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a b s t r a c t 

The accurate description of the potential energy landscape of moderate-sized nanoparticles is a 

formidable task, but of paramount importance if one aims to characterize, in a realistic way, their phys- 

ical and chemical properties. We present here a Neural Network potential able to predict structures of 

pure and mixed nanoparticles with an error in energy and forces of the order of chemical accuracy as 

compared with the values provided by the theoretical method used in the training process, in our case 

the density functional theory. The neural network is integrated into a basin-hopping algorithm which 

dynamically feeds the training process. The main ingredients of the neural network algorithm as well 

as the protocol used for its implementation and training are detailed, with particular emphasis on those 

aspects that make it so efficient and transferable. As a first test, we have applied it to the determination 

of the global minimum structures of ZnMg nanoalloys with up to 52 atoms and stoichiometries corre- 

sponding to MgZn 2 and Mg 2 Zn 11 , of special interest in the context of anticorrosive coatings. We present 

and discuss the structural properties, chemical order, stability and pertinent electronic indicators, and 

we extract some conclusions on fundamental aspects that may be at the roots of the good performance 

of ZnMg nanoalloys as protective coatings. Finally, we comment on the step forward that the presented 

machine learning approach constitutes, both in the fact that it allows to accurately explore the potential 

energy surface of systems that other methodologies can not, and that it opens new prospects for a variety 

of problems in Materials Science. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Structure determination in small nanoparticles remains as one 

f the fundamental problems in cluster research. On one hand, an 

ccurate knowledge of a cluster structure is a prerequisite for a de- 

ailed understanding of its several physico-chemical properties, of 

road interest in many nanotechnology applications; on the other 

and, there are no direct experimental probes of structure for free- 

tanding clusters, only indirect probes such as photoemission spec- 

ra, vibrational spectra, electron diffraction patterns, etc. [1–5] , that 

ave to be compared to theoretical predictions before obtaining a 

efinitive structural assessment [6,7] . To make things worse, a the- 

retical determination of the global minimum (GM) structure of a 
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luster requires an exhaustive computational sampling of the po- 

ential energy surface. Although several global optimization meth- 

ds, such as genetic [8,9] or Basin Hopping [10–13] algorithms, 

ave been proposed to efficiently tackle this problem, they tend 

o be computationally impractical to sample the ab initio potential 

nergy surface of all but the smallest nanoparticles. A well estab- 

ished practical solution to this problem consists of performing an 

xhaustive sampling of the approximate potential energy surface 

rovided by an empirical potential (EP) to quickly determine trial 

tructures that are then reoptimized at a first-principles density 

unctional theory (DFT) level, and has come to be known as EP-DFT 

pproach [14] . It introduces new problems, however: in order for 

his approach to be successful, the EP model must provide a rea- 

onably accurate and transferable account of atomic interactions. 

n recent years, neural network (NN) potentials have emerged as 

 particular type of empirical potentials which may reach an un- 

recedented numerical accuracy, so combining global optimization 
c. This is an open access article under the CC BY-NC-ND license 
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ith NN methods may be an optimal solution for the structure de- 

ermination problem in clusters, taking into account the capabili- 

ies of presently available computers [15–21] . 

Machine Learning tools fall under several categories depending 

n the type of problem they are intended to tackle and how they 

re implemented. In this work, we focus on the so called super- 

ised learning techniques, in which the computer is fed with a 

et of inputs and the desired outputs, so that it can find a logi- 

al rule that connects both. In practical terms, the computer will 

nd the functional relationship between the numerical inputs and 

argets through a regression analysis, thus obtaining a continu- 

us function. We have chosen the neural network approach as the 

articular method to perform the required regression. Neural Net- 

orks are computational algorithms inspired in the biological neu- 

al networks [22] . They are formed by an ensemble of intercon- 

ected units (or nodes) called artificial neurons, each of which re- 

eives a signal that propagates to the subsequent neurons through 

 non linear activation function. All Neural Networks have a com- 

on general structure: an input layer of nodes where the signal 

s created, followed by one or more layers of nodes (called hidden 

ayers) through which the signal evolves in a non-linear way, and 

astly one output layer where the signal dies providing the user 

ith a result. We will be concerned with the simplest NN type: 

he feed-forward Neural Network [23–28] , where the information 

volves only in one direction, from the input layer to the output 

ayer passing through each hidden layer once. Each node in a given 

ayer is connected to all nodes of the subsequent layer via a non- 

inear matrix relationship, which must be optimized to give accu- 

ate output data during a training stage. In our case, the training 

nvolves fitting ab initio data including binding energies and atomic 

orces calculated on a large and diverse data pool of cluster struc- 

ures. Despite its simplicity, the NN encloses an outstanding poten- 

iality. According to the Universal Approximation Theorem [29,30] , 

ny continuous multidimensional function can be approximated to 

ny desired degree of accuracy by increasing the number of neu- 

ons in a single hidden layer of a feed-forward neural network. In 

ractice, the accuracy of the NN in interpolating the data is nev- 

rtheless limited by the finite size of the input data set and by 

he physical appropriateness of the input descriptors chosen by the 

ser. 

The structural and electronic properties of metallic nanoparti- 

les in the size range up to several hundred atoms generally ex- 

ibit a marked non-monotonous dependence with size, to a large 

xtent due to quantum-confinement effects. This fact complicates 

he training process, since unveiling such complex size-dependent 

ehaviors is difficult without an explicit representation of the elec- 

ronic degrees of freedom. Thus, developing a Neural Network po- 

ential to accurately describe the potential energy surface of small 

anostructures is more challenging than for their bulk crystalline 

ounterparts, where the absence of such non-monotonous elec- 

ronic and geometric behaviors plus the dramatic reduction of 

tructural relaxation possibilities, allows for a simpler and success- 

ul training. So far, considerable efforts have been devoted to de- 

elop NN techniques for bulk systems [31–35] but not as much for 

mall nanostructures [36,37] . Besides, in most cases where nanos- 

ructures are the goal, the employed approaches in the training 

tage extrapolate from the bulk limit [38,39] . On the contrary, our 

eural Network potential implementation is specifically tailored to 

rain and test finite nanostructures comprising a wide range of 

izes and chemical bondings, for both homoatomic clusters and 

ano-alloys with up to 3 different chemical elements. 

In this work, we present both our computer implementation of 

he neural network approach for clusters, and its particular ap- 

lication to Zn-Mg nanoalloys with up to 52 atoms. Specifically, 

e focus on two compositions, MgZn 2 and Mg 2 Zn 11 , because they 

ave been found to be optimal for use as sacrificial corrosion pro- 
2 
ective coatings [40–42] . We have previously reported the struc- 

ures of small Zn x Mg 20 −x nanoalloys in the whole range of compo- 

itions [43] , as well as the structures of equiatomic nanoalloys as 

 function of size [44] , and analyzed their electronic structure in 

rder to provide some preliminary clues about the enhanced cor- 

osion protection capabilities of this alloy. We need to get accurate 

tructural models of MgZn 2 and Mg 2 Zn 11 before embarking into a 

edicated study of their reactivity with external re-agents such as 

xygen, chlorine or water, this being the main motivation for the 

resent study. 

. The neural network approach and protocol for the structural 

earch 

The use of Neural Networks can potentially overcome the lim- 

tations and shortcomings of usual empirical potentials. When 

roperly trained, Neural Network potentials can be used to accu- 

ately describe atomic interactions in arbitrary materials, so they 

ecome an ideal alternative in those systems where available em- 

irical potentials are not able to capture the essential features of 

he true potential energy surface. Their main advantage relies on 

he flexibility offered by the machine learning technique: while 

lassical interatomic potentials have a limited number of param- 

ters to be tuned on a definite simple functional expression that 

tself does not account for all of the important geometrical and 

lectronic effects, in the neural network approach one can, in prin- 

iple, fit every functional form describing the real potential energy 

urface [29,30] . In order to take full advantage of this flexibility, 

e have written a Neural Network Fortran90 code specifically tai- 

ored to deal with cluster systems. As detailed in the following, 

he code is fed with separate training and testing data sets gen- 

rated by an external code. Preferably, and for the sake of accu- 

acy, those data sets are here generated at a first-principles level 

f theory, although other options would of course be possible. The 

ode produces as output a NN potential providing both energies 

nd analytic atomic forces, that can be later used by other external 

odes such as global optimization or molecular dynamics routines. 

t present, it can train both homoatomic and heteroatomic nanos- 

ructures of arbitrary size and with up to three different chemical 

pecies, though in this section we will describe its particular ap- 

lication to Zn-Mg binary nanoalloys. 

.1. Input and output layers. Structural descriptors 

Our particular NN implementation for clusters is based on the 

ehler-Parrinello method [45–47] . In this method, the total cluster 

nergy is written as a sum of atomic contributions: 

 = 

N ∑ 

i 

E i , (1) 

here N is the total number of atoms in the cluster. Each atomic 

nergy forms the output layer of a separate feed-forward Neural 

etwork dealing with that particular atom. The energy of atom i 

s expressed in terms of its local atomic environment, described by 

dequate symmetry functions that form the input layer of the cor- 

esponding neural network. Although each atom is processed sepa- 

ately, atoms of the same kind are described by the same NN. This 

ay, one has to train a single feed-forward Neural Network for ev- 

ry chemical species present in the system, whose separate out- 

uts, E i , are auxiliary quantities used to recover the total energy of 

he system. 

The additivity assumption implied by Eq. (1) is to be consid- 

red an approximation (in the sense that it can not be demon- 

trated starting from fundamental quantum-mechanical laws such 

s Schrödinger equation), whose accuracy may be judged a posteri- 

ri by the quality of the training fit. We will show below that it is
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ccurate enough for the metallic nanoalloys dealt with in this pa- 

er. Its most important computational advantage is that it allows 

o generate a single neural network potential to describe nanoal- 

oys of arbitrary size and composition [45] , as the NN is dealing 

nly with one particular atom at a given time. Machine learning 

odels avoiding the additivity assumption and based on global de- 

criptors [48–50] need to be fitted separately for each current sys- 

em size or composition, which we consider an undesirable feature 

s our goal is to study a broad range of sizes or compositions. 

Choosing an appropriate set of structural descriptors for the in- 

ut layer is one of the key factors to successfully train the NN and

btain an accurate potential. The wiser the user is in providing the 

ight physical descriptors (those that are statistically dominant in 

etermining the cluster energy), the faster the training process will 

e, the lower the irreducible error of the fit, and fewer input de- 

criptors will be needed. In our work, the symmetry functions are 

eparately tailored for each chemical element, and are constructed 

aking into account the local atomic and chemical environments 

f the atom we are describing (an atom-centred approach) up to 

ome cutoff radius. So in first place, we have to define a cutoff

unction f c around atom i , which defines the size of its atomic en-

ironment and the radial extension of the symmetry functions: 

f c (r i j ) = 

{ 

1 

2 

[ 
cos 

(π r i j 

r c 

)
+ 1 

] 
, r i j ≤ r c 

0 , r i j > r c , 

(2) 

hich smoothly decays to zero in value and slope at the cutoff

adius r c . The user has complete freedom in choosing the r c val- 

es, and can judge the appropriateness of the chosen cutoffs by the 

uality of the fit. In particular, for finite nanoscale systems which 

re our target in this paper, the cutoffs can always be chosen long 

nough so as to provide structural information about the complete 

et of atoms in the environment of a reference atom i . In bulk 

ystems with significant long-range interactions (electrostatic, van 

er Waals, etc.), however, the energy of an atom i is not expected 

o depend only on its local environment up to a predefined cut- 

ff distance, so our NN energy expresion should be complemented 

ith separate long-range energy terms [51] . We emphasize that 

ur code, in the version presented in this paper, is specifically tai- 

ored to deal with finite-size atomic systems. 

To describe the radial arrangement of atoms in the surround- 

ngs of atom i , radial symmetry functions are defined as a sum of 

roducts of Gaussians times the cutoff function: 

 

r 
i = 

∑ 

j 

e −η(r s −r i j ) 
2 

f c (r i j ) , (3) 

here η is a width parameter that determines the radial extension, 

nd r s a shifting parameter that displaces the Gaussians to improve 

ensitivity at specific radii. For homoatomic clusters, the sum runs 

ver all the neighbors within the cutoff sphere around atom i and 

he G 

r 
i 

functions incorporate purely geometrical information. In the 

ase of binary nanoalloys (formed by A and B chemical species), 

eparate radial functions are defined for A − A , A − B and B − B dis-

ance distributions in order to incorporate chemical ordering infor- 

ation as well. 

Describing just the radial distribution of the atoms is not suf- 

cient to obtain a suitable fingerprint of the atomic environment. 

 description of the angular distribution of the neighbors of atom 

 is accomplished by employing the following angular symmetry 

unctions: 

 

θ
i = 2 

(1 −ζ ) 
∑ 

j,k � = j 
(1 + λcosθi jk ) 

ζ e −η(r 2 
i j 
+ r 2 

ik 
+ r 2 

jk 
) f c (r i j ) f c (r ik ) f c (r jk ) , 

(4) 

here θi jk is the angle conformed by the atomic triplet (i; j; k), η
etermines again the width of the gaussian functions, and λ = ±1 
3 
s used to invert the shape of the cosine function for an improved 

ensitivity at different values of θi jk . When dealing with binary 

anoalloys, separate angular functions are employed to distinguish 

he chemical nature of the two neighbors of atom i in each triplet 

i; j; k). Therefore, there are three different versions of each G 

θ
i 

unction, as the (j; k) neighbors of a given triplet can be of AA , AB

r BB types. 

All the parameters appearing in these functions, as well as 

he total number of symmetry functions employed, must be cus- 

omized beforehand to accurately characterize the cluster struc- 

ures. Using too few of these functions would result in an incom- 

lete description of the structural and chemical environment and, 

hus, to a poor relationship between descriptors and targets. On 

he other hand, the set of symmetry functions should also be kept 

s small as possible to increase the computational efficiency of the 

raining and testing stages. One should in particular avoid that dif- 

erent symmetry functions are linearly related. 

It is interesting to compare the structural information content 

f our local descriptors to that of global descriptors such as the 

oulomb matrix [48–50] , which essentially compiles the pair dis- 

ances r i j between all atoms in the molecule. Therefore, in the 

imit of long enough cutoffs, the structural information contained 

n our radial descriptors for atom i is essentially the same as that 

n the i th row of the Coulomb matrix. However, in global descriptor 

ethods [48–50] it is the whole Coulomb matrix that is fed into 

he machine learning code in a single step, while in our local ap- 

roach we are feeding, so to say, each row of that matrix at a time.

he consequence is that, while the Coulomb matrix implicitly con- 

ains complete angular information, we have to separately add that 

nformation through the angular local descriptors, which parallels 

he inclusion of 3-body terms in a cluster expansion. We demon- 

trate below that the accuracy of our fitting is of the same quality 

s that obtained with recent methods based on the Coulomb ma- 

rix descriptor [50] , even if our training set contains a wide vari- 

ty of system sizes and compositions and thus represents a much 

ore stringent transferability test. This finding demonstrates that 

-body and 3-body interactions, together with the non-linearity of 

he NN, suffice to faithfully represent the metallic nanoalloys con- 

idered in this paper. This is a very interesting conclusion because 

ith the local method we can fit a single potential for arbitrary 

izes and compositions, as explained above. Another advantage of 

he local descriptors is that they are easily generalized to deal with 

hemical order in nanoalloys, by simply replicating the descriptors 

or each possible pair or triplet of atoms in the nanoalloys. 

.2. Architecture and training of the neural network 

Both the number of hidden layers and the number of nodes in 

ach layer are set by the user, and together define the size of the 

eural network. All of the signal values in a given layer k are col- 

ected in a vector array X k . The signals evolve from a given layer

o the next one in a feed-forward way, according to the equation: 

 k +1 = σ (X k W k,k +1 + B k +1 ) , (5) 

here W k,k +1 is the matrix of weights that connects the nodes be- 

ween layers k and k + 1 , B k +1 is a bias term and σ is the non-

inear activation function which builds up the signals of the k + 1 

ayer. All matrices and vector arrays are real-valued, and only the 

ignal in the input layer must be provided by the user. 

The activation function employed in our work is the Swish 

unction [52] , σ (x ) = 

x 
1+ e −x , except for the output layer where a 

inear function was used. Swish belongs to the family of rectifier 

unctions, whose distinguishing feature is to be unbounded, as op- 

osed to many previous implementations which relied on bounded 

igmoid functions. We found rectifiers to produce a more accurate 
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tting to the ab initio data in the training stage (see below), as 

ompared to sigmoids such as the hyperbolic tangent function (see 

able S1 in the ESI which compares the performance of different 

ctivation functions). Our observation is in line with the known 

uperiority in performance of Swish over sigmoids in regression 

roblems [52–54] . 

The optimal values for the several weight matrices and bias ar- 

ays are obtained by training the Neural Network to match the ab 

nitio values of energies and forces calculated on a large data set 

f cluster structures. This is done by minimizing, in a least-squares 

ense, the value of the following cost function (or objective func- 

ion): 

= 

1 

2 M 

M ∑ 

k 

[ (
E DF T 

k 
− ̂ E k 

N k 

)2 

+ ε
N k ∑ 

l 

3 ∑ 

α

(
F DF T 

k,lα
− ̂ F k,lα

3 N k 

)2 
] 

, (6) 

here M is the training set size (in our case the number of cluster 

tructures included in the training set), N k the size of cluster k in 

he data pool, and ε a scaling factor (set to 0.05) used to obtain 

alanced relative errors in energies and forces. The NN energy of 

tructure k , ̂ E k , is given by the sum of the individual atomic con- 

ributions E k,i as stated by the Behler-Parrinello approach ( Eq. (1) ). 

he NN force on atom l of structure k is then obtained as: 

 

 k,lα = − ∂ ̂  E k 
∂r k,lα

= −
N k ∑ 

i 

∂E k,i 

∂r k,lα
= −

N k ∑ 

i 

M s ∑ 

s 

∂E k,i 

∂G i,s 

∂G i,s 

∂r k,lα
, (7) 

here M s is the number of symmetry functions associated with 

tom l of cluster k , and α denotes the cartesian direction. Thus, 

he force on atom l depends on 

∂E k,i 

∂G i,s 

, that is the derivative of the 

utput layer value with respect to the symmetry functions in the 

nput layer, and on 

∂G i,s 

∂r k,lα
, that is the derivatives of the symmetry 

unctions with respect to the cartesian coordinates. Both terms are 

btained analytically, which makes our code computationally very 

fficient. Full details about the analytic forces are provided in the 

SI. Notice that the atomic forces are not explicitly provided by the 

utput layer of the NN (as they can be analytically obtained from 

he atomic energies in the output layer), yet they are included in 

he cost function to explicitly train the NN towards accurate forces 

s well. 

The minimization of the cost function � is afforded by em- 

loying the Nadam algorithm [55,56] , a gradient descent method 

hat exploits the first- and second-order moments of the gradients 

o improve computational performance and stability, based on the 

eliable Adam [57] algorithm. The gradients of � with respect to 

he weights and biases appearing in Eq. (5) , needed by Nadam, are 

alculated with the backpropagation algorithm [58] . An important 

echnical point here is the rate at which the cost function is up- 

ated, as it significantly impacts the efficiency and accuracy of the 

inimization problem. In NN jargon, the evaluation of the whole 

ataset once is called an epoch. In the so-called batch gradient de- 

cent, the weights and biases are updated after one epoch, pro- 

ucing a relatively smooth error surface, but being very slow and 

equiring a lot of memory for large data sets. In stochastic gradi- 

nt descent, one updates the variables after evaluating each indi- 

idual in the training set. Being the fastest update rate, it results 

n a noisy gradient, but notice that some noise is not necessarily 

armful since it helps the algorithm in escaping from shallow local 

inima. A good compromise is the mini-batch gradient descent, 

hich updates the weights based on a small subset of individuals 

32, 64 or 128 are typical choices in parallel computations). After 

ne epoch, these subsets (or mini-batches) are randomly reselected 

rom the whole data set. This way the gradients are more robust 

ompared to stochastic gradient descent while having some white 

oise. This is the particular implementation used in our work, with 
4 
 mini-batch size of 64 individuals. Other technical details are ex- 

lained in the ESI. 

A final important point concerning the training stage is the 

topping criterion, which should take into consideration the bias- 

ariance tradeoff problem [59,60] . Our code randomly divides the 

ata set provided by the user into two parts: 90% of the structures 

o to the training set on which the cost function � is evaluated; 

he remaining 10% is used as a testing set, containing data which 

re not explicitly used to train the NN. The training process is con- 

inued until the cost function error on the test set is minimal, a 

rocedure known as early stopping method. This strategy aims to 

inimize both the bias and variance errors, so that both under- 

nd over-fitting problems are avoided. The final error of this train- 

ng strategy will mostly be of an irreducible type, i.e. one that can 

ot be significantly reduced by increasing the complexity of the 

N of by running the minimization for a longer time. In fact, the 

rreducible error faithfully represents the inherent noise of the fit- 

ing, due for example to a sparse data set or, more importantly, 

o the non-existence of a deterministic relationship between in- 

uts and targets. It can only be reduced by the user (not by the 

achine) by providing more explicit data or more appropriate de- 

criptors in the input layer. 

.3. Symmetry issues 

In a recent report, Chmiela et al. [49] have developed the 

GDML model, a gradient-domain machine learning force-field that 

akes explicit use of symmetries in order to reduce the size of the 

raining set and also to improve the accuracy and efficiency of cal- 

ulations performed on high-symmetry molecules. In our current 

mplementation of the neural network, we have not explicitly ex- 

loited symmetry in order to improve the efficiency of the energy 

alculations. It just turns out that the great majority of geometries 

ampled during a global optimization run on Zn-Mg nanoalloys 

ave no rotational symmetries (i.e. most of them have C 1 point 

roup), so computational savings would not be substantial for the 

articular target system in this paper. For more symmetric systems, 

he point-group symmetry could be exploited by feeding the in- 

ut layer of the NN with just one atom from each symmetry orbit, 

hus reducing the explicit number of atomic energy calculations. In 

ffect, two atoms equivalent by symmetry must have equal contri- 

utions to the total energy, and their force vectors must be related 

y a group operation. This improvement might be implemented in 

uture versions if considered worthwhile. 

Notwithstanding this computational efficiency issue, our code 

atisfies many symmetry properties by construction, and so ac- 

ounts for all relevant effects associated to symmetry, as the 

GDML model does. For example, homogeneity and isotropy of 

pace imply that the total energy of an isolated system must be 

nvariant against global translations and rotations of the system. 

his is ensured by construction in our code, as the local descrip- 

ors depend only on pair distances or triplet angles, both quan- 

ities being independent on the coordinate system. Similarly, our 

N force-field is conservative by construction, i.e. it will satisfy the 

onservation of the total energy of an isolated system during its 

ime evolution if used in MD simulations, because the exact con- 

istency relations between energies and forces is analytically en- 

ured (see previous section). Finally, the physical effects of point- 

roup symmetry will be captured also by construction of our local 

escriptors: in effect, two atoms that are equivalent by symmetry 

ill have exactly the same set of local descriptors, and so the code 

ill assign exactly the same atomic energy to both of them, and 

orces which are related by the corresponding group operation. 

The authors of the sGDML model take advantage of 

ermutation-inversion symmetries to reduce the size of the 

ata set and thus optimize the cost of the training process. In 
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Fig. 1. Flow diagram summarizing our training protocol. See the main text for full 

details about each different step of the process. 

e

b

e

q

w

t

W

t

d

t

i

c

s

i

2

a

t

f

t

t

c

l

v

h

l

i

3

t

r

f

c

m

I

p

p

(

Z

s

c

t

N

e

i

t

c

n

u

r

b

r  

o

c

w

P

p

e  

c

p

c

N

a

H

r

Z  

n

p

m

n

s

d

t

t

s

t

c

p

c

r

v  

M

t

o

s

t

s

s

F

h

w

T  

w

r

ffect, permutations of identical atoms define physically equivalent 

ut different local minima on the PES, and there is no point in 

xplicitly sampling two equivalent basins. Similarity of isomers is 

uantified through their euclidean distance, properly minimized 

ith respect to permutation-inversion operations, which requires 

he use of bi-partite and multi-partite matching techniques [49] . 

e have also considered similarity of isomers when building our 

raining data set, with the same goal of defining a training set that 

oes not contain duplicate or too similar structures. We have done 

his with a less elaborate, home-built, similarity indicator, which 

s invariant to permutation-inversion operations thus avoiding the 

omplications inherent to the euclidean distance measure. This 

imilarity indicator is described in the ESI. 

A flow diagram summarizing the major milestones of our train- 

ng protocol is offered in Fig. 1 . 

.4. Application to Zn-Mg nanoalloys 

We employ a total of 70 symmetry functions (both radial and 

ngular) in the input layers of the two different Neural Networks 

hat deal with Mg and Zn atoms, respectively (details of these 

unctions are provided in the ESI). This number of symmetry func- 

ions was optimized through a careful correlation analysis in order 

o reduce the number of redundant descriptors, that is, we dis- 

arded those which in our initial descriptor set had a large corre- 

ation with descriptors already considered. 

We have generated two different NN potentials, in order to pro- 

ide a larger amount of plausible low-energy structures, i.e. to en- 

ance structural diversity. Both Neural Networks have three hidden 

ayers, but different architectures: 70 × 40 × 20 × 10 × 1 (amount- 

ng to 3881 adjustable parameters) in the first one, and 70 × 45 ×
0 × 20 × 1 (5216 parameters) in the second one. Those architec- 

ures were selected since they provide sufficient accuracy without 

esulting in over-fitting. 
5 
We have implemented our NN potentials into a module of the 

reely available GMIN code [61] . We use this program to dynami- 

ally enlarge the size of our data set during an iterative and auto- 

ated training process involving Basin Hopping (BH) runs [10,11] . 

n each iteration, the currently fitted NN force field samples the 

otential energy surface of the nanoalloy through BH runs, com- 

rising 350 0 0 steps and including both random and swap moves 

those that exchange the chemical identity of a randomly chosen 

n-Mg pair of atoms). We then feed the data set with the new 

tructures that the NN predicts, which involves single-point DFT 

alculations on those new structures, and start a new training on 

he enlarged dataset. During the initial iterations, i.e. when the 

N is not yet sufficiently trained, we found that it easily tends to 

xplore areas of the potential energy surface not covered by the 

nitial data set. In other words, the NN extrapolates , thus failing 

o provide reliable structures. With relatively short BH runs one 

an easily check the quality of the current NN potential and find 

ew relevant structures to feed the data set. This loop is contin- 

ed until extrapolation is no longer observed and the NN produces 

easonable structures. Notice that global optimization runs are to 

e preferred over other options such as short molecular dynamics 

uns, as our ultimate goal is to use the NN force field in a global

ptimization aimed to locate the global minimum structure of a 

luster or nanoalloy, and for that we need global accuracy in the 

hole PES, rather than extensive sampling of local regions of the 

ES. 

The initial data set was built upon the structures provided in 

revious works on Zn-Mg nanoalloys [43,44] . It was dynamically 

nlarged as explained above up to a final size of 490 0 0 nanoparti-

les in the size range between 4 and 100 atoms, containing both 

ure Zn and Mg, and (mostly) Zn-Mg nanoalloys of all possible 

omposition ratios and with different chemical orderings. The final 

eural Network potentials were fitted to reproduce both energies 

nd forces on this huge, DFT-quality, data set. 

With the two resulting NN potentials, we performed a Basin 

opping global optimization search for Zn-Mg nanoalloys of sizes 

anging from 6 to 52 atoms and stoichiometries corresponding to 

n 2 Mg and Zn 11 Mg 2 . We performed 20 0 0 0 0 BH steps for each

anoalloy for each of the two different potentials. BH moves com- 

rised either a random change of the atomic coordinates or a swap 

ove, the latter amounting to a 20% of the total BH moves. If 

o lower energy structure is identified during 10 0 0 0 consecutive 

teps, the cluster structure is re-seeded to a random one in or- 

er to enhance the sampling. A total amount of around 100 struc- 

ures (the most stable ones) was saved from both potentials af- 

er removing duplicates in the two lists. The resulting list of 100 

tructures was then relaxed at the Kohn-Sham density functional 

heory (KS-DFT) level by using the SIESTA code [62] . Exchange- 

orrelation effects were treated within the generalized gradient ap- 

roximation of Perdew, Burke and Ernzerhof (PBE) [63] , and norm 

onserving pseudopotentials [64,65] including non-linear core cor- 

ections [66] were used to represent core-valence interactions. The 

alence active space includes 3 d 10 4 s 2 electrons for Zn, and 3 s 2 for

g. The size of the basis set was double-zeta plus two polariza- 

ion orbitals (DZP2). The clusters were placed in a cubic supercell 

f 30 ̊A of side. The reliability of this SIESTA setup has been demon- 

trated in our previous works (the single-point ab initio calcula- 

ions needed during the training stage were performed with the 

ame setup). The structures were relaxed without geometry con- 

traints until the force on each atom was smaller than 0.01 eV/ ̊A. 

inally, for the best structure obtained after DFT relaxation, an ex- 

austive homotopic search was performed with the Neural Net- 

ork potential in order to better sample the chemical ordering. 

his was accomplished through a BH search of 20 0 0 0 0 steps and

ith only swap moves. The best configurations found were then 

elaxed again with SIESTA. 
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Table 1 

Mean absolute errors in cohesive energy E coh (in meV/atom) and 

atomic forces (in eV/ ̊A) on the train and test sets for the two Neu- 

ral Network potentials. 

NN with 3881 parameters NN with 5216 parameters 

Train set Test set Train set Test set 

E coh 10.80 11.73 8.63 9.97 

Force 0.14 0.14 0.14 0.15 
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Fig. 2. Putative GM structures and approximate point group symmetries of Zn 2 Mg 

nanoalloys with N = 6 − 27 atoms. Brown and golden spheres represent Zn and Mg 

atoms, respectively. For some clusters, we add in brackets the point group of the 

corresponding homo-atomic cluster in order to better appreciate the symmetry of 

the atomic skeleton. 

Fig. 3. Putative GM structures and approximate point group symmetries of Zn 2 Mg 

nanoalloys with N = 30 − 51 atoms. Rest of the caption as in Fig. 2 . 

Fig. 4. Putative GM structures and approximate point group symmetries of Zn 11 Mg 2 
nanoalloys with N = 13 − 52 atoms. Rest of the caption as in Fig. 2 . 
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a

. Results and discussion 

.1. Quality performance of the neural network 

Table 1 shows the quality of the fit of our two Neural Network 

otentials. Specifically, the table displays mean absolute errors 

MAE) in cohesive energy (binding energy per atom) and forces in 

oth training and testing sets. The cohesive energy of a nanoal- 

oy with N atoms is defined as E coh (N) = (E ( Mg ) N Mg + E ( Zn ) N Zn −
 N ) /N, where E N is the energy of the nanoalloy formed by N Mg 

nd N Zn Mg and Zn atoms, whose atomic energies are E( Mg ) and 

( Zn ) , respectively. 

The energetic MAE of both NN’s is around 10 meV/atom ≈ 1 

J/mol, an error size usually considered as representative of chem- 

cal accuracy . This means that both NN’s reproduce PBE energies 

ithin an error that is already smaller than the inherent error of 

BE functional in reproducing experimental cohesive energies of 

etals [67] , which suggests the NN potentials are as accurate as 

ne may wish them to be (there is no point in requiring a NN fit-

ing error significantly smaller than the inherent error of the ab 

nitio reference data) and, in particular, justifies the additivity as- 

umption ( Eq. (1) ). The MAE of the forces, around 0.15 eV/ ̊A, is

lso very small as we have checked that forces of that magnitude 

re induced by atomic displacements of around 0.04 Å, so the ge- 

metries predicted by the NN will be very accurate. We addition- 

lly notice that the second NN, while containing around 35% more 

djustable parameters than the first one, improves the MAE by a 

ere 1%, so we conclude that both NN’s are similarly accurate, and 

hat the error can no longer be substantially reduced by increasing 

he complexity of the neuronal connections. We believe it is safe to 

onclude that the remaining error is mostly of an irreducible type. 

onsidering the dynamical adjustment of the training set size em- 

loyed in our work (see previous section), the irreducible error can 

ot be significantly improved by increasing the size of the train- 

ng set. It could only be improved by providing additional physi- 

al descriptors in the input layer. Right now, the NN is trying to 

orrelate the energy contribution of a given atom with the local 

eometric and chemical environments of that atom. However, the 

tability of metal clusters is well known to be additionally influ- 

nced by electronic shell effects (associated with the discrete na- 

ure of the electronic eigenvalue spectrum of finite systems), which 

re more dependent on global properties such as the cluster shape, 

han on local atomic descriptors. It is plausible that including such 

lobal descriptors explicitly in the input layer would further dimin- 

sh the fitting error. Nevertheless, our results show that local de- 

criptors suffice for this particular nanoalloy. As an additional accu- 

acy check, we demonstrate in the ESI that our Neural Network po- 

ential clearly outperforms the empirical Coulomb-corrected Gupta 

otential developed in a previous work [44] in proposing better 

andidate structures for DFT reoptimization. 

.2. Putative global minimum structures of ZnMg nanoalloys with 

ominal compositions Zn 2 Mg and Zn 11 Mg 2 

The putative GM structures located in this work are shown 

n Figs. 2, 3 and 4 . In general, their skeletal geometries coincide 
6 
ith those of the pure Zn atomic clusters [7] . Zn 4 Mg 2 is con-

ormed by 2 tetrahedral units sharing one edge. The GM structure 

f Zn 6 Mg 3 is a tri-capped trigonal prism (TTP), and all nanoalloys 

ith N = 12 − 15 atoms are obtained by adding atoms to that TTP 

nit. The first structure with an internal core atom is Zn 12 Mg 6 , and

s based on a distorted 13-atom decahedron with adatoms capping 

ts square facets, the distortions increasing the coordination num- 

er of some adatoms. The GM structure of Zn 14 Mg 7 is based on 

 C 3 twisted pyramid with a dangling atom attached to one of its 

orners, an exotic structure also found for Zn 21 [7] . From this size 

n, the GM structures tend to be more amorphous-like due to the 

ize-mismatch between the two atomic species, although many of 

hem locally display a recognizable tendency towards decahedral 

acking (with the orientations chosen in the figures, decahedral 

nits can be visually appreciated in clusters with 30, 36, 39 and 

1 atoms, for example). Notable exceptions to this general trend 

re Zn Mg and Zn Mg , which are poly-tetrahedral structures 
18 9 33 6 
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omposed of icosahedral and Frank-Kasper polyhedral units. The 

umber of core atoms obviously increases with cluster size: two 

ore atoms first appear at size N = 26 , and the bigger clusters con-

idered here have 8 core atoms. 

Next we describe the chemical ordering trends. There are three 

mportant factors that conjointly determine the tendency towards 

egregation or mixing in Zn-Mg nanoalloys: (1) the bulk cohesive 

nergy of Mg is 12% larger than that of Zn. Assuming that the rel-

tive strength of Mg-Mg and Zn-Zn bonds is maintained in the 

anoalloys, this factor would tend to maximize the number of Mg- 

g bonds, and so would favor Mg@Zn segregation; (2) however, 

nteratomic distances in bulk Mg are around 30% longer than in 

ulk Zn. In order to minimize bond strain, the small element tends 

o segregate to the cluster core, so this factor alone would favor the 

pposite Zn@Mg segregation. The observation that energetic and 

teric effects oppose each other already suggests that segregation 

rends are not clear; (3) finally, charge transfer effects introduce 

n ionic bonding component that tends to maximize the number 

f Zn-Mg bonds and thus promotes mixing. In order to quantify 

he degree of mixing, we have evaluated the following indicator 

or each of the GM structures: 

p mix = 

N AB − N 

m 

AB 

N 

M 

AB 
− N 

m 

AB 

, (8) 

here N AB is the number of Zn-Mg bonds. N 

M 

AB 
and N 

m 

AB 
are respec- 

ively the maximum and minimum values that N AB can take for 

hat particular frozen nuclear skeleton. These two last numbers are 

btained from swap-only BH runs without allowing for structural 

elaxation. The parameter thus defined is normalized between zero 

nd one, with a value p mix = 1 indicating the maximum degree of 

ixing that a given nuclear skeleton allows; the value p mix = 0 , 

n the contrary, is associated with left-right segregated structures, 

isplaying an interface separating pure zinc from pure Mg sides. 

he calculation of this indicator demonstrates that most of the 

M structures found for the Zn 2 Mg composition are indeed maxi- 

ally mixed, and in any case all of them have p mix > 0 . 9 . Regard-

ng the Zn 11 Mg 2 composition, all GM structures have p mix > 0 . 8 .

hus, concerning chemical order, the dominant building rule for 

nMg nanoalloys is to maximize mixing. This is achieved, as seen 

n the figures, by preferentially placing the minority component 

g atoms in cluster sites with a higher coordination number, but 

t the same time avoiding as much as possible direct Mg-Mg con- 

acts. More in detail, we have checked that the shell of ZnMg 

anoalloys tends to be well triangulated, each surface site being 

onnected to either 5, 6 or 7 surface sites. With very few excep- 

ions, all of the 5-fold sites are occupied by Zn atoms, while Mg 

toms occupy the 6-fold and 7-fold sites. This is a strong trend 

ommon to all clusters considered in this paper, although is some- 

imes incompatible with the global 2:1 composition ratio. For ex- 

mple, we have observed that a Mg atom may occupy a 5-fold site 

n the shell of Zn 2 Mg nanoalloys when occupation of any of the 

emaining 6-fold or 7-fold sites would imply the creation of a Mg- 

g bond. 

The main secondary factor that competes with the maximal 

ixing rule seems to be steric in nature. In effect, the internal 

ore sites tend to be under a high compressive stress for most 

f the atomic packings usually observed in small clusters, and oc- 

upying them with the bigger Mg atoms would result in a less 

ense atomic packing because of the size mismatch effect, thus de- 

reasing the cluster stability. Additionally, the coordination volume 

round internal sites is smaller for Zn-richer compositions. There- 

ore, the first Mg core atom for the Zn 11 Mg 2 nanoalloys is not ob-

erved until size N = 52 . This is clearly the reason why Zn 11 Mg 2 
anoalloys do not achieve a p mix = 1 value, even if the Mg atoms

onsistently occupy well separated surface sites with the maxi- 

um possible surface coordination: the mixing could only increase 
7 
f more Mg atoms were at core sites. The same trend operates 

or the 2:1 composition although is relatively less important there. 

o summarize, there is a slight Mg-enrichment (beyond the nom- 

nal composition) of the surface in Zn-Mg nanoalloys, enforced by 

he size mismatch effect, that com petes with the maximal mixing 

rend. The two factors together consistently explain the detailed 

hemical ordering trends in these nanoalloys. 

Bulk MgZn 2 crystallizes in one of the AB 2 Laves phases, which 

re notorious by a number of reasons. The three simplest Laves 

hases, occurring for MgCu 2 (cubic C15 phase), MgZn 2 (hexago- 

al C14 phase) and MgNi 2 (hexagonal C36 phase), are tetrahe- 

rally close-packed structures where the interstices are exclusively 

etrahedral. They are all obtained by packing Frank-Kasper coor- 

ination polyhedra [68] , and differ just in the stacking sequence 

f those polyhedral units. The coordination number (CN) of the 

maller Zn atom is 12, and its coordination polyhedron is an icosa- 

edron formed by 6 Zn and 6 Mg atoms; CN = 16 for the larger Mg

tom, and its coordination polyhedron is a Z16 Frank-Kasper poly- 

edron formed by 12 Zn and 4 Mg atoms. Given the importance of 

aves phases in many materials processes an in particular in corro- 

ion problems [68] , it is interesting to analyze to what extent the 

mall clusters studied in this paper have developed the bulk-like 

roperties of the Laves phases. 

To start with, we have explicitly checked that p mix = 1 for both 

ubic and hexagonal bulk Laves phases, so at least concerning this 

lobal tendency towards a maximally mixed chemical ordering, 

ven the smallest MgZn 2 nanoalloys are already bulk-like. Another 

imilarity between nano- and bulk alloys is the larger total coor- 

ination number of Mg atoms as compared to Zn atoms, as ex- 

lained in the previous paragraphs. In particular, the total coordi- 

ation numbers of core atoms are already close to bulk values: on 

verage, we find CN = 11 for Zn core atoms and CN = 15 for Mg core

toms in most cases, although there are a few examples where 

he bulk CN values are strictly recovered. The very small clusters 

ere considered are thus slightly less compactly packed as com- 

ared to the bulk limit. We also observe that the first coordination 

ayer around internal atoms tends to contain similar numbers of 

n and Mg neighbors around Zn, but a substantially larger num- 

er of Zn atoms around Mg. Concerning the coordination polyhe- 

ra surrounding internal atoms, these tend to be different to those 

n the bulk Laves phase, mainly because most of the clusters are 

till based on distorted decahedral packing, which is different and 

ess dense than the poly-tetrahedral packing realized in the bulk. 

evertheless, at least for the special Zn 18 Mg 9 and Zn 33 Mg 6 clus- 

ers, which are based on poly-tetrahedral packing, the coordina- 

ion polyhedra are indeed distorted versions of their bulk counter- 

arts (see Fig. 5 ), the distortions being expected due to the surface 

ounding and relaxation effects. Other distinguishing structural fea- 

ures of the bulk phases are of a longer spatial range and can not 

e realized in small clusters. For example, there is no possible dis- 

inction between C14, C15 and C36 phases as there are not yet 

nough polyhedral units to define a stacking sequence. Similarly, 

he compositional layering observed in the bulk is hard to appreci- 

te in these very small systems, although at least Mg 15 Zn 30 shows 

lear signatures of alternating stacked Zn/Mg sheets. In summary, 

e conclude that there are significant similarities in the short- 

ange structural descriptors of cluster and bulk systems. 

.3. Electronic properties of Zn 2 Mg nanoalloys 

We have evaluated the vertical ionization potential (IP) and 

lectron affinity (EA) of all GM structures through a �−SCF cal- 

ulation, i.e. by explicitly calculating the cation or anion state at 

he optimal geometry of the neutral cluster and taking the corre- 

ponding total energy differences. We have additionally computed 

he fundamental gap, defined as E = (IP-EA), which is twice the 
GAP 
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Fig. 5. The top row compares the coordination polyhedron of the internal Zn atom 

in Zn 18 Mg 9 with a perfect Z12 polyhedron, i.e. an icosahedron. The bottom row 

shows the corresponding comparison between the coordination polyhedron of the 

internal Mg atom in Zn 18 Mg 9 and a perfect Z16 Frank-Kasper polyhedron. 
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Fig. 6. Electronic stability indicators of Zn 2 Mg nanoalloys. Standardized vertical 

ionization energy, electron affinity and fundamental gap as a function of cluster 

size N (lower scale) or the number of electrons N e (upper scale) are shown. 
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hemical hardness. These three quantities are taken as indicators of 

lectronic stability: large gap values identify those clusters that are 

ore stable against both oxidation and reduction processes and, 

s such, display an enhanced electronic stability; also a large IP or 

 low EA are indicative of a particularly stable configuration due 

o the reluctance to releasing or accepting one electron, respec- 

ively. According to a simple Jellium picture of delocalised elec- 

rons [69,70] , it is the electronic stability that drives the thermody- 

amic stability of the cluster, and clusters displaying an electronic 

hell closing are thus expected to be particularly stable. The spher- 

cal Jellium model predicts these electronic shell closings to oc- 

ur for metallic clusters with N e = 8 , 20 , 34 , 40 , 58 , 68 − 70 , 92 , · · ·
lectrons. Jellium models allowing for ellipsoidal deformations of 

he confining ionic potential predict additional (sub-shell) clos- 

ngs due to the splitting of angular momentum multiplets in a 

on-spherical potential. Now, considering that Zn and Mg atoms 

re both divalent, the number of delocalized electrons increases in 

teps of 6 along the Zn 2 Mg series, and in steps of 26 along the

n 11 Mg 2 series, so none of the N e values associated with a spheri- 

al electronic shell closure occurs in our cluster sample. Moreover, 

he non negligible ionic contribution to bonding associated with 

harge transfer causes Zn-Mg nanoalloys to slightly deviate from 

 pristine jellium picture, as shown in our previous work [44] . All 

aken together, it can make it hard to discern marked features in 

he size evolution of the electronic indicators. 

As usual in small metal clusters, the IP displays a globally de- 

reasing trend as a function of size (meanwhile the EA shows an 

ncreasing envelope), which is steeper for smaller sizes. The slope 

f these indicators allows to identify two different size ranges con- 

erning the electronic properties. The ionization potential, for ex- 

mple, steeply decreases from around 6.5 eV to 5 eV in the N = 

 − 30 size interval, and then stabilizes by decreasing at a much 

lower pace. In our previous studies on pure zinc clusters [6,7] , we 

nalyzed the evolution of metallicity and found that while most 

lusters with N ≥ 25 − 30 already display typically metallic bond- 
8 
ng, for smaller clusters metallicity is still poorly developed. In this 

ense the Zn-Mg nanoalloys behave similarly to the pure zinc clus- 

ers. In the regions with a globally steep slope, it is difficult to 

dentify local features in those electronic indicators, so for optimal 

isualization we have decided to remove their global size evolution 

y fitting the data to a cubic polynomial function, and subtract- 

ng from the data series the resulting fit; then, we have shifted 

he mean value of the trendless data to zero and divided them 

y the standard deviation of the data set. The resulting “standard- 

zed” data are dimensionless and are shown for Zn 2 Mg nanoalloys 

n Fig. 6 , while the raw data are provided in Fig. S2 in the ESI. 

Although none of the clusters has the number of electrons re- 

uired for a spherical shell closing, the results can be shown to ac- 

ommodate quite well to jellium expectations by focusing on those 

luster sizes that bracket an electron shell closing. The EA, to start 

ith, is consistently higher than average just before (and lower 

han average just after) the main electronic shell closings, which 

xplains all of the sudden drops in that curve. For example, the EA 

s very high for Zn 12 Mg 6 and low for Zn 14 Mg 7 , these two clusters

racketing the shell closing occurring for N e = 40 electrons. Sim- 

larly, one would expect substantial IP drops after each electron 

hell closing, but those drops only occur in clusters with a well 

eveloped metallicity, specifically at cluster pairs bracketing the 

 e = 58 , 70 , 92 shell closings. Meanwhile, the IP drop at N e = 40 is

ery weak, and upon crossing the N e = 20 shell closing the IP even

ncreases. This peculiar behavior has been explained in our previ- 

us works on pure zinc clusters [6,7] : it is related to the presence

f low-coordinated adatoms and to the coexistence of insulating 

nd metallic bonding contributions within a single cluster, features 

hat obviously depart from a jellium picture of delocalized elec- 

rons. Zn 14 Mg 7 , for example, displays a low-coordinated adatom 

ttached to the corner of a 20-atom twisted pyramid. The pyra- 

id itself is a superatom with 40 valence electrons, but the two 

dditional electrons in Zn 14 Mg 7 form a lone pair on the adatom 

ather than contributing to the jellium sea of delocalized electrons 

69,70] . This way, the cluster avoids the occupation of very unsta- 

le delocalized orbitals and keeps a high IP value beyond the elec- 

ronic shell closing. 

The fundamental gap results from the delicate balance between 

he IP and EA values. The gap should be locally maximum at an 
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Fig. 7. Size dependent stabilities of Zn 2 Mg nanoalloys as a function of the total 

number of atoms N (lower scale) or the total number of electrons N e (upper scale). 

The upper graph shows the cohesive energies as standardized dimensionless quan- 

tities (see Fig. S3 in the ESI for the absolute cohesive energy values). The middle 

graph shows the energy cost of evaporating (or dissociating) a Zn 2 Mg trimer. Fi- 

nally, the lower graph displays the second-order energy differences. 
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lectronic shell closing, but its behavior around the shell closing is 

ot clear in advance. In the N ≥ 25 metallic region, the drop in the 

A upon crossing a shell closing tends to damp the effect of the 

orresponding drop in the IP, so the fundamental gap is compara- 

ively featureless in that region. Around N e = 58 , for example, the 

rop in the IP is stronger than the drop in the EA, so a weak drop

s observed in the gap; around N e = 92 , on the contrary, the drop

n the EA is stronger so we observe an increase in the gap. In the

mall size regime with N ≤ 25 , the electron localization effects on 

he IP, described in the previous paragraph, explain the steepest in- 

reases in the gap, occurring precisely at the N e = 20 and N e = 40

hell closings. 

There is a secondary magic number, predicted by ellipsoidal jel- 

ium models and observed in many metal clusters, that is exactly 

ealized in the Zn 2 Mg series. This is the 15-atom nanoalloy con- 

aining 30 electrons, which according to the deformable jellium 

odels should be a marked magic number induced by a prolate 

hape. In effect, the structure of Zn 10 Mg 5 contains two stacked TTP 

nits resulting in a strong prolate deformation, and it displays a lo- 

al maximum in both the IP and the gap. 

In conclusion, the main variations in the electronic indicators 

f Zn 2 Mg nanoalloys conform to general expectations about sys- 

ems with delocalized electrons, even if none of the clusters has 

he right number of electrons to produce a spherical shell closing. 

ome care has to be taken for a few clusters due to electron lo- 

alization effects (in lone pair orbitals), as this affects the proper 

ounting of delocalized electrons in the system. 

.4. Stabilities of Zn 2 Mg nanoalloys 

We analyze the size dependence of cluster stabilities for Zn 2 Mg 

anoalloys through 3 different indicators, shown in Fig. 7 : the co- 

esive energy E coh (defined previously) provides an absolute mea- 

ure for the cluster global stability, as it quantifies the total in- 

ernal energy content stored in the chemical bonds; the evapora- 

ion energy E evap is here defined as the energy required to dis- 

ociate a Zn 2 Mg formula unit, so it quantifies the stability with 

espect to a particular fragmentation channel; finally, the second- 

rder energy difference is defined as �2 (N) = E N−3 + E N+3 − 2 E N =
9 
 evap (N) − E evap (N + 1) . Both E evap and �2 provide more “local”

tability measures in comparing the energy of a cluster of size 

with its adjacent neighbors at N − 3 and N + 3 . In particular, 

2 estimates the difference between the evaporation rates of two 

eighboring cluster sizes in an evaporative ensemble, so this indi- 

ator correlates with the cluster populations determined by mass 

pectrometry on free-standing cluster beams. There are no exper- 

mental studies on Zn 2 Mg nanoalloys as far as we know, and ob- 

iously there is no evidence that evaporation of a Zn 2 Mg trimer is 

he dominant fragmentation channel, yet we have found it useful 

o consider these indicators to discuss cluster stability at a theo- 

etical level. Our �2 (N) values are expected to correlate with true 

bundances in an evaporative ensemble of Zn 2 Mg nanoalloys as- 

uming that trimer evaporation is the dominant channel. Notice 

hat the three indicators provide related but different information: 

n particular, the more stable clusters (as determined by the cohe- 

ive energy) do not need to coincide with the more abundant sizes 

as determined by �2 ). 

As with the electronic properties discussed in the previous sec- 

ion, the analysis of stabilities is slightly complicated by the fact 

hat the N e scale is quite sparse along the Zn 2 Mg series, and also 

ue to the re-entrance of localized molecular orbital states right 

fter the main electronic shell closings. As shown in our previous 

orks on zinc clusters [6,7] , occupation of those localized orbitals 

mounts to a temporary departure from the usual jellium filling 

attern, which slightly delays the opening of a new electronic 

hell. The main effect on stabilities is that clusters with N e + 2 

lectrons (with N e a spherical shell closing) tend to be more stable 

han clusters with N e − 2 electrons. With these caveats in mind, 

he stabilities in Fig. 7 can be seen to correlate quite well with 

lectronic shell closing effects. The clusters with a higher-than- 

verage cohesive energy are precisely those closer to the spherical 

hell closings. In effect, the standardized cohesive energy displays 

ocal maxima at (or substantial drops after) N e = 18 , 36 , 42 , 60 , 72

nd 90 electrons, all of them two electrons away from an exact 

lectronic shell closing. The stability drop is specially pronounced 

fter N e = 40 , 90 , producing deep stability minima for clusters with 

8 and 102 electrons. 

Some of the clusters with an enhanced stability would also dis- 

lay an enhanced population in an evaporative ensemble where 

issociation of a Zn 2 Mg trimer is the dominant fragmentation 

hannel. As an example, the cluster with 72 valence electrons per- 

ists as a local maximum in the evaporation energy and �2 indi- 

ators. For some other clusters, however, a high stability does not 

orrelate with an enhanced abundance. The cluster with 36 elec- 

rons, for example, is more stable than the cluster with 42 elec- 

rons but significantly less abundant; electron localization on the 

angling atom of Zn 14 Mg 7 equips the cluster with a high evapo- 

ation energy even if it has two additional electrons on top of an 

lectronic shell closing, producing a marked maximum in �2 for 

 e = 42 electrons. Analogously, the population of clusters with 90 

nd 96 electrons is comparable due to the very low stability at 

 e = 102 electrons. As a final example, the maximum in the co- 

esive energy for N e = 60 shifts to N e = 54 in the �2 indicator:

ere, it is the very low stability of the cluster with N e = 48 elec-

rons that results in a very high evaporation energy for N e = 54 ,

o that the cascade of trimer evaporation events would be stalled 

here maximizing the population of Zn 18 Mg 9 . Electronic shell ef- 

ects are thus the dominant factor determining the stabilities of 

n 2 Mg nanoalloys. In the ESI we further analyze possible relation- 

hips between stability and structural properties, and demonstrate 

hat the more stable clusters are also more compactly packed. 

Although the discussion of E evap and �2 is in itself interesting, 

e emphasize that it is restricted to one particular fragmentation 

hannel, enforced by the consideration of a single fixed stoichiom- 

try in our work. For example, even if Zn 14 Mg 7 displays a high re- 
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istance to dissociate a Zn 2 Mg trimer, we expect it to evaporate 

he Zn dangling atom quite easily, so that cluster would not be 

pecially abundant in an experimental sample at high temperature. 

n exhaustive consideration of all relevant fragmentation channels 

ould be required for a reliable prediction of particularly abun- 

ant sizes in an evaporative ensemble. The cohesive energy results, 

owever, are sound as they do not refer to any particular fragmen- 

ation path. 

. Conclusions 

We have reported a Neural Network potential and its train- 

ng protocol. The potential is particularly suited to explore the 

omplex high-dimensional potential energy landscape of metallic 

anostructures with up to hundreds of atoms, and is capable of re- 

roducing the ab initio values of cluster energies and forces within 

hemical accuracy . The automated dynamical update of the data 

et, afforded with Basin Hopping global optimization searches per- 

ormed during the training stage, makes our approach ready to use 

nd very efficient at a relatively low computational cost. The po- 

ential can be easily implemented into standard optimization or 

olecular dynamics codes. We have implemented our Neural Net- 

ork approach into a module of the freely available GMIN code 

61] to perform Basin Hopping searches, and applied it for the first 

ime to Zn-Mg nanoalloys ranging from 6 to 52 atoms, focusing on 

wo particular nominal compositions, MgZn 2 and Mg 2 Zn 11 , which 

re known to be optimal in corrosion applications as protective 

oatings. The ZnMg nanoalloys pose a real challenge for any struc- 

ural seeker, due to previously reported unexpected trends such as 

he coexistence of metallic and insulating bonds, or the segregation 

ersus mixing tendencies. Our Neural Network potential has been 

ound to outperform, in terms of accuracy and efficiency, the em- 

irical Coulomb-corrected Gupta potential developed in a previous 

ork [44] (which already constituted a step forward over standard 

otentials) in proposing better candidate structures for DFT reopti- 

ization. 

In general, the skeletal atomic structures of the investigated 

nMg nanoalloys are similar to those of pure Zn clusters [7] . As 

oncerns the chemical ordering, the nanoalloys clearly tend to 

aximize mixing, but with a slight natural segregation of Mg 

toms towards the cluster surface, this being the sole factor pre- 

enting the nanoalloys to achieve a complete mixing. This shows 

hat Mg atoms will be largely but evenly distributed over the clus- 

er surface, thus playing a major role in determining its reactivity 

roperties. On the other hand, the short-range atomic ordering in 

he nanoalloys shares similarities with the bulk Laves phases: they 

oth exhibit a preference for maximal mixing, very similar coordi- 

ation numbers, and even the same coordination polyhedra around 

n and Mg atoms in some cases. 

The analysis of the electronic structure and stability suggests 

hat MgZn 2 nanoalloys largely conform to a jellium picture of de- 

ocalized electrons. The electronic shell closings promote the for- 

ation of stronger and shorter bonds, so those magic sizes are 

xpected to be more resistant against penetration of corroding 

gents. On the other hand, the cluster-specific finding concerning 

he natural tendency of Mg to segregate to the surface could im- 

ly that the precise amount of Mg atoms needed in Zn clusters 

o improve their anticorrosive properties is actually lower than in 

he macroscopic regime. Bearing in mind also that the Mg atoms 

end to occupy the most coordinated surface sites, even a small 

oncentration of Mg atoms would be mostly if not completely lo- 

ated on the cluster surface, and precisely in those local regions 

hich are expected to be structurally more resistant against distor- 

ions due to the strong Zn-Mg bonds. Given the higher reactivity of 

g (as compared to Zn) against external re-agents such as oxygen, 

he alloying will preferentially guide the corroding agents towards 
10 
he Mg surface sites, which would later fixate that corroding agent. 

his way, the favorable effect of Mg alloying for corrosion protec- 

ion may be to fix the external re-agent precisely at those sites 

here the surface is more resistant against the penetration of oxy- 

en, thus protecting the cluster core. Avoiding penetration during 

he early stages of corrosion is crucial, as the addition of further 

xygen will eventually produce a passivating oxide crust around 

he cluster surface. 

The results obtained are therefore very promising. We will ex- 

lore in future works the capabilities of Neural Network poten- 

ials in describing more complex interactions such as the attack 

f corroding molecules on the Zn-Mg system, within our long- 

erm project on corrosion. That way we will be able to analyze 

he detailed structural and electronic properties of the oxide crust 

ormed on the nanoalloy surface, specifically its resistance against 

he filtration of corroding ions towards the core. We strongly be- 

ieve that our current neural network protocol may open new 

rospects for a variety of problems in Materials Science which are 

ifficult to tackle with conventional potentials; we are also work- 

ng in generating a friendly version of our neural network code 

hat we hope will be available soon. 
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