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Abstract

This work presents a novel software architecture to autonomously identify and
evaluate the gymnastic activity that people are carrying out. It is composed
of three different interconnected layers. The first corresponds to a Multilayer
Perceptron (MLP) trained from a set of angular magnitudes derived from the
information provided by the OpenPose library. This library works frame by
frame, so some postures may be incorrectly detected due to eventual occlusions.
The MLP layer makes it possible to accurately identify the posture a person is
performing. A second layer, based on a Hidden Markov Model (HMM) and the
Viterbi algorithm, filters the incorrect spurious postures. Thus, the accuracy of
the algorithm is improved, leading to a precise sequence of postures. A third
layer identifies the current exercise and evaluates whether the person is doing it
at a correct speed. This layer uses an innovative Modified Levenshtein Distance
(MLD), which considers not only the number of operations to transform a given
sequence, but also the nature of the elements participating in the comparison.
The system works in real time with little delay, thus recognizing sequences
of arbitrary length and providing continuous feedback on the exercises being
performed. An experiment carried out consisted in reproducing the output of the
second layer on an autonomous Pepper robot that can be used in environments
where physical exercise is performed, such as a residence for the elderly or others.
It has reproduced different exercises previously executed by an instructor so
that people can copy the robot. The article analyzes the current situation of
the automated gymnastic activities recognition, presents the architecture, the
different experiments carried out and the results obtained. The integration of
the three components (MLP, HMM and MLD) results in a robust system that
has allowed us to improve the results of previous works.
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1. Introduction

The automation of human poses and gestures recognition plays a key role
in many fields. For example, there has been growing interest in the field of
intelligent Smart Living systems as an element that facilitates the interaction of
people with their environment. Moreover, the recognition of human activities
can be of great interest in the field of industrial robotics, where it allows robots
to be programmed by observation and demonstration, without requiring explicit
programming. In the field of social robotics, the interlocutor gesture recognition
provides a very important flow of information to facilitate interaction. A further
interesting application field is the use of autonomous social robots to entertain
and keep elderly people physically and mentally active: the robot proposes and
executes a series of exercises (movements of arms, legs, hands, etc.) and the
person simultaneously reproduces the proposed exercises. The challenge is that
the robot can monitor the exercises performed by the person to evaluate their
performance, correcting and motivating the user.

This article presents an architecture that allows the recognition of people’s
activities through three processes: a neural network that obtains people’s pos-
ture from the joints returned by OpenPose [1]; a Hidden Markov Model that
allows rectification of possible errors in the previous step; and finally, a Modi-
fied Levenshtein Distance (MLD) that allows the correct activity to be obtained.
Several experiments have been carried out to validate the method, including an
experiment about learning by demonstration, where a Pepper robot [2] learns
different exercises from an instructor and repeats them in a residence for the
elderly. In addition, our system allows the execution of the exercises to be
evaluated.

The article is structured as follows: Section 2 explores the state-of-the-art
of the technologies considered in this paper. Section 3 shows how the system
works by integrating the Multilayer Perceptron, the Hidden Markov Model,
and the Modified Levenshtein Distance. In Section 4, the different experiments
carried out on people doing gymnastic activities are reported. In Section 5, the
results are reported and discussed. Finally, Section 6 notes the advantages and
limitations of the presented system and suggests future developments based on
this method.

2. Overview of related work

The recognition of gymnastic activities was carried out using different tech-
niques. Fasola and Mataric [3] used a standard RGB camera and visual analysis
was performed against a uniform background. A robot compared the user’s cur-
rent arm angles to the pre-specified goal arm angles to determine whether an
exercise was performed correctly. Monitoring was limited to three exercises. In
[4], the robot physically demonstrated exercises for the user to be followed, and
monitored the user’s progress using a vision-processing unit that detected face
and hand movements. This paper made an important contribution but some
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aspects were limited, such as the recognition of exercises restricted by the detec-
tion of hands and face. Quantitative results were not provided, demonstrations
were limited to two types of gesture and corrective feedback was not shown to
the elderly. Vishwakarma et al. [5] proposed an algorithm for human actions
recognition using a spatial distribution of edge gradient (SDEG) for human pose
and the detailed geometric orientation of a human silhouette in a video sequence.
However, that approach did not rely on modern techniques such as Deep Neural
Networks, leading to worse results. More recently, Gil-Mart́ın et al. [6] have
developed an outstanding system that uses several on-body sensors and Con-
volutional Neural Networks (CNNs) to detect the performed human activity.
Also in [7], the authors use fuzzy clustering to carry out the Human Activity
Recognition (HAR). However, neither work uses cameras, requiring users to
wear on-body connected sensors.

The Hidden Markov Model (HMM) is one of the main temporal classification
techniques used in human physical activity recognition [8]. It is one of the
major trends and challenges in ubiquitous robotics research. Kwon et al. [9]
proposed an improved skeleton tracker and human activity recognizer based on
complexity-based motion features. They used a Kinect 3D sensor (Microsoft,
USA) to obtain body joints and a Kalman filter modeled with the joints speed
and integrated with a Deep Recurrent Neural Network (DRNN) to optimize
the joints, even in the presence of self-occlusion. In addition, a Subsequence
of time-series clustering (STSC) [10] was used to obtain a set of cluster centers
of a sequence of postures that was integrated with a HMM (Hidden Markov
Model) to directly obtain the activity. Other authors, such as Piyathilaka and
Kodagoda [11] had previously explored the use of 3D Kinect joints with an
HMM for human daily activity recognition. In our work, instead of using the
HMM model to detect the class, it has been used to rectify the joints based on
possible movements.

Görer et al. [12] developed a robotic fitness coach that learned a set of
physical exercises from a professional trainer, and assisted elderly subjects in
performing these gestures using an RGBD camera. It tried to minimize the
angular difference between the robot’s joint and that of the user. Tanguy et al.
[13] proposed a software architecture for a robot coach, based on imitation
learning techniques using Gaussian Mixture Models. It used a Kinect 3D sensor
and showed the results for three joints without distinguishing different types
of movement. More recently, Lotfi et al. [14] have created a Socially Assistive
Robot (SAR) to engage, coach, assess and motivate older adults performing
physical exercises. The system is composed of a vision module based on a
Kinect sensor (version 2), a display module to present visual feedback to the
user, the Communication/Sound Module which provides speech recognition and
audio feedback, a database that stores the exercise details and the performance
records, and the processing module which extracts information on joint angles
and compares them with a reference. Although the system includes a robot,
this robot is only used to show a feedback table of the exercises. It is worth
noting that Fasola and Mataric [15] showed that people prefer to be trained by
a physical object (e.g., robot) than virtual training software.
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Skeleton tracking has been widely used in robotics. A remarkable work
was presented by Ghandour et al. [16], who created a Human Robot Interaction
system (HRI) to give indications to mobile robots to avoid collisions with people.
They used the skeleton returned by the sensor Kinect 2.0, consisting of 25 joints.
The works that use skeleton tracking for HAR have increased over the last few
years [17]. OpenPose [1] has represented a major advance in the recognition
of a person’s joints. Although it has recently been developed, several authors
are beginning to use it due to the robustness of the recognition. Noori et al.
[18] proposed a robust human activity recognizer based on OpenPose, motion
features, and DRNN. They used an RNN with LSTM cells, which tackle the
long term dependencies found in data. The input of the DRNN were magnitudes
between two consecutive frames, distances between the two-consecutive frames
in x-axis and y-axis as well as angles, and there was one output for each activity.
Their model achieved an average accuracy of 92.4% detecting 11 activities. Some
authors have used HMMs [9, 11], while others have considered RNNs [18]. The
comparison between both techniques has been described in [19], obtaining very
similar results for a gesture recognition problem. Hidden Markov Models need
some assumptions, but are simpler than Recurrent Neural Networks and work
better with smaller datasets. RNNs require large datasets.

Costa et al. [20] have recently presented the PHAROS architecture, its com-
ponents and the experimental results. The architecture has three main strands:
A Pepper robot that interacts with the users and records their exercise perfor-
mance; the Human Exercise Recognition, that uses the Pepper recorded infor-
mation to classify the exercise performed using Deep Leaning methods; and the
Recommender, a smart decision maker that schedules periodically personalized
physical exercises in the users’ agenda. The experimental results show a high
accuracy in terms of detecting and classifying the physical exercises done by
7 persons. It uses a CNN for the recognition of exercises from the silhouette
image obtained from OpenPose. The computational cost causes the recognition
sequence to be limited to 47 frames. However, the use of a CNN to classify
the postures has a big computational cost and other methods, such as the one
presented in our paper, facilitates this process.

Our paper presents a novel approach to identify the gymnastic activities that
people are doing and indicate how they are doing and how to improve. Among
the contributions, it is worth mentioning the following ones:

• A novel architecture with three layers is presented: a first layer represented
by a Multilayer Perceptron (MLP) neural network, a second layer which
uses a Hidden Markov Model (HMM), and a third layer consisting of a
new Modified Levenshtein Distance (MLD) algorithm.

• The human joints returned by OpenPose are used to compute the angular
magnitudes as well as the length of the segments between joints, and
these values are used to train an MLP network to enable the recognition
of postures in any direction despite the use of 2D cameras.

• When joint occlusions occur and spurious postures are obtained by the
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neural network, a Hidden Markov Model improves the recognition.

• A novel MLD algorithm detects the right exercise and allows the execution
performances to be evaluated.

• The method uses common 2D cameras, which simplifies the required setup.

• The method is able to recognize exercise sequences of arbitrary length.

• It allows the recognition of exercise sequences of multiple users present in
the same scene.

• The proposed methodology allows the implementation of learning sequences
by demonstration of arbitrary length, taking into account different types
of positions and different speeds.

• The system allows whether the user is performing the exercises in the
appropriate sequence or tempo or not to be identified.

• The recognition accuracy achieved is 97.73% for the postures (after HMM),
94.6% for partial activity detection and 98.05% for complete activity recog-
nition (after MLD).

3. Analysis of the system

An important issue in gymnastic activity recognition is the control of possible
errors in human posture detection. OpenPose [1] is widely used but, because
the recognition is obtained in specific frames, some errors can appear when
a complete exercise is carried out by a person. Our method deals with this
problem using an MLP neural network to detect the posture in specific frames
and a Hidden Markov Model (HMM) to suppress spurious postures. Our system
detects the sequence of people’s postures, identifies the exercise and evaluates
the performance of the exercise.

Figure 1 shows the scheme of the proposed architecture. When the system
starts, OpenPose returns the skeletons found at 20Hz. It may return several
skeletons that are tracked to keep the sequence followed by each person. A
correlation tracker based on [21] is used. This method considers the approach
of Bolme et al. [22] and makes use of learning discriminative correlation filters
based on a scale pyramid representation. The authors use separate filters for
tracking, in real-time, objects that change in both translation and scaling. The
angular magnitudes of the joints and the lengths of the segments between joints
are introduced into the MLP neural network and the output is fed into the
HMM. Considering the last person’s postures, the HMM filters the sequence
that is introduced into the Modified Levenshtein Distance module (MLD), which
identifies the exercise and evaluates the results to be communicated to the user.
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Figure 1: Scheme of the system

The OpenPose pipeline is composed of different steps. A CNN trained using
the COCO 2016 dataset / MPII dataset [23] returns a heat-map and the Partial
Affinity Fields (PAFs) [24]. A heat-map is a matrix that stores the confidence
the network has that a certain pixel contains a certain part of the body. A PAF
gives information about the position and orientation of body segments, named
pairs. A pair associates couples of parts, specifically body joints. After a Non-
Maximum-Suppression (NMS) algorithm, the location of the part candidates is
obtained from the heat-maps. When the candidates for each one of the body
parts have been found, an assignment problem selects the right candidate by
means of the integration of the PAFs. Finally, the body parts of each person are
connected, considering that two segments at a joint with the same coordinates
are part of the same person.

Subsection 3.1 explains how the proposed system works to extract people’s
postures. Subsection 3.2 presents how an HMM can filter the predictions of
the Neural Network in real-time. Subsection 3.3 explains how the Levenshtein
distance allows what kind of exercise the person is doing to be discerned.

3.1. Multilayer perceptron model

A Multilayer Perceptron model (MLP) is a standard fully connected neural
network model [25]. This network is composed of several layers of nodes where
each node has an input connected to all outputs from the previous layer and an
output connected to all inputs for nodes in the next layer. The MLP is created
with at least one dense layer. A common use of these networks are problems
related to binary classification, multi-class classification, and regression. These
networks are usually trained quickly and produce accurate results. The process
of tuning an MLP requires knowledge about the problem, the inputs and the
outputs. The training is carried out by a process of back-propagation, where the
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weights of the connections are changed after each element is processed, based
on the amount of error in the output compared to the expected result.

An MLP has been created in this work as the first step to obtain a person’s
posture, i.e., arms up. Since OpenPose [1] returns a set of 25 human joints, it
is possible to process these joints to be integrable with a neural network model.
Other works, such as Costa et al. [20], have considered thresholding the image
produced by OpenPose to be introduced in a Convolutional Neural Network
(CNN), mostly used for image recognition. However, this approach entails a
high computational cost and requires a huge amount of training images. Our
MLP considers only the angles and lengths of the body segments needed for
the trained postures. There is an output for each possible posture, which are
shown in Figure 2. To avoid the problem of occlusions, where some joints
cannot be detected due to occlusions, binary indicators for each joint/link are
also introduced as input into the network. These indicators show the presence
(1) or absence (0) of a joint/link on the scene. Keep in mind, that a null entry
of a joint reflects a value of 0◦ in that joint, but does not show anything about
whether this joint is present or not on the scene.

Figure 3 shows the scheme of the network. αk represents the joint angle
in k between links Lki and Lkj (see Figure 4). These angular amplitudes are
normalized between 0 and 1 (2π). The function b(Lki) takes the value 1 if the
link Lki has been properly obtained, or 0 if the link has not been detected.
b(Lki) ∧ b(Lkj) shows whether both links have been obtained or not, which is
needed to determine if αk is properly computed. The function n(Lki) normalizes
the module of a link, Lki, balanced by the module of the link between the neck
and the waist that is considered to be the longest one, as seen in Equation 1.
This normalization makes the system invariant to distance from the user. The
links are vectors obtained with the joints returned by OpenPose, specifically Jk
and Ji for a link Lki. P (cx) represents the probability of being in the posture
represented by class cx, where cx = c1...c19 for each of the 19 postures previously
defined. These probabilities are also important for the next integration with the
Markov model.

n(Lki) = |Lki|
|L18| =

∣∣∣−−→JkJi∣∣∣∣∣∣−−→J1J8∣∣∣ (1)
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Figure 2: Person’s postures detected by the neural network
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Figure 4 shows some of the joints returned by OpenPose (J1, J2, etc.). The
links used to compute the inputs of the neural network are obtained with the
different joints. The angle αk is obtained using the Equation 2.

αk = arccos
[

Lki·Lkj

|Lki|·|Lkj |

]
(2)
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Figure 4: Skeleton returned by OpenPose and computation of MLP inputs

The angular magnitudes used are those corresponding to α2, α3, α5 and α6.
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The link’s modules considered are L21, L23, L34, L51, L65, L67. All of them are
balanced by the module L18.

The MLP has one hidden layer composed by λh neurons, obtained by Equa-
tion 3 [26].

λh = λs

α·(λi+λo)
(3)

where λs is the number of training samples, λi the number of inputs, λo
the number of outputs and α an arbitrary scaling factor that takes the value
2-10 and contributes to reduce overfitting. In our system, λi = 20, λo = 19
and α = 3. In addition, a Dropout regularization step with a rate of 0.2 has
also been used to prevent overfitting. Adam algorithm [27] has been used for
stochastic optimization. A He−normal distribution has initialized the weights
of the hidden layer and a ReLu function has been used as activation. Finally, a
Softmax function is responsible of the output classification.

3.2. Hidden Markov Model (HMM)

A Hidden Markov Model (HMM) is used to filter the sequence of person’s
postures over time. The Viterbi algorithm [28, 29, 30] is a dynamic programming
algorithm that allows the most probable sequence of hidden states to be found,
the so-called Viterbi path, which produces an observed sequence of events. An
example is shown in Figure 5. A person follows a sequence of postures but one of
them, marked with a red cross, is not possible because in order to go from arms
behind the head to arms down, there would have to be some intermediate state
like having the arms in the middle. Markov’s model filters out this anomalous
situation, derived for example from eventual occlusions of the arms, and makes
the transition between postures to happen through possible states. A transition
matrix indicates how likely it is to go from one posture to another.

Figure 5: Example of sequence of an exercise with a posture incorrectly detected by the
MLP and rectified by the HMM
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The hidden Markov model (HM) is defined as HM = {S, V,A,B, π}, where

1. S is the finite set of states S = S1, S2, . . . , SN where N is the number
of unobservable states. In this case, the states corresponding to different
body postures, arms up, arms down, etc. previously shown in Figure 2.

2. V is the set of M observations by state V = V1, V2, . . . VM .

3. A is the state transition probability distribution A = {aij}, where aij
is the probability that the state at time t + 1 is Sj , since the state at
time t is Si, that is p(xt+1 = Sj |xt = Si). This stochastic matrix A
defines the connection structure of the model. In our case, each matrix
element represents the probability that a posture (state) at a frame will
be another posture at next frame, i.e., the arms behind head, in the next
frame will be the arms up. Some transitions can be zero or close to
zero, as they are highly improbable; for example, it is very difficult to go
directly from having your arms up to having your arms down without going
through other intermediate states (e.g., arms in the middle or akimbo).
If a coefficient aij is zero, it will remain zero even through the training
process, so there will never be a transition from state Si to Sj . This matrix
is experimentally determined from a set of video sequences that determine,
in a supervised way, the quotient between the number of transitions from
one state i to another j and the number of transitions from one state
i to all states including state j. It must be verified that

∑N
j=1 aij = 1,

with 1 ≤ i ≤ N . The transition matrix for the different trained postures is
shown in Table 1. It has been computed from a set of recorded videos with
the possible movements, recording the postures (From/To). After labeling
the different transitions by the user, the different probability transitions
are calculated from the video sequences (e.g., aij = number of transitions
from Si to Sj / number of transitions from Si to any other state Sk).

From/To P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19
P1 0.4 0.1 0 0 0 0.1 0 0 0 0.1 0 0.1 0.1 0 0 0 0.1 0 0
P2 0.03 0.49 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.2 0.01 0.02 0.02 0.01 0 0 0.03 0 0
P3 0 0.2 0.5 0 0 0.1 0.05 0.05 0 0 0 0 0 0.1 0 0 0 0 0
P4 0 0.1 0 0.5 0 0 0.2 0 0 0 0.1 0 0.1 0 0 0 0 0 0
P5 0 0.1 0 0 0.5 0 0 0.2 0.1 0 0 0.1 0 0 0 0 0 0 0
P6 0.15 0.15 0.15 0 0 0.55 0 0 0 0 0 0 0 0 0 0 0 0 0
P7 0 0.15 0.15 0.15 0 0 0.35 0 0 0 0.15 0 0.05 0 0 0 0 0 0
P8 0 0.15 0.15 0 0.15 0 0 0.35 0.15 0 0 0.05 0 0 0 0 0 0 0
P9 0 0.1 0 0 0.1 0 0 0.1 0.6 0 0 0.1 0 0 0 0 0 0 0
P10 0.1 0.1 0 0 0 0.1 0 0 0 0.4 0 0.1 0.1 0 0 0 0.1 0 0
P11 0 0.1 0 0.1 0 0 0.1 0 0 0 0.6 0 0.1 0 0 0 0 0 0
P12 0.1 0.1 0.1 0 0.1 0 0 0.1 0.1 0.1 0 0.2 0 0 0 0 0.1 0 0
P13 0.1 0.1 0.1 0.1 0 0 0.1 0 0 0.1 0.1 0 0.2 0 0 0 0.1 0 0
P14 0 0.08 0.12 0 0 0.1 0.05 0.05 0 0 0 0 0 0.3 0.15 0.15 0 0 0
P15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.6 0 0 0 0
P16 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0.6 0 0 0
P17 0.08 0.08 0 0 0 0 0 0 0 0.18 0 0.08 0.08 0 0 0 0.3 0.1 0.1
P18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.6 0
P19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0.6

Table 1: Transition Matrix of the Viterbi algorithm

4. B is the probability distribution matrix of observations in each state B =
{bi(k)}, where bi(k) is the probability that the observation Vk occurs in
the state Si. Then bi(Vk) = p{ot = Vk|xt = Si}, 1 ≤ i ≤ N , 1 ≤ k ≤ M ,
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where Vk denotes the kth observation, and ot is the current distribution
vector at time t. In our case, ot is the probability distribution obtained
at the output of the neural network.

5. π is the initial state distribution π = {πi}, where πi is the probability that
the model is in state Si at the time t = 0. In this case, since there is no
clue about what the initial person’s pose state is, we consider an initial
uniform distribution πi = 1/N .

Our problem is to find the most likely sequence of body pose states X =
(x1, . . . xt, . . . xT ) in the given model that produces the given observations O =
(o1, . . . , ot, . . . , oT ). This is known as the decoding problem that is solved by
the Viterbi algorithm [29]:

δt(j) = max
(x1,x2,...xt−1)

p(x1, x2, . . . , xt−1, xt = Sj , o1, o2, ..., ot|γ) (4)

where δt(j) represents the highest probability that the partial observation
sequence and the state sequence up to t = t can have, given that the current
state is Sj and that γ = (A,B, π) is the hidden Markov model.

The initial term is:

δ1(j) = πjbj(o1), 1 ≤ j ≤ N (5)

The rest of the terms can be calculated recursively from the final estimation
state

δt+1(j) = bj(ot+1)[ max
1≤i≤N

δt(i)aij ], 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1 (6)

ϕt+1(j) = arg max
1≤i≤N

δt(i)aij , 1 ≤ j ≤ N, 1 ≤ t ≤ T − 1 (7)

x∗T = arg max
1≤i≤N

δt(i) (8)

We can backtrack to obtain the most likely sequence

x∗t = ϕt+1(x∗t+1), 1 ≤ t ≤ T − 1 (9)

The main problem of the Viterbi algorithm is that processing the whole
sequence of observations is required to obtain the most likely sequence of states.
This can be a drawback when dealing with very long observation sequences,
such as video frames that can last several minutes. Waiting to process all
the frames limits the possibility of real-time recognition and makes feedback
difficult, for example in the case where a robot or a monitoring system must
warn the user that he/she is not performing the exercises correctly. To avoid
these situations, we have defined a dynamic window of observations that moves
through the entire observation sequence. Thus, given the observation sequence
O = (o1, , ot, . . . , oT ), we define a dynamic window of observations:
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Ow =

 o1, . . . , ot−1, ot, ot+1, . . . , ot+w w > t, t+ w < T
ot−w, . . . , ot−1, ot, ot+1, . . . , ot+w w < t, t+ w < T
ot−w, . . . ot−1, ot, ot+1, . . . , oT w < t, t+ w > T

(10)

Applying the Viterbi algorithm at each time step t with Ow(t) as input,
we obtain the x∗t likely state sequence (xt−w, . . . , xt, . . . xt+w). This way, it is
not necessary to process the entire sequence, it is only necessary to obtain w
frames ahead. We have experimentally observed that a value of w = 10 (i.e.,
0.5 seconds for a frame frequency of 20Hz) leads to the same results as those
obtained when processing the entire sequence.

3.3. Modified Levenshtein distance

Once the poses have been identified and the sequence determined by the
HMM, it is necessary to identify the exercise performed by the person. For this,
it is necessary to compare the identified sequence with the different sequences of
exercises initially established. In our system, a modified Levenshtein distance
has been used. During the preliminary experiments, several distances were
tested, such as Levenshtein [31], Damerau-Levenshtein [32] or Jaro-Winkler [33,
34]. In our problem, they all behaved in a similar way, even though they had
a common problem regarding the consideration of the nature of the postures in
an exercise.

Levenshtein’s distance is a magnitude which shows the minimum number
of operations required to transform a character string into another [31]. It has
been widely used for many different problems, most of them related to language:
plagiarism detection [35], cryptanalysis [36], handwriting recognition [37] or even
hieroglyph recognition [38].

To our knowledge, the Levenshtein distance has not previously been used
with video pose detection. The only noteworthy works in this line are proposed
by Poulisse and Moens [39], who detected scenes in Olympic videos using the
audio and visual characteristics, although Levenshtein was only used to identify
named entities from the audio, such as person’s names; and Jarodzka et al. [40],
who used it to quantify differences in perceiving and interpreting dynamic visual
stimuli between experts and novices comparing their eye movements.

In our problem, an alphabet
∑

= {a, b, c, ..., s} has been defined to assign
each symbol to a specific posture, as seen in Table 2.
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Symbol Posture in HMM transition matrix Description
a P1 Arms up
b P2 Medium arms
c P3 Arms down
d P4 Left arm up
e P5 Right arm up
f P6 Arms forward
g P7 Left arm in the middle
h P8 Right arm in the middle
i P9 Right arm half up/Left down
j P10 Arms half up
k P11 Left arm half up/Right down
l P12 Right arm half up
m P13 Left arm half up
n P14 Arms akimbo
o P15 Arms akimbo to the left
p P16 Arms akimbo to the right
q P17 Arms behind head
r P18 Arms behind head to the left
s P19 Arms behind head to the right

Table 2: Symbols assigned to each posture

The universal language of this alphabet, ω(
∑

), represents the output of the
HMM algorithm. The words of this language are sequences of postures obtained
from the processed frames, i.e., cccbbjjjjjaaaajjbbbbcc. A simplified word
c3b2j5a4j2b4c2 represents the postures and number of repetitions of the pre-
vious example. The number of repetitions is transformed into seconds using the
processing rate, this is the number of postures obtained per second. For a 20Hz
rate, the previous word is transformed into c0.15b0.10j0.25a0.20j0.10b0.20c0.10, di-
viding the repetitions by the rate. The word without time or repetitions is used
with the modified Levenshtein distance to be compared with a predefined list of
exercises. For the previous example, the word used is cbjajbc. The time is used
as a metric in the evaluation of the exercise. If the person has to hold the arms
up for 5 seconds, this will be compared with the obtained seconds. The list of 10
predefined exercises is shown in Table 3. The exercise of the preceding example
corresponds to the first exercise, although the execution has been much faster
than that defined in the table.

Identifier Word (PostureSeconds)
1 c2b2j1a3j1b2c2

2 c2b2j1a1q2r1q1s1q1r1q1s1q2a1j1b2c2

3 c2n2o1n1p1n1o1n1p1n2c2

4 c2g2k1d3k1g2c2

5 c2h2i1e3i1h2c2

6 c2b2f2b2c2

7 c2g2k2m2d3k2g2c2

8 c2h2i2l2e3i2h2c2

9 c2g2k2m2j2a3j2l2i2h2c2

10 c2b2j1a2q2a2q2a2q2a2j1b2c2

Table 3: Predefined exercises

The exercises have different durations; thus the Levenshtein distance has to
be normalized, balancing the result of the algorithm by max(|wo| , |wt|), where
wo is the word corresponding to the observed sequence and wt the word of the
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defined exercise in the table. |wo| and |wt| are the lengths of the words wo and
wt, respectively. This normalization leads to values within the range [0, 1].

As explained before, some problems were detected with the Levenshtein dis-
tance in our experiments. The problem was that a word like cbjajqaqjajqjajq
jajbc was detected as cbjaqrqsqrqsqajbc instead of cbjaqaqajbc. The problem
with this distance algorithm and others [32, 33, 34] is that they do not take
into account the elements themselves; so a new modified Levenshtein distance is
proposed to take into account both the Levenshtein distance and the existence
of the postures that the exercise has in the table. For example, if the current
exercise is cbjaqaqajbc, the input word should have 2 c, 2 b, 2 j, 3 a and 2 q,
and if it is cbjaqrqsqrqsqajbc, it should have 2 c, 2 b, 2 j, 2 a, 5 q, 2 r and 2
s. In the same way, detected exercises that include postures that should not be
in the recorded exercise are penalized. The new distance is calculated as shown
in Equation 11, where Pt = {x | x ∈ wt}, the set of different postures in wt,
i.e., Pt = {c, b, j, a} for an exercise wt = cbjajbc, and #Pt is the cardinality of
Pt. Po = {x | x ∈ wo} represents the symbols of the observed exercise. R(x,wt)
is a function that returns the number of repetitions of the specified posture,
x, in the word wt. The new distance is the result of the balanced sum of the
normalized Levenshtein distance and the new expression.

mLev(wo, wt) = 1
2norm(levwo,wt

(|wo| , |wt|))

+ 1
4


∑

x∈Pt

max
(∣∣R(x,wo)−R(x,wt)

R(x,wt)

∣∣,1)
#Pt



+ 1
4


∑

x6∈Pt∧x∈Po

[R(x,wo)]

|wo|


(11)

where levwo,wt(|wo| , |wt|) is obtained recursively according to the expression:

levwo,wt
(i, j) =


max (i, j) if min (i, j) = 0

min


levwo,wt(i− 1, j) + 1
levwo,wt(i, j − 1) + 1
levwo,wt

(i− 1, j − 1) + 1(woi 6=wtj)

otherwise.

(12)
where 1(woi 6=wtj) is the indicator function with value 1 when woi 6= wtj and

0 otherwise. levwo,wt
(i, j) is the distance between the first i characters of wo

and the first j characters of wt.
The activity is considered to be an exercise of the table only when the

result is over a given threshold. When the identifier of the exercise has been
obtained, an evaluation is carried out comparing the time the person has stayed
in each posture of the exercise and the optimal time registered in the table.
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Simultaneously, the complete time of the exercise is returned to the user as a
feedback to show if the person should increase/decrease the speed.

Another important aspect is taken into account for this process. The system
considers the posture arms down as an initial and final step. The recording of
the exercise activity begins when the user has the arms down and finishes when,
after other postures, the person repeats said posture. The modified Levenshtein
algorithm is launched when two postures are detected. When the modified
Levenshtein algorithm finishes, an evaluation of the performance of the exercise
is carried out. If the time observed in performing an exercise is outside a certain
tolerance around the optimal time recorded in the table, say 10%, the system
will report that the execution has been too fast or slow, depending on the case.
Otherwise, the system will report that the execution speed has been correct.

4. Experiments

Three experiments have been carried out to evaluate the performance of the
MLP network, the HMM and the Modified Levenshtein distance. As shown
in Figure 6, the MLP provides the sequence of postures, the HMM filters out
erroneous postures and the MLD classifies the sequence into a specific exercise.

c b                              j           n         a                   j                          g   b                  c

M
LP

c                         b                              j            j a                   j                          b         b c

H
M

M

Gymnastic
exercises

Exercise “2”

MLD

Figure 6: Steps of the overall process

The steps of the experimentation have been:

1. MLP network: 129 videos (101 minutes and 180, 958 samples/frames) have
been recorded on 16 people performing the different postures (see Figure
7). 116 of these videos (66 minutes and 118, 718 samples/frames), corre-
sponding to 3 people, have been used for training. The rest of the videos
(35 minutes and 62, 240 samples/frames), recorded on the other 13 people,
have been used to intensively evaluate the model.
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(a) Person with posture b (b) Person with posture s

Figure 7: Two people carrying out the postures

The network has been trained by splitting the previously balanced data,
corresponding to the 116 training videos, into train (60%), validation
(20%) and test (20%) datasets. The obtained model has taken 217 seconds
to be trained in an i9-9900K/32Gb with a GPU RTX2080-TI.
In addition to our MLP training, a comparison with SVM [41] has been
carried out. After the neural network training, a test with several videos
recorded by 13 different people has been conducted (35 minutes and 62, 240
frames). To avoid data correlation, these people have not participated
during the training phase (see Figure 8). In these videos, people have
performed several complete exercises. The participants have been 2 female
(39 age avg.) and 11 male (32 age avg.).

Figure 8: Different people carrying out the exercises

After recording these videos, an external observer has manually labeled
the postures of each person in each frame. When this manual process was
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completed, the videos have passed the MLP network and the obtained
results have been compared with the manual labels. Figure 9 shows a
frame of one of these videos. The frame number is up on the left, followed
by the manual label, the output of the MLP network and the output of
the HMM model.

Figure 9: Labeled person with posture b

2. Hidden Markov Model: The Viterbi algorithm has been evaluated on the
videos recorded after the training of the MLP network. The manual la-
bels have been used to evaluate the right output. The Viterbi algorithm
offers two main contributions: it rectifies spurious postures and removes
wrongly identified movements, derived from joints incorrectly detected by
OpenPose. OpenPose works frame by frame and Viterbi works with a
sequence of frames to detect what was wrong. In Figure 10, a person is
in the s posture, while the output of the neural network is a wrong r pos-
ture. This problem arises because certain joints have not been identified
by OpenPose due to self occlusion, and happens in spite of the extensive
MLP training dataset. Viterbi detects that it is pretty unlikely to go from
s to r without going through q if the previous posture has been s and
blocks the movement in s, having received an equally high probability of
being in the posture s. As seen in the previous transition matrix, a tran-
sition between the posture s and r is 0.0, while the transition between s
and s is 0.6 and between s and q is 0.4.
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Figure 10: Incorrect posture detection by MLP rectified by HMM

An additional experiment has allowed us to reproduce the output of this
layer in a Pepper robot, repeating 38 previously recorded exercises, as
shown in the scheme of Figure 11. Figure 12 shows how the sequence
obtained by MLP is filtered by HMM, stored and replayed on the Pepper
robot.

Frame rate = 20Hz

* Start

* End

Record
gymnastic
exercises

Obtain
OpenPose

joints

HMM

MLP

MLP Sequence
of people’s

postures

Possible
gymnastic
exercises

Filter
posture

sequence

Continue?
Yes

No

Compute
angles/
lengths

Detect
posture

MLP Layer HMM Layer 

Arms 
down?

Yes

<<Initialize>>HMM Sequence
of people’s

postures

No

Initialize
sequence

Obtain Pepper
joints

animation

Obtain Pepper
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trajectory

Play
gymnastic

exercise

Play

Figure 11: Scheme of the integration with Pepper robot
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Figure 12: Steps of the process with the Pepper robot

The system considers the posture arms down as an initial and final step to
record an exercise. These exercises are stored in the Possible Gymnastic
Exercises database and reproduced by the Pepper robot. This reproduc-
tion obtains the joint movements and the trajectory (wheel movement)
using the sequence of postures and time. The wheels are used to turn
the robot left/right as it does not have a joint to carry out these turns.
Figure 13(a) shows the Pepper robot performing the exercises that have
previously been recorded and Figure 13(b) shows the robot performing an
exercise in a residence for the elderly.

(a) Robot repeating the exercises (b) Robot carrying out exercises in a
residence for the elderly

Figure 13: Experiments with Pepper robot

Pepper robot is able to play two kinds of animations. Firstly, there is a
sequence of joint movements. For each step of this sequence, there is a list
of 17 joints (HeadYaw, HeadPitch, LShoulderPitch, LShoulderRoll, LEl-
bowYaw, LElbowRoll, LWristYaw, LHand, HipRoll, HipPitch, KneePitch,
RShoulderPitch, RShoulderRoll, RElbowYaw, RElbowRoll, RWristYaw
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and RHand) for which a rotation angle is given as well as the number of
frames that the joint will stay in that position. Secondly, Pepper robot
has three omni-directional wheels that function together to generate mo-
tion. The wheels allow to move the robot in the plane but also to make
turns. As with the joints, there is a sequence of movements that includes
translations and rotations. The transformation of the exercises in smooth
robot animations is carried out by obtaining the number of frames that
the robot should stay in each posture and taking into account the time.
Said time in each posture is transformed into a number of frames of the
sequence. At the beginning of the animation, the frame rate is speci-
fied. Simultaneously, the animation corresponding to the movement of
the wheels is generated in the postures that require rotations. To avoid
abrupt transitions, only postures with duration over 1 second are consid-
ered. For example, a posture b is transformed into a sequence with several
joint rotations: LShoulderRoll: +90◦, LElbowYaw: −90◦, RShoulderRoll:
−90◦ and RElbowYaw: +90◦. The rest of joints in this example are equal
to 0◦.

3. Modified Levenshtein distance: A quantitative analysis has been carried
out to show how many times the algorithm adequately detects the right
exercise from a set of videos with 154 exercises. Different distances have
been evaluated to be compared with our MLD identifying the complete
exercises. The accuracy results obtained have been compared with the dis-
tance algorithms proposed by Levenshtein [31], Damerau-Levenshtein [32]
and Jaro-Winkler [33, 34]. The input of these four algorithms (MLD, Lev-
enshtein, Damerau-Levenshtein and Jaro-Winkler) has been the output of
the HMM.

5. Results and discussion

The performance of the MLP network on the test dataset (20% of samples)
has been evaluated, leading to an accuracy figure of 96.9%. Figure 14a shows
the validation accuracy and loss during the training. The number of epochs has
been 25, with a batch size of 32. After the training, a k-fold cross-validation has
been carried out splitting the complete dataset into k = 10 groups, where one of
the groups is used as the test set and the rest are used as the training set. This
technique has allowed the model performance to be evaluated against different
data sets. As seen in Figure 14b, the proposed MLP has an accuracy about
97% for all the groups (average accuracy of 97.27% ± 0.32 and a loss of 0.09).
A multi-class precision-recall curve, with all classes, is displayed in Figure 15.
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(a) Validation accuracy and loss

(b) k-fold cross-validation

Figure 14: Validation and evaluation of the model
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Figure 15: Multi-class precision-recall curve

In addition to our MLP training, a comparison with SVM [41] has been
carried out. After an exhaustive grid search, SVM has been executed with
the same inputs and outputs of our MLP and the parameters Cost = 100 and
gamma = 100. SVM has been trained with 80% of the dataset while the an-
other 20% has been used for test. The accuracy of SVM has been 96.22%. A
K-fold cross-validated paired t-test has been computed, resulting in values of
t = −26.21 and p = 8.64 · 10−16. Considering α = 0.05, there is a signifi-
cance difference between the two models. Figure 16 shows the box-plots of the
obtained scores during K-fold cross-validated paired t test.

Figure 16: Box-plot of the scores obtained during K-fold cross-validated paired t test
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After the neural network training, a test with several videos recorded by 13
different people has been conducted (35 minutes and 62, 240 frames). The result
of the correctly classified frames has been 96.30%. Table 4 shows the confusion
matrix between the estimated posture obtained by the MLP and the real one.
Most detections work fine although some errors may occur due to OpenPose
detection errors.

Real
Estimated

a b c d e f g h i j k l m n o p q r s

a 0.98 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b 0.00 0.96 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
f 0.01 0.00 0.01 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
g 0.00 0.00 0.03 0.03 0.00 0.00 0.93 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
h 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
j 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
k 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
l 0.11 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.21 0.04 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00
m 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00
n 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.01 0.01 0.00 0.00 0.00
o 0.00 0.00 0.14 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.8 0.00 0.00 0.02 0.00
p 0.00 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.89 0.00 0.00 0.00
q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00
r 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.12 0.86 0.00
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.1 0.00 0.9

Table 4: Confusion Matrix of the postures obtained by the MLP network (%)

In our videos, we have quantified that Viterbi improves the accuracy of the
detection. It is able to rectify 38% of the wrong detections, passing from an
accuracy of 96.30% in MLP to 97.73% with HMM. However, in a small amount
of cases, Viterbi modifies a correct value obtained by the MLP network. Table 5
shows that MLP and HMM outputs are both correct in 96.30% of cases, HMM
has properly rectified the MLP output in 1.43% of cases, HMM has wrongly
rectified the MLP output in 0.11% of cases and both of them have been incorrect
in 2.16% of cases.

HMM
MLP

Incorrect Correct

Incorrect 2.16% 0.11%
Correct 1.43% 96.30%

Table 5: MLP and HMM results (%)

Table 6 shows the confusion matrix between the estimated posture obtained
by Viterbi and the real one. Comparing this matrix with Table 4, it is possible
to observe that most of the detections have been improved.
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Real
Estimated

a b c d e f g h i j k l m n o p q r s

a 0.98 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b 0.00 0.97 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
f 0.01 0.00 0.01 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
g 0.00 0.00 0.03 0.04 0.00 0.00 0.92 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
h 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.96 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
k 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
l 0.1 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.22 0.04 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00
m 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00
n 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.01 0.01 0.00 0.00 0.00
o 0.00 0.00 0.14 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.84 0.00 0.00 0.00 0.00
p 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00
q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00
r 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.95 0.00
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.91

Table 6: Confusion Matrix of the postures obtained by the HMM (%)

The experiments carried out with the Pepper robot, repeating 38 previously
recorded exercises, have shown that the robot reproduces the postures correctly
93.3% of the time. The synchronization is not complete due to certain limita-
tions of the Pepper’s kinematics, especially in turns.

The quantitative evaluation of the Modified Levenshtein distance (MLD)
identifying the complete exercises and the comparison with the distance algo-
rithms proposed by Levenshtein [31], Damerau-Levenshtein [32] or Jaro-Winkler
[33, 34] are shown in Table 7. The modified Levenshtein distance properly iden-
tified 98.05% of the complete exercises.

Distance Accuracy
MLD (Modified Levenshtein distance) 98.05%

Levenshtein distance [31] 94.15%
Damerau-Levenshtein distance [32] 94.15%

Jaro-Winkler distance [33, 34] 91.56%

Table 7: Comparison of distances in the classification of exercises (%)

The result of identifying partial exercises is presented in the confusion matrix
of Table 8. Most errors were produced when too few postures had been obtained,
say 2 or 3. The cells with a zero value represent exercises which have not been
incorrectly detected. The overall accuracy identifying exercises which have not
been completed is 94.6%. To evaluate incomplete exercises, only words with
a minimum of 5 postures have been considered. When the person performs 5
postures or more, the system begins to identify the exercise.
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Real
Estimated

1 2 3 4 5 6 7 8 9 10

1 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09
2 0.07 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26
3 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 1.0 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.00
10 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88

Table 8: Confusion Matrix of the modified Levenshtein algorithm, recognizing partial
exercises (%)

When the quantitative analysis was finished, a qualitative analysis showed
that the system works well in a real-time scenario, receiving the feedback of
the system, as seen in Figure 17, where all the information is shown: posture,
final/partial exercise and the recommendation for the final and partial result.
As previously stated, when the performance of an exercise is outside a 10%
tolerance around the optimal time recorded in the table, the system reports
that the execution has been too fast or slow, depending on the case.

Figure 17: Final result showing the posture, final/partial exercise and the recommendation

Our results are better than other known works [20] and with lower compu-
tational cost. Costa et al. [20] showed a high accuracy in terms of detecting and
classifying the physical exercises (97.35%), but in our work, 98.05% of complete
exercises have been properly detected. Regarding other works that use RNNs,
our work obtains better results than [18], whose model obtained an average
accuracy of 92.4%.

Our approach computes the angular amplitudes and modules of the links
to identify the postures. This reduces the computational cost compared to
other alternatives such as end-to-end applications, which pass raw data from
one layer to another without processing (i.e., Convolutional Neural Networks
(CNN)). When the arithmetic complexity is evaluated, Costa et al. [20] use a
C2R model, composed of a CNN (ResNet-50 [42]) and a Gated Recurrent Unit
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(GRU) [43]. ResNet-50 has 23.5 million parameters, result of several consecutive
convolution layers. GRU has 32 units connected to a dense layer with 100
outputs. They process 47 frames to detect each exercise. In total, considering a
minimum of one arithmetic operation per parameter, the arithmetic complexity
is about O(47 · 24million) = O(1, 128million). In that case, GPU parallel
computing is required. In our system, the MLP has 39, 546 parameters (20
inputs, 1, 014 hidden neurons and 19 outputs). HMM is an iterative process that
considers 10 steps with 19 possible postures. We have approximately estimated
741 parameters. Finally, although MLD is recursive, it has a small number of
operations since the strings to be compared are short. Considering a maximum
number of 300 operations per comparison, MLD would have 3, 000 operations to
compare a string with the 10 possible exercises. When 47 frames are processed,
our arithmetic complexity is about O(47·(39, 546+741+3, 000)) = O(2million).
Both Costa et al. [20] and our work use OpenPose, so the above calculations
refers to the part of the system once the skeletons have been obtained. OpenPose
uses a convolutional network composed of 25 million parameters to obtain the
separate body parts that are are linked by solving an optimization problem on
Part Affinity Fields (PAFs). The arithmetic cost of the optimization algorithm
is given by the number of operations required to perform K iterations of the
algorithm and also depends on the number of detected body parts and people.
The cost is variable depending on the convergence of the problem. Our system
needs to learn less parameters than other end-to-end approaches and is able
to generalize with the learning of only three people. Costa et al. [20] trained
their C2R model with 159, 990 samples of 10 images each, and it was validated
against a validation dataset of 79, 995 samples. 7 people participated in their
experiments. Our system does not require as much data as them or as heavy in
size because it uses the angular amplitudes and modules of the links to identify
the postures. In contrast, Costa et al. [20] directly uses skeleton images, which
results in much more data at the input of the model.

The software, models and videos with the gymnastic activity recognition and
robot movements are available on the Internet at the URL:
https://github.com/jaiduqdom/gymnasticactivity.git.

6. Conclusions

This work presents a novel software architecture to autonomously identify
and evaluate the gymnastic activity that people are carrying out.

The architecture is composed of three different and interconnected layers, a
Multilayer Perceptron (MLP) neural network, a Hidden Markov Model (HMM)
layer and an innovative Modified Levenshtein Distance (MLD) layer. The MLP
layer detects the posture of people according to the joints provided by the Open-
Pose library. However, this library works frame by frame, which can result in
detection errors due to occasional occlusions. The HMM and the Viterbi al-
gorithm allow incorrectly obtained postures to be rectified. Finally, different
distance algorithms have been considered for comparing the detected sequences
to reference ones [31, 32, 33, 34]. However, they do not consider the nature of
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the symbols, so a novel Modified Levenshtein Distance has been presented. This
new distance allows the detection of the exercises to be improved and provides
continuous feedback to the users. The integration of the three components re-
sults in a robust system that has allowed us to improve the results of previous
works. Our MLP has an accuracy of 96.30%, which is improved by the HMM to
97.73%. The MLD has been able to correctly identify all completed exercises in
98.05%. The integration of the three components allows us to obtain a robust
system that has allowed us to improve the results of previous works.

The proposed system can be useful for evaluating users’ performance while
they are physically exercising. In this way, it is possible to give users feedback
in real time, so they can do the exercise correctly (e.g., raise their arms higher,
do the exercise faster, or more slowly, etc.). Another of the functionalities is the
programming of robots by demonstration. This article has shown how, once a
sequence of exercises has been learned, it can be reproduced by an autonomous
Pepper robot without explicit programming. This allows considerable time sav-
ings in addition to achieving greater synchronization of movements between
the exercise proposed by the master and the robot. In this case, the proposed
exercises have been implemented on the Pepper robot in a nursing home.

Until now, the proposed system has allowed us to quickly program by demon-
stration the exercises to be performed by the robot in the nursing home. This
avoids the need for explicit Pepper programming. As a future work, it is pro-
posed to deploy the novel architecture in a social robotics environment with the
elderly, so that the robot provides feedback to the users during the exercises.
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