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ABSTRACT 

 

A lo largo del trabajo se analizan y adaptan diferentes modelos (software) que simulan la 

demanda energética de viviendas particulares. Estos modelos se basan en características de los 

electrodomésticos, elementos lumínicos y tecnologías que se favorecen de las energías 

renovables que se encuentran instaladas en la vivienda, además de patrones que estiman el 

comportamiento de los residentes. El objetivo es analizar y comparar varios escenarios en 

función de las características de cada modelo, todos ellos adaptados al caso de Malta 

 

KEYWORDS 

 

Residential model / Demand profile / Appliances / Lighting / Usage pattern 



 

 

 

 

 

 

 
 

 

 

 

 

EXTENSION OF RESIDENTIAL 

ELECTRICITY DEMAND 

MODELS FOR THE CASE OF 

MALTA 

 
 

Javier Martín Gallego 

 

 
 

Institute for Sustainable Energy 

University of Malta 
 

 

 

 

 

 

 

 

 

 

 

 
 

June 2021 



 

 

 

 

 

 

 
 

 

 

 
 

EXTENSION OF RESIDENTIAL ELECTRICITY DEMAND MODELS 

FOR THE CASE OF MALTA 

 
Javier Martín Gallego 

 

 

 

 
A dissertation presented at the 

 
Institute for Sustainable Energy of the University of Malta, 

Malta in partial fulfilment of the requirements for the 

degree of Bachelor of Industrial Electronic and Automatic 

Engineering 

at the 

 
Universidad de Valladolid, Spain, 

 
under the Erasmus Plus Student Exchange Program 2020/21. 



Declaration 

 

No portion of the work referred to in the dissertation has been submitted in support of 

an application for another degree or qualification of this or any other university or other 

institute of learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signature of Student Name of Student 

 

 

 

 

 
Javier Martín Gallego 

 

 

 

 
June 2021 



 

Copyright notice 

 

1) Copyright in text of this dissertation rests with the Author. Copies (by any process) 

either in full, or of extracts may be made only in accordance with regulations held 

by the Library of the University of Malta. Details may be obtained from the 

Librarian. This page must form part of any such copies made. Further copies (by 

any process) made in accordance with such instructions may not be made without 

the permission (in writing) of the Author. 

 

 
2) Ownership of the right over any original intellectual property which may be 

contained in or derived from this dissertation is vested in the University of Malta 

and may not be made available for use by third parties without the written 

permission of the University, which will prescribe the terms and conditions of any 

such agreement. 



I  

Abstract 

 

In order to keep within the 2 ºC world temperature increase set in the Paris Agreement 

and thus avoid irreversible climate change, the world is undergoing a transition, and low 

carbon technologies are becoming more and more important. In a context where almost 

seventeen percent of the total carbon dioxide emissions in the world are emitted by 

households, energy efficiency can provide an important contribution to reduce the 

amount of carbon emissions. 

The purpose of this dissertation is to analyse and understand the main sources of 

electricity consumption in the case of the Maltese households and the impact of the 

emerging technologies towards a low carbon economy. This is achieved using different 

available residential load profile models applied to the case of Malta. In particular, models 

developed by different universities such as EDPG (Electricity Demand Profile Generator 

by University of Strathclyde), ALPG (Artificial Load Profile Generator by University of 

Twente), and CREST (Centre for Renewable Energy Systems by Loughborough 

University) were researched. However, the last model was not used due to lack of time. 

The EDPG model was applied to study the differences in energy demand requirements 

by various localities and households. The determination of appropriate energy demand 

profiles for a key pre-requisite for the implementation of protocols favouring smart 

readiness and other initiatives aiming towards a low carbon economy. 

The ALPG model was adapted to study the impact of the emerging technologies such as 

solar photovoltaics and charging for electric vehicles on the energy demand profile. 

Using a combination of statistical data of households in localities, actual energy 

consumption of electrical equipment and calibration, it was possible to generate typical 

energy consumption profiles for the different households. The impact of introducing PV 

to generate green electricity and charge electric vehicles were also analysed. 
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Chapter 1: Introduction 

 

Since 1850-1900, global temperatures have risen by approximately 0.8 ºC as stated by 

the International Panel on Climate Change (IPCC, 2006) [1]. This leads to a significant 

increase in the occurrence of climate disasters, both in terms of their severity and 

frequency. 

The Paris Agreement of December [2] 2015 sets a limit on the world temperature rise of 

2 ºC if one is to avoid irreversible climate change. Furthermore, it recommends not to 

exceed 1.5 ºC. To avoid reaching that critical level, the current amount of emitted carbon 

cannot be sustained and must be reduced. Hence, the limited amount of carbon that the 

atmosphere of the earth can absorb to reach the 2 ºC target, also called carbon budget, has 

been established as 1.170 gigatons (Gt) of carbon dioxide (CO2). It has a massive impact 

mainly on industrial companies and nations. If the carbon budget threshold is exceeded, 

drastic consequences such as extinction of species, wildfires, increased severity of heat 

waves and storms, and coastal inundation might occur [3]. 

According to IPCC’s Report “Global Warming of 1.5 ºC” [3], no more than 420 Gt of 

CO2 can be absorbed by the atmosphere from end 2017. If current emissions are 

mantained, the 1.5 ºC warming target is expected to be reached in less than seven years 

from now. Furthermore, the 2 ºC threshold, approximately 1,170 Gt CO2, would be used 

up in around 25 years, these rates are followed in IPCC’s presentation and shown in Table 

1. According to IPCC research, the CO2 emissions must be reduced to zero between 2020 

and 2040 to increase the probability of limiting global warming to 1.5 ºC. 
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Table 1. Assessed carbon budget and its uncertainties [3]. 

 

 

1.1. Directives 

 

 
The European Union (EU) has also been active to mitigate climate change. It has been 

developing climate policies, targets, and activities to tackle that alarming situation since 

the late 1990s, pioneering the action and being a global leader in the field. It has issued 

numerous directives, as follows: 

 

 
1.1.1. The EU Renewable Energy Directive (EU) 2018/2001 

 

 

The Directive of the European Parliament and of the Council of 11 December 2018 (EU) 

2018/2001 encourages the use of renewable technologies to reduce greenhouse 

gases (GHG) emissions to comply with the commitment under the 2015 Paris 

Agreement and the Union 2030 energy and climate framework. The latter objective is 

to reduce emissions by more than 40 % of 1990 levels by the year 2030. 
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Reducing energy consumption, incentives for the expansion and use of public transport, 

escalating technological improvements, using energy efficient technologies and 

renewable energies in the electricity sector, energy efficiency measures in the heating 

and cooling sector as well as the transport sector are some measures for decreasing the 

GHG emissions. [4]. 

 

 
1.1.2. The Energy Performance of Buildings Directive (EU) 2018/844 and The 

Energy Performance of Buildings Directive (EU) 2010/31/EU 

 

 
The Directive of the European Parliament and of the Council of 30 May 2018 (EU) 

2018/844 establishes targets to cut GHG emissions by minimum 40 % by 2030, 

compared to 1990 levels, to enhance Europe’s sustainability and energy security [5]. 

This directive has updated the previous one 2010/31/EU and the aim remains the same. 

Specifically, to reduce the 40 % energy consumption share of buildings [6]. Moreover, 

the new update requires that all new and renovated buildings must provide a minimum 

level of energy independence and charging points for electric cars. In addition, new and 

renovated building need to have a minimum level of smart readiness in their energy 

operations. The main indicators for smart readiness can be summarised as follows [7]: 

1. High energy efficiency measures in the building. 

2. High share of renewable energy systems installed on site. 

3. The availability of energy storage systems in the building. 

4. The demand response capacity of the building to balance the grid supply and the 

generated renewable energy together with the stored energy. 

5. Significantly sustainable and clean energy sources for cooling and heating 

technologies. 

6. The appropriate usage of smart metering and controls. 

7. Making use of any available dynamic energy tariffs. 

8. The use or possible use of a micro-grid and/or smart grid. 

9. The use of electromobility to commute to the building. 
 

Such requirements demand appropriate research in the area of energy storage and 

matching the demand, while reducing dependency on the national grid. However, this can 
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only be achieved if one has a true and reliable source of data that can define the energy 

load profile for the building under consideration. The whole process of matching load, 

demand and storage is dependent on the energy load profile or in other words, the amount, 

and the time during which that energy is required to be consumed. This is the topic for this 

project. 

 

 
1.1.3. The Energy Efficiency Directive (EU) 2018/2002 

 

 

Energy demand moderation and efficiency in energy generation, transmission, 

distribution and end-use are included in The Energy Efficiency Directive (EU) 

2018/2002. This directive forms the third pillar of the energy directives. It is focused on 

improving energy efficiency throughout the full chain to achieve good air quality, offset 

GHG emissions and reduce households’ and companies’ energy costs. In essence, it aims 

to improve citizens’ quality and increase sustainability [8]. 

 

 
1.2. Low carbon technologies and their application to households 

 

 
The main method to reduce the carbon footprint is to adopt renewable energy technologies 

for different purposes, such as the ones identified in Table 2. 

 

 
Table 2. Renewable energy technologies [9]. 

 

 

 
 

Table 3 shows few main end-uses, activities, and processes where the emerging 

technologies can be applied. 
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Table 3. Applications of renewable technologies [9]. 
 

 

 
 

Climate change is commonly associated with industry, but households are also GHG 

emitters. The issue is that the household energy consumption is difficult to restrict, and 

no legal institution can control it. In addition, household members often prefer cheaper 

appliances rather than greener ones. 

Almost 17 % of the total carbon dioxide emissions in the world are emitted by households 

[10. Therefore, research to surpass data protection issues and to allow improvement in 

tracking all the energy flows can be carried out. Appliances, the average size of the 

households, lighting, the energy efficiency measures implemented, and the 

heating/cooling systems used, water heating and mechanical ventilation all determine 

each dwelling’s energy consumption. 

Dwellings can adopt different low carbon technologies in order to reduce their electricity 

consumption and GHG emissions such as electric vehicles (EVs), energy service 

contracts, low carbon heating, solar photovoltaic (PV) panels, and battery storage. These 

replacements guarantee a higher sustainability, lower carbon emissions and air pollution 

as well as the reduction of energy bills. In particular, energy storage needs to be 

introduced on a large scale to offset the negative impact of solar photovoltaic electricity 

generation on the grid (causing over-voltage during the day) and to reduce the peak loads 

on the electricity utility during the night (by using the stored energy from the batteries), 

besides other issues, as discussed below. However, battery storage is still not affordable 

for every household due to the high investment required. 
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As mentioned above, the emerging technologies present an important impact in the 

households’ energy consumption, as well as the GHG emissions. Table 4 presents the 

impact of EV, PV, vehicle-to-grid (V2G), electricity supply (E) and transport (T) in the 

CO2 emissions and electricity consumption of a household (HH). 

 

 
Table 4. Household electricity demand and CO2 emissions for different scenarios in Riga, 

Latvia [11]. 
 

 

 

1.3. The low voltage network. 

 

 

The LV network is the end part of the electric power distribution network which 

accommodates the majority of the consumers. It includes the circuit between the 

distribution transformers, which provides the low voltage power, and the electricity 

meters to end customers. The electric current can travel through overhead or underground 

power lines, or their mixture. A simple scheme of a LV network showing different forms 

of consumers is shown in Figure 1. 
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Figure 1. Low voltage network [12]. 

 

 
The constantly increasing usage of the low carbon technologies has raised several 

technical issues in LV networks. All these problems need to be deeply studied before the 

amounts become unsustainable. The most common issues are presented in the following 

sections. 

 

 
1.3.1. Peak demand 

 

 

The highest electrical power demand occurring on an electrical grid over a specified time 

period, also called peak demand, has to be handled and reduced, in order to not overload 

the system. The low carbon technologies could alleviate this problem if they generate 

renewable energy during the peak demand however excess generation and new demands 

such as charging of electric vehicles can compound the issue. If the peak load continues 

increasing in an area, then this could eventually lead to an increase in the infrastructural 

expenditure such upgrading of power lines or replacing transformers at the substation. 
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1.3.2. Voltage drop 

 

 

The voltage drop issue is the energy dissipation due to the impedance of circuits’ contacts, 

connectors, and mainly cables and lines. The current flow through passive elements leads 

to the decrease of electrical potential along the way leading to voltage levels which fall 

outside of the allowed range. The length of the circuit directly affects the drop. Voltage 

drop generally occurs when the overall demand on a particular sub-station is high, due to 

concurrent demand from multiple consumers. Once again, the use of renewables that 

generate electricity can support the grid in stabilizing this issue. However, renewables 

can also cause a new problem, as explained in the next sub-section. 

 

 
1.3.3. Reverse power flow 

 

 

Reverse power flow occurs throughout periods with low demand but high generation of 

renewable electrical energy at the consumers’ side (for example, PV power injection). 

This causes over-voltages at the ends of the feeders and reduces the grid’s power quality. 

These over-voltages are the principal issue limiting the distribution network’s PV hosting 

capacity. 

To tackle reverse power flow consequences, few solutions have been proposed such as 

grid reinforcement, transformers equipped with on load tap changers (OLTCs). The first 

method is effective, but its implementation requires a high investment. The second one 

automatically regulates the voltage at the substation mitigating over-voltages however the 

continuous regulation affects the lifetime of the OLTC. Alternative solutions include the 

introduction of consumer energy storage and reactive power management from the grid 

connected inverters. However, the effectiveness of reactive power management in PV 

inverters is low resistive nature of the feeders [13]. Active power control is more 

effective, but it leads to curtailment of renewable energy. 
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1.3.4. Overloads 

 

 

The distribution network’s over-current and over-voltage limits restrict the amount of 

renewable energy that can be connected. As the renewable energy production grows, so 

does the overload danger. In the case of a distribution transformer, continuous overload 

causes degradation of its lifetime. 

The solutions to that issue are classified in two methods, hard curtailment methods and 

soft curtailment methods. For the first one, if an extreme case occurs, all renewable energy 

production units of a determined part of the grid are disconnected remotely. For the soft- 

curtailment case, the production will be cut just enough to avoid the overload [14]. 

Another approach is the introduction of energy storage in conjunction with renewable 

energy systems to avoid curtailment. 

 

 
1.4. Aim of the project 

 

 
The aim of this dissertation is the generation of load profiles through published demand 

models applied for the case of Malta. The determination of appropriate energy demand 

profiles form a key pre-requisite for the implementation of protocols favouring smart 

readiness and other initiatives aiming towards a low carbon economy. 

The specific objectives of the project are: 
 

1. Examine the main characteristics and output of published electrical load profile 

models. 

2. Evaluate and compare the salient features of selected residential electrical load 

profile models. 

3. Apply selected models to the case of Malta using relevant residential energy use 

trends. 

4. Analyse and compare the generated profiles. 
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1.5. Dissertation layout 

 

 

The full dissertation consists of six chapters. The general background of the dissertation 

introducing the topic, purpose, and relevance is presented in Chapter 1. Chapter 2 

emphasizes on the structure, characteristics and methodology used to create reliable load 

profiles. This is followed by an introduction and description of the selected models in 

Chapter 3. Chapter 4 clarifies how the models will be adapted to generate profiles 

applicable to Malta. It also describes how they will be tested. Chapter 5 includes the 

outcomes and analysis of the modelling that have been carried out throughout the 

dissertation, discussing the obtained profiles and their potential used as a basis for future 

studies. Chapter 6 presents the conclusions on the results achieved. Furthermore, the 

reliability of the results is evaluated and recommendations for future research are 

suggested. 
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Chapter 2: Literature Review 

 

This chapter will provide a general background and show that the consumer demand is 

changing due to Directives and introduction of low carbon technologies. 

 

 
2.1. Main modelling issues 

 

 
During the last decades, it has been believed that the number of occupants in each house, 

their socio-economic circumstances as well as the household type are factors that do not 

have a strong impact in the residential load demand. Hence, the residential load demand 

could be easily foreseen [15]. More recent smart meters’ measurements have shown that 

residential profiles are neither easy to model nor predictable because the use of electric- 

powered devices such as those used for space heating and cooling, water heating and 

lighting depends on the individual lifestyles and schedules. Moreover, modern societies 

handle an ever-increasing number of electronic and electric plug-in devices such as TV, 

kitchen appliances, smartphones, and laptops, besides others. This family personality not 

only means that there are peaks and troughs in the power consumption profile when 

turning on/off the devices, but there is a high level of variability over time, principally for 

time resolutions of fifteen minutes or less. 

Moreover, in recent decades, due to the increasing importance of electro-mobility, the 

surge of the Earth’s population to ten billion humans, the increase in dependency on 

electric devices, the surge of new social conditions such as working from home, and the 

use of the distributed energy resources (PV, energy storage, EV, etc.), the residential load 

profile has been drastically altered [16], [15]. Therefore, a deep understanding of these 

profiles and their modelling is needed to be able to comprehend and foresee these 

changes. 
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2.2. Residential electrical load profiles 

 

 

First of all, the concept “residential load profile model” has to be clarified. The word, 

“residential”, refers to the private accommodation of households consisting of one or 

more persons. The overall electricity consumption of the various appliances and electrical 

equipment in the household is named as “electrical load”. “Profile” is the variation that 

represents the significant attributes of the load over time. Finally, “model” refers to a 

representation that can predict the behaviour given the required input information. 

[15] says that “residential load profile model” is a formal system that can replicate the 

total electricity consumption of the major loads in a single/multiple private/non- 

commercial residence. The residence has to be occupied by a minimum of one person 

during a portion of the calendar year. Input data variables characterize households, 

occupants, and their behaviour in terms of lifestyles and schedules. 

A valid residential electric load profile model must have the following characteristics: 
 

A. Load consumption model, which has to represent the electricity usage pattern of 

the various electric-powered devices within the household/community. 

B. Occupancy model to simulate the behaviour, and timetables of the households’ 

individuals. 

C. Household type division in order to differentiate between the different categories 

of dwellings according to the inhabitants’ lifestyles and number. 

As expected, every characteristic is impossible to represent completely. Therefore, 

modelling approaches have to be carried out following a methodology, defining statistical 

approaches and the time resolution according to the purposes of the model. 

 

 
2.2.1. Load categories 

 

 

The electricity use pattern in a single household is dependent upon the occupants’ 

activities, the range of electrical appliances and their usage. Mainly, the total consumption 

of a residential building is generated by the electric-powered appliances, these are 

generally categorised by the activity, for example cooking, heating/cooling, or lighting. 
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Figure 2 shows the annual overall household consumption shared between the different 

loads for a Maltese villa household. 

 

 

 
 

 
Figure 2. Energy consumption share for a Maltese villa [39]. 

 

 
2.2.1.1. Electric-powered appliances 

 

 

Appliances, in this case, refers to any individual domestic electricity load, except for 

lighting. For example, dehumidifiers, electric kettle, television, and in general electric- 

powered devices. Table 5 shows an example of appliance list within a household and 

uses a house zone categorisation, however other categorisations are possible for example 

according to the current occupants’ activities (cooking, heating/cooling, etc.). The 

categorisation is generally used to model the likelihood of the appliances being used at 

the same time. 
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Table 5. List of household appliances [18]. 
 

 

 

At the beginning of a run, a model usually populates each dwelling with appliances. This 

can be done using statistical ownership data [19]. Generally, statistical data is also used 

to configure the average annual energy demand and related power consumption attributes 

of each device, including common use cycles or steady-state demand. These parameters 

are used to generate each appliances load profile. Then, by aggregating them all together, 

the total appliances consumption profile is determined. 

The usage pattern of an electric device is based on the occupancy pattern coupled with 

the activity that takes place. Certainly, more than one occupant may use multiple 

equipment at the same time, so the sharing of such equipment must be considered. 

Furthermore, as shown in Figure 3, the use of appliances might be increased non-linearly 

in accordance with the number of inhabitants. 
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Figure 3. General household sharing of appliances for a UK study [19]. 

 

 
Generally, each electronic device is characterised by two different states, on or off. The 

latter should consider the standby mode, in that state an appliance consume power even 

though it is not being used. The turned-on events of some electronic devices are largely 

affected by occupancy patterns, although there are some appliances that can be 

programmed to activate or deactivate by themselves. In addition, some equipment’s 

demand changes throughout the seasons, such as heating and cooling equipment. 

Despite some electric devices, such as a laptop, which has constant power requirements 

when in operation, few other appliances should be expressed in terms of time varying 

demands. For example, the washing machine cycle goes through different stages with 

different power requirements. However, this can only be represented by high time 

resolution models. Unfortunately, such detailed appliance demand data is not generally 

available [19]. 

Furthermore, the electric loads can be grouped by controllability [20]. Uncontrollable 

appliances usage, and therefore their consumption, is highly influenced by the active 

occupancy, for example the cooking appliances. On the other hand, controllable devices 

refer basically to time-shiftable devices, also known as deferrable devices, which are able 

to provide timetable flexibility for demand response. For example, the cooling equipment 

(freezer or refrigerator) is less sensitive to people’s activities and, moreover, on the 

occupancy levels. This can help to reduce the peak demand and generally leads on the 
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reduction in electricity bill payments [21]. Dishwashers, tumble dryers, washing 

machines and water heaters are within this group. 

 

 
2.2.1.2. Lighting consumption 

 

 

The lighting consumption is defined as the aggregated consumption of each lighting unit 

(one or more bulbs connected to a single switch) within a household. It depends on the 

electric lighting usage, which is highly influenced by the outdoor irradiance and the layout 

of the dwelling coupled with the household residents’ behaviour. The main issue is to 

represent the specific lighting technology, its rated power, and on the number of light 

bulbs installed as it varies from one residence to another due to human selection as 

Figure 4 shows. 

 

 
 

Figure 4. Allocation of lighting unit types in different dwellings [19]. 

 

 
The number of switched-on units and duration are defined by the behaviour of the 

inhabitants and, normally, the use of lighting is restricted to at least one active inhabitant 

within the dwelling. However, as long as there are at least two active inhabitants, the 

sharing of lights, also known as “co-use”, is likely to occur by virtue of spending time in 
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the same room. Moreover, some lighting units are utilized more than others such as the 

ones installed in living spaces and kitchens. [22]. 

As mentioned, the lighting usage is generally determined by the outdoor irradiance 

conditions but there are also rooms without windows, cellars, etc., the lighting units 

installed in these places are not affected by the irradiance levels. 

Distributions, relative use weightings, and probabilities are often used to represent these 

characteristics [23], Figure 5 shows an example of an installed lighting rating and relative 

use in a dwelling. 

 

 
 

Figure 5. Installed lighting unit rating and relative use within a dwelling for UK 

dwellings [19]. 

 

 
2.2.2. Occupancy pattern 

 

 

As mentioned, electric appliances’ usage patterns are related to the electric activities of 

the inhabitants. Therefore, an occupancy pattern model becomes essential. The use of 

electrical appliances in a household is related to the number of people whose state is 

active. Active occupancy refers to the people who are indoor and awake; it is 

represented within each household as an integer which changes during the day. Its 

representation allows generation of electricity demand data with 
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detailed profiles throughout the day. In addition, it supplies a basis for establishing time- 

related electricity consumption modelling within and between households. [19]. 

Generally, the individual’s occupancy pattern has two different states: out of home or at 

home. The latter can also be divided in active occupancy or inactive occupancy (e.g. 

sleeping). Figure 6 shows an example of dwelling active occupancy profile. In the 

example, there are three different occupants within the household, they wake up between 

6:00 and 8:00 AM and few hours later some of them leave the household to do their daily 

activities such as working. However, there is one active occupant throughout the day 

within the dwelling until they all go to sleep at 10:00 PM. 

 

 

 

 

Figure 6. Household active occupancy profile [19]. 

 

 
2.2.3. Types of households 

 

 

As mentioned above, different socio-spatial factors have a large impact in the households’ 

overall electricity consumption. For example, lower income households are likely to 

have less appliances, big apartments require higher heating/cooling electricity demand, 

senior families usually spend more time at home, etcetera. In general, these are factors 

that affect their nation’s consumption profile. Then, it is possible to relate specific 

measures to the main groups and to address the appropriate attributes to each group [24]. 

A categorisation of households according to number of members and the gender of the 

heading person is represented in Table 6. 
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Table 6. Sample distribution of different types of households [25]. 
 

 

 

2.2.4. Applications of residential load profiles 

 

 

Every model itself or its output is developed to have various applications, often more than 

one. Nevertheless, these profiles can be split up into three different subcategories: 

planning, control, and design of energy systems (PCD), demand side management 

(DSM), and residential load profiles (RLP). [15]. 

 

 
2.2.4.1. Planning, control, and design of energy systems 

 

 

The main purpose is the development of energy systems, distribution networks and the 

local energy efficiency strategy belonging to this subcategory. This type of research 

aims to help grid planners use various technologies to build a grid that minimizes power 

consumption by the evaluation of worst-case scenarios regarding voltage drop, short- 

circuit currents and equipment’s loading capacity [26]. 

 

 
2.2.4.2. Demand side management 

 

 

Demand side management systems focus on how to reduce/change dwelling electricity 

consumption by implementing emerging technologies, or how to shift loads over time of 

day, to improve demand with generation capacities [27]. As mentioned above, this 

optimization is facilitated by the installation of smart appliances, e.g. refrigerators, 

washing machines, or time-programmed room heaters. Nowadays, there are algorithms 
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available for some devices that allow them to turn on/off on demand, or algorithms that 

pre-arrange their usage when particular conditions are accomplished or within specific 

time periods of the day [15]. 

 

 
2.2.4.3. Residential load profiles 

 

 

These models are created to forecast and analyse the different sources of the demand 

response of a household/community of households, focusing on the main issues within 

the LV networks, as well as the renewable energies integration in the context of low 

carbon technology uptake. 

 

 
2.2.5. Modelling approaches 

 

 

As mentioned, the inhabitant’s behaviour has a large impact in the usage of the appliances 

and, therefore, in the household consumption profile. To represent that, every model 

takes a particular approach. The methodology, the time resolution and the statistical 

approach are the fundamental approaches which determine the end-use of the model. A 

categorization according to the main features is presented in Table 7. 
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Table 7. Model categorisation summary. Information extracted from [15]. 
 

 

 
 

2.2.5.1. Methodologies 

 

 

Nowadays, we can differentiate between bottom-up, top-down and hybrid models. The 

categorisation is based on the procedure utilised to obtain the electricity demand profile 

of the dwelling. [15]. 

 

 
2.2.5.1.1. Bottom-up models 

 

 

These models take the electricity consumption of each appliance within a dwelling, the 

occupancy pattern of the individuals, and their associated use of appliances into account 

to calculate each household’s electricity consumption. They aggregate them together to 

generate the overall dwelling electricity demand. 
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In accordance with the end-use of the model, its input parameters may require some house 

characteristics such as layout or size, weather conditions, and heating/cooling 

characteristics. They can also represent different device usage patterns and low carbon 

technologies. The latter is to determine the impact of individual households to the 

electricity consumption curve. They can also be used for utility-level demand forecasting. 

From there, they can extrapolate the individual dwelling electricity demand to a higher 

level (community/village/city/region/country). In order to accomplish this extrapolation, 

a weight is assigned on each household/group of households. 

The most commonly used procedure, step by step, to generate a bottom-up model is as 

follows [15], [28]: 

1. Decide the end-use devices within the dwelling/s as well as the model’s micro- 

variables. 

2. Establish the human activity patterns from real data, applied to the households’ 

appliances. 

3. Create the load curves of each household electric-powered device for a 

determined time period. 

4. Add these profiles of with every single or multiple dwelling, note that the period 

is the same of the third step. 

Generally, bottom-up methodologies present three major advantages: they do not 

necessarily need to use historical electricity demand data to determine the electricity 

requirements of the community, they are suitable for studying technologies, policy 

decisions and energy optimisation methods on the dwelling load curves, and they generate 

very detailed results [28]. On the other hand, they have heavier computational demands 

because of the model’s complexity and detail, and as input, they need activity 

occupancy patterns, the households’ appliances ownership and information about the use 

of electric devices at different time slots. 

 

 
2.2.5.1.2. Top-down models 

 

 

On the other hand, top-down models assign the electricity consumption estimation to the 

building’s attributes. They compute complex random inference between stochastic 
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variables [29], also known as stochastic predictors, commonly based on time series 

analysis, and macro variables to foresee the dwelling electricity demand profile and use 

them to couple the electricity consumption and the predictors themselves. The structural 

attributes of the households, the historical consumption data, the different characteristics 

of the occupants (number, age, gender, income, etc.) and their behaviour, the total 

community electricity consumption, and the weather conditions are some of the most 

used macro variables. Occupants’ age is usually used to proxy the period of time 

occupants spend indoors and therefore the probability of electricity consumption. These 

models are normally developed for a utility-level demand forecasting. 

As a result, their calculation strength is not as high as the bottom-up models [15], [28]. 

Top-down models calculation process are generally as follows: 
 

1. Gather historical electricity datasets with the most suitable sampling rates. 

2. Identify the macro variables that will characterise the model. 

3. Categorise the macro variables within different combinations. For example, 

according to household type. 

4. Determine the most suitable stochastic predictors to be used by performing time 

series analysis on the historical data. 

5. Couple the macro variable categories with the stochastic predictors to generate 

the load curve of the household/s for a specific period of time. 

If bottom-up and top-down models are compared, top-down models present two main 

advantages: no information about a single appliance is required and they are less complex 

as they do not utilise the usage pattern of every appliance. Hence, they are not as 

computationally demanding as the bottom-up models in terms of computation. Their 

main disadvantages are they use historical data about dwellings electricity consumption, 

and the time resolution is often large (between fifteen minutes and one hour). This leads 

to loss of information because only some statistical standards can be achieved. The top-

down model is very suitable for simulating transformer, storage size, and power 

distribution network loading. The model is also suitable for analysing demand response. 
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2.2.5.1.3. Hybrid models 

 

 

Hybrid models combine methodologies and characteristics used in both, top-down and 

bottom-up models. Occupancy models, consumption load curves, electrical appliance 

usage, lighting usage, natural ventilation and hot water demand are some of the elements 

included in bottom-up models. Top-down models contribute building archetypes to 

characterize groups of buildings and their demand profiles. 

The most commonly used procedure, step by step, to generate a hybrid model is explained 

in the next section [15]: 

1. Indicate the macro and micro variables that the model will use. 

2. Apply the bottom-up procedure steps from 1 to 3 to the micro variables. 

3. Apply the top-down procedure steps from 1 to 4 to the macro variables. 

4. Aggregate the macro and micro variables to generate load curves for a 

household/group of households in a determined period of time from one day to 

few years. 

Hybrid models are developed to carry out demand side management efforts like demand 

forecasting by the use of smart meters. Thus, a variable set of techniques and input data 

will be required by the model in accordance with its purpose. Hence, the characteristics 

highly vary from one model to another. At the end, it is impossible to come up with a list 

of pros and cons as each model uses different elements. 

 

 
2.2.5.2. Time resolution 

 

 

A series of different challenges are presented by the time resolution of the available 

datasets. Most of them are used to generate models with a time resolution similar to or 

lower than that of the data sets. Therefore, smart home and demand side management 

applications require datasets with resolutions over 1 minute, sometimes even with 1 

second granularity. 

Generally, this feature defines the output’s data time step and therefore the output’s 

level of detail. Although the time resolution of the input data is not usually the same, the 

output’s resolution has to be. Models with high sampling rates display far more state 
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changes than the low-resolution models. The different models are usually classified in 

three different subcategories: low resolution models, middle resolution models and high- 

resolution models. [15]. 

 

 
2.2.5.2.1. Low resolution models 

 

 

The sampling rate of these models is higher than fifteen minutes. General features such 

as studying the influence of the energy prices, modelling the end-use electricity of a 

region, or modelling the electricity load curve of a household/s are commonly represented 

with this data granularity. 

 

 
2.2.5.2.2. Middle resolution model 

 

 

They use time resolutions between fifteen minutes and one minute. Such models are not 

very numerous, and their general purpose is the study of the individual residential load 

profiles of individual households. 

 

 
2.2.5.2.3. High resolution models 

 

 

These models are characterised by having a time resolution over one minute. Such models 

are usually built with data of household electrical devices and smart meters’ 

measurements of the power supply. 

 

 
2.2.5.3. Statistical techniques 

 

 

This characteristic establish the statistical approach used by the model to solve its 

uncertainties with representative data clustered functions/distributions, and provide 

useful information about demand patterns of costumers, annual consumption of 
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households/communities, appliances’ operation time, etcetera [23]. Three different 

approaches are enumerated in the following section [15]: 

 

 
2.2.5.3.1. Markov chains 

 

 

Markov chains are commonly used to simulate the behaviour of the appliances. The 

model is able to assume that the behaviour (activation/deactivation) of the device is 

related to the operation of other devices. For example, for a house with a washing machine 

and a tumble dryer, the dryer will only be utilized after the end of the washing machine’s 

cycle whereas the use of the hob does not imply the usage of the vacuum. 

In fact, all models use a combination of residents’ usage patterns and devices’ load curves 

to simulate household electrical load. Usually, these types of models define an initial 

state, which evolves to the following states depending on the transition probability. The 

conversion probability is generated using a pseudo-random number distributed uniformly. 

As it is compared with the cumulative distribution of the state transitions, it determines 

the transition to occur. 

 

 
2.2.5.3.2. Probabilistic models 

 

 

These models are called prediction by partial matching (PPM). Normally, they use 

general statistical methods such as conditional demand analysis, cumulative probability 

functions, probability distributions and Gaussians sums to model the load curves of entire 

households. They are commonly used to determine the device usage and the duration. In 

addition, they are used to create the occupancy pattern of the dwellings. 

 

 
2.2.5.3.3. Monte Carlo models 

 

 

PPM and/or Markov-Chains approaches are often combined with Monte Carlo methods. 

These procedures usually determine which devices are used and, for how long devices 

with uncertain usage periods, for example light bulbs, are used for. Less frequently, they 
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are used to develop customer profiles, to represent indoor-lighting electricity usage and 

to create activity-specific occupancy profiles. 

 

 
2.2.6. Assumed rates 

 

 

Generally, each appliance is assigned an annual demand in kWh/year. Most of the 

needed data can be obtained through surveys or data sheets; it is also valid to use data 

from the different appliances available in the market. Frondel et al. [30] estimates a 

dataset, based on Germany, determining the consumption rates of households by 

requesting detailed information on electricity prices, bills, monthly fixed fees, and 

electricity consumption in the billing periods. The dataset gathers information on the 

appliances that are present in a household and its consumption. 

 

 
2.2.7. Combination with thermal models 

 

 

Nowadays, the widespread electrification of heat supply, by replacing gas boilers with 

heat pumps, in the residential sector is foreseen to pose a significant challenge to the 

distribution network management due to the wide nature of these loads. The cost of 

reinforcing the installed power networks to absorb the heat pumps’ load and other 

emerging technologies can be substantial. In low-voltage networks, this task is 

particularly difficult. Conventional low voltage (LV) network design methods are not 

well adapted to such type of load. 

High resolution models of residential heat demand are being created in the way that they 

can provide basis for upcoming low-carbon network research. They are usually developed 

on the same occupancy pattern as the one used in the electric model and they generate, at 

the level of the individual household, randomised end-use energy demand data with high 

resolution that usually have a significant impact in the resulting profile. 

The main novelty of the model lies in its integrated structure, which can appropriately 

correlate the time of the thermal and electrical output variables. Thermal models usually 

integrates a building thermal model, a solar thermal collector model, hot water 

consumption, timer and thermostat managements, and gas boilers. However, it is greatly 
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affected by outdoor temperature. McKenna et al. [31] implemented a “low-level” 

thermal model, it is shown in Figure 7. 

 

 
 

 
Figure 7. Structure of a thermal demand model [31]. 

 

 
2.2.8. Published reference profiles 

 

 

Table 8 shows a categorisation of some published models indicating the publication year, 

the time resolution, the application, and the modelling techniques applied. The most 

common methodology is the bottom-down at the time of the research. This is likely to 

change due to the increase of smart meters utilisation and demand side management. 

Within the referenced models, the time granularity varies between one second and one 

hour, the latter is the most used time resolution. 
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Table 8. Model categorisation [15]. 
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In addition, there are models that are commonly used in the commercial area with the 

purpose of simulate-based planning, design, and optimization of energy systems for 

buildings and districts. Furthermore, these models include new energy production 

technologies as well as thermal models. As commercial models, they provide easy tools 

for energy and data management. Polysun is an example of a commercial model. 

 

 
2.3. Summary 

 

 
This chapter has presented a general overview about residential electricity load profile 

models and focused into the main characteristics such as the considered loads and their 

categorisation, the value of the occupancy pattern, and the household clustering to 

represent occupants’ behaviour. Furthermore, the main applications and methodologies 

were detailed and the combination with thermal models was considered. Chapter 2 is 

closed by considering various published residential load profile models. 
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Chapter 3: Considered load models 

 

This chapter introduces the selected electricity demand models, explains how they 

operate, their input data requirements and the generated profiles. 

 

 
3.1. Study models 

 

 
Within the published and referenced models, three are selected to be analysed and applied 

for the case of Malta. First of all, a deep understanding of them has to be carried out. The 

selected models are the Electricity Demand Profile Generator (EDPG) [32], the Artificial 

Load Profile Generator (ALPG) [33], and the Centre for Renewable Energy Systems 

Technology (CREST) model [34]. The models are developed by the University of 

Strathclyde, UK, the University of Twente, the Netherlands, and Loughborough 

University, UK, respectively. 

 

 
3.2. EDPG model 

 

 
This tool was developed to generate the electricity demand profile of a whole community. 

It is designed to provide quick and accurate results and also shows profiles for particular 

households within the community. It provides demand data with a resolution of one 

hour. Nevertheless, the profile generator can be developed even more to generate data at 

higher resolution, up to a five minute time step. 

 

 
3.2.1. Load profile calculation process 

 

 

The calculation process starts with the identification of the inputs required by the model, 

i.e. the community census demographic results and the annual electricity consumption. 

After coupling them with the household occupancy patterns, the distribution of the load 

and the calibration the simulation is ready to start. The whole 



32  

calculation process is shown in the flow-chart represented in Figure 8 and overviewed in 

the following section; the main points will be detailed: 

1. The tool identifies the name of appliance, the number of times per day that it is in 

use, and the probability of its use during the particular period. 

2. The appliances’ usage pattern is randomised in order to obtain a stochastic 

demand profile, the stochastic process is detailed below. 

3. The lighting consumption profile is obtained according to the lighting usage 

pattern, the number of light units installed and their power rating. 

4. Aggregating both profiles to generate each dwelling’s consumption profile. 

5. The community consumption profile is obtained by multiplying each single 

profile per the number of households within the type and summing them together. 

6. The resulting profile is calibrated to generate an output profile in consonance with 

the statistical data. 

7. The electricity demand profile is plotted. 
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Figure 8. EDPG model calculation process [35]. 

 

 
3.2.1.1. Appliance profile generation 

 

 

Every appliance has an assigned consumption per capita, in this case per person, in 

kWh/day and a number of times of usage per day. Both are then used to determine the 

number of households that use each appliance within a time period. This process is 

randomised to obtain a stochastic output as will be explained. 

The randomised number of households using a determined appliance is multiplied by its 

consumption. Then, the profile is created just by aggregating all the appliances’ demand. 
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3.2.1.1.1. Randomisation process 

 

 

As explained below, each appliance usage is determined by the probability of use within 

the time period. To randomise the output, these probabilities are accumulated with 

defined cut off points and they are assigned a random tag, as shown in Table 9. For 

example, Hob first usage is shared between four different time slots, the likelihood of 

being used in the first period is 0.1, the second 0.2, third 0.6 and the final one 0.1. 

 

 
Table 9. Randomisation process of the hob. 

 

 

 

For n dwellings within the same household type, different samples are created. Each 

sample is represented by a random number bounded between zero and one. These samples 

are compared to the cut off points to determinate their random tag. Then, random tags are 

counted to generate number of households that are supposed to use the appliance within 

the respective time slot. Table 10 shows the resulting probabilities for the case of the hob. 

This process is applied to the appliances that are likely to be used once within two or 

more time periods. 

 

 
Table 10. Resulting probabilities for the case of the hob. 
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3.2.1.2. Lighting profile generation 

 

 

As discussed in the Literature Review, the lighting usage is highly influenced by the 

occupancy pattern. Therefore, to generate the lighting profile, the model identifies the 

input daily time intervals of lighting usage, for winter and summer seasons, and then the 

consumption of the lighting units installed within the dwelling. 

The number of light bulbs per dwelling and the average energy rating per bulb in Wh/h 

set the electricity lighting requirements for a single dwelling. Subsequently, the tool 

multiplies the resulting value by the number of households within a household type and 

aggregates all together to produce the lighting consumption profile. For the case of the 

Table 11 the calculation process and data are as follows. 

 

 
𝑃𝑇 = 𝑁𝐿𝐵 ∗ 𝑃𝐿𝐵 ∗ 𝑁𝐻 (1) 

 

𝑊ℎ 1 𝑘𝑊 𝑘𝑊ℎ 
𝑃𝑇 = 10 ∗ 15 

ℎ   
∗ 234 ∗ 

1000 𝑊 
= 35.10 

ℎ
 

 
 
 

PT: Lighting consumption. 

NLB: Number of light bulbs. 

PLB: Energy rating per light bulb. 

NH: Number of households. 
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Table 11. Example of lighting usage pattern. 
 

 

 

3.2.1.3. Calibration process 

 

 

The purpose of a residential profile generator is to represent community according to its 

statistics. The calibration process aims to accomplish this by use of a calibration 

process. A load normalisation summary (Table 12 shows one example scenario of the 

summary) is built using the calculated community demand data and the annual 

community electricity consumption entered initially. These normalised values represent 

the time slot one-percentage consumption data out of the daily total, according to 

household type. 
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Table 12. Normalisation of daily electricity consumption based on household type 

excluding lighting load. 
 

 

 

Then, calibrated profiles are obtained by multiplying the time slot normalised value by 

the total consumption during the day. The latter is determined using Equation 2. 

 

 

𝐸𝐷𝑆 =
𝐸𝑇𝑆

𝐸𝑇
∗
𝐸𝐶

𝑁
  (2) 

 
 

EDS: Daily consumption according to season. 

ET: Total annual electricity demand. 

ETS: Total electricity demand according to season. 

EC: Total annual community consumption. 

N: Number of days within the season. 
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Subsequently, the daily consumption according to season is applied to the normalisation 

value getting, as a result, the required total calibrated consumption during the day. 

In this process the spring/autumn consumption is calculated using the average, winter, 

and summer daily consumption to adjust the output in accordance with the statistics. 

 

 
3.2.2. Input data 

 

 

As input data, the model requires (a) the annual electricity demand in kWh/year, (b) the 

census demographic results applied to the different types of households, both limited to 

the community, and (c) the ownership of the listed appliances within each household 

expressed as a percentage. 

The model is developed, by default, including the household types that are shown in Table 

13. However, characteristics such as occupancy times and the usage patterns of the 

appliances can be changed to generate a diverse household stock. 

 

 
Table 13. Household types and occupants’ lifestyles [32]. 

 

 

In order to generate the load profile, the appliances ownership has to be introduced. Table 

14 includes the listed appliances within the model including their categorisation. Each 

one of them has a fixable daily average consumption in kWh/day used to represent their 
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power requirements. The average consumption per capita represents the demand per 

occupant, the average number of residents used is 3.3. 

 

 
Table 14. Appliances’ categorization [32]. 

 

 

The usage pattern has to be set, as shown in Table 15, according to the inhabitants’ 

lifestyles and the appliances included in the model. Each appliance is established to be 

used a number of times per day according to the household type. The likelihood of an 

appliance to be used during a time slot is determined by a probability. As can be noticed, 

the accumulated probability during one usage period has to add to unity. This probability 

represents the proportion of the community that is likely to use the appliance within that 

time slot. 
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Table 15. Appliances usage pattern. 
 

 

 
 

The lighting profile is usually generated in accordance with the occupancy pattern and 

the outdoor irradiance. Unfortunately, an outdoor irradiance input is not included in the 

model. Therefore, a lighting usage estimation has to be introduced in a table according to 

the time slot, similar to the appliances usage pattern but introducing the total single 

household consumption during the slot. As mentioned above, the rate of this demand is 

obtained by multiplying the number of light bulbs installed within the dwelling by the 

average energy rating per light unit in watts. Both values can be established. 

 

 
3.2.3. Output data 

 

 

Various daily electricity consumption profiles are generated, gathered in tables, and 

represented by charts. These demand profiles are categorised by season (winter, summer, 

spring/autumn, or all year) and type of household (between household types or the total 

with lighting). For example, Table 16 and Figure 9 shows an example of output. As 

mentioned above, the time resolution by default is one hour. 
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Table 16. Daily electricity demand according to type of household including lighting 

load for winter. 
 



42  

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 9. Daily electricity demand according to type of household including lighting 

load for winter. Example of result of EDPG model. 

 

 
3.2.4. Assumptions 

 

The assumptions of this method are as follows: 

1. Percentage share of type of households in the year of the demographic and 

consumption results is the same as identified in the model. 

2. All hobs and ovens considered are electric powered. 

3. No appliance is left on standby. 

4. Each dwelling only has one of each appliance listed. 

5. The specific schedules are assumed for each household type. 

6. Spring and autumn average daily consumption is assumed to be the same. 

 

 

3.2.5. Limitations 

 

The limitations of such a study are the following: 

1. The number of households is equal to the number of buildings within the community. 

2. The appliances listed, including lighting, are the only electric consumption devices 

within every household. 

 

Daily Electricity Consumption with Lighting Load per household in winter 
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3. Each appliance is used a determined number of times per day, every day. 

4. The number of light bulbs within a household is the same for all the households of the 

same type. 

5. The energy rating per bulb is constant and the same for all bulbs, and all bulbs are 

assumed to be switched-on during the occupancy period. 

6. Model does not differ between weekend days and weekdays. 

 

 

3.3. ALPG model 

 

 
The ALPG model was developed using Python, a general open-source programming 

language, where load curves are generated for active and reactive power with one-minute 

time granularity. Unfortunately, the output should only be used as input for different 

control and optimization algorithms. It also generates heat demand profiles by the 

simulation of thermostat setpoints, hot water usage and ventilation. 

 

 
3.3.1. Load profile calculation process 

 

 

The program runs by executing “profilegenerator.py”. First of all, parameters for 

households, person, devices, etc. are chosen by using different fixable probability 

distributions. [36]. This likelihood determines the availability within dwellings of some 

devices such as dryers and appliances such as dishwashers and tumble dryers, in 

accordance with the household type. A truncated Gaussian distribution is used to choose 

the annual power demand for some uncontrollable load categories and annual 

consumption for households (Table 17). The average consumption value constitutes the 

category’s mean power demand depending on the household type as well as the number 

of adults and children. Both values, the number of adults and the number of children, are 

generated using a bounded uniform distribution. Finally, for the employed occupants, a 

Gaussian distribution determines the driving distance to work. 
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Table 17. Annual consumption according to number of occupants assumed by the model 

[36]. 
 

 

 

Using a simple behavioural model, the occupancy profile is generated using mean times 

for scenarios that shift the state of a person occupant to active, inactive, or away. The 

model uses a truncated Gaussian distribution to determinate the exact times for 

inhabitants. Activities such as home working, washing days and sporting activities are 

also chosen. 

After establishing the persons and the individual households, the dwellings listed are 

shuffled and allocated to a physical household. Then, the low carbon technologies are 

spread between the different households. The orientation of the dwelling is selected 

using a truncated Gaussian distribution. Meanwhile, PV and induction cooking are 

randomly distributed. Later, the quantity of battery storage devices is assigned. Finally, 

the largest commute distance is used to distribute the PHEVs and EVs. 

At this point, the simulation process starts according to the flow-chart shown in Figure 

10. Note that every dwelling is simulated individually and reflected in the output file. 

Habitants’ lifestyles are simulated first in order to obtain their occupancy profile. Then, 

the activity event exact times are randomized. 
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Figure 10. ALPG simulation process [36]. 

 

 
At first, the individual refrigerators and freezers are simulated. Later, according to the 

inhabitants, the electronic equipment is activated using a probability function, this can 

only happen if there is at least one active person. Once a device is turned on, its power 

consumption’s weight is randomly selected between 0.7 and 1.3, the mentioned value 

corresponds to the weight for its power consumption. This value is used to scale, as 

explained below, the electricity demand to match the annual power demand. If the house 

is empty, any electronic device is left on. 

Finally, the static load curves are calibrated. The annual consumption of the category is 

reflected by rescaling the lighting, standby and electronics profiles. The same procedure 

is applied to every category for addressing a reliable reactive power curve. 
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3.3.2. Input data 

 

 

The two following inputs must be gathered in Excel files. These inputs are the Global 

horizontal irradiation in J/cm2 (one-hour timebase), and active and reactive power of the 

dishwasher and washing machine cycle (both on a one-minute timebase). 

Besides, a configuration file named “config.py” is also available and can be changed. In 

this file the following parameters can be fixed: the output folder, the number of days to 

simulate and the start day, the geographical location, the penetration in percentages as 

well as the characteristics of the listed emerging technologies, the power consumption in 

watts of the different devices, the household randomization by the predictability of 

inhabitants, and the household stock in the neighbourhood. 

The tool takes the following dwelling types into account: household single worker, 

household single jobless, household single part time, household couple, household dual 

worker, household family dual parent, household family dual worker, household family 

single parent, household dual retired, and household single retired. 

 

 
3.3.3. Output data 

 

 

Output is formed by two main sections: The inflexible section and the flexible section. 

The first one is represented by comma separated values (csv) files that represents the 

average power demand in watts according to household, with a one-minute resolution. 

The rows constitute the time slots in ever-increasing disposition and each column 

constitute a single dwelling in ever-increasing sequence. Likewise, reactive power in 

var  is gathered in another csv file. Furthermore, negative values indicate power injection 

into the existing low voltage network [36]. 

The flexible appliances are divided in general flexibility classes, as follows: 
 

• Time shiftable: for example dishwashers, dryers and washing machines. As 

mentioned above, real data from measurements is used to generate the static 

demand profile in watts. The resulting profile is represented in time periods with 

their respective start times and end times in seconds. 
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• Buffer-time shiftable: for example electric vehicles. The flexibility is specified as 

the time shiftable class with the electricity demand in watt-hours. 

• Buffer: for example hot water buffer or a battery. The maximum amount of power 

consumption or production level is indicated, as well as the capacity in watt-hours. 

• Curtailable: for example photovoltaic solar energy. This class specifies a fixed 

consumption or production profile and the quantity of power that can be curtailed. 

 

 
3.3.4. Manner of use 

 

 

The command window included in Windows is used to run the ALPG model, 

“profilegenerator.py” has to be executed with three different configuration flags. 

1. “-c” flag must be followed by the path to the configuration file. Note that “.py” has to 

be excluded. 

2. The output directory must be introduced after the “-o” flag. 

3. “--force” is used to force the output directory to be cleared. 
 

Therefore, executing the model with the configuration file “configs/example.py” and 

clearing and writing the results into “output/results” is done as follows. 

profilegenerator.py -c example -o results --force 

 

 

3.3.5. Assumptions 

 

 

For the purpose of this project, this model provide sufficient parameters which can be 

changed to reflect all the conditions for the different scenarios. Therefore, no limiting 

assumptions were found to be taken. 
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3.3.6. Limitations 

 

The limitations of such a study are the following: 

1. The number of households is equal to the number of buildings within the community. 

2. The appliances listed, including lighting, are the only electric consumption devices 

within every household. 

3. In order to run the model, packages such as Python and Astral have to be installed. 

4. Generation of output takes a long time. 

5. The tool is aimed to simulate up to a hundred households. 

6. Requires knowledge in Python programming. 

7. Requires an optimisation tool to manage the output, or an explicative file to 

understand it. 

 

 
3.4. CREST model 

 

 
This model is an integrated thermoelectric demand model based on a bottom-up activity- 

based structure. It uses random programming techniques to represent the diversity of 

houses. It produces high resolution (one-minute timebase) data output, based on reduced- 

order thermoelectric networks to represent thermodynamics. This model was developed 

as free open-source software to promote transparency and further research. Its thermal 

model includes domestic hot water consumption, gas boilers and thermostat and time 

controls towards the electrification of heating. 

 

 
3.4.1. Load profile calculation process 

 

 

As a bottom-up model, this model firstly populates each dwelling with appliances. Each 

appliance can be represented by On/Off state as well as standby and they have an assigned 

consumption. The likelihood of an electronic device being turned on is determined by the 

current active inhabitants, on the appliance type, and whether it is a weekday or 

weekend and corrected by a calibration scalar, used to give a particular consumption 

over various simulations. Then, if the result is over a randomised number, the 

appliance is switched- 
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on. This process is repeated for all the appliances during every time interval and shown 

in Figure 11. Once all the appliance’s energy requirements are simulated, the model 

aggregates them obtaining their energy profile. 

 

 
 

 

Figure 11. CREST's switch on calculation process for appliances [19]. 

 

 
In addition, a power factor is used to represent the average value over the time resolution. 

For resistive heating appliances the value is at unity, 0.9 is used for electronic 

entertainment appliances and 0.8 for cooling and washing type appliances. 

In the case of lighting, each household has a different irradiance threshold chosen by a 

normal distribution with a mean of 60 W/m2 and a standard deviation of 10 W/m2. 

Furthermore, it includes a filter to make illuminance variations soft (for example in the 

case of passing clouds) [22]. 

A normal distribution determines the number of lighting units within each dwelling. The 

same statistics is used to select the technology installed between General Lighting Service 

(GLS), Compact Fluorescent Lamp (CFL), halogen, fluorescent tube, or other types such 
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as Light Emitting Diode (LED) or Parabolic Aluminized Reflector (PAR). Their power 

rating is randomly selected between a selection from the most common types. [22]. 

The switch on process starts comparing the irradiance level with the household’s 

irradiance threshold. Then, the weighting of each light unit is considered. This value is 

obtained with a random number and Figure 12. 

 

 

 

 
Figure 12. Light units weighting calculation [22]. 

 

 
Later, the effective occupancy is taken into consideration according to the number of 

active occupants, as shown in Figure 13. 
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Figure 13. Effective occupancy curve [22]. 

 

 
In addition, for five percent of the time intervals some light units are switched on to 

represent the existence of rooms without windows. The duration of each switch on event 

is picked randomly according to the curve shown in Figure 14. 

 

 

 
 

 
Figure 14. duration of switch on events [22]. 

 

 
Finally, to give a particular overall energy demand in accordance with the statistics over 

a few simulations, the calibration scalar is considered. 
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3.4.2. Input data. 

 

 

Starting with the appliance’s model, the daily activity profile is required to generate the 

active occupancy pattern, including whether it is a weekday or weekend. Time Use 

Survey (TUS) is included in the model and sets the base to simulate the behaviour of the 

occupants. Also statistical ownership data form the UK Department of Energy and 

Climate Change (DECC) is taken to populate each household’s electric devices. The 

model’s appliances list is shown in Table 18. Furthermore, each appliance has an assigned 

consumption in kWh/year according to the statistics gathered in a UK’s survey 

published in 2006. 

 

 

 

 
Table 18. List of appliances. 
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In order to generate the lighting model, the model requires the outdoor irradiance level, 

to set the likelihood of the light units being switched-on, and the calibration scalar to 

correct the model’s output. 

The thermal model uses an external temperature model, and the heating control settings 

have to be predefined. However, the mentioned irradiance model, the occupancy 

transition probabilities and the activity profiles are also utilised to define the output. 

 

 
3.4.3. Output data 

 

 

A daily profile is generated with one-minute time resolution. All the output data is 

gathered in three different Excel worksheets and express the overall power consumption 

according to the household: daily totals, disaggregated and aggregated. In the first case 

each row represents one dwelling, whereas in the others each row represents a one-

minute interval. In both cases, each dwelling is referenced by an index. 

Principally, the active occupancy, the lighting demand, the appliance demand, and the PV 

output are shown. However, as mentioned above, this model also includes a heat demand 

model to obtain the domestic hot water consumption and the solar thermal collector heat 

gains. The low order building thermal model generates the thermal energy required by 

the water and space heating as well as the gas demand in the case it is installed. 

Furthermore, it can determine the operating times of the installed space heaters. 

 

 
3.4.4. Assumptions 

 

 

The only limitation that was identified up to the time of writing the dissertation was that 

if there are no inhabitants within the dwelling or they are sleeping, the model assumes 

that every light is switched off. 
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3.4.5. Limitations 

 

The limitations of such a study are the following: 

 

1. The number of households is equal to the number of buildings within the community. 

2. Although there are a lot of appliances included within the model, there was no 

facility  to include others. 

3. The model requires large datasets as inputs for the active occupancy pattern and 

consumption rating. 

4. The model can populate each household with up to thirty-three devices. 

 

 

3.5. General features 

 

 

Table 19 shows the models’ general features according to the characteristics discussed in 

the Literature Review. 

 

 
Table 19. Models' general features. 

 

Feature EDPG ALPG CREST 

Application RLP RLP, DSM RLP, DSM 

Methodology Top-down Bottom-up Bottom-up 

Resolution Low (1 hour) High (1 min) High (1 min) 

Statistical approach Not included Probabilistic models Probabilistic models 

Thermal model Not included Included Included 

 

 

 

 

3.6. Summary 

 

 
The profile generation process, its inputs and outputs, assumptions, and limitations 

included within each model were presented in this chapter. As a conclusion, according 

to the features presented in Chapter 2, ALPG and CREST model are included within the 

bottom-up approach matched with a high-resolution output while EDPG model belongs to 

the top-down category and includes a low-resolution output. 
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Chapter 4: Methodology 

 

This chapter presents the changes that the models require to adapt them for various 

scenarios referring to Malta, together with the sources of the utilised data. 

The aim of this research is to generate energy consumption profiles for a mix of Maltese 

dwellings through the use and adaptation of published models. The consumption profiles 

are to be extended to represent the Maltese scenario. In order to accomplish this, every 

model has to consider the lifestyles and the schedules of Maltese households as well as 

the typical appliances and their consumption. Depending on the capability of the 

particular model, emerging technologies and their characteristics can be used to generate 

the alternate profiles and allow the analysis of their resulting impact. Only two of the 

three identified models will be studied, namely the EDPG model and ALPG model. 

Unfortunately, the CREST model will not be simulated due to lack of time. Moreover, as 

the electricity consumption analysis is the main purpose of the dissertation, thermal 

models will not be studied in detail. 

 

 
4.1. Measured data 

 

 

Both identified models require knowledge of the electricity consumption rates of the 

considered household appliances. In order to reflect typical use in the Maltese scenario, 

an energy meter was used to log the operating profile at high resolution. The monitored 

appliances are listed in Table 20. The consumption data was measured for different time 

periods depending on the type and usage pattern of the particular appliance, as indicated 

in Table 20. 
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Table 20. Measurements durations. 
 

Appliance Measurement duration Average hours/day usage 

Iron 30 min 30 min 

Oven 30 min 30 min 

Dehumidifier 1 day 8 h 30 min 56 s 8 hours 

Electric water heater 2 days 7.29 hours 

Laptop 30 min 6.14 hours 

Refrigerator 2 days 24 hours 

TV-modem-set top box 30 min 9.57 hours 

Washing machine 7 hours 1 hour 30 min 

Tumble dryer 2 h 40 min 3 hours 

 

 
The Fluke 1732 Power Measurement Logger shown in Figure 15 has been used to 

measure and log the data at intervals of one minute. 

 
 

 

 

Figure 15. Fluke 1732 Three Phase Power Measurement Logger [37]. 
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In order to analyse the logged data, the Fluke Energy Analyze Plus 3.6. software was 

used. Analysis tools to facilitate the gaining of insights into the measured data are 

provided by this application. The software allows analysis of data through the use of 

cursors/markers and different graphic charts (e.g. RMS power, V, A, THD, etc.) of either 

individual variables or selected trend lines. For this work, the active power and energy 

profiles were extracted. 

The appliance consumption was expressed as an hourly consumption rate. For the 

appliances where the measurement duration is longer than one hour, the hourly 

consumption was determined by dividing the cumulative active energy consumption 

within a cycle of usage by the time period of this cycle. For example, Figure 16 shows 

the cumulative active power demand of the dehumidifier where the constant parts 

represent the periods when it was idle. The average hourly demand rate for the active 

hour is taken as the difference between the high and the low cursor energy values, 

which amounts to 

0.23 kWh. The average consumption for the dehumidifier is taken as 0.23 kWh/h. 
 

 

 
 

 
Figure 16. Cumulative consumption of the dehumidifier. 

 
In the case of the laptop and the TV-modem-set top box, it is assumed that their 

consumption is constant during their operation and equal to the average consumption 

within the measurement time period. 

Table 21 indicates the resulting consumption rates of each appliance once this procedure 

was applied. 
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Table 21. Appliances’ consumption rates. 
 

Appliance Average hourly consumption (kWh/h) 

Iron 0.148 

Oven 0.929 

Dehumidifier 0.23 

Electric water heater 0.553 

Laptop 0.014 

Refrigerator 0.034 

TV-modem-set top box 0.097 

Washing machine 0.189 

Tumble dryer 0.64 
 

 

4.2. EDPG model 

 

 

This model was used to generate the electricity demand profiles for selected zones in 

Malta. The area of St Julian’s in Malta was used to represent a city while Xewkija in Gozo 

was used to represent a village. The particular areas were chosen as the required 

information were available in the NSO Census 2011 [38]. The model was used to 

generate a base profile and then to study the impact of the greener lighting technologies 

where the installed light units are changed from halogen to LED. 

The required inputs by this tool are the zone annual electricity demand, the census 

demographic results, the appliances ownership level together with their consumption and 

usage patterns. In addition, the lighting usage pattern, the number of bulbs installed within 

each household and their power rating are required. The extraction of this data and its 

conversion for input to the model is described in the next sections. 

 

 
4.2.1. Household stock and annual electricity demand 

 

 

To determine the household stock of the settlement, the census demographic results of 

the region were used. The available dataset was reported by the National Statistics Office 
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(NSO) in its 2011 report [38]. Due to lack of more recent data, the percentage share of 

type of households identified in the report is used as input to the model. 

Both models used for this work considered a number of household types. In particular, 

the EDPG model includes the households listed in Table 22. 

 

 
Table 22. Household types assumed by the model and their categorisation by size and 

status of the reference person. 
 

Model Household type Status Size 

Single Adult Employed 1 

Single pensioner Retired 

Two adults Employed 2 

Two pensioners Retired 

Two adult with children - 4, 5, 6+ 

Two adult with pensioner Retired 3 

Three adult Employed 

 

 
In order to segregate the households into the considered types, the following procedure 

was used to determine the household stock for one-, two-, and three-person households. 

The numbers of employed and retired persons according to the household type were 

collected for Malta and are shown in the first two columns of Table 23. These data were 

used to establish the employed and retired percentage distributions as shown in the last 

two columns. It is assumed that the reference person of every household within each 

household in Malta is employed or retired. Then, each percentage is applied to Table 24 

which includes information about the number of households within St Julian’s and 

Xewkija depending on household size. As a result, the number of households related to 

household type is obtained. 
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Table 23. Percentage of employed and retired reference person within Malta according 

to household type. Information extracted from NSO Census 2011 [38]. 
 

Household type Employed Retired Employed 

(%) 

Retired 

(%) 

One-person, under 30 1,881 0 58.68 41.32 

One-person, aged 30-64 10,377 2,070 

One-person, aged 64 and over 373 6,825 

Two adults, no dependent children 
- both under 65 

13,135 3,496 44.77 55.23 

Two adults, no dependent children 
- at least one aged 65 and over 

1,513 14,577 

Other households without 

dependent children 
12,049 9,794 55.16 99.44 

 

 
Table 24. Private households according to household size and region. Information 

extracted from NSO Census 2011 [38]. 
 

Household size St Julian's Xewkija 

1 1,099 286 

2 1,082 278 

3 613 219 

4 461 231 

5 141 92 

6 or more 52 42 

Total 3,448 1,148 

 

 
The sum of the households included in the four, five, and six or more household size 

within each region was assumed to be the number of two adults with one or more children 

household type. 

As a result, the number of households and their type within each community is set as 

shown in Table 25. 
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Table 25. Household stock EDGP model. 
 

Household type St Julian's Xewkija 

Single Adult 645 168 

Single Pensioner 454 118 

Two Adults 484 124 

Two Pensioners 598 154 

Two Adult With Children 654 365 

Two Adult With Pensioner 275 98 

Three Adult 338 121 

 

 
In addition to the household stock, the EDPG model requires the zone’s annual electricity 

demand. This information was not directly available. It was established from the energy 

consumption survey [39] showing the consumption for different types of Maltese 

dwellings. These are classified as apartments, maisonettes, terraced houses, and villas. 

The extracted daily and corresponding annual average consumption data are shown in 

Table 26. 

 

 
Table 26. Average consumption according to dwelling type. Information extracted from 

[39]. 
 

Consumption Apartments Maisonettes Terraced 

Houses 
Villas 

Daily Average (kWh/day) 9.48 10.76 11.02 12.72 

Annual Average (kWh/year) 4,073 3,927 4,022 4,643 

 

 
Since no additional data was available, the model households listed in Table 25 were 

assumed to be linked to the dwelling categories in Table 26 according to household size. 

One- and two-persons households were assumed to live in Apartments, three-person 

households in Maisonettes, four- and five-person households in Terraced Houses and 

finally, six and more person households in Villas. Taking this assumption and 

considering the average annual consumption and the number of respective households, 

the annual electricity consumption is obtained and shown in Table  27. 
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Table 27. Annual electricity consumption according to region. 
 

Consumption St Julian's Xewkija 

Total annual consumption in kWh/year 12,554,802 4,256,619 

 

 
4.2.2. Considered appliances in households 

 

 

Each of the considered models uses a different list of appliances. The ones considered for 

the EDPG model are listed in Table 28. 

 

 
Table 28. Household appliances considered in the EDPG model. 

 

Category Appliance 

Kitchen appliances Electric hob 

Electric oven 

Microwave oven 

Cold appliances Refrigerator 

Freezer 

Wet appliances Electrical water heater 

Dishwasher 

Washing machine 

Tumble dryer 

Miscellaneous TV-modem-set top box 

Electric kettle 

Computers/laptops 

Iron 

Dehumidifier 

 

 

 

 
Therefore, only the most utilised appliances can be considered. The identified appliances 

listed in Table 29. Their ownership level in Malta are also specified in the survey and are 

shown in Table 30. Unfortunately, not all the appliances listed in the model are included 
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in the survey, thereby an ownership level of one hundred percent was assumed for the last 

three appliances included in Table 29. 

 

 
Table 29. Appliances ownership. Information extracted from [39]. 

 

Appliance Ownership (%) 

Electric oven 34.43 

Electric hob 13.59 

Microwave oven 56.87 

Dishwasher 14.89 

Fridge 100.00 

Freezer 100.00 

Electric water heater 90.50 

Computer/Laptop 66.45 

Television 99.01 

Washing machine 96.42 

Tumble dryer 21.12 

Electric kettle 100.00 

Iron 100.00 

Dehumidifier 100.00 

 

 
4.2.2.1. Appliance’s usage pattern 

 

 

The appliance’s usage pattern will depend on the active occupancy pattern and, therefore, 

on the lifestyles of the inhabitants. As described in Chapter 3, the model represents the 

pattern by a number of usage times in fixed one-hour intervals per day. The set number 

of usage intervals for each household type were based on the following assumed profiles 

and are shown in Table 30. 

• Adults working on a full-time basis: wake up at 7:00 a.m., have lunch at work, 

return home at 5:00 pm to watch TV and have dinner afterwards. 

• Pensioners loads are distributed randomly throughout the day. Cooking appliances 

have a specified period that corresponds to breakfast, lunch, and dinner. 
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• Children assumed to go to school after having breakfast at 7:00 am, return from 

school around 2:00 pm, in the evening they use the entertainment devices. 

The electrical water heater is considered to operate during six hours to provide hot water 

for two-persons households and during nine hours within three-persons dwellings. The 

dehumidifier is assumed to be cycling throughout the day operating for one hour and 

switching off for two, alternately. 

 

 
Table 30. Number of usage intervals using one-hour resolution. 

 

Appliance Single 

Adult 

Single 

Pensioner 

Two 

Adult 

Two 

Adult 

Children 

Two 

Pensioner 

Two 

Adult 

Pensioner 

Three 

Adult 

Hob 2 3 2 3 3 3 3 

Oven 1 1 1 1 1 1 1 

Microwave 2 3 2 3 3 3 3 

Refrigerator 24 24 24 24 24 24 24 

Freezer 24 24 24 24 24 24 24 

Tv-modem- 

set top box 
8 8 9 12 9 9 12 

Electrical 

water heater 
6 6 6 9 6 9 9 

Dishwasher 1 1 1 1 1 1 1 

Washing 

machine 
1 1 1 2 1 1 2 

Tumble 

dryer 
1 1 1 2 1 1 2 

Kettle 3 2 4 4 3 5 5 

Computers 6 2 8 10 3 8 10 

Iron 1 1 1 1 1 1 1 

Dehumidifier 8 8 8 8 8 8 8 

 

 
4.2.2.2. Assumed rates 

 

 

Each appliance has an assigned power rating, the survey [39] also records the daily 

average energy ratings in relation to the building type (apartments, maisonettes, terraced 
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houses, villas and all the households combined). Assuming that the consumption rates 

can also be applied to the year of publication, this consumption according to the combined 

households will be the energy requirements of the model appliances. These rates are 

collected in Table 31. 

 

 
Table 31. Daily consumption rates. Information extracted from [39]. 

 

Appliance Average consumption (kWh/day) 

Fridges and Freezers 2.42 

Electric oven and hob 0.19 

Microwave oven 0.06 

Dishwasher 0.03 

Kettle 0.12 

Electric water heater 2.67 

Computer/Laptop 0.43 

Television 0.98 

Washing machine 0.26 

Tumble dryer 0.03 

 

 
The appliances consumption rates used in the model were obtained from both the 

measured and collected data. Firstly, the measured data was used for the appliances 

considered in the measurement exercise. Then, the consumption of the remaining 

appliances was set according to the survey’s ratings. It is important to note that the model 

assumes the daily consumption of the appliances equal for every household type. Despite 

this, the hours/day usage assumed is different as it depends on the household type, size, 

etcetera. To calculate the appliances’ daily consumption, the average between all the 

usage patterns within each household type is taken. The resulting consumption according 

to the appliance is shown in Table 32. Note that the model requires the daily average 

consumption in kWh/day. 
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Table 32. Assumed consumption rates. 
 

Appliance Consumption 

(kWh/day) 
Hours/day usage Consumption 

(kWh/h) 

Electric oven 0.465 0.5 0.929 

Electric hob 0.190 - - 

Microwave oven 1.200 - - 

Dishwasher 0.060 - - 

Fridge 0.816 24 0.034 

Freezer 1.604 - - 

Electric water heater 4.029 7.29 0.553 

Computer/Laptop 0.086 6.14 0.014 

Washing machine 0.284 1.5 0.189 

Tumble dryer 1.919 3 0.640 

TV-Modem-Set top Box 0.928 9.57 0.097 

Electric kettle 0.240 0.1 2.400 

Iron 0.074 0.5 0.148 

Dehumidifier 1.840 8 0.230 

 

 
4.2.3. Lighting 

 

 

For the case of lighting load the data required is principally the lighting usage pattern, the 

number of bulbs per household, and their average power rating. First of all, the lighting 

usage pattern was assumed in accordance with the household type considering the outdoor 

irradiance levels in summer and winter. Table 33 shows an example for the single adult 

household type. 
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Table 33. Lighting usage pattern for single adult household type. 
 

Time Lighting 

Winter Summer 

00:00 - 01:00 
 

on 

01:00 - 02:00   

02:00 - 03:00   

03:00 - 04:00   

04:00 - 05:00   

05:00 - 06:00   

06:00 - 07:00 on  

07:00 - 08:00 on  

08:00 - 09:00   

09:00 - 10:00   

10:00 - 11:00   

11:00 - 12:00   

12:00 - 13:00   

13:00 - 14:00   

14:00 - 15:00   

15:00 - 16:00   

16:00 - 17:00   

17:00 - 18:00   

18:00 - 19:00 on  

19:00 - 20:00 on  

20:00 - 21:00 on on 

21:00 - 22:00 on on 

22:00 - 23:00 on on 

23:00 - 24:00 on on 

 
The light unit stock is chosen between the different types of light bulbs available in the 

market. General Lighting Service (GLS), Compact Fluorescent Lamp (CFL), fluorescent 

tube, halogen, Light Emitting Diode (LED), Parabolic Aluminized Reflector (PAR), and 

incandescent are the most common types. 

As mentioned in Chapter 3, one limitation of the EDPG model is that every household 

type has the same number of light units installed within each dwelling. Moreover, 

the model 
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considers that during lighting usage every light unit is switched on throughout the time 

period, thereby the number of light units that are switched on according to household 

number of occupants was considered. One-, two-, three-, and four-person households 

were assumed to have an average of two, four, six, and eight light units installed, 

respectively. 

Each lighting unit has a changeable consumption during the utilisation period. 

Therefore, for models without statistical approach that cannot represent this variation, a 

constant power rating has to be assumed. Besides, the average consumption depends on 

the required illuminance level, as shown in Table 34. 

 

 
Table 34. Power according to bulb and illuminance level [40]. 

 

 

The sixty-watt incandescent light bulb was the most commonly installed, thereby it was 

assumed that the required brightness is between five hundred and seven hundred lumen 

as per Table 34. Thus, the corresponding power rating for the halogen, CFL, and LED 

bulbs will be 50 W, 11 W, and 6 W, respectively. 

To compare between the village and city consumption, as there are no available 

statistics about the bulbs installed within Maltese dwellings, an equal share of the light 

bulbs stock within the community is assumed. Therefore, the average between every 

bulb’s power rating will be used in accordance with the 500-700 lumen brightness, the 

resulting power  rating is 32 W. 



69  

4.2.4. Limitations 

 

The limitations of such a study are the following: 

 

1. The date of the NSO Final Report dated 2011 was used. 

2. The total consumption of the settlements was estimated as this data was not available. 

3. The measurements were taken throughout a short time period, thereby no seasonal 

variation was considered. 

4. The appliances’ usage pattern was mostly assumed. 

5. The number and type of light bulbs installed within the community dwellings were 

assumed due to lack of available information. 

 

 
4.3. ALPG model 

 

 
The ALPG model can incorporate different emerging technologies such as electric 

vehicle charging (EV), solar photovoltaics (PV), battery storage system and heat pumping 

technologies. The effect of these greener appliances will be examined by carrying out 

simulations with and without these technologies. 

As mentioned in Chapter 3, this model requires two different types of inputs. The first 

type consists of excel file inputs representing the solar irradiation and the active and 

reactive power requirements for dishwashers and washing machines. The second type of 

input consists of characteristics of emerging technologies, consumption rates of the 

remaining appliances and the household stock. They are gathered in the configuration 

Python file. 

 

 
4.3.1. Excel file inputs 

 

 

The global horizontal solar irradiation in J/cm2 with hourly resolution was provided by 

the Institute for Sustainable Energy at the University of Malta. Two profile examples are 

shown in Figures 17 and 18 with the horizontal axis showing the time in hours, the scale 

resolution has been set to represent a day. 
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Figure 17. Global horizontal irradiation profile for a week during winter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. Global horizontal irradiation profile for a week during summer. 

 

 
The default power profile was kept for the dishwasher as the consumption of such 

appliance was not monitored. On the other hand, data was available for the washing 

machine consumption with a thirty-second resolution. The measured data was exported 

to Excel csv file and transformed to one-minute resolution as required by the model by 

calculating the average between two consecutives thirty-second power samples. Both 

profiles are shown in Figures 19 and 20. 
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Washing machine cycle 
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Figure 19. Washing machine cycle active power profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 20. Dishwasher cycle active power profile. 

 

 
4.3.2. Configuration file 

 

 

The configuration file ‘config.py’ needs to be adapted to reflect the geographical location 

of the country. This was set to Malta as shown in Figure 21. 
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Figure 21. Malta’s geographical parameters. 

 

 
Then, data for a week will be generated according to the season. The third weeks of 

March, June, September, and December 2021 were selected to represent spring, summer, 

autumn, and winter, respectively. For example, for the case of summer, the parameters 

were configured as shown in Figures 22 and 23. 

 

 
 

 

Figure 22. Simulated week configuration for summer. 
 

 
 

Figure 23. Simulated week configuration for winter. 

 

 
4.3.2.1. Renewable technologies 

 

 

In this model, the impact of the emerging technologies was analysed. Therefore, four 

different scenarios were simulated. The base simulation was carried out with all the 

technologies penetration values set to zero. The second simulation included the PV 

related parameters shown in Figure 24. These were set according to data provided by the 

Institute for Sustainable Energy at the University of Malta. The penetrationPV value 

represents the percentage of households with this technology installed. A value of one 

hundred percent was assumed as the aim is to analyse PV effect in the household profile. 
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Figure 24. PV parameters. 

 

 
The third simulation was focused on the electric vehicle (EV) impact. The EV parameters 

were left in default as these were considered adequate, whereas the penetration value of 

this technology was assumed again one hundred percent. Furthermore, in this case, the 

model requires the driving distances to work, a mean value of fifteen kilometres and a 

standard deviation of five kilometres were assumed given the small size of the island. All 

this data together is shown in Figure 25. 

 

 
 

Figure 25. EV parameters. 

 

 
Finally, the fourth simulation was carried out with both mentioned low carbon 

technologies, PV and EV, in order to analyse the combination of such loads. The 

parameters were the same as determined above. 

 

 
4.3.2.2. Considered appliances 

 

 

The electrical appliances in the three categories considered for the model are shown in 

Table 35 together with their assumed power ratings. For the oven and large fridge 

electrical energy consumption, the data was obtained from the measured data analysed 

with the Fluke software. The average value of the logging interval was taken for the 

oven, while the maximum and minimum values for the large fridge were extracted as 

shown in Figure 27. 
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The small fridge consumption was assumed 30 Watts lower than that of the big one. The 

others appliances’ consumption was established using available models in The Home 

Depot Market webpage [41].Table 35 shows the assumed power ratings. 

 

 

 

 
Figure 26. Fridge’s active power profile. 
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Table 35. Appliances' consumption for ALPG model. 
 

Category Appliance Power (W) 

 

 

 

 

 
 

Kitchen 

Oven 929 

Microwave 1000 

Stove ventilation 100 

Induction stove 1800 

Fridge big (max) 93 

Fridge big (min) 89 

Fridge small (max) 63 

Fridge small (min) 59 

Kettle 1500 

 
White goods 

Iron 1500 

Vacuum cleaner 1200 

House House ventilation 52 

 

 
4.3.2.3. Household stock and randomization 

 

 

The household randomization expresses the likelihood of the family leaving the dwelling 

as well as the chance of a person starting an activity considering whether it is a weekday 

or the weekend. These parameters were left at the default values, as shown in Figure 27, 

due to the difficulty of establishing a general pattern for Maltese households. 

 

 
 

Figure 27. Household randomization. 
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Finally, as the tool is developed to simulate up to one hundred dwellings, the households 

stock had to be reduced to one hundred dwellings. This was done using the percentage of 

each household type within the community. 

The household stock was determined by repeating the procedure already explained for 

the EDPG model but applied to the new list of household types. Table 36 shows the 

selected types as the chosen community fits within this types. Half of St Julian’s three- 

person households were assumed to be of the Family Single Parent type, while the other 

half together with the households of larger size were taken to be part of Family Dual 

Worker type. Single and dual person households were divided between employed and 

retired categories. For the single person households, an unemployed category was also 

considered. This categorisation is shown in Table 35. 

 

 
Table 36. Assumptions in the household type calculations according to data from NSO 

Census 2011 [38]. 
 

Household type Status Household size 

Single worker Employed  

1 Single jobless Unemployed 

Single retired Retired 

Dual worker Employed  
2 

Dual retired Retired 

Family single parent - 3 

Family dual worker - 3, 4, 5, 6+ 

 

 
Therefore, adding the unemployed data for the one- and two-person household type 

shown  in Table 37, one can obtain the percentages shown in Table 38. 
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Table 37. Employed, retired, and unemployed reference persons according to household 

type. Information extracted from NSO Census 2011 [38]. 
 

Household type Employed Retired Unemployed 

One-person, under 30 1,881 0 499 

One-person, aged 30-64 10,377 2,070 1,694 

One-person, aged 64 and over 373 6,825 1 

Two adults, no dependent children - both 

under 65 
13,135 3,496 609 

Two adults, no dependent children - at least 

one aged 65 and over 
1,513 14,577 29 

 

 
Table 38. Percentage of employed, retired and unemployed reference persons 

according to household size. 
 

Household type Employed (%) Retired (%) Unemployed (%) 

One-person 53.25 37.50 9.25 

Two-person 43.91 54.18 1.91 

 

 
Table 39 shows the result of applying the identified number of households for each type 

for the EDPG’s model to establish the distribution of the considered 100 household stock. 

As mentioned above, this limitation is due to the computational requirements of the 

model. 

 

 
Table 39. ALPG model household stock for St Julian’s. 

 

Household type St Julian's % St Julian's 

Household Single Worker 585 17 

Household Single Jobless 102 3 

Household Dual Worker 475 14 

Household Family Dual Worker 961 28 

Household Family Single Parent 307 9 

Household Dual Retired 607 17 

Household Single Retired 412 12 
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4.3.3. Limitations 

 

The limitations of such a study are the following: 

 

1. The date of the NSO Final Report dated on 2011 was used. 

2. The measurements were taken throughout a short time period, thereby no seasonal 

variation was considered. 

3. Certain parameters were left at default due to lack of information. 

 

 

4.4. Comparison between models 

 

 
Chapter 3 detailed the different features included within each selected model. A 

comparison between the two used models, EDPG and ALPG, was carried out. However, 

as each model was developed using a different methodology and, in general, they have 

different characteristics, one had to be adapted according to the other’s features. The 

ALPG model was adapted as it is more detailed and easier to fix and the EDPG model 

was left with St Julian’s city settlement settings. 

Both models were changed to simulate St Julian’s zone during one day according to 

EDPG’s output, for summer and winter seasons. The EDPG settings were the same as the 

ones explained above, whereas the ALPG model was fixed. As EDPG model does not 

include emerging technologies, all the penetration values of the ALPG configuration file 

were set to zero. Moreover, the simulated day had to be a weekday since the EDPG model 

does not differ between weekdays and weekend days. This day was assumed to be the 

first one after the start day established in Figure 22 for summer and in Figure 23 for 

winter. Unfortunately, ALPG’s appliances cannot be changed since they have a particular 

behaviour represented in Python’s code, thereby the listed appliances within each model 

was different. 

 

 
4.4.1 Limitations 

 

The limitations of such a study are the following: 

 

1. ALPG’s appliances are already defined, and they cannot be changed. 
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2. The EDPG model can be improved to generate up to five minutes time resolution 

output data. However, this is not enough to reach the ALPG model’s one-minute 

resolution and was not done due to lack of time. 

 

 
4.5. Summary 

 

 

This chapter presented the methodology used to calculate or experimentally determine 

the energy consumption of a set of typical appliances. This was followed by a detailed 

description of the key settings for the two models to tailor-make them to the case of Malta, 

focusing on the sources of the required input data as well as their processing to obtain the 

necessary inputs that are used within the simulation process. 
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Chapter 5: Results and Discussion 

 

5.1. Results and Discussion 

 

 

This chapter presents the results generated by the EDPG and ALPG models described in 

Chapter 3. It examines and provides a comparison between the different profiles 

generated by the same model and similar profiles from both models. 

 

 
5.2. The EDPG model 

 

 

This model was set as described in Section 4.1. The differences in the consumption 

profiles between the main household types within localities were analysed. In order to 

focus on the active occupancy, some loads are explained following the generated profile 

for a single household in St Julian’s which is shown in Figure 28. First of all, a general 

profile shown in Figure28 is detailed to describe the loads that characterize every 

dwelling. 

In general, appliances that are operating throughout the day, such as the refrigerator and 

the freezer, consume electricity during every interval and represent the profile’s base 

consumption. On the other hand, controllable appliances such as the electric water heater 

or the dehumidifier have a significant consumption and they operate within specific 

periods of time. The dehumidifier was scheduled to generate a load every three time slots 

starting from midnight to 1:00 am whereas the water heater load operates for three 

separate time slots depending on the household size. For one and two household sizes, 

the water heater operates from 4:00 am and from 1:00 pm whereas for the case of three 

or more household sizes it operates from 4:00 am and from 1:00 and 7:00 pm. 
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Figure 28. Example of a generated electricity consumption profile for the community. 

 

 
5.2.1. Population scenario 

 

 

In this scenario, as mentioned in Section 4.2., the zones of St Julian’s and Xewkija were 

considered as the purpose is to study the demand of a city and a village. Such profiles are 

affected by the number of dwellings within each household type inside the studied 

community, although the appliances usage pattern was supposed to be similar in 

accordance with the household type throughout every simulation. The household types 

with less similar appliances usage, i.e. ‘single worker’, ‘single pensioner’, ‘two workers 

with pensioner’, and ‘two workers with children’, together with the complete zone are 

studied in detail below. The seasonal variation within this model is presented in the 

following section. 

Figures 29 and 30 show the ‘single worker’ household daily average consumption for 

winter for both zones. Although both charts have the same profile throughout the day as 

the same appliances usage pattern was assumed for these two cases, the number of 

dwellings is different. Xewkija’s profile has a peak demand lower than 180 kW while St 

Julian’s peak reaches more than 600 kW. The characteristics ‘single worker’ profile are 

detailed below. 

Generally, a significant increase in the dwelling consumption during the morning 

indicates the occupant’s waking up time, in this case between 6:00 and 8:00 am before 

leaving to work. Then, only controllable and continuously operating appliances 
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generate a load until the occupant returns around 18:00. After that, various appliances 

are used until bedtime at midnight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Single worker households daily average consumption for winter in St 

Julian’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Single worker households daily average consumption for winter in Xewkija. 

 

 
The ‘single pensioner’ profile shown in Figures 31 and 32 follows a pattern that shares 

the different loads randomly throughout the day, as the retired persons occupancy does 

not follow an exact pattern. However, as the ‘single worker’ case, the wake up and 

bedtimes are the  same. 
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Figure 31. Single pensioner households daily average consumption for winter in St 

Julian’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Single pensioner households daily average consumption for winter in 

Xewkija. 

 

 
In the next case, the number of occupants increases to three. Hence, the overall electricity 

consumption for a single dwelling is higher. However, as there are 645 ‘single adult’, 454 

‘single pensioner’, and 275 ‘two workers with pensioner’ dwellings within the locality, 

the daily average consumption taking all the latter type households is lower than for the 

other cases. 

Figures 33 and 34 profiles are characterized by both worker and pensioner, profiles 

explained before. Therefore, the consumption peaks are shared between two different 

periods, the morning and the evening, when all the occupants are indoors and active. 
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Furthermore between 18:00 and 21:00, the appliances’ load is mainly due to the high 

active occupancy level, coupled with the electrical water heater operation cycle leading 

to in a period  with a high and constant consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Households with Two Workers with pensioner. Daily average consumption 

for winter in St. Julian’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Households with Two Workers with pensioner. Daily average consumption 

for winter in Xewkija. 

 

 
The ‘two workers with children’ household profiles introduce the children occupant. 

These persons wake up around 7:00 am, go to school and return at around 14:00, they 

spend the day indoors until their bedtime at 22:00. 
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Figures 35 and 36 are characterised by the high demand in the evening due to the number 

of appliances in use when both parents and the children are at home. The consumption 

throughout the day maintains a low level although the children return from school due to 

the insignificant load compared to the same occupancy periods referred to above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Households with Two Workers with children. Daily average consumption for 

winter in St. Julian’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Households with Two Workers with children. Daily average consumption for 

winter in Xewkija. 
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Then, the daily average load profile for the complete localities was studied simulating 

the community for summer and winter seasons and shown in Figures 37 and 38 for St 

Julian’s case and Figures 39 and 40 for Xewkija’s case. The seasonal effect within this 

model concerns the lighting usage pattern, which will be discussed in the following 

section. 

The figures show the generated average profile of all household types’ profiles within the 

community. In general, the loads are spread between three different time periods 

throughout the day corresponding to the wake-up time, the afternoon’s electrical water 

heater usage coupled with the dehumidifier operation and loads of used appliances used 

by pensioners or children, and the period from the time after return from work until 

bedtime. 

Furthermore, there are three significant three peak demands, one in the morning and two 

in the evening. Such loads should be reduced as they affect the lifetime of LV network 

devices and trigger over-voltages and over-currents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Total community daily average consumption for summer in St Julian’s. 
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Figure 38. Total community daily average consumption for winter in St Julian’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Total community daily average consumption for summer in Xewkija. 

4,500 

4,000 

3,500 

3,000 

2,500 

2,000 

1,500 

1,000 

500 

- 
1 2 3 4 5 6 7 8 9     10   11   12   13   14   15   16   17   18   19   20   21   22   23   24 

Time (hours) 

1,000 

900 

800 

700 

600 

500 

400 

300 

200 

100 

- 
1 2 3 4 5 6 7 8 9     10   11   12   13   14   15   16   17   18   19   20   21   22   23   24 

Time (hours) 

E
le

c
tr

ic
it
y
 c

o
n
s
u
m

p
ti
o
n
 (

k
W

) 
E

le
c
tr

ic
it
y
 c

o
n
s
u
m

p
ti
o
n
 (

k
W

) 



88  

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 40. Total community daily average consumption for winter in Xewkija. 

 

 
5.3. The ALPG model 

 

 

The model allows study of the impact of emerging technologies such as photovoltaics, 

electric vehicles, and their combination. As a result, charts in accordance with 

technologies installed and season were plotted in this section. Due to the high amount of 

generated data for the one-minute resolution, one dwelling within the household type with 

the greatest number of dwellings inside the community, i.e. the ‘family dual worker’, is 

studied in more detail. However, every generated profile even for the same household 

can be different due to the stochastic nature of the model. 

In order to facilitate the analysis, each category was plotted using the same scale. The 

plotted categories are household consumption, PV production, and the solar irradiance 

level. The PV production is shown, for households with PV installed, while the solar 

irradiance level was plotted for households without PV, to indicate the days throughout 

the week simulation period. This period is the same week according to the season 

considered. 

First of all, the household consumption without any low carbon technology installed was 

simulated. The results are shown in Figure 41 and 42. As can be noticed, both profiles 

present a very different demand profile due to the stochastic nature of the model. In 

general, the spikes represent usage periods of the appliances. The size of the spikes is 

determined by the cumulated consumption of the operating appliances, thereby the 
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highest ones are generated by high-consumption appliances such as the electric kettle, the 

iron, or the induction stove together with other appliances characterised by lower 

consumption rates. As shown in the figures, the consumption profile is always over zero 

due to the appliances left in stand-by and ever-operating appliances such as the 

refrigerator. 

Focusing on the profile curve, the first daily variation indicates that the occupants wake 

up in the morning, they use some appliances such as the microwave and/or the TV and 

leave the dwelling to work or school. Then, they return in the early evening and are awake 

until midnight making use various included appliances. Nevertheless, appliances are used 

during the day, before the workers arrive, as children are active indoors. 

 

 

 

 

Figure 41. Family dual worker one-week consumption in winter. 
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Figure 42. Family dual worker one-week consumption in summer. 

 

 
In the second simulation, every household was assumed to own an EV which is charged 

at home. This load, as shown in Figures 43 and 44, is usually visible during the evening 

when the employed persons return from work and plug the electric vehicle. Therefore, as 

the figures show, after the sunset the household consumption shows a sustained increase 

during the charging period. This leads into an increase of the peak demand. Although 

both profiles are different, this emerging technology is not affected by the seasonal effect 

as the EV’s load depends on its usage pattern and its characteristics such as the capacity, 

and the power rating. 

 
 

 

Figure 43. Family dual worker one-week consumption with EV in winter. 
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Figure 44. Family dual worker one-week consumption with EV in summer. 

 

 
In Figures 45 and 46, the family dual worker household has a PV system installed. This 

should reduce the demand pattern due to PV power production. However, as no battery 

storage system was installed due to the high investment that it requires, the PV power 

production only affected during the exact period of generation. Figure 45 shows this 

feature, where during the production intervals the household consumption level is 

minimum and when the PV stops producing the household consumption increases rapidly. 

In the case of Figure 46, in spite of the higher PV production rates, the household 

consumption is seen to pick up before the end of the PV production. This reflects the 

longer hours of PV production which extend to late afternoon. 

 

 

 

 
Figure 45. Family dual worker one-week consumption with PV in winter. 
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Figure 46. Family dual worker one-week consumption with PV in summer. 

 

 
Finally, both EV and PV technologies were installed within the household. The impact of 

these loads on the dwelling consumption profile, as discussed above, is opposite. The EV, 

while operating, would increase the consumption whereas the PV, while producing, 

would decrease the consumption. Figures 47 and 48 show this scenario for winter, and 

summer seasons, respectively. In both Figures the effect of these two technologies, as 

discussed above, can be noticed. Although these technologies have the opposite effect in 

the consumption profile, Figures show that these loads are not distributed in the same 

time periods throughout the day. Therefore, the increase of the peak demand due to EV’s 

load will still be a serious issue. Figure 47 clearly shows that the EV is not charged on 

all the days due to short working distances in Malta. 
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Figure 47. Family dual worker one-week consumption with PV and EV in winter. 
 

 

Figure 48. Family dual worker one-week consumption with PV and EV in summer. 

 

 
5.4. Comparison between models 

 

 
Both models are now compared keeping in mind the different usage pattern in use. The 

most striking difference is the output time granularity. The ALPG model profiles 

portray significantly more detail as the model includes a higher time resolution, hence 

appliances that are typically on for a short time but consume considerable power such as 

the electric kettle are represented. The one-hour resolution of the EDPG model masks 

such activity. 

On the one hand, the EDPG’s ‘single worker’ load profile shown in Figure 49 is 

determined by the occupant’s working schedule. As the profile shows, the wake-up 

time 
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is between 6:00 and 8:00 am, when the occupant cooks and leaves to work. Then, the 

occupant returns from work at around 18:00 and uses different appliances for cooking, 

washing, or entertainment. The profile is highly affected by the electrical water heater 

and the dehumidifier, as discussed above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49. Single worker EDPG profile for winter. 

 

 
On the other hand, ALPG’s ‘single worker’ load profile, shown in Figure 50, presents a 

contrasting profile as the consumption varies principally during the last part of the day. 

Thus, the occupant leaves the dwelling after probably cooking due to the variations in 

the consumption pattern during the morning. Once the occupant returns from work, this 

is when the appliances such as the vacuum cleaner, the induction stove, or the 

microwave oven are used. Lighting units are used at the end of the day, from around 

6:00 pm until around 11:00 pm, when the inhabitant goes to bed. 
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Figure 50. Single worker ALPG profile for winter. 

 

 
ALPG’s output load profile presented higher peak power due to the power ratings of the 

included appliances. In comparison, the EDPG model uses an hourly resolution hence its 

consumption rates are average values over this period. Nevertheless, the minimum 

demand of both profiles is slightly lower than 200 W which means that the refrigerator 

and freezer included in EDPG present similar loads compared to the fridge and the small 

fridge included in ALPG model. 

Comparing Figures 49 and 51 the seasonal variations in the EDPG model profiles can be 

noticed. Table 40 presents the assumed lighting usage pattern for winter and summer 

seasons. The profiles’ hourly consumption rates change during the intervals where the 

lighting usage pattern does not match due to season. Therefore, an increase in the 

household consumption in accordance with the number of bulbs installed in the dwelling 

and the bulb power rating occurs for summer, compared with winter, from midnight to 

1:00 am, whereas from 6:00 to 8:00 am and in the evening the winter consumption is 

higher. 
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Table 40. Non-pensioner households lighting usage. 
 

Time Lighting 

Winter Summer 

00:00 - 01:00 
 on 

01:00 - 02:00   

02:00 - 03:00   

03:00 - 04:00   

04:00 - 05:00   

05:00 - 06:00   

06:00 - 07:00 on  

07:00 - 08:00 on  

08:00 - 09:00   

09:00 - 10:00   

10:00 - 11:00   

11:00 - 12:00   

12:00 - 13:00   

13:00 - 14:00   

14:00 - 15:00   

15:00 - 16:00   

16:00 - 17:00   

17:00 - 18:00   

18:00 - 19:00 on  

19:00 - 20:00 on  

20:00 - 21:00 on on 

21:00 - 22:00 on on 

22:00 - 23:00 on on 

23:00 - 24:00 on on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Single worker EDPG profile for summer. 
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The summer’s ALPG model output shown in Figure 52 is slightly different from the 

winter’s one. Ventilation is installed within the dwelling, therefore its load is included 

during this season. However, the active occupancy period in the evening is longer, 

although the bedtimes are similar. 

 

 

 

Figure 52. Single worker ALPG profile for summer. 

 

 
The lighting usage pattern differs for the two models. The ALPG model also includes a 

ventilation load for summer. However, both profiles are lightly affected by the variations 

in lighting usage and, moreover in the ALPG case, due to the ventilation load. These 

variations will be even less significant as the greener lighting technologies are becoming 

more popular. 

 

 
5.5. Summary 

 

 

This chapter presented the results obtained throughout the dissertation, which are 

generated by the EDPG and ALPG models. The first model was used to discuss the 

contrast between different zones and lighting technologies, whereas the second was 

simulated to study the effect of PV and EV technologies on the dwelling load profile. At 

the end, a comparison between the output of these models was discussed. 
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Chapter 6: Conclusions and Recommendations 

 

Chapter 6 outlines the summary conclusions based on the outcomes of the main results in 

accordance with the aim and objectives of the dissertation. It will also include some 

observation and recommendations towards future research. 

 

 
6.1. Conclusions 

 

 
Chapter 4 presented the results generated by EDPG and ALPG models. The results mainly 

discussed the installation of greener technologies and the difference between locality 

sizes regarding the electricity load consumption. 

 

 
6.1.1. Locality consumption variations 

 

 

The generated load profiles representing the selected zones were characterised by the 

same appliance’s usage pattern according to household type. Therefore, the number of 

households within each type together with their total appliances’ consumption profile 

have influenced the generated profile. 

As a conclusion, the average dwelling load profile within the studied location was 

principally shared between three different time periods due to high active occupancy 

levels and high-consumption time shiftable appliances. Therefore, in order to equally 

share the load throughout the day, the controllable electronic devices operating times 

should be set during unoccupancy or non-active occupancy times, as the occupants 

schedules cannot be changed. This would reduce the peak demand hence the risk of 

overloads which leads into an increase in the lifetime of the electric equipment that is 

within the network. 



99  

6.1.2. Renewable technologies 

 

 

Simulations considering PV and EV technologies were carried out using the ALPG 

model. The PV power production was driven by the available outdoors solar irradiance 

level, hence influenced and therefore by the household’s orientation and the season. The 

net consumption levels were seen to be at the minimum level during the PV generation 

periods as shown in Figure 53. 

 

 

 

 
Figure 53. Household profile with installed PV technology. 

 

 
However, this technology only generates power under sufficient irradiance levels, leading 

to a mismatch between the generated power and the household consumption. The 

coupling of this technology with battery storage systems is highly recommended as the 

energy can be stored for self-consumptions later in the day. The use of batteries presents 

the ability of reducing the peak loads on the power station after sunset, while at the same 

time support the longevity of battery lifetime, because they would undergo the expected 

cycling of charge/discharge periods. Furthermore, it would reduce the reverse power flow 

during high PV power injection and low demand periods. 

On the other hand, the EV load increases the load on the power station, because it usually 

occurs in the evening. Normally, the charging period during the weekdays will be once 

the employed occupant returns from work as shown in Figure 54. Notwithstanding, if the 

grid introduce night-time tariffs, then charging of EV can occur at night when the 
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electricity tariff is lower. This is turn favours a more efficient power station operation, 

because the difference between the base load at night and the higher energy demand 

during the day levels off. Thus making the power stations operate at better overall 

efficiency. 

 

 

 

 

Figure 54. Household profile with installed EV technology. 

 

 
If battery storage systems were installed within the household’s network, as mentioned 

above, PV’s production could be used to provide the EV’s consumption reducing EV 

load, thus reducing the impact on the household load profile and the low voltage network. 

In this case, sizing of the battery system has to be carefully carried out to cater for both 

the evening load and the EV charging demand. 

 

 
6.1.3. Model comparison 

 

 

In general, higher time resolutions facilitate understanding of residential consumption 

profiles due to the relatively arbitrary use of appliances. Once can then justify the nature 

of the demands variations whereas, for the case of the longer time resolution demand, 

knowledge about the model is needed to interpret the output data. Furthermore, the EDPG 

model required a significant number of assumptions due to lack of information about 

Maltese dwellings. However, as the issue is the lack of information, this problem affects 
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every top-down model. For these cases, bottom-up models with statistical approach such 

as ALPG or CREST are more suitable. 

As a conclusion, EDPG model relies on data which might not be directly available thus 

requiring a number of assumptions. On the contrary, ALPG model requires less data as a 

statistical approach is included. Moreover, its output resolution facilitates the generated 

profile interpretation, making it more suitable for analytical purposes. However, both 

models have their application since the former can be used for loading scenarios of the 

low voltage network while the latter allows in depth analysis of the household demand 

with different appliance combinations. 

 

 
6.2. Further studies and recommendations 

 

 
This project has shown that the selected published models have a number of limitations 

and cannot represent all the scenarios. In particular, Malta lacks availability of 

information about people’s lifestyles, population, energy consumptions trends and low 

carbon technologies. It is recommended that surveys are carried out finding answers to 

such frequently asked questions. The forthcoming National Census in 2021 should be 

able to answer some of these questions. Furthermore, it is recommended to use models 

such as CREST and Polysun to get more perspective on the impact of low carbon 

technologies and the households loading on low voltage networks. 

 

 
6.3. Limitations 

 

 

This dissertation was carried out with some difficulties due to COVID-19 pandemic and 

mandatory hospital quarantine. A number of suggestions that were first proposed could 

not be studied due to lack of time. However, the project succeeded in achieved the 

objectives proposed at the beginning in a satisfactory manner. 
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