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Abstract
Gaze control represents an important issue in the interaction between a robot and humans.
Specifically, deciding who to pay attention to in a multi-party conversation is one way to
improve the naturalness of a robot in human-robot interaction. This control can be carried
out by means of two different models that receive the stimuli produced by the participants
in an interaction, either an on-center off-surround competitive network or a recurrent neural
network. A system based on a competitive neural network is able to decide who to look
at with a smooth transition in the focus of attention when significant changes in stimuli
occur. An important aspect in this process is the configuration of the different parameters
of such neural network. The weights of the different stimuli have to be computed to achieve
human-like behavior. This article explains how these weights can be obtained by solving
an optimization problem. In addition, a new model using a recurrent neural network with
LSTM layers is presented. This model uses the same set of stimuli but does not require its
weighting. This new model is easier to train, avoiding manual configurations, and offers
promising results in robot gaze control. The experiments carried out and some results are
also presented.

Keywords Gaze control · Gaze engagement · Humanoid robot · ROS · HRI ·
Competitive network · Computer vision · Deep neural network ·
Recurrent neural network · RNN · LSTM

1 Introduction

Gaze control represents an important discipline in the development of intelligent social
robots so as to achieve higher assessments of a robot’s comprehension and naturalness in
Human–Robot Interaction (HRI) [24]. When robots behave like a person, humans feel more
comfortable. One approach to this problem is to use a competitive neural network that

� Jaime Duque Domingo
jaiduq@cartif.es

1 CARTIF Foundation, División de Sistemas Industriales y Digitales, Parque Tecnológico de
Boecillo, 47151, Valladolid, Spain

2 ITAP-DISA, University of Valladolid, Pl. Santa Cruz 8, 47002, Valladolid, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11112-7&domain=pdf
http://orcid.org/0000-0001-6649-5550
mailto: jaiduq@cartif.es


Multimedia Tools and Applications

receives different stimuli and returns a stable determination of the focus of attention to be
followed with the robot’s eyes. One of the advantages of this approach is that the response
of the competitive network is smooth and stable, avoiding erratic behavior. This approach
also maintains, in the robot’s memory, information about people who have previously inter-
acted with it, regardless of whether they have left the Robot’s Field of View (FOV). Different
factors are taken into account: the human’s gaze, who is speaking, pose, proxemics, Visual
Focus of Attention (VFOA), hoarding conversation, habituation, etc. These factors produce
stimuli that create dynamic behavior, giving interlocutors the feeling that they are talking to
another human. One problem that arises, however, is the need to determine the importance
of the stimuli in order to decide who should be the Focus of Attention (FOA). This impor-
tance has been modeled using a set of gain weights that are tuned by optimization from a
set of experimental data.

These gain weights represent how each stimulus contributes to a particular output of the
neural network. In our experimentation, training is performed by three people interacting
with each other and with the robot. In this step, during an initial training, an external user
(teacher) analyzes the sequence and establishes to whom the robot should pay attention. This
information is manually labeled together with the recorded stimuli. After the initial training,
the gain weights are computed and the robot must pay attention to people as learned in the
experiments. To validate the proposed methodology, a robotic head with a projected face
that simulates eye movement has been developed. The result of the competition causes the
robot to fix attention on the person, using the combined movement of the neck and eyes.

A new robot gaze control architecture is also presented. This new architecture uses a
Recurrent Neural Network (RNN), a type of neural network that integrates feedback loops,
allowing information to persist for a few steps through connections from the outputs of
the layers, which embed their results in the input data. When the input sequence is long,
a problem known as gradient vanishing may appear. This is solved by incorporating Long
Short-Term Memory (LSTM) layers that allow back-propagation through time by connect-
ing events that appear far apart in the input data, without their weight being diluted between
layers. Our new architecture makes use of LSTM layers, analyzing the sequence of 30
frames composed of stimuli of people who interact with the robot. The network receives the
same set of stimuli used in the competitive network but does not require its weighting. This
new architecture can be trained in a simple way and offers promising results.

The present paper is structured as follows: Section 2 explores the state-of-the-art of the
technologies considered in this paper. Section 3 briefly explains how the gaze control works
with the competitive network and presents the approach for computing the weights of the
stimuli and the new architecture developed with LSTM layers. In Section 4, the differ-
ent experiments and results are reported. Finally, Section 5 notes the conclusions of the
presented work and suggests future developments.

2 Overview of the related work

Human–Robot Interaction is a discipline that allows robots that can communicate and
respond to ongoing human communications and behavior to be improved [21]. Gaze con-
trol is an important topic in HRI. A recent survey of the state of the art in social gaze
for HRI was presented by [2], distinguishing three different approaches to the problem:
human-focused, centered on understanding the characteristics of human behavior during
interactions with robots; design-focused, which studies how the design of a robot impacts
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interactions with humans; and technology-focused, centered on researching how to build
tools to guide robot’s gaze in human interaction.

The main challenges in a conversation are the management of attention and turn-taking
between partners, controlling the gaze and adopting the right conversational roles [2].
According to [24], when a robot is a listener in a conversation between multiple inter-
locutors and follows the conversation with its gaze, it promotes higher evaluations of its
comprehension and naturalness than a robot performing random gazing between speakers.
Furthermore, in [4], the authors showed how gaze control more effectively motivates users
to repeatedly engage in therapeutic tasks. Moreover, as seen in [15], virtual agents who
use turn-based gaze during conversations are evaluated as more natural and pleasant than
others that use none, or a random gaze control in their communication. At the same time,
robots with humanoid features positively influence people’s behavior towards the machine
and their expectations about its capabilities [37].

During the last few years, different techniques have been used for gaze control, such as
that proposed in [3], where the authors used a circular array of microphones on a social
robot, named Maggie, to determine in which direction the robot should look. An infrared
laser was used to obtain the distance with respect to the person so that the robot could move
forward/backward. In [33], a robot-assisted therapy method was presented, in which a robot
perceived different stimuli (visual, auditory, and tactile) to follow a certain colored object,
a face, or a directional voice. These two previous works did not address the problem of who
to pay attention to in a natural way.

Different authors have shown the benefits of fusing sensory information, such as [33,
40], or [42]. In [40], a person with a robotic head is localized by simultaneous processing of
visual and audio data. However, these works do not focus on a conversation between mul-
tiple participants. In [42], the authors created a system to guide a robot’s gaze to multiple
interacting humans by adding different stimuli: social features, proxemic values, orienta-
tion, and a memory. This approach considered a limited number of stimuli and the maximum
value could change abruptly and cause erratic changes in the focus of attention. Our pro-
posed method based on a competitive neural network solves this problem by creating smooth
transitions between participants.

The stimuli used by a robot can be diverse, but those based on computer vision, audio
and memory represent some of the most commonly used. Visual information represents an
important aspect of HRI [16]. When a robot is interacting with people, the detection of peo-
ple is required. Some methods are able to detect human bodies, such as Haar filters [41],
HoG [9], or Deep Convolution Neural Networks (DCNN) [31]. However, in our approach,
a face recognition algorithm has been preferred, since the participants are assumed to look
directly at the robot or have a slightly turned position to look at other people interacting
with it. As indicated for human body detections, Haar classifiers, HoG detectors or Deep
Learning based solutions are widely used. Haar classifiers detect faces at different scales,
but do not deal with non-frontal faces or occlusions. It also returns a large number of
false predictions. The HoG feature descriptor is fast, but does not work with small faces.
The DLIB library [22] implements a CNN face detector using a Maximum-Margin Object
Detector [12], which works for different face orientations and occlusions. Recognition can
be implemented with Deep Residual Learning algorithms, which are very accurate. DLIB
implements a ResNet network with 29 convolution layers and uses a pre-trained model
which takes the 68 face landmarks obtained from an image [20]. In addition to face detec-
tion, lip activity is important to detect whether a person is speaking or not. When several
people are situated in front of the robot and some audio is detected, it is likely that the
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person who is moving the lips is currently speaking. Some works have explored different
techniques to detect lip activity, such as [5], where the degree of disorder of pixel directions
around the lips using the optical flow technique is measured; or [35], where a statistical
algorithm using two detectors based on noise to characterize visual speech and silence in
video sequences is created.

The Robot’s Field of View (FOV) has to be considered to detect visually people situated
in front of the robot’s camera. When people are not situated in front of the robot, some
information has to be kept in memory. A hypotheses generation was proposed by [34],
inferring the people’s position by using peripheral vision. Even though a person was not
present in the foveal vision, the robot kept plausible hypotheses about the location. In [39],
the authors proposed a dynamic visual memory to store information about objects from a
moving camera on board a robot and created an attention system based on where to look to
re-observe objects in memory and the need to explore new areas. The VFOA represents who
or what people are looking at. As presented in [28], there is a relation between head poses
and object locations. Audio represents an important stimulus, since microphone arrays can
indicate the direction of the incoming sound. As explained previously, some works using
microphone arrays, such as [3, 40], have been used with social robots.

LSTM networks have been widely used in recent years. Due to the ability of LSTM
networks to remember in large data streams, they have been used for different problems,
such as video sequence monitoring [27], Human Action Recognition (HAR) [7, 29, 38],
speaker recognition [1] or even to extract business intelligence from sentiment analysis [27].
Regarding the new LSTM-based architecture presented, several related gaze control papers
have been published. Recently, in [14], the authors have shown the effects of understanding
human gaze communication by spatio-temporal graph reasoning, which allows us to see
the real relationship between the behavior of people and the stimuli, showing that their
interpretation and humans have the unique ability to infer others’ intentions from eye gazes
[13]. This approach with LSTM models is also followed by other authors [6, 8, 23].

Among the methods most similar to ours, it is worth noting the recently published
by [26], where the authors present a system that uses Reinforcement Learning (RL) to
focus its attention onto groups of people from its own audio-visual experiences. It also
uses a pre-trained LSTM with simulated values. However, they start from raw information
(audio/sound raw bitmaps) and perform gaze control in a generic way. The authors do not
provide a direct result on behavior and only report the rewards obtained for face detec-
tion and speech. In our approach, all person’s stimuli are individually obtained and they
are treated in a single personal LSTM, rather than a general one. In addition, among other
stimuli, the focus of the participants’ gaze is also integrated in our model. Finally, in [30],
the authors indicate the importance of a robot’s head movement in nonverbal communica-
tion. In their case, they propose a cascaded LSTM model that first estimates the gaze from
speech content and hand gestures performed by the partner. Their approach focuses on a
very specific interaction with the hands, but highlights the importance of these networks in
HRI.

3 Analysis of the system

Gaze control is usually implemented considering different stimuli [33, 40, 42]. In our
approach for the stimuli integration, two types of neural works have been studied. Our pre-
vious approach [11], based on an on-center off-surround competitive model, needed the
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adjustment of the weights of the stimuli to be done heuristically [10]. Competitive neural
networks [17] can process different inputs and decide the winner in a dynamic and natural
way. This kind of network can also have habituation capabilities. However, the problem is
how to determine the importance of certain stimuli over others. This can be done by a set of
weights. These weights have to be configured or learned to replicate human behavior when
the same stimuli are produced. In this work, the calculation of the weights is explained
by means of an optimization process. Alternatively, a new model based on Recurrent Neu-
ral Networks is proposed. This new architecture makes use of LSTM layers and does not
directly require weighting of the weights and the manual adjustment of the parameters of
the competitive network.

For both approaches, different stimuli are considered. These stimuli are the inputs of the
competition at an instant of time t , Itkx , where k is the number of persons who interact and
x the number of stimuli. They have a binary value, indicating whether they are present or
not, and are balanced by a weight, wx . In some stimuli, such as speech detection, the value
is activated if the different indicators exceed a threshold.

– Itk1 shows if a person k is situated in the robot’s FOV at the instant of time t . People
situated in front of the robot’s FOV are usually candidates to interact with the robot. w1
is the corresponding weight associated to that stimulus.

– Itk2 shows that a person k is considered to be speaking. This stimulus is obtained by
performing lip movement detection, based on mouth landmarks. In addition, incoming
audio has to be detected in the direction of the person k.

– Itk3 shows that a person k is gazing directly at the robot. The pose of a person is used to
verify if that person is visually interacting with the robot. Engagement in an interaction
is increased by the mutual gaze, a kind of shared looking [36].

– Itk4 shows that a person k is continuously moving. In a conversation with several peo-
ple, an individual tends to look at another restless person. This stimulus requires the
individual to be situated in the FOV of the robot. If the sum of the differences in a per-
son’s position between several frames is over a given threshold, the person is assumed
to be restless.

– Itk5 shows that a person k is not situated in the robot’s FOV, but for whom incoming
audio could have been detected. When the robot does not see a person who has pre-
viously interacted, it keeps the previous position of the person in its memory and, if
incoming audio is detected in his/her direction, the stimulus for that person k is acti-
vated. In a conversation between humans, when someone is speaking at their left/right
side, a person tends to turn their head in the direction of the person who is speaking.

– Itk6 shows that a person k is in the VFOA of other people, but is not situated in the
robot’s FOV (see Fig. 1). When two or more people are looking at another person in a
conversation, a stimulus is given to people in the direction of the gaze. Since the focus
of attention is given to a concrete person, the corresponding stimulus is increased.

– Itk7 indicates the proxemics of a person. People situated at a certain distance are likely
to be interacting with the robot [3, 42]. In addition to the weight w7, this stimulus
is balanced by a tuning factor, depending on the distance between the robot and the
person.

Next, the optimization of the control system of a robotic head, previously developed by
the authors [11], and a new model of the neural network are presented. This new model
replaces both the previous competitive network and the weight optimization process itself.
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VFOA out of the
robot’s FOV

Fig. 1 Two people with their VFOA in another person

It allows easy training in an automatic way and avoids both the manual adjustment of the
model parameters and the computation of the weights. Although the preliminary results are
slightly lower than those of previous model, the ease of training is important to us. The
new model is an end-to-end network that is trained with the input stimuli along a sequence
and as output returns the winner during that sequence. The optimization of the weights of
the previous model is first explained (Section 3.1), followed by the presentation of the new
model (Section 3.2). Both methods use the same group of input stimuli.

3.1 Weight stimuli optimization

The different stimuli that influence a gaze control system must be weighted in such a way
that it allows the system to behave similarly to humans. The gaze control system is imple-
mented through a competitive neural network, where each stimulus competes with the others
to provide a smooth dynamic result. However, the input of the competitive network, com-
posed by the relation of stimuli and their weights, must be correctly assigned for the robot
to have a realistic behavior. Figure 2 shows the system scheme, in which an optimization
problem allows the weights that will be used in the gaze control system to be obtained. This
optimization requires the data to be split into winners and losers.

The competitive network receives of a set of inputs, where each input Itk is obtained by
adding the stimuli of the person k, Ik1,..., Ik7, balanced by their respective weights, at time
t . Thus, the input of the network produces an output Otk that represents if a person k is the
winner. The output with the highest value corresponds to the winner. The configuration of
the weights, wx , is not initially known, so a mechanism has been implemented to obtain it.
The competitive network keeps information about preceding states and dynamically adapts
the outputs depending on its configuration. At a given time t , there is an input vector of the
network, It , composed by the value associated to each person (It1, ..., Itn). Itk is computed
as shown in (1).
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Fig. 2 Scheme of the training system

Itk =
7∑

x=1

wx · Itkx (1)

The output of the network depends on the input vectors obtained previously, as seen in
(2), where C, H and S are, respectively, the layers associated to the competitive, habituation
and short time memory (STM) operations.

Ot = C(H(S(I1, ..., It ))) (2)

The STM, habituation and competitive layers are based on the model of Grossberg [17]
and use the differential (3), (4) and (5), respectively.

dxi

dt
= −A1xi + C1(B1 − xi)[Iiwi] (3)

dgi

dt
= E(1 − gi) − FI ′

i gi (4)

dyi

dt
= −A2yi + C2(B2 − yi)

[
I ′′
i + Dyi

2
]

− yi

∑

i �=j

Dyi
2 (5)

The STM layer, where A1 corresponds to the decay rate, B1 to the saturation and C1 to
the growth rate, receives the input stimuli, Ii , and produces an output where the duration
of the stimuli is increased. The STM output is the input of the habituation layer, I ′

i , where
the permanent stimuli lose interest through time. In the habituation layer, gi is the gain
for the stimuli. When a stimulus is active, the habituation gain decreases from a maximum
value, 1, to the value given by E/(E + FI ′

i ), where E and F correspond to the charge and
discharge rates. The output of the habituation layer is the input of the competitive layer,
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I ′′
i , where A2 is the decay rate, B2 the saturation value and C2 marks the growth rate. D

balances the parabolic function yi
2, reinforcing the winner against the rest, which represents

a lateral inhibition (off-surround). The output of the competitive layer shows the winner of
the competition, as explained previously.

The output of the network takes into account the dynamic nature of previous states by
filtering spurious stimuli and producing a smooth change of the winning person focus of
attention. However, the input of the network, Ii , corresponding to the stimuli, has to be
optimized to obtain a group of weights which are optimal in the gaze control process. To
this optimization, the training has to be carried out in a sequential way, following a list of
steps previously recorded. The training is carried out by three people. At the same time,
an external user (teacher) observes the interaction and annotates the time instants when a
person should be the focus of attention.

When all data have been obtained, stimuli from expected winners and losers are separated
based on the said manual annotation. At an instant t , there is an input value for the winner,
It,winner , and an input value for every k loser, It,k . The process is modeled as an optimization
problem, where the aim is to obtain the optimal weights that maximize the sum of the
distances between the winners and the losers at each time instant t , as shown in (6). This
procedure ensures that the weights are optimal to make the selected persons winners and
separate them from the losers.

max
m∑

t=1

(
∑

k∈losers

It,winner − Itk

)

= max
m∑

t=1

⎡

⎢⎢⎢⎢⎢⎣

∑

k∈losers

⎛

⎜⎜⎜⎜⎜⎝

7∑

x=1

wx · It,winner,x

−
7∑

x=1

wx · It,k,x

⎞

⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎦

(6)

Some constraints have to be considered. First of all, the sum of all weights has to be
equal to 1, as shown in (7). In addition, the weights range between 0 and 1, being bigger
than 0 (8).

7∑

x=1

wx = 1 (7)

∀x ∈ [1...7] : wx ∈ [0, 1] ∧ wx > 0 (8)

Secondly, there is a constraint for each case evaluated. The input of the winner, It,winner ,
is bigger than or equal to the losers at an instant t , as shown in (9). With this constraint, the
problem is forced to behave as annotated during the training phase.

∀t ∈ [1..m] ∧ k ∈ losers at t : It,winner ≥ It,k (9)

Another consideration is related to the proxemic stimulus. This is balanced by a factor
depending on the distance between the person and the robot during the gaze control oper-
ation. During the training phase, a fixed value of 1 is assigned. The training is carried out
by people who are situated at the far phase of the personal space (0.76m to 1.22m) or at the
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close phase of the social space (1.22m to 2.10m) [18], a region where this distance factor
is 1. Beyond 2.10 meters, this factor decreases and is not significant for the calculation of
weights because, during our training, the participants have been situated within these dis-
tances. During normal operation time, an adjustment factor balances the weight of people
situated beyond 2.10 meters.

3.2 Towards the use of deep neural networks

During our experiments, using habituation and competitive layers in our previous model
[11], a different approach was started. This another method allows us to train the system in
a simpler way and also responds to situations that may be out of the ordinary by not relying
on such dynamic models as those of the competitive network.

The new model is based on the use of a Deep Neural Network (DNN) whose inputs
represent the set of stimuli that have been detected for each person along a set of f frames.
Therefore, there will be stimuli, eijk , where i represents the person (1...p), j represents the
frame (1...f ) and k represents the stimulus (1...7). The output of the net will activate the
person on which the robot must put the focus of attention. All the inputs will be worth 1
or 0 depending on whether the stimulus has been detected or not, except in the case of the
proxemic, where the stimulus will depend on the distance.

Figure 3 shows this new model, where the data coming from the robotic head, video
frames together with audio direction, are processed using the position tracking of the peo-
ple who have previously interacted with the robot in order to associate each of the seven
computed stimuli to each of the persons. Then, the stimulus input corresponding to each
person is diverted to a different LSTM. Among the methods based on neural networks,
RNNs, and specifically the use of a LSTM networks [19], are capable of learning long-term
order dependences in sequence prediction problems. A common LSTM unit is composed of
a cell, an input gate, an output gate and a forget gate. The cell remembers values over arbi-
trary time intervals and the three gates regulate the flow of information into and out of the
cell. Basically, the cell can process data sequentially and keep its hidden state through time.
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Fig. 3 Model based on DNN with LSTM layers
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Fig. 4 Architecture of the model

For hence, in our new model, the LSTM seeks to analyze the behavior of each person over a
period of time. The output of each LSTM reduces the data (30 ·7) to a set of 7 elements that
allow to distinguish between different sequences. These 7 values obtained for a person are
concatenated with those of the rest of people to be connected with a Fully-Connected (FC)
layer. This layer is in turn connected to a classification layer (softmax) with one output for
each person. This output shows who the winner is and should therefore be the new Focus of
Attention the Robot (FOA).

An important aspect in this model is that each of the LSTM layers, corresponding to each
person, should behave in an analogous way. To this end, the inputs are permuted during the
training so that the system can recognize the same stimuli for each LSTM layer. Our project
has followed a cyclical methodology, gradually improving the results based on small adjust-
ments to the model: modifications of the input data configuration as well as modifications
in number of hidden layers, neurons per layer, dropout percentage, batch normalizations,
activation functions, learning rate/decay/momentum parameters, optimizers, etc. Figure 4
shows the implementation of the new architecture, including the hidden neurons. After a
battery of training sessions, a single layer composed of 240 hidden neurons obtained the
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best results. In addition, two types of regularization are carried out. There is a batch nor-
malization of the FC layer to avoid values to be out-of-range. Moreover, dropout is used to
avoid overfitting. The dropout is also applied to the input vector of the neural network.

Dropout was used in different points of the model: after the input layers, a dropout of
5%; after LSTM layers, a dropout of 20%; and after the FC layer, a dropout of 20% was
included. The models were trained using an Adam optimizer with a learning rate of 10−3.
A metric accuracy was added during the training.

An important aspect of this new approach is how it works in real time. Although we
could propose a sliding window model where the robot would process the current frame
together with the 29 preceding ones, it is not operational according to our experiments. The
30 processed frames approximately represent one second of execution time. More than one
head movement per second is excessive and gives an unnatural feeling. In addition, it causes
mechanical problems and blurring images received by the camera. Therefore, each time the
robot’s head is moved using this new model, the stimulus processing and the set of frames
to be processed starts again. The robot head processes the new stimuli and will produce
the next possible movement in other 30 frames. This new technique also offers much easier
training since the manually annotated training data is recorded with the head stationary.

4 Experiments and results discussion

Two different experiments have been carried out. On the one hand, the optimization algo-
rithm has been used to obtain the stimulus weights at the input of the previous competitive
network [11] (Section 4.1). On the other hand, the new model has been tested using an
end-to-end network that does not require the manual adjustments of the previous model and
allows a direct training of the received stimuli along a time sequence as well as the expected
output (Section 4.2).

Table 1 Behavior sequences of three people

State / Stimuli Person 1 Person 2 Person 3 Winner

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2

2 2

3 1

4 2

5 3

6 1

7 2

8 1

9 3

10 2

11 3

12 1
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4.1 Weight stimuli optimization

The experiment consisted in obtaining the optimal weights during training with three people
interacting with the robot. The weights were not initially known and the persons followed a
list of actions previously established, as shown in Table 1. The complete list of actions had
726 states. The table shows the losers in green and the winners in red. Only 12 out of the
726 states are shown, but all of them were evaluated in the maximization problem.

The optimization problem was solved using the SLSQP algorithm [25], which obtained
the results in 18 iterations and 0.23 seconds (in an intel i9-9900K, with 32Gb of RAM). The
obtained results were w1 = 0.06, w2 = 0.25, w3 = 0.06, w4 = 0.16, w5 = 0.16, w6 = 0.25
and w7 = 0.06.

These weights were evaluated in the previously self-developed robotic head (see Fig. 5)
[11], where the competitive network had been deployed. The network created smooth tran-
sitions between the focus of attention, resulting in a natural behavior but, at the same time,
considering properly which stimuli were more important according to the obtained weights.

Although the system has been trained with 3 people, the stimuli generated during the
training are independent of the person. The methods of obtaining stimuli that have been used
are generic and suitable for any person. The 726 cases used allow to refine the weights to a
very wide range of situations. Training with more people may slightly vary these weights but
not in a significant way. At normal operation time, the system works with 3 or more people,
having even performed some test with more than 8 participants. Beyond the increase in
computing time, the system was able to correctly gaze at the participants who were winning
the competition. For performance reasons, our system has been limited to 10 participants.

When a participant disappears from the robot’s FOV, the head is able to estimate the
position using a Kalman filter [32]. If the robot interacts with 3 participants and one disap-
pears, either because the person moves or because the head turns, when audio is detected in
his direction or the other participants are looking at him (VFOA), stimuli will be provided

Fig. 5 Self-developed robot head
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Fig. 6 Training curve

to that participant and the head will gaze at this person in case of being winner, using the
estimated Kalman position. When no stimuli are received from a participant for more than
20 seconds, the participant is removed. When a new person arrives on the scene, regardless
of whether the robot is able to detect him in the FOV or not, if audio is detected in his direc-
tion or if this person is in the VFOA of other participants, the new participant will enter the
competition. If this new person becomes a winner, the head will turn to look for him. If no
one is detected, it will go back to the old winner.

Although the main aim of this work has been to obtain the weights of our neural network,
the head has quantitatively behaved as we expected in 85.0% of cases, higher compared to
other works, such as [42], where the authors obtained results between 75.2% and 89.4%,

Fig. 7 Loss curve
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Table 2 Confusion Matrix of the new model

Expected

Estimated
Person 1 Person 2 Person 3

Person 1 0.92 0.07 0.01

Person 2 0.03 0.90 0.07

Person 3 0.14 0.02 0.84

depending on the saccadic and non-saccadic movements. However, their experimental con-
ditions were very different. In their work, the interaction was performed between two people
at some distance prioritizing gestural and postural acts. They used an RGB-D Kinect and a
DIK-ABLIS eye-tracking system.

4.2 Experiments with themodel using LSTM

The training of our model based on LSTM has been carried out from 726 situations pre-
viously recorded on 3 people. These situations have been transformed into 696 different
windows given that a sliding window sized 30 frames has been chosen for each sequence
(696 = 726 − 30). These situations have been permuted as explained previously to obtain a
dataset of 4,176 sequences. For each situation, the obtained stimuli for each person along
30 frames and the winner have been labeled. This dataset has been split into training (72%
→ 3,007 sequences), validation (18% → 752 sequences) and test (10% → 417 sequences).
Figures 6 and 7 shows the training and loss curve of the model, including the validation
accuracy. The model has been trained in 60 minutes using a server i9-10900K with 128Gb
RAM and 2 GPU RTX-3090 with 24GB GDDR6X. The accuracy of the model has been
89.91%, validation accuracy 83.38%, and test accuracy 82.80%. The loss in training accu-
racy has been 0.11 while the loss of validation accuracy has been 0.20. Table 2 shows
the Confusion Matrix of the model for the 3 people who have participated in the dataset
preparation.

Our model has been evaluated using different techniques, as shown in Table 3. A Multi-
Class Precision-Recall curve, with all classes, is displayed in Fig. 8. In addition, a Precision-
Recall curve with the average precision score, micro-averaged over all classes, is displayed
in Fig. 9. The evaluation of the model shows a good performance leading the Area Under
the Curve (AUC) close to 1 in all cases.

Although the obtained results are slightly lower than the competitive method, this end-
to-end model is much easier to be trained and to be integrated into the robotic head. It does

Table 3 Evaluation of the model with different metrics (%)

Metric Value

Accuracy 0.8878

Precision 0.8878

Recall 0.8878

F1 score 0.8878

Cohens kappa 0.8309

ROC AUC 0.9874
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Fig. 8 Multi-Class Precision-Recall curve

not require manual adjustments to the competitive network equations and the optimization
problem is solved by the training. Table 4 shows a comparison with other similar works.

The proposed system reflects a success rate of 82.80% in relation to the behavior a person
would have in the same situation. The errors are mainly due to disturbances in the perception
of the stimuli, such as external noises not related to the interaction, and blurred images due
to the effect of the movement of the people and the robot itself. It is difficult to make a com-
parison of the results with other authors, as there are no common datasets to compare with.

Fig. 9 Precision-Recall curve with the average precision score, micro-averaged over all classes
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Table 4 Comparison with other similar works

Paper Success rate Technique

[11] 85.0% Competitive neural network [17] that requires manual
adjustments and problem optimization.

[26] Not provided They provide face/speak rewards using Reinforce-
ment Learning (RL) to focus its attention onto groups
of people from its own audio-visual experiences.

[42] 75.2% to 89.4% Attention mechanism maximizing the sum of dif-
ferent elements: social features, proxemics values,
orientation, and a memory component. Interaction
between two people

Proposed 82.80% Multiple LSTM network to train gaze control based
on previous experiences. Much easier to be trained
and incorporated into the robotic head.

The closest research to the proposal corresponds to [42], which obtains results with accuracy
between 75.2% and 89.4% depending on the saccadic and non-saccadic movements. How-
ever, their experimental conditions were different as has been previously discussed. In [26],
the authors do not provide a direct result on behavior and only report the rewards obtained
for face detection and speech. Although with a different technique, the present work is based
on a principle similar to our previous paper [11], where stimuli gradually increased the out-
put value of a competitive network until the robot changed its focus of attention. In that work
we obtained 85.0%, although it required manual choice of certain parameters and a much
more complex parameter optimization problem than the training presented in this paper.

5 Conclusions

This work presents an optimization process for a robotic gaze control system and a new
architecture of the whole system. The gaze control system uses a competitive network which
receives a large number of visual, auditory or presence stimuli. It allows a smooth transi-
tion, changing the focus of attention between participants, avoiding erratic movements. In
addition, it has habituation capabilities to avoid someone from hoarding the conversation.
The weights of each stimulus are not known a priori and a strategy based on an optimization
problem has been developed to obtain them through experiential learning. The computed
weights were integrated into the gaze control system of a self-developed robotic head with
combined body and eye movement, and the robot showed a natural interaction behavior
similar to those annotated during the learning phase. The proposed method significantly
improved the sensation of naturalness and realism of the robotic head. The movement of the
robot joints and the expressions of the virtual agent projected on its 3D facial display were
controlled by the system integrated in a ROS-based architecture. The design of the robot and
the gaze control system creates a more realistic HRI system, which is more acceptable to
interlocutors than other not-so-human robots. In addition, a new architecture that makes use
of LSTM layers has been described. This new architecture offers promising results, com-
pared to other models. It uses the same set of stimuli of the previous model but does not
require its weighting. Also, it is much easier to be trained and incorporated into the robotic
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head. This new method replaces both the competitive network itself and the weight opti-
mization method, and represents an improvement in terms of being able to operate the head
in a simpler way.

The future objectives of the project will consist in integrating speech capabilities into the
ROS architecture, offering a low-cost, intelligent robot with human-like behavior.
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