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Abstract: A bio-electronic tongue has been developed to evaluate the phenolic content of grape
residues (seeds and skins) in a fast and easy way with industrial use in mind. A voltammetric
electronic tongue has been designed based on carbon resin electrodes modified with tyrosinase
combined with electron mediators. The presence of the phenoloxydase promotes the selectivity
and specificity towards phenols. The results of multivariate analysis allowed discriminating seeds
and skins according to their polyphenolic content. Partial least squares (PLS) has been used to
establish regression models with parameters related to phenolic content measured by spectroscopic
methods i.e., total poliphenol content (TPC) and Folin–Ciocalteu (FC) indexes. It has been shown
that electronic tongue can be successfully used to predict parameters of interest with high correlation
coefficients (higher than 0.99 in both calibration and prediction) and low residual errors. These values
can even be improved using genetic algorithms for multivalent analysis. In this way, a fast and simple
tool is available for the evaluation of these values. This advantage may be due to the fact that the
electrochemical signals are directly related to the phenolic content.
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1. Introduction

In grape berries, polyphenolic compounds are mainly found in skins and seeds. Many factors
are essential in the phenolic composition of grapes, namely degree of ripeness, climate conditions,
grapevine variety and berry size [1,2]. The most abundant phenolic compounds in grape skins are
flavonols, while grape seeds have high levels of flavan-3-ols [2]. During wine making, these compounds
are transferred to wines and have an important influence in the final organoleptic characteristics
of wines.

The grape marcs (seeds and skin remains of grapes after pressing) have a high content on
polyphenols, increasing the interest of exploiting these sub-products [3]. For instance, Bekhit et al. [4]
showed that extracts obtained from wine production residues may have anti-influenza virus activity.
Besides, some grape pomaces have shown antioxidant activity [5]. In summary, reduction of negative
costs, as well as improvement if the sustainability in wine making are the positive incomes when its
bio-products residues turn into useful technologies [6,7].
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The total extractable phenolics are found mainly in the seeds (60–70%), then in the skin (28–35%),
and finally in the pulp (only about 10%) [8]. Therefore, the extraction technique is an important issue
when focusing on isolating, identifying and using these compounds. There is no standard method to
do so. Solid–liquid extraction using organic solvents as ethanol has shown good efficiency [9,10].

Spectrophotometry is one of the methods used to determine the phenolic content of grape
samples [3–5]. Other techniques commonly used for this purpose are colorimetry [6] HPLC (high
performance liquid chromatography) [1,11], Raman and ATR–FTIR (attenuated total reflection—Fourier
transform infra-red) [12].

In the last years, electrochemical sensors were improved in order to give us rapid, simple, cheap
and sensitive information about the polyphenolic content [13,14]. Modified carbon electrodes have
been tested recently as voltammetric sensors for the analysis of phenolic compounds, especially when
modified with nanomaterials [15–18]. The electrocatalytic properties—stability and large surface area
of metal oxide nanoparticles—make them interesting materials to fabricate electrochemical sensors
dedicated to the analysis of antioxidants [19,20]. Recently, nickel oxide nanoparticles (NiONPs) were
successfully used in monitoring the phenolic maturity of red grapes [21]. Other materials have
demonstrated to be excellent modifiers in sensors dedicated to the detection of phenols. One excellent
example is the lutetium bisphthalocyanine (LuPc2), a sandwich-type derivative with free radical
character, which is an intrinsic semiconductor that shows excellent electrocatalytic activity towards
phenols [22–25].

The specificity of electrochemical sensors can be improved by modifying the electrode surface
with an enzyme. Enzyme-based electrochemical sensors based on phenoloxidases such a tyrosinase
(Tyr) can exhibit a faster response, enhanced operational repeatability, lower background current,
lower limit of detection and higher sensitivity [26–29]. The interaction between tyrosinase and electron
mediators, such as nanoparticles or phthalocyanines, can improve sensor operation [29].

In spite of the excellent performance shown by electrochemical sensors, their use in complex
matrixes is limited due to the presence of interferences. This problem can be overcome using the
so-called electronic tongues, where an array of sensors with cross-selectivity is coupled to a pattern
recognition software [30,31]. Amperometric and voltammetric sensor arrays have widely used to
analyze wines and musts [13,32,33]. Electronic tongues provide global information about the sample
instead of information about specific components. More recently, bioelectrochemical sensors were
successfully included in sensor arrays to form bio-electronic tongues. The presence of biosensors can
help to add specificity towards different compounds. This means that bio-electronics tongues combine
the advantages of classical electronic tongues with the typical specificity of biosensors. Bio-electronic
tongues have been used to analyze wines or musts [34,35], however they have not been applied to the
analysis of wine making marcs.

In order to process the data obtained from the electrode array, multivariate statistical studies
are required given that the signal from the sensors contain meaningful information of the samples.
It is preferred to use pattern recognition techniques that include partial least squares (PLS) [36] to
distinguish samples by their organoleptic characteristics and to establish a relationship between the
responses of the sensors and the characteristics of the sample as the polyphenol content [13,36,37]. A
method for selecting variables called genetic algorithm in partial least squares (GA–PLS) has also been
used, which is one of the most widely used techniques for the selection of variables and for improving
the performance of PLS [38,39].

The main objective of this work was to develop a multisensory system (a bio-electronic tongue,
ET) based on carbon electrodes modified with sensing nanomaterials and enzymes to evaluate the
polyphenol content of wine making residues (seeds and skin), obtained from eight grape varieties used
for wine making in the region of Castilla y León, Spain, valuing this kind of industrial waste.
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2. Materials and Methods

2.1. Materials and Working Electrodes Preparation

Catechol (>99.0%), nickel (II) oxide nanoparticles (≥99.8%, <50 nm particle size), ethanol (≥99.8%
HPLC grade), tyrosinase (Tyr from Agaricus bisporus activity of 1000 U mg−1, CAS 9002-10-2), sodium
phosphate monobasic and dibasic (≥99.0%), potassium chloride (≥99.0%) and Araldite® resin were
obtained from Sigma–Aldrich (France). Glutaraldehyde (50% aqueous solution) was purchased from
Alfa Aesar (Haverhill, MA, USA). The lutetium (III) bisphthalocyaninate (LuPc2, 0.05 g L−1) was
synthesized using a method developed by our group [40]. Deionized water from MilliQ (resistivity
18.2 MΩ·cm) was used in all experiments.

Working graphite composite electrodes were prepared based on the mixture of graphite with epoxy
resin Araldite and with/without the addition of substances to modify the electrodes’ electrocatalytic
properties in order to verify the electrodes performance, together with the tyrosinase enzyme, in the
analysis of grape seeds and skins samples. Thus, nickel oxide nanoparticles (NiO NPs) and lutetium
phthalocyanine (LuPc2) were chosen to modify composition of the graphite composite electrodes
(electrocatalytic modifying compounds, EM). The electrode array was composed of six working
electrodes; the first three electrodes were: C (carbon + Araldite® resin; 50–50%); C-NiONPs (carbon +

Araldite® resin + NiO NPs; 49.5–49.5-1%, respectively); C-LuPc2 (carbon + Araldite® resin + LuPc2;
49–49-2%, respectively).

The remaining three electrodes were replicas of the first but with the surface modified with
the addition of the tyrosinase enzyme: C-Tyr, C-NiONPs-Tyr and C-LuPc2-Tyr. Tyrosinase was
immobilized by drop-casting 20 µL of a tyrosinase solution (5 mg in 1 mL of buffer 0.01 M) twice in
the electrode’s surface. Afterward, the electrode was immersed in a buffer phosphate solution (pH 7;
0.01 M-0.5393 g of NaH2PO4 and 0.7318 g of Na2HPO4 in 1000 mL) for 1 min. After drying, it was left
in contact with vapors of glutaraldehyde (50%) for 20 min and again 30 s in the buffer solution, being
finally stored at 4 ◦C until the analysis.

2.2. Samples

The wine making residues samples were obtained from the vineyards “Bodega Cooperativa
de Cigales” and “Instituto Tecnológico Agrario de Castilla y León (ITACYL)”, both located in the
Valladolid area of Castilla y León, in Spain. This collection is from the 2015 grape harvest and is
composed of eight varieties of red grapes, namely Juan García (J), Mencia Regadio (MR), Mencia
Secano (MS), Rufete (R), Prieto Picudo (P), Garnacha (G), Tempranillo (T) and Cabernet (C).

In order to test them electrochemically, the samples of wine making residues (seed and skin grape)
were separately dried at 60 ◦C for 24 h and, after grinding and sifting, particles smaller than 400 µm
were again dried at 60 ◦C for 2 h. The extraction process was made by mixing at a rotation speed of
1200 rpm, 1 g of each dried sample with 40 mL of 50% ethanol solution for 2 h, in ambient temperature.
After that, the extracts were centrifuged (1200 rpm) for 10 min and the supernatant was used as the
final product.

The phenolic content of the grape seeds and skins was determined by using two spectrophotometric
analytical methods: total polyphenolic content by measuring absorbance at 280 nm 280 nm (TPC
index) and total phenolic content by using the Folin–Ciocalteu method (FC index) by measuring the
absorbance at 750 nm. [41].

2.3. Voltammetric Characterization and Tests

In order to make an electrochemical characterization, a solution of catechol 1 × 10−3 M and
KCl 0.1 M as the supporting electrolyte was used to test the electrodes’ analytical performance.
Electrochemical impedance spectroscopy (EIS) experiments were performed using SOLARTRON
impedance analyzer. EIS was used to evaluate the effect of electrocatalytic material on electron transfer
resistance. After a stabilization time of 1800 s, the impedance measurements were carried out by
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applying a signal amplitude of 10 mV, at a working potential of −0.5 V with frequencies varied
logarithmically from 0.1 Hz to 100 kHz.

Electrochemical experiments were carried out using a potentiostat/galvanostat PGSTAT128
(Autolab Metrohm, Utrecht, Netherlands). The reference electrode was Ag|AgCl/KCl 3 mol·L−1 and
the counter electrode was a platinum sheet with a surface of 1 cm2. The sensors and biosensors were
used as the working electrodes.

Cyclic voltammograms (5 cycles) were registered at a sweep rate of 0.1 V·s−1 from −0.6 V to +1.2 V.
Four replicas of each sample were measured. The measures on skin extracts and grape seeds were
carried out by diluting the samples in KCl 0.1 M. Before each measurement (change of extract), the
electrode surface was polished with sandpaper, being tyrosinase deposited again.

2.4. Statistical Analysis

The statistical analysis was executed by using Matlab v2020a (The Mathworks Inc., Natick,
MA, USA) and R program for statistical computing (version 3.6.2) (The R Foundation for Statistical
Computing, Vienna, Austria). PLS was used as a multivariate method to check the perception ability of
the said voltammetric e-tongue (electrode array) and to correlate the data with the chemical parameters.
The function plsr of the pls library was used in R to obtain PLS regression.

Genetic algorithm is an adequate metaheuristic technique for the data handled in this work with
the purpose to verify if variable selection can improve the PLS models performance. The R package
“plsVarSel” and its function “ga-pls” (genetic algorithm combined with PLS regression) was used in
this procedure. Cyclic voltammograms of the skin and seed extracts were treated separately. For signal
processing, the full range of every voltammogram was used. Therefore, the data considered included
the oxidation and reduction zones of four repetitions of voltammetric analysis. The number of data
was very high (1377 data per cycle) and therefore it was decided to compress the data by Wavelet
Data Compression technique [42]. Every cycle was reduced to 22 representative points by means of
Haar wavelet. The X (explanatory variables) and Y (responses) data were also centered and scaled by
dividing the mean centered data of each variable by its standard deviation. The function plsr of the pls
library was used in R to obtain PLS regression.

3. Results and Discussion

3.1. Phenolic Content: TPC Index and FC Index

Table 1 presents the analytical results obtained for the total polyphenolic and total phenolic
contents of grape seeds and skins samples (TPC index and FC index, respectively). As expected,
whatever the grape’s variety, seeds showed higher absorbance values than skins, confirming that seeds
are the grape components that have the highest content of phenolic compounds. It is known that total
extractable phenolics in grape vary between 60–70% in the seeds and 28–35% in the skin, being about
10% or less in the pulp [43].

The seed variability related to the grape variety shows to have an influence on the results of TPC
and FC indexes. The phenolic content in seeds is clearly affected by agroecological factors, such as
the grape variety, the site of production and the degree of maturation [44,45] being one of the most
important in a variety of grapes [46–48]. Both indexes agree that Prieto Picudo is the grape variety
with highest phenolic content in seeds. On the contrary, the Rufete variety has the lowest levels in both
phenolic contents in the seeds.

The skin layer closest to the pulp contains most of the phenolics [49,50] that increase with maturity,
whereas they decrease in the seeds [51]; in our case, grape skins of Prieto Picudo variety also showed
high content in both indexes; the Tempranillo variety had one of the lowest values in both indices.
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Table 1. Total poliphenol content (TPC) and Folin–Ciocalteu (FC) indexes measured in grape skin and
seed extracts (n = 3 and σ ≤ 0.01).

Sample Extractions TPC Index FC Index

GRAPE SKIN

Cabernet (C) 12.2 11.8
Garnacha (G) 8.5 7.98
Juan García (J) 15.1 10.2

Mencia Regadio (MR) 16.7 15.5
Mencia Secano (MS) 14.0 12.8

Prieto Picudo (P) 21.1 16.3
Rufete (R) 5.5 6.8

Tempranillo (T) 12.1 12.3

GRAPE SEED

Cabernet (C) 63.8 57.6
Garnacha (G) 53.5 47.7
Juan García (J) 78.6 46.6

Mencia Regadio (MR) 70.7 50.1
Mencia Secano (MS) 70.6 41.0

Prieto Picudo (P) 152.4 73.2
Rufete (R) 62.1 50.6

Tempranillo (T) 40.3 32.3

3.2. Electrochemical Characterization of the Carbon Composite Electrodes Towards Catechol

The objective of this work was to develop a multisensor system based on carbon composite
working electrodes with or without sensing materials (referred as EM-electrodes due to the presence of
nickel oxide nanoparticles or lutetium phthalocyanine) and tyrosinase enzyme to detect the phenolic
content of seeds and skins of grapes. As a first task, the electrochemical characteristics of the three
carbon working electrodes (C; C-NiONPs; C-LuPc2) towards catechol, a typical phenol present in
grapes, was evaluated using electrochemical impedance spectroscopy and cyclic voltammetry.

The interfacial electron transfer capabilities of the different electrodes were explored by EIS.
Typical Nyquist plots obtained from a 1 × 10−3 mol·L−1 catechol solution at −0.5 V are displayed in
Figure 1. The semicircular part of the diagram at high frequencies corresponds to electron-transfer
limited processes and the diameter is equivalent to the electron transfer resistance (Rct), which regulates
the electron transfer kinetic at the electrode interface. A large diameter was obtained at bare carbon
composite electrode (C), indicating that electron transfer process was hindered to a great extent. After
the modification of the sensors with electrocatalytic materials, the semicircle diameters decreased
sharply. For carbon electrodes modified with metal oxide nanoparticles (C-NiONPs), the semicircle
was reduced to half of the bare semicircle, whereas it was reduced to a quarter when modifying the
electrodes with bisphthalocyanine (C-LuPc2). These results confirmed that the EM were successfully
introduced in carbon electrodes.

Voltammograms of C, C-NiONPs and C-LuPc2 electrodes immersed in catechol 1 × 10−3 mol·L−1

are shown in Figure 2a. The response was consistent with the expected well-shaped redox pair
generated by the two-electron oxidation/reduction of the 1,2-dihydroquinone to 1,2-benzoquinone.
In all cases, two oxidation peaks and two reduction peaks were observed, which are associated,
according to the literature, to a two-phase mechanism involving two electrons. However, some authors
indicate that the appearance of more than one anodic peak is due to the existence of a polymerization
process [52,53]. The presence of nanoparticles and phtalocyanines in EM-electrodes caused shifts in
the position of the peaks to lower potentials and increases the peaks intensity. The electrocatalytic
effect was stronger in C-LuPc2 electrode, where an important improvement on the reversibility of the
peaks and simultaneously higher intensity currents of the peaks were observed. It can be related to
strong π-π interactions between the bis-phthalocyanine and the aromatic structure of catechol that
can enhance the electron transfer rate [54,55]. The electrocatalytic activity of NiONPs is associated
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with their porosity and the mixed valence state found on the nanoparticle surface [56] and it has been
already observed in other carbon electrodes [35].Sensors 2020, 20, x FOR PEER REVIEW 6 of 15 
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As Tyrosinase is an enzyme selective to the oxidation of o-diphenols, C-EM-Tyr enzymatic
electrodes can be also used to detect catechol. In all cases a drastic increase in intensity of the reduction
peak was observed (Figure 2b). This increase was due to the reduction of the o-quinone formed by
enzymatic oxidation. Also, the important shift of oxidation/reduction potentials observed indicated the
improvement in reversibility respect to no-enzymatic electrodes. On the contrary, a single oxidation
peak with low current intensity was observed in enzymatic electrodes. This fact had already happened
in other biosensors with tyrosinase [57]. The electron transfer was clearly promoted in the presence of
electron mediator, such as nanoparticles and/or phthalocyanines. The presence of NiONPs produced
the largest increase in the peak intensity (−25 µA in C-Tyr electrode, −42 µA in C-NiONPs-Tyr electrode
and −55 µA in C-LuPc2-Tyr electrode). The results demonstrated that the electrodes developed in
this work facilitated the electron transfer and the synergistic effect between the modifiers and the
tyrosinase enzyme.
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3.3. Discrimination Capability of Grape Extracts with An Array of EM-Carbon Electrodes

The developed electrodes were combined to form an array of sensors that were combined with
chemometric methods. The capability of the array of electrochemical electrodes to evaluate the phenolic
content of the grapes residues was evaluated by analyzing extracts obtained from skins and seeds
prepared from different grape varieties. In all cases, cyclic voltammograms showed a variety of peaks
produced by components with redox activity (i.e., phenolic compounds in the 0.4–0.8 V regions).

These voltammograms were characterized by broad peaks whose intensities and positions were
determined by the nature of the electrode (enzyme, modifier and substrate) and by the type of the
sample. For all varieties of grapes, the peaks were better defined and showed higher intensities for
seed extracts in comparison with skin extracts, which is in accordance with the fact that the phenolic
content is greater in seeds than in skins, as demonstrated by the TPC and FC indexes.

Figure 3a illustrates the cross selectivity of the sensors provided by the array of sensors. It is
important to remark that all figures correspond to the fifth cycle due to the fact that the first cycle was
always different from the rest. However, after five cycles, the signals stabilized and a decrease lower
than 5% in the following 15 cycles.
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Figure 3b illustrates the notable increase in intensity in the 0.5–0.8 V region (anodic wave) and in
the 0.0–0.2 V (catodic wave) when EM-electrodes were used. Results demonstrate the electrocatalytic
effect of NiONPs and LuPc2 that affects the intensity of the signals related to phenols, although an
increase in the peak intensities at negative potentials related to the acidity was also evidenced. As
shown in Figure 3b, the enzymatic activity of tyrosinase induces an important degree of selectivity in
the electrodes responses, with better defined peaks and higher intensities, especially when electron
mediators were used.

Figure 3c illustrates the different responses obtained from skin and seed extracts from different
grape varieties. The electrochemical responses of skin extracts were characterized by poorly defined
peaks, while the response of seed extracts showed well-defined redox pair potentials with large current
densities in the anodic and cathodic waves. The dissimilar responses in skins and seeds extracts were
indicative to their different polyphenol content.

The peak positions and intensity varied between the various skin extracts (as well as between
the various seed extracts), showing a dependence on grape variety. The differences between the
voltammograms presented in Figure 4a are linked to the variability in the phenolic composition of
the grape skin extracts. The same occurred with the grape seed extracts (Figure 4b). In this case,
Prieto Picudo clearly showed the highest intensity peaks, which confirms the highest TPC and FC
parameters. That is, as each extract has a different phenolic composition, the oxidation and reduction
peaks appear at different potentials and show different intensities. As expected, it is quite evident that
the responses for seed extracts showed higher intensities than those obtained in skin extracts. The
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variety of responses obtained, allowed us to obtain an array of enzymatic electrodes with a high degree
of cross selectivity.
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Figure 4. Voltammetric responses of C-LuPc2-Tyr enzymatic electrode in (a) skins extracts (b) seeds
extracts of different grape varieties: Cabernet (C), Garnacha (G), Juan García (J), Mencia Regadio (MR),
Mencia Secano (MS), Prieto Picudo (P), Rufete (R) and Tempranillo (T).

3.4. E-Tongue: Discrimination Capability and Regression Models to Correlate with Chemical Parameters

PLS was used to obtain a fitting model between the two chemical indexes (TPC and FC indexes,
separately) and the input data (wavelets representing the cyclic voltammograms) [58,59]. To validate
the results, a full cross validation (leave one out approach) was done; this produced as many calibration
sub-models as there were samples in the data set.

After performing PLS regression using the FC index as response variable, the scores of the three
most representative factors for grape skin extracts wavelet CV data are presented in the Figure 5a. It
showed well-defined and separated clusters for each grape variety superimposed on a linear surface,
showing that all extracts analyzed could be clearly discriminated. In addition, Prieto Picudo (P) skin
samples with higher polyphenol index were located in the upper part of the 3D plot toward the right,
while the ones with the lowest values are at the bottom of the diagram. It confirms that the levels of
phenolic compound play an important role in the discrimination capabilities of the e-tongue. Similar
results were obtained from the PLS regression using the FC index as response variable and grape
seed extracts wavelet CV data (Figure 5c). As can be observed, the eight seeds extracts are clearly
separated and also superimposed on a linear surface showing that the procedure is correct. Clusters
were distributed in the plot according to the polyphenolic content (Table 1). Thus, Tempranillo (T)
grape seeds (with the lowest values of Folin and TPI) and Prieto Picudo (P) were clearly separated
(left and right respectively) from the rest of the extracts. Comparable results can be obtained when
applying PLS regression using TPC index as response variable (Figure 5b,d for grape skin and seed
extracts wavelet CV data, respectively).
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Figure 5. Partial least squares (PLS) score plots of the bio-electronic tongue obtained from voltammetric
responses in grape skins extracts, fitted for (a) FC index, (b) TPC index; voltammetric responses in
grape seeds extracts for (c) FC index, (d) TPC index.

Table 2 presents the overall results (squared correlation coefficient and root mean square error of
calibration; squared correlation coefficient and root mean square error of validation; latent variables)
of the regression PLS model obtained.

Table 2. Results of PLS for the skin and seed extracts wavelet CV data and the FC and TPC indexes.

Sample Parameter R2c (a) RMSEC
(b) R2

V
(c) RMSEV

(d) LV (e)

Skin extract FC index 0.999 0.292 0.999 0.413 5

Seed extract FC index 0.998 2.09 0.996 3.11 5

Skin extract TPC index 0.998 0.532 0.996 0.798 4

Seed extract TPC index 0.999 2.58 0.997 4.15 7

(a) Squared correlation coefficient in calibration; (b) root mean square error of calibration; (c) squared correlation
coefficient in validation; (d) root mean square error of validation; (e) latent variables.

To assess the quality of the regression PLS model obtained, the FC and TPC indexes predicted by
the model using the e-tongue data was correlated with those obtained using the spectrophotometric
reference methods (experimental FC and TPC indexes). Figure 6 shows this representation for all the
PLS models obtained.



Sensors 2020, 20, 4176 10 of 15

Sensors 2020, 20, x FOR PEER REVIEW 10 of 15 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 6. Values predicted by the PLS model for grape skin extracts as a function of the experimental 
values of (a) FC index (b) TPC index; and for grape seed extracts as a function of the experimental 
values of (c) FC index (d) TPC index. 

As can be seen in Table 2, PLS model fitting is quite acceptable. The results of the degree of fit of 
the model in calibration and cross-validation (leave one out approach) are close, having squared 
correlation coefficient values higher than 0.985, which shows that the obtained PLS models represent 
more than 98.5% of the damage found in the data. The model’s squared correlation coefficient and 
error are satisfactory and show that a better PLS adjustment was obtained in the data from the skin 
extracts than in the seed extracts. Figure 6 shows the linear adjustment obtained with the values 
predicted by the PLS models as a function of the experimental values of the TPC and FC indices. As 
can be seen, the data show a linear trend but with high data variability with the exception of the PLS 
model for grape skin extracts as a function of the experimental values of TPC index. Consequently, 
these results show that the phenolic compounds indexes in grape skins and seeds can be successfully 
detected by e-tongue. 

In an attempt to improve the PLS models performance, PLS data treatment was repeated 
together with genetic algorithm (GA) for selecting the best variables within the wavelet CV data. It is 
recognized that the selection of a reduced set of variables or features can be very beneficial because 
the model can be greatly simplified and its predictive capabilities improved. 

Figure 7 shows the values predicted by the PLS model for grape skin and seed extracts as a 
function of the experimental values of TPC and FC indexes. The plots in this figure show a slight 
reduction in the variability of the points compared to those in Figure 6, showing that the application 
of the genetic algorithm in wavelet CV data was effective. 

Table 3 presents the GA-PLS regression overall results obtained that only in some models there 
were small improvements. Overall, for grape skin extracts the GA-PLS regression has been able to 
increase the R2 value and decrease the error values with the same number of latent variables as in 

Figure 6. Values predicted by the PLS model for grape skin extracts as a function of the experimental
values of (a) FC index (b) TPC index; and for grape seed extracts as a function of the experimental
values of (c) FC index (d) TPC index.

As can be seen in Table 2, PLS model fitting is quite acceptable. The results of the degree of fit
of the model in calibration and cross-validation (leave one out approach) are close, having squared
correlation coefficient values higher than 0.985, which shows that the obtained PLS models represent
more than 98.5% of the damage found in the data. The model’s squared correlation coefficient and
error are satisfactory and show that a better PLS adjustment was obtained in the data from the skin
extracts than in the seed extracts. Figure 6 shows the linear adjustment obtained with the values
predicted by the PLS models as a function of the experimental values of the TPC and FC indices. As
can be seen, the data show a linear trend but with high data variability with the exception of the PLS
model for grape skin extracts as a function of the experimental values of TPC index. Consequently,
these results show that the phenolic compounds indexes in grape skins and seeds can be successfully
detected by e-tongue.

In an attempt to improve the PLS models performance, PLS data treatment was repeated together
with genetic algorithm (GA) for selecting the best variables within the wavelet CV data. It is recognized
that the selection of a reduced set of variables or features can be very beneficial because the model can
be greatly simplified and its predictive capabilities improved.

Figure 7 shows the values predicted by the PLS model for grape skin and seed extracts as a
function of the experimental values of TPC and FC indexes. The plots in this figure show a slight
reduction in the variability of the points compared to those in Figure 6, showing that the application of
the genetic algorithm in wavelet CV data was effective.
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Figure 7. Values predicted by the GA-PLS model for grape skin extracts as a function of the experimental
values of (a) FC index (b) TPC index; and for grape seed extracts as a function of the experimental
values of (c) FC index (d) TPC index.

Table 3 presents the GA-PLS regression overall results obtained that only in some models there
were small improvements. Overall, for grape skin extracts the GA-PLS regression has been able to
increase the R2 value and decrease the error values with the same number of latent variables as in
conventional PLS regression. In the case of grape seed extracts, it has reduced the number of latent
values in a unit by maintaining high values of R2 adjustment and very low error data. However,
the regression GA-PLS model to predict TPC values in seed extracts had results inferior than those
obtained by the PLS model without applying GA in the selection of variables (Table 2).

Table 3. Results of GA-PLS for the skin and seed extracts wavelet CV data and the FC and TPC indexes.

Sample Parameter R2c (a) RMSEC
(b) R2

V
(c) RMSEV

(d) LV (e)

Skin extract FC index 0.998 0.475 0.994 0.868 4

Seed extract FC index 0.998 2.06 0.992 4.67 6

Skin extract TPC index 0.998 0.496 0.993 1.1 4

Seed extract TPC index 0.998 3.55 0.994 6.25 6

(a) Squared correlation coefficient in calibration; (b) root mean square error of calibration; (c) squared correlation
coefficient in validation; (d) root mean square error of validation; (e) latent variables.

4. Conclusions

Bio-electronic tongue has been proven to be an effective and reliable tool to relate the voltammetric
response of electrochemical modified enzymatic electrodes phenolic extractability parameters in grape
seed and grape skin. The performance of this e-tongue dedicated to the analysis of grape residues
has been improved using two different strategies. On the one hand, the electrocatalytic properties
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of the nanoparticles and phthalocyanines as electrochemical modifiers to improve the sensitivity to
phenols respect to unmodified sensors. On the other hand, the variable selection method using genetic
algorithms (GA) to enhance the statistical analysis. This improved e-tongue is able to discriminate
between extracts of seeds and skins from eight different grape varieties. Moreover, good correlations
with chemical data, such as total polyphenol content index (TPC index) and total phenolic content
index (FC index), were obtained. The bio-electronic tongue shown here combines the advantages
of classical electronic tongues with the typical specificity of biosensors. The presence of tyrosinase
provides excellent correlations with the polyphenolic content of grape marcs. The system can be used
to obtain several parameters in one single experiment.
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