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The accurate description of the potential energy landscape of moderate-sized nanoparticles is a
formidable task, but of paramount importance if one aims to characterize, in a realistic way, their phys-
ical and chemical properties. We present here a Neural Network potential able to predict structures of
pure and mixed nanoparticles with an error in energy and forces of the order of chemical accuracy as
compared with the values provided by the theoretical method used in the training process, in our case
the density functional theory. The neural network is integrated into a basin-hopping algorithm which
dynamically feeds the training process. The main ingredients of the neural network algorithm as well
as the protocol used for its implementation and training are detailed, with particular emphasis on those
aspects that make it so efficient and transferable. As a first test, we have applied it to the determination
of the global minimum structures of ZnMg nanoalloys with up to 52 atoms and stoichiometries corre-
sponding to MgZn, and Mg,Zny;, of special interest in the context of anticorrosive coatings. We present
and discuss the structural properties, chemical order, stability and pertinent electronic indicators, and
we extract some conclusions on fundamental aspects that may be at the roots of the good performance
of ZnMg nanoalloys as protective coatings. Finally, we comment on the step forward that the presented
machine learning approach constitutes, both in the fact that it allows to accurately explore the potential
energy surface of systems that other methodologies can not, and that it opens new prospects for a variety
of problems in Materials Science.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction cluster requires an exhaustive computational sampling of the po-

tential energy surface. Although several global optimization meth-

Structure determination in small nanoparticles remains as one
of the fundamental problems in cluster research. On one hand, an
accurate knowledge of a cluster structure is a prerequisite for a de-
tailed understanding of its several physico-chemical properties, of
broad interest in many nanotechnology applications; on the other
hand, there are no direct experimental probes of structure for free-
standing clusters, only indirect probes such as photoemission spec-
tra, vibrational spectra, electron diffraction patterns, etc. [1-5], that
have to be compared to theoretical predictions before obtaining a
definitive structural assessment [6,7]. To make things worse, a the-
oretical determination of the global minimum (GM) structure of a
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ods, such as genetic [8,9] or Basin Hopping [10-13] algorithms,
have been proposed to efficiently tackle this problem, they tend
to be computationally impractical to sample the ab initio potential
energy surface of all but the smallest nanoparticles. A well estab-
lished practical solution to this problem consists of performing an
exhaustive sampling of the approximate potential energy surface
provided by an empirical potential (EP) to quickly determine trial
structures that are then reoptimized at a first-principles density
functional theory (DFT) level, and has come to be known as EP-DFT
approach [14]. It introduces new problems, however: in order for
this approach to be successful, the EP model must provide a rea-
sonably accurate and transferable account of atomic interactions.
In recent years, neural network (NN) potentials have emerged as
a particular type of empirical potentials which may reach an un-
precedented numerical accuracy, so combining global optimization
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with NN methods may be an optimal solution for the structure de-
termination problem in clusters, taking into account the capabili-
ties of presently available computers [15-21].

Machine Learning tools fall under several categories depending
on the type of problem they are intended to tackle and how they
are implemented. In this work, we focus on the so called super-
vised learning techniques, in which the computer is fed with a
set of inputs and the desired outputs, so that it can find a logi-
cal rule that connects both. In practical terms, the computer will
find the functional relationship between the numerical inputs and
targets through a regression analysis, thus obtaining a continu-
ous function. We have chosen the neural network approach as the
particular method to perform the required regression. Neural Net-
works are computational algorithms inspired in the biological neu-
ral networks [22]. They are formed by an ensemble of intercon-
nected units (or nodes) called artificial neurons, each of which re-
ceives a signal that propagates to the subsequent neurons through
a non linear activation function. All Neural Networks have a com-
mon general structure: an input layer of nodes where the signal
is created, followed by one or more layers of nodes (called hidden
layers) through which the signal evolves in a non-linear way, and
lastly one output layer where the signal dies providing the user
with a result. We will be concerned with the simplest NN type:
the feed-forward Neural Network [23-28], where the information
evolves only in one direction, from the input layer to the output
layer passing through each hidden layer once. Each node in a given
layer is connected to all nodes of the subsequent layer via a non-
linear matrix relationship, which must be optimized to give accu-
rate output data during a training stage. In our case, the training
involves fitting ab initio data including binding energies and atomic
forces calculated on a large and diverse data pool of cluster struc-
tures. Despite its simplicity, the NN encloses an outstanding poten-
tiality. According to the Universal Approximation Theorem [29,30],
any continuous multidimensional function can be approximated to
any desired degree of accuracy by increasing the number of neu-
rons in a single hidden layer of a feed-forward neural network. In
practice, the accuracy of the NN in interpolating the data is nev-
ertheless limited by the finite size of the input data set and by
the physical appropriateness of the input descriptors chosen by the
user.

The structural and electronic properties of metallic nanoparti-
cles in the size range up to several hundred atoms generally ex-
hibit a marked non-monotonous dependence with size, to a large
extent due to quantum-confinement effects. This fact complicates
the training process, since unveiling such complex size-dependent
behaviors is difficult without an explicit representation of the elec-
tronic degrees of freedom. Thus, developing a Neural Network po-
tential to accurately describe the potential energy surface of small
nanostructures is more challenging than for their bulk crystalline
counterparts, where the absence of such non-monotonous elec-
tronic and geometric behaviors plus the dramatic reduction of
structural relaxation possibilities, allows for a simpler and success-
ful training. So far, considerable efforts have been devoted to de-
velop NN techniques for bulk systems [31-35] but not as much for
small nanostructures [36,37]. Besides, in most cases where nanos-
tructures are the goal, the employed approaches in the training
stage extrapolate from the bulk limit [38,39]. On the contrary, our
Neural Network potential implementation is specifically tailored to
train and test finite nanostructures comprising a wide range of
sizes and chemical bondings, for both homoatomic clusters and
nano-alloys with up to 3 different chemical elements.

In this work, we present both our computer implementation of
the neural network approach for clusters, and its particular ap-
plication to Zn-Mg nanoalloys with up to 52 atoms. Specifically,
we focus on two compositions, MgZn, and Mg,Zny;, because they
have been found to be optimal for use as sacrificial corrosion pro-
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tective coatings [40-42]. We have previously reported the struc-
tures of small ZnyMg,y_,x nanoalloys in the whole range of compo-
sitions [43], as well as the structures of equiatomic nanoalloys as
a function of size [44], and analyzed their electronic structure in
order to provide some preliminary clues about the enhanced cor-
rosion protection capabilities of this alloy. We need to get accurate
structural models of MgZn, and Mg,Zn;; before embarking into a
dedicated study of their reactivity with external re-agents such as
oxygen, chlorine or water, this being the main motivation for the
present study.

2. The neural network approach and protocol for the structural
search

The use of Neural Networks can potentially overcome the lim-
itations and shortcomings of usual empirical potentials. When
properly trained, Neural Network potentials can be used to accu-
rately describe atomic interactions in arbitrary materials, so they
become an ideal alternative in those systems where available em-
pirical potentials are not able to capture the essential features of
the true potential energy surface. Their main advantage relies on
the flexibility offered by the machine learning technique: while
classical interatomic potentials have a limited number of param-
eters to be tuned on a definite simple functional expression that
itself does not account for all of the important geometrical and
electronic effects, in the neural network approach one can, in prin-
ciple, fit every functional form describing the real potential energy
surface [29,30]. In order to take full advantage of this flexibility,
we have written a Neural Network Fortran90 code specifically tai-
lored to deal with cluster systems. As detailed in the following,
the code is fed with separate training and testing data sets gen-
erated by an external code. Preferably, and for the sake of accu-
racy, those data sets are here generated at a first-principles level
of theory, although other options would of course be possible. The
code produces as output a NN potential providing both energies
and analytic atomic forces, that can be later used by other external
codes such as global optimization or molecular dynamics routines.
At present, it can train both homoatomic and heteroatomic nanos-
tructures of arbitrary size and with up to three different chemical
species, though in this section we will describe its particular ap-
plication to Zn-Mg binary nanoalloys.

2.1. Input and output layers. Structural descriptors

Our particular NN implementation for clusters is based on the
Behler-Parrinello method [45-47]. In this method, the total cluster
energy is written as a sum of atomic contributions:

N
E=)E. 1)

where N is the total number of atoms in the cluster. Each atomic
energy forms the output layer of a separate feed-forward Neural
Network dealing with that particular atom. The energy of atom i
is expressed in terms of its local atomic environment, described by
adequate symmetry functions that form the input layer of the cor-
responding neural network. Although each atom is processed sepa-
rately, atoms of the same kind are described by the same NN. This
way, one has to train a single feed-forward Neural Network for ev-
ery chemical species present in the system, whose separate out-
puts, E;, are auxiliary quantities used to recover the total energy of
the system.

The additivity assumption implied by Eq. (1) is to be consid-
ered an approximation (in the sense that it can not be demon-
strated starting from fundamental quantum-mechanical laws such
as Schrédinger equation), whose accuracy may be judged a posteri-
ori by the quality of the training fit. We will show below that it is
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accurate enough for the metallic nanoalloys dealt with in this pa-
per. Its most important computational advantage is that it allows
to generate a single neural network potential to describe nanoal-
loys of arbitrary size and composition [45], as the NN is dealing
only with one particular atom at a given time. Machine learning
models avoiding the additivity assumption and based on global de-
scriptors [48-50] need to be fitted separately for each current sys-
tem size or composition, which we consider an undesirable feature
as our goal is to study a broad range of sizes or compositions.
Choosing an appropriate set of structural descriptors for the in-
put layer is one of the key factors to successfully train the NN and
obtain an accurate potential. The wiser the user is in providing the
right physical descriptors (those that are statistically dominant in
determining the cluster energy), the faster the training process will
be, the lower the irreducible error of the fit, and fewer input de-
scriptors will be needed. In our work, the symmetry functions are
separately tailored for each chemical element, and are constructed
taking into account the local atomic and chemical environments
of the atom we are describing (an atom-centred approach) up to
some cutoff radius. So in first place, we have to define a cutoff
function f around atom i, which defines the size of its atomic en-
vironment and the radial extension of the symmetry functions:

fe(ry) = %[“’s(ﬂr:ij> * 1]’ fij=Te 2)

0, Tij > T,

which smoothly decays to zero in value and slope at the cutoff
radius r.. The user has complete freedom in choosing the r. val-
ues, and can judge the appropriateness of the chosen cutoffs by the
quality of the fit. In particular, for finite nanoscale systems which
are our target in this paper, the cutoffs can always be chosen long
enough so as to provide structural information about the complete
set of atoms in the environment of a reference atom i. In bulk
systems with significant long-range interactions (electrostatic, van
der Waals, etc.), however, the energy of an atom i is not expected
to depend only on its local environment up to a predefined cut-
off distance, so our NN energy expresion should be complemented
with separate long-range energy terms [51|. We emphasize that
our code, in the version presented in this paper, is specifically tai-
lored to deal with finite-size atomic systems.

To describe the radial arrangement of atoms in the surround-
ings of atom i, radial symmetry functions are defined as a sum of
products of Gaussians times the cutoff function:

Gl =Y e ) f(ry), (3)
J

where 7 is a width parameter that determines the radial extension,
and r; a shifting parameter that displaces the Gaussians to improve
sensitivity at specific radii. For homoatomic clusters, the sum runs
over all the neighbors within the cutoff sphere around atom i and
the Gf functions incorporate purely geometrical information. In the
case of binary nanoalloys (formed by A and B chemical species),
separate radial functions are defined for A — A, A— B and B — B dis-
tance distributions in order to incorporate chemical ordering infor-
mation as well.

Describing just the radial distribution of the atoms is not suf-
ficient to obtain a suitable fingerprint of the atomic environment.
A description of the angular distribution of the neighbors of atom
i is accomplished by employing the following angular symmetry
functions:

Gf =209 3™ (1 + Acostyj)* e " THETI (1) fe(rie) fe ().
Jk]
(4)

where ;5 is the angle conformed by the atomic triplet (i; j; k),
determines again the width of the gaussian functions, and A = +1
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is used to invert the shape of the cosine function for an improved
sensitivity at different values of 6;;. When dealing with binary
nanoalloys, separate angular functions are employed to distinguish
the chemical nature of the two neighbors of atom i in each triplet
(i; j; k). Therefore, there are three different versions of each Gf?
function, as the (j; k) neighbors of a given triplet can be of AA, AB
or BB types.

All the parameters appearing in these functions, as well as
the total number of symmetry functions employed, must be cus-
tomized beforehand to accurately characterize the cluster struc-
tures. Using too few of these functions would result in an incom-
plete description of the structural and chemical environment and,
thus, to a poor relationship between descriptors and targets. On
the other hand, the set of symmetry functions should also be kept
as small as possible to increase the computational efficiency of the
training and testing stages. One should in particular avoid that dif-
ferent symmetry functions are linearly related.

It is interesting to compare the structural information content
of our local descriptors to that of global descriptors such as the
Coulomb matrix [48-50], which essentially compiles the pair dis-
tances r;; between all atoms in the molecule. Therefore, in the
limit of long enough cutoffs, the structural information contained
in our radial descriptors for atom i is essentially the same as that
in the ith row of the Coulomb matrix. However, in global descriptor
methods [48-50] it is the whole Coulomb matrix that is fed into
the machine learning code in a single step, while in our local ap-
proach we are feeding, so to say, each row of that matrix at a time.
The consequence is that, while the Coulomb matrix implicitly con-
tains complete angular information, we have to separately add that
information through the angular local descriptors, which parallels
the inclusion of 3-body terms in a cluster expansion. We demon-
strate below that the accuracy of our fitting is of the same quality
as that obtained with recent methods based on the Coulomb ma-
trix descriptor [50], even if our training set contains a wide vari-
ety of system sizes and compositions and thus represents a much
more stringent transferability test. This finding demonstrates that
2-body and 3-body interactions, together with the non-linearity of
the NN, suffice to faithfully represent the metallic nanoalloys con-
sidered in this paper. This is a very interesting conclusion because
with the local method we can fit a single potential for arbitrary
sizes and compositions, as explained above. Another advantage of
the local descriptors is that they are easily generalized to deal with
chemical order in nanoalloys, by simply replicating the descriptors
for each possible pair or triplet of atoms in the nanoalloys.

2.2. Architecture and training of the neural network

Both the number of hidden layers and the number of nodes in
each layer are set by the user, and together define the size of the
neural network. All of the signal values in a given layer k are col-
lected in a vector array X,. The signals evolve from a given layer
to the next one in a feed-forward way, according to the equation:

Xir1 = 0 KXWy i1 + Biy1), (5)

where Wy . is the matrix of weights that connects the nodes be-
tween layers k and k+ 1, By, is a bias term and o is the non-
linear activation function which builds up the signals of the k + 1
layer. All matrices and vector arrays are real-valued, and only the
signal in the input layer must be provided by the user.

The activation function employed in our work is the Swish
function [52], o (x) = 1+Xﬁ except for the output layer where a
linear function was used. Swish belongs to the family of rectifier
functions, whose distinguishing feature is to be unbounded, as op-
posed to many previous implementations which relied on bounded
sigmoid functions. We found rectifiers to produce a more accurate
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fitting to the ab initio data in the training stage (see below), as
compared to sigmoids such as the hyperbolic tangent function (see
Table S1 in the ESI which compares the performance of different
activation functions). Our observation is in line with the known
superiority in performance of Swish over sigmoids in regression
problems [52-54].

The optimal values for the several weight matrices and bias ar-
rays are obtained by training the Neural Network to match the ab
initio values of energies and forces calculated on a large data set
of cluster structures. This is done by minimizing, in a least-squares
sense, the value of the following cost function (or objective func-
tion):

2
EDFT Ek Ny FkD’ZT Fk o
P | (T ) vy (B | e

where M is the training set size (in our case the number of cluster
structures included in the training set), Nj, the size of cluster k in
the data pool, and € a scaling factor (set to 0.05) used to obtain
balanced relative errors in energies and forces. The NN energy of
structure k, Ek. is given by the sum of the individual atomic con-
tributions Ej ; as stated by the Behler-Parrinello approach (Eq. (1)).
The NN force on atom [ of structure k is then obtained as:

=~ OE, _ 9Eki _ Ey; 9Gis
Fk,l“ - _ark,la - Z 8rk_, ZZ an.s 8rk,la )

where M; is the number of symmetry functions associated with
atom [ of cluster k, and o denotes the cartesian direction. Thus,
8Ek i
aGls
output layer value w1th respect to the symmetry functions in the

the force on atom I depends on that is the derivative of the

input layer, and on

e , that is the derivatives of the symmetry
Tk, loc
functions with respect to the cartesian coordinates. Both terms are

obtained analytically, which makes our code computationally very
efficient. Full details about the analytic forces are provided in the
ESI. Notice that the atomic forces are not explicitly provided by the
output layer of the NN (as they can be analytically obtained from
the atomic energies in the output layer), yet they are included in
the cost function to explicitly train the NN towards accurate forces
as well.

The minimization of the cost function I' is afforded by em-
ploying the Nadam algorithm [55,56], a gradient descent method
that exploits the first- and second-order moments of the gradients
to improve computational performance and stability, based on the
reliable Adam [57] algorithm. The gradients of I" with respect to
the weights and biases appearing in Eq. (5), needed by Nadam, are
calculated with the backpropagation algorithm [58]. An important
technical point here is the rate at which the cost function is up-
dated, as it significantly impacts the efficiency and accuracy of the
minimization problem. In NN jargon, the evaluation of the whole
dataset once is called an epoch. In the so-called batch gradient de-
scent, the weights and biases are updated after one epoch, pro-
ducing a relatively smooth error surface, but being very slow and
requiring a lot of memory for large data sets. In stochastic gradi-
ent descent, one updates the variables after evaluating each indi-
vidual in the training set. Being the fastest update rate, it results
in a noisy gradient, but notice that some noise is not necessarily
harmful since it helps the algorithm in escaping from shallow local
minima. A good compromise is the mini-batch gradient descent,
which updates the weights based on a small subset of individuals
(32, 64 or 128 are typical choices in parallel computations). After
one epoch, these subsets (or mini-batches) are randomly reselected
from the whole data set. This way the gradients are more robust
compared to stochastic gradient descent while having some white
noise. This is the particular implementation used in our work, with
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a mini-batch size of 64 individuals. Other technical details are ex-
plained in the ESI.

A final important point concerning the training stage is the
stopping criterion, which should take into consideration the bias-
variance tradeoff problem [59,60]. Our code randomly divides the
data set provided by the user into two parts: 90% of the structures
go to the training set on which the cost function I' is evaluated;
the remaining 10% is used as a testing set, containing data which
are not explicitly used to train the NN. The training process is con-
tinued until the cost function error on the test set is minimal, a
procedure known as early stopping method. This strategy aims to
minimize both the bias and variance errors, so that both under-
and over-fitting problems are avoided. The final error of this train-
ing strategy will mostly be of an irreducible type, i.e. one that can
not be significantly reduced by increasing the complexity of the
NN of by running the minimization for a longer time. In fact, the
irreducible error faithfully represents the inherent noise of the fit-
ting, due for example to a sparse data set or, more importantly,
to the non-existence of a deterministic relationship between in-
puts and targets. It can only be reduced by the user (not by the
machine) by providing more explicit data or more appropriate de-
scriptors in the input layer.

2.3. Symmetry issues

In a recent report, Chmiela et al. [49] have developed the
sGDML model, a gradient-domain machine learning force-field that
makes explicit use of symmetries in order to reduce the size of the
training set and also to improve the accuracy and efficiency of cal-
culations performed on high-symmetry molecules. In our current
implementation of the neural network, we have not explicitly ex-
ploited symmetry in order to improve the efficiency of the energy
calculations. It just turns out that the great majority of geometries
sampled during a global optimization run on Zn-Mg nanoalloys
have no rotational symmetries (i.e. most of them have C; point
group), so computational savings would not be substantial for the
particular target system in this paper. For more symmetric systems,
the point-group symmetry could be exploited by feeding the in-
put layer of the NN with just one atom from each symmetry orbit,
thus reducing the explicit number of atomic energy calculations. In
effect, two atoms equivalent by symmetry must have equal contri-
butions to the total energy, and their force vectors must be related
by a group operation. This improvement might be implemented in
future versions if considered worthwhile.

Notwithstanding this computational efficiency issue, our code
satisfies many symmetry properties by construction, and so ac-
counts for all relevant effects associated to symmetry, as the
sGDML model does. For example, homogeneity and isotropy of
space imply that the total energy of an isolated system must be
invariant against global translations and rotations of the system.
This is ensured by construction in our code, as the local descrip-
tors depend only on pair distances or triplet angles, both quan-
tities being independent on the coordinate system. Similarly, our
NN force-field is conservative by construction, i.e. it will satisfy the
conservation of the total energy of an isolated system during its
time evolution if used in MD simulations, because the exact con-
sistency relations between energies and forces is analytically en-
sured (see previous section). Finally, the physical effects of point-
group symmetry will be captured also by construction of our local
descriptors: in effect, two atoms that are equivalent by symmetry
will have exactly the same set of local descriptors, and so the code
will assign exactly the same atomic energy to both of them, and
forces which are related by the corresponding group operation.

The authors of the sGDML model take advantage of
permutation-inversion symmetries to reduce the size of the
data set and thus optimize the cost of the training process. In
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Fig. 1. Flow diagram summarizing our training protocol. See the main text for full
details about each different step of the process.

effect, permutations of identical atoms define physically equivalent
but different local minima on the PES, and there is no point in
explicitly sampling two equivalent basins. Similarity of isomers is
quantified through their euclidean distance, properly minimized
with respect to permutation-inversion operations, which requires
the use of bi-partite and multi-partite matching techniques [49].
We have also considered similarity of isomers when building our
training data set, with the same goal of defining a training set that
does not contain duplicate or too similar structures. We have done
this with a less elaborate, home-built, similarity indicator, which
is invariant to permutation-inversion operations thus avoiding the
complications inherent to the euclidean distance measure. This
similarity indicator is described in the ESI.

A flow diagram summarizing the major milestones of our train-
ing protocol is offered in Fig. 1.

2.4. Application to Zn-Mg nanoalloys

We employ a total of 70 symmetry functions (both radial and
angular) in the input layers of the two different Neural Networks
that deal with Mg and Zn atoms, respectively (details of these
functions are provided in the ESI). This number of symmetry func-
tions was optimized through a careful correlation analysis in order
to reduce the number of redundant descriptors, that is, we dis-
carded those which in our initial descriptor set had a large corre-
lation with descriptors already considered.

We have generated two different NN potentials, in order to pro-
vide a larger amount of plausible low-energy structures, i.e. to en-
hance structural diversity. Both Neural Networks have three hidden
layers, but different architectures: 70 x 40 x 20x 10 x 1 (amount-
ing to 3881 adjustable parameters) in the first one, and 70 x 45 x
30 x 20 x 1 (5216 parameters) in the second one. Those architec-
tures were selected since they provide sufficient accuracy without
resulting in over-fitting.
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We have implemented our NN potentials into a module of the
freely available GMIN code [61]. We use this program to dynami-
cally enlarge the size of our data set during an iterative and auto-
mated training process involving Basin Hopping (BH) runs [10,11].
In each iteration, the currently fitted NN force field samples the
potential energy surface of the nanoalloy through BH runs, com-
prising 35000 steps and including both random and swap moves
(those that exchange the chemical identity of a randomly chosen
Zn-Mg pair of atoms). We then feed the data set with the new
structures that the NN predicts, which involves single-point DFT
calculations on those new structures, and start a new training on
the enlarged dataset. During the initial iterations, i.e. when the
NN is not yet sufficiently trained, we found that it easily tends to
explore areas of the potential energy surface not covered by the
initial data set. In other words, the NN extrapolates, thus failing
to provide reliable structures. With relatively short BH runs one
can easily check the quality of the current NN potential and find
new relevant structures to feed the data set. This loop is contin-
ued until extrapolation is no longer observed and the NN produces
reasonable structures. Notice that global optimization runs are to
be preferred over other options such as short molecular dynamics
runs, as our ultimate goal is to use the NN force field in a global
optimization aimed to locate the global minimum structure of a
cluster or nanoalloy, and for that we need global accuracy in the
whole PES, rather than extensive sampling of local regions of the
PES.

The initial data set was built upon the structures provided in
previous works on Zn-Mg nanoalloys [43,44]. It was dynamically
enlarged as explained above up to a final size of 49000 nanoparti-
cles in the size range between 4 and 100 atoms, containing both
pure Zn and Mg, and (mostly) Zn-Mg nanoalloys of all possible
composition ratios and with different chemical orderings. The final
Neural Network potentials were fitted to reproduce both energies
and forces on this huge, DFT-quality, data set.

With the two resulting NN potentials, we performed a Basin
Hopping global optimization search for Zn-Mg nanoalloys of sizes
ranging from 6 to 52 atoms and stoichiometries corresponding to
Zn,Mg and Zn;;Mg,. We performed 200000 BH steps for each
nanoalloy for each of the two different potentials. BH moves com-
prised either a random change of the atomic coordinates or a swap
move, the latter amounting to a 20% of the total BH moves. If
no lower energy structure is identified during 10000 consecutive
steps, the cluster structure is re-seeded to a random one in or-
der to enhance the sampling. A total amount of around 100 struc-
tures (the most stable ones) was saved from both potentials af-
ter removing duplicates in the two lists. The resulting list of 100
structures was then relaxed at the Kohn-Sham density functional
theory (KS-DFT) level by using the SIESTA code [62]. Exchange-
correlation effects were treated within the generalized gradient ap-
proximation of Perdew, Burke and Ernzerhof (PBE) [63], and norm
conserving pseudopotentials [64,65] including non-linear core cor-
rections [66] were used to represent core-valence interactions. The
valence active space includes 3d'%4s2 electrons for Zn, and 3s2 for
Mg. The size of the basis set was double-zeta plus two polariza-
tion orbitals (DZP2). The clusters were placed in a cubic supercell
of 30A of side. The reliability of this SIESTA setup has been demon-
strated in our previous works (the single-point ab initio calcula-
tions needed during the training stage were performed with the
same setup). The structures were relaxed without geometry con-
straints until the force on each atom was smaller than 0.01 eV/A.
Finally, for the best structure obtained after DFT relaxation, an ex-
haustive homotopic search was performed with the Neural Net-
work potential in order to better sample the chemical ordering.
This was accomplished through a BH search of 200000 steps and
with only swap moves. The best configurations found were then
relaxed again with SIESTA.
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Table 1

Mean absolute errors in cohesive energy E., (in meV/atom) and
atomic forces (in eV/A) on the train and test sets for the two Neu-
ral Network potentials.

NN with 3881 parameters NN with 5216 parameters

Train set  Test set Train set  Test set
Econ 10.80 11.73 8.63 9.97
Force  0.14 0.14 0.14 0.15

3. Results and discussion
3.1. Quality performance of the neural network

Table 1 shows the quality of the fit of our two Neural Network
potentials. Specifically, the table displays mean absolute errors
(MAE) in cohesive energy (binding energy per atom) and forces in
both training and testing sets. The cohesive energy of a nanoal-
loy with N atoms is defined as Eo, (N) = (E(Mg)Nyg + E(Zn)Nz, —
En)/N, where Ey is the energy of the nanoalloy formed by Nyg
and Nz, Mg and Zn atoms, whose atomic energies are E(Mg) and
E(Zn), respectively.

The energetic MAE of both NN's is around 10 meV/atom ~ 1
kJ/mol, an error size usually considered as representative of chem-
ical accuracy. This means that both NN’s reproduce PBE energies
within an error that is already smaller than the inherent error of
PBE functional in reproducing experimental cohesive energies of
metals [67], which suggests the NN potentials are as accurate as
one may wish them to be (there is no point in requiring a NN fit-
ting error significantly smaller than the inherent error of the ab
initio reference data) and, in particular, justifies the additivity as-
sumption (Eq. (1)). The MAE of the forces, around 0.15 eV/A, is
also very small as we have checked that forces of that magnitude
are induced by atomic displacements of around 0.04 A, so the ge-
ometries predicted by the NN will be very accurate. We addition-
ally notice that the second NN, while containing around 35% more
adjustable parameters than the first one, improves the MAE by a
mere 1%, so we conclude that both NN’s are similarly accurate, and
that the error can no longer be substantially reduced by increasing
the complexity of the neuronal connections. We believe it is safe to
conclude that the remaining error is mostly of an irreducible type.
Considering the dynamical adjustment of the training set size em-
ployed in our work (see previous section), the irreducible error can
not be significantly improved by increasing the size of the train-
ing set. It could only be improved by providing additional physi-
cal descriptors in the input layer. Right now, the NN is trying to
correlate the energy contribution of a given atom with the local
geometric and chemical environments of that atom. However, the
stability of metal clusters is well known to be additionally influ-
enced by electronic shell effects (associated with the discrete na-
ture of the electronic eigenvalue spectrum of finite systems), which
are more dependent on global properties such as the cluster shape,
than on local atomic descriptors. It is plausible that including such
global descriptors explicitly in the input layer would further dimin-
ish the fitting error. Nevertheless, our results show that local de-
scriptors suffice for this particular nanoalloy. As an additional accu-
racy check, we demonstrate in the ESI that our Neural Network po-
tential clearly outperforms the empirical Coulomb-corrected Gupta
potential developed in a previous work [44] in proposing better
candidate structures for DFT reoptimization.

3.2. Putative global minimum structures of ZnMg nanoalloys with
nominal compositions Zn,Mg and Zny; Mg,

The putative GM structures located in this work are shown
in Figs. 2, 3 and 4. In general, their skeletal geometries coincide
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Fig. 2. Putative GM structures and approximate point group symmetries of Zn,Mg
nanoalloys with N = 6 — 27 atoms. Brown and golden spheres represent Zn and Mg
atoms, respectively. For some clusters, we add in brackets the point group of the
corresponding homo-atomic cluster in order to better appreciate the symmetry of
the atomic skeleton.
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Fig. 3. Putative GM structures and approximate point group symmetries of Zn,Mg
nanoalloys with N = 30 — 51 atoms. Rest of the caption as in Fig. 2.
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Fig. 4. Putative GM structures and approximate point group symmetries of Zn;; Mg,
nanoalloys with N = 13 — 52 atoms. Rest of the caption as in Fig. 2.

with those of the pure Zn atomic clusters [7]. ZngZMg, is con-
formed by 2 tetrahedral units sharing one edge. The GM structure
of ZngMgs is a tri-capped trigonal prism (TTP), and all nanoalloys
with N =12 — 15 atoms are obtained by adding atoms to that TTP
unit. The first structure with an internal core atom is Zn;;Mgg, and
is based on a distorted 13-atom decahedron with adatoms capping
its square facets, the distortions increasing the coordination num-
ber of some adatoms. The GM structure of Zni4Mg; is based on
a C3 twisted pyramid with a dangling atom attached to one of its
corners, an exotic structure also found for Zny; [7]. From this size
on, the GM structures tend to be more amorphous-like due to the
size-mismatch between the two atomic species, although many of
them locally display a recognizable tendency towards decahedral
packing (with the orientations chosen in the figures, decahedral
units can be visually appreciated in clusters with 30, 36, 39 and
51 atoms, for example). Notable exceptions to this general trend
are Zn;gMgg and Zn33Mgg, which are poly-tetrahedral structures
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composed of icosahedral and Frank-Kasper polyhedral units. The
number of core atoms obviously increases with cluster size: two
core atoms first appear at size N = 26, and the bigger clusters con-
sidered here have 8 core atoms.

Next we describe the chemical ordering trends. There are three
important factors that conjointly determine the tendency towards
segregation or mixing in Zn-Mg nanoalloys: (1) the bulk cohesive
energy of Mg is 12% larger than that of Zn. Assuming that the rel-
ative strength of Mg-Mg and Zn-Zn bonds is maintained in the
nanoalloys, this factor would tend to maximize the number of Mg-
Mg bonds, and so would favor Mg@Zn segregation; (2) however,
interatomic distances in bulk Mg are around 30% longer than in
bulk Zn. In order to minimize bond strain, the small element tends
to segregate to the cluster core, so this factor alone would favor the
opposite Zn@Mg segregation. The observation that energetic and
steric effects oppose each other already suggests that segregation
trends are not clear; (3) finally, charge transfer effects introduce
an ionic bonding component that tends to maximize the number
of Zn-Mg bonds and thus promotes mixing. In order to quantify
the degree of mixing, we have evaluated the following indicator
for each of the GM structures:

P = e~ N (8)

" NN,

where Npg is the number of Zn-Mg bonds. NM and N}y, are respec-
tively the maximum and minimum values that Nyg can take for
that particular frozen nuclear skeleton. These two last numbers are
obtained from swap-only BH runs without allowing for structural
relaxation. The parameter thus defined is normalized between zero
and one, with a value p,x = 1 indicating the maximum degree of
mixing that a given nuclear skeleton allows; the value ppx =0,
on the contrary, is associated with left-right segregated structures,
displaying an interface separating pure zinc from pure Mg sides.
The calculation of this indicator demonstrates that most of the
GM structures found for the Zn,Mg composition are indeed maxi-
mally mixed, and in any case all of them have p,x > 0.9. Regard-
ing the Zn;{Mg, composition, all GM structures have ppx > 0.8.
Thus, concerning chemical order, the dominant building rule for
ZnMg nanoalloys is to maximize mixing. This is achieved, as seen
in the figures, by preferentially placing the minority component
Mg atoms in cluster sites with a higher coordination number, but
at the same time avoiding as much as possible direct Mg-Mg con-
tacts. More in detail, we have checked that the shell of ZnMg
nanoalloys tends to be well triangulated, each surface site being
connected to either 5, 6 or 7 surface sites. With very few excep-
tions, all of the 5-fold sites are occupied by Zn atoms, while Mg
atoms occupy the 6-fold and 7-fold sites. This is a strong trend
common to all clusters considered in this paper, although is some-
times incompatible with the global 2:1 composition ratio. For ex-
ample, we have observed that a Mg atom may occupy a 5-fold site
in the shell of Zn,Mg nanoalloys when occupation of any of the
remaining 6-fold or 7-fold sites would imply the creation of a Mg-
Mg bond.

The main secondary factor that competes with the maximal
mixing rule seems to be steric in nature. In effect, the internal
core sites tend to be under a high compressive stress for most
of the atomic packings usually observed in small clusters, and oc-
cupying them with the bigger Mg atoms would result in a less
dense atomic packing because of the size mismatch effect, thus de-
creasing the cluster stability. Additionally, the coordination volume
around internal sites is smaller for Zn-richer compositions. There-
fore, the first Mg core atom for the Zn;;Mg, nanoalloys is not ob-
served until size N =52. This is clearly the reason why Zn;;Mg,
nanoalloys do not achieve a p,;x = 1 value, even if the Mg atoms
consistently occupy well separated surface sites with the maxi-
mum possible surface coordination: the mixing could only increase

Acta Materialia 220 (2021) 117341

if more Mg atoms were at core sites. The same trend operates
for the 2:1 composition although is relatively less important there.
To summarize, there is a slight Mg-enrichment (beyond the nom-
inal composition) of the surface in Zn-Mg nanoalloys, enforced by
the size mismatch effect, that competes with the maximal mixing
trend. The two factors together consistently explain the detailed
chemical ordering trends in these nanoalloys.

Bulk MgZn, crystallizes in one of the AB, Laves phases, which
are notorious by a number of reasons. The three simplest Laves
phases, occurring for MgCu, (cubic C15 phase), MgZn, (hexago-
nal C14 phase) and MgNi, (hexagonal C36 phase), are tetrahe-
drally close-packed structures where the interstices are exclusively
tetrahedral. They are all obtained by packing Frank-Kasper coor-
dination polyhedra [68], and differ just in the stacking sequence
of those polyhedral units. The coordination number (CN) of the
smaller Zn atom is 12, and its coordination polyhedron is an icosa-
hedron formed by 6 Zn and 6 Mg atoms; CN=16 for the larger Mg
atom, and its coordination polyhedron is a Z16 Frank-Kasper poly-
hedron formed by 12 Zn and 4 Mg atoms. Given the importance of
Laves phases in many materials processes an in particular in corro-
sion problems [68], it is interesting to analyze to what extent the
small clusters studied in this paper have developed the bulk-like
properties of the Laves phases.

To start with, we have explicitly checked that p,;x = 1 for both
cubic and hexagonal bulk Laves phases, so at least concerning this
global tendency towards a maximally mixed chemical ordering,
even the smallest MgZn, nanoalloys are already bulk-like. Another
similarity between nano- and bulk alloys is the larger total coor-
dination number of Mg atoms as compared to Zn atoms, as ex-
plained in the previous paragraphs. In particular, the total coordi-
nation numbers of core atoms are already close to bulk values: on
average, we find CN=11 for Zn core atoms and CN=15 for Mg core
atoms in most cases, although there are a few examples where
the bulk CN values are strictly recovered. The very small clusters
here considered are thus slightly less compactly packed as com-
pared to the bulk limit. We also observe that the first coordination
layer around internal atoms tends to contain similar numbers of
Zn and Mg neighbors around Zn, but a substantially larger num-
ber of Zn atoms around Mg. Concerning the coordination polyhe-
dra surrounding internal atoms, these tend to be different to those
in the bulk Laves phase, mainly because most of the clusters are
still based on distorted decahedral packing, which is different and
less dense than the poly-tetrahedral packing realized in the bulk.
Nevertheless, at least for the special Zn;gMgg and Zn33Mgg clus-
ters, which are based on poly-tetrahedral packing, the coordina-
tion polyhedra are indeed distorted versions of their bulk counter-
parts (see Fig. 5), the distortions being expected due to the surface
rounding and relaxation effects. Other distinguishing structural fea-
tures of the bulk phases are of a longer spatial range and can not
be realized in small clusters. For example, there is no possible dis-
tinction between C14, C15 and C36 phases as there are not yet
enough polyhedral units to define a stacking sequence. Similarly,
the compositional layering observed in the bulk is hard to appreci-
ate in these very small systems, although at least Mgy5Zn3o shows
clear signatures of alternating stacked Zn/Mg sheets. In summary,
we conclude that there are significant similarities in the short-
range structural descriptors of cluster and bulk systems.

3.3. Electronic properties of Zn,Mg nanoalloys

We have evaluated the vertical ionization potential (IP) and
electron affinity (EA) of all GM structures through a A—SCF cal-
culation, i.e. by explicitly calculating the cation or anion state at
the optimal geometry of the neutral cluster and taking the corre-
sponding total energy differences. We have additionally computed
the fundamental gap, defined as Egap=(IP-EA), which is twice the
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Fig. 5. The top row compares the coordination polyhedron of the internal Zn atom
in Zn;gMge with a perfect Z12 polyhedron, i.e. an icosahedron. The bottom row
shows the corresponding comparison between the coordination polyhedron of the
internal Mg atom in Zn;gMgg and a perfect Z16 Frank-Kasper polyhedron.

chemical hardness. These three quantities are taken as indicators of
electronic stability: large gap values identify those clusters that are
more stable against both oxidation and reduction processes and,
as such, display an enhanced electronic stability; also a large IP or
a low EA are indicative of a particularly stable configuration due
to the reluctance to releasing or accepting one electron, respec-
tively. According to a simple Jellium picture of delocalised elec-
trons [69,70], it is the electronic stability that drives the thermody-
namic stability of the cluster, and clusters displaying an electronic
shell closing are thus expected to be particularly stable. The spher-
ical Jellium model predicts these electronic shell closings to oc-
cur for metallic clusters with N, = 8, 20, 34, 40, 58,68 — 70,92, - --
electrons. Jellium models allowing for ellipsoidal deformations of
the confining ionic potential predict additional (sub-shell) clos-
ings due to the splitting of angular momentum multiplets in a
non-spherical potential. Now, considering that Zn and Mg atoms
are both divalent, the number of delocalized electrons increases in
steps of 6 along the Zn,Mg series, and in steps of 26 along the
Zny; Mg, series, so none of the N, values associated with a spheri-
cal electronic shell closure occurs in our cluster sample. Moreover,
the non negligible ionic contribution to bonding associated with
charge transfer causes Zn-Mg nanoalloys to slightly deviate from
a pristine jellium picture, as shown in our previous work [44]. All
taken together, it can make it hard to discern marked features in
the size evolution of the electronic indicators.

As usual in small metal clusters, the IP displays a globally de-
creasing trend as a function of size (meanwhile the EA shows an
increasing envelope), which is steeper for smaller sizes. The slope
of these indicators allows to identify two different size ranges con-
cerning the electronic properties. The ionization potential, for ex-
ample, steeply decreases from around 6.5 eV to 5 eV in the N =
6 — 30 size interval, and then stabilizes by decreasing at a much
slower pace. In our previous studies on pure zinc clusters [6,7], we
analyzed the evolution of metallicity and found that while most
clusters with N > 25 — 30 already display typically metallic bond-
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Fig. 6. Electronic stability indicators of Zn,Mg nanoalloys. Standardized vertical
ionization energy, electron affinity and fundamental gap as a function of cluster
size N (lower scale) or the number of electrons N, (upper scale) are shown.

ing, for smaller clusters metallicity is still poorly developed. In this
sense the Zn-Mg nanoalloys behave similarly to the pure zinc clus-
ters. In the regions with a globally steep slope, it is difficult to
identify local features in those electronic indicators, so for optimal
visualization we have decided to remove their global size evolution
by fitting the data to a cubic polynomial function, and subtract-
ing from the data series the resulting fit; then, we have shifted
the mean value of the trendless data to zero and divided them
by the standard deviation of the data set. The resulting “standard-
ized” data are dimensionless and are shown for Zn, Mg nanoalloys
in Fig. 6, while the raw data are provided in Fig. S2 in the ESI.

Although none of the clusters has the number of electrons re-
quired for a spherical shell closing, the results can be shown to ac-
commodate quite well to jellium expectations by focusing on those
cluster sizes that bracket an electron shell closing. The EA, to start
with, is consistently higher than average just before (and lower
than average just after) the main electronic shell closings, which
explains all of the sudden drops in that curve. For example, the EA
is very high for Zn;Mgg and low for Zn;4;Mg;, these two clusters
bracketing the shell closing occurring for N, = 40 electrons. Sim-
ilarly, one would expect substantial IP drops after each electron
shell closing, but those drops only occur in clusters with a well
developed metallicity, specifically at cluster pairs bracketing the
Ne = 58,70, 92 shell closings. Meanwhile, the IP drop at N, =40 is
very weak, and upon crossing the N, = 20 shell closing the IP even
increases. This peculiar behavior has been explained in our previ-
ous works on pure zinc clusters [6,7]: it is related to the presence
of low-coordinated adatoms and to the coexistence of insulating
and metallic bonding contributions within a single cluster, features
that obviously depart from a jellium picture of delocalized elec-
trons. Zn4Mg7, for example, displays a low-coordinated adatom
attached to the corner of a 20-atom twisted pyramid. The pyra-
mid itself is a superatom with 40 valence electrons, but the two
additional electrons in Zn4Mg; form a lone pair on the adatom
rather than contributing to the jellium sea of delocalized electrons
[69,70]. This way, the cluster avoids the occupation of very unsta-
ble delocalized orbitals and keeps a high IP value beyond the elec-
tronic shell closing.

The fundamental gap results from the delicate balance between
the IP and EA values. The gap should be locally maximum at an
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Fig. 7. Size dependent stabilities of Zn,Mg nanoalloys as a function of the total
number of atoms N (lower scale) or the total number of electrons N, (upper scale).
The upper graph shows the cohesive energies as standardized dimensionless quan-
tities (see Fig. S3 in the ESI for the absolute cohesive energy values). The middle
graph shows the energy cost of evaporating (or dissociating) a Zn,Mg trimer. Fi-
nally, the lower graph displays the second-order energy differences.

electronic shell closing, but its behavior around the shell closing is
not clear in advance. In the N > 25 metallic region, the drop in the
EA upon crossing a shell closing tends to damp the effect of the
corresponding drop in the IP, so the fundamental gap is compara-
tively featureless in that region. Around N, = 58, for example, the
drop in the IP is stronger than the drop in the EA, so a weak drop
is observed in the gap; around N, = 92, on the contrary, the drop
in the EA is stronger so we observe an increase in the gap. In the
small size regime with N < 25, the electron localization effects on
the IP, described in the previous paragraph, explain the steepest in-
creases in the gap, occurring precisely at the N = 20 and N, = 40
shell closings.

There is a secondary magic number, predicted by ellipsoidal jel-
lium models and observed in many metal clusters, that is exactly
realized in the Zn,Mg series. This is the 15-atom nanoalloy con-
taining 30 electrons, which according to the deformable jellium
models should be a marked magic number induced by a prolate
shape. In effect, the structure of Zn;yMgs contains two stacked TTP
units resulting in a strong prolate deformation, and it displays a lo-
cal maximum in both the IP and the gap.

In conclusion, the main variations in the electronic indicators
of Zn,Mg nanoalloys conform to general expectations about sys-
tems with delocalized electrons, even if none of the clusters has
the right number of electrons to produce a spherical shell closing.
Some care has to be taken for a few clusters due to electron lo-
calization effects (in lone pair orbitals), as this affects the proper
counting of delocalized electrons in the system.

3.4. Stabilities of Zn,Mg nanoalloys

We analyze the size dependence of cluster stabilities for Zn,Mg
nanoalloys through 3 different indicators, shown in Fig. 7: the co-
hesive energy E.,, (defined previously) provides an absolute mea-
sure for the cluster global stability, as it quantifies the total in-
ternal energy content stored in the chemical bonds; the evapora-
tion energy Eevap is here defined as the energy required to dis-
sociate a Zn,Mg formula unit, so it quantifies the stability with
respect to a particular fragmentation channel; finally, the second-
order energy difference is defined as A, (N) = Ey_3 + Eny3 —2Ey =
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Eevap(N) — Eevap(N + 1). Both Eeyap and A, provide more “local”
stability measures in comparing the energy of a cluster of size
N with its adjacent neighbors at N—3 and N+ 3. In particular,
A, estimates the difference between the evaporation rates of two
neighboring cluster sizes in an evaporative ensemble, so this indi-
cator correlates with the cluster populations determined by mass
spectrometry on free-standing cluster beams. There are no exper-
imental studies on Zn,Mg nanoalloys as far as we know, and ob-
viously there is no evidence that evaporation of a Zn,Mg trimer is
the dominant fragmentation channel, yet we have found it useful
to consider these indicators to discuss cluster stability at a theo-
retical level. Our A, (N) values are expected to correlate with true
abundances in an evaporative ensemble of Zn,Mg nanoalloys as-
suming that trimer evaporation is the dominant channel. Notice
that the three indicators provide related but different information:
in particular, the more stable clusters (as determined by the cohe-
sive energy) do not need to coincide with the more abundant sizes
(as determined by A,).

As with the electronic properties discussed in the previous sec-
tion, the analysis of stabilities is slightly complicated by the fact
that the N, scale is quite sparse along the Zn, Mg series, and also
due to the re-entrance of localized molecular orbital states right
after the main electronic shell closings. As shown in our previous
works on zinc clusters [6,7], occupation of those localized orbitals
amounts to a temporary departure from the usual jellium filling
pattern, which slightly delays the opening of a new electronic
shell. The main effect on stabilities is that clusters with N, + 2
electrons (with N, a spherical shell closing) tend to be more stable
than clusters with N, — 2 electrons. With these caveats in mind,
the stabilities in Fig. 7 can be seen to correlate quite well with
electronic shell closing effects. The clusters with a higher-than-
average cohesive energy are precisely those closer to the spherical
shell closings. In effect, the standardized cohesive energy displays
local maxima at (or substantial drops after) N, = 18, 36, 42, 60, 72
and 90 electrons, all of them two electrons away from an exact
electronic shell closing. The stability drop is specially pronounced
after N = 40, 90, producing deep stability minima for clusters with
48 and 102 electrons.

Some of the clusters with an enhanced stability would also dis-
play an enhanced population in an evaporative ensemble where
dissociation of a Zn,Mg trimer is the dominant fragmentation
channel. As an example, the cluster with 72 valence electrons per-
sists as a local maximum in the evaporation energy and A, indi-
cators. For some other clusters, however, a high stability does not
correlate with an enhanced abundance. The cluster with 36 elec-
trons, for example, is more stable than the cluster with 42 elec-
trons but significantly less abundant; electron localization on the
dangling atom of Zn4Mg; equips the cluster with a high evapo-
ration energy even if it has two additional electrons on top of an
electronic shell closing, producing a marked maximum in A, for
Ne = 42 electrons. Analogously, the population of clusters with 90
and 96 electrons is comparable due to the very low stability at
Ne = 102 electrons. As a final example, the maximum in the co-
hesive energy for N, = 60 shifts to N. =54 in the A, indicator:
here, it is the very low stability of the cluster with N, = 48 elec-
trons that results in a very high evaporation energy for N, = 54,
so that the cascade of trimer evaporation events would be stalled
there maximizing the population of Zn;gMgg. Electronic shell ef-
fects are thus the dominant factor determining the stabilities of
Zn,Mg nanoalloys. In the ESI we further analyze possible relation-
ships between stability and structural properties, and demonstrate
that the more stable clusters are also more compactly packed.

Although the discussion of Eevap and A, is in itself interesting,
we emphasize that it is restricted to one particular fragmentation
channel, enforced by the consideration of a single fixed stoichiom-
etry in our work. For example, even if Zn;4;Mg; displays a high re-
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sistance to dissociate a Zn,Mg trimer, we expect it to evaporate
the Zn dangling atom quite easily, so that cluster would not be
specially abundant in an experimental sample at high temperature.
An exhaustive consideration of all relevant fragmentation channels
would be required for a reliable prediction of particularly abun-
dant sizes in an evaporative ensemble. The cohesive energy results,
however, are sound as they do not refer to any particular fragmen-
tation path.

4. Conclusions

We have reported a Neural Network potential and its train-
ing protocol. The potential is particularly suited to explore the
complex high-dimensional potential energy landscape of metallic
nanostructures with up to hundreds of atoms, and is capable of re-
producing the ab initio values of cluster energies and forces within
chemical accuracy. The automated dynamical update of the data
set, afforded with Basin Hopping global optimization searches per-
formed during the training stage, makes our approach ready to use
and very efficient at a relatively low computational cost. The po-
tential can be easily implemented into standard optimization or
molecular dynamics codes. We have implemented our Neural Net-
work approach into a module of the freely available GMIN code
[61] to perform Basin Hopping searches, and applied it for the first
time to Zn-Mg nanoalloys ranging from 6 to 52 atoms, focusing on
two particular nominal compositions, MgZn, and Mg,Zny;, which
are known to be optimal in corrosion applications as protective
coatings. The ZnMg nanoalloys pose a real challenge for any struc-
tural seeker, due to previously reported unexpected trends such as
the coexistence of metallic and insulating bonds, or the segregation
versus mixing tendencies. Our Neural Network potential has been
found to outperform, in terms of accuracy and efficiency, the em-
pirical Coulomb-corrected Gupta potential developed in a previous
work [44] (which already constituted a step forward over standard
potentials) in proposing better candidate structures for DFT reopti-
mization.

In general, the skeletal atomic structures of the investigated
ZnMg nanoalloys are similar to those of pure Zn clusters [7]. As
concerns the chemical ordering, the nanoalloys clearly tend to
maximize mixing, but with a slight natural segregation of Mg
atoms towards the cluster surface, this being the sole factor pre-
venting the nanoalloys to achieve a complete mixing. This shows
that Mg atoms will be largely but evenly distributed over the clus-
ter surface, thus playing a major role in determining its reactivity
properties. On the other hand, the short-range atomic ordering in
the nanoalloys shares similarities with the bulk Laves phases: they
both exhibit a preference for maximal mixing, very similar coordi-
nation numbers, and even the same coordination polyhedra around
Zn and Mg atoms in some cases.

The analysis of the electronic structure and stability suggests
that MgZn, nanoalloys largely conform to a jellium picture of de-
localized electrons. The electronic shell closings promote the for-
mation of stronger and shorter bonds, so those magic sizes are
expected to be more resistant against penetration of corroding
agents. On the other hand, the cluster-specific finding concerning
the natural tendency of Mg to segregate to the surface could im-
ply that the precise amount of Mg atoms needed in Zn clusters
to improve their anticorrosive properties is actually lower than in
the macroscopic regime. Bearing in mind also that the Mg atoms
tend to occupy the most coordinated surface sites, even a small
concentration of Mg atoms would be mostly if not completely lo-
cated on the cluster surface, and precisely in those local regions
which are expected to be structurally more resistant against distor-
tions due to the strong Zn-Mg bonds. Given the higher reactivity of
Mg (as compared to Zn) against external re-agents such as oxygen,
the alloying will preferentially guide the corroding agents towards
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the Mg surface sites, which would later fixate that corroding agent.
This way, the favorable effect of Mg alloying for corrosion protec-
tion may be to fix the external re-agent precisely at those sites
where the surface is more resistant against the penetration of oxy-
gen, thus protecting the cluster core. Avoiding penetration during
the early stages of corrosion is crucial, as the addition of further
oxygen will eventually produce a passivating oxide crust around
the cluster surface.

The results obtained are therefore very promising. We will ex-
plore in future works the capabilities of Neural Network poten-
tials in describing more complex interactions such as the attack
of corroding molecules on the Zn-Mg system, within our long-
term project on corrosion. That way we will be able to analyze
the detailed structural and electronic properties of the oxide crust
formed on the nanoalloy surface, specifically its resistance against
the filtration of corroding ions towards the core. We strongly be-
lieve that our current neural network protocol may open new
prospects for a variety of problems in Materials Science which are
difficult to tackle with conventional potentials; we are also work-
ing in generating a friendly version of our neural network code
that we hope will be available soon.
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