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Abstract
This paper focuses on formulas for the ε-subdifferential of the optimal value function of
scalar and vector convex optimization problems. These formulas can be applied when the
set of solutions of the problem is empty. In the scalar case, both unconstrained problems and
problems with an inclusion constraint are considered. For the last ones, limiting results are
derived, in such a way that no qualification conditions are required. The main mathematical
tool is a limiting calculus rule for the ε-subdifferential of the sum of convex and lower
semicontinuous functions defined on a (non necessarily reflexive) Banach space. In the
vector case, unconstrained problems are studied and exact formulas are derived by linear
scalarizations. These results are based on a concept of infimal set, the notion of cone proper
set and an ε-subdifferential for convex vector functions due to Taa.
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1 Introduction

Studying differential stability of optimization problems usually means to study differentia-
bility properties of the optimal value function in parametric mathematical programming.
We refer to [1, 2, 4, 7, 8, 25–27, 29, 31, 37] and the references therein for some old and new
results in this direction.

Convex optimization is a subfield of mathematical optimization that studies the prob-
lem of minimizing convex functions over convex sets. In the early 1960’s, Moreau and
Rockafellar [31] introduced the concept of subgradient for convex functions, initiating the
developments of theoretical and applied convex analysis. Ioffe and Tihomirov [21], Hiriart-
Urruty and Lemaréchal [18, 19], Phelps [30], Zălinescu [37] and Borwein and Vanderwerff
[9] presented a beautiful theory about convex sets and convex functions in finite and infi-
nite dimensional spaces with many significant applications in mathematical programming,
classical variational calculus, and optimal control theory.

In 1965, Brøndsted and Rockafellar [11] introduced the concept of approximate subdif-
ferential (also called ε-subdifferential) of a convex function. It has become an important tool
for the study of algorithms as well as for theoretical purposes in convex optimization. For
more information, the reader is referred to [14, 17, 20, 28, 37] and the references therein.

This paper concerns with the study of differential stability properties to scalar and vector
convex programming problems.

In the literature on differentiability properties of the optimal value function (also named
efficient value mapping and marginal or perturbation function) of a parametric family of
optimization problems including inclusion constraints, different qualification conditions are
assumed (see the recent papers [1, 2, 4] and the references therein). However, it is well-
known that these regularity conditions are usually difficult to check and they could not
be satisfied. Then, an objective of this paper is to derive limiting versions of these dif-
ferentiability properties where no qualification conditions are required. In addition, lots of
differential stability results of the literature are based on the existence of solutions in the
involved problem. Unfortunately, this assumption is not always satisfied (see [3, 28]). Thus,
a second aim of this work is to derive such differential stability results for problems whose
solution sets could be empty (see [7, 8] and the references therein for a different approach
based on the regularization of the problem).

In vector optimization, additional technical difficulties happen. Namely, the optimal
value mapping is set-valued and involves some concepts of infimal point (see [6, 12, 22, 23,
36]), which are the vector counterpart to the notion of infimum of a set of real numbers. As
a result, differential stability properties in vector optimization problems are formulated in
terms of graphical and epigraphical derivatives and most of the obtained results require the
so-called domination property, which implies the existence of exact solutions of the prob-
lem (see [23, 24, 33, 34, 36]). Again, this paper concerns with differential stability of vector
optimization problems that would not satisfy the domination property (in particular with
empty solution set).

The contents of the paper are as follows. Section 2 collects some basic notations and con-
cepts. In Section 3, a limiting calculus rule for the ε-subdifferential of the sum of m proper
lower semicontinuous convex functions on a (non necessarily reflexive) Banach space is
stated without requiring any qualification condition. It is derived by convex analysis tools
and a generalization of the well-known Brøndsted-Rockafellar Theorem. Sections 4 and 5
are devoted to the differential stability of unconstrained and constrained convex optimiza-
tion problems, respectively, whose solution sets can be empty. In Section 5, an inclusion
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constraint is considered and a limiting formula for ε-subdifferential of the optimal value
function is obtained. This result is a consequence of both the previous one in Section 4 deal-
ing with unconstrained problems and the limiting sum rule stated in Section 2. It is also
showed that it reduces to an exact formula provided that the so-called Robinson-Rockafellar
condition is satisfied. Section 6 involves the differential stability of convex vector optimiza-
tion problems. In deriving it, a linear scalarization approach is considered. The obtained
differentiability properties are formulated by ε-subgradients of the scalarized function and
also by ε-subgradients of the optimal value function of the scalarized problems. The main
mathematical tools are an ε-subdifferential for vector functions due Taa (see [35]) and a
concept of infimal point (see [6, 12]). As in the previous two sections, the set of solutions of
the problem can be empty. Finally, in Section 7, the conclusions of this work are underlined.

2 Preliminaries andMathematical Tools

Throughout R stands for the set R∪{±∞}, Rp
+ is the nonnegative orthant of Rp and R+ :=

R
1+. Let X be a real locally convex Hausdorff topological linear space. The topological dual

space of X is denoted by X∗.
For a set C ⊂ X, we denote by int C and cl C the topological interior and the closure of

C, respectively. The core or algebraic interior of C is defined by

core C := {x̄ ∈ C| for each x ∈ X, ∃μ̄ > 0 such that x̄ + μx ∈ C, ∀μ ∈ [0, μ̄]}.
Given a function f : X → R, we denote the effective domain and the epigraph of f by

dom f and epi f respectively, i.e.,

dom f := {x ∈ X|f (x) < +∞},
epi f := {(x, α) ∈ X × R|f (x) ≤ α}.

One says that f is proper if f (x) > −∞ for all x ∈ X and dom f �= ∅. The function f is
called lower-semicontinuous if epi f is closed.

Definition 1 Let f : X → R be a proper convex function and ε ≥ 0. The ε-subdifferential
(or approximate subdifferential) of f at a point x0 ∈ dom f is the set

∂εf (x0) := {x∗ ∈ X∗|〈x∗, x − x0〉 ≤ f (x) − f (x0) + ε, ∀x ∈ X}.
The function f is said to be ε-subdifferentiable at x0 if ∂εf (x0) �= ∅.

Remark 1 Although a nonconvex function could be ε-subdifferentiable at some point in
its effective domain, the proper class of functions where that notion has sense is the
class of convex functions. More precisely, it is well-known that if f is a proper lower-
semicontinuous convex function, then f is ε-subdifferentiable at every point x0 ∈ dom f ,
for all ε > 0 (see [17]).

The set ∂εf (x0) reduces to the subdifferential ∂f (x0) when ε = 0, i.e., ∂f (x0) =
∂0f (x0). Moreover, ∂εf (x0) =

⋂

η>ε

∂ηf (x0), for all ε ≥ 0, and from the definition it follows

that ∂εf (x0) is a weakly∗-closed, convex set.
Given a nonempty subset Ω ⊂ X, the indicator function δΩ of Ω is defined by setting

δΩ(x) = 0 if x ∈ Ω and δΩ(x) = +∞ if x /∈ Ω .
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Definition 2 Let Ω ⊂ X be a nonempty convex set. The set Nε(x0,Ω) of ε-normal
directions of Ω at x0 ∈ Ω is defined by

Nε(x0,Ω) := {x∗ ∈ X∗|〈x∗, x − x0〉 ≤ ε, ∀x ∈ Ω}.

It is easy to see that Nε(x0,Ω) = ∂εδΩ(x0) for every ε ≥ 0. Moreover, when ε = 0,
Nε(x0,Ω) reduces to the normal cone of Ω at x0, i.e., N0(x0,Ω) = N(x0,Ω). However,
as a general rule, Nε(x0, Ω) is not a cone when ε > 0.

3 Sum Rules for the Approximate Subdifferential

In this section, X is assumed to be a Banach space with the norm ‖ ‖X . The dual space
of X is denoted by X∗ with the dual norm ‖ ‖X∗ . Let f1, f2, . . . , fm be proper lower-
semicontinuous convex functions on X. The aim of this section is to derive a formula for

the ε-subdifferential of the sum
m∑

i=1
fi at a given point x0 ∈

m⋂
i=1

dom fi without requiring

any constraint qualification.
The next result extends [20, Theorem 3.2], which is stated for the case m = 2.

Theorem 1 Let fi : X → R be a proper lower-semicontinuous convex function, i =
1, 2, . . . , m, and let x0 ∈

m⋂
i=1

domfi . Then, for every ε > 0, one has

∂ε

(
m∑

i=1

fi

)
(x0) = clw∗

⎛

⎜⎜⎜⎝
⋃

(ε1,ε2,...,εm)∈Rm+∑m
i=1 εi=ε

m∑

i=1

∂εi
fi(x0)

⎞

⎟⎟⎟⎠ , (1)

where clw∗ denotes the closure with respect to the weak∗ topology of X∗.

Proof Consider the Cartesian product X̃ := X × X × · · · × X︸ ︷︷ ︸
m

and the continuous linear

function A : X → X̃, A(x) = (x, x, . . . , x), for all x ∈ X. Define the function f : X̃ → R,

with f (x1, x2, . . . , xm) =
m∑

i=1
fi(xi), for all (x1, x2, . . . , xm) ∈ X̃. Clearly, f is a proper

lower-semicontinuous convex function, Ax0 ∈ domf and f ◦ A =
m∑

i=1
fi . By applying

[20, Theorem 7.1] to the data A and f we obtain

∂ε

(
m∑

i=1

fi

)
(x0) = ∂ε (f ◦ A) (x0) = clw∗

(
A∗∂εf (Ax0)

)
, (2)

where A∗ : X̃∗ → X∗ stands for the adjoint operator of A. It follows that

A∗(x∗
1 , x∗

2 , . . . , x∗
m) =

m∑

i=1

x∗
i , ∀x∗

i ∈ X∗. (3)
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In addition, by [37, Corollary 2.4.5] we see that

∂εf (Ax0) =
⋃

(ε1,ε2,...,εm)∈Rm+∑m
i=1 εi=ε

m×
i=1

∂εi
fi(x0). (4)

The result follows as a consequence of statements (2), (3) and (4).

The next result extends the sequential sum rule in [14, Theorem 3] to more than two
functions defined in a not necessarily reflexive Banach space. Although its proof is similar
to the one in [14, Theorem 3], we include it for the sake of completeness.

Theorem 2 Let fi : X → R be a proper lower-semicontinuous convex function, i =
1, 2, . . . , m, and let x0 ∈

m⋂
i=1

domfi . Then, x∗ ∈ ∂ε

(
m∑

i=1
fi

)
(x0) if and only if there exist

εi ≥ 0,
m∑

i=1
εi = ε and nets (xi,α)α ⊂ domfi , xi,α

‖ ‖X−→ x0, (x∗
i,α)α ⊂ X∗,

m∑
i=1

x∗
i,α

w∗→ x∗

such that

x∗
i,α ∈ ∂εi

fi(xi,α), ∀α, (5)

fi(xi,α) − 〈x∗
i,α, xi,α − x0〉 → fi(x0). (6)

Proof Consider x∗ ∈ ∂ε

(
m∑

i=1
fi

)
(x0). By formula (1) there exist nets (εi,α)α ⊂ R+ and

(u∗
i,α)α ⊂ X∗ such that

m∑
i=1

εi,α = ε, u∗
i,α ∈ ∂εi,α

fi(x0) and
m∑

i=1
u∗

i,α

w∗→ x∗, for every α. For

each i, we have that εi,α ∈ [0, ε], for all α. Without restriction of generality, we can assume

that εi,α → εi , where εi ≥ 0,
m∑

i=1
εi = ε.

In addition, by applying [14, Proposition 2] to each i and α it follows that there exist nets
(xi,α)α ⊂ domfi and (x∗

i,α)α ⊂ X∗ satisfying
⎧
⎪⎪⎨

⎪⎪⎩

x∗
i,α ∈ ∂εi

fi(xi,α),

‖xi,α − x0‖X ≤ √
ai,α,

‖x∗
i,α − u∗

i,α‖X∗ ≤ √
ai,α,

|fi(xi,α) − 〈x∗
i,α, xi,α − x0〉 − fi(x0)| ≤ 2ai,α,

(7)

where ai,α = |εi,α−εi |. Clearly, assertions (5), (6) and xi,α
‖ ‖X−→ x0 are satisfied. In addition,

as
m∑

i=1
u∗

i,α

w∗→ x∗, from the third statement of (7) we deduce

m∑

i=1

x∗
i,α =

m∑

i=1

(x∗
i,α − u∗

i,α) +
m∑

i=1

u∗
i,α

w∗→ x∗

and the proof of the necessary condition is complete.

Conversely, assume that there exist εi ≥ 0,
m∑

i=1
εi = ε, nets (xi,α)α ⊂ domfi and

(x∗
i,α)α ⊂ X∗ satisfying xi,α

‖ ‖X−→ x0,
m∑

i=1
x∗
i,α

w∗→ x∗, conditions (5) and (6). From (5), we
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obtain for each i:

fi(x) ≥ fi(xi,α) − εi + 〈x∗
i,α, x − xi,α〉, ∀x ∈ X,

and so
m∑

i=1

fi(x) ≥
m∑

i=1

fi(xi,α) − ε +
m∑

i=1

〈x∗
i,α, x − xi,α〉

=
m∑

i=1

(fi(xi,α) − 〈x∗
i,α, xi,α − x0〉) − ε + 〈

m∑

i=1

x∗
i,α, x − x0〉, ∀x ∈ X.

By (6) and condition
m∑

i=1
x∗
i,α

w∗→ x∗ it follows that, for each x ∈ X,

m∑

i=1

(fi(xi,α) − 〈x∗
i,α, xi,α − x0〉) − ε + 〈

m∑

i=1

x∗
i,α, x − x0〉 →

m∑

i=1

fi(x0) − ε + 〈x∗, x − x0〉.

Therefore,
m∑

i=1

fi(x) ≥
m∑

i=1

fi(x0) − ε + 〈x∗, x − x0〉, ∀x ∈ X.

In other words, x∗ ∈ ∂ε

(
m∑

i=1
fi

)
(x0), and the proof finishes.

Remark 2 It is not hard to check that the next set is convex:

⋃

(ε1,ε2,...,εm)∈Rm+∑m
i=1 εi=ε

m∑

i=1

∂εi
fi(x0).

Therefore, if X is a reflexive Banach space, formula (1) can be formulated as follows:

∂ε

(
m∑

i=1

fi

)
(x0) = cl‖ ‖X∗

⎛

⎜⎜⎜⎝
⋃

(ε1,ε2,...,εm)∈Rm+∑m
i=1 εi=ε

m∑

i=1

∂εi
fi(x0)

⎞

⎟⎟⎟⎠

and then nets in Theorem 2 can be replaced by sequences and the condition
m∑

i=1
x∗
i,α

w∗→ x∗

by the statement
m∑

i=1
x∗
i,α

‖ ‖X∗−→ x∗, where cl‖ ‖X∗ denotes the closure for the strong topology

on X∗. In particular, Theorem 2 reduces to [14, Theorem 3] by considering m = 2 and a
reflexive Banach space X.

4 Differential Stability of Unconstrained Optimization Problems

Let X and Y be real locally convex Hausdorff topological linear spaces. Let ϕ : X×Y → R

be an extended real-valued function. Consider the parametric unconstrained optimization
problem

min{ϕ(x, y)|y ∈ Y } (Px)
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depending on the parameter x ∈ X. Function ϕ is called the objective function of problem
(Px). The optimal value function μ : X → R of (Px) is

μ(x) := inf {ϕ(x, y)|y ∈ Y } .

For each x ∈ X, the set of approximate solutions of (Px) with error η ≥ 0 is denoted by
Mη(x), i.e.,

Mη(x) := {y ∈ Y |ϕ(x, y) ≤ μ(x) + η}.
Then, M(x) := M0(x) is the set of (exact) solutions of problem (Px).

The following result was derived in [28, Corollary 5], [20, Corollary 5.1], [37, Theo-
rem 2.6.2, p. 109] and [3, Theorem 4.1] for the case where ϕ is a convex function. Next
we state it by a proof that makes clear that such a convex assumption is only required to
avoid the nonemptyness of the involved ε-subdifferentials (see Remark 1). Particularly, it is
worthy to stress that the proof does not involve the conjugate function of the optimal value
function μ. In [37] the reader can find other properties of ε-subdifferentials that are stated
without assuming convexity assumptions.

Theorem 3 Suppose that ϕ is convex and μ is finite at x̄ ∈ X. For each η > 0, consider a
point ȳη ∈ Mη(x̄). Then, for every ε ≥ 0, one has

∂εμ(x̄) =
⋂

η > 0

⋂

yη ∈ Mη(x̄)

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+ηϕ(x̄, yη)

}

=
⋂

η > 0

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+ηϕ(x̄, ȳη)

}
(8)

=
⋂

η > 0

⋃

y ∈ Y

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+ηϕ(x̄, y)

}
.

Proof Let x∗ ∈ X∗, η > 0 and yη ∈ Mη(x̄). From the definition, we have that

x∗ ∈ ∂εμ(x̄) ⇐⇒ μ(x) ≥ μ(x̄) − ε + 〈x∗, x − x̄〉, ∀x ∈ X

⇐⇒ ϕ(x, y) ≥ μ(x̄) − ε + 〈x∗, x − x̄〉, ∀x ∈ X, y ∈ Y

=⇒ ϕ(x, y) ≥ ϕ(x̄, yη) − (ε + η) + 〈x∗, x − x̄〉, ∀x ∈ X, y ∈ Y

⇐⇒ ϕ(x, y) ≥ ϕ(x̄, yη) − (ε + η) + 〈x∗, x − x̄〉 + 〈0, y − yη〉, ∀x ∈ X, y ∈ Y

⇐⇒ (x∗, 0) ∈ ∂ε+ηϕ(x̄, yη).

Therefore,

∂εμ(x̄) ⊆
⋂

η > 0

⋂

yη ∈ Mη(x̄)

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+ηϕ(x̄, yη)

}

⊆
⋂

η > 0

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+ηϕ(x̄, ȳη)

}

⊆
⋂

η > 0

⋃

y ∈ Y

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+ηϕ(x̄, y)

}
.
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Reciprocally, consider x∗ ∈ X∗, δ ≥ 0 and y ∈ Y . Then,

(x∗, 0) ∈ ∂δϕ(x̄, y) ⇐⇒ ϕ(x, v) ≥ ϕ(x̄, y) − δ + 〈x∗, x − x̄〉, ∀x ∈ X, v ∈ Y (9)

=⇒ ϕ(x, v) ≥ μ(x̄) − δ + 〈x∗, x − x̄〉, ∀x ∈ X, v ∈ Y .

Taking infimum on v ∈ Y , we obtain μ(x) ≥ μ(x̄)− δ +〈x∗, x − x̄〉, ∀x ∈ X. This means
that x∗ ∈ ∂δμ(x̄). Thus,

⋂

η > 0

⋃

y ∈ Y

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+ηϕ(x̄, y)

} ⊆
⋂

η > 0

∂ε+ημ(x̄) = ∂εμ(x̄)

and the proof finishes.

Remark 3 Notice from (9) that if ϕ is proper, then (x∗, 0) ∈ ∂ϕ(x̄, y) implies μ(x) > −∞,
for all x ∈ X. Thus, the inclusion of Theorem 3

⋂

η > 0

⋃

y ∈ Y

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+ηϕ(x̄, y)

} ⊂ ∂εμ(x̄)

holds true without requiring the assumption μ(x̄) ∈ R.

Corollary 1 Suppose that ϕ is convex and μ is finite at x̄ ∈ X and M(x̄) �= ∅. Then, for
every ε ≥ 0 and y ∈ M(x̄), one has

∂εμ(x̄) = {
x∗ ∈ X∗|(x∗, 0) ∈ ∂εϕ(x̄, y)

}
.

Proof Let ε ≥ 0 and y ∈ M(x̄). Since M(x̄) ⊂ Mη(x̄), for all η > 0, we can apply equality
(8) to ȳη := y and we obtain

∂εμ(x̄) =
⋂

η > 0

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+ηϕ(x̄, y)

}

=
⎧
⎨

⎩x∗ ∈ X∗|(x∗, 0) ∈
⋂

η > 0

∂ε+ηϕ(x̄, y)

⎫
⎬

⎭

= {
x∗ ∈ X∗|(x∗, 0) ∈ ∂εϕ(x̄, y)

}

and the result is proved.

Let us illustrate with a simple example that Theorem 3 and Corollary 1 also work for a
nonconvex function ϕ (see Remark 1 and the paragraph just before Theorem 3).

Example 1 Consider the function ϕ : R2 → R, ϕ(x, y) = ex|y|, for all (x, y) ∈ R
2. Clearly,

μ(x) = 1, for all x ≥ 0 and μ(x) = 0 otherwise. Therefore,

∂εμ(x) =
⎧
⎨

⎩

{0} if x < 0, ε ≥ 0,

∅ if x ≥ 0, 0 ≤ ε < 1,

{0} if x ≥ 0, ε ≥ 1.

In addition, it is not hard to check that

∂εϕ(x, y) =
{ ∅ if 0 ≤ ε < ex|y|,

{(0, 0)} if ε ≥ ex|y|,
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and

Mη(x) =

⎧
⎪⎪⎨

⎪⎪⎩

R if x = 0, η > 0,

(−∞,− ln η/x] ∪ [ln η/x,+∞) if x < 0, 0 < η < 1,

R if x < 0, η ≥ 1,

[− ln(1 + η)/x, ln(1 + η)/x] if x > 0, η > 0.

Next we derive ∂εμ(x) via formula (8). If x < 0 and ε ≥ 0, or x ≥ 0 and ε ≥ 1, it follows
that

∂εμ(x) =
⋂

η > 0

{
x∗ ∈ R|(x∗, 0) ∈ ∂ε+ηϕ(x, yη)

}

=
⋂

η > 0

{
x∗ ∈ R|(x∗, 0) ∈ {(0, 0)}}

= {0}.
For x ≥ 0 and ε ∈ [0, 1) notice that ∂ε+ηϕ(x, yη) = ∅ for η = 1−ε

2 . Then, we have that

∂εμ(x) =
⋂

η > 0

{
x∗ ∈ R|(x∗, 0) ∈ ∂ε+ηϕ(x, yη)

}

⊂ {x∗ ∈ R|(x∗, 0) ∈ ∂
ε+ 1−ε

2
ϕ(x, yη)}

= ∅.

To state ∂εμ(x) via Corollary 1 observe that

M(x) =
⎧
⎨

⎩

∅ if x < 0,

R if x = 0,

{0} if x > 0.

Then, for all x ≥ 0, y ∈ M(x) and ε ≥ 0,

∂εμ(x) = {
x∗ ∈ R|(x∗, 0) ∈ ∂εϕ(x, y)

} =
{ ∅ if 0 ≤ ε < 1,

{0} if ε ≥ 1.

5 Differential Stability of Constrained Convex Optimization Problems

Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be two Banach spaces and ϕ : X ×Y → R be an extended real-
valued function. Let G : X ⇒ Y be a set-valued map. The graph and the domain of G are
given, respectively, by

gph G := {(x, y) ∈ X × Y |y ∈ G(x)},
dom G := {x ∈ X|G(x) �= ∅}.

If gph G is a closed (respectively convex) subset of X × Y , G is said to be closed (respec-
tively convex). In addition, if dom G �= ∅, G is called proper. Equipping X × Y with the
norm ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y for any (x, y) ∈ X × Y , the product space X × Y is a
Banach space.

Consider the parametric optimization problem under an inclusion constraint

min{ϕ(x, y)|y ∈ G(x)} (P c
x )
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depending on the parameter x ∈ X. The multifunction G is called constraint multifunction
of (P c

x ). The optimal value function μc : X → R of (P c
x ) is

μc(x) := inf {ϕ(x, y)|y ∈ G(x)} .

The usual convention inf ∅ = +∞ forces μc(x) = +∞ for every x /∈ domG. The solution
map Mc : X ⇒ Y of (P c

x ) is defined by

Mc(x) = {y ∈ G(x)|μc(x) = ϕ(x, y)}.
For each η > 0, the approximate solution map Mc

η : X ⇒ Y of (P c
x ) is given by

Mc
η(x) = {y ∈ G(x)|ϕ(x, y) ≤ μc(x) + η}.

Lemma 1 Let ϕ : X × Y → R be a proper lower-semicontinuous convex function and
G : X ⇒ Y a proper closed, convex multifunction. For each (x̄, ȳ) ∈ domϕ ∩ gphG

and γ > 0 it follows that (x∗, y∗) ∈ ∂γ (ϕ + δgphG)(x̄, ȳ) if and only if there exist

γ1, γ2 ≥ 0, with γ1 + γ2 = γ and nets ((x1,α, y1,α))α ⊂ domϕ, (x1,α, y1,α)
‖ ‖X×Y−→ (x̄, ȳ),

((x2,α, y2,α))α ⊂ gphG, (x2,α, y2,α)
‖ ‖X×Y−→ (x̄, ȳ), ((x∗

1,α, y∗
1,α))α, ((x∗

2,α, y∗
2,α))α ⊂

X∗ × Y ∗, (x∗
1,α + x∗

2,α, y∗
1,α + y∗

2,α)
w∗→ (x∗, y∗) such that

(x∗
1,α, y∗

1,α) ∈ ∂γ1ϕ(x1,α, y1,α), ∀α,

(x∗
2,α, y∗

2,α) ∈ Nγ2((x2,α, y2,α), gphG), ∀α,

ϕ(x1,α, y1,α) − 〈(x∗
1,α, y∗

1,α), (x1,α, y1,α) − (x̄, ȳ)〉 → ϕ(x̄, ȳ),

〈(x∗
2,α, y∗

2,α), (x2,α, y2,α) − (x̄, ȳ)〉 → 0.

Proof We apply Theorem 2 to the case f1, f2 play the role of the functions ϕ and δgphG,
respectively. Hence (x∗, y∗) ∈ ∂γ (ϕ + δgphG)(x̄, ȳ) if and only if there exist γ1, γ2 ≥ 0,

γ1 + γ2 = γ and nets ((x1,α, y1,α))α ⊂ domϕ, (x1,α, y1,α)
‖ ‖X×Y−→ (x̄, ȳ), ((x2,α, y2,α))α ⊂

gphG, (x2,α, y2,α)
‖ ‖X×Y−→ (x̄, ȳ), ((x∗

1,α, y∗
1,α))α, ((x∗

2,α, y∗
2,α))α ⊂ X∗ × Y ∗, (x∗

1,α, y∗
1,α) +

(x∗
2,α, y∗

2,α)
w∗→ (x∗, y∗) such that

(x∗
1,α, y∗

1,α) ∈ ∂γ1ϕ(x1,α, y1,α), ∀α,

(x∗
2,α, y∗

2,α) ∈ ∂γ2δgphG(x2,α, y2,α), ∀α,

ϕ(x1,α, y1,α) − 〈(x∗
1,α, y∗

1,α), (x1,α, y1,α) − (x̄, ȳ)〉 → ϕ(x̄, ȳ),

δgphG(x2,α, y2,α) − 〈(x∗
2,α, y∗

2,α), (x2,α, y2,α) − (x̄, ȳ)〉 → δgphG(x̄, ȳ),

and the result is proved since ∂γ2δgphG(x2,α, y2,α) = Nγ2((x2,α, y2,α), gphG) and
δgphG(x2,α, y2,α) = δgphG(x̄, ȳ) = 0.

We are now in a position to formulate the main result of this section.

Theorem 4 Assume that ϕ : X × Y → R is proper, lower-semicontinuous convex
and G : X ⇒ Y is proper, closed and convex. Suppose that μc is finite at x̄ ∈ X.
Consider ε ≥ 0 and a point ȳη ∈ Mc

η(x̄) for all η > 0. Then, x∗ ∈ ∂εμ
c(x̄)

if and only if for each η > 0 there exist γ1, γ2 ≥ 0, γ1 + γ2 = ε + η and

nets ((x1,α, y1,α))α ⊂ domϕ, (x1,α, y1,α)
‖ ‖X×Y−→ (x̄, ȳη), ((x2,α, y2,α))α ⊂ gphG,
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(x2,α, y2,α)
‖ ‖X×Y−→ (x̄, ȳη), ((x∗

1,α, y∗
1,α))α, ((x∗

2,α, y∗
2,α))α ⊂ X∗ × Y ∗, (x∗

1,α + x∗
2,α, y∗

1,α +
y∗

2,α)
w∗→ (x∗, 0) such that

(x∗
1,α, y∗

1,α) ∈ ∂γ1ϕ(x1,α, y1,α), ∀α, (10)

(x∗
2,α, y∗

2,α) ∈ Nγ2((x2,α, y2,α), gphG), ∀α, (11)

ϕ(x1,α, y1,α) − 〈(x∗
1,α, y∗

1,α), (x1,α, y1,α) − (x̄, ȳη)〉 → ϕ(x̄, ȳη), (12)

〈(x∗
2,α, y∗

2,α), (x2,α, y2,α) − (x̄, ȳη)〉 → 0. (13)

Proof Notice that μc coincides with the optimal value function μ given by ϕ + δgphG and
Mc

η coincides in domG with the approximate solution map Mη defined by ϕ + δgph G. Then,
we apply Theorem 3 to the case where ϕ plays the role of the function ϕ + δgph G. Hence

∂εμ
c(x̄) =

⋂

η>0

{
x∗ ∈ X∗|(x∗, 0) ∈ ∂ε+η

(
ϕ + δgph G

)
(x̄, ȳη)

}
.

Moreover, by Lemma 1, (x∗, 0) ∈ ∂ε+η(ϕ + δgphG)(x̄, ȳη) if and only if there exist

γ1, γ2 ≥ 0, γ1 + γ2 = ε + η and ((x1,α, y1,α))α ⊂ domϕ, (x1,α, y1,α)
‖ ‖X×Y−→ (x̄, ȳη),

((x2,α, y2,α))α ⊂ gphG, (x2,α, y2,α)
‖ ‖X×Y−→ (x̄, ȳη), ((x∗

1,α, y∗
1,α))α, ((x∗

2,α, y∗
2,α))α ⊂

X∗×Y ∗, (x∗
1,α +x∗

2,α, y∗
1,α +y∗

2,α)
w∗→ (x∗, 0) such that (10)–(13) are satisfied. So we obtain

the statement of the theorem.

Theorem 4 improves [3, Theorems 4.2 and 4.3] as it does not require any qualification
condition. In fact, it reduces to them when certain qualification conditions are satisfied. This
claim is shown in the next result. For each δ ≥ 0 we denote

Γ (δ) := {(γ1, γ2) ∈ R
2+|γ1 + γ2 = δ}.

Corollary 2 Let ϕ : X×Y → R be a proper lower-semicontinuous convex function andG :
X ⇒ Y a proper closed convex multifunction. Suppose that μc is finite at x̄ ∈ X. Consider
for each η > 0 a point ȳη ∈ Mc

η(x̄). Assume that the following Robinson-Rockafellar
condition

(0, 0) ∈ core(domϕ − gphG) (14)

is satisfied. Then, for all ε ≥ 0 one has

∂εμ
c(x̄) =

⎧
⎨

⎩x∗ ∈ X∗ | (x∗, 0) ∈
⋂

η > 0

⋃

(γ1,γ2)∈Γ (ε+η)

∂γ1ϕ(x̄, ȳη) + Nγ2((x̄, ȳη), gphG)

⎫
⎬

⎭ .

Proof Suppose that x∗ ∈ ∂εμ
c(x̄) and η > 0. According to Theorem 4 there exist

(γ1, γ2) ∈ Γ (ε + η) and nets ((x1,α, y1,α))α ⊂ domϕ, (x1,α, y1,α)
‖ ‖X×Y−→ (x̄, ȳη),

((x2,α, y2,α))α ⊂ gphG, (x2,α, y2,α)
‖ ‖X×Y−→ (x̄, ȳη), ((x∗

1,α, y∗
1,α))α, ((x∗

2,α, y∗
2,α))α ⊂

X∗ × Y ∗, (x∗
1,α + x∗

2,α, y∗
1,α + y∗

2,α)
w∗→ (x∗, 0) such that assertions (10)–(13) hold true.
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We claim that net ((x∗
1,α, y∗

1,α))α is weak∗ bounded. Indeed, consider an arbitrary point
(w1, w2) ∈ X × Y and denote

r1,α := ϕ(x1,α, y1,α) − 〈(x∗
1,α, y∗

1,α), (x1,α, y1,α) − (x̄, ȳη)〉, (15)

r2,α := 〈(x∗
2,α, y∗

2,α), (x2,α, y2,α) − (x̄, ȳη)〉. (16)

By applying the Robinson-Rockafellar condition there exist t > 0, (u1, u2) ∈ domϕ and
(v1, v2) ∈ gphG such that t (w1, w2) = (u1, u2) − (v1, v2). Thus,

〈(x∗
1,α, y∗

1,α), t (w1, w2)〉 = 〈(x∗
1,α, y∗

1,α), (u1, u2) − (x1,α, y1,α)〉
+〈(x∗

1,α, y∗
1,α), (x1,α, y1,α) − (x̄, ȳη)〉

−〈(x∗
1,α, y∗

1,α), (v1, v2) − (x̄, ȳη)〉.
(17)

Using the definition of approximate subdifferential and (10), (11) (15) and (16) one has

RHS(17) ≤ ϕ(u1, u2) + γ1 − r1,α − 〈(x∗
1,α, y∗

1,α), (v1, v2) − (x̄, ȳη)〉
= ϕ(u1, u2) + γ1 − r1,α − 〈(x∗

1,α + x∗
2,α, y∗

1,α + y∗
2,α), (v1, v2) − (x̄, ȳη)〉

+〈(x∗
2,α, y∗

2,α), (v1, v2) − (x2,α, y2,α)〉 + r2,α

≤ ϕ(u1, u2) + γ1 − r1,α

−〈(x∗
1,α + x∗

2,α, y∗
1,α + y∗

2,α), (v1, v2) − (x̄, ȳη)〉 + γ2 + r2,α .

By (12) and (13) it follows that r1,α → ϕ(x̄, ȳη), and r2,α → 0. In addition, (u1, u2) ∈
domϕ and

〈(x∗
1,α + x∗

2,α, y∗
1,α + y∗

2,α), (v1, v2) − (x̄, ȳη)〉 → 〈x∗, v1 − x̄〉
since (x∗

1,α + x∗
2,α, y∗

1,α + y∗
2,α)

w∗→ (x∗, 0). Consequently, (〈(x∗
1,α, y∗

1,α), t (w1, w2)〉)α is
bounded. As (w1, w2) ∈ X×Y is arbitrary we deduce that ((x∗

1,α, y∗
1,α))α is weak∗ bounded.

Thanks to Banach-Steinhaus Theorem it follows that it is bounded and also the sequence
((x∗

2,α, y∗
2,α))α . By Banach-Alaoglu Theorem we can suppose without loss of generality

that (x∗
i,α, y∗

i,α)
w∗→ (x∗

i , y∗
i ), i = 1, 2. It is clear that, (x∗

1 , y∗
1 ) + (x∗

2 , y∗
2 ) = (x∗, 0).

In addition, by [37, Theorem 2.4.2(ix)] one has (x∗
1 , y∗

1 ) ∈ ∂γ1ϕ(x̄, ȳη) and (x∗
2 , y∗

2 ) ∈
Nγ2((x̄, ȳη), gphG). Therefore, (x∗, 0) ∈ ∂γ1ϕ(x̄, ȳη) + Nγ2((x̄, ȳη), gphG).

Conversely, let (x∗, 0) ∈ X∗ × Y ∗ be such that for each η > 0 there exists (γ1, γ2) ∈
Γ (ε + η) satisfying (x∗, 0) ∈ ∂γ1ϕ(x̄, ȳη) + Nγ2((x̄, ȳη), gphG). Thus, there exists
(x∗

i , y∗
i ) ∈ X∗ × Y ∗, i = 1, 2, (x∗

1 , y∗
1 ) + (x∗

2 , y∗
2 ) = (x∗, 0) satisfying

ϕ(x, y) ≥ ϕ(x̄, ȳη) − γ1 + 〈(x∗
1 , y∗

1 ), (x, y) − (x̄, ȳη)〉, ∀(x, y) ∈ X × Y,

γ2 ≥ 〈(x∗
2 , y∗

2 ), (x, y) − (x̄, ȳη)〉, ∀(x, y) ∈ gphG.

By summing up both inequalities and taking into account that γ1+γ2 = ε+η and (x∗
1 , y∗

1 )+
(x∗

2 , y∗
2 ) = (x∗, 0) we see that

ϕ(x, y) + η ≥ ϕ(x̄, ȳη) − ε + 〈x∗, x − x̄〉, ∀(x, y) ∈ gphG.

Therefore, as ȳη ∈ G(x̄),

μc(x) + η ≥ ϕ(x̄, ȳη) − ε + 〈x∗, x − x̄〉
≥ μc(x̄) − ε + 〈x∗, x − x̄〉, ∀x ∈ X.

Since η is an arbitrary positive number it follows that

μc(x) ≥ μc(x̄) − ε + 〈x∗, x − x̄〉, ∀x ∈ X,

i.e., x∗ ∈ ∂εμ
c(x̄), and the proof finishes.
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We now give the relationship between qualification condition (14) in Corollary 2 and
qualification conditions in [3, Theorem 4.3]. The first assertion is obvious and the second
one follows from [29, Lemma 1.58].

Proposition 1 Consider a proper function ϕ : X × Y → R and a proper multifunction
G : X ⇒ Y . Then the qualification condition (0, 0) ∈ int (domϕ − gphG) implies (14). If,
in addition, ϕ and G are convex, then qualification condition (14) is equivalent to say that
R+(domϕ − gphG) = X × Y .

6 Vector Optimization Problems

In this section, differential stability properties of convex vector optimization problems are
obtained. Namely, in unconstrained problems, the ε-subdifferential of the infimal value
mapping is characterized in terms of ε-subdifferentials of linear scalarizations of the
problem.

Consider the parametric unconstrained vector optimization problem

Min{f (x, y)|y ∈ Y }, (V Px)

where X, Y, and Z are real locally convex Hausdorff topological linear spaces, and f :
X × Y → Z is a vector-valued function. The final space Z is ordered by a convex cone D,
which is assumed to be proper (D �= Z) and solid (intD �= ∅). We denote

z1, z2 ∈ Z, z1 ≤D z2 ⇐⇒ z2 − z1 ∈ D,

z1 �D z2 ⇐⇒ z2 − z1 ∈ intD.

In addition, D+ stands for the (positive) polar cone of D:

D+ := {λ ∈ Z∗|λ(d) ≥ 0, ∀d ∈ D}.
Consider a nonempty set A ⊂ Z and E ∈ D. A point ā ∈ A is said to be a weak

(respectively E-weak) minimal point of A if there is not a point a ∈ A satisfying a �D ā

(respectively a �D ā − E). The set of all weak (respectively E-weak) minimal points of
A is denoted by WMin(A,D) (respectively WMin(A, D, E)). Clearly, WMin(A,D, 0) =
WMin(A,D). Notice that a point z ∈ Z belongs to WMin(A,D, E) if and only if z ∈ A

and (A − z + E) ∩ (−intD) = ∅.
We say that a nonempty set A ⊂ Z is D-proper if A + D �= Z (see [16, Definition

2.15]). This concept defines a really general kind of lower boundedness with respect to the
ordering �D (see [15, Section 3]). Notice that A is D-proper if and only if clA is D-proper.

For convenience, the final space Z is extended to Z := Z ∪ {−∞D} ∪ {+∞D}, where
+∞D (respectively −∞D) stands for the greatest (respectively least) element of Z with
respect to the ordering �D . In addition, we assume −∞D �D z �D +∞D and z±∞D =
±∞D + z = ±∞D , for all z ∈ Z. As a result, for each nonempty set A ⊂ Z and E ∈ D we
have WMin(A,D, E) = {−∞D} whenever −∞D ∈ A. Clearly, if WMin(A,D, E) ∩ Z �=
∅, then −∞D /∈ A.

In order to deal with an optimal value function corresponding to problem (V Px) a notion
of infimal point is required. Here we consider a concept linked with D-proper sets, in
the sense that these sets have always infimal points under a cone closedness assumption.
Namely, a nonempty set A ⊂ Z is said to be D-closed if A + D is a closed set. For all
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z∗ ∈ Z∗ we denote

argminAz∗ := {ā ∈ A|z∗(ā) ≤ z∗(a), ∀a ∈ A}.

Lemma 2 Consider a nonempty set A ⊂ Z. The next properties are true.

(i) If WMin(clA,D) �= ∅, then A is D-proper;
(ii) WMin(clA,D) + intD ⊂ A + intD;

(iii) Assume that A is D-proper and clA is D-closed. Then, WMin(clA,D) �= ∅ and

A ⊂ WMin(clA, D) + D, (18)

A + intD = WMin(clA,D) + intD. (19)

(iv) Assume that clA is D-closed. Then, WMin(clA,D) �= ∅ if and only if A is D-proper.
(v) For each a ∈ WMin(clA, D), q ∈ intD and η > 0,

(A − a) ∩ (−ηq + D) ∩ (ηq − D) �= ∅.

(vi) We have that
⋃

λ∈D+\{0}
argminclAλ ⊂ WMin(clA,D).

Proof

(i) Suppose that A is not D-proper. Then, clA is not D-proper. As D + intD = intD, for
each point a ∈ clA we have

(clA − a) ∩ (−intD) = ∅ ⇐⇒ (clA + D − a) ∩ (−intD) = ∅
⇐⇒ Z ∩ (−intD) = ∅
⇐⇒ intD = ∅.

Since D is solid, it follows that (clA − a) ∩ (−intD) �= ∅, for all a ∈ clA. Thus,
WMin(clA,D) = ∅ and statement (i) is proved.

(ii) It is not hard to check that clA + intD = A + intD. Then, the result follows since
WMin(clA,D) ⊂ clA.

(iii) Fix q ∈ intD and an arbitrary point a ∈ A. Define t̄ := sup Λ, where

Λ := {t ≥ 0 | a − tq ∈ clA + D}.
We claim that t̄ ∈ R. Indeed, Λ �= ∅ as 0 ∈ Λ. Moreover, [0, t] ⊂ Λ whenever

t ∈ Λ, since if t ∈ Λ and s ∈ [0, t] one has

a − sq = (a − tq) + (t − s)q ∈ clA + D + D = clA + D.

Thus, the boundedness from above of Λ is obtained if there exists M > 0 such that
M /∈ Λ. Reasoning by contradiction, suppose that n ∈ Λ, for all n ∈ N. Then,

⋃

n∈N
(a − nq + D) ⊂ clA + D + D = clA + D. (20)

As q ∈ intD, it is easy to check that Z =
⋃

n∈N
(−nq + D). Therefore,

⋃

n∈N
(a − nq + D) = a + Z = Z,

that is a contradiction, since clA is D-proper.
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By the nonemptyness and boundedness from above of Λ it follows that t̄ ∈ R.
Define z̄ := a − t̄q. Clearly, z̄ ∈ clA + D, since clA is D-closed. Thus, z̄ = ā + d̄,
for some ā ∈ clA and d̄ ∈ D.

We claim ā ∈ WMin(clA, D). Indeed, reasoning by contradiction, suppose that
there exists a′ ∈ clA such that a′ �D ā. Then, there exists q ′ ∈ intD such that
a′ = ā − q ′. As q̄ := q ′ + d̄ ∈ intD, there exists α > 0 such that q̄ − αq ∈ D. Thus,

a − (t̄ +α)q = z̄−αq = ā + d̄ −αq = a′ + q ′ + d̄ −αq = a′ + q̄ −αq ∈ clA+D,

i.e., t̄ + α ∈ Λ, that is a contradiction, since t̄ = sup Λ and α > 0.
Thus, ā ∈ WMin(clA, D) and WMin(clA,D) �= ∅. In addition,

a = z̄ + t̄q = ā + d̄ + t̄q ∈ WMin(clA,D) + D.

As point a ∈ A is arbitrary, we deduce A ⊂ WMin(clA,D) + D, and assertion (18)
is proved. Finally, (19) follows by (18) and statement (ii), since D + intD = intD.

(iv) It is a direct consequence of statements (i) and (iii).
(v) This statement is obvious, since WMin(clA,D) ⊂ clA and (−ηq + D) ∩ (ηq − D)

is a neighborhood of zero, for all η > 0 and q ∈ intD.
(vi) It is a well-known result (see, for instance, [13, Theorem 3.5(ii)]).

Remark 4 The cone closedness assumption of Lemma 2(iii) cannot be dropped. Consider,
for instance, the set A = {(x, ex) ∈ R

2 : x ∈ R}. We have that WMin(A,R2+) = ∅ and A

is closed, R2+-proper, but it is not R2+-closed.

The next notion of infimal set is a weak version of the one introduced in [6, 12].

Definition 3 The weak infimal set of a nonempty set A ⊂ Z is defined to be

WInf(A,D) :=
{

WMin(clA,D) if A is D-proper,
{−∞D} otherwise.

Remark 5 (i) According to Lemma 2(iv), it follows that D-properness is the lower bound-
edness condition that guaranties the existence of infimal points in the class of sets whose
closure is D-closed. Notice that closed sets are D-closed in different settings. For instance,
if Z is finite dimensional, D is closed and A∞ ∩ (−D) = {0}, where A∞ denotes the
asymptotic cone of A (see [5, Definition 2.1.2]), then clA is D-closed (see [5, Corollary
2.3.4]).

(ii) In the literature on differentiability properties of the optimal value function of a para-
metric family of vector optimization problems (see [23, 24, 33, 34, 36] and the references
therein), it is always assumed the domination property: the range of each problem in the
family is included in the conical extension of the set of optimal values. For instance, in the
setting of problem (V Px), where the concept of weak minimality is considered to define its
solutions and optimal values, that assumption is formulated as follows:

f (x, Y ) ⊂ WMin(f (x, Y ),D) + D, ∀x ∈ X. (21)

Some examples are [24, Theorem 10] and its required domination property, [23, Theo-
rem 3.4], [33, Theorem 5.3] and their K̃-domination requirement and [34, Theorems 5.1
and 5.2], [36, Theorem 5.1] and their P -minicompleteness assumption.
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Clearly, that assumption implies the existence of the considered solutions, which is a too
strong condition in the study of the optimal value function (see [3, 28]). For instance, in
Example 2 such an assumption is not satisfied as each problem in the parametric family
does not have weak efficient solutions.

The differentiability properties of this paper overcome such a handicap since infimal
solutions are considered. Notice that requirement (21) is replaced with assertion (18), which
involves clA instead of the set A.

By the concept of weak infimal set, we define the weak optimal value mapping M : X ⇒
Z of problem (V Px) as follows:

M(x) = WInf(f (x, Y ),D),

where f (x, Y ) is the range of f (x, ·) : Y → Z. By Lemma 2(iv), if clf (x, Y ) is D-closed,
then ∅ �= M(x) ⊂ Z whenever f (x, Y ) is D-proper, and M(x) = {−∞D} otherwise.

The notion of E-weak subdifferential of a set-valued function is required (see [35]) in
order to state differential stability properties of mapping M . Denote by L(X, Z) the set of
all continuous linear functions from X to Z, and consider a set-valued mapping F : X ⇒ Z

and points E ∈ D and (x̄, z̄) ∈ gphF , z̄ ∈ Z. We say that T ∈ L(X,Z) is a E-weak
subgradient for z̄ of F at x̄, and it is denoted by T ∈ ∂W

E F(x̄, z̄), if

z̄ − T (x̄) ∈ WMin((F − T )(X),D, E),

where (F−T )(X) = ⋃
x∈X

(F (x)−T (x)). The set ∂W
E F(x̄, z̄) is called E-weak subdifferential

for z̄ of F at x̄. When E = 0, it reduces to the subdifferential for z̄ of F at x̄ (see [32,
Definition 6.2.8], [34] and [10, Definition 7.4.2(c)]):

∂W F(x̄, z̄) := ∂W
0 F(x̄, z̄) = {T ∈ L(X,Z)|z̄ − T (x̄) ∈ WMin((F − T )(X),D)}.

Remark 6 It is not difficult to see that −∞D /∈ F(X) whenever F is E-weak subdifferen-
tiable at x̄ ∈ X for a point z̄ ∈ Z. Indeed, if −∞D ∈ F(X), then WMin((F −T )(X),D) =
{−∞D} and so ∂W

E F(x̄, z̄) = ∅, for all (x̄, z̄) ∈ gphF , z̄ ∈ Z.

Consider a point x̄ ∈ X satisfying M(x̄) �= {−∞D}. For each z̄ ∈ M(x̄), q ∈ intD and
η > 0, we denote

Mη(x̄, z̄, q) := {y ∈ Y |f (x̄, y) ∈ z̄ + (−ηq + D) ∩ (ηq − D)}.
By Lemma 2(v), we have that Mη(x̄, z̄, q) �= ∅.
For each λ ∈ Z∗, μλ◦f stands for the optimal value function corresponding to the

function ϕ = λ ◦ f .
Recall that a vector function h : X → Z is said to be D-convex if for all α ∈ (0, 1) and

x1, x2 ∈ X it follows that

h(αx1 + (1 − α)(x2)) ≤D αh(x1) + (1 − α)h(x2).

Theorem 5 Suppose that f is D-convex and clf (x, Y ) is D-closed, for all x ∈ X. Let
x̄ ∈ X, M(x̄) �= {−∞D}. Consider (x̄, z̄) ∈ gphM , E ∈ D, q ∈ intD and yη ∈ Mη(x̄, z̄, q),
for all η > 0. If T ∈ ∂W

E M(x̄, z̄), then there exists λ ∈ D+\{0}, λ(q) = 1, such that

λ ◦ T ∈
⋂

η>0

{x∗ ∈ X∗|(x∗, 0) ∈ ∂η+λ(E)(λ ◦ f )(x̄, yη)}.

908 D.T.V. An, C. Gutie´rrez



Proof First, notice that z̄ ∈ Z, since M(x̄) �= {−∞D}. Let T ∈ L(X, Z) be a E-weak
subgradient for z̄ of M at x̄. By Remark 6 we see that −∞D /∈ M(X) and so f (x, Y ) is
D-proper, for all x ∈ X. Thus,

(M − T )(X) =
⋃

x∈X

(WInf(f (x, Y ),D) − T (x)) ⊂ Z.

By the definition we have that z̄ − T (x̄) ∈ WMin((M − T )(X),D, E), i.e.,
(
⋃

x∈X

(WInf(f (x, Y ),D) − T (x)) − (z̄ − T (x̄)) + E
)

∩ (−intD) = ∅.

By (19), for each x ∈ X one has WInf(f (x, Y ),D)+ intD = f (x, Y )+ intD. Therefore,
as intD + intD = intD it follows that FT (x̄, z̄) ∩ (−intD) = ∅, where

FT (x̄, z̄) :=
⋃

x∈X

(f (x, Y ) − T (x) + intD) − (z̄ − T (x̄)) + E .

As f is D-convex, we see that FT (x̄, z̄) is convex. Then, by Eidelheit Theorem [37,
Theorem 1.1.3], there exists λ ∈ Z∗\{0} such that for all x ∈ X, y ∈ Y , d1, d2 ∈ D,

(λ ◦ f )(x, y) − (λ ◦ T )(x) + λ(d1) − λ(z̄) + (λ ◦ T )(x̄) + λ(E) ≥ −λ(d2).

As D is a cone, we have −λ(d2) ≤ 0, for all d2 ∈ D. Therefore, λ ∈ D+\{0}. Clearly
λ(q) > 0 as q ∈ intD, and we can suppose without loss of generality that λ(q) = 1. Then,
by taking d1 = d2 = 0 we obtain

(λ ◦ f )(x, y) ≥ λ(z̄) − λ(E) + (λ ◦ T )(x − x̄), ∀x ∈ X, y ∈ Y . (22)

Consider η > 0. As yη ∈ Mη(x̄, z̄, q), λ ∈ D+ and λ(q) = 1 we have that

λ(z̄) ≥ (λ ◦ f )(x̄, yη) − η. (23)

Therefore, by statements (22) and (23) it follows that

(λ ◦ f )(x, y) ≥ (λ ◦ f )(x̄, yη) − (η + λ(E)) + (λ ◦ T )(x − x̄), ∀x ∈ X, y ∈ Y,

i.e., (λ ◦ T , 0) ∈ ∂η+λ(E)(λ ◦ f )(x̄, yη), and the proof finishes.

Theorem 6 Let x̄ ∈ X, M(x̄) �= {−∞D}. Consider (x̄, z̄) ∈ gphM , T ∈ L(X,Z), E ∈ D,
q ∈ intD and yη ∈ Mη(x̄, z̄, q), for all η > 0. If there exists λ ∈ D+\{0}, λ(q) = 1, such
that

λ ◦ T ∈
⋂

η>0

{x∗ ∈ X∗|(x∗, 0) ∈ ∂η+λ(E)(λ ◦ f )(x̄, yη)},

then, T ∈ ∂W
E M(x̄, z̄).

Proof Assume that there exists λ ∈ D+\{0}, λ(q) = 1, such that (λ ◦ T , 0) ∈ ∂η+λ(E)(λ ◦
f )(x̄, yη), for all η > 0. Then,

(λ ◦ f )(x, y) ≥ (λ ◦ f )(x̄, yη) − (η + λ(E)) + (λ ◦ T )(x − x̄), ∀x ∈ X, y ∈ Y . (24)

Notice that −∞D /∈ M(X). Indeed, if M(x) = {−∞D} for some x ∈ X, then f (x, Y )

is not D-proper. Thus, for all n ∈ N there exist yn ∈ Y and dn ∈ D such that −nq =
f (x, yn) + dn, which implies

(λ ◦ f )(x, yn) = −n − λ(dn) −→
n→∞ −∞,
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that is contrary to assertion (24).
Reasoning by contradiction, suppose that T /∈ ∂W

E M(x̄, z̄). Thus, z̄ − T (x̄) /∈
WMin((M − T )(X),D, E). As −∞D /∈ M(X) it follows that there exist x0 ∈ X,
z ∈ M(x0), z ∈ Z and d ∈ intD such that

z̄ − T (x̄) = z − T (x0) + d + E . (25)

As yη ∈ Mη(x̄, z̄, q), there exist dη, eη ∈ D such that

z̄ = f (x̄, yη) + ηq − dη = f (x̄, yη) − ηq + eη.

Clearly, 2η = λ(dη) + λ(eη) and then λ(eη) tends to zero when η → 0.
From (25) we deduce

f (x̄, yη) − ηq + eη − T (x̄) = z − T (x0) + d + E . (26)

In addition, by Lemma 2(ii) we see that

z + d ∈ WInf(f (x0, Y ),D) + intD = f (x0, Y ) + intD

and so there exists y0 ∈ Y and d ′ ∈ intD such that z + d = f (x0, y0) + d ′. By (26) we
deduce that

f (x̄, yη) − ηq + eη − T (x̄) = f (x0, y0) + d ′ − T (x0) + E
and then

(λ ◦ f )(x0, y0) = (λ ◦ f )(x̄, yη) − (η + λ(E)) + (λ ◦ T )(x0 − x̄) + λ(eη) − λ(d ′)
< (λ ◦ f )(x̄, yη) − (η + λ(E)) + (λ ◦ T )(x0 − x̄)

for η small enough since −λ(d ′) < 0. This assertion contradicts (24). Therefore T ∈
∂W
E M(x̄, z̄) and the proof is completed.

In problems where the set clf (x, Y ) is D-closed, for all x ∈ X Theorems 5 and 6 allow
us to characterize the E-weak subdifferential of the optimal value function. Next we show
one of this characterizations, which is a direct consequence of the cone closedness criterion
introduced in Remark 5.

Corollary 3 Suppose that Z = R
p , D is closed, f is D-convex and f (x, Y )∞ ∩ (−D) =

{0}, for all x ∈ X. Let x̄ ∈ X, M(x̄) �= {−∞D}. Consider (x̄, z̄) ∈ gphM , T ∈ L(X,Rp),
E ∈ D, q ∈ intD and yη ∈ Mη(x̄, z̄, q), for all η > 0. It follows that T ∈ ∂W

E M(x̄, z̄) if and
only if there exists λ ∈ D+\{0}, λ(q) = 1, such that

λ ◦ T ∈
⋂

η>0

{x∗ ∈ X∗|(x∗, 0) ∈ ∂η+λ(E)(λ ◦ f )(x̄, yη)}.

Example 2 Let us illustrate Corollary 3 with the problem (V Px) defined by the data X =
Y = R, Z = R

2, D = R
2+ and f (x, y) = (ey, x + ey), for all x, y ∈ R.

Consider x ∈ R. Clearly, f (x,R) is the ray (0, x)+(0, +∞){(1, 1)}. Therefore, f (x,R)

is R
2+-proper, f (x,R)∞ = R+{(1, 1)} and f (x,R)∞ ∩ (−R

2+) = {(0, 0)}. In addition,
direct calculations from the definitions show that WMin(f (x,R),R2+) = ∅ and M(x) =
WMin(clf (x,R),R2+) = {(0, x)}.

Notice that f is a R
2+-convex function, since its components f1(x, y) := ey and

f2(x, y) := x + ey are convex functions. In addition, consider x̄ ∈ R, E := (d1, d2) ∈ R
2+

and q := (1, 1) ∈ intR2+. We have Mη(x̄, (0, x̄), (1, 1)) = (−∞, ln η].
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In order to apply Corollary 3 to obtain ∂W
E M(x̄, (0, x̄)), take λ = (λ1, λ2) ∈ R

2+ such
that λ1 +λ2 = 1, T = (a1, a2) ∈ L(R,R2) and yη := ln η, for all η > 0. Direct calculations
show that

(λ ◦ T , 0) ∈ ∂η+λ(E)(λ ◦ f )(x̄, yη) ⇐⇒
ey + λ2x ≥ λ2x̄ − (λ1d1 + λ2d2) + (λ1a1 + λ2a2)(x − x̄), ∀x, y ∈ R ⇐⇒

(λ2 − (λ1a1 + λ2a2))x ≥ λ2x̄ − (λ1d1 + λ2d2) − (λ1a1 + λ2a2)x̄, ∀x ∈ R ⇐⇒
λ1a1 + λ2a2 = λ2.

Therefore, there exists λ ∈ R
2+ satisfying λ(q) = 1 such that (λ ◦ T , 0) ∈ ∂η+λ(E)(λ ◦

f )(x̄, yη) for all η > 0 if and only if λ1a1 + λ2a2 = λ2 and so it follows that

∂W
E M(x̄, (0, x̄)) = {(a1, a2) ∈ R

2|a1 ≤ 0, a2 ≥ 1}∪{(a1, a2) ∈ R
2|a1 ≥ 0, a2 ≤ 1}. (27)

Notice that most of the differential stability properties stated in [23, 24, 33, 34, 36] cannot
be applied to this example as WMin(f (x,R),R2+) = ∅, for all x ∈ R (see Remark 5(ii)).

Next we relate the differential stability of problem (V Px) with the one of the family of
optimization problems defined from (V Px) by linear scalarizations:

min{(λ ◦ f )(x, y)|y ∈ Y }, (Pλ,x)

where λ ∈ D+\{0}. We stand the optimal value function of this problem for μλ◦f .

Proposition 2 Suppose that f is D-convex and clf (x, Y ) is D-closed, for all x ∈ X.
Let x̄ ∈ X, M(x̄) �= {−∞D}. Consider (x̄, z̄) ∈ gphM , E ∈ D and q ∈ intD. If T ∈
∂W
E M(x̄, z̄), then there exists λ ∈ D+\{0}, λ(q) = 1, such that λ ◦ T ∈ ∂λ(E)μλ◦f (x̄).

Proof In order to apply Theorem 5, notice from Lemma 2(v) that the set Mη(x̄, z̄, q) is
nonempty, for all η > 0. Then, by considering for each η > 0 a point yη ∈ Mη(x̄, z̄, q) we
deduce from Theorem 5 that for each T ∈ ∂W

E M(x̄, z̄) there exists λ ∈ D+\{0}, λ(q) = 1,
such that

λ ◦ T ∈
⋂

η>0

{x∗ ∈ X∗|(x∗, 0) ∈ ∂η+λ(E)(λ ◦ f )(x̄, yη)}.

Moreover, by Remark 3, we have
⋂

η>0

{x∗ ∈ X∗|(x∗, 0) ∈ ∂η+λ(E)(λ ◦ f )(x̄, yη)} ⊂ ∂λ(E)μλ◦f (x̄)

and the result follows.

Proposition 3 Suppose that x̄ ∈ X, q ∈ intD and λ ∈ D+\{0} satisfying λ(q) = 1 and
μλ◦f (x̄) is finite. Consider z̄ ∈ argmin

clf (x̄,Y )

λ, E ∈ D and T ∈ L(X,Z). If λ◦T ∈ ∂λ(E)μλ◦f (x̄),

then T ∈ ∂W
E M(x̄, z̄).

Proof By Lemma 2(vi) we deduce that z̄ ∈ WMin(clf (x̄, Y ), D). Then, Lemma 2(i)
implies that clf (x̄, Y ) is a D-proper set, and so WMin(clf (x̄, Y ), D) = M(x̄). Thus,
z̄ ∈ M(x̄). Clearly, μλ◦f (x̄) = λ(z̄).

By Lemma 2(v), the set Mη(x̄, z̄, q) is nonempty. In addition,

Mη(x̄, z̄, q) ⊂ {y ∈ Y |(λ ◦ f )(x̄, y) ≤ μλ◦f (x̄) + η}.
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Indeed, consider a point y ∈ Mη(x̄, z̄, q). Then, f (x̄, y) ∈ z̄ + (−ηq + D) ∩ (ηq − D)

and there exists d ∈ D such that f (x̄, y) = z̄ + ηq − d. Thus,

(λ ◦ f )(x̄, y) = λ(z̄) + η − λ(d) ≤ μλ◦f (x̄) + η.

Then, for each η > 0 take a point yη ∈ Mη(x̄, z̄, q). By Theorem 3 we have that

∂λ(E)μλ◦f (x̄) =
⋂

η>0

{x∗ ∈ X∗|(x∗, 0) ∈ ∂η+λ(E)(λ ◦ f )(x̄, yη)}

and the result follows by applying Theorem 6.

Example 2 (continuation) Let us obtain ∂W
E M(x̄, (0, x̄)) as a result of Propositions 2 and 3.

Let q = (1, 1) and λ = (λ1, λ2) ∈ R
2 such that λ1 + λ2 = 1. Notice that

μλ◦f (x) = inf{λ((0, x) + ey(1, 1))|y ∈ R} = λ2x + inf{ey |y ∈ R} = λ2x.

Therefore, ∂λ(E)μλ◦f (x) = λ2, for all x ∈ R and so, by Propositions 2 and 3 we have that
T = (a1, a2) ∈ ∂W

E M(x̄, (0, x̄)) if and only if there exists λ = (λ1, λ2) ∈ R
2+ satisfying

λ1 + λ2 = 1 such that λ1a1 + λ2a2 = λ2, i.e., (λ1, λ2) ⊥ (a1, a2 − 1). Thus, assertion (27)
is obtained again.

7 Conclusions

In this paper several formulas are stated for computing the approximate subdifferential of
the optimal value function of scalar and vector convex optimization problems whose solu-
tion sets could be empty. Notice that the scalar constrained convex optimization problems
studied here are the same as those analyzed in [3]. However, in this paper we use a limiting
approach to differential stability of those problems. As a result, no regularity conditions are
required.

In vector optimization problems, the optimal value function is set-valued and involve
infimal points. Its differentiability properties involve an ε-subdifferential for vector func-
tions introduced by Taa. They are formulated by ε-subgradients of linear scalarizations of
the problem and ε-subgradients of the optimal value function corresponding to such linear
scalarizations.
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