. A detailed description of this

matrix can be found in Appendix B . Recall that for m 0 , the

transformation T � is the identity.

ote that with this formalism, the adjoint operator representation

s straight forward as the Hermitian of these matrices (i.e., E H and

H).

ppendix B. Groupwise registration and motion compensation

perators

The goal of the groupwise registration procedure is to jointly

btain a set of spatial transformations, one for each frame con-

ained in the temporal sequence, so that transformed images ide-

lly coincide. No image is taken as a reference to avoid any sort of

ias. In practice, registered images will not be exactly coincident

ut they will constitute a sparse sequence in the temporal dimen-

ion, i.e., registration promotes sparsity. The target is the minimiza-

ion of a cost function H (see Eq. (B.2)), which consists of a data

https://doi.org/10.13039/501100002704

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

fi

r

a

f

e

V

H

w

m

d

t

v

o

t

f

t

t

T

w

s

d

i

m

o

i

i

t

m

a

T

w

t

c

g

T

i

p

i

i

T

a

B

A

Algorithm 1 MRI reconstruction.

Step 0 : NESTA multicoil reconstruction

Inputs: multi-coil k-space subsampled data b, encoding operator

E = A FS, sparsifying operator U = �, their adjoints and parame-

ters λ, γ , L a ∈ R

+

Initialization: μ(0) , x 0 = E H b, the number of steps maxIter and

parameter L μ
for t = 0 to maxIter do

Step 0.1 : Apply Nesterov’s algorithm with μ = μ(t)

for k ≥ 0 do

a. Compute the gradient of the l1-norm:

∇ f μ(Ux k) =

{
1
μU

H Ux k , if | Ux k | ≤ μ,

U

H sgn (Ux k) , otherwise,

where function sgn () applied to vector v means the stack of

sign (v i / | v i |) , with v i the i th vector component.

b. Compute the gradient of the cost function:

∇ f (x k) = E H (Ex k − b) + λ∇ f μ(Ux k)

c. Compute y k :

y k = x k − 1
λL μ+ L a ∇ f (x k)

d. compute z k :

z k = x 0 − 1
λL μ+ L a

∑

j≤k α j ∇ f (x k)

where αk = 1 / 2(k + 1) .

d. Compute x k +1 :

x k +1 = τk z k + (1 − τk) y k .

where τk = 2 / (k + 3) .

Stop when a given criterion is met

end for

Step 0.2 : Decrease the value of μ : μ(t+1) = γμ(t)

end for

Outputs: reconstructed image m 0 = x k +1

for i = 1 to MotionIters do

Step 1 : ME-GW

Inputs: reconstructed image m i −1

Initialization: fix the region of interest, create the control

points mesh, compute B-splines products and coefficients, as in

[7]

for j ≥ 0 do

Step 1.1 : Calculate the pixel-wise displacement fields

Step 1.2 : Transform images using linear interpolation

Step 1.3 : Calculate the metric and smoothing terms

Step 1.4 : Calculate gradients

Step 1.5 : Update the movements of the control points

Stop

1
KN || θn −1 − θn || < εT and

1
| χ | (H n −1 − H n) < εH

end for

Outputs: T �
Step 2 : NESTA reconstruction with MC

Inputs: multi-coil k-space subsampled data b, encoding oper-

ator E = KFS, sparsifying operator U = �T �, their adjoints, and

parameters λ, γ L a ∈ R

+

Initialization: μ(0) , x 0 = m i −1 , the number of steps maxIter

and parameter L μ
See above (step 0) for further details

Outputs: reconstructed image m i = x k +1

end for
delity term —the sum of squares of the intensity differences with

espect to the reference that is built on the fly (see Eq. (B.1))—and

 smoothness term, which prevents the onset of unrealistic trans-

ormations. Minimization is achieved by gradient descent. Gradi-

nts are calculated following standard procedures [35] .

 (x) =

1

N t

N t ∑

n =1

(

m

(n)
(
T (n) (x)

)
− 1

N t

N t ∑

n ′ =1

m

(n ′) (T (n ′) (x)
)) 2

(B.1)

(τ) =

∫
χ

[

V (x) +

∫ T c

0

4 ∑

p=1

λp R p dt

]

dx (B.2)

Eq. (B.2) shows that the metric is calculated within region χ ,

hich may be the whole image or only an estimated area where

ost of the motion takes place. In these equations T c is the car-

iac cycle and λp and 1 ≤ p ≤ 4 are the weights of the regulariza-

ion terms R p . These terms account for derivatives of the motion

ector field; specifically R 1 and R 2 are respectively first and second

rder spatial derivatives while R 3 and R 4 are first and second order

emporal derivatives.

The motion vector field is approximated by means of B-Splines

unctions, the coefficients are which of the parameters that enter

he optimization. This is the ME stage, where the dense (forward)

ransformation is calculated as follows:

 (x) = x +

C 12 ∑

u 1 = C 11

C 22 ∑

u 2 = C 21

(

2 ∏

l=1

B 3

(
x l − p u l

	l

))

· θu (B.3)

here C is the grid of control points, B 3 represents the uniform B-

pline function of grade 3, p u l the control point coordinate along

imension l, 	l is the pixel resolution of the grid of control points

n each dimension and θu the free parameter that drives the defor-

ation. The mesh boundaries given by C are set so that the region

f interest is completely covered with a certain margin for approx-

mation via B-splines to avoid large displacement values produc-

ng inconsistencies at the edges of the region of interest leading

o errors in interpolation. The registered image set is obtained by

eans of interpolation, which may be represented in matrix form

s [26] :

 � =

⎛

⎜ ⎜ ⎝

T �1 0 . . . 0

0 T �2 . . . 0

. . .
. . .

. . .
. . .

0 0 . . . T �t

⎞

⎟ ⎟ ⎠

here T �t is a matrix of size N 1 × N 2 associated to the transforma-

ion of the frame t in the sequence; it contains the interpolation

oefficients that result as a consequence of the transformation. Its

eneric shape for will be:

 �1 = ⎛

⎜ ⎝

. . .

0 . . . w 1 w 2 0 . . . w 3 w 4 0 . . . 0

0 . . . 0 w

′
1 w

′
2 . . . 0 w

′
3 w

′
4 . . . 0

. . .

⎞
⎟⎠

.e., the matrix will be sparse, the sparsity degree of which de-

ends on the interpolation order. For a bilineal interpolation, for

nstance, only four coefficients will be non-null in each row, as

ndicated in the equation. This is the MC part of the algorithm.

hese matrices and their adjoints are not explicitly built, but they

re applied as operators for efficiency. For more information about

-Spline free-form deformations see [36] .

ppendix C. CS reconstruction using NESTA
12

E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143

R

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

eferences

[1] R.G. Assomull , D.J. Pennell , S.K. Prasad , Cardiovascular magnetic resonance in

the evaluation of heart failure, Heart 93 (8) (2007) 985–992 .

[2] R.-M. Menchón-Lara, F. Simmross-Wattenberg, P. Casaseca-de-la Higuera,
M. Martín-Fernández, C. Alberola-López, Reconstruction techniques for cardiac

cine MRI, Insights Imaging 10 (1) (2019) 100, doi: 10.1186/s13244- 019- 0754- 2 .
[3] S. Jodogne, Orthanc: Open-source, lightweight DICOM server, 2012(accessed

December 7, 2020).
[4] The Khronos Group, Inc., OpenCL Overview, (https://www.khronos.org/

opencl/).

[5] A.M.D. Inc., HIP: Convert CUDA to portable C++ code, (https://github.com/
ROCm- Developer- Tools/HIP).

[6] F. Simmross-Wattenberg, M. Rodríguez-Cayetano, J. Royuela-del Val, E. Martín-
González, E. Moya-Sáez, M. Martín-Fernández, C. Alberola-López, OpenCLIPER:

an OpenCL-based C++ framework for overhead-reduced medical image pro-
cessing and reconstruction on heterogeneous devices, IEEE J. Biomed. Health

Inform. 23 (2019) 1702–1709, doi: 10.1109/JBHI.2018.2869421 . http://opencliper.
lpi.tel.uva.es

[7] J. Royuela-del Val , L. Cordero-Grande , F. Simmross-Wattenberg , M. Martín-Fer-

nández , C. Alberola-López , Nonrigid groupwise registration for motion estima-
tion and compensation in compressed sensing reconstruction of breath-hold

cardiac cine MRI, Magn. Reson. Med. 75 (4) (2016) 1525–1536 .
[8] D. Rueckert , L.I. Sonoda , C. Hayes , D.L. Hill , M.O. Leach , D.J. Hawkes , Nonrigid

registration using free-form deformations: application to breast mr images,
IEEE Trans. Med. Imaging 18 (8) (1999) 712–721 .

[9] S. Becker , J. Bobin , E. Candés , Nesta: a fast and accurate first-order method for

sparse recovery, SIAM J. Imaging Sci. 4 (1) (2011) 1–39 .
[10] P. Després, X. Jia, A review of GPU-based medical image reconstruction, Phys.

Med. 42 (2017) 76–92, doi: 10.1016/j.ejmp.2017.07.024 .
[11] H. Wang , H. Peng , Y. Chang , D. Liang , A survey of GPU-based acceleration tech-

niques in MRI reconstructions, Quant. Imaging Med. Surg. 8 (2) (2018) 196 .
12] K. Bredies , F. Knoll , M. Freiberger , H. Scharfetter , R. Stollberger , The agile li-

brary for biomedical image reconstruction using GPU acceleration, Comput.

Sci. Eng 15 (2013) 34–44 .
[13] M. Uecker, F. Ong, J.I. Tamir, D. Bahri, P. Virtue, J.Y. Cheng, T. Zhang, M. Lustig,

Berkeley advanced reconstruction toolbox, in: Annual Meeting of the Interna-
tional Society for Magnetic Resonance in Medicine, no. 23, Toronto, Canada,

2015, p. 2486. Available at https://mrirecon.github.io/bart/
[14] M. Hansen, T. Sorensen, Gadgetron: an open source framework for medical im-

age reconstruction, Magn. Reson. Med. 69 (6) (2013) 1768–1776. Available at

http://gadgetron.github.io/
[15] J. Gai , N. Obeid , J.L. Holtrop , X.-L. Wu , F. Lam , M. Fu , J.P. Haldar , W.H. Wen-mei ,

Z.-P. Liang , B.P. Sutton , More impatient: a gridding-accelerated toeplitz-based
strategy for non-cartesian high-resolution 3D MRI on GPUs, J. Parallel Distrib.

Comput. 73 (5) (2013) 686–697 .
[16] A.R. Brodtkorb , T.R. Hagen , M.L. Sætra , Graphics processing unit (GPU) pro-

gramming strategies and trends in GPU computing, J. Parallel Distrib. Comput.

73 (1) (2013) 4–13 .
[17] M. Driscoll , Domain-Specific Techniques for High-Performance Computational

Image Reconstruction, UC Berkeley, 2018 Ph.D. thesis .
[18] J. Royuela-del Val , M. Usman , L. Cordero-Grande , M. Martin-Fernandez ,

F. Simmross-Wattenberg , C. Prieto , C. Alberola-López , Whole-heart single
breath-hold cardiac cine: a robust motion-compensated compressed sens-

ing reconstruction method, in: Reconstruction, Segmentation, and Analysis of

Medical Images, Springer, 2016, pp. 58–69 .
13
[19] J. Royuela-del Val , L. Cordero-Grande , F. Simmross-Wattenberg , M. Martín-Fer-
nández , C. Alberola-López , Jacobian weighted temporal total variation for mo-

tion compensated compressed sensing reconstruction of dynamic MRI, Magn.
Reson. Med. 77 (3) (2017) 1208–1215 .

20] S.B. Dinh , N.H. Le , H.M. Nguyen , Accelerating genset reconstruction for sparsely
sampled DCE-MRI with GPU, in: 2018 IEEE International Symposium on Signal

Processing and Information Technology (ISSPIT), IEEE, 2018, pp. 29–34 .
21] M. Modat , G.R. Ridgway , Z.A. Taylor , M. Lehmann , J. Barnes , D.J. Hawkes ,

N.C. Fox , S. Ourselin , Fast free-form deformation using graphics processing

units, Comput. Methods Prog. Biomed. 98 (3) (2010) 278–284 .
22] D. Ruijters, B.M. ter Haar Romeny, P. Suetens, GPU-accelerated elastic 3D image

registration for intra-surgical applications, Comput. Methods Prog. Biomed. 103
(2) (2011) 104–112, doi: 10.1016/j.cmpb.2010.08.014 .

23] X. Du, J. Dang, Y. Wang, S. Wang, T. Lei, A parallel nonrigid registration al-
gorithm based on B-spline for medical images, Comput. Math. Methods Med.

2016 (Article ID 7419307) (2016) 14, doi: 10.1155/2016/7419307 .

24] N.D. Ellingwood, Y. Yin, M. Smith, C.-L. Lin, Efficient methods for implementa-
tion of multi-level nonrigid mass-preserving image registration on GPUs and

multi-threaded CPUs, Comput. Methods Prog. Biomed. 127 (2016) 290–300,
doi: 10.1016/j.cmpb.2015.12.018 .

25] K. Punithakumar, P. Boulanger, M. Noga, A GPU-accelerated deformable image
registration algorithm with applications to right ventricular segmentation, IEEE

Access 5 (2017) 20374–20382, doi: 10.1109/ACCESS.2017.2755863 .

26] C. Bilen, Y. Wang, I. Selesnick, Compressed sensing for moving imagery in med-
ical imaging, arXiv preprint arXiv:1203.5772 (2012).

27] Advanced Micro Devices, Inc., clFFT, (https://github.com/clMathLibraries/clFFT).
28] C. Nugteren, CLBlast: a tuned OpenCL BLAS library, IWOCL’18: International

Workshop on OpenCL, ACM, New York, NY, USA, 2018, doi: 10.1145/3204919.
3204924 . Available at https://github.com/CNugteren/CLBlast

29] OpenCV Team, Open source computer vision library (OpenCV), (https://opencv.

org).
30] Advanced Micro Devices, Inc., rocFFT, (https://github.com/

ROCmSoftwarePlatform/rocFFT).
31] M.S. Asif, L. Hamilton, M. Brummer, J. Romberg, Motion-adaptive spatio-

temporal regularization for accelerated dynamic MRI, Magn. Reson. Med. 70
(3) (2013) 800–812, doi: 10.1002/mrm.24524 .

32] S. Boyd , N. Parikh , E. Chu , Distributed Optimization and Statistical Learning via

the Alternating Direction Method of Multipliers, Now Publishers Inc, 2011 .
33] Z. Wang , A.C. Bovik , H.R. Sheikh , E.P. Simoncelli , Image quality assessment:

from error visibility to structural similarity, IEEE Trans. Image Process. 13 (4)
(20 04) 60 0–612 .

34] F. Simmross-Wattenberg , M. Rodríguez-Cayetano , J. Royuela-del Val , E. Martin–
Gonzalez , E. Moya-Sáez , M. Martín-Fernández , C. Alberola-López , Opencliper:

an opencl-based C++ framework for overhead-reduced medical image process-

ing and reconstruction on heterogeneous devices, IEEE J. Biomed. Health In-
form. 23 (4) (2019) 1702–1709 .

35] L. Cordero-Grande, S. Merino-Caviedes, S. Aja-Fernández, C. Alberola-López,
Groupwise elastic registration by a new sparsity-promoting metric: application

to the alignment of cardiac magnetic resonance perfusion images, IEEE Trans.
Pattern Anal. Mach. Intell. 35 (11) (2013) 2638–2650, doi: 10.1109/TPAMI.2013.

74 .
36] R.-M. Menchón-Lara , J. Royuela-del Val , F. Simmross-Wattenberg , P. Casase-

ca-de-la Higuera , M. Martín-Fernández , C. Alberola-López , Fast 4D elastic

group-wise image registration. convolutional interpolation revisited, Comput.
Methods Prog. Biomed. (2021) 105812 .

http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0001
https://doi.org/10.1186/s13244-019-0754-2
https://www.khronos.org/opencl/
https://github.com/ROCm-Developer-Tools/HIP
https://doi.org/10.1109/JBHI.2018.2869421
http://opencliper.lpi.tel.uva.es
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0009
https://doi.org/10.1016/j.ejmp.2017.07.024
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0012
https://mrirecon.github.io/bart/
http://gadgetron.github.io/
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0021
https://doi.org/10.1016/j.cmpb.2010.08.014
https://doi.org/10.1155/2016/7419307
https://doi.org/10.1016/j.cmpb.2015.12.018
https://doi.org/10.1109/ACCESS.2017.2755863
http://arxiv.org/abs/1203.5772
https://github.com/clMathLibraries/clFFT
https://doi.org/10.1145/3204919.3204924
https://github.com/CNugteren/CLBlast
https://opencv.org
https://github.com/ROCmSoftwarePlatform/rocFFT
https://doi.org/10.1002/mrm.24524
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0034
https://doi.org/10.1109/TPAMI.2013.74
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00218-2/sbref0036

	A clinically viable vendor-independent and device-agnostic solution for accelerated cardiac MRI reconstruction
	1 Introduction
	2 Related work
	3 The proposed system
	3.1 The algorithm
	3.2 Parallel implementation
	3.2.1 Groupwise registration
	3.2.2 NESTA

	3.3 Algorithm implementation on a generic parallel device
	3.3.1 Generalities
	3.3.2 Input and output
	3.3.3 Data structures
	3.3.4 Additional support for researchers
	3.3.5 Incorporation of HIP and CUDA functionality

	4 Evaluation
	5 Discussion
	6 Conclusion and further work
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Notation and main operators
	Appendix B Groupwise registration and motion compensation operators
	Appendix C CS reconstruction using NESTA
	References

