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a b s t r a c t 

Background and objective : Recent research has reported methods that reconstruct cardiac MR images ac- 

quired with acceleration factors as high as 15 in Cartesian coordinates. However, the computational cost 

of these techniques is quite high, taking about 40 min of CPU time in a typical current machine. This de- 

lay between acquisition and final result can completely rule out the use of MRI in clinical environments 

in favor of other techniques, such as CT. In spite of this, reconstruction methods reported elsewhere can 

be parallelized to a high degree, a fact that makes them suitable for GPU-type computing devices. This 

paper contributes a vendor-independent, device-agnostic implementation of such a method to reconstruct 

2D motion-compensated, compressed-sensing MRI sequences in clinically viable times. 

Methods: By leveraging our OpenCLIPER framework, the proposed system works in any computing device 

(CPU, GPU, DSP, FPGA, etc.), as long as an OpenCL implementation is available, and development is sig- 

nificantly simplified versus a pure OpenCL implementation. In OpenCLIPER, the problem is partitioned in 

independent black boxes which may be connected as needed, while device initialization and maintenance 

is handled automatically. Parallel implementations of both a groupwise FFD-based registration method, as 

well as a multicoil extension of the NESTA algorithm have been carried out as processes of OpenCLIPER. 

Our platform also includes significant development and debugging aids. HIP code and precompiled li- 

braries can be integrated seamlessly as well since OpenCLIPER makes data objects shareable between 

OpenCL and HIP. This also opens an opportunity to include CUDA source code (via HIP) in prospective 

developments. 

Results : The proposed solution can reconstruct a whole 12–14 slice CINE volume acquired in 19–32 coils 

and 20 phases, with an acceleration factor of ranging 4–8, in a few seconds, with results comparable to 

another popular platform (BART). If motion compensation is included, reconstruction time is in the order 

of one minute. 

Conclusions : We have obtained clinically-viable times in GPUs from different vendors, with delays in some 

platforms that do not have correspondence with its price in the market. We also contribute a paral- 

lel groupwise registration subsystem for motion estimation/compensation and a parallel multicoil NESTA 

subsystem for l1 − l2 -norm problem solving. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Magnetic resonance (MR) is a high-quality and highly versatile 

edical imaging modality. Not only anatomical images with dif- 

erent contrasts can be acquired, but also a number of properly- 

esigned pulse sequences provide additional information, such as 

iffusion, perfusion, fMRI and a few others. Dynamic imaging is 

lso possible and MR currently constitutes the golden standard for 

unctional studies of the heart [1] . However, its major drawback 

s its inherent slowness relative to other alternatives such as CT 

nd US. A complete study in MRI may take 30–45 min, whereas CT 

akes a few minutes and US is observed in real time. This has the 

onsequence of patient discomfort, which leads to motion artifacts 

n the images, the need of synchronization for dynamic studies and 

oses additional difficulties for imaging non-cooperative patients, 

uch as children or the elderly. 

This being the case, the MR community is doing a consider- 

ble effort to increase the velocity of MR acquisition and to dimin- 

sh the need of additional hardware (such as navigators, ECG or 

PG synchronization, etc.). Apart from improvements in the hard- 

are of the scanners —that provide higher and more homoge- 

eous fields, more intense and faster gradients, etc.—, many dif- 

erent software solutions have been described, which include par- 

llel imaging (PI) and compressed sensing (CS). In terms of recon- 

truction [2] , different algorithms are capable of reconstructing im- 

ges from undersampled k-space information; leaving aside mod- 

rn deep learning-based approaches, for which their bottleneck is 

he training stage, classical algorithms are optimization-based and 

hey may be computationally demanding, depending on their com- 

lexity. Hence fast implementations and appropriate computing 

ardware make a difference so as to obtain solutions in clinically 

iable times. Here, clinical viable time is interpreted as the time 

aken to reconstruct an image that is compatible with repeating an 

cquisition —whenever the reconstruction is considered of insuffi- 

ient quality— without causing an unacceptable overload in clinical 

outine 1 . The MR reconstruction workload turns out to be highly 

arallelizable so proper implementations on natively-parallel de- 

ices, such as (but not limited to) GPUs, are currently playing an 

utstanding role. 

Many different attempts have been reported to speed up recon- 

truction algorithms by means of parallel devices. Section 2 pro- 

ides an overview of the field. As of today, the field of paral- 

el computing has seen a tremendous growth of tailored solutions 

hat work exclusively on a particular vendor GPU, namely, nVidia. 

evertheless, other alternatives exist. One of them is OpenCL [4] ; 

penCL is an open standard for parallel computing, similar in 

ts objectives to the nVidia-exclusive language CUDA, but covers 

 much wider set of computing devices (including nVidia GPUs) 

hile ensuring that source code and data are unique, thus avoid- 

ng the need for code and data replication among prospectively 

upported devices. However, it is generally regarded as more com- 

licated and less mature than CUDA. As a matter of fact, OpenCL 

rogrammers must deal on their own with device selection and 

nitialization, memory management, kernel loading and compila- 

ion, host-device interaction, and administration overload. 

Another example is HIP [5] ; this initiative helps developers in 

onverting CUDA source code into a more portable form, so that it 

an run on both nVidia and AMD GPUs. However, as of today, the 

IP API is not compatible with OpenCL, so data objects defined 

n OpenCL cannot be used as parameters to HIP kernels and vice- 

ersa, even though OpenCL data is undistinguishable from HIP (or 

UDA) data in the GPU memory. 
1 Issues related to DICOM interoperability are a step further and well-known so- 

utions are available [3] . We concentrate on operations on the reconstruction prob- 

em once all the necessary data is available. 

c

b

2 
The framework OpenCLIPER [6] was developed to address all 

hese shortcomings of OpenCL. In this paper, OpenCLIPER has been 

sed to provide a parallel implementation of our previous pro- 

osal [7] on 2D cardiac cine imaging. This algorithm combines 

S with Groupwise Motion Compensation (MC) to achieve CINE 

equences with acceleration factors (AFs) of 8–15x, which show 

igher quality than other methods with pairwise approaches for 

otion compensation. Nevertheless, in its non-parallel version, 

he post-acquisition reconstruction takes a significant computation 

ime (about 40 min in a Core i7-4790 CPU for the full heart cov- 

rage), which is far from being clinically viable. In this paper, we 

how how OpenCLIPER eases dramatically the process of paral- 

elizing a complex algorithm previously programmed in a script- 

ng language. 2 As a byproduct, we have enlarged the OpenCLIPER 

ibrary with additional parallel functionality, such as a groupwise 

ersion of a registration algorithm based on free form deforma- 

ions (FFD) [8] or a multicoil parallel adaptation of the NESTA opti- 

ization algorithm [9] . None of these algorithms, to the best of our 

nowledge, are currently available on GPUs. A comparison with an- 

ther popular framework (BART, see Section 2 ) is included. In ad- 

ition, we show how to seamlessly incorporate HIP code to Open- 

LIPER by solving the integration difficulty referred to above; this 

pens up the possibility of using CUDA code in our framework —as 

ong as this code can be converted to HIP— at programmer will. 

The rest of this paper is organized as follows: Section 2 re- 

iews the subject of current parallel implementations of under- 

ampled MRI reconstruction algorithms. Section 3 describes the 

nnards of our proposed implementation. Section 4 evaluates our 

roposal performance in various computing devices and compares 

t, as previously mentioned, with another popular framework. The 

iscussion can be found in Sections 5 and 6 concludes the paper. 

 number of appendices of both mathematical and algorithmic de- 

ails have been included for the sake of self-completeness. 

. Related work 

The field of MR reconstruction is very active and quite an activ- 

ty has been focused on algorithm implementation on GPUs. Two 

ecent survey papers [10,11] give a general overview of the field; 

he former is dedicated to GPU-based medical image reconstruc- 

ion while the latter is specifically targeted to MR reconstruction. 

oth survey papers, however, have a similar structure as for their 

ommon topic; they review FFT-based methods, either for Carte- 

ian and non-Cartesian data, PI and CS-based applications. The 

018 survey also includes a section on reconstruction based on 

eep-learning, probably spurred by the enormous activity that has 

een reported in the last two years. Both papers also quote some 

ecent work on multi-GPU solutions. The reader is kindly invited 

o consult the references therein. 

Apart from particular implementations of reconstruction algo- 

ithms, the field has been enriched with a number of libraries, 

ome examples of which are AGILE [12] , BART [13] , Gadgetron [14] 

nd Impatient [15] , to explicitly mention four of them. Addi- 

ional libraries are mentioned in our former publication on Open- 

LIPER [6] . These libraries are conceived to ease the process of 

lgorithm prototyping and testing; Gadgetron shows additional 

lient-server characteristics, where the server takes care of the re- 

onstruction process while the client focuses on data handling, i.e., 

adgetron could be considered both as a library and as a network 

ervice. 

The common ground of these references, both in terms of spe- 

ific algorithms and of reconstruction toolkits, is that they are 

ased on the CUDA language and, consequently, they are vendor 
2 OpenCLIPER code available at http://opencliper.lpi.tel.uva.es/ . 

http://opencliper.lpi.tel.uva.es/
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ependent. nVidia, since its onset in 2007 with the release of 

ts CUDA application programming interface [16] , has become the 

ain supplier in the field of parallel computing with GPUs, both 

n academia and in industry. Its mainstream condition is accompa- 

ied, however, with some unavoidable consequences which can be 

ummarized in two, namely, the need of code duplication should 

he application be run in GPU and in CPU (or in any other device),

nd the need of data replication in the platforms in which the ap- 

lication is deployed. 

Alternatives to this technology are also available, mainly, Direct 

ompute issued by Microsoft and, as previously stated, OpenCL, 

n open source project led by the Khronos Group [11] . The lat- 

er has the benefits of being both open-source and device ag- 

ostic; the second feature makes it comply with the write-once 

un-anywhere (WORA) paradigm. An additional solution has been 

roposed, which is a domain specific computational image recon- 

truction language, referred to as Indigo [17] . It provides a front- 

nd with a number of image reconstruction facilities, as well as a 

ack-end that is responsible to evaluate the operators provided by 

he front-end on a particular platform. As long as different back- 

nds are available, the language will follow the WORA paradigm, 

lthough as of today it seems limited to CUDA as for GPU imple- 

entation. 

As we mentioned in the Introduction, in this paper we illus- 

rate how OpenCLIPER can be used to find a solution to a 2D dy- 

amic cardiac image reconstruction algorithm, that makes whole- 

eart single breath-hold reconstruction possible [18] in clinically 

easible times. Our algorithm makes use of an optimizer, for which 

e have used NESTA [9] as well as FFD [8] for motion compensa- 

ion. Further algorithmic details of the method are described else- 

here [7,19] . As for the NESTA algorithm, we are only aware of 

 GPU version, which was recently described in Dinh et al. [20] ; 

owever, in that implementation, a single coil is apparently used. 

n our implementation, multiple coils are employed and the algo- 

ithm is fully parallel in the coils as well. As for the FFDs, some 

PU-based implementations were described in Modat et al. [21] , 

uijters et al. [22] , Du et al. [23] , Ellingwood et al. [24] , Punithaku-

ar et al. [25] ; however, these proposals are pairwise and device- 

pecific. We show in Royuela-del Val et al. [7] that a groupwise 

egistration has added benefits in terms of reconstruction quality; 

onsequently, the implementation we have carried out is group- 

ise and specifically targeted for cardiac cine MRI. 

. The proposed system 

.1. The algorithm 

CINE cardiac MR images can be reconstructed from highly un- 

ersampled data while keeping a very high level of detail from 

he fully-sampled images. A state-of-the-art algorithm on this topic 

as published in Royuela-del Val et al. [7] and later enhanced 

n Royuela-del Val et al. [19] . Briefly described, the algorithm de- 

arts from the multi-coil k-space subsampled information b and 

olves a CS reconstruction problem which gives the resulting im- 

ge sequence m i , at iteration step i , as 

 i = arg min 

m 

|| b − Em || 2 l 2 
+ λ|| �T �m || l 1 (1) 

 i is a vectorized stack of image frames, one frame per cardiac 

hase. E is the encoding operator that includes the multiplication 

y the coil sensitivities S, the intra-frame spatial Fourier trans- 

orm F and the application of the undersampling mask A . � is the 

emporal total variation (tTV) operator. T � is the groupwise (GW) 

ransformation for motion compensation (MC) that registers all the 

rames in the sequence to a common reference and λ is a regular- 

zation parameter. Appendix A describes a matrix formalization of 

hese data structures and operators. As for m , the transformation 
0 

3 
 � is the identity, since there is no data from which motion in- 

ormation can be estimated. Then, the iterative refinement process 

nds m i with T � obtained by the heart motion estimation (ME) on 

 i −1 . The whole process continues until a predefined number of 

terations is met. In this manuscript, the number of ME/MC recon- 

truction iterations was set to two. 

The ME/MC is carried out by means of elastic registration [26] . 

s previously stated, we use FFDs [8] ; Appendix B provides details 

n the ME/MC process. B-splines serve the purpose of interpolat- 

ng the deformation field (see Eq. (B.3) ) from a given control point 

onfiguration to give rise to a dense field. Specifically, we apply a 

W paradigm in which no particular frame is selected as a refer- 

nce, but the reference is built along the optimization process as 

he average of the transformed images. As for the metric to be op- 

imized, we have used the sum of the intensity square differences 

SSD) with respect to the reference image (see Eq. (B.1) ); this met- 

ic is enlarged with smoothness terms so as to force a realistic mo- 

ion field solution (see Eq. (B.2) ). 

Eq. (1) is minimized with the well-known NESTA algorithm 

ased on Nesterov’s method [9] . A detailed pseudocode of the MRI 

econstruction algorithm can be found in Appendix C . Specifically, 

esterov’s method iteratively minimizes a function f by estimat- 

ng three sequences x k , y k and z k . The x k sequence corresponds to 

he sequence we want to estimate ( m i in the Eq. (1) ), and it is

btained from a weighted sum of the other two sequences. Nes- 

erov’s method can be used for the minimization of both smooth 

nd nonsmooth convex functions if using the appropriate smooth- 

ng techniques. In [9] , the l1 -norm in Eq. (1) is component-wise 

pproximated by the well-known Huber function f μ(x ) , which de- 

ends on a smoothing parameter μ; this parameter is iteratively 

ecreased during the optimization process. The starting guess x 0 
s the result of applying the adjoint encoding operator ( E H ) to the

ubsampled k-space ( x 0 = E H b). 

.2. Parallel implementation 

Our parallel implementation is coded in OpenCL [4] , and all 

arallel operations are programmed as OpenCL kernels. In the 

ext two subsections we provide details on the ME/MC stage and 

he NESTA algorithm. Pseudocode for the latter is included in 

ppendix C . 

.2.1. Groupwise registration 

The registration procedure is determined by the values of the 

arameters θu in Eq. (B.3) . These parameters are obtained by mini- 

izing the metric defined in Eq. (B.2) . In this section we will con- 

entrate on the implementation of the most resource-demanding 

peration, which turns out to be finding the gradient of Eq. (B.1) . 

he gradient is, in essence, calculated as follows: 

∂ V (x ) 

∂θ
= 

∂ V (x ) 

∂m 

· ∂m 

∂ T (x ) 
· ∂ T (x ) 

∂θ
(2) 

here V (x ) is the metric, m represents the image sequence and 

 (x ) the transformation. Notice that x will be a grid point (with 

oordinates given as row and column numbers r, 1 ≤ r ≤ N 1 , and 

, 1 ≤ c ≤ N 2 , respectively). In addition, each parameter θ is associ- 

ted to each of the frames (with index n , 1 ≤ n ≤ N t ) as well as to

ach of the control points (with coordinates, say (r u , c u ) ) and each

f the directions of variation, namely, horizontal (index l = 1 ) and 

ertical ( l = 2 ); these indices will be borne in mind for the deriva-

ives. 

The first factor in equation Eq. (2) can be written: 

∂ V (x ) 

∂m r,c,n 
= 

2 

N t 

( 

m 

(n ) 
(
T (n ) (x ) 

)
r,c 

− 1 

N t 

N t ∑ 

n ′ =1 

m 

(n ′ ) (T (n ′ ) (x ) 
)

r,c 

) 
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Fig. 1. Functional units of the proposed reconstruction system. Gray boxes represent necessary albeit unproductive work, which is taken care of by OpenCLIPER. White 

boxes represent actual, productive work. Each white box is abstracted as a process , which may be composed of several other processes. U , U H , E , E H are the internal NESTA 

operators. tTV: temporal Total Variation; GW: Groupwise Registration. 
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(n ) (x ) the n th frame in sequence m , evaluated at pixel x , and

 

(n ) (x ) it the transformed position of pixel x in that phase. m 

(n ) 

ill be also referred to as the n th frame. This equation is computed 

n parallel for the N 1 × N 2 × N t pixels. 

The second factor in Eq. (2) is the image gradient with re- 

pect to the transformation. The actual operations we perform are 

he interpolation of the gradient of each frame m 

(n ) at position 

 

(n ) (x ) . The interpolation is carried out within a region of inter- 

st, say χm 

, so the number of operations launched in parallel is 

 1 χm 
× N 2 χm 

× N t , where the two first factors are the dimensions 

f region χm 

. 

The last factor in Eq. (2) is the gradient of the transformation 

ith respect to the variables θu to be optimized; since these vari- 

bles enter Eq. (B.3) as factors, their derivative is straightforward 

nd can be precomputed. 

Hence, the calculation of the gradient of Eq. (2) will be per- 

ormed parallelizing along the rows and columns affected by the B- 

plines ( r s and c s ), the frame dimension ( n ), the rows and columns

f the control points ( r u and c u ) and the spatial dimension ( l), as

an be seen below: 

∂ V (x ) 

∂θ r s ,c s ,n,r u ,c u ,l 
= 

∂ V (x ) 

∂m r s ,c s ,n,l 
· ∂m 

∂ T (x ) r s ,c s ,n,l 

· ∂ T (x ) 

∂θ r s ,c s ,r u ,c u 
. 

.2.2. NESTA 

A matrix formalism of data structures and operators (the en- 

oding operator E and the sparsifying operator U) used in NESTA is 

resented in Appendix A ; this formalism makes it simple to derive 

he adjoint operators. However, in practice, high data dimension- 

lity implies that storage of matrices associated with operators is 

ot feasible due to memory requirements. Consequently, operators 

re implemented by means of functions and the latter have been 

he focus of our parallelization effort. Specifically, for the encoding 

perator E the following parallelizations were made: 1) Multiplica- 

ion by the coil sensitivities S is performed parallelizing along the 

patial dimensions (i.e., N × N operations launched in parallel). 
1 2 

4 
) The by-frame spatial Fourier transform F is performed paral- 

elizing along the coils and frames dimensions (i.e., C × N t paral- 

el operations) using the clFFT [27] library. 3) Application of the 

ndersampling mask A is performed parallelizing along the spa- 

ial dimensions (i.e., N 1 × N 2 parallel operations). Note that in S, 

he coils and frames dimensions could have also been parallelized; 

evertheless, we empirically verified that this did not constitute 

 performance gain, presumably caused by the limited number of 

ores in the hardware. As for the adjoint encoding operator E H , 

he following parallelizations were made: 1) Multiplication by coil 

onjugate sensitivities S H and, 2) by-frame spatial inverse Fourier 

ransform F 

H , Both of them were parallelized analogously to their 

ounterparts S and F , respectively. 3) Summation of the resulting 

mage sequence in each coil is parallelized along the spatial and 

emporal dimensions (i.e., N 1 × N 2 × N t operations launched in par- 

llel). 

Regarding the sparsifying operator U = �T �, the temporal total 

yclic variation � is performed parallelizing along the spatial di- 

ensions (i.e., N 1 × N 2 operations launched in parallel) and the T �
roupwise transformation for MC is performed parallelizing along 

oth the spatial and the frame dimensions (i.e. N 1 χm 
× N 2 χm 

× N t 

arallel operations). Similarly, the adjoint sparsifying operator U 

H 

s parallelized along the same dimensions as U . 

Finally, matrix operations needed in NESTA, such as scaling a 

ector by a constant or addition of two vectors, are performed ef- 

ciently by the clBLAST library [28] . Thus, all the algorithm steps 

see Appendix C for details) can be straightforwardly computed by 

ombining operators E and U , their adjoints E H and U 

H , and a few 

atrix operations. 

.3. Algorithm implementation on a generic parallel device 

We have translated the original method into an actual device- 

gnostic software solution which (a) finishes in clinically viable 

imes, comparable to other popular reconstruction frameworks, (b) 

s suitable for execution in parallel devices, and (c) complies with 

he WORA paradigm (see Section 2 ) so neither code nor data 
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Listing 1. Accessing attributes of complex data structures. Note how data proper- 

ties (sizes, strides and number of coils in this particular case) are available from 

kernel code without passing them explicitly as kernel arguments. 
eed be duplicated for CPU/GPU or any other device. As stated in 

ection 1 , we make extensive use of our framework OpenCLIPER to 

rovide this solution. 

In this section we provide details on this implementation; 

ig. 1 shows a diagram of our system functional units that will 

uide us through the description that follows. 

.3.1. Generalities 

Together with the core algorithm —enclosed within the dashed 

ectangle in Fig. 1 and its operations represented by rectangles 

ith white background—, several other tasks must be carried out 

or the system to be functional by itself. These tasks are not only 

art of the initialization process but they are also active while 

he actual processing is taking place. All these administrative tasks 

shaded boxes in Fig. 1 ) are dealt with by OpenCLIPER with min- 

mal programmer intervention. While the system is at work, data 

asses through several transformations (called processes in Open- 

LIPER) that need to be connected appropriately. Each process may 

e seen as a black box with a single input, a single output and

n arbitrary set of parameters. This specification allows prospective 

rogrammers to interconnect and compose processes arbitrarily, as 

ong as outputs from one are compatible with inputs to the next, 

ince their interfaces must all comply with this specification. 

An appropriate computing device must be selected (top row in 

ig. 1 ). Since OpenCL supports a wide range of them, an additional 

orkload is the need to detect the available platforms and devices 

which may be from different vendors), and to choose the most 

uitable among them. Moreover, once a device has been selected, 

ernels must be loaded and compiled for the chosen device. Open- 

LIPER simplifies these tasks significantly: kernel loading and com- 

iling is done without user intervention when a process demands 

t, caching them as necessary so time is dedicated to compilation 

nly once per device (and driver version). Platform/device detec- 

ion and selection may be either specified by the programmer (via 

ints such as device type, model, supported CL version, etc.) or, 

lternatively, left to the framework by just a single line of code. 

n the latter case —or, in the former, whenever the specified hints 

atch several candidate devices—, the a priori fastest device is au- 

omatically chosen. 

All compute-intensive transformations are performed in the 

omputing device, so the system takes full advantage of its par- 

llel capabilities and hence clinically viable execution times may 

e achieved (see quantification in Section 4 ). The algorithms im- 

lemented in OpenCLIPER, which are themselves processes, are 

ade up from several other processes which may be reused at 

rogrammer discretion. In this sense, OpenCLIPER provides a pool 

f frequently used processes as a ready-to-use toolbox; for exam- 

le, Hadamard matrix multiplication, fast Fourier transform, chan- 

el integration, image sum, etc. These tools make the implemen- 

ation of more involved processes —such as the two described in 

ection 3.2 — easy. 

With respect to the four blocks on top of the NESTA Process 

n Fig. 1 , after the selection of the most appropriate device (either 

anually or automatically), kernel loading is delayed until a pro- 

ess requires it. At that time, a previously compiled (i.e. cached) 

ersion of the kernel is sought. If it does not exist yet, kernel com- 

ilation is automatically triggered and the kernel cache is updated 

loading of cached kernels is typically two orders of magnitude 

aster than on-the-fly compilation). Compilation logs (if any) are 

hown to the user for debugging purposes. 

.3.2. Input and output 

MRI data loading is done in a single code line with OpenCLIPER 

y a front-end function (see leftmost side of Fig. 1 ). As of today,

-space lines are input by means of a.clf file (and its accompa- 

ying.hdr file); Matlab format file is also allowed. Output formats 
5 
nclude the two formats just mentioned as well as other popular 

mage formats (JPEG, PNG, etc). 

To maximize utilization of the computing device, data objects 

ay be loaded and saved concurrently while the device is busy 

rocessing other objects. Since MRI data files are often large, this 

an save a noticeable amount of processing time per patient. 

.3.3. Data structures 

A common burden in GPU computing lies in the need to keep 

rack of pointers to data objects and their properties: number of 

imensions, sizes and strides along each of them, data types and 

izes (complex, float, integer, etc.), and passing them to the com- 

uting device. This is typically done by adding arguments to the 

ernels, but kernel argument space is usually limited by the com- 

uting hardware (apart form adding more burden for the user to 

all their kernels). OpenCLIPER simplifies this burden by encapsu- 

ating all data properties within the buffer in the computing device 

n a way that is transparent to the kernel programmer (i.e. there is 

o offset between the object pointer and the real data). Thus, users 

ust have to pass a single pointer to the data object to have all its

roperties readily available for the kernel code. OpenCLIPER pro- 

ides support for data with an arbitrary number of frames, coils, 

ensitivity maps, sampling masks and data dimensionality for the 

pecial case of MRI data, and arbitrarily complex data for the gen- 

ral case. Our framework also provides methods to traverse data 

uffers along any given dimension. This functionality is provided 

y generating index and size tables for each data object, as shown 

n Fig. 1 . 

An additional feature of OpenCLIPER is that all sub-objects in 

 data object (e.g. sensitivity maps for each coil) are mapped 

ontiguously in device memory and properly adjusted to hard- 

are alignment, so kernel programmers can assume a linear layout 

hen processing compound data objects. Data transfers between 

ost and device are driven by the DMA controller to maximize 

peed. 

Listing 1 shows a simple OpenCL kernel which sums a set of 

R images along the coil dimension. It can be seen how a ker- 

el can access attributes from input and output buffers (such as 

oil or frame strides, sizes, and so on) just by passing their natural 

ointer as arguments with no need to worry about header offsets 

r the like. All attribute access functions are O (1) as long as all ND
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Listing 2. Passing OpenCLIPER data objects to HIP libraries. 
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3 Release downloaded on February 25, 2020, from https://github.com/mrirecon/ 

bart/releases/tag/v0.5.00 
rrays in the given object have the same number of dimensions 

 O (n ) otherwise). 

.3.4. Additional support for researchers 

OpenCLIPER has also been designed as a development tool for 

esearchers. Hence, it includes a number of additional utilities, 

hich we now enumerate: 

1. 1D, 2D and 3D objects in device memory, either standalone or 

as a movie, can be graphically presented to the user at any time 

by a simple call to pointerToObject- > show() method; 

scaling and video velocity facilities are provided at programmer 

convenience. OpenCV [29] is currently used to display windows 

on the desktop. 

2. Similarly, any object in device memory can be saved for further 

inspection in Matlab or any other supported format at any time. 

3. When compiling in debug mode, device and host are automati- 

cally synchronized in every process so that run-time errors trig- 

ger exactly at the responsible kernel, so fault location detection 

should be immediate. 

4. When OpenCL kernels are compiled on the fly (as opposed to 

loading a previously cached version), errors may show up when 

the host program is run. If this is the case, kernel compilation 

errors are automatically shown to the user. 

5. In the case of program abortion, the full stack backtrace is 

shown to the programmer. 

6. OpenCLIPER includes facilities to gather profiling data and gen- 

erate statistical reports as well. 

7. A memory map of data objects in device memory may be ob- 

tained at any time. 

.3.5. Incorporation of HIP and CUDA functionality 

As stated in the introduction, HIP [5] is an interesting effort to 

ridge the gap between GPUs vendors by providing facilities to mi- 

rate CUDA code into a reusable form in other platforms. However, 

andling exchange is still an issue; specifically, data objects de- 

ned in one language (HIP/OpenCL) cannot be used as parameters 

o kernels written in the other language (OpenCL/HIP). We have 

olved this problem by providing a HIP handle to every OpenCL 

ata object defined through the OpenCLIPER API. This way, de- 

elopers may invoke calls to HIP libraries on pure OpenCL data 

bjects and, consequently, OpenCLIPER may benefit from libraries 

ritten in CUDA for which a HIP implementation is also available. 

As an example, Listing 2 shows how an OpenCLIPER data object 

ay be passed seamlessly to the rocFFT library [30] and use its 

esult as an OpenCLIPER object again. After initialization (lines 11–

5), a vector of complex numbers is created as an OpenCL memory 

bject (lines 17–20) and its corresponding HIP handle is obtained 

line 23). The next code section is pure HIP code in which the ob- 

ained handle is used to feed the rocFFT library (lines 25–31) and, 

nally, the FFT result is saved as a Matlab file (line 34). 

. Evaluation 

We have executed several reconstructions to test the be- 

aviour of our platform. Reconstructions have been carried out 

n 7 healthy volunteers courtesy of King’s College London. These 

ata are 2D Cartesian, fully sampled dynamic short axis cine 

reath-hold ECG-triggered acquisitions in a 1.5 T Philips scanner 

ith a bSSFP sequence. Some relevant parameters of the acqui- 

itions include flip-angle 60 ◦, TR/TE = 3/1.5 ms, spatial resolu- 

ion 2 × 2 mm 

2 , slice thickness 8 mm, 20 cardiac phases, FOV 

20 × 320 mm 

2 , 12–14 slices and the number of channels is be- 

ween 19 and 32, depending on the subject. Both sensitivity maps 

nd k-space data from all coils were provided to us. These datasets 

ere retrospectively subsampled with a Gaussian variable-density 
6 
andom undersampling pattern along the phase encoding direction 

escribed in Asif et al. [31] for different values of acceleration fac- 

or (AF). Hence, for the experiments carried out we have fully sam- 

led images which have been used as a reference for measuring 

ome quality indices (QIs). 

First, we have compared our platform with BART [13] to solve 

q. (1) . As for OpenCLIPER we have used NESTA. As for BART, 3 

ince NESTA is not available in that platform, we have used the 

DMM method [32] . As for these comparisons, T � in Eq. (1) is the

dentity due to the fact that BART does not incorporate —to the 

est of our knowledge— a groupwise ME/MC implementation. 

Three experiments have been conducted, namely (a) AF = 4 

AF4), (b) AF = 4 plus coil compression (AF4CC) from 19–32 to half 

f the channels (9–16), and (c) AF = 8 (AF8). The parameter λ in 

q. (1) has been chosen to maximize the structural similarity index 

SSIM) [33] in the BART reconstruction. Table 1 shows SSIM values 

or the three experiments. Thus, λ = 0 . 01 has been used for BART 

nd OpenCLIPER reconstructions. For the sake of fairness, since the 

wo optimization algorithms are different, we have chosen the in- 

ernal NESTA parameters (namely, both μ and the stopping crite- 

ion, see lines 5 and 12 in Appendix C ) to guarantee that SSIM val-

es are comparable for ADMM and NESTA reconstructions; this is 

raphically shown in Fig. 2 a, with boxplots of SSIM along all the 

lices of all the patients. Boxplots have been grouped in pairs, i.e., 

F4 for OpenCLIPER and BART, and the same structure goes for 

https://github.com/mrirecon/bart/releases/tag/v0.5.00
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Fig. 2. Boxplots of SSIM (a), NCC (b), and SER (c) for experiments AF4, AF4CC, and AF8 on both OpenCLIPER which makes use of NESTA, and BART (which uses ADMM). No 

significant differences have been found. 
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Fig. 3. Example of reconstructions using BART and OpenCLIPER for the experiments AF4, AF8, and AF8 with ME/MC; the latest only for OpenCLIPER. Fully sampled images 

are shown as reference. End-systole and end-diastole frames are shown in each case, as well as the intensities along time of the vertical profile marked with red line in 

reference images. Last row shows the error images (mean squared error, MSE, between reference and reconstructed image). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Mean SSIM values evaluated on undersampled BART reconstruc- 

tions for a single slice of all patients and the three experiments 

(AF4, AF4CC, and AF8). Maximal values (bold highlighted) in- 

dicate the optimal regularization weight ( λ in Eq. (1) ) for the 

experiments. 

Reg. Term AF4 AF4CC AF8 

λ = 10 −5 0.8776 0.8923 0.8200 

λ = 10 −4 0.8832 0.8979 0.8293 

λ = 10 −3 0.9037 0.9201 0.8642 

λ= 0 . 01 0.9056 0.9229 0.8719 

λ = 0 . 1 0.8955 0.9133 0.8592 

λ = 1 0.8951 0.9128 0.8589 
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F4CC as well as for AF8, as indicated in the horizontal labelling 

nd in the legends on the figures. For completeness, different QIs 

ave been analyzed. Fig. 2 also includes the corresponding boxplots 

or the normalized cross correlation (NCC, Fig. 2 b) and the signal 

o error ratio (SER, Fig. 2 c). Mann Whitney tests, 4 show no signifi- 

ant differences in any of these parameters between the compared 

rameworks. Additionally, Figs. 3 and 4 show two reconstruction 

xamples for two different patients. In both cases, the fully sam- 

led reconstructed images are shown as reference with the images 

econstructed using BART and OpenCLIPER for the experiments AF4 

nd AF8; for the latter, ME/MC reconstruction is also shown for 

penCLIPER Ẇith these parameter setting, execution times in iden- 

ical computer load situations have been compared. To deal with 

ariability, each experiment has been run one hundred times for 

ach patient. 

Four platforms with four different GPUs have been employed. 

ll of them are standard PC-class workstations based on Intel Core 
4 Function wilcox.test in RStudio. i

8 
r AMD Ryzen processors. The exact GPU models are GeForce 

080Ti and Quadro RTX 60 0 0 from nVidia, and Radeon RX 480 and 

adeon RX 5700XT from AMD. For reference, some tests have also 

een carried out using a CPU as the computing device in a 70- 

hread Intel Xeon server. Notice that BART can only be run on CPU 

r nVidia GPUs, so no further comparison could be done between 

MD and nVidia as for BART performance. 

Fig. 5 shows boxplots of execution times on the GeForce 2080Ti 

a) and RTX60 0 0 (b) for the three experiments, with the same 

rdering as in Fig. 2 . As for a comparison betweeen nVidia and 

adeon, Fig. 6 shows boxplots of the AMD Radeon RX 5700XT 

GFX1010) and the nVidia Quadro RTX 60 0 0 in the same condi- 

ions as in the previous experiment. In terms of performance, the 

FT implementation used by the reconstruction algorithm plays a 

rominent role. BART uses the nVidia’s well-known proprietary im- 

lementation cuFFT, whereas OpenCLIPER uses the AMD’s open- 

ource implementation clFFT. While the former is highly optimized 

or nVidia GPUs, the latter is conceived to be run on every pos- 

ible computing device and hence lacks of any specific optimiza- 

ion. This results in clFFT being slower than cuFFT, as shown in 

able 2 . OpenCLIPER compensates this with performance enhance- 

ents in other areas, such as parallel loading/saving of data and 

ernel caching (see Section 3.3 ). 5 

Fig. 7 shows boxplots of SSIM for AF8 on OpenCLIPER with and 

ithout ME/MC; whereas boxplots for NCC and SER are shown 

n Fig. 8 . Results of the unilateral Mann-Whitney test for SSIM 

re significant ( p = 0.008) for ME/MC. If a unilateral signed rank 

est is run per patient, differences favor ME/MC in six out of the 

even patients tested. Mann-Whitney tests are also significant for 

CC and SER ( p = 0 . 006 and p = 0 . 007 , respectively). The price
5 In our previous work [34] , FFT times reported were overestimated since they 

ncorporated an additional synchronization of the device command queue. 
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Fig. 4. Example of reconstructions using BART and OpenCLIPER for the experiments AF4, AF8, and AF8 with ME/MC; the latest only for OpenCLIPER. Fully sampled images 

are shown as reference. End-systole and end-diastole frames are shown in each case, as well as the intensities along time of the vertical profile marked with red line in 

reference images. Last row shows the error images (mean squared error, MSE, between reference and reconstructed image). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Boxplots for experiments AF4, AF4CC, and AF8 on (a) GeForce 2080Ti and (b) RTX60 0 0. Times reported are per whole slice stack. 

Fig. 6. Boxplots of computing time for AMD Radeon RX 5700XT (GFX1010) and nVidia Quadro RTX 60 0 0 (RTX60 0 0) for the three experiments. Notice that red-shaded boxes 

coincide with the red-shaded boxes in Fig. 5 . Times reported are per whole slice stack. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

9 
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Table 2 

Performance comparison between cuFFT and clFFT libraries on various devices. A single 

experiment consists in transforming a K-space dataset ( 160 × 160 images, 19 coils, 20 

frames, complex floats) 10 0 0 times. Each experiment is run 100 times on each library 

and device. For each combination we show mean execution times (mean) and their 

standard deviation (std), both in seconds. 

cuFFT clFFT 

Device mean std mean std 

GeForce 2080Ti 0.6299 0.001 0.6518 0.0227 

Quadro RTX 6000 0.5880 0.0016 0.6413 0.0020 

Radeon RX 5700XT N/A N/A 0.8276 0.0015 

Fig. 7. Boxplots of SSIM for AF8 on OpenCLIPER with (right, green) and without (left, red) ME/MC. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 8. Boxplots of NCC (a) and SER (b) for AF8 on OpenCLIPER with (right, green) and without (left, red) ME/MC. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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o pay is the increase in computation time, which reaches a me- 

ian equal to 62.12 s and (q 1 , q 3 ) = (53 , 72 . 13) for 2080Ti, with q i 
he i th quartile. For RTX60 0 0 the median is 60.16 and (q 1 , q 3 ) =
50 . 74 , 69 . 24) (times reported are per whole slice stack). 

Finally, we have also run an experiment on CPU with both BART 

nd OpenCLIPER; the experiment is AF4CC with a randomly se- 

ected patient, ten repetitions. As for the former, the median exe- 

ution time is 24.58 s ( (q 1 , q 3 ) = (24 . 84 , 24 , 45) ) while for Open-

LIPER median is 16.33 and (q 1 , q 3 )= (16.09,16.59). 

. Discussion 

OpenCLIPER reveals itself as a device agnostic platform for re- 

onstruction of MR dynamic images. We have shown results for 

D although the code is prepared for higher dimensionality pro- 

ided that sufficient memory is available. Fig. 5 shows that our 

omputing times are comparable to those needed by BART; this 

as been tested in two nVidia devices with different memory ca- 

acities. Results are not point-by-point comparable since optimiza- 

ion methods used by both approaches are different. However, we 

eant to be fair by assuring that both platforms gave rise to 

mages with similar qualities; optimization parameters were se- 

ected to this end, a goal that seems accomplished according to 
10 
he evidence shown in Fig. 2 . As for computing times themselves, 

e observe that our times are fairly similar to those from BART; 

ence, no obvious losses are appraised by using OpenCLIPER de- 

pite some administrative tasks need to be handled, as pointed out 

n Section 3.3.1 , due to its device agnostic character; this overload 

s represented in Fig. 1 by the shaded blocks located outside the 

ashed box that contains the core of the reconstruction algorithm. 

BART cannot be tested in AMD devices; hence only OpenCLIPER 

nters the comparisons in Fig. 6 . The figure shows that a device 

ne order of magnitude more economical can do a remarkable 

ob. Therefore, OpenCLIPER makes it possible that an affordable de- 

ice is used for image reconstruction in viable clinical times. When 

E/MC enters the algorithm the computing time needed reaches a 

uantity of about one minute for a multislice reconstruction, a de- 

ay that seems also realistic in a clinical setting. Whether ME/MC 

s worth taking depends on the acceleration factor; for the AF = 8 

ase we have employed in our experiments, statistical differences 

ere found. 

The execution on CPU revealed that BART needed extra time for 

mage reconstruction with respect to OpenCLIPER. Since no obvi- 

us differences were found on the nVidia devices, chances are that 

his is due to the fact that BART, when executed on the CPU, par- 



E. Martín-González, E. Moya-Sáez, R.-M. Menchón-Lara et al. Computer Methods and Programs in Biomedicine 207 (2021) 106143 

a

t

e

(

b

s

h

i

F

o

i

i

6

p

t

a

f

u

w

a

p

n

v

c

l

p

g

d

t

m

l

f

t

g

t

D

S

A

R

C

P

O

y

t

w

A

N

a

o  

r

 

 

 

 

N

i

U

A

o

o

t

a

b

b

s

t  
llelizes only the FFT part of the reconstruction (making use of the 

hreading support in the FFTW library), whereas in OpenCLIPER, 

very process’ kernels are executed in parallel. Additionally, clFFT 

the OpenCL version of FFT used by OpenCLIPER), has been used in 

oth CPU and GPU experiments since kernel code is unique. 

The FFT algorithm is exhaustively used in each reconstruction 

tep. Hence, optimized implementations of this algorithm should 

ave an appreciable impact in the overall reconstruction comput- 

ng time. Our HIP interface could be an alternative to use other 

FT libraries written in CUDA (cuFFT, which is known to be highly 

ptimized for nVidia devices, might be one of such alternatives if 

ts source code were available). Nevertheless, interfacing overload 

s non-negligible and this requires further investigation. 

. Conclusion and further work 

In this paper, a 2D MRI cardiac reconstruction system has been 

resented. This system is a) clinically viable in terms of execu- 

ion times, and b) suitable for any computing device which has 

n OpenCL implementation, including CPUs, GPUs, FPGAs and DSPs 

rom main vendors. The use of our framework OpenCLIPER allowed 

s to partition the problem in independent black boxes (processes) 

hich are then connected as needed and executed in parallel on 

ny capable device, while the source code remains unique for all 

rospective computing devices. Device initialization and mainte- 

ance is reduced to a minimum as well, while providing rele- 

ant development and debugging aids. Administrative but time- 

onsuming tasks such as data loading/saving and kernel compi- 

ation are parallelized or cached so as to minimally affect overall 

erformance. HIP code (and prospectively CUDA code) can be inte- 

rated in developments whenever needed as OpenCLIPER makes 

ata objects shareable between OpenCL and HIP. We also con- 

ribute a parallel groupwise registration subsystem for motion esti- 

ation/compensation and a parallel multicoil NESTA subsystem for 

1 − l2 problem solving. 

Further work includes extending the 2D reconstruction to the 

ree-breathing 3D problem, which poses additional issues due to 

ypical data volumes that extend far beyond the capacity of a sin- 

le computing device memory, along with much higher processing 

imes. 
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ppendix A. Notation and main operators 

We aim to reconstruct a sequence of 2D images of size N 1 ×
 2 and N t temporal frames. Data has been acquired using a coil 

rray of C elements from M samples of a discretized k-space grid 

f size K = K 1 K 2 . The different terms included in Eq. (1) can be

epresented by the following matrices: 

1. Multi-coil k-space subsampled data b is a vector of size M × 1 . 
11 
2. Reconstructed image m is a vector of size N × 1 , where N = 

N 1 N 2 N t . 

3. E = AF S is the encoding operator, which can be represented as 

a matrix of size M × N. 

(a) S is a matrix of size NC × N given by: 

S = 

⎛ 

⎜ ⎜ ⎝ 

S 1 
S 2 
. . . 

S C 

⎞ 

⎟ ⎟ ⎠ 

where S c , 1 ≤ c ≤ C, is a diagonal matrix of size N × N whose

diagonal elements represent the sensitivity maps of the coil 

c at a spacial location. 

(b) F is a matrix of size M × NC given by: 

F = 

⎛ 

⎜ ⎜ ⎝ 

F 1 0 . . . 0 

0 F 2 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . F C 

⎞ 

⎟ ⎟ ⎠ 

where F c , 1 ≤ c ≤ C, is matrix of size KN t × N representing 

the coefficients of Fourier transform. 

(c) A is a matrix of size M × M given by: 

A = 

⎛ 

⎜ ⎜ ⎝ 

A 1 0 . . . 0 

0 A 2 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . A C 

⎞ 

⎟ ⎟ ⎠ 

where A c , 1 ≤ c ≤ C, is a diagonal matrix of size K N t × K N t 

whose diagonal elements take the value 1 if the entry cor- 

responds to a sensed k-space location and 0 otherwise. Note 

that A 1 = A 2 = ... = A C , since the sampling mask is the same

for all coils. 

4. U = �T � is the sparsifying operator, which can be represented 

as a matrix of size N × N. In this case, the operator is composed 

of two matrices: 

(a) � is a matrix of size N × N given by: 

� = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

I 0 0 . . . −I 
−I I 0 . . . 0 

0 −I I . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 . . . −I I 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

where I is a identity matrix of size N 1 N 2 × N 1 N 2 . This ma-

trix computes the temporal finite differences, i.e., tTV op- 

erator. We have added a cyclical extension with respect 

to [26] based on the cardiac cycle periodicity. 

(b) T � is a matrix of size N × N. A detailed description of this 

matrix can be found in Appendix B . Recall that for m 0 , the

transformation T � is the identity. 

ote that with this formalism, the adjoint operator representation 

s straight forward as the Hermitian of these matrices (i.e., E H and 

 

H ). 

ppendix B. Groupwise registration and motion compensation 

perators 

The goal of the groupwise registration procedure is to jointly 

btain a set of spatial transformations, one for each frame con- 

ained in the temporal sequence, so that transformed images ide- 

lly coincide. No image is taken as a reference to avoid any sort of 

ias. In practice, registered images will not be exactly coincident 

ut they will constitute a sparse sequence in the temporal dimen- 

ion, i.e., registration promotes sparsity. The target is the minimiza- 

ion of a cost function H (see Eq. (B.2) ), which consists of a data

https://doi.org/10.13039/501100002704
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Algorithm 1 MRI reconstruction. 

Step 0 : NESTA multicoil reconstruction 

Inputs: multi-coil k-space subsampled data b, encoding operator 

E = A FS, sparsifying operator U = �, their adjoints and parame- 

ters λ, γ , L a ∈ R 

+ 

Initialization: μ(0) , x 0 = E H b, the number of steps maxIter and 

parameter L μ
for t = 0 to maxIter do 

Step 0.1 : Apply Nesterov’s algorithm with μ = μ(t) 

for k ≥ 0 do 

a. Compute the gradient of the l1-norm: 

∇ f μ(Ux k ) = 

{
1 
μU 

H Ux k , if | Ux k | ≤ μ, 

U 

H sgn (Ux k ) , otherwise, 

where function sgn () applied to vector v means the stack of 

sign (v i / | v i | ) , with v i the i th vector component. 

b. Compute the gradient of the cost function: 

∇ f (x k ) = E H (Ex k − b) + λ∇ f μ(Ux k ) 

c. Compute y k : 

y k = x k − 1 
λL μ+ L a ∇ f (x k ) 

d. compute z k : 

z k = x 0 − 1 
λL μ+ L a 

∑ 

j≤k α j ∇ f (x k ) 

where αk = 1 / 2(k + 1) . 

d. Compute x k +1 : 

x k +1 = τk z k + (1 − τk ) y k . 

where τk = 2 / (k + 3) . 

Stop when a given criterion is met 

end for 

Step 0.2 : Decrease the value of μ : μ(t+1) = γμ(t) 

end for 

Outputs: reconstructed image m 0 = x k +1 

for i = 1 to MotionIters do 

Step 1 : ME-GW 

Inputs: reconstructed image m i −1 

Initialization: fix the region of interest, create the control 

points mesh, compute B-splines products and coefficients, as in 

[7] 

for j ≥ 0 do 

Step 1.1 : Calculate the pixel-wise displacement fields 

Step 1.2 : Transform images using linear interpolation 

Step 1.3 : Calculate the metric and smoothing terms 

Step 1.4 : Calculate gradients 

Step 1.5 : Update the movements of the control points 

Stop 

1 
KN || θn −1 − θn || < εT and 

1 
| χ | (H n −1 − H n ) < εH 

end for 

Outputs: T �
Step 2 : NESTA reconstruction with MC 

Inputs: multi-coil k-space subsampled data b, encoding oper- 

ator E = KFS, sparsifying operator U = �T �, their adjoints, and 

parameters λ, γ L a ∈ R 

+ 

Initialization: μ(0) , x 0 = m i −1 , the number of steps maxIter 

and parameter L μ
See above (step 0) for further details 

Outputs: reconstructed image m i = x k +1 

end for 
delity term —the sum of squares of the intensity differences with 

espect to the reference that is built on the fly (see Eq. (B.1) )—and

 smoothness term, which prevents the onset of unrealistic trans- 

ormations. Minimization is achieved by gradient descent. Gradi- 

nts are calculated following standard procedures [35] . 

 (x ) = 

1 

N t 

N t ∑ 

n =1 

( 

m 

(n ) 
(
T (n ) (x ) 

)
− 1 

N t 

N t ∑ 

n ′ =1 

m 

(n ′ ) (T (n ′ ) (x ) 
)) 2 

(B.1) 

(τ ) = 

∫ 
χ

[ 

V (x ) + 

∫ T c 

0 

4 ∑ 

p=1 

λp R p dt 

] 

dx (B.2) 

Eq. (B.2) shows that the metric is calculated within region χ , 

hich may be the whole image or only an estimated area where 

ost of the motion takes place. In these equations T c is the car- 

iac cycle and λp and 1 ≤ p ≤ 4 are the weights of the regulariza- 

ion terms R p . These terms account for derivatives of the motion 

ector field; specifically R 1 and R 2 are respectively first and second 

rder spatial derivatives while R 3 and R 4 are first and second order 

emporal derivatives. 

The motion vector field is approximated by means of B-Splines 

unctions, the coefficients are which of the parameters that enter 

he optimization. This is the ME stage, where the dense (forward) 

ransformation is calculated as follows: 

 (x ) = x + 

C 12 ∑ 

u 1 = C 11 

C 22 ∑ 

u 2 = C 21 

( 

2 ∏ 

l=1 

B 3 

(
x l − p u l 

	l 

)) 

· θu (B.3) 

here C is the grid of control points, B 3 represents the uniform B- 

pline function of grade 3, p u l the control point coordinate along 

imension l, 	l is the pixel resolution of the grid of control points 

n each dimension and θu the free parameter that drives the defor- 

ation. The mesh boundaries given by C are set so that the region 

f interest is completely covered with a certain margin for approx- 

mation via B-splines to avoid large displacement values produc- 

ng inconsistencies at the edges of the region of interest leading 

o errors in interpolation. The registered image set is obtained by 

eans of interpolation, which may be represented in matrix form 

s [26] : 

 � = 

⎛ 

⎜ ⎜ ⎝ 

T �1 0 . . . 0 

0 T �2 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . T �t 

⎞ 

⎟ ⎟ ⎠ 

here T �t is a matrix of size N 1 × N 2 associated to the transforma- 

ion of the frame t in the sequence; it contains the interpolation 

oefficients that result as a consequence of the transformation. Its 

eneric shape for will be: 

 �1 = ⎛ 

⎜ ⎝ 

. . . 

0 . . . w 1 w 2 0 . . . w 3 w 4 0 . . . 0 

0 . . . 0 w 

′ 
1 w 

′ 
2 . . . 0 w 

′ 
3 w 

′ 
4 . . . 0 

. . . 

⎞
⎟⎠

.e., the matrix will be sparse, the sparsity degree of which de- 

ends on the interpolation order. For a bilineal interpolation, for 

nstance, only four coefficients will be non-null in each row, as 

ndicated in the equation. This is the MC part of the algorithm. 

hese matrices and their adjoints are not explicitly built, but they 

re applied as operators for efficiency. For more information about 

-Spline free-form deformations see [36] . 

ppendix C. CS reconstruction using NESTA 
12 
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