
 

 

 

 

 

 
    

 
  

 

UNIVERSIDAD DE VALLADOLID 

 

ESCUELA DE INGENIERIAS INDUSTRIALES 

 

 

GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA 
 

 

 

POSICIONAMIENTO DEL EFECTOR FINAL DEL 

ROBOT BASADO EN PLANOS EXTRAÍDOS DE UNA 

NUBE DE PUNTOS 

Autor: 

ANÍBARRO BLANCO, ANA 

 

 

  Responsable de Intercambio en la UVa: 

LÓPEZ DE LA FUENTE, EUSEBIO 

 

Universidad de destino: 

UNIVERSITY COLLAGE LEUVEN-LIMBURG (UCLL) 



i 

 

 

Valladolid, Julio 2021. 

TFG REALIZADO EN PROGRAMA DE INTERCAMBIO 

 

TÍTULO:  Robot end effector positioning based on planes extracted from a point cloud 

ALUMNO:  Ana Aníbarro Blanco 

FECHA:  17 de junio de 2021 

CENTRO:  Grupo de investigación ACRO  

UNIVERSIDAD: University Collage Leuven- Limburg 

TUTOR:   Wim Claes 

 

 

  



ii 

 

ABSTRACT (ESPAÑOL) 
El grupo de investigación ACRO, de la universidad KU Leuven, está actualmente participando 

en el proyecto ARCHER, cuyo objetivo principal es conseguir la navegación autónoma de un 

robot en un área determinada, haciendo un mapa del entorno para identificar las posibles fuentes 

de radiación presentes. 

Esta tesis se centra en dos objetivos principales, el análisis del brazo robot Kinova, 

implementado en el robot ARCHER, usando para ello el framework ROS y un caso práctico de 

estudio. El brazo debe ser modificado para incorporar los elementos necesarios para determinar 

el nivel de contaminación, entre los que se encuentran la cámara Intel Realsense L515 LiDAR. 

En esta tesis se ha propuesto un caso práctico basado en el procesamiento de imágenes 3D 

obtenidas con dicha cámara. El objetivo es la determinación de una serie de puntos en una 

imagen 3D de forma que el brazo robot pueda llevar a cabo el escaneo de una superficie. 

KEYWORDS: Brazo robot, nube de puntos, LiDAR, PCL, ROS 

ABSTRACT (INGLÉS) 
The research group ACRO (Automation, Computer Vision and Robotics) from KU Leuven is 

located in the technology center at campus Diepenbeek, Belgium. Currently, this group is 

participating in the ARCHER project, which main goal is to make a mobile robot navigate 

autonomously in a given area, mapping the entire environment, to determine the location of 

possible sources of radiation present. For this purpose, a mobile platform to which a robotic 

arm has been incorporated will be used. The robotic arm will be equipped with a camera and a 

probe to scan the surfaces and localise the nuclear hotspots. 

This thesis focuses on two main objectives, the analysis of the Kinova robot arm using the 

middleware framework ROS (Robot Operating System) and a practical case study. The arm 

needs to be modified to incorporate the necessary elements to determine the contamination 

level, among which is the Intel Realsense L515 LiDAR camera. In this thesis a practical case 

study has been proposed based on the processing of 3D images obtained with the 

aforementioned camera. The objective is determining a series of points in the 3D image for the 

robot arm to carry out the scanning task. 

Using the PCL library, a plane on which a number of points have been plotted has been defined. 

Subsequently, a simulation of the robot arm manually moving to the defined points using 

MoveIt! has been done. 

KEYWORDS: Robot arm, ROS, MoveIt!, point cloud, camera, LiDAR, PCL 
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ABSTRACT 
The research group ACRO (Automation, Computer Vision and Robotics) from KU Leuven is 

located in the technology center at campus Diepenbeek, Belgium. Currently, this group is 

participating in the ARCHER project, which main goal is to make a mobile robot navigate 

autonomously in a given area, mapping the entire environment, to determine the location of 

possible sources of radiation present. For this purpose, a mobile platform to which a robotic 

arm has been incorporated will be used. The robotic arm will be equipped with a camera and a 

probe to scan the surfaces and localise the nuclear hotspots. 

This thesis focuses on two main objectives, the analysis of the Kinova robot arm using the 

middleware framework ROS (Robot Operating System) and a practical case study. The arm 

needs to be modified to incorporate the necessary elements to determine the contamination 

level, among which is the Intel Realsense L515 LiDAR camera. In this thesis a practical case 

study has been proposed based on the processing of 3D images obtained with the 

aforementioned camera. The objective is determining a series of points in the 3D image for the 

robot arm to carry out the scanning task. 

Using the PCL library, a plane on which a number of points have been plotted has been defined. 

Subsequently, a simulation of the robot arm manually moving to the defined points using 

MoveIt! has been done. 

KEYWORDS: Robot arm, ROS, MoveIt!, point cloud, camera, LiDAR, PCL. 
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1. INTRODUCTION 

1.1. General Description 

This thesis is part of various studies on autonomous mobile robots at the research center 

ACRO from KU Leuven located in Diepenbeek, Belgium. The acronym ACRO signifies 

the expertise of this research group, namely automation, computer vision and robotics. It 

is formed by the academic and teaching staff as well as PhD researchers. Their projects 

are based on different fields, e.g. vision-based and model-based automation, product 

manipulation and robotic grippers, (semi-)autonomous assembly and disassembly, 

functional programming and cloud computing, collision-free trajectory generation and 

navigation and human-robot collaboration [1]. 

This thesis is developed as part of the ARCHER project (Autonomous Robotic platform 

for CHaractERrisation). The project aims to autonomously navigate and map unknown 

environments, indicating potentially contaminated regions on the created maps using an 

autonomous mobile vehicle.  

The ARCHER project is an ongoing study between the ACRO research group and the 

nuclear technology research group at UHasselt, NuTeC. The academic research is 

supported by the two major contributors to the ARCHER project, which are the 

companies Tecnubel and Magics. Tecnubel is the company in charge of the design and 

construction of the mobile manipulator and receives help from Magics, in charge of 

sensors and electronics [2]. 

1.2. Problem statement 

The robot used in the ARCHER project is an autonomous mobile manipulator. It consists 

of a mobile platform with continuous tracks on which a robot arm has been mounted. The 

following images (Figure 1.1 and 1.2) show photos captured from the ARCHER robot. It 

should be noted that to autonomously navigate, the platform uses wheel encoders and a 

LiDAR camera. The camera has been mounted on the front of the sensor, seen in Figure 

1.2. 
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Figure  1.1. Side view of the ARCHER robot. 

 

Figure  1.2. Front view of the ARCHER robot. 

The project is currently at the following stage: the mobile platform can map the 

environment, locate the vehicle, and perform the trajectory from point A to point B in real 

time autonomously. 

At this stage, the work carried out has been focused on the mobile platform however the 

arm has not been the subject of much research nor development. The aim is to study the 

functioning of the robot arm incorporated in the platform. The arm is intended to scan a 

surface, on which it must measure the amount of nuclear contamination present. Thus, it 

will be necessary to modify the arm’s structure to incorporate a LiDAR camera together 

with a probe. It is noteworthy that no work with this probe will be performed.  
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1.3. Objectives 

The objectives of this thesis can be separated into two main sections. The first is the 

analysis of the robot arm implemented in the mobile platform. It will be necessary to 

study and understand in depth how the arm and its interface with ROS (Robot Operating 

System) work.  

The second is the practical case, focused on the processing of a point cloud taken with a 

LiDAR camera that will be included in the robot arm. This will require an initial literature 

study focusing on point cloud processing. The original objectives of the case study were: 

• Modification of the robot arm to include the Realsense Intel L515 camera. 

• Capturing a 3D point cloud of a wall. 

• Insertion of a plane through the point cloud. 

• Definition of a series of points separated a specified distance from the previously 

defined plane. 

• Performing a coordinate change to refer the defined points of the plane to the 

robot's frame. 

• Moving the robot arm towards these points, with orientation perpendicular to the 

plane, without colliding with the wall. 

However, due to limited time the scope of the thesis has been reduced. Only a case study 

with the camera will be covered, but it will not be connected to the robot nor used in 

conjunction with the probe. 

1.4. Report structure 

The thesis will be structured in five chapters as follows. The initial chapter (current 

chapter) introduces the overall project together with the specific objectives of the thesis. 

The second chapter focuses on the description of the technological environment in which 

the thesis has been developed. It includes an explanation of the programming 

environment ROS and the MoveIt! extension, an analysis of the Kinova robot arm and 

the technology behind the Realsense Intel L515 LiDAR camera. Chapter three contains 

the literature study on point cloud processing. It includes an analysis of the different 

existing libraries for this purpose. Chapter four develops the proposed case study. The 

last chapter includes conclusions drawn from the development of the thesis and possible 

future work. 
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2. TECHNOLOGICAL ENVIRONMENT 
In this second chapter, an introduction to the technological environment in which the 

work has been developed during the months that the thesis has been carried out will be 

presented. 

Initially, the programming environment of the robot arm, i.e. ROS, will be described, 

together with one of its most useful packages that controls the arm's movement, MoveIt!. 

This will be followed by a description of the arm Kinova arm, and a brief explanation of 

how its ROS interface work. The last part will be a brief description of the camera used 

for the practical case study.  

2.1. Programming environment 

2.1.1. ROS 

The Robot Operating System (ROS) is a flexible middleware framework based on a 

collection of tools, libraries and conventions which aim is to simplify the task of 

developing software for robots [3]. 

It is an open-source project which provides the typical services of an operating system 

such as hardware abstraction, low-level device control, implementation of commonly 

used functionality, message passing between process and management of packages. At 

the same time, it incorporates a series of tools and libraries to obtain, compile, write and 

run code across multiple computers [4]. 

Building robust software for general use, is a difficult and complex task. Problems vary 

greatly depending on the task to be performed and the environment where the robot is 

located. ROS was built from scratch to foster collaborative robot software development. 

The main objective is that everyone can build using the work of others, avoiding the cost 

of constantly re-inventing the same software by different groups of people [5]. 

The ROS framework is easy to implement in any modern programming language, such 

as C++, Python or Java. This helps it to be used by a greater number of robots and, as it 

is free software, it is constantly evolving and developing [6]. 

2.1.1.1. Architecture and concepts 

To fully understand ROS, it is necessary to distinguish three sections or levels of concepts 

[7] [8]: 

• ROS Filesystem Level: This level indicates the folder structure, how it is formed, 

and the minimum number of files that ROS needs to work. Software in ROS is 

organized in packages. The goal of these packages is to provide a useful 

functionality in an easy-to-consume manner so that software can be easily reused. 

These packages may contain processes (nodes), libraries, scripts, configuration 

files (Makefiles), etc. Figure 2.1 shows a diagram of how the ROS file system 

level is organised. 
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Figure  2.1.. ROS Filesystem Level Description [9]. 

• ROS Computation graph: The graph structure shows the communication between 

the different processes of the system. ROS is based on a graph architecture, it has 

a number of independent nodes that can communicate with the rest of the nodes 

through the publisher / subscriber model. Figure 2.2 shows the architecture of the 

computation graph in ROS. 

 

A node is a process that performs a specific task or function. Nodes are combined 

together into a graph and communicate with one another using streaming topics, 

RPC services, and the Parameter Server. Due to the modular philosophy of ROS, 

a system will typically have many nodes to control different specific functions of 

the robot. 

 

Figure  2.2. ROS Computation Graph concepts [9]. 

• ROS Community level: Different tools and concepts are used by the ROS 

community to share knowledge, algorithms and code with any developer. Thanks 

to this level, ROS is constantly growing and developing. 

http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://wiki.ros.org/Parameter%20Server
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2.1.1.2. Tools 

ROS has multiple tools, from simulators to tools that facilitate the understanding, 

development and management of the different ROS processes. The most useful tools used 

in ROS during the development of the project will be shown below. 

rviz  

Rviz is a 3D visualisation tool for ROS applications. It provides a view of the robot model 

and captures sensor information from robot sensors. Amongst others, it can visualise 

pictures and point clouds, obtained from cameras and LiDAR [10]. In addition, this tool 

has a modular and customisable interface, with the possibility of moving and 

programming panels, as well as creating new plugins that allow for new functionalities to 

be added.  

URDF  

URDF (Unified Robot Description Format) is a robot modelling tool. It is responsible for 

specifying the properties of the robot, such as its dimensions, number of joints, physical 

parameters, etc. [11]. 

This information is described in the form of a tree in an XML file, distinguishing two 

main components necessary for the construction of a robot's kinematic chain, i.e., links 

and joints. 

• Link: The links describe the rigid physical part of the robot, such as mass, 

geometry or inertia, as well as the visual components needed to display the robot 

in tools such as rviz. Figure 2.3 shows an example of the elements which can be 

described in a link. 

 

 

Figure  2.3. Description of a link element within a URDF file [12]. 

• Joint: The joints indicate the relationship between the different links of the robot. 

The kinematics and dynamics of each joint are also described, as well as 

specifying the collision limits of the robot. An example of the attributes which can 

be described in a joint is shown in Figure 2.4. 
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Figure  2.4. Description of a joint element within a URDF file [13]. 

TF 

TF is a package that lets the user keep track of multiple coordinate frames over time. TF 

maintains the relationship between coordinate frames in a tree structure buffered in time, 

and lets the user transform points, vectors, etc between any two coordinate frames at any 

desired point in time [14]. 

It coordinates and transforms the different reference frames or coordinate axes with 

respect to a global reference point, and to each other, over time. Figure 2.5 shows an 

example of a TF structure. 

 

Figure  2.5. TF structure example [14]. 

2.1.2. MoveIt! 

MoveIt! is a software framework in ROS that facilitates trajectory control for robots, with 

special focus on robots with arms. It incorporates the following functions: motion 
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planning, manipulation, 3D perception, inverse kinematics, control and collision 

checking. In addition, it provides the user with an easy-to-use platform for developing 

new robotic applications [15]. 

2.1.2.1. High-level architecture of MoveIt! 

As can be seen in Figure 2.6, the main core of this software is the node called move_group 

[16]. To the left of it, the different ways for the user to interact with this node can be seen. 

 

Figure  2.6. High-level system architecture for the move_group node [16]. 

The most notable ones are: 

• Move_group_interface (C++): It consists of a program that sends the information 

to the move_group node. This code is written in the C++ programming language. 

It allows, not only to send instructions to the robot, but also to add objects to the 

environment, set conditions, flows, warnings, etc. 

• Moveit_commander (Python): It is a program that comes with the MoveIt! 

package and controls the robot in a very simple way through a series of 

commands.  

• Graphical User Interface (GUI, Rviz): This is an intuitive and easy way to control 

the robot. Rviz loads the robot model along with markers, which changes the 

position of the arm in the direction the marker is dragged. This allows you to see 

the movements that the robot will make, and even perform the planning before 

executing the movement, thus avoiding failures and collisions.  

As can be seen in the schematic represented in Figure 2.6, the user interaction is connected 

by several elements to the move_group node. These elements are the different types of 

communication that exist in ROS. They send the information generated by the user to the 

different nodes. Each colour represents a different type of communication. 
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The green arrows represent communication via topic [17]. The information that is 

transmitted to the kernel in this way concerns the various objects that may appear in the 

environment. These objects, which can be attached to the robot, must be taken into 

account when planning trajectories due to the possibility of collision. 

The blue arrows denote communication via service [18]. Services in Moveit! are used to 

send waypoints to the robot, receive the robot's kinematics, both inverse and direct, 

acquire changes in the environment, and receive, confirm validity of and execute 

trajectories. 

Finally, the red arrows represent the last and most general form of communication found 

in ROS, the actions. Actions establish a goal that initiates a behaviour or a process and 

send a signal when this goal is reached [19] [20]. Among the existing actions the 

movement of the robot, the pick operation and the place operation can be found. 

In the upper part of Figure 2.6, the move_group is connected by three black arrows to 

another element called ROS Param Server. The Parameter Server is a kind of 

multivariable, shared "dictionary" or database that is accessible to the operating nodes of 

the system, and it is used to store and retrieve parameters during execution. The 

information stored in this Parameter Server is the one corresponding to the URDF, SRDF 

and Config files from the robot [21]. 

Lastly, on the right side, the move_group is connected through an action with the robot 

controllers. These receive the movement instructions from the move_group node and 

return the result when the desired position has been reached or respond with an error when 

it cannot be reached [16]. On the other hand, if there are sensors that receive information 

about the robot's environment, such as a camera, it can send the information to the 

move_group via topic.  

2.1.2.2. Motion Planning in MoveIt! 

Motion planning deals with the problem of moving the arm to a certain configuration, 

allowing the end-effector to reach a position without the robot colliding with any obstacle. 

This can be either an external object or the robot's own parts that may get in the way of 

the movement [7]. These schedulers, responsible for organising motion planning, are 

incorporated into MoveIt! in the form of plugins, this makes it easier to communicate 

with and use various types of schedulers. The move_group node connects to these 

schedulers through an action or a ROS service [20].  

The planning works as follows: first, a motion planning request, that clearly specifies the 

action to be performed by the robot, is sent, then the planner finds a trajectory for all 

joints in which collisions are taken into account and which reaches the specified target 

position. MoveIt! also allows taking into account possible objects that can be picked up 

when calculating robot trajectories.  
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Moveit! has a large number of tutorials on its website [22], on which examples of code 

and use of its different functionalities can be obtained. 

2.2. Kinova robot arm analysis 

2.2.1. JACO arm 

The robotic arm used during the development of this thesis is the model j2s6s200 of the 

JACO series from Kinova. It is a light-weight robot composed of six inter-linked 

segments. The user can move the robot in three-dimensional space either through the 

controller or using the computer. It is equipped with a two-finger gripper with which it 

can grasp or release objects. 

In the current ARCHER project, the aim is to use the arm to perform a radiological 

measurement on a contaminated surface. To perform this task, the structure of the robot 

must be modified so that both the camera and probe can be incorporated. This will be 

explained in more detail in the case study. 

2.2.1.1. Robot configuration 

The JACO arm is a 6 degree of freedom robotic arm with a spherical wrist. Figure 2.7 

shows the model j2s6s200 robot arm used for this thesis. 

 

Figure  2.7. Kinova JACO model j2s6s200 robot arm [23]. 

Figure 2.8 displays the external connectors located on the base of the robot controller. 

The on/off switch activates the  arm, the power connector provides electrical power, the 

USB and Ethernet port which allow for communication and pins to connect wired 

controllers for the arm [23]. 
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Figure  2.8. External connectors of the JACO arm [23]. 

2.2.1.2. Robot configurations specifications 

Table 2.1 shows the JACO arm configuration specifications. It is essential to take them 

into account when working with the actual robotic arm. 

Total Weight 4.4 kg 

Reach 98.4 cm 

Maximum payload 2.6 kg (mid-range continuous) 

2.2 kg (full reach peak / temporary) 

Materials Carbon fiber (links), Aluminium (actuators) 

Joint range (software 

limitation) 

±27.7 turns 

Maximum linear and arm 

speed 

20 cm/s 

Power supply voltage 18 to 29 VDC 

Average power 25 W (5 W in standby) 

Peak power 100 W 

Communication protocol RS485 

Communication cables 20 pins flex cable 

Water resistance IPX2 

Operating temperature -10 °C to 40 °C 

 

Table 2.1. JACO arm configuration specifications [23]. 

2.2.1.3. Controlling the robot 

The actuators in the Kinova arm can be controlled based on end effector position, 

actuators' angular position or actuators' torque. Below the different control mode options 

offered by the robot are specified [23]: 
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• Cartesian position: Specifies end effector’s position and orientation in the base 

frame.  

• Cartesian velocity: Specifies end-effector’s translational velocities in the base 

frame and end-effector’s rotational velocities in the end effector’s frame. 

• Angular position: Specifies each actuator’s angle.  

• Angular velocity: Specifies each actuator’s angular (rotational) velocity. 

• Cartesian admittance (Reactive Force control in Cartesian space): Forces and 

torques are applied on the end-effector to perform a certain translation and rotation 

(Cartesian motion). 

• Angular admittance (Reactive Force control in joint space): Torques are applied 

on actuators to perform a certain joint rotation (angular motion).  

• Direct torque control: Each actuator’s torque is specified. 

• Force control: Specifies forces and torques at the end-effector. The torque at each 

actuator to generate the appropriate forces/torques at the end-effector is 

automatically computed. 

Kinova provides three different options to operate with the robotic arm: 

• Joystick control: Sends cartesian or angular velocity motion commands.  The 

cartesian mode is set by default. 

• Kinova software control: Two different software control panels (the Development 

Center and the Torque Console) allow users to send position, velocity, and 

trajectory commands to the robot. In addition to that, the Development Center 

allows for the activation of admittance control and the Torque Console allows 

direct torque/force control. They both control the arm via a graphical user 

interface.  

• API control: Kinova provides a C++ library, referred to as Kinova API, to control 

its robots. It is downloadable as part of the Kinova software development kit 

(SDK) and supported on both Windows and Ubuntu. It also offers the possibility 

to control the robot through a ROS interface. 

2.2.2. Kinova-ROS 

The kinova-ros stack provides a ROS interface for the Kinova Robotic manipulator arm 

JACO. It is developed above the Kinova C++ API functions, which communicate with 

the DSP (digital signal processor) inside the robot base. 

The first step to use the stack is making kinova-ros part of a workspace. To start working 

with the arm it is necessary to establish the connection via Ethernet, setting the exact 

parameters in the robot parameters file.  

Once the stack is downloaded it is time to work with the driver. To communicate with the 

robotic arm, the robot type needs to be specified. This thesis worked with the type 

j2s6s200, which refers to [24]: 
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• Robot category: JACO arm (j). 

• Version use: 2. 

• Wrist type: Spherical (s). 

• Degrees of Freedom: 6. 

• Robot mode: Service (s).  

• Fingers in the gripper: 2. 

• The last two positions (00) are not defined and reserved for further features. 

To begin with, once connected to ethernet, the driver needs to be launched. The file 

kinova_robot.launch, located in the kinova_bringup folder, is in charge of launching the 

essential drivers and configurations. The robot type that is being used needs to be 

specified in the kinova_robotType argument. As stated before, this project works with the 

JACO arm type j2s6s200. To launch the driver the following command needs to be typed 

[24]: 

roslaunch kinova_bringup kinova_robot.launch kinova_robotType:=j2s6s200 

The arm can be commanded in three different ways: joint position control, cartesian 

position control and ROS Service Commands. 

2.2.2.1. Joint Position Control 

The Joint Position Control sends a desired angle to each joint. This position is controlled 

using PID control to specify the effort to the joint. The safety limits of the robots will 

constrain the commands from the position controller, therefore, position commands near 

the joint limits may cannot be achieved [25]. 

The kinova-ros stack can perform the joint position control in two different ways. The 

first one is by calling the node joints_action_client.py, located in the kinova_demo 

package. To run the node: 

rosrun kinova_demo joints_action_client.py -v -r j2s6s200 degree -- 70 0 0 0 0 0 

This code will drive the 1st joint of the robot to rotate 70 degrees from its current angle. 

In the digital version of the document, you can visualise how this command is executed 

on the ARCHER robot arm, by clicking in the following image (Figure 2.9). 
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Figure  2.9. Execution of joint position control on the ARCHER robot arm. 

By echoing the following two topics, joint position control can be observed, as shown in 

Figure 2.10:  

• /'j2s6s200_driver'/out/joint_angles (in degrees) 

• /' j2s6s200_ driver'/out/state/position (in radians) 

 

Figure  2.10. Outcome after echoing the topic /'j2s6s200_driver'/out/joint_angles. 

The second way to control joint position is by using interactive markers in Rviz, explained 

in section 2.1.1.2. To do this, following steps need to be taken: 

• Launch the driver as stated above. 

• Start the interactive node control:   

rosrun kinova_driver kinova_interactive_control j2s6s200 

https://drive.google.com/file/d/1RuvcUWtVZTgK5rn7ZRCt_bOeVxRsfx8D/view?usp=sharing
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• Open Rviz:  

rosrun rviz rviz 

• Once Rviz is open, interactives markers need to be added and the desired topic 

selected, which in this case would be /j2s6s200_interactive_control_Joint as 

shown in Figure 2.11. Figure 2.12 shows the interactive markers that allow the 

robot to be controlled. 

 

Figure  2.11. Selection of Interactive Markers using RViz. 

 

 

Figure  2.12. Interactive markers to control the robot arm using RViz. 

2.2.2.2. Cartesian Position Control 

Cartesian control finds the joint configuration required to achieve a position/orientation 

of some part of the robot. The goal of the inverse kinematics problem is to calculate the 
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values to be adopted by the articular coordinates of the robot (q1,…,qn), so that its end-

effector is positioned and oriented according to a given spatial location [26]. 

As with the joint position control, the kinova-ros stack performs the cartesian position 

control in two different ways, by calling the node pose_action_client.py or running rviz. 

Both are executed in the same way as Joint Position Control. 

2.2.2.3. ROS Service Commands 

To send the robot to a pre-defined position, the Kinova-ROS stack provides a service:  

rosservice call /'j2s6s200_driver'/in/home_arm 

The execution of this command directly moves the robot to a home position. In the digital 

version of the document, you can visualise how this command is executed on the 

ARCHER robot arm, by clicking in the following image (Figure 2.13). 

 

Figure  2.13. Execution of service command on the ARCHER robot arm. 

2.3. Intel Realsense LiDAR camera L515 

The Kinova robot arm implemented on the ARCHER robot platform will be modified to 

incorporate a LiDAR camera and a probe to determine the radiation of the scanned 

surface. For the development of this thesis the focus will be on the Intel Realsense LiDAR 

camera L515. To better understand its operation, a brief description of LiDAR technology 

will be exposed. 

2.3.1. LiDAR Technology 

A device incorporating LiDAR (Light Detection and Ranging) technology can measure 

the distance from a laser emitter to an object or surface using a pulsed laser beam. This 

distance is calculated by measuring the time delay between the emission of the pulse and 

its detection through the reflected signal [27]. 

https://drive.google.com/file/d/1hTNko30jATCt6V39kDhxKwi38XVIheEE/view?usp=sharing
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The L515 uses solid-state LIDAR technology. Traditional LiDAR systems rely on the 

movement of various parts to obtain precise and accurate measurements, i.e. they are 

electromechanical. On the other hand, solid-state LiDAR technology does not contain 

moving parts, it is a system build entirely on a silicon chip. These devices are more 

resilient to vibrations and can be made smaller than the traditional LiDAR systems [28].  

As explained in the Intel Realsense LiDAR camera L515 datasheet [29], the camera “uses 

an IR (infrared) laser, a MEMS (Micro-Electro Mechanical System), an IR photodiode, 

an RGB imager, a MEMS controller, and a vison ASIC”. The laser beam is scanned over 

the entire field-of-view (FOV) using the MEMS. The reflected beam data is captured by 

a photodiode, and processed by the L515 vision ASIC, which will output a depth point 

representing the exact distance of an image point from the camera. The set of all depth 

points obtained will generate the point cloud representing the whole scene [29]. 

2.3.2. Camera Description 

The L515 (Figure 2.14) is a solid-state LiDAR depth camera that enables highly accurate 

depth sensing. As it has been previously explained, its LiDAR technology allows for the 

creation of a 3D map – or “point cloud” – of the world around the sensor. 

It incorporates its own tiny MEMS mirror that allows the laser to scan the scene but at 

reduced power compared to traditional LIDAR techniques, consuming less than 3.5W 

power for depth streaming and reducing electronics costs. Despite its low consumption, 

it has a range between 0.25-9 meters. It has a resolution per depth frame of 1024 x 768 

pixels with a framerate of 30 Hz. This equals a resolution of 23 million pixels per second. 

It has a compact and lightweight enclosure, thus being ideal for robotic applications as it 

can be easily incorporated in any product. This device does not contain an internal power 

source; it is powered by a USB type-C port [29]. 

 

Figure  2.14. Front (left) and side (right) image of the Intel Realsense LiDAR camera L515. The side view shows the 

USB Type-C connection port [29]. 
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3. POINT CLOUD PROCESSING 
This chapter contains a literature study on point cloud processing. This will be necessary 

in order to carry out the proposed case study, since it will be based on the work with a 

point cloud obtained with the LiDAR camera previously described. 

3.1. What is a point cloud? 

A point cloud is a model composed of a set of points positioned three-dimensionally in 

space, representing the external surface of an entity. The 3D point cloud contains 

extensive metric information about the scanned surfaces, as explained in [30] “including 

each point coordinates along the X, Y, and Z-axes, and sometimes additional data such 

as a colour value, which is stored in RGB format, and luminance value, which determines 

how bright the point is” [30] [31]. 

There are various sensors and technologies through which a 3D point cloud can be 

obtained. These methods include [32]: 

• Laser Scanner: It is also known as LiDAR. A mass data acquisition device, which 

creates a three-dimensional point cloud generated by measuring angles and 

distances using a laser light beam.  

According to the field of work, 3D laser scanners can be classified into three 

categories, namely terrestrial laser scanner (TLS) or ground LiDAR, airborne 

laser scanner (ALS) or aerial LiDAR, and mobile laser scanner (MLS) also known 

as mobile LiDAR.  

• Digital photogrammetry: It uses multiple images of an object from different 

angles to generate a high metric quality 3D point cloud of the object. Stereo 

cameras use photogrammetry, consisting of two or more lenses with a separate 

image sensor. By knowing the relative position and orientation between the two 

lenses, a 3D point cloud can be obtained based on 2D images. 

• Videogrammetry: This technology works in a similar way to photogrammetry, but 

instead of taking a set of images as input data it takes sequences of videos. It 

allows the point cloud to be reconstructed progressively, basing the information 

of each frame on the previous frame. 

• RGB-D camera: It consists of an RGB camera and a depth sensor. The RGB 

camera takes the images, and the depth sensor determines the depth information 

of each pixel. By mapping the RGB images together with the sensor information, 

a coloured point cloud is generated. An example of this technology is the Intel 

Realsense LiDAR camera L515. 

Point clouds, such as the example shown in Figure 3.1, can be treated in two ways once 

they are obtained, either rendered and inspected directly or converted into models using 

various shapes and patterns. 
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Figure  3.1. Example of a 3D image obtained through a point cloud [33]. 

The main purpose of a point cloud is to create a 3D model. Visualising the data into a 3D 

mesh organises the points and sets a foundation that can be used to build a model. 

Exporting the point cloud creates a file that can be imported into a CAD or BIM system. 

The point cloud format depends on the software that is used. Some of the most common 

are [31]: 

• PTS: Open format for 3D point cloud data. Since it is open, anyone can make use 

of it. 

• XYZ: Archetypal ASCII (American Standard Code for Information Interchange) 

format. Compatible with many programs, but lacks unit standardisation, which 

makes data transfer difficult. 

• PTX: It is also an ASCII format. It can only work with organised point clouds and 

usually stores data from LiDAR scanners.  

• LAS (LASer): It is an open format for LiDAR scanning data. It combines GNSS 

(Global Navigation Satellite System) data, laser pulse range information and 

Inertial Measurement Units (IMU) to create data that fits on the X, Y and Z axes. 

• PLY: Polygon File Format, stores data from 3D scanners. It includes properties 

such as colour, texture and transparency. It can also contain 3D mesh data. 

3.2. Operations performed on a point cloud 

The processing of three-dimensional data is the work performed after capturing a point 

cloud. The processing techniques have many different objectives, from improving the 

captured data by means of various algorithms or statistical techniques to obtaining 

relevant information according to the objective. The following is a brief review of some 

of the most important techniques that can be used to process three-dimensional data. 
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3.2.1. Visualisation 

Once the point cloud has been captured, the first thing that is usually done is visualisation. 

Although it is the most basic operation, it allows for an initial assessment of the quality 

of the dataset obtained, as well as the planning of the processing scheme to be followed. 

Finally, visualisation will allow the observation of the final result [34]. 

A large majority of point cloud processing programs have a graphical interface that allows 

the conversion of the point cloud into an image. The simplest form of visualisation allows 

the observation of the points with a single colour and size, as well as zoom and rotate 

operations, to observe the cloud from different perspectives. However, there is more 

advanced software that allows each point to be rendered according to different 

characteristics. Points can be encoded in brightness according to the intensity of the laser 

return, or with RGB texture. They can also be colour-coded according to attributes 

contained in the point cloud structure, such as rank or class. 

Among the most important operations that can be performed during the process of 

visualising a point cloud, the following are highlighted: 

• Single point selection. Visualisation allows the selection of individual points 

within the cloud, using zoom and rotation controls.   

• Measurements. Precise point selection provides the option to measure distances 

between points and to determine the angles between the lines joining the points. 

3.2.2. Segmentation 

The segmentation process is based on the division of the point cloud into different zones, 

groups of points called clusters, which is why it is also referred to as clustering [35]. 

These algorithms are particularly useful when the cloud is made up of several isolated 

regions, i.e. this process allows the cloud to be broken into its constituent parts so that 

they can be processed independently. It is a technique commonly used in object 

recognition. There are numerous segmentation techniques, among which we will explain 

the following ones: 

3.2.2.1. Euclidian segmentation 

Euclidean segmentation is the simplest of all. It is based on checking the distance between 

two points. If this distance is less than a certain threshold, both are considered to belong 

to the same cluster. The algorithm works as follows: a point is selected from a cloud and 

its neighbours are selected as part of the same cluster, until no new point can be added. 

Then, a new cluster is initialised, and the procedure starts again with the remaining 

unmarked points. It is an iterative process that ends when all points in the cloud have been 

assigned to a cluster [36].  
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3.2.2.2. Region growing 

This is a type of segmentation that groups points that verify a smoothness constraint. It is 

classified as a pixel-based segmentation method, since it requires the selection of initial 

points, called seed points [37].  

It examines the neighbouring pixels of the seed points and determines whether they 

should be added to the cluster. To check whether two points belong to the same smooth 

surface, the angle between their normals and the difference in curvatures are checked. An 

example of the use of this algorithm is shown above (Figure 3.2). 

 

Figure  3.2. Example of the use of the region growing segmentation algorithm [38]. 

3.2.2.3. Min-cut 

The min-cut or minimum cut algorithm performs a binary segmentation, dividing the 

point cloud into two clusters: one containing the points belonging to the object of interest 

(foreground points) and another with points that do not belong to the object of interest 

(background points) [36]. An example can be seen in Figure 3.3. 

 

Figure  3.3. Example of the use of the min-cut algorithm where the black points represent the objects of interest, 

traffic light and car, respectively [39]. 

The algorithm uses a vertex graph, in which each vertex represents a point, together with 

two additional vertices that will be connected to each other with edges with different 

penalties (weights). Subsequently, edges are also established between the neighbouring 

points, whose weight value depends on the distance separating them. The algorithm will 

need as input a point in the cloud that is known in advance to be the centre of the object 

and the radius. The minimum cut will be found, and a list of foreground points will be 

available. 
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3.2.3. Filtering 

The filtering process is based on the selection of a subset of the data which is considered 

to be the one that will provide relevant information with respect to the final objective. 

The aim is to discard any other superfluous data, thus reducing the data set to work with. 

The filtering process can be carried out in multiple ways, which can be manual, semi-

automatic or automatic. The filtering criteria can be very diverse and depend to a large 

extent on the information provided by the data capture device used. 

The ultimate goal of the filtering process is to have as little data as possible with as little 

loss of relevant information. This allows a considerable reduction of the computational 

load when proceeding with the point cloud analysis [35]. 

Within the filtering techniques the following can be found. 

3.2.3.1. Resampling  

Resampling aims to modify the number of points in a cloud, either by increasing 

(upsampling) or decreasing (downsampling) them. One or the other will be used 

depending on the desired objective [40]. 

• Downsampling 

Sensors currently available provide clouds with high resolution. While this means a better 

result, it also leads to a higher computational load. One option to avoid this problem is to 

reduce the number of points in the cloud by eliminating those that are not needed for the 

final goal. There are several methods for this process. 

A common way of doing this is downsampling, which produces a cloud equivalent to the 

original but with a smaller number of points. Downsampling is done using a voxel grid. 

The cloud is divided into several cube-shaped regions, called voxels, given a desired 

resolution. The next step is the processing of all points of each voxel so that only one of 

them remains. 

To make the algorithm work more accurately, instead of selecting a random point within 

each voxel, the centroid of the voxel, i.e. the point whose coordinates are the mean values 

of all the points in the voxel, can be calculated. Figure 3.4 shows the treatment of an 

original point cloud on which downsampling has been performed with different 

resolutions. It can be seen that, depending on the resolution ratio, the result differs 

significantly from the original cloud, so the final objective must be taken into account 

when selecting it. 
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Figure  3.4. Cloud treated with the downsampling algorithm using different resolutions [38]. 

• Upsampling 

Upsampling is a form of surface reconstruction, performed when more points than 

currently possessed are needed. It is based on the interpolation of the points already 

available to generate new ones and is, th berefore, not a very sophisticated approach to 

surface reconstruction, as it does not provide very accurate results. 

3.2.3.2. Outlier removal 

Outliers are considered undesirable noise in the image as they incorporate errors in the 

operations performed on the point cloud. Consequently, they need to be removed from 

the point cloud, so that calculations are performed faster, and more accurate results are 

obtained. This procedure can be done in a variety of ways, including [40]: 

• Radius-based: In this algorithm, a search radius and the minimum number of 

neighbours that a point must have to be considered outlier must be specified. It 

iterates through all the points in the cloud, checking whether they are outliers. If 

less than the specified number of points are found within the search radius of that 

point, it is considered an outlier and is eliminated from the cloud. 

• Statistical: There is more than one statistical outlier remover, however only one 

will be explained. It requires as input data, in addition to the point cloud to be 

processed, the number of nearest neighbours to a point and the deviation 

multiplier. The algorithm works as follows, for each point the mean distance to 

its K neighbours is calculated. Considering that the result follows a Gaussian 

normal distribution with mean μ and standard deviation σ, all points with mean 

distances that fall out of the global mean plus deviation can be removed. Figure 

3.5 shows the before (left image) and after (right image) of the application of an 

statistical outlier removal algorithm on a point cloud. 
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Figure  3.5. Demonstration of outlier removal filter used in a point cloud [41].  

3.2.4. Transformations 

A very large number of different transformations can be applied to point clouds, including 

the following [34]. 

• Translation and rotation: A point cloud can be translated or rotated on one or more 

coordinate axes. 

• Cropping: When scanning an object, there are always certain points that do not 

belong to the volume of interest. Cropping gives the possibility to remove these 

points from the 3D space. 

• Merging: This process is performed when several point clouds of the same object 

are obtained from different angles or positions, each in its own coordinate system, 

and a single coherent point cloud needs to be defined. A point cloud is established 

as a base reference frame and then common points between the base point cloud 

and the source are identified. Figure 3.6 shows an example of a point cloud 

merging application. These clouds were obtained from different scanning angles, 

the pink point cloud (middle) was rotated to the coordinate system of the white 

point cloud (left) to obtain a final point cloud (right). 

 

Figure  3.6. Example of a point cloud merging application [34]. 

3.2.5. Shape recognition 

Next, we will discuss parametric shape detection algorithms. These are of special 

importance in this thesis, since they will be required for the analysis of the point cloud 
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used in the case study, where a plane needs to be fitted. That is why they will be analysed 

in detail, trying to find the main advantages of each one of them and their main uses. 

There are algorithms based on the search for parametric shapes within a point cloud, i.e. 

a plane, a sphere, a cylinder etc. Two main algorithms will be analysed and compared: 

the Hough transform and RANSAC. 

3.2.5.1. Hough Transform 

Hough Transform is an algorithm used for the isolation of specific shape features in 

images. The most basic Hough transform detects straight lines (line segments), but it is 

also used for the detection of objects, such as planes in a point cloud [42] [43]. 

This is a statistical algorithm and according to the points that are available, the possible 

lines/planes on which the point can be located are to be found out. It makes use of a 

parametric representation of geometric form. 

To explain the implementation of the algorithm, we will use the detection of a straight 

line, since it is simpler than a plane. 

A line can be represented using the equation 3.1: 

 

𝜌 = 𝑥 ∗ 𝑐𝑜𝑠(θ) + 𝑦 ∗ 𝑠𝑒𝑛(θ) 

 

( 3.1) 

the representation of a line using its polar coordinates, with ρ being the shortest distance 

between the line and the origin, and θ the angle of the vector from the origin to the nearest 

point of the line, as shown in the Figure 3.7. 

  

Figure  3.7. Parametric representation of a line with its representative parameters. 

It is then possible to associate with each line a pair of coordinates (ρ, θ). This generates a 

space, called Hough space, for the set of straight lines in two dimensions. Each point in 

the image corresponds to a single sinusoidal curve in Hough space, because it represents 

all the lines that can be drawn through this point. If, being in Hough space, the curves 
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corresponding to two points intersect, this will correspond to a line in image space passing 

through these two points. 

The set of points forming a line will produce sinusoids intersecting at the parameters of 

that line. Thus, the problem of detecting collinear points can become a problem of finding 

concurrent curves. Figure 3.8 shows a line in which three points are defined by their x-y 

coordinates and the corresponding representation of these points in Hough space, 

corresponding to each of the three half-sinusoids. The point where the curves intersect in 

Hough space, gives the distance and the angle which define the line intersecting the 

points. 

 

Figure  3.8. A line on which 3 points are defined (left) and a representation of these points in Hough space (right). 

The parameters of the intersection point of the three curves are the ρ and 𝜃 values of the line connecting the three 

points [44]. 

In the example above there are no outliers because it is a predefined line. However, it is 

common to work with images where multiple outliers are present. In this case the Hough 

transform uses the voting system. The implementation is carried out as follows, first the 

parameter space is subdivided into vote accumulator cells, as can be seen in Figure 3.9 

[44]. 

 

Figure  3.9. Hough space subdivided into vote accumulator cells [44]. 
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Now each pixel (x, y) must vote for the cells of all the lines passing through it, as shown 

in Figure 3.10. 

 

Figure  3.10. Each pixel (x, y) votes for the cells of all the lines passing through it [44]. 

A cell (ρk, θk) with many votes indicates that the line with these parameters passes through 

many points in the image. Figure 3.11 represents where the cell containing most votes is 

located. 

 

Figure  3.11. A cell (ρk, 𝜃k) containing many votes indicates that the line with these parameters passes through many 

points in the image [44]. 

Figure 3.12 represents a set of straight lines with respect to an XY coordinate system (left 

image) and the Hough space after having made the voting system (right image) showing 

the six points corresponding to the straight lines on the left image. These six highlighted 

points are the most voted cells. 
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Figure  3.12. a) A set of six lines represented in an XY plane.b) Hough space in which the six points corresponding to 

the most voted cells are highlighted [42]. 

3.2.5.2. RANSAC Algorithm 

RANSAC (RANdom SAmple Consensus) is an algorithm introduced by Martin L. 

Fischler and Robert C. Bolles in 1981. It is an iterative algorithm used to estimate the 

parameters of a mathematical model from a data set containing outliers [45]. 

It is a nondeterministic algorithm, in the sense that it produces a correct result only with 

a given probability; to increase this probability, the number of iterations must be 

increased. 

The basic assumption for the operation is that the data consists of a set of inliers, i.e., data 

whose distribution can be characterized by the parameter set of a model, and a set of 

outliers, being data not represented by that model. Outliers can come, for example, from 

extreme noise values, erroneous measurements, or incorrect assumptions about the 

interpretation of the data. This algorithm assumes that, given a dataset containing outliers, 

there is a procedure that can estimate the parameters of a model thus, maximising the 

number of inliers, and optimally representing the data. 

The operation of the RANSAC algorithm will be briefly explained using a set of points 

in 2D as a starting point [46]. The first step is the selection of a random sample of the 

minimum size necessary to fit the model, as can be seen in Figure 3.13. 
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Figure  3.13. Selection of a random sample of the minimum size necessary to fit the RANSAC model [46]. 

Figure 3.14 shows the next step, which is the computation of a possible model from the 

sample set. 

 

Figure  3.14. Putative model from the sample set [46]. 

The last step, shown in Figure 3.15, is the calculation of the set of model inliers from the 

whole data set. 

 

Figure  3.15. Calculation of the set of model inliers from the whole data set [46].  
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These steps are repeated iteratively until the model with the highest number of inliers is 

found, which for this data set is shown in Figure 3.16. 

 

Figure  3.16. Model found containing the highest number of inliers [46]. 

3.2.5.3. Comparison between the two algorithms  

The Hough Transform offers the following advantages. Firstly, all points are processed 

independently, therefor it presents robustness to the presence of outliers. It is also quite 

resilient to noise, which does not greatly affect the outcome. Moreover, it allows the 

detection of multiple elements in an image, and it has a moderate computational cost. 

However, in the presence of uniform noise, erroneous results can be obtained [46] [44]. 

On the other hand, the RANSAC algorithm is straightforward and simple to apply. It is 

very robust against outliers and is suitable for the definition of any parametric shape. 

However, it does not always guarantee convergence to global optima, which may result 

in failure of the algorithm [46] [44]. 

These algorithms have been studied since the case study will require the definition of a 

plane through a point cloud. After the analysis carried out and taking into account that the 

work is developed using an image of a wall, RANSAC has been considered to be the best 

algorithm. This selection was based on the simplicity of the processed point cloud, which, 

being a wall, does not present excessive outliers. This allows the definition of the plane 

to be carried out using a simple algorithm, namely RANSAC. 

Also, since the PCL point processing library will be used, it provides an already integrated 

algorithm to apply RANSAC on the cloud. If Hough were decided to use with this library, 

it would be necessary to develop the algorithm beforehand, thus requiring more time. 

3.2.6. Shape analysis 

As a last operation, region-based description using geometric descriptors (concave and 

convex area) is going to be explained. 

3.2.6.1. Retrieving the hull 

A hull can be defined as the set of points that conform the outermost boundary of the 

cloud [36]. Two types of hulls can be calculated: 



46 

 

• Concave Hull. It is a polygon which embraces all points but normally takes less 

area than the convex hull [36]. An example of concave hull can be seen in the left 

image of Figure 3.17. 

• Convex Hull. A part C of a vector space is convex if [47] “for every pair of points 

of C, the segment joining them is totally included in C; that is, a set is convex if 

it is possible to go from any point to any other point in a straight line, without 

leaving the set”. The convex hull of a set of points is shown in the right image of 

Figure 3.17. 

 

Figure  3.17. Concave and convex hull extraction from a set of points [36]. 

The creation of a convex or concave hull can be useful when you need to simplify the 

representation of a surface or want to extract its boundaries.  

3.3. 3D Point cloud data processing libraries 

The last part of this literature study will be based on the analysis of the different libraries 

currently available for point cloud processing. Since the selection of one of them will be 

necessary, after the analysis of the existing options, the reasons for the selection of the 

chosen library will be presented. 

3.3.1. PCL 

PCL (Point Cloud Library) is a C++ library focused on the processing of N-dimensional 

point clouds, developed by Willow Garage with the aim of performing processing with 

numerous techniques. This library has algorithms to, among others, apply filters, estimate 

functions, reconstruct surfaces, and fit and segment models. It is released under BSD 

license, that is, it is free for commercial and research use. Funding and support for this 

library is provided by major companies such as Nvidia, Google, Toyota, Trimble, Urban 

Robotics, Honda Research Institute and Sandia Intelligent Systems and Robotics [48]. 

PCL runs on various platforms such as Windows, Linux, MacOS, and Android. Through 

its tools, it offers the necessary potential to process and reconstruct a three-dimensional 

scene in a simple way. Figure 3.18 shows the PCL logo. 
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Figure  3.18. PCL (Point Cloud Library) logo [48]. 

3.3.1.1. Description 

The PCL library is a synthesis of multiple algorithms and functions that allow working 

with images and point clouds in 2 or 3 dimensions. Structurally, this library is divided 

into a series of small libraries that can be compiled and used independently. This is one 

of the great advantages of PCL since two goals can be achieved in this way [48]. 

On the one hand, development is simplified because small pieces of code are easier to 

maintain than large libraries. On the other hand, it allows the use of the library on 

platforms with reduced specifications in terms of capacity or computing power. The 

following is an example of the division of PCL by means of a dependency network 

(Figure 3.19). 

 

Figure  3.19. Dependency network PCL Division [48]. 

The main modules of the library are the following: filters, features, keypoints, 

registration, kdTree, octree, segmentation, sample consensus, surface, range image, I/O 

and visualisation. 

3.3.2. Open3D 

Open3D (Figure 3.20) is an open-source library that aids the development of software 

that deals with 3D data. Its interface contains a set of data structures and algorithms in 

both C++ and Python [49]. 

Data structures are available for three types of representations: point clouds, grids and 

RGB-D images. For each representation, a set of basic processing algorithms has been 

implemented, such as I/O, sampling, display and data conversion. Algorithms generally 

used in point cloud processing have also been included. 
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Figure  3.20. Open3D logo [49]. 

Open3D consists of 9 modules: 

• Geometry, it implements three geometric representations: point cloud, triangle 

mesh, and image. 

• Camera, its objects can be visualized in the 3D scene. 

• Odometry, it allows tracking and alignment of RGB-D images. 

• Registration, it provides implementations of multiple surface registration 

methods. 

• Integration, it contains volumetric integration. 

• I/O, reading and writing 3D data files. 

• Visualisation, allows rotation, translation, and scaling via mouse operations. 

• Utility provides support functions such as the file system. 

• It provides Open3D Python tutorials. 

3.3.3. PDAL  

PDAL (Point Data Abstraction Library), Figure 3.21, is an open-source C/C++ library 

containing applications for translating and processing point cloud data. Although many 

of the library's tools have their origin in LiDAR, it is not only limited to the processing 

of LiDAR data [50]. 

 

Figure  3.21. PDAL (Point Data Abstraction Library) logo [50]. 

PDAL allows you to compose operations on point clouds into pipelines of stages. To 

write these pipelines a declarative JSON syntax can be used, or they can be built using 

the available API. 

The foundation of PDAL is the concatenation of a set of components, each of which will 

provide a specific functionality. These components allow for reuse, compounding and 

separation. This library considers point cloud processing operations as a pipeline 

composed of a set of stages. To perform a given operation, instead of writing a single 

specialised program, it can be defined as a sequence of steps or operations. 
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PDAL allows users to apply several algorithms on data without having to worry about 

data formatting issue. It has a number of applications that allow users to coordinate and 

build point cloud processing workflows. Some of the tasks that users can perform are: 

• Printing information about a dataset. 

• Translation of data from one point cloud format to another. 

• Application of exploitation algorithms. These include noise removal and 

reprojection from one coordinate system to another. 

• Merge or split data. 

3.3.4. Library selection 

After the analysis of the different libraries, a decision had to be made on the selection of 

the one to be used for point cloud processing in the case study. Initially, the advantages 

and disadvantages of using each of the libraries will be presented. 

The main attraction of PCL library is its extensive list of functionalities as well as its 

powerful processing capability. It has multiple tools for working with point clouds and 

three-dimensional models. It is developed in C++ a language often used to develop 

software. PCL has extensive documentation on its website. It has multiple tutorials to 

work with that help to handle teach the basic concepts of each module, including example 

code and various compilation possibilities [35]. 

Open3D is a complete library with many available features. It allows installation on 

different platforms and easy compilation of the source code. It makes use of a code review 

mechanism to keep the code clean and consistent styled. However, it is relatively new, 

therefor it is still under development. It uses Python as the main interface, providing most 

tutorials in this language [49]. 

PDAL can work with any point cloud storage format. It is an open source-source project 

with all its activities available online. By using a content-abstracted API, it allows users 

to apply algorithms to the data, which frees them from worrying about data formatting 

issues. It also has an easy-to-use command line. Its website states that [50] “developers 

get the freedom to access (…) the most complete set of point cloud format drivers in the 

industry”. Nevertheless, it is intended especially for processing large files. PDAL does 

not provide a friendly GUI interface, its users must have the confidence to work 

autonomously among the options of filters, readers and writers. Furthermore, PDAL is 

considered to be a complementary to PCL rather than a substitute, as PCL is more focused 

on algorithm development, robotic and computer vision, and real-time laser scanner 

processing. 

The first thing to consider when selecting the library is the objective of this project in 

terms of point cloud processing. The objectives sought are the determination of a plane 

through the initial point cloud, its translation and a process that allows to select certain 

points to carry out the scanning. Seen in a general way, it is a simple process, therefore 

no very complex tools are required. Also, it is important to note that my programming 
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skills are in C++ and that this study only analysis and processes a small point cloud. Given 

that work in this field has been started without any previous experience, the most 

straightforward library needs to be selected.  

Following this analysis, the library selected for the development of the process is PCL. It 

is considered to be an extraordinary tool for the realisation of software projects related to 

point clouds. It simplifies the work to be done, allowing more time to be spent on the 

development of the application, instead of having to program the mathematical bases and 

algorithms necessary to work with point clouds. 
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4. PRACTICAL DEVELOPMENT 
The following chapter presents the case study that has been proposed for the development 

of the thesis. Once the operation and working environment of the robot arm is known, the 

next step is to work with the Intel Realsense LiDAR camera L515, which, together with 

a Kromek probe, will oversee scanning and detecting radioactively contaminated spots 

on walls. As explained in the introduction, due to time limitations, work with the probe 

will not be carried out in this thesis. 

The next step is to work with the Intel Realsense LiDAR camera L515 to identify surface, 

following this identification the surface can be scanned for contaminated spots using the 

Kromek probe. 

Figure 4.1 shows the steps that will be taken throughout the case study. 

  

Figure  4.1. Steps taken in the case study. 

4.1. Robot arm modification 

The first step that needs to be carried out is the modification of the predefined structure 

of the robotic arm. The L515 camera and probe need to be attached to the robotic arm. 

For this, a 3D printed mount is created. It should be noted that this mount was designed 

by an engineer prior to the development of the thesis. 

As a result, it is also necessary to modify the existing URDF file of the robot, as the 

gripper is to be removed and the camera and probe mount are to be positioned in its place. 

The URDF files have been explained in section 2.1.1.2 of the thesis. 

The aim is to set a STL mesh file to one of the links of the robot arm, this link will be the 

3D printed model in which the camera and the probe will be mounted.  

Attached below is a series of perspectives of the model (Figures 4.2 and 4.3). The circular 

surface is where the Intel Realsense LiDAR camera L515 will be located and the Kromek 

probe will be positioned on the adjacent surface.  



52 

 

 

Figure  4.2. View of the area where the probe would be inserted in the 3D model of the mount. 

 

Figure  4.3. Overview of the 3D model developed to incorporate the Intel Realsense LiDAR camera L515 (circular 

surface) and Kromek probe (rectangular surface) into the Kinova robot arm. 

Figure 4.4 shows an image of the mount placed on the real robot. As explained above, the 

original gripper has been removed and replaced by the 3D mount. 
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Figure  4.4. 3D printed model included in the robot arm located on the ARCHER robot. 

Once the URDF file was modified, the final model of the ARCHER robot could be 

visualised using rviz, as can be seen below (Figure 4.5). 

 

Figure  4.5. ARCHER robot model visualised using RViz. 

4.2. Point cloud acquisition and plane definition 

The next objective of the thesis is to obtain a point cloud of a wall with the LiDAR camera 

and define a plane through this point cloud. 
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To simplify the task, the image will be taken without connecting the camera to the robot, 

a step that will be left for a later stage once the correct functioning of the designed 

algorithm has been verified. However, due to time limitation it has not been possible to 

proceed with this step in this thesis. 

4.2.1. Point cloud acquisition 

The first step to start working with the camera is to install the Intel RealSense SDK 

(Software Development Kit) 2.0 [51]. This will make it possible to work with the Intel 

Realsense Viewer, through which the desired point cloud can be captured. 

The SDK can be obtained through the official Intel Realsense website. Figure 4.6 shows 

the Realsense Viewer with the L500 Depth and the RGB camera connected. 

 

Figure  4.6. Intel Realsense Viewer L500 Depth Sensor and RGB Camera connected. 

With the Realsense camera connected to the computer, using a USB cable, both the “L500 

Depth Sensor” and the “RGB Camera” need to be switched, as shown in Figure 4.7. [52]. 
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Figure  4.7. L500 Depth Sensor and RGB Camera activated using the Intel Realsense Viewer. 

The depth view is color-coded to show the depth. Blue is closer to the camera and red is 

further away. As for Figure 4.6, the computer is closer to the camera while the wall is 

further. 

Now, the 3D view on the top right corner of the screen must be activated, leading to 

visualise the point cloud seen in Figure 4.8. 

 

Figure  4.8. 3D View using the Realsense Viewer. 

To generate a coloured 3D point cloud, the depth data and colour information are 

combined. Different perspectives of the object can be seen by dragging the mouse in the 

3D view. Selecting the save icon (“Export 3D Model to 3rd-party-aplication”), in the top 

right corner, allows saving the point cloud in PLY format, which is a simple format for 

storing captured 3D data, as it has been previously explained in section 3.1 of the literature 

study. 

https://en.wikipedia.org/wiki/PLY_(file_format)
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For the first tests, instead of taking the image with the robot's built-in camera, the image 

was taken with the stand-alone camera, i.e. simply connected to the computer via a USB 

cable. To facilitate the process, an image of a random flat and smooth wall was taken. It 

is with the point cloud obtained from this image that all following steps will be explained. 

As concluded in section 3.3.4, the obtained point cloud will be processed using the PCL 

library. The code will be programmed in C++11. 

4.2.2. Code description for plane definition 

The first thing to do is defining the point clouds that will be used throughout the code 

(Figure 4.9). At the time of definition, they are empty objects to store the point clouds. 

 

Figure  4.9. Definition of objects for storing point clouds. 

The type of file obtained when storing a point cloud with Realsense-viewer is PLY, 

however, to be able to work in PCL it needs to be modified to PCD format. For this, the 

code showed in Figure 4.10 is used. In this example, the point cloud obtained from the 

flat, smooth wall is stored in one of the previously defined clouds (cloud). 

 

Figure  4.10. Conversion of a PLY file into a PCD file and store PCD file in a point cloud. 

At this stage, a plane of the obtained point cloud needs to be defined. To do this, it will 

be necessary to use an object recognition technique. In section 3.2.5, it was decided to 

use RANSAC to perform this recognition.  

The PCL library has algorithms to obtain a planar model; based on the RANSAC 

algorithm.The pcl:SACSegmentation <pcl::PointXYZ> object is created and the model 

(pcl::SAC_RANSAC) and method type (pcl::SACMODEL_PLANE) are set. This is also 

where the “distance threshold” is specified, which determines how close a point must be 

to the model to be considered an inlier.  

The indexes to the inliers are defined and looked for by the algorithm. The new points 

(inliers) are copied to a new cloud (plane). Figure 4.11 shows the implementation of the 

RANSAC algorithm using the resources available in the PCL library. 
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Figure  4.11. RANSAC algorithm for plane fitting in the obtained point cloud. 

Figures 4.12 and 4.13 visualise images of the plane obtained from the point cloud 

provided. The coordinate system shown in the figure is that of the camera. Where z is the 

blue axis (depth), y is the green axis (height), and x is the red axis (width). 

 

Figure  4.12. Visualisation of the plane obtained in the point cloud after using the RANSAC algorithm from a frontal 

perspective. 



58 

 

 

Figure  4.13.Visualisation of the plane obtained in the point cloud after using the RANSAC algorithm from a lateral 

perspective. 

4.3. Determining points for robot’s trajectory 

The next objective of the thesis is the definition of a series of points that are separated a 

fixed distance from the previously defined plane. These points will serve to define the 

scanning trajectory that the robot’s end effector must follow. 

4.3.1. Code Description 

The first thing to be done is displacing the previously defined plane. This step is necessary 

because, if the path is planned with the points from the original cloud, the robot arm would 

collide against the wall when performing the scan. The plane will be moved forward to 

select the scan points in this new plane. 

To do this step it is necessary to perform a translation operation on the plane which has 

been defined through the point cloud. According to the camera coordinate system, given 

that z is the depth, the plane will be moved forward a defined distance in the z axis. Since 

the image has been taken at approximately 55 cm from the wall, it will be moved forward 

by 30 cm, so the robot arm trajectory would be in a plane located 25 cm from the camera. 

This measurement is now set randomly and should be carefully defined once the image 

is taken from the robot. 

To perform this step, a translation matrix is defined, and the transformation executed by 

storing the data in a new point cloud (translated), as can be seen in Figure 4.14. 

 

Figure  4.14. Translation of the plane a certain distance from the wall and storage of the new set of points in a 

different point cloud. 
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Figure 4.15 shows the transferred cloud (red plane). 

 

Figure  4.15. Initial plane (white) and transformed plane (red), which has been shifted forward using a matrix 

transformation are displayed in the camera frame. 

The next step is the extraction of a series of points in this new plane through which the 

robot would be able to perform a scanning trajectory, and thus determine the radiological 

contamination. 

After analysing different algorithms among those studied in chapter 3, it has been decided 

to use the concave hull shape analysis technique, explained in section 3.2.6 which will 

extract the contour of points in the translated plane. As a first option, downsampling 

(section 3.2.3.1) was considered, however the position of the points obtained was random 

which made it complicated to define an organised trajectory through them. 

The object for retrieving the concave hull (hull) is defined, then it is applied to the input 

cloud (translated), the resolution for the hull is set and these new points are saved inside 

a new cloud (concaveHull), as can be seen in Figure 4.16. 

 

Figure  4.16. Performing the Concave Hull algorithm to obtain the contour of the plane. 

Figures 4.17 and 4.18 show the result of the extracted contour. 
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Figure  4.17.Lateral visualisation of the contour obtained using the Concave Hull algorithm. 

 

Figure  4.18.Frontal visualisation of the contour obtained using the Concave Hull algorithm. 

4.3.2. Trajectory point extraction 

The objective is to define a series of points within the obtained point cloud so that the 

robot can trace a path through them and perform the scanning of the wall. As indicated 

above, the initial plane is moved a certain distance from the wall so that the robot does 

not collide when performing its path. 

So far, the contour of the point cloud, has been obtained through the Concave Hull 

algorithm. A set of points from this contour will be further extracted to define the 

trajectory. Since it is a very simplified model, flat and rectangular surface, whose z is 

constant (depth) and only the x and y coordinates vary. 

To obtain a set of points, the following algorithm has been proposed. It should be noted 

that this is an approximate algorithm since no great precision is required when selecting 
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the points. The main idea is that the scanning process should cover as much of the surface 

as possible. 

1. Obtaining the point with largest and smallest y-coordinate in absolute value. 

These would be the ones marked in Figure 4.19 (represented on a large scale), 

blue (largest value) and orange (smallest value). The reason for using the absolute 

value is the following: it avoids always selecting positive numbers as the largest 

values and negative numbers as the smallest values.  However, it should be noted 

that it is also possible to define the largest positive value and the smallest negative 

value and to operate with them, always considering the signs. 

The minimum value, given that the operation is performed with the contour of a 

point cloud, is not exactly 0, but very close to it. Therefore, the algorithm could 

be defined assuming this value as 0. 

 

 

Figure  4.19. Points selected out of all existing points on the contour, being blue point (largest value) and orange 

point (shortest value) y-coordinates in absolute value. 

2. Subtraction of these values to obtain the height of the plane (they are multiplied 

by two to obtain the total height, since otherwise only half would be obtained). 

3. Since the x-value will be the same for all the selected points (sometimes negative 

and sometimes positive), it is necessary to extract the one with the highest value 

in the point cloud. In this way, since it is an approximate and not an exact 

algorithm, it is ensured that the largest possible area is scanned.  

4. Define a radius of coverage of the measuring probe. 

5. Divide the total width by the radius of the probe, so that several segments are 

defined. 
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Figure  4.20. Set of contour points defined after performing the selection algorithm. 

6. Fill a new point cloud with the following parameters: the cloud width (calculated 

in point 5), the largest x and y, the fixed z and the radius. For this purpose, the use 

of the positive and negative value of the previously defined x-coordinate has been 

alternated. In this way, a trajectory of points is obtained from side to side, as 

shown in Figure 4.20. If only one value of x were used, for example, the positive 

one, only the points on the right-hand side could be obtained. 

Figure 4.20 shows the number of points that have been obtained so that the robot can do 

the scanning. It should be noted that this image, and Figure 4.19, shows roughly how the 

algorithm is executed, but it does not work with real measurements nor points. 

4.3.2.1. Code Description 

To execute this part of the code in a clearer way, it has been structured in functions, in 

charge of calculating the respective maximum and minimum values of the coordinates. 

Since all the functions are very similar, only the one that obtains the maximum value of 

y will be explained. 

 

Figure  4.21. Function to calculate the largest value of the y-coordinate given a point cloud. 
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Through an iterative loop, all the y-coordinate elements of the point cloud are compared 

in pairs. In a variable (first) is stored the greater of the two points compared, and finally, 

the largest (in absolute value) of the cloud will be obtained. This part of the code can be 

seen in Figure 4.21. 

The function has the point cloud to be analysed as input, i.e. the point scan contour 

separated a fixed distance from the wall (concaveHull) and returns as output a point XYZ, 

which fulfils as characteristic that it is the one with the largest Y- coordinate of the whole 

cloud. 

Figures 4.22, 4.23 and 4.24 are used to define the desired values. It is also necessary to 

set a depth value for the points, i.e. the z-coordinate. Since z is considered to be a constant 

value, as the distance from the camera to the scan contour remains fixed, the distance 

provided by one of the three points obtained will be used (they should all have the same 

z-coordinate).  

 

Figure  4.22. Obtaining the point with the highest y-coordinate of the contour. 

 

Figure  4.23. Obtaining the point with the shortest y-coordinate of the contour. 

 

Figure  4.24. Obtaining the point with the largest x-coordinate of the contour. 

A scanning radius of the probe is defined, in this case 9 cm has been marked as a random 

value, and with this value the number of segments into which the height of the cloud is 

divided is calculated (num_segments). With this last value, the size of the new point cloud 
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(width_cloud) in which the selected points will be stored is defined. Figure 4.25 shows 

the code programmed to obtain these values. 

A function has been defined to fill the new point cloud with the defined points. 

 

Figure  4.25. Definition of the number of segments into which the height of the plane is to be divided. 

 

Figure  4.26. Displayed result with the highest and lowest value of the y and x coordinate of the contour and the set 

of points to be scanned. 

Figure 4.26 shows the points that have been selected in the point cloud out of the contour. 

These new points will be stored in a new point cloud, so that it now moves to working 

exclusively with them. 

4.4. Coordinate system transformation  

The next step is to proceed with the transformation between the camera frame and the 

robot’s end effector frame to be able to work with the robot.  

4.4.1. Execution of calculations 

The coordinates currently available are referenced to the camera frame, however, to be 

able to work with the robot arm it is necessary to reference them to the end effector's 

coordinate system. For more complex systems, a hand-eye calibration would be required. 

However, since the dimensions of the mount connecting the robot to the camera are 

known, simple mathematical operations can be performed to proceed with the point 

conversion. 

The first thing to consider is the location of the camera coordinate system. For this 

purpose, its datasheet will be analysed. 
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The depth start point or the ground zero reference can be described as the starting point 

or plane where depth = 0 (z=0). For the L515 camera, this point is referenced from the 

front of the camera cover glass, as can be seen in Figures 4.27 and 4.28. 

 

 

Figure  4.27. Depth Start Point location from the front cover glass in the Realsense camera L515 [29]. 

 

Figure  4.28. Camera frame origin location (left picture) in the front cover glass of the Realsense camera L515 [29]. 

As indicated in the datasheet, the depth start point is located at Z’=4.5 mm, with respect 

to the front cover glass. In order to know the distance between the coordinate’s origin 

(depth start point) and the base of the camera (opposite to the cover glass), it is necessary 

to know the total width of the camera, a measurement that can also be obtained from the 

datasheet. 
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Figure  4.29. Width of the Intel Realsense camera L515. 

As can be seen in the Figure 4.29, the total width of the camera is 26 mm. Therefore, the 

distance we are looking for is as calculated in equation 4.1. 

𝑍′′ = 2.6 − 0.45 = 2.15 𝑐𝑚 ( 4.1) 

We now proceed to analyse the CAD model that has been mounted on the robot arm. 

After measuring its length using the graphics program Revit from AutoDesk, it has been 

determined to be 9.6 cm, as shown in Figure 4.30. Therefore, the distance between the 

camera frame origin and the end effector (f) is 11.75 cm, calculated in equation 4.2. 

 

𝑓 =  𝑙 + 𝑍′′ = 9.6 + 2.15 = 11.75 𝑐𝑚 

 

( 4.2) 

This can be clearly seen in the sketch shown in Figure 4.32. 

 

Figure  4.30. Measurement of the length of the LiDAR camera holder. 

So far, the distance between the origin of coordinates of the end effector and the camera 

(f=11.75 cm) is known. However, besides translation, rotation of the camera frame to the 

end effector frame is also necessary. 
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To determine the orientation of the end effector, rviz has been used. Using TF, the 

position and orientation of the end effector coordinate system has been obtained, as shown 

in Figure 4.31. Both rviz and TF have been explained in section 2.1.1.2. 

 

Figure  4.31. Visualisation of the end effector frame in the Kinova arm using RViz. 

The orientation of the camera coordinate system could be determined from the previous 

processing of the point cloud. 

 

Figure  4.32. Schematic representation of the 3D printed mount together with the camera, showing the orientation 

and distance (in mm) of the coordinate systems of the end effector and the camera. 

In the image above a side view of the Kinova mount and the camera, fitted together as 

they would be on the actual robot arm can be seen. The two frames are rotated in such 

way that their z-axis point to each other. As calculated before, the distance between both 

frames is 11.75 cm. The camera coordinate system must now be translated and rotated to 

be aligned with the end effector frame. 
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The steps to be followed to make the two systems coincide are as follows: 

• Translation in the Z-axis (camera frame) of 11.75 cm, so that both coordinate 

origins are coinciding. Figure 4.33 shows the result of the translation. 

 

 

Figure  4.33. Camera and end effector frame after the camera frame being translated 11.75 cm along the Z camera 

axis. 

• Rotation of 180º around the Y axis of the camera, this will make both Z axes 

coincide. Figure 4.34 represents both systems after doing the rotation, now the X 

and Y axes need to come together.  

 

 

Figure  4.34. Camera and end effector frame after the camera frame being rotated 180º along the Y camera axis. 

• In the latter coordinate system, after having rotated it 180º, a 90º rotation around 

the new Z axis is performed. Now both systems coincide, as depicted in Figure 

4.35. 
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Figure  4.35. Camera and end effector frame after the camera frame being rotated 90º along the new Z camera axis. 

4.4.2. Code Description 

The attached code in Figure 4.36 shows how a translation matrix of 11.75 cm is defined 

along the Z axis, then this matrix is rotated by an angle theta of 180 degrees (п radians) 

and finally rotated by 90 degrees (п/2 radians) around the new Z axis.  

This transformation is applied using the pcl::transformPointCloud class, which stores the 

transformed points in the new cloud (cloud1). 

 

Figure  4.36. Change of the reference coordinate system from camera to end effector. 

Now we have the points through which the robot will define its trajectory referred to the 

end effector frame. To be able to work with them in MoveIt!, which will be used to 

program the robot's path, it is necessary to store those points in a text file (.txt). 

This will be done by storing the points in a matrix, with a number of rows equal to the 

number of points and a number of columns equal to 3, one for each XYZ coordinate. 

Subsequently, these points will be stored in a text file. 
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4.5. Robot motion planning 

The last step of this thesis is to try to send the robot to the points that have been 

determined. For this, we will work with MoveIt!, which has been explained in section 

2.1.2. 

Initially, it is necessary to integrate our new robot with MoveIt!. To do this MoveIt SetUp 

Assistant will be used, so the robot’s MoveIt! package can be created. 

The MoveIt! Setup Assistant is a graphical user interface developed for configuring any 

robot to work with MoveIt!. Its main purpose is to generate a Semantic Robot Description 

Format (SRDF) file for the robot. It also generates another series of files needed to work 

with the MoveIt! pipeline [53]. 

Once the package is created, work with the the MoveIt! rviz Plugin can now begin. To do 

this, it is necessary to launch the following command: 

roslaunch kinova_archer_v2_moveit_config demo.launch 

This will launch rviz with the motion planning option available, as shown in Figure 

4.37. 

 

Figure  4.37. MoveIt! rviz pluging showing the ARCHER robot. 

Given that the time available for the thesis has been limited, despite having worked on 

planning trajectories with the robot using the MoveIt! interface, it has not been possible 

to describe the trajectory through the points obtained in the cloud. This will be proposed 

as future work. 

4.5.1. Move Group Interface 

The MoveGroup class is the simplest user interface in MoveIt! It comes with easy to use 

functionalities for most operations, such as setting joint or pose goals, creating motion 
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plans, moving the robot, adding objects to the environment and attaching/detaching 

objects from the robot. As explained in section 2.1.2, this interface communicates over 

ROS topics, actions and services to the MoveGroup Node. 

An example of the use of the Move Group C++ Interface, which will be implemented on 

a simulation of the robot arm, will be carried out. In this file, a Cartesian path is 

programmed, specifying a list of waypoints for the end-effector to go through.  

To program the code, the help provided by the MoveIt! tutorials has been followed. The 

purpose of this is to have a clear idea of how the robot is supposed to move once the 

points have been obtained. Since a simulation was used , it has not been possible to rotate 

the joint constituted by the 3D mount, but it is to be made clear that the trajectory 

displayed should have the 3D mount facing the screen, as if the scan was actually being 

performed. 

To run the trajectory in simulation it is necessary to launch the following commands: 

roslaunch kinova_archer_v2_moveit_config demo.launch 

roslaunch moveit_tutorials move_group_interface_tutorial.launch 
 

In the digital version of the document, you can visualise the trajectory that has been 

programmed by clicking on the following image (Figure 4.38). 

 

Figure  4.38. Image with associated link to access the video of the programmed trajectory. 

 

 

 

 

 

https://drive.google.com/file/d/1-LM8YCoebZ4vj9USxtPUSGu3u_xRT9gZ/view?usp=sharing
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5. CONCLUSION 

5.1. Conclusions 

In this bachelor thesis, the analysis of the structure of the Kinova robot arm was proposed, 

as well as a case study on point cloud processing to determine a path for the robot arm to 

follow. 

Starting with the robot arm analysis, it has been found to have a ROS interface for robot 

control that communicates with the DSP inside the base of the robot. It is simple and 

intuitive to use and allows the robot to be controlled in cartesian and joint space in a 

variety of ways. 

On the other hand, using a camera that makes use of LiDAR technology, a point cloud of 

a wall has been obtained. Using PCL and its multiple algorithms, it has been possible to 

extract a set of points which can be used as a path for the robot arm to follow. PCL was 

selected after an analysis of the different techniques that exist for processing point clouds 

has been carried out. 

Finally, the ROS MoveIt! application was used to simulate the programming of a 

trajectory similar to the one that the robot would take when scanning the wall. However, 

given the limited time available, it has not been possible to describe this trajectory with 

the points obtained after cloud processing. 

5.2. Possible future work 

Within the framework of this thesis, there are a few points that could be proposed for 

future work. 

The first step can be the modification of the robot arm by connecting both the camera and 

the probe to the 3D mount. As indicated above, given that time was limited, it was not 

possible to proceed with the actual modification of the arm, so the image obtained with 

the camera was taken from a computer. To be able to work with real measurements, it 

would be necessary to physically connect the camera to the robot arm. 

Another objective that can be proposed for future work is to send the robot to the points 

defined after processing the point cloud. As indicated in section 4.5.1, the trajectory 

planned in MoveIt! is made up of a set of points that have been predefined, but they are 

not real points taken by the camera. To do this, it is necessary to have previously 

connected the camera to the robot. 

Finally, a future work is the scanning of the surface to be processed using the Kromek 

probe. The contamination values obtained could be stored and saved in a file for further 

treatment. 
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