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Abstract: A hydroxypolyamide (HPA) manufactured from 2,2-bis(3-amino-4-hydroxy phenyl)-
hexafluoropropane (APAF) diamine and 5′-terbutyl-m-terphenyl-4,4′ ′-dicarboxylic acid chloride (tBT-
pCl), and a copolyimide produced by stochiometric copolymerization of APAF and 4,4′-(hexafluoroiso-
propylidene) diamine (6FpDA), using the same diacid chloride, were obtained and used as polymeric
matrixes in mixed matrix membranes (MMMs) loaded with 20% (w/w) of two porous polymer
networks (triptycene-isatin, PPN-1, and triptycene-trifluoroacetophenone, PPN-2). These MMMs,
and also the thermally rearranged membranes (TR-MMMs) that underwent a thermal treatment
process to convert the o-hydroxypolyamide moieties to polybenzoxazole ones, were characterized,
and their gas separation properties evaluated for H2, N2, O2, CH4, and CO2. Both TR process and
the addition of PPN increased permeability with minor decreases in selectivity for all gases tested.
Excellent results were obtained, in terms of the permeability versus selectivity compromise, for
H2/CH4 and H2/N2 separations with membranes approaching the 2008 Robeson’s trade-off line.
The best gas separation properties were obtained when PPN-2 was used. Finally, gas permeation was
characterized in terms of chain intersegmental distance and fraction of free volume of the membrane
along with the kinetic diameters of the permeated gases. The intersegmental distance increased
after TR and/or the addition of PPN-2. Permeability followed an exponential dependence with free
volume and a quadratic function of the kinetic diameter of the gas.

Keywords: hydrogen separation; mixed matrix membranes; porous polymer networks; thermal
rearrangement

1. Introduction

Today, renewable energy systems are attracting an increasing interest due to the ever-
growing energy demand at a global scale, decreasing prices, and the urgent need to mitigate
climate change [1]. In this context, hydrogen (H2) could play a key role in the energy sector
since it represents a clean and cost-effective gaseous energy vector with a high specific
energy content [2] that can substitute fossil fuels and thus reduce CO2 emissions [3–5].
For instance, H2 could replace natural gas during electricity generation in power plants
or fossil fuels in transportation [6]. However, according to the most recent report of the
International Energy Agency, fossil fuels are the main source of H2 production, which is
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responsible for at least 830 million tons of CO2 emissions per year. Indeed, H2 production
accounted for 6% of global natural gas and 2% of global coal demand [3].

In this regard, sustainable H2 production from a renewable source is needed to
reduce the consumption of fossil fuels and their associated CO2 footprint [2]. In recent
years, a large research effort has been deployed to develop green technologies to generate
renewable H2 [7]. Dark fermentation from biomass or water electrolysis using the surplus
of renewable electricity rank among the most investigated technologies to generate green
H2 [8]. On the other hand, pressure swing adsorption (PSA), cryogenic separation, and
membrane separation represent the most implemented technologies for H2 purification [9].
According to Luo et al. [6], membrane separation is considered an energy-efficient and
sustainable alternative since it does not require the regeneration of the adsorption materials
or a high energy demand to decrease the temperature of the gas mixture below −78 ◦C.

Mixed matrix membranes (MMMs) have recently experienced the most significant
advances in membrane technology for hydrogen purification [10]. MMMs consist of a
mixture of organic or inorganic porous materials as dispersed phases (namely additive or
filler) into a polymeric matrix as a continuous phase [10–13]. Well-designed MMMs benefit
from the potential synergy between the polymeric matrix and fillers, which enhances
the properties of MMMs compared to the pure polymer exhibiting superior performance
in terms of the permeability-selectivity compromise [14,15]. Moreover, some polymer
matrixes employed in MMMs can eventually undergo thermal transposition processes such
as thermal rearrangement (TR) at high temperatures [1,16,17], which could further increase
gas permeabilities. For instance, TR polymers originated from the thermal conversion
of poly(o-hydroxyamide)s to polybenzoxazole (PBO) structures showed outstanding gas
transport properties for the separation of CO2/CH4 mixtures [6,18].

The manufacture of high-performance MMMs depends on the selection of the ap-
propriate filler to prevent the formation of non-selective voids caused [12,19]. In this
sense, metal-organic frameworks (MOFs) with high surface area and porosity [20], porous
aromatic frameworks (PAFs) with a large surface area and high thermal stability [21], and
hypercrosslinked polymers (HCPs) with high CO2 adsorption [22] have been successfully
used as fillers for gas separation. Recently, novel materials based on porous polymer
networks (PPNs) have been used as fillers in order to prepare MMMs with promising gas
permeabilities [23]. In addition, these later materials exhibit outstanding chemical and
thermal properties and excellent CO2 adsorption capacities [24]. Despite the potential
of these MMMs, there is limited knowledge of the performance of thermally rearranged
membranes (TR-MMMs) for gas separation applications.

This work aimed at manufacturing and testing novel polymeric and copolymeric ma-
trixes (derived from poly(o-hydroxypolyamide)s having 5′-tert-butyl-m-terphenyl moieties
and hexafluoropropyl groups) able to undergo thermal rearrangement to TR-PBOs and
also to obtain TR-MMMs with favorable gas transport properties for hydrogen separation
using PPN as a filler (PPNs formed from isatin and triptycene, PPN-1, or from trifluoroace-
tophenone and triptycene, PPN-2). Polymers containing m-terphenyl groups typically
show excellent thermal stability and high glass transition temperature [25,26]. However,
these polymers showed low processability when the m-terphenylene derivative was not
substituted (for instance, 5′-H-m-terphenyl derivatives) [25]. After attachment of a t-butyl
group in the middle aromatic ring, the solubility improved a lot, and the gas separation
properties were much better [25,27,28]. Thus, it was considered that the use of m-terphenyl
units, having bulky groups, in polyamides and o-hydroxypolyamides should produce
important improvements in the features of the materials derived from them. The PPNs
herein used have superb chemical and thermal stability (higher than 450 ◦C) and high
BET (Brunauer-Emmett-Teller) surfaces (around 650 m2/g [24]), and they could bear the
temperatures employed for carrying out the thermal rearrangement process.
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2. Materials and Methods
2.1. Materials

Anhydrous dimethyl acetamide (DMAc, 99%), pyridine (Py), dimethyl amino pyri-
dine (DMAP), trimethylsilylchloride (TMSC, >98%), N, N dimethyl formamide (DMF),
3-methoxycarbonyl-phenylboronic acid, and tetrahydrofuran (THF, 99%) were purchased
from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA) and used as received. Sodium
hydroxide (NaOH), sulfuric acid (H2SO4), tetrakis(triphenylphosphine) palladium(0)
(Pd(PPh3)4), potassium carbonate (K2CO3), hydrochloric acid (HCl), and thionyl chlo-
ride (SOCl2) were obtained from Scharlau (Scharlab, Barcelona, Spain). The diacid 5′-
terbuthyl-m-terphenyl-4,4′ ′-dicarboxylic acid (tBTpDA) was synthesized following a pro-
cedure previously reported [29] and subsequently was converted to the monomer 5′-
tertbutyl-m-terphenyl-4,4′ ′-dichloride acid (tBTpCl). 2,2-bis(3-amino-4-hydroxy phenyl)-
hexafluoropropane (APAF) was purchased from Apollo Scientific (Apollo Scientific, Stock-
port, Cheshire, U.K.) and purified by sublimation at 220–225 ◦C before use. 4,4′-(hexafluoroi-
sopropylidene) dianiline (6FpDA) was also purchased from Apollo Scientific and purified
by sublimation at 180 ◦C before use.

APAF and tBTpCl were employed as monomers to synthesize the homo-o-hydroxypoly-
amide tBTpCl-APAF (HPA). Additionally, a copolyamide (HPA-PA) was prepared by mix-
ing APAF with 6FpDA (at a 1/1 mol/mol ratio) with tBTpCl. For comparison’s sake, a
non-TR-able polyamide without o-hydroxy groups (PA) was prepared from the monomers
6FpDA and tBTpCl. The synthesis of HPA, PA, and HPA-PA were carried out as described
elsewhere [30], and it is outlined below.

2.2. Monomers Synthesis
2.2.1. Synthesis of 4-Carboxy-Phenylboronic Acid

A saponification reaction was used to convert the ester group of a commercial boronic
acid to carboxylic acid (Figure 1). Thus, the 4-carboxy-phenylboronic acid was initially
synthetized by the following procedure: In a round-bottomed flask, 113.91 mmol of 4-
methoxycarbonyl-phenylboronic acid and 200 mL of a NaOH aqueous solution (10% w/w)
were added. The solution was reflux-heated for 30 min. The resulting reaction was cooled
down before filtering, and H2SO4 was added to adjust pH to 1. Due to the exothermic
nature of the reaction, the solution was kept in an ice-water bath. The resulting precipitate
was kept at 4 ◦C overnight. The precipitate was filtered, washed three times with distilled
water, and allowed to dry at room temperature.
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Figure 1. Synthesis of 4-carboxy-phenylboronic acid via saponification reaction.

2.2.2. Synthesis of (5′-Terbuthyl-m-terphenyl-4,4′ ′-dicarboxylic acid (p))

The Suzuki–Miyaura [31] reaction was used in order to obtain a series of derivatives of
m-terphenyl-4,4′ ′ dicarboxylic acid, having in the 5′ position a tert-butyl group (Figure 2).
This reaction involved the formation of a C-C bond through a boronic derivative (4-carboxy-
phenylboronic acid) and an organohalogenide (1,3-dibromo-5-tert-butyl-benzene) in the
presence of a base (K2CO3) and a palladium (0) catalyst. The synthetic procedure is
outlined below.

A total of 12.5 mmol (3.64 g) of 1,3-dibromo-5-tert-buty-lbencene, 30.2 mmol (5 g) of
4-carboxy-phenylboronic acid, 1.2 mmol (1.36 g) of (Ph3P)4Pd(0), and 360 mL of DMF
(previously deoxygenated) were added in a round-bottomed flask, according to a procedure
adapted from Liao and Hsieh [32]. Deoxygenation using N2 (strictly inert atmosphere)
was carried out before adding 79.8 mL of 3.2 M potassium carbonate solution to avoid the
degradation of the catalyzer. The reaction was maintained at 80 ◦C for 8 h under magnetic
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stirring. Afterward, the reaction was transferred to an Erlenmeyer flask and cooled with
ice before adding HCl until at pH 1. The formed suspension was then left overnight at 4 ◦C.
The diacid compound was then separated as a solid by filtration and dissolved in 35 mL
of NaOH (2 M). HCl (50:50) was added to adjust the pH to 1 to obtain a solid precipitate,
which was filtered again and thoroughly washed with water and dried before rinsing with
warm toluene. The resulting solid was allowed to dry at room temperature, thus obtaining
tBTpDA with 88% yield.
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Figure 2. Suzuki–Miyakura synthesis of 5′-tert-butyl-m-terphenyl-4,4′ ′-dicarboxylic acid.

2.2.3. Synthesis of tBTpCl Dichloride

The diacid previously synthetized was added into a round-bottomed flask equipped
with a reflux condenser and magnetically stirred, along with SOCl2 and 5 drops of DMF
under a N2 atmosphere, following the procedure described by Smith et al. [30]. The mixture
was maintained at 50 ◦C for 4 h and at 80 ◦C for 2 h and afterward allowed to cool down to
room temperature (Figure 3).
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Subsequently, the reflux condenser was substituted by distillation equipment to elim-
inate the excess of SOCl2, and a small amount of anhydrous toluene was added before
distillation. The distillation process was initially carried out under vacuum at ambient
temperature under a N2 atmosphere. To assure that SOCl2 was eliminated, anhydrous
toluene was again added before increasing the temperature to 70 ◦C during the stripping-
off process. Finally, anhydrous toluene was added before overnight cooling at 4 ◦C to
crystallization. Finally, the liquid residue was eliminated under vacuum at 4 ◦C. tBTpCl
was kept under a N2 atmosphere blanket to avoid hydration.

2.3. Polymers Synthesis

The procedure for the synthesis of the polymers (tBTpCl-APAF (HPA), tBTpCl-6FpDA-
APAF (HPA-PA), and tBTpCl-6FpDA, (PA)) was performed by the polycondensation
reaction employing the in situ silylation methodology [33–37]. As an example, the synthesis
of the o-hydroxy homopolyamide (HPA) is described in the following paragraphs.

In a 100 mL three-necked flask equipped with a mechanical stirrer under a constant
N2 supply, 2.0 g (0.0055 mmol) of APAF was added and dissolved in 10 mL of N,N-
dimethylacetamide (DMAc). The mixture was stirred at room temperature until the
complete solubilization of the solid. Then, the solution was cooled by immersing the flask
into an ice bath to reach 0 ◦C, and 2.77 mL of TMSC were dropwise added, followed by
1.76 mL of Py. The mixture was maintained at 0 ◦C and stirred for 10–15 min to ensure the
formation of the silylated diamine [38]. Then, 2.25 g (0.0055 mmol) tBTpCl dichloride was
poured into the flask and rinsed with 2 mL of DMAc. Finally, 0.267 g (2.18 mmol) of DMAP
and 32 mL of DMAc were added. The reaction was stirred for 24 h at room temperature to
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complete the polymerization reaction. The resulting polymers were obtained as fiber-like
shape and then washed with water, a 1/1 ethanol/water mixture, and collected by filtration.
It was heated under vacuum at 100 ◦C for 24 h to obtain a dry polymer.

2.4. Casting Of Polymer Films
2.4.1. Films of Polymer Matrixes

To prepare the membranes, the synthesized polymers were put in 10% (w/v) THF
solutions and maintained under mechanical stirring until its complete dissolution. Before
casting onto a glass plate, the solution was filtered through a 4.5 µm PTFE membrane filter
to remove impurities. Part of the solvent was evaporated at room temperature overnight.
The remaining solvent was slowly dried in a vacuum oven (Thermo Fisher Scientific Inc,
Waltham, MA, USA) with the following protocol: 60 ◦C for 2 h and 80 ◦C for 2 h without
vacuum, 100 ◦C for 2 h, 120 ◦C for 1 h, and finally 180 ◦C for 12 h under vacuum. The
membranes manufactured presented thickness between 40–60 µm.

2.4.2. Preparation of Mixed Matrix Membranes

Mixed matrix membrane (MMMs) were prepared as described elsewhere [17,23]. The
synthesized polymeric matrixes above were mixed with porous polymer networks (PPNs)
synthetized according to Lopez-Iglesias et al. [24], which were used as fillers of the polymer
matrix. A total of 1200 mg of each polymeric matrix was separately dissolved in 10%
THF (w/v). The filler (20% (w) of the total mass) was dissolved in 10% (w/v) THF; it was
sonicated for 20 min at 30% of maximum amplitude (40 cycles of 20 s sonication followed
by 10 s cooling-down) before being mixed with the polymer matrix. This mixture was
spread out onto a glass casting plate and subjected to the same heat treatment that was
used for making the polymer matrix membrane to remove the solvent. The resulting
MMMs were: MMM-HPA, MMM-HPA-PA, and MMM-PA, as described in supporting
information (Table S1). In this study, two PPNs were tested (triptycene-isatin, namely
PPN-1 and triptycene-trifluoroacetophenone (TFAP), namely PPN-2) [24] and selected as
suitable candidates. Nevertheless, after a preliminary evaluation, PPN-2 was chosen for the
rest of the study because its corresponding MMMs showed better gas separation properties
(as shown in Figure supporting information section, Table S2, and Figure S1).

2.5. Thermal Rearrangement

The resulting membranes were subjected to a thermal rearrangement (TR) process to
obtain β-TR-PBO (polybenzoxazole) membranes in a carbolite split-tube furnace equipped
with a quartz tube and using an ultra-high-purity nitrogen flow rate at 900 mL/min,
following the Sanders et al. procedure [39]. Figure 4 displays the TR process for the
conversion of HPA and HPA-PA to TR-HPA and TR-HPA-PA. Note that PA does not
experience any thermal rearrangement. The samples were placed between two ceramic
plates separated by stainless steel washers, and they were initially heated at 5 ◦C/min up
to 250 ◦C and held for 15 min. The second ramp (5 ◦C/min) increased the temperature up
to 375 ◦C, which was held for 15 min. Finally, samples were cooled to ambient temperature
at 10 ◦C/min and maintained under a nitrogen flow.

2.6. Characterization
2.6.1. Polymer Characterization

Weight-average molecular weights (Mw) and number-average molecular weights
(Mn) of the polymers synthesized were determined by gel permeation chromatography
(GPC) using a Tosoh Ecosec HLC-8320GPC (Tosoh, Tokyo, Japan) device. Samples were
prepared by dissolving 0.5 mg of each polymer in 2 mL of THF and filtered through a
0.45 µm filter.

1H and 13C nuclear magnetic resonance (NMR) spectra were performed using a Varian
AV Agilent (Varian, Palo Alto, CA, USA) working at 400 MHz and 100 MHz. The NMR



Polymers 2021, 13, 931 6 of 18

samples were prepared using deuterated dimethyl sulfoxide (DMSO-d6) to dissolve the
polymer fibers.
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Polymer solubility was determined by placing ~10 mg of the polymer in 1 mL of the
target solvent (N,N-dimethylacetamide, DMAc, N-methylpyrrolidone, NMP, tetrahydro-
fuane, THF, chloroform, CHCl3, m-cresol, acetone, ethanol, N,N-dimethylformide, DMF) in
solubility tubes until its total dilution. If the polymer was not soluble at room temperature,
the solution was heated to the boiling point of the solvent, and its solubility checked.

2.6.2. Thermogravimetric Analysis

Thermal rearrangement of the membranes (mass loss and decomposition products)
was performed via thermogravimetric analysis (TGA) using a TA Instruments (TA In-
struments, New Castle, DE, USA) Q500 thermogravimetric analyzer in 5 mg samples.
Ultra-high-purity nitrogen at a flow rate of 40 mL/min in the balance and 50 mL/min in
the sample was used. The temperature ramp was set at 10 ◦C/min up to 800 ◦C.

2.6.3. DSC

To monitor the glass transition temperatures (Tg), differential scanning calorimetry
(DSC) was carried out in a TA Instruments DSC Q-20 Analyzer (TA Instruments-Water
Corp., Milford, MA, USA). DSC analyses for TR polymers were carried out at a heating
rate of 20 ◦C/min up to 360 ◦C. In all cases, the experiments were performed under a N2
atmosphere using 6–10 mg of membranes in gas-tight aluminum containers. The glass
transition temperature (Tg) was determined in the second heating cycle from the middle
point of the resulting slopes.

2.6.4. Fourier Transform Infrared Spectroscopy

The conversion of the resulting membranes to TR-PBO membranes was monitored via
attenuated total reflectance-Fourier transform infrared (ATR-FTIR) using a PerkinElmer
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Spectrum One FT-IR (PerkinElmer, Waltham, MA, USA) coupled with a universal attenu-
ated total reflection (ATR) diamond-tipped sampling module following the band’s intensity.

2.6.5. Density Measurements

The fractional free volume (FFV) is defined as:

FFV =
V −V0

V
(1)

Here V is the total specific volume and V0 is the specific skeletal volume of MMM.
The skeletal volume for HPA, PPN, and MMMs can be evaluated from their van der Waals
volumes because V0 ≈ 1.3 Vw. Actually, VHPA

w and VPPN
w can be calculated by molecular

modeling using the Materials Studio software (BioVia, San Diego, CA, USA). To evaluate
VMMM

w , we can use:
VMMM

w = φVPPN
w + (1− φ)VHPA

w (2)

This equation correlates specific van der Waals volumes in terms of φ, the fraction of
filler (PPN). Once VMMM

w is known, we can obtain VMMM
0 .

The total specific volumes can be obtained from the corresponding densities:

ρMMM = 1/VMMM

ρHPA = 1/VHPA (3)

VPPN can be obtained from Equation (2):

VPPN =
1
φ

[
VMMM − (1− φ)VHPA

]
(4)

Densities were measured by following the Archimedes principle in a CP225 Ana-
lytical Balance from Sartorius (Sartorius, Göttingen, Germany) equipped with a density
measurement kit. The samples were weighed in air and into high pure isooctane at room
temperature. The average density from seven samples was obtained as:

ρ = ρC8 H18

Wair
Wair −WC8 H18

(5)

where ρC8 H18 corresponds to the isooctane’s density, Wair to the weight of the sample,
and WC8 H18 stands for the weight of the sample when submerged in isooctane. Finally,
Equation (1) allows the determination of FFV.

2.6.6. WAXS

The membranes were tested via wide-angle X-ray scattering (WAXS) at room tempera-
ture using a Bruker (Bruker, Billerica, MA, USA) D8 Discover A25 advanced diffractometer
equipped with a Goebel mirror. The LynxEye detector was operated at a speed of 0.5 s with
a step scanning mode ranging from 5◦ to 70◦ and a 2θ step of 0.020◦. A Cu Kα (λ = 1.542 Å)
radiation source in a ceramic tube was used.

2.6.7. Mechanical Properties

Mechanical properties of the polymeric matrixes, MMMs, and their corresponding TR
membranes were determined using a Shimadzu Autograph AGS-X 500N tensile testing
instrument (Shimadzu, Kyoto, Japan). The tensile test was set to 1 mm/min to assess the
crosshead speed. Samples were cut using a microtensile dog bone-shaped die before heat
treatment. The gauge length and width (~22 mm and 5 mm, respectively) were measured
by a digital scanner using ImageJ software to measure the average width and gauge length.
Membrane thicknesses were measured by a Mitutoyo digital caliper (Mitutoyo, Kawasaki,
Kanagawa, Japan) of ±1 µm resolution. Five replicate measurements were carried out for
each membrane tested.
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2.6.8. Gas Transport: Permeability and Selectivity

Membranes with a uniform thickness were placed on a support of brass disks (using
epoxy as adhesive and protected with glass fiber filter paper) to determine gas permeability.
This epoxy was dried at room temperature for 3 h followed by 3 h at 60 ◦C before use.
Single gas (except H2) permeability was determined using a constant-volume apparatus,
as described elsewhere [17]. H2 permeability was measured at the University of Texas
at Austin facilities using a different but similar constant-volume apparatus [40]. All
permeability measurements were performed at 35 ◦C and an upstream pressure of 3 bar.

The dry sample was placed onto the permeation cell using the constant-volume
variable-pressure method. Gas permeability (cm3 (STP) cm/ (cm2 s cmHg)) was deter-
mined by:

P =
Vdl

p2 ART

[(
dp1

dt

)
ss
−
(

dp1

dt

)
leak

]
(6)

where Vd is the downstream volume (cm3) of a permeation system, l is the membrane
thickness (cm), p2 is the upstream pressure (cmHg), A is the area available for the gas trans-
port (cm2), the universal gas constant R is 0.278 cmHg cm3/(cm3(STP) K), T is the absolute
temperature (K), and (dp1/dt)leak is the steady-state rates of pressure rise (cmHg/s) in the
downstream volume. Gas selectivity as:

αA/B =
P1

P2
(7)

Samples were kept under vacuum overnight at 35 ◦C before testing to remove any
adsorbed gas. The permeabilities of He, H2, O2, N2, CH4, and CO2 (99.999% purity)
supplied by Airgas (Airgas, Radnor, Pennsylvania, USA) were measured at 3 bars at 35 ◦C.
He permeability was measured at 1, 2, and 3 bars to detect pinholes through the membranes
prior to any ulterior membrane testing. All gases were tested before CO2 measurement to
prevent membrane plasticization. A vacuum was implemented for at least 20-fold the time
lag before measuring the permeability for a new gas.

3. Results and Discussion
3.1. Chemical Properties
3.1.1. Characterization of Polymer Matrixes

The average molecular weight (Mw) of each polymer was determined to be 163.1,
158.4, and 84.6 kDa for HPA, PA, and HPA-PA, respectively.

The solubility of the polymers herein synthesized was carried out in different solvents.
All polymers were soluble in a common organic solvent such as THF and in polar aprotic
solvents such as DMAc, NMP, and DMF. None of the polymers synthesized were soluble,
neither in CHCl3 nor in ethanol.

The corresponding NMR spectra are shown in the supporting information (Figures S2–S4).

3.1.2. Infrared Spectroscopy (FTIR) Measurements

Figure 5A shows the absorption bands for the polymeric matrixes used here before
any thermal rearrangement, where an O-H vibration band (3200–3500 cm−1) related with
the hydroxyl groups and a N-H band related with the amine group are observed. A
stretching vibration band for C=O (1638 cm−1) and a N-H symmetric band (1497 cm−1)
were also identified.

In Figure 5B, the stretching vibration band for the C-F group (~1200 cm−1) was
observed, the presence of this band being typically associated with the filler of the MMMs.
According to Lopez-Iglesias et al. [24], this absorption band was related to the PPN-2 filler.
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Figure 5. Infrared Spectroscopy (FTIR) spectra of polymeric matrixes (A), mixed matrix membranes
(MMMs) with triptycene-isatin (PPN-1) and triptycene-trifluoroacetophenone (PPN-2) compared
with the corresponding polymeric matrix before thermal rearrangement (B), and the polymeric matrix
after thermal rearrangement (C).

The conversion of the precursor membranes to β-TR-PBO ones was confirmed by
the presence of C=N stretching oxazole I and C-O-C stretching oxazole II (1475 cm−1

and 1043 cm−1, respectively) absorption bands, which are characteristics of benzoxazoles
(Figure 5C).

3.2. Thermal Properties
3.2.1. Thermogravimetric Analysis

Thermogravimetric analysis was carried out to elucidate the characteristics of the
thermal conversion of HPA, HPA-PA, and their corresponding MMMs to β-TR-PBOs
materials [18]. The thermal conversion occurs through a cyclization process, obtaining
the polybenzoxazole after dehydration. Figure 6 displays the thermograms for HPA and
MMM-HPA before and after thermal rearrangement. The corresponding thermograms
for PA, MMM-PA, HPA-PA, and MMM-HPA-PA are shown in the supporting information
section (Figure S5). In all cases, two common regions of weight loss for the membranes were
observed. The first step (in the range from 200 to 400 ◦C) of weight loss was associated with
the thermal rearrangement from polymer matrix moieties to benzoxazole ones, whereas the
second step (well above 400 ◦C) was associated with thermal degradation [18,41–43]. Note
that polymer degradation occurred above 450 ◦C in the case of MMMs, which ruled out any
potential degradation of the PPNs due to its high thermal resistance (PPN-2 degradation
occurred around 490 ◦C under a N2 atmosphere) [24].
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3.2.2. DSC for Glass Transition Temperatures

DSC spectra carried out to determine the glass transition temperatures are shown in
Figure 7.
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It is seen that Tg always increased after thermal rearrangement. Note that no thermal
rearrangement process for the PA or MMM-PA membranes is possible. Other tendencies
could be estimated from these figures, although they are small and possibly covered by the
error ranges. In particular, it seems that before the treatment, addition of PPN-2 has little
effect on Tg, except for PA that showed a clear increase of Tg after adding PPN-2. It appears
that, in all cases, the presence of the filler decreases Tg after thermal rearrangement.
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3.3. Mechanical Properties

Table 1 summarizes the mechanical property data for MMMs derived from PPN-
2; maximum stress, elongation at break, and Young’s modulus. The elongation break
was moderate (7.5–10.1%) and comparable for all matrix polymers, MMMs, and their
corresponding TR-MMMs, whereas Young’s modulus decreased with the addition of PPN-
2 and when subjected to thermal treatment. For instance, Young’s modulus decreased from
2.9 ± 0.2 GPa to 1.7 ± 0.1 GPa with the addition of the filler in HPA and to 1.3 ± 0.1 GPa
when thermal treatment was applied. The membranes prepared from HPA polymer
exhibited high maximum stress (103.3 ± 4.4 MPa). The addition of 20% PPN-2 induced a
decrease in the maximum stress regardless of the membrane tested. Interestingly, thermal
rearrangement entailed an increase in the maximum stress.

Table 1. Mechanical properties of HPA, PA, MMMs, and their corresponding thermally rearranged
membranes (TR-MMMs).

Membrane Maximum Stress
(MPa)

Elongation at Break
(%)

Young’s Modulus
(GPa)

HPA 103.3 ± 4.4 9.7 ± 0.4 2.9 ± 0.2
TR-HPA 79.2 ± 9.2 9.2 ± 0.5 1.8 ± 0.3

MMM-HPA 30.5 ± 2.0 9.2 ± 0.7 1.7 ± 0.1
TR-MMM-HPA 37.7 ± 9.9 9.0 ± 0.3 1.2 ± 0.1

PA 89.8 ± 3.8 10.1 ± 0.6 2.4 ± 0.09
MMM-PA 32.2 ± 10.5 7.6 ± 2.8 1.6 ± 0.097

HPA-PA 90.2 ± 14.2 9.974 ± 0.3 2.609 ± 0.3
TR-HPA-PA n.a. n.a. n.a.

MMM-HPA-PA 37.4 ± 5.2 9.648 ± 0.4 1.907 ± 0.2
TR-MMM-HPA-PA 43.96 ± 8.00 9.778 ± 0.2 1.475 ± 0.1

3.4. Gas Separation Properties

In a preliminary study, as shown in the supporting information section (Table S2 and
Figure S1), it was observed that the MMMs and TR-MMMs derived from PPN-1 showed
worse gas separation properties than those derived from PPN-2, and thus, PPN-2 was
selected as the filler employed for further characterization.

The values of permeabilities of the pure gases (H2, N2, O2, CH4, and CO2) of the
precursors, MMMs, and TR-MMMs materials, derived from PPN-2, are displayed in
Table 2.

Thermal rearrangement of the HPA caused a remarkable increase in gas permeability
regardless of the gas tested, with values increasing 5-, 17-, 12-, 7-, and 13.5-fold for H2,
N2, O2, CH4, and CO2, respectively, compared to the non-TR polymeric matrix. The
permeabilities of H2, N2, O2, CH4, and CO2 notably increased with the addition of 20%
PPN-2 to the polymeric matrix by a factor of 4.0–10.2 for HPA, 2.2–2.5 for PA, 3.1–4.3 for the
HPA-PA copolymer, and 2.5–2.8 for TR-HPA. Overall, the largest increase in permeability
was observed for CH4 and CO2. Moreover, the permeabilities of all the gases studied are
always ordered according to their kinetic diameters.

MMMs’ gas transport properties are known to be strongly determined by the mor-
phology of the interface [13]. This morphology, in turn, could be caused, at least partially,
by the fact that the polymer networks herein used contained solvent inside their pores, and
the removal of this solvent from both the matrix and the filler could not be wholly effective.
Despite that this could also limit the total polymer conversion to PBO, this phenomenon
was not observed for TR-MMMs since the solvent was completely eliminated during the
TR process, and therefore, their gas separation properties present lower variability in terms
of permeability and selectivity. In any case, heat treatment might be optimized to maximize
the rate of solvent removal/conversion to PBO.
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Table 2. Pure gas permeabilities using PPN-2 as filler.

Membrane Permeabilities (Barrer 1)
H2 N2 O2 CH4 CO2

Non-TR materials
HPA 40.84 0.43 2.64 0.26 10.54

MMM-HPA 166.02 3.48 18.46 2.65 79.0

PA 76.14 2.42 10.85 2.46 51.23
MMM-PA 168.65 6.15 27.02 6.12 128.7

HPA-PA 45.65 0.82 4.44 0.65 19.18
MMM-HPA-PA 139.8 3.26 16.92 2.77 73.55

TR materials
TR-HPA 122.9 4.07 16.71 4.06 78.8

TR-MMM-HPA 271.5 10.10 43.15 10.29 200.38
TR-HPA-PA 203.7 7.43 32.17 7.29 142.1

TR-MMM-HPA-PA 518.6 20.65 87.97 20.80 394.16
1 Barrer = 10−10 cm3 (STP) cm/cm2 s cmHg or, in SI units, 1 Barrer = 3.35 × 10−16 (mol m)/(m2 s Pa).

It is worth noting that MMMs derived from PA exhibited the best gas separation
performance for all tested gases.

The most important improvement in gas permeabilities was recorded for TR-MMMs,
particularly for those manufactured from HPA. Several investigations have attributed the
effect of the filler on permeability (increase) and on selectivity (slight decrease) to the high
permeability provided by the poor packing of the polymer chains in MMMs [17,39,44,45].
Likewise, Park et al. reported that diffusivity significantly impacted gas transport in TR
membranes as a result of their high free volume fraction, which is typically associated with
microporous structures appearing as a consequence of the subsequent rearrangement [46].
The slight decrease of selectivity linked to the addition of the filler has been attributed to
poor polymer-filler adhesion [47].

The 1991 and 2008 Robeson upper bound plots [48,49] for the O2/N2 and CO2/CH4
gas pairs are shown in Figure 8. Note that some results reach the 1991 Robeson’s up-
per bound.
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In Figure 9, the corresponding Robeson’s plots are shown for H2/CH4 and H2/N2.
These pairs show the better permeability versus selectivity behavior with some results over
the 1991 Robeson’s trade-off line and close to the 2008 line.
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The slightly worse selectivity versus permeability results for the H2/CO2 pair are
shown in Figure 10. Note that the earlier upper bound relationship for H2/CO2 was
published in 1994 [50].
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The best gas transport properties were recorded for the TR-MMMs derived from the
blend of HPA, supplemented with 20% of PPN-2, which exceeded the Robeson limit 1991
for the H2/CH4 and H2/N2 gas pairs. Thus, it reached the 1991 upper bound for O2/N2
and CO2/CH4 only after thermal rearrangement. On the contrary, it does not reach the 1994
upper bound, not even after thermal rearrangement for H2/CO2. A significant increase in
CO2 permeabilities compared to the MMMs without thermal rearrangement was observed
for the TR-MMMs, which exhibited an excellent CO2 affinity leading to the high solubility
of this gas within the polymer matrix, thus obtaining a superior gas transport [51].
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3.5. Morphology of the MMMs
3.5.1. Density and Fractional Free Volume (FFV)

Because permeability can be written as P = SD (the product of solubility S and
diffusivity D) and D depends on the fraction of free volume, we will call f ≡ FFV to easy
notation, as D = AeB f , as shown by Thornton et al. [52]:

P = SD = Aeβ f (8)

It can be assumed that this equation holds when solubility is almost independent
of FFV (f ) or depends, like diffusivity, exponentially on f. Several models based on a
reasonable linear dependence of the diffusion activation energy with the transversal area
of the penetrant admit a quadratic dependence of β with the kinetic diameter, dk [52–54]:

β = a + bdk + cd2
k (9)

Combining Equations (8) and (9), we get:

ln P = ln A + β f = [ln A + a f ] + [b f ]dk + [c f ]d2
k (10)

Figure 11 shows P versus f and β as a function of dk for the membranes containing
PPN-2, showing suitable accordance with Equations (9) and (10). Here the kinetic diameters
are given by Breck [53,55].
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3.5.2. WAXD Intersegmental Distance

Figure 12 shows the WAXD spectra for HPA materials, without and with PPN-2,
before and after thermal rearrangement.

In Figure 13, the permeability of hydrogen is shown as a function of the most probable
intersegmental distance (δ) as evaluated by WAX. It is clearly seen there that the thermal
rearrangement process and addition of PPN-2 increase the intersegmental distance and
permeability. The addition of PPN-2 causes small increases in δ but causes a relatively large
change in permeability. Both permeability and δ are lower for the copolymer. Note that for
a similar system, we found [17] an opposite trend. Then, a decrease of δ was recorded when
increasing amounts of PPN were loaded (with simultaneous increase of permeability). This
was probably due to a stronger effect of the filler on the structure of the polymeric matrix,
causing its compaction with the appearance of transport paths attributable to flaws and
intercommunicated interstices.
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4. Conclusions

A set of an o-hydroxypolyamide (HPA), produced by reaction of 2,2-bis(3-amino-4-
hydroxyphenyl)-hexafluoropropane (APAF) diamine and 5′-tert-butyl-m-terphenyl-4,4′ ′-
dicarboxylic diacid chloride (tBTpCl), a copolymer (HPA-PA) combining APAF and 6FpDA
(1/1 mol/mol%) was also produced by reaction with tBTpCl, and finally a polyamide
(PA) derived from with tBTpCl and 4,4′-(hexafluoroisopropylidene) (6FpDA), without o-
hydroxy moieties, were obtained and thoroughly characterized. Mixed matrix membranes
(MMMs) produced from HPA, HPA-PA, and PA employing 20% w/w of two porous polymer
networks (PPNs) (triptycene-Isatin PPN-1 and triptycene-trifluoroacetophenone, PPN-2)
were obtained. It was observed, in a preliminary gas separation study, that the best gas
separation results were observed for the MMMs produced from PPN-2, and consequently,
it was chosen as the only PPN load.

In addition, the polymer membranes and their corresponding MMMs were thermally
treated to temperatures around 350 ◦C in order to produce the thermal rearrangement of
the o-hydroxypolyamide moieties to benzoxazole ones.
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All the membranes showed suitable mechanical properties able to withstand the
pressures employed in gas separation applications.

Gas separation properties have been tested for H2, N2, O2, CH4, and CO2. Thermal
rearrangement and the addition of porous polymer networks increased permeability with
a slight decrease in selectivity for all gas pairs studied. Remarkably, good results have
been obtained for the H2/CH4 and H2/N2 pairs. In both cases, results approached the
2008 Robeson’s limit line. The evaluation for the O2/N2 and CO2/CH4 gas pairs provided
worse results even though some results reached the 1991 Robeson’s upper bound. In all
cases, the HPA-PA copolymer membranes provided intermediate results in between those
observed for HPA and PA membranes.

Finally, intrachain characteristic lengths (WAXD) and the fraction of free volume
(FFV) of the membrane, along with their kinetic diameters, were very useful to understand
permeability values. It has been shown that thermal rearrangement and/or the addition of
PPN-2 increased the intersegmental distance and, consequently, permeability. The presence
of PPN-2 increased the intersegmental distance slightly with a relatively high increase in
permeability. Permeability has been shown to follow an exponential dependence with free
volume and a quadratic function with the kinetic diameter of the gas.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-436
0/13/6/931/s1, Figure S1: Permeability vs. permselectivity for tBTpCl-APAF, HPA, membranes, and
MMMs containing PPN-1 and PPN-2 fillers before and after thermal rearrangement for the O2/N2
(left) and CO2/CH4 (right) gas pairs, Table S1: Acronyms list for the polymers and membranes
manufactured, Table S2: Permeability coefficients (Barrer) at 3 bar (300 kPa) and 35 ◦C for HPA-
MMMs and their corresponding TR-MMM-HPAs with loads of 20% of PPN-1 and PPN-2, Figure S2:
NMR results for membrane HPA, Figure S3: NMR results for membrane PA, Figure S4: NMR results
for membrane HPA-PA, Figure S5. TGA thermograms for: PA and MMM-PA (A), HPA-PA (B), and
MMM-HPA-PA (D). Samples were heated from 50 to 800 ◦C at 5 ◦C/min under a N2 atmosphere.
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