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Abstract
Linear optical systems acting on photon number states produce many interesting evo-
lutions, but cannot give all the allowed quantum operations on the input state. Using
Toponogov’s theorem from differential geometry, we propose an iterative method
that, for any arbitrary quantum operatorU acting on n photons inm modes, returns an
operator ˜U which can be implemented with linear optics. The approximation method
is locally optimal and converges. The resulting operator ˜U can be translated into an
experimental optical setup using previous results.

Keywords Optical implementations of quantum evolutions · Quantum Optics ·
Toponogov’s Theorem

1 Introduction

Linear optical devices under quantum light show a rich behaviour and have different
applications in experiments on the foundations of quantum optics and quantum infor-
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mation [1–3].While they can be built with relatively simple optical elements like beam
splitters and phase shifters [4–8], their behaviour for photon number states cannot be
accurately reproduced by any classical system. One clear example is the boson sam-
pling problem, for which quantum systems can give efficient solutions which cannot
be produced by any classical method [9].

Passive lossless linear optical systems where the number of photons is preserved
are particularly attractive: they are simple, well understood, and they can be translated
to standard experimental setups.

There are many results on the synthesis of linear systems from their classical
description [4,7,8] and that analyze the evolution of multiple photons in those devices
[10–18]. However, there are relatively few methods for the design of tailored quan-
tum evolutions for multiple photons. We have previously presented an inverse method
which can tell if any desired quantum evolution on n photons can be achieved with a
linear optical system or not, giving the corresponding system when it is possible [19].

In this paper, we complete this design method with a procedure that gives the best
possible approximation to any quantum unitary that cannot be achieved using only
photon preserving linear optical systems. The approximation starts from an initial
guess and returns a matrix in its neighbourhood which minimizes the matrix distance
to the desired unitary but can be achieved using linear optics alone. The result is based
on Toponogov’s comparison theorem [20] from differential geometry.

Section 2 introduces the mathematical description of linear optical systems and
previously known results we will use. Section 3 describes the structure of the image
algebra and its complement and states two theorems that will become useful later.
Section 4 gives the basic concepts from differential geometry used in the proof and
the notation for the rest of the paper. Section 5 defines the bi-invariant Riemannian
metric in which the results are given. Section 6 shows how to apply Toponogov’s
theorem to reduce the problem of approximating a unitary to finding a geodesic in the
correct manifold. Section 7 discusses some tricks related to the generation of random
unitaries which are needed to explore the image group and to be able to compute a
valid matrix logarithm for any desiredU . Section 8 describes the iterative method that
produces the desired approximation. Section 9 gives an application example. Finally,
Sect. 10 gives a general overview of the method and comments on some practical
problems and possible improvements for the approximation algorithm.

2 Mathematical description of linear optics interferometers

All through this paper we restrict to lossless linear optical systems where the total
number of photons is preserved. Classically, the evolution of the electrical field in m
orthogonal modes going through such a linear optical system is perfectly described
by a unitary m × m matrix, S, called the scattering matrix of the system [21]. Linear
optical systems including loss and amplification can be described using quasiunitary
matrices [22].

The evolution of n photons distributed through these m possible modes is given
by an M × M unitary evolution matrix U acting on the M = (m+n−1

n

)

states of the
resulting Hilbert space.
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The photonic homomorphism ϕ : U (m) → U (M) gives the evolution matrix U
which corresponds to a scattering matrix S describing the photon preserving linear
optical system. U = ϕ(S) can be computed from different equivalent methods [10–
12].

Any unitary matrix can be written as an exponential U = eiH for a Hermitian
matrix H . In linear optical devices, we will call this matrix the effective Hamiltonian
HU of the linear system. Similarly, S = eiHS .

The image of the photonic homomorphism, im(ϕ), is a subgroup of U (M) which
contains all the quantum evolutions that are allowed for n photons a linear optical
system with m modes. The image subgroup is a representation ofU (m) inU (M) and
maps each possible classical scattering matrix S describing a linear system into the
quantum evolution U = ϕ(S) it induces for n photons.

The evolution in the corresponding unitary algebras from i HS to i HU is given by
the differential of ϕ, dϕ : u(m) → u(M), for which there are also explicit expressions
[13–18].

From the point of view of system design, a natural question is whether any given
quantum evolutionU ∈ U (M) can be realized using only linear optics. From a simple
dimensional argument, it is clear that, except when m = 1 or n = 1, there must be
some impossible operations [23].

In a previous work, we have given an explicit inverse method to find the S corre-
sponding to any U ∈ im(ϕ) which can be implemented using linear optics [19].

Here, we address the problem of approximating U /∈ im(ϕ). We give a method to
find the linear optics system with an evolution matrix ˜U ∈ im(ϕ) which minimizes
the distance to U locally.

3 The image algebra and its orthogonal complement

If we study the induced map dϕ : u(m) → u(M), we can decompose the Lie algebra
u(M) orthogonally so that

u(M) = im dϕ ⊕ (im dϕ)⊥, (3.1)

where (im dϕ)⊥ is the orthogonal complement of im dϕ with respect to the metric

〈u, v〉 = 1

2
tr(u†v + v†u). (3.2)

For this metric, we can prove a couple of useful facts.

Theorem 1 For U ∈ U (M) such that U /∈ im ϕ, let v ∈ u(M) be the principal
logarithm of U. Let

v = vT + vN (3.3)

be the orthogonal decomposition of v, with a tangent component vT ∈ im dϕ and a
normal component vN ∈ im (dϕ)⊥. Then,
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1. Ua = exp(vT ) ∈ im ϕ.
2. ‖U −Ua‖ ≤ ‖vN‖.

Therefore, for any normalized |ψ〉 with 〈ψ |ψ〉 = 1, we have

1 ≥ |〈Uψ |Uaψ〉| ≥ 1 − ‖vN‖2
2

. (3.4)

The proof is given by introducing a bi-invariant metric and reducing the issue
to a problem in plane geometry thanks to Toponogov’s comparison theorem [20].
Later, with this theorem, we can give a recursive method to find a locally optimal
approximation and show it converges.

4 Prerequisites and Notation

For the very basic notions in differential geometry, such as manifold, curve, tangent
space, the reader is referred to the books of Do Carmo [24] or Sakai [25].

A Riemannian metric on a differentiable manifold M is a correspondence which
associates to each point p on M an inner product 〈 , 〉p on the tangent space TpM
which varies differentiably in the sense that, for any pair of vector fields X and Y which
are differentiable in a neighbourhood V of M , the function 〈X ,Y 〉 is differentiable on
V . The metric with which a Riemannian manifold M is endowed may come from a
distance. Given two points p, q ∈ M , the distance d(p, q) between them is defined
to be the infimum of the lengths of all curves joining p and q which are piecewise
differentiable.

Two fundamental concepts of Riemannian geometry are those of geodesic and
curvature. Roughly speaking, a geodesic is a curve minimizing the distance between
two nearby points. More precisely, let I be a closed interval inR; a parametrized curve

γ : I → M is called a geodesic at t0 if the covariant derivative D
dt

(

dγ
dt

)

vanishes at

the point t0 (see, i.e. [24], Definition 2.1); if γ is a geodesic at t for all t ∈ I , then γ

is called a geodesic. If [a, b] ⊆ I and γ : I → M is a geodesic, the restriction of γ

to [a, b] is called a geodesic segment joining γ (a) to γ (b). By abuse of language it is
often referred to the image γ (I ) of a geodesic γ as a geodesic.

Aminimal geodesic between p and q is the shortest one joining p and q. It is easily
seen that if there exists a minimal geodesic γ joining p to q, then d(p, q) equals the
length �(γ ) of γ . This conditional if holds under the hypothesis of completeness: a
Riemannian manifold M is said to be (geodesically) complete if for every p ∈ M the
exponential map expp is defined for the whole tangent space TpM , i.e. if any geodesic
γ (t) starting from p is defined for all t ∈ R, and the statement is:

Theorem 2 (Hopf-Rinow) Let M be a Riemannian manifold and let p ∈ M. Then M
is geodesically complete if and only if it is complete as a metric space. Moreover, this
implies that for any q ∈ M there exists a minimizing geodesic γ joining p to q.

An important consequence of Theorem 2 is the following, see [25], Corollary 1.4
and Problem 1 of Chapter III:
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Corollary 1 A C∞ manifold M is compact if and only if any Riemannian metric on M
is complete.

On the other hand, the concept of curvature we will refer to is that of sectional
curvature.According toMilnor [26] (p. 295), the sectional curvature of the tangential 2-
plane spanned by some orthogonal unit vectors u and v can be described geometrically
as the Gaussian curvature, at the point, of the surface swept out by all geodesics having
a linear combination of u and v as tangent vector.

We are interested in Riemannian manifolds with additional algebraic structure:
Lie groups. A Lie group is a group G with a differentiable structure such that the
mapping G × G → G given by (x, y) → xy−1, x, y ∈ G, is differentiable. It
follows that translations from the left Lx resp. translations from the right Rx given by
Lx : G → G, Lx (y) = xy resp. Rx : G → G, Rx (y) = yx are diffeomorphisms.

A Riemannian metric on G is said to be left invariant resp. right invariant if for all
p, g ∈ G and for all u, v ∈ TpG it holds that

〈u, v〉p = 〈d(Lg)(u), d(Lg)(v)〉Lg(p) resp. 〈u, v〉p = 〈d(Rg)(u), d(Rg)(v)〉Rg(p).

A Riemannian metric is called bi-invariant if it is both left and right invariant. Any
compact Lie group can be endowed with a bi-invariant metric [24, Exercise 7].

We also consider the Lie algebra G of G, which consists of the vectors in TeG with
e the neutral element of G and with a well-known additional structure provided by a
commutator (or Lie bracket) in the usual way.

We will focus on the Lie group U (M) as a differentiable manifold, for a positive
integer M ; its Lie algebra will be denoted by u(M). Identity matrices of any size will
be denoted by I d.

5 A bi-invariant Riemannianmetric

In this section, we endow U (M) with a Riemannian structure which will be useful
later on.

For u, v ∈ u(M), we define an inner product

〈u, v〉 := 1

2
tr(u†v + v†u). (5.1)

This definition does actually correspond to a positive definite symmetric bilinear
form: The bilinearity is an easy exercise, and moreover:

1. Since u, v ∈ u(M), then u† = −u, v† = −v, and therefore

〈u, v〉 := 1

2
tr(−uv − vu) = −tr(uv).

2. The symmetry of (5.1) is clear, since 〈u, v〉 = −tr(uv) = −tr(vu) = 〈v, u〉.
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3. The positive definiteness follows from the fact that

〈u, u〉 = tr(u†u) = ||u||2 ≥ 0,

where ||u|| =
√

∑

i, j |ui j |2 is the Frobenius norm of u, which is nonnegative and

has all the required norm properties [27].

The metric defined above is Riemannian and bi-invariant. Bi-invariant metrics are
useful for us because of the following.

Theorem 3 (Milnor [26]) Every compact Lie group admits a bi-invariantmetric, which
has nonnegative sectional curvature.

In the case of a bi-invariant metric, the sectional curvature admits an easier formula,
see [26, p. 323, Eqn. (7.3)]:

κ(u, v) = 1

4
〈[u, v], [u, v]〉.

Furthermore, in a Lie group admitting a bi-invariant metric, geodesic curves have
an easy description: they coincide with the exponential map. More precisely, for p ∈
U (M), a geodesic curve γ : I → U (M) such that γ (0) = p and γ̇ (0) = u is of the
form

γ (t) = exp (up−1t) · p (5.2)

In fact, for p, q ∈ U (M), there exists a geodesic γ joining p and q with γ (0) = p
such that

�(γ ([0, t])) =
∫ t

0

√〈γ̇ (t), γ̇ (t)〉dt

=
∫ t

0

√〈u, u〉dt =
∫ t

0
‖u‖ dt

=‖u‖ t . (5.3)

A geodesic segment γ : [0, 1] → U (M) is called minimal if it realizes a distance
for any t ∈ [0, 1] , i.e.,

d(γ (0), γ (t)) = �(γ ([0, t])). (5.4)

By equation (5.2) a geodesic segment γ : [0, 1] → U (M) joining γ (0) = p and
γ (1) = q can be always obtained as

γ (t) = exp(vt)p, with v such that exp(v) = qp−1.

The concept of a minimal geodesic is related to the concept of principal logarithm in
the following way
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Lemma 1 Let p, q ∈ U (M), letw be aprincipal logarithmof qp−1. Then, the geodesic
segment

γ : [0, 1] → U (M), t → γ (t) = exp(wt)p

is a minimal geodesic segment joining p and q.

Recall i K is called a principal logarithm of a unitary matrix M ∈ U (M) if

K † = K , exp(i K ) = M, and the eigenvalues of K are in (−π, π ].

There are efficient algorithms that can compute the principal logarithm of a unitary
matrix [28]. We choose this definition of principal logarithm over the one for the
interval (−π, π) so that there is always a principal matrix logarithm, even for matrices
with real negative eigenvalues (-1). Some properties, like infinite differentiability, are
lost with this definition, but they are not used in our result.

Proof of Lemma 1 The length of a geodesic segment γ (t) = exp(vt)p with exp(v) =
qp−1 is (by equation (5.3))

�(γ ([0, 1])) = ‖vp‖ = ‖v‖.

The distance d(p, q) between p and q is the shortest length of the curves joining p
and q. In the case of a complete metric this shortest length is attained by a geodesic
segment joining p and q. Hence, the geodesic segment γ (t) = exp(vt)p is minimal
if and only if

‖v‖ = min{‖w‖ : exp(w) = qp−1}.

But the equation exp(w) = qp−1 has the following family of solutions

w = U [log(λi )δi j ]U †

with pq−1 = UΛU †, U being a unitary matrix, [Λ]i j = (λi )δi j being the diagonal
matrix of eigenvalues of pq−1, and log(λi ) being any logarithm of λi . Observe that

‖w‖ =
√

√

√

√

M
∑

i=1

| log(λi )|2.

This expression only depends on the list of eigenvalues of pq−1 and their logarithms.
Since pq−1 is unitary

log(λi ) = i(ki + 2πli ), with ki ∈ (−π, π ], and li ∈ Z.
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Fig. 1 Geodesic triangle
Δ(p1 p2 p3)

Then

{‖w‖ : exp(w) = qp−1} =
⎧

⎨

⎩

√

√

√

√

M
∑

i=1

|(ki + 2πli )|2 : li ∈ Z

⎫

⎬

⎭

,

with a minimum when li = 0 for i = 1, . . . , M , which corresponds to a principal
logarithm. ��

6 An application of Toponogov’s comparison theorem

Riemannian manifolds whose curvature is bounded below may be investigated by
applying Toponogov’s comparison theorem. We first need to define triangles on the
Riemannian manifold.

Definition 1 A geodesic triangle T = Δ(p1 p2 p3) of a Riemannian manifold M is a
set consisting of three segments of minimal geodesics, which are called the sides of
T , say

γ1 : [0, 1] → M, γ2 : [0, 1] → M, and γ3 : [0, 1] → M,

such that γi (1) = γi+1(0) for i = 1, 2, and γ3(1) = γ1(0). The endpoints p1, p2 and
p3 are called the vertices of the triangle. The angle between the tangent vectors to γi−1
andγ −1

i+1 at pi is called the angle ofT at pi anddenotedbyαi = ∠(pi−1 pi pi+1)or∠pi .
The perimeter � is defined as the sum �(γ1)+�(γ2)+�(γ3); if we consider, in addition,
that the two sides γ2, γ3 are minimal geodesics, and the side γ1 is a geodesic segment,
not necessarily minimal, with �(γ1) ≤ �(γ2) + �(γ3) = d(p1, p3) + d(p1, p2), then
the set is said to be a generalized geodesic triangle (Fig. 1).

Let us set the part of Toponogov’s comparison theoremwe are interested in, cf. [25,
Theorem 4.2 in Chapter IV]:

Theorem 4 (Toponogov) Let M be a complete Riemannian manifold whose sectional
curvatures satisfy κ ≥ δ everywhere for some constant δ. Denote by M2

δ the 2-
dimensional complete simply connected Riemannian manifold of constant curvature
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δ. Consider a generalized geodesic triangle Δ(p1 p2 p3) such that γ2, γ3 are minimal
and �(γ1) ≤ π/

√
δ. Then the perimeter � ≤ 2π/

√
δ and there exists a geodesic tri-

angle Δ( p̃1 p̃2 p̃3) in M2
δ with the same side lengths �(γ̃i ) = �(γ̃i ), for i = 1, 2, 3 and

satisfying α2 ≥ α̃2 and α3 ≥ α̃3.

Remark It is to assume that π/
√

δ = +∞ when δ ≤ 0 in the theorem above.

Theorem 4 allows us to compare triangles of U (M) with triangles in R2 by setting
δ = 0, since in this case M2

0 = R
2. In our situation it is p1 = U , p3 = I d and

p2 = Ua = exp(vT ) is our approximation matrix in im(ϕ) (recall that vT is the
tangential component of the principal logarithm v of U ). Set γ1(t) = Ua exp(−vT t),
γ2(t) = exp(vt) and γ3(t) a minimal geodesic segment joining U with Ua . Then γ2
and γ3 are minimal geodesic segments and γ1 is a geodesic segment (not necessarily
minimal). Set �1 = �(γ1([0, 1])) = ‖vT ‖, �2 = �(γ2([0, 1])) = d(U , I d) and
�3 = �(γ3([0, 1])) = d(U ,Ua). Observe that

�1 = ‖vT ‖ ≤ ‖v‖ + d(U ,Ua) = �2 + �3.

Hence, by Theorem 4, there exists a geodesic triangle in R
2 with sides �1, �2 and �3

of lengths �1, �2 resp. �3, such that α2 ≥ α̃2 and α3 ≥ α̃3. We want to estimate the
distance �3. First of all notice that �3 = �2 − �1; hence, the law of cosinus implies
that

‖�3‖2 = ‖�2 − �1‖2 = ‖�1‖2 + ‖�2‖2 − 2 ‖�1‖ ‖�2‖ cos∠(�1, �2)

and

�23 = �21 + �22 − 2�1�2 cos α̃3. (6.1)

Since cosα3 = 〈v,vT 〉
‖v‖‖vT ‖ = ‖vT ‖

‖v‖ ≥ 0, it follows that α̃3 ≤ α3 ≤ π
2 which implies

− cos α̃3 ≤ − cosα3 and, so,

�23 ≤�21 + �22 − 2�1�2 cosα3 = ‖vT ‖2 + ‖v‖2 − 2 ‖vT ‖ ‖v‖ cosα3

= ‖v‖2 + ‖vT ‖2 − 2〈v, vT 〉 = ‖v − vT ‖2 = ‖vN‖2 .
(6.2)

Figure 2 shows a graphical representation of our scenario.
Now we want to see the bi-invariant metric in u(M) defined in Sect. 5 as a metric

in U (M). First observe that the Riemannian manifold (U (M), 〈, 〉) is a Riemannian
subvariety of the manifold Mn(C) of the complex n × n-matrices endowed with the
Euclidean inner product. If we write dU (M) for the distance we use on U (M), and
dMn for the one onMn(C), then

�3 ≥ dU (M)(Ua,U ) ≥ dMn (Ua,U ).

The inequality holds since “distance” between two points is the infimum of the length
of any two curves joining the points. Now it is easy to find a minimal geodesic for

123



314 Page 10 of 18 J. C. Garcia-Escartin et al.

Fig. 2 Submanifold im(ϕ) in U (M), matrix U and approximation Ua

Mn(C) joiningUa andU , namely the segment γ4(t) = Ua +(U −Ua)t for t ∈ [0, 1].
Since γ̇4(t) = U − Ua , we find that dMn (Ua,U ) = ‖γ̇4(t)‖ · 1 = ‖U −Ua‖ and,
therefore,

�3 ≥ ‖U −Ua‖ .

This inequality together with (6.2) yields

‖U −Ua‖2 ≤ �23 ≤ ‖vN‖2 ,

and we obtain, finally,

‖U −Ua‖ ≤ ‖vN‖ .

7 Random unitary matrices and a basis for the image

Before looking into the iterative process that gives the locally optimal approximation
to any desired U /∈ imϕ, we need to consider a few useful tricks.

While in the previous section we have considered the identity matrix as our starting
point in the image group, the results hold for any U0 ∈ imϕ. The identity has some
advantages: it is always in the image, for any values of n and m, and, in terms of
computation, it is trivial to generate the M × M identity matrix.
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However, in general, the landscape of the image group is unknown and numerical
experiments show there are multiple local minima. In a 2D space, we can picture
the image as an irregular profile with mountains and valleys. For any given starting
point, the iterative process ends in a local minimum, but, as we do not know how
many minima exist, we need a series of random starting points to sample multiple
approximations, each the closest to the intended U in its local neighbourhood.

In order to generate a random unitary Ur ∈ imϕ, we choose a random Sr ∈ U (m)

uniformly from all the possible matrices and compute Ur = ϕ(Sr ). The random
unitaries inU (m) can be generated from samples of a normal distribution [29,30], and
the photonic homomorphism is known [11,12].

Finally, we need a way to project the logarithm of any U ∈ U (M) to the image
algebra imdϕ. The method is similar to the generation of random unitaries. We start
by working on the algebra corresponding to the scattering matrices, u(m), where we
can write down a known basis and, using the differential map dϕ, explicitly given in
[18], we can obtain a basis for imdϕ, which is a subalgebra of u(M). This basis is not
necessarily orthonormal, but it can be orthogonalized and normalized. The details of
the whole procedure can be found in [19]. This basis, together with the inner product
of Eq. (5.1), is enough to obtain the desired projection on the image algebra.

8 An iterative process for the approximation

In Sect. 6 we have constructed an approximation matrix U1 := Ua ∈ im(ϕ), starting
from U = exp (v) as

U1 = exp ((logU )T ), with ‖U −U1‖ ≤ ‖(logU )N‖ .

Now, we can repeat this by taking a new approximation U2 ∈ im(ϕ) by considering
a geodesic triangle of vertices I d, U−1

1 U and U2, where U
−1
1 U = exp (−vT ) exp v

and

U2 = U1 exp ((logU−1
1 U )T ) with ‖U −U2‖ ≤

∥

∥

∥(logU−1
1 U )N

∥

∥

∥ .

Iteratively,

{

U0 =Id

Un =Un−1 exp((log(U
−1
n−1U )T ))

with

‖U −Un‖ ≤
∥

∥

∥(log(U−1
n−1U )N

∥

∥

∥ .
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8.1 Convergence

The method described above converges. Consider the sequence {Ui } with i ≥ 0 and
U0 = I d. For the first step we know that d(U1,U ) = ‖v1‖, d(U2,U ) ≤ ‖v1N‖, and
d(U1,U2) ≤ ‖v1T ‖. In general, we have:
1. d(Ui ,U ) = ‖vi‖,
2. d(Ui+1,U ) ≤ ‖viN‖,
3. d(Ui ,Ui+1) ≤ ‖viT ‖.
Proposition 1 We have that

d(Ui+1,U ) ≤ d(Ui ,U ). (8.1)

Furthermore, the equality holds if and only if Ui = Ui+1.

Proof By a successive application of inequalities (2) and (1) above we obtain

d(Ui+1,U )
(2)≤ ‖viN‖ ≤ ‖vi‖ (1)= d(Ui ,U ).

Now, if equality (8.1) holds, then ‖viN‖ = ‖vi‖ and so ‖viT ‖ = 0; inequality (3) above
allows us to conclude that Ui = Ui+1. The converse is trivial. ��

Let us define

d : N → R, i → di := d(Ui ,U ).

Proposition 2 The sequence {di } is convergent.
Proof Assume that Ui �= Ui+1 for every i (otherwise, there would exist n ∈ N such
that Un = Un+1, and therefore dn = dn+1 = · · · and the sequence converges to dn).
By Proposition 1 the sequence {di } is decreasing; in particular di < d1 for all i . This
together with the fact that di ≥ 0 for all i (i.e. the sequence {di } is bounded) implies
the convergence. ��

In fact, the approximation given by the described method is the best possible one in
the following sense. Since {di } is a convergent sequence, then it is a Cauchy sequence.
This means that for every ε > 0 there exists nε ∈ N with

0 < di − di+1 < ε, for all i > nε .

Since, by (1) and (2) we have that di = ‖vi‖ and di+1 ≤ ‖viN‖, it is easily deduced
that

0 ≤ ‖vi‖ − ‖viT ‖ ≤ di − di+1 < ε. (8.2)
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We first observe the following inequality:

Lemma 2

‖vi − viN‖2 ≤ (‖vi‖ − ‖viN‖) · 2 · d1.

Proof

‖vi − viN‖2 =‖vi‖2 + ‖viN‖2 − 2〈vi , viN 〉
=‖vi‖2 + ‖viN‖2 − 2〈viT + viN , viN 〉
=‖vi‖2 + ‖viN‖2 − 2‖viN‖2 = ‖vi‖2 − ‖viN‖2
=(‖vi‖ − ‖viN‖)(‖vi‖ + ‖viN‖).

Since ‖viN‖ ≤ ‖vi‖, it holds that

(‖vi‖ − ‖viN‖)(‖vi‖ + ‖viN‖) ≤(‖vi‖ − ‖viN‖)2‖vi‖
(1)=(‖vi‖ − ‖viN‖)2di .

Proposition 1 implies that di ≤ d1; hence, we get

‖vi − viN‖2 ≤ (‖vi‖ − ‖viN‖)2d1. ��
Now, inequality (8.2) together with Lemma 2 implies that

0 ≤ ‖vi − viN‖2 ≤ 2εd1.

On the other hand, ‖vi − viN‖2 = ‖vT ‖2 and, together with inequality (3), this yields

d(Ui ,Ui+1) ≤ ‖vi − viN‖2 ≤ 2εd1.

Therefore the sequence {Ui } is a Cauchy sequence itself. This allows us to apply
Theorem 2 (Hopf-Rinow) in the complete metric space (M, g), and so the sequence
{Ui } converges to a matrix Ũ ∈ M , and ‖vT∞‖ = 0. Hence the geodesic joining Ũ
with U is normal.

9 Application example

We can see an example of the procedure with the quantum Fourier transform

QFT |x〉 = 1√
M

M−1
∑

y=0

e
i2πxy
M |y〉 . (9.1)
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We choose the QFT not only for being a useful transformation in quantum infor-
mation and quantum optics, but also because it can be considered one of the most
difficult transformations for linear optics.

We start from the QFT matrix for M = 3 (n = m = 2)

U = 1√
3

⎛

⎜

⎝

1 1 1

1 e−i 2π3 e−i 4π3

1 e−i 4π3 e−i 8π3

⎞

⎟

⎠

≈
⎛

⎝

0.57735 0.57735 0.57735
0.57735 −0.28868 − 0.5i −0.28868 + 0.5i
0.57735 −0.28868 + 0.5i −0.28868 − 0.5i

⎞

⎠ .

(9.2)

This evolution is impossible to achieve with lossless linear optics alone, which can
be checked with the method in [19].

For the implementation of U , we consider the states in the ordered basis
{|20〉 , |02〉 , |11〉}. All the results are given with 5 significant digits for matrix entries
and 10 significant digits for distances, rounding the imaginary or real parts to zero
when they are much smaller than the surrounding terms.

The starting point is the identity matrix, for which ‖U − Id‖ = 2.449489743. In
the first step of our procedure, we take the projection of the principal logarithm of U
into the image algebra:

log(U ) =
⎛

⎝

−0.6639i 0.9069i 0.9069i
0.9069i −2.0242i −0.45345i
0.9069i −0.45345i −2.0242i

⎞

⎠

and

log(U )T =
⎛

⎝

−0.89062i 0 0.22672i
0 −2.251i 0.22672i

0.22672i 0.22672i −1.5708i

⎞

⎠

so that

U1 =
⎛

⎝

0.61786 − 0.75486i 0.024514i 0.20595 + 0.073541i
0.024514i −0.61786 − 0.75486i 0.20595 − 0.073541i

0.20595 + 0.073541i 0.20595 − 0.073541i −0.95097i

⎞

⎠

with ‖U −U1‖ = 1.770101749.
After 10 steps, we have:

U10 =
⎛

⎝

0.86432 − 0.50294i 2.889 · 10−6i 0.0020837 + 0.0011983i
2.889 · 10−6i −0.86432 − 0.50294i 0.0020837 − 0.0011983i

0.0020837 + 0.0011983i 0.0020837 − 0.0011983i −0.99999i

⎞

⎠
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with ‖U −U10‖ = 1.732054756. Further iterations only produce marginal improve-
ments in the distance to the target matrix beyond the fifth decimal place.

We stop after 10 additional steps and use as an approximation

U20 =
⎛

⎝

0.86601 − 0.50003i 0 0
0 −0.86601 − 0.50003i 0
0i 0 −1.0i

⎞

⎠

with ‖U −U20‖ = 1.732050808.

9.1 Random initial matrices

In fact, the results hold for any arbitrary U0 ∈ imϕ. Now the procedure becomes
computationally more involved, as we need an explicit evaluation of Ur = ϕ(Sr )
for random Sr matrices, with a complexity which grows combinatorially in n and m.
However, as we see in this second example, we can explore different local optima.

For the QFT matrix in Eq. (9.2), if we start at random points, the approximation
gravitates towards three solutions. Two of them are at the same distance from the QFT
matrix than the approximationwe found startingwith the identitymatrix, 1.7320, with

U 1
a =

⎛

⎝

0.86602 − 0.5i 0 0
0 −0.86602 − 0.5i 0
0 0 −1.0i

⎞

⎠

and

U 2
a =

⎛

⎝

0 0.86602 + 0.5i 0
0.86602 + 0.5i 0 0

0 0 −0.86602 − 0.5i

⎞

⎠ .

There is a third solution with a distance 0.85675 to the QFT for the matrix:

U 3
a =

⎛

⎝

0.43301 + 0.25i 0.43301 − 0.25i 0.70711
0.43301 − 0.25i −0.5i −0.35355 + 0.61237i

0.70711 −0.35355 + 0.61237i 0

⎞

⎠ .

These solutions seem to be foundwith equal probability. For a run of 1000 experiments
we foundU 1

a 311 times,U 2
a 374 times andU 3

a 315 times. Further experiments showed
a similar behaviour.

The best approximation to the 3×3QFTmatrixU 3
a comes from a scatteringmatrix:

S3a =
(

0.68301 + 0.18301i 0.68301 − 0.18301i
0.68301 − 0.18301i −0.5 + 0.5i

)

.

In general, depending on the starting local point, there are different local optima.
Sometimes, two different approximation matrices in the image group give the same
distance to the target unitary, as it happens in this example for U 1

a and U 2
a .
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Fig. 3 Linear optics interferometer approximating the QFT for a system with two inputs and two photons.
The system uses two phase shifters (with shifts −π

3 and π
3 in the upper and lower mode, respectively) and

one balanced beam splitter (centre). This configuration gives one possible approximation, U3
a , which has

matrix distance 0.85675 to the QFT

9.2 Translation to an optical setup

The best approximation to the QFT comes from a scattering matrix S3a which corre-
sponds, up to a 5π

12 global phase, to a balanced two input beam splitter with a scattering
matrix

SBS = 1√
2

(

1 i
i 1

)

preceded by a −π
3 phase shifter in the first port and followed by a π

3 in the second port.
The phase shifters have scattering matrices

S− π
3

=
(

e−i π
3 0

0 1

)

and Sπ
3

=
(

1 0
0 ei

π
3

)

,

respectively.
The experimental configuration corresponding to this approximation to the QFT is

shown in Fig. 3.

10 Summary, recommendations and future improvements

We have given an iterative method that finds a linear optical setup that approximates
any arbitrary quantum evolution for n photons in m modes. The approximation is
optimal in the local neighbourhood of the initial guess. Once we have the closest
unitary that can be implemented, ˜U , we can use a previous method [19] to obtain
a scattering matrix ˜S that gives the approximated evolution and there are multiple
algorithms that give the physical setup corresponding to ˜S using only beam splitters
and phase shifters [4,7].

This gives a design method which starts from the desired evolution instead of the
usual analysismethodswhich, given a classical description of the linear optical system,
find out the evolution it induces on quantum states.

The proposed algorithm is based on results from differential geometry, in particular,
Toponogov’s theorem. They show the method will converge and find local optima.
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There are a few practical details worth mentioning. First, numerically, we find that
if we try the method on an evolution which is possible to obtain from a linear optics
system, U ∈ imϕ, sometimes it will converge to a matrix close the actual solution,
but, depending on the local landscape, it might fall into a variety of different matrices
all at a similar large distance. In practical applications, the recommendation would
be, first, check whether an exact implementation exists (with our previous algorithm
[19]) and, if there is none, look for an approximation.

There are also some open problems. The presented results are only valid for lossless
linear systems. Linear optical systems including losses and squeezing can be described
using quasiunitary matrices [13,22], which can also be studied using group theory.
However, there appear some technical complications and the theory of these linear
system is not as developed as in the lossless case. We leave for future research the
adaptation of the presented design methods to these scenarios.

Additionally, from the structure of the involved groups and algebras, it is not clear
how many local optima exist for any given transformation ϕ. We have proposed a
randomized way of exploring the state space of the potential approximation matrices,
and, for the limited dimensions that can be numerically explored, it seems toworkwell,
but there is no guarantee the method finds a global minimum. Any further knowledge
of the structure of the image group would help in the search for a global minimum or,
at least, in finding a probabilistic bound on the optimal approximation. Additionally,
a lower bound on ‖U −Ua‖, as opposed to our upper norm, would help to determine
the global optimum.

Even in its present form, the proposed algorithm, when combined with previous
results, can assist in the design of quantum optical operations and has applications to
quantum information and quantum optics experiment design.
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