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RESUMEN 
En nuestra sociedad, tenemos un problema muy grande que nos causa una gran cantidad 

de pérdidas tanto directa como indirectamente: la congestión del tráfico. Podemos observar 

en varios estudios datos que aportan evidencias sobre los efectos producidos.  

Para intentar dar solución a este problema tenemos tecnologías emergentes como el 5G, el 

big data, la V2I y el DRL. Con la comunicación entre la infraestructura del tráfico y los 

vehículos podemos conseguir situaciones particularizadas en cada momento.  

Previamente se había comprobado que el DRL da buenas soluciones para controlar la 

señalización de los semáforos. Buscamos conseguir integrar con DRL la señalización del 

tráfico y las recomendaciones de velocidad para los vehículos que se aproximen, en este 

caso al escenario que hemos elegido que es una intersección simple. Conseguir integrar 

ambas va a conseguir solucionar la gran mayoría de los problemas asociados, pero sobre 

este último punto no se han realizado estudios.                                                                                                                                                                 

ABSTRACT 
In our society, we have a very big problem that causes us a great deal of losses both directly and 

indirectly: traffic congestion. We can observe in several studies data that provide evidence of 

the effects produced.  

To try to provide a solution to this problem we have emerging technologies such as 5G, big data, 

V2I and DRL. With communication between traffic infrastructure and vehicles we can achieve 

particularized situations at each moment.  

DRL has previously been proven to provide good solutions for controlling traffic light signaling. 

We seek to integrate with DRL the traffic signaling and speed recommendations for approaching 

vehicles, in this case to the scenario we have chosen, which is a simple intersection. Integrating 

both will solve most of the associated problems, but no studies have been carried out on this 

last point.   
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Reinforcement learning, machine learning, Deep Reinforcement learning, Artificial 

Intelligence, V2I. 
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1. ABSTRACT 

In this project we manage to find a Deep Reinforcement Learning (DRL) system that jointly 
optimizes traffic signal control and speed advisory. A literature review of all the concepts involved 
in the final solution is going to be made. We introduce all the concepts involved in DRL in order 
to perfectly understand how it works and how we must implement it for arriving at our final 
solution. We will write a review about the current state of the art for Deep Reinforcement 
Learning in traffic control in order to understand where we start from. How this new project must 
be implemented in order to have our whole system is also going to be explained. For better 
understand how the simulations with different systems work, different scenarios are going to be 
explored and the results of this simulations are going to be explained and presented. We will 
also do an exploration between how everything works with Vehicle to Infrastructure (V2I) 
Communication and how it changes when we do not have this information. In this project, how 
the software and programs needed have been installed is also explained. 

 

2. INDEX TERMS 

Deep Reinforcement Learning, traffic control, Vehicle to Infrastructure (V2I), Flow, Sumo, RLlib. 

 
3. INTRODUCTION 

Today, in our modern society, we live trying to find the fastest way for everything [7]. In terms of 
mobility, being as quick as possible has become as important as a basic need. Despite all the 

options we have, particular cars are still the most popular. This leads us to one big problem; 
vehicles are increasing faster than the available traffic infrastructure [7]. The result: traffic 
congestion [9]. This big problem affects many aspects of our modern society such as “economic 
development, accidents, greenhouse emissions, time spent, and health issues”. [7]  

 

In this project, we will be doing a review of the current state of the art of the DRP for intelligent  traffic 
control. The system that we have developed is going to be explained, as well as the                experiments 
that we have carried out and the results and conclusion that we have obtained. In order to make 
the project as clear as possible, we are going to be explaining all the programs that have been 
used and its installation process. 

 
A long part of this project has involved all the code to make the training and the after-trained 
simulations. This code it is not included in the written part. 

 
3.1 CURRENT GLOBAL SITUATION 

According to a research carried out by Inrix (one of the biggest specialists in transport data) in 

2017, “the US emerged as the most congested developed country in the world, with drivers 

averaging 41 hours a year in peak hour traffic, at a cost of 1445 dollars a driver. [Another and bigger 

study  that was undertaken by the UK-based Centre for Economics and Business Research 
(CEBR), that analyzed the direct costs, wasted time, the fuel and the indirect effects]; congestion 

costs US, France, Germany and the UK an estimated 200 billion dollars in 2013. That’s 1,736 
dollars for each US family and over 2,000 dollars a household in the UK, France and Germany. 

Without significant action, these costs are predicted to increase almost 50 per cent to 291 billion 

dollars  by 2030. Traffic congestion costs EU member states approximately €100 billion annually, 
with  forecasts suggesting this could rise to €150 billion by 2050“[6]. Due to the global situation 
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in 2019 caused by the COVID-19, another study carried by Inrix shows that collisions dropped 

considerably in all countries in the world, but the collisions that occurred become more deadly. 
Traffic volume dropped, but vehicle speed increased and this is one of the main causes for 

accidents becoming more deadly [12]. When we consider all this data, we perfectly understand 
that we need to start making changes. This is the starting point for this project. We need to 

develop more complex and effective systems. Only this will move us to a better society where all 

the               problems considered before, derived from traffic congestion, could disappear or at least, be 
mitigated.  

Now, we can understand why it is not only a problem in terms of traffic. Signal control is basic in order to 

avoid awful situations in traffic, but also it has been shown that is very important to have an adequate 

speed. As explained before, when speaking about speed in very important not only to think about 
congestion, stress and money, but also about the catastrophic results that we can have. 

 
3.2 SOLUTIONS 

With the new Vehicle-to-Infrastructure (V2I) communication technologies we are able to  explore 
and develop intelligent traffic infrastructures that are able to adapt to the current state  of the traffic 
[9]. 

These technologies allow the exchange of information between individual vehicles and the road 
infrastructure. For making this information exchange possible we have upcoming standards such 
as IEEE 802.11p and 5G. [7] The scheme presented in Figure 1, shows everything that has been 
discussed before.  

 

All this considered, the optimization of large distribution systems with the possibility of knowing 
the situation of the current system is not that simple. One of the best solutions we can  have is 
Deep Reinforcement Learning (DRL), a tool that has been proved to be very powerful  for control 
and that “has demonstrated to have success in complex, data-rich problems”. [23] 

 
DRL has proved to have great potential for large scale and dynamic systems. Generally speaking, 
in DRL, a deep neural network, (DQN), “is used to accelerate the learning process and also reduce 
the memory  required to store the parameters of the model.This makes DRL perfect for mobile 

devices with  limited resources. Deep Reinforcement Learning is promising to address mobile 
service and network management and control problems in complex, dense, and heterogeneous 
mobile 5G environments”. [24] 
 

 

Figure 1: V2I communication [9] 
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4. OBJECTIVE 

The main objective of this project is to enable                      the joint optimization of traffic signaling control 
and speed advisory. Different experiments are going to be  carried out in order to compare the 
results when we have V2I communication and no V2I communication and when is only the traffic 
signaling what we are going to control and we          have both, the traffic signaling and the speed 

advisory part. 

This is the goal of the project, but not only that is going to be set as our objective. We are starting 
to implement DRL from a basic base. With this project I set as an objective to have the ability, in 
the end, of understanding how everything is needed to be set up in order to develop a complete 
DRL system that we can optimize. Also, is very important that by the end of the project, I could 
have the knowledge and the ability of analyzing the results and interpreting them, in order to 
understand what is going on, and how it could be improved. I would also add to the global 

objective, having the ability, in the end, of coding everything that needs to be code for a whole 
experiment. In addition, understand and set up the requirements for each experiment. 

 

 
5.  STATE OF THE ART 

5.1 REINFORCEMENT LEARNING 

“Reinforcement Learning (RL) dates to the early days of cybernetics and work statistics, 
psychology, neuroscience, and computer science” [30]. Thanks to RL big steps in Artifial 
Intelligence has been made. [31] 

When we talk about Reinforcement Learning, we are talking about an agent (that could be for 
example and autonomous car) that learns how to achieve a specific goal by dynamically 
interacting with its environment [11]. “RL is an AI subdomain allowing agent to fulfill a given goal 
while maximizing a numerical reward signal”. [31] 

“The agent learns how  to map situations to actions in order to maximize that numerical reward 
signal”. [11] Our chosen agent has a set of possible actions, and it discovers those that will lead 
him to the greatest reward at each setting by trying  them out. We can say that RL is very useful 
in situations where data arrives in a continuous way, and we need our agent to be capable of 

adapt himself to the environment in real time [11]. 

 

 

 

Figure 2: RL Scheme [22] 
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The problems in which “RL algorithms are applied can be viewed as Markov decision processes 
(MDPs)” [25]. “An MDP can be expressed as a four tuple S, A, R, T with the following 
meanings”:[25] 

 
➢ S: means the “possible state space. s is a specific state (s є  S)” [15]. 
➢ A: means the “possible action space. a is an action (a є A)” [15]. 

➢ R: means the “reward space. Rs,a means the reward in taking action a at state s” [15]. 
➢ T:means the “transmission function space among all states, which means the 

probability of the transmission tfrom one state to another. In a deterministic model, T is usually 
omitted”. [15] 

 
In an environment, the agent receives “st є S and chooses an action at. After taking the chosen 
action, the environment will generate st+1 є S based on the transition function T” [25]. Once we 
have defined all the parameters of MDP we need to determine the optimal policy π for every 

state, “maximizing the expected cumulative discounted reward.If some actions lead to high 
reward” [26] the possibility of taking these actions will increase, and vice versa. The goal  of RL 
algorithms is maximizing the cumulative discounted reward. The cumulative discounted  reward 
Rt is defined:  

 

 [26] 

 
“where π: S → A is the policy that determines the action that the agent takes at the present state 

st , and R(st,π(st)) is the corresponding reward to be obtained immediately by taking the action     
at = π(st)”. [26] 

“The following figure is an example of MDP. It consists of several states (s0, s1, s2, s3) and due to 
actions (A0, A1, A2) a state is transitioned to the next state. Also, a reward value (R1, R2, R3) is  
marked for each state”. [13] 

 
Figure 3: MDP scheme [13] 
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Components of Reinforcement Learning 

“Most of the components in a Reinforcement Learning model are also similar to MDP. But there 

are some small differences too. 

 
➢ Agent: An actor or an object which it is placed inside the environment. This agent 

receives infor mation from the environment and executes actions on the environment.  

 
➢ Environment: A place where the agent lives. Generate states and where actions are 

executed by the agent. 

 
➢ State: A specific situation which returns from the environment.   

 
 

➢ Policy:  Is the behavior of an agent at a given time. A policy is a methodology which the agent       

uses to determine the next best action based on the state. It is a map of states and actions which 
can execute when in those states. The policy is the core component in a reinforcement learning 
scenario. Policy can be simply a small function like a lookup table or a complicated structure 
like a deep neural network.” [13]  

 
“In general, the policy is a mapping from states to a probability distribution over actions”: 

                                    

       [3] 

 
➢ “Reward: Immediate feedback which is given by the environment for the executed   action 

in the last step. The Agent’s main goal is to maximize the total reward at a long run. Also, the 
reward informs the agent whether the action is good or bad. Values of the rewards depend on the 
scenario. 
 

  Depends on reward values, policy should identify whether the action is good  or bad and it will                 
  try to avoid executing bad actions in the future.  

 
➢ Value: Value is like reward. “But value is the long-term feedback. It is the total reward 
(accumulated) an agent can gain from that specific state to end. According to the experts, values 
are used to select the best action for each step, not the reward. But without a reward, there is no 
value”. [13] 
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Challenges in RL: 
 

This project does not focus on RL but as part of it we are going to do a brief aportation, listing the 
main challenges that we can find in Reinforcement Learning.  

“ 

➢ The sample efficiency problem. 
➢ The stability of training. 

➢ The interference problem.  
➢ The exploration problems.  

➢ The meta-learning and representation learning for the generality of reinforcement learning 
methods across tasks. 

➢ Multi-agent reinforcement learning with other agents as part of the environment. 
➢ Sim-to-real transfer for bridging the gaps between simulated environments and the real 

world. 

➢  Large-scale reinforcement learning with parallel training frameworks to shorten the wall-
clock time for training. “[29] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Relation between RL components [25] 
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5.2 DEEP REINFORCEMENT LEARNING 

Although the integration of Deep Learning started in the 90s, it has been in the last recent past 
years when it has achieved its best. It has benefitted from “big data, powerful computation, new 
algorithmic techniques, mature software packages and architectures, and strong financial 

support. We have been witnessing the renaissance of reinforcement learning especially, the 
combination of deep neural networks and reinforcement learning, i.e., deep reinforcement 
learning (deep RL)”. [32] 

“The first, kickstarting the revolution in DRL, was the development of an algorithm that could learn 

to play a range of Atari 2600 video games at a superhuman level, directly from image pixels” [43]. 
Providing solutions for the instability of function approximation techniques in RL. [33]. 

“One of the driving forces behind DRL is the vision of creating systems that are capable of learning 
how to adapt in the real world” [33]. DRL is here to increase the number of physical tasks that 
can be automated by learning. [33] 

The DRL technique adds deep neural networks “to approximate, given a state, the different Q-
values  for each action. This allows the model to map between a state and the best possible action 
without needing to store all possible combinations”: [17] 
 

Figure 5: DRL scheme [17] 

 
“Deep reinforcement learning is a category of machine learning and artificial intelligence 
where intelligent machines can learn from their actions like the way humans learn from 
experience. In this type of machine learning an agent is rewarded based on their actions. Actions 
that get them to the target outcome are rewarded (reinforced). T hrough a series of trial and error, 
a machine keeps learning, making this technology ideal for   dynamic environments that keep 

changing. 

  

 The "deep" portion of reinforcement learning refers to multiple (deep) layers of artificial neural     

networks that replicate the structure of a human brain.” [4] 

 
A deep neural network or multilayer perceptron (MLP) consists in mapping a set of input values 

to output values with a mathematical function formed by composing many simpler functions at 
each layer. A convolutional neural network (CNN) is a feedforward deep neural network, with 
convolutional layers, pooling layers and fully connected layers [41].  
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CNNs are designed to process data with multiple arrays, e.g., colour image, language, audio 
spectrogram, and video, benefit from the properties of such signals: local connections, shared 
weights, pooling and the use of many layers, and are inspired by simple cells and complex cells 
in visual neuroscience [41].  

 

 
5.2.1 Algorithms 

To find the optimal policy π* that achieves the maximum cumulative reward, RL algorithms 

involve estimating the following value functions. There are two main approaches to solving RL 

problems: methods based on value functions and methods based on policy search [3]. “There is 

also a hybrid actor-critic approach that employs both value functions and policy search”. [3] 

 
 

Value based methods 

“The value-based algorithms aim to build a value function, which lets us define a policy”. [10] 

Value function methods are based on estimating the value (expected return) of being in each 

state [34].  

“The optimal action-value function with the environment ε could be expressed using Bellman's 

equation:“ [34] 

                                                                 [34] 

 

The following list includes the value-based algorithms that we can find and use in DRL: 

- Q-learning 
- Fitted Q-learning 
- Deep Q-networks 

- Double DQN 
- Dueling network architecture 
- Distributional DQN 
- Multi-step learning 
- Combination of all DQN improvements and variants of DQN 

 

“When we have DQN model, that have been used for solving a very large number of problems, 
a neural network is used as a non-linear approximator to estimate the action-value function. To 
train the neural network, TD error is considered as the loss. The loss function is expressed as”: 
[34] 

 

[34] 
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Policy gradient methods 

“These methods optimize a performance objective (typically the expected cumulative reward) by 

finding a good policy (e.g., a neural network parameterized policy) thanks to variants of 
stochastic gradient ascent with respect to the policy parameters.  

 

The basic idea behind these algorithms is to adjust the parameters θ of the policy in the direction 

of the performance gradient ∇θJ(πθ). The fundamental result underlying these algorithms is the 

policy gradient theorem” [35]: 

[35] 
 

 
The following ones are the most used policy gradient methods [10]. 

- Natural-policy gradient 

- Trust region optimization 

- Combining policy gradient and Q-learning 

 

 

 
Actor-Critic methods 

“Actor-critic methods are the natural extension of the idea of reinforcement comparison methods 
to the full reinforcement learning problem. Typically, the critic is a state-value function. After each 
action selection, the critic evaluates the new state to determine whether things have gone better 
or worse than expected. That evaluation is the TD error: 

 

 

 
[36] 

 
where  is the current value function implemented by the critic. This TD error can be used to 
evaluate the action just selected, the action  taken in state . If the TD error is positive, it 
suggests that the tendency to select  should be strengthened for the future, whereas if the TD 
error is negative, it suggests the tendency should be weakened. Suppose actions are generated 
by the Gibbs softmax method” [36]. 
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5.3 DEEP REINFORCEMENT LEARNING AND TRAFFIC 

In this section we are going to make a review of the different software and programs that are 

being currently used for training environments in traffic control situation. This section will only 
briefly describe the software that we need to implement, further in this project, they will be 
explained more in detail. 

The general idea that we need to keep in mind is that, when we want to optimize a particular 
traffic situation, we need to have very clear, what our network is going to be (e.g., a single 
intersection), how our environment looks like (agent, action space…), which simulator for traffic 

are we going to use (e.g., SUMO), which framework is going to support our simulator (e.g., FLOW) 
and which interface are we going to use. 

 
5.3.1 Traffic research 

Recent results demonstrate that deep learning and deep reinforcement learning are a promising 

approach to traffic problems [23]. “A deep learning architecture   was used to predict traffic flows, 

demonstrating success even during highly nonlinear special events; to learn features to represent 

states involving both space and time” [23]. Our work aims to further this by providing a 

framework for traffic experiments that uses reinforcement learning for control. 

 
5.3.2 Traffic Simulators 

 

“Traffic microsimulators include Quadstone Paramics, VISSIM, AIMSUN, MATSIM, and SUMO. 
The first three are closed-source commercial software, whereas the latter two are open-source 
software. Each of these tools are capable of large-scale traffic microsimulation and can handle  
variety of policies and control strategies. Each tool offers an Application Programming Interface 
(API) which permits overriding or extending the default models such as car following, lane 
changing, route choice, etc. 

 
[We choose to integrate SUMO], an open-source, extensible, microscopic simulator that can 
simulate large road networks. SUMO discretizes time and progresses the simulation for a user-
specified timestep; furthermore, because SUMO is microscopic, individual vehicles are controlled 

by car following models functions of the vehicle’s headway” [23].[37] 

Figure 6: Actor-Critic Scheme [36] 
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“SUMO also includes a Python API called TraCI (TRAffic Control Interface), from which the user can 
retrieve information about the vehicles’ current states and issue precise commands to set the vehicles’ 
velocities, positions, and lanes. Using this interface, we can interface SUMO with RL libraries, read 
out state information, issue actions, define our own car following models, etc” [23].  

 

 

 

 

 

Figure 7: Simulation Scheme using SUMO [23] 
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5.3.3 Architecture of our experiments 

 
The scenario 
 

We need to specify the characteristics of our network. All the attributes of the network must be 
described in the network file. We will talk later about the scenario we have chosen for our 
experiments. 

 

The environment 
 
Encodes the MDP, including functions to step through the simulation, retrieve the state, sample 
and apply actions, compute the reward, and reset the simulation. “The environment is  updated 
at each time step of the simulation and, importantly, stores each vehicle’s state (e.g., position 

and velocity).” [23] 

 
We will    talk later about the shape of our environment and the characteristic it is going to have for 
the  different situations that we are going to consider. 

 

 The algorithm chosen 
 

We will discuss later about the different algorithms that we can use. Once we have  defined our 
network and our environment it is time to train it with a suitable algorithm. 

 
5.3.4 Gym Library 

We have also developed our environments in terms of Gym, a toolkit for developing and 
comparing reinforcement learning algorithms. “It supports teaching agents everything from 

walking to  playing games like pong”. [21] 
 
The Gym API used in reinforcement learning defines a hard boundary between the agent and  the 
environment [18]. “In particular, the agent only interacts with the environment by taking actions  
and receiving observations. The environment implements a function step that advances the 
state given an action by the agent; step defines the transition model of the environment” [18]. 

 

Our environment must be written in terms of Gym Open AI. 
 

 
                     5.3.5 Ray 

 
“Ray provides a simple, universal API for building distributed applications. 
 

Ray accomplishes this mission by: 
1. Providing simple primitives for building and running distributed applications. 
2. Enabling end users to parallelize single machine code, with little to zero code changes. 
3. Including a large ecosystem of applications, libraries, and tools on top of the core Ray to    
enable complex applications. 

 

Ray Core provides the simple primitives for application building. On top of Ray Core are several 
libraries for solving problems in machine learning: RLlib” [20]. 
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                  5.3.6 RLlib 

 
“RLlib is an open-source library for reinforcement learning that offers both high scalability and a 
unified API for a variety of applications. RLlib natively supports TensorFlow, TensorFlow Eager, and 
PyTorch, but most of its internals are framework agnostic. 
 

  
Policies are a core concept in RLlib. Policies are Python classes that define how an agent acts in 
an environment [20]. Rollout workers query the policy to determine agent actions. In a gym 
environment, there is a single agent and policy. In vector envs, policy inference is for multiple 
agents at once, and in mulit-agent, there may be multiple policies, each controlling one or more 

agents: Ray provides a simple, universal API for building distributed applications”. [20] 

 
 

 

 
Figure 9: Policy concept in Ray [20] 

 

 
 
“At a high level, RLlib provides a trainer class which holds a policy for environment inter- action. 
Through the trainer interface, the policy can be trained, checkpointed, or an action computed” 
[20]. 

 

 

 

 

Figure 10: Rllib Trainer Class [20] 

Figure 8: RLlib: Scalable Reinforcement Learning [20] 
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In the following table we present a list of the available algorithms that we can find on RLlib. If  we 
visit the Ray page, we can see all the parameters configuration that each of them has. The  ones 
used for this project will be described in detail in this paper later. 

 

 
Algorithm Discrete actions Continuous 

actions 
Multi-Agent 

A2C, A3C Yes Yes Yes 

ARS Yes Yes No 

BC Yes Yes Yes 

CQL No Yes No 

ES Yes Yes No 

DPDG, TD3 No Yes Yes 

APEX-DPDG No Yes Yes 

DREAMER No Yes No 

DQN, Rainbow Yes No Yes 

APEX-DQN Yes No Yes 

IMPALA Yes Yes Yes 

MAML No Yes No 

Marwil Yes Yes Yes 

MBMPO No Yes No 

PG Yes Yes Yes 

PPO, APPO Yes No Yes 

R2D2 Yes Yes Yes 

SAC Yes No Yes 

SlateQ Yes No No 

LinUCB,LinTS Yes No Yes 

 

AlphaZero Yes No No 

 
Table 1: RLlib algorithms 
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5.3.7 Flow 

In order to complete our set up for our simulator, we need a traffic control benchmarking 

framework that supports SUMO. In this case, we have use FLOW, “it provides a suite of traffic 
control scenarios (benchmarks), tools for designing custom traffic scenarios, and integration with 

deep reinforcement learning and traffic micro simulation libraries”. [19].

Figure 11: Flow + Sumo + RLlib Scheme [19] 
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5.3.8 Baselines 

There is another framework that can be used with reinforcement learning. 

 
“OpenAI Baselines is a set of high-quality implementations of reinforcement learning algorithms. 

 

These algorithms will make it easier for the research community to replicate, refine, and identify 
new ideas, and will create good baselines to build research on top. Our DQN implementation and 

its variants are roughly on par with the scores in published papers. We expect they will be used 
as a base around which new ideas can be added, and as a tool for comparing a new approach 
against existing ones.” [8] 

Figure 12: Flow + SUMO + Baselines Scheme [19] 
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5.3.9 Python 

In order to develop our system in terms of coding, we are going to use python. Python is going to 
allow us to integrate everything in a very efficient way. Over the recent years it has demonstrated  
to be perfect suitable for reinforcement learning applications [44]. With python we are going to 
be able to write many complex things in very simple ways. Many base documents that we are  

going to use as at a starting point are included in python. 

 
5.3.10 Anaconda 

“Anaconda is created by Continuum Analytics, and it is a Python distribution that comes 

preinstalled with lots of useful python libraries for data science. 
 
Anaconda is popular because it brings many of the tools used in data science and machine 
learning with just one install, so it’s great for having short and simple setup. 
 

Like Virtualenv, Anaconda also uses the concept of creating environments so as to isolate 
different libraries and versions. Anaconda also introduces its own package manager, called 
conda, from where you can install libraries. 

 

Additionally, Anaconda still has the useful interaction with pip that allows you to install any 
additional libraries which are not available in the Anaconda package manager.” [45] [37] 
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6.  SET UP FOR OUR EXPERIMENTS 
 

6.1 INTRODUCTION 

Now that we have presented the objective of this article and that we have done a research into  the 
current situation of reinforcement learning, deep reinforcement learning and the possibilities that 
we have in order to train our experiments, we are going to explain how we have  developed 
our simulator and the set up that has been done before the obtaining our results. 

 
In this project we have carried out different experiments that have been compared between  them 
after. 
 
In this article we are going to work with a small traffic system. We are going to  simulate a single 
intersection. 

 

We are going to introduce during this section the state space, action space and reward for all 

the cases that we are going to consider. We will also explain the algorithm  chosen for the control 

of the traffic environment. 

 

As it has been discussed before, we are going to present our network, our environment and  the 

framework used to train them. 

 
6.2  NETWORK 

For completing this project, we have chosen to train our environment using a single intersection 
as our network. 

 
Traffic signal control in road networks, is an important practical problem due to substantially 
increasing delay and fuel cost caused by traffic congestion. 
 
We consider a signalized intersection with a set of entry and exit approaches, in which each 
approach has a fixed length and a set of lanes.  

 

The following figure shows the popular phase schemes, all of them are compatible streams.  

 

 

 

 

 

Figure 13: Phase Scheme (1) [15] 
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In our experiments, our network as it has been said before, has three roads for each lane. 
 

Each approaching part of the intersection is managed by a traffic light, and each traffic light has 
three phases (green, ambar  and red). We have coded our network in terms of flow, using the 
core params of it for the initial configuration and for the params of the traffic lights. So, once we 
have installed flow, we can make use of this params just by importing them from the appropriate 
folder. 

 
It needs to be in terms of flow because as we have said before, it is the framework that supports 
SUMO, what we are using. If we start from the already defined class in flow 
TrafficLightGridNetwork, we can then create  our network with the specific attributes that we want 
to use. All the connections that encode  how the network is made are also already defined. The 

important thing about the code used to build the network is the python class that encodes 
properly the structure of the network, and the specific parameters that we want to use. In our 
case we have decided to work with inflows, so this is also described with all its attributes. The 
value of the parameters used in the network are described in Table 2. 
 
Basically, what we are going to define inside the TrafficLightGridNetwork class is the initialization 

of the network, defining the routing table, the inflows at the outer edges of the grid, the vehicles 
and its params, the specify routes and connections. Also, we are going to code everything about 
the inflows, the veh_type, the depart_lane, the depart_speed, the step_lenght.  
 
 

Figure 14: Phase Scheme (2) [2] 
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Figure 15: Single intersection in Sumo 
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6.3  ENVIRONMENT 

In this section we are going to describe how the environment has been coded. This part is very 
important because here we need to define the state space, the action space and the reward.   It is 
very important to have in mind, that we have to code our environment in terms of flow  and gym 
so it can be simulated with our traffic micro simulator SUMO and it can be trained  with a RLlib 
algorithm. 

 

First of all, and as it is described in the task proposed for this project, we need to compare the 
obtained results of only traffic signal control with and without V2I communication and also  these 

results need to be compared whit the proper system developed that jointly optimizes traffic  signal 
control and speed advisory. 
For this reason, we have to set up four different classes as our environments that in general 
terms are  going to be equal but when we will talk about the action and space state, they are going 
to be  different. 

 

To sum up, this is how the project is going to be structured: 

 
 Only traffic signal control: 

 -With  V2I 
 -Without V2I  

 

 Joined optimization of traffic signaling control and speed advisory: 
 -With V2I 
 -Without V2I 
 

It is important to add, that talking about the code developed other python libraries (e.g numpy) 

have been used in order to complete correctly everything. 
 
In the end, as at it has been explained with the objective of the project, we want to improve  the 
traffic state situation providing the traffic infrastructure with information of the vehicles. The other 
goal is to allow the traffic infrastructure to provide the drivers information about the speed they 
should have in order to decrease the traffic congestion. 

 
In terms of coding, as we have said, we are going to code two different classes: 
SolitaryTrafficLightGridEnv and CommuicativeTrafficLightGridEnv. These two classes, part from 
BaseTrafficLightGridEnv that parts from the general Env class of flow. We need to import this 
before start coding the new ones. The first one, is going to be the one for no V2I and the other 
one is going to be the one with V2I. In the last experiments the action_space and the rl method 

are going to be modified. This changes are common to both classes so they will be applied to 
the common part of the code, set in the class BaseTrafficLightGridEnv. 
  
Before starting to define the classes and their variants, we are going to define the parts that are 
common in terms of coding. We need to import first of all, everything that we are going to use 
from gym.spaces. After, we need to import everything we need from flow. We are also going to 

import sumolib. 

 
Once everything is imported, we are going to define the TrafficPhaseOptions, the additional env 
params, the additional communicative env params and the solitary env params. Then, we can 

start with our classes. 

 
Then, we define the BaseTrafficLightGridEnv, our classes are going to be based on this one,  
here we defined general items. We need to initialize everything, define the action space here 
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depending which situation we are considering, we also need to define the apply_rl_actions, 
again, depending of which situation we are considering. Another point to define here is the 
compute_reward, the step and the restart_simulation. Before the particular classes, we defined 
some aspects that are copied from GreenWaveEnv. We define how to record the velocities and 

edges at each time step, how to know the smallest distance from the current vehicle´s position 
to any of the intersections, how to know the distance from the vehicle´s current position to the 
position of the node it is heading toward, how to know the ids of the vehicles in the network by 
their distance to the intersection, how to convert the string edge to a number and how to know 
the veh_id of the k closest vehicles to an intersection for each edge. 

 
6.3.1 State Space 

 
The state space of an RL agent defines the knowledge on which it can base its decisions [5].  For 
the thesis we have chosen two different state spaces. One considering the V2I communication 
and another one without V2I communication. 

 
No V2I communication 
In this case, our agent has no information about all the vehicles in the road. States are limited  to 
internal information of the traffic lights. In order to create a state space when no V2I is existing  

that allows us to simulate both only traffic signaling control and the joined optimization of 
traffic signal control and speed advisory. “The agent features the time since the last phase change 
and a trace for every phase, which increases while the respective phase is activated and slowly 
decays while it is not”. [5] 
 

When being in the situation of not having any information related to the vehicles, the drivers and 

the state of the network, the observation space used for these situations is quite smaller. The 

information that we have here is limited and only regarding the traffic lights situation. 

We are going to have the following information available: 

- Time passed since phase was last change.  

- Traces of all phases  

- Current phase  

- Current         period 
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Figure 16: State Space No V2I 

 

 
 
In this case the agent is only allowed to know what is the current phase and the time that has 
passed since the last phase. We do not know anything about the vehicles involved. 
 
We cannot forget the compatible streams that we have in the road in order to have non-conflicting 
situations. The defined class for this case is called SolitaryTrafficLightGridEnv .
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 V2I communication 

The agent receives detailed information about the state of the traffic network. This results in  our 

agent having more detailed information about everything happening around him. 

 
This leads us to a more complex system but a better one. In these systems where much 
information about the vehicle can be known, for example, we can note the distance to the 
intersection of the vehicles approaching the intersection. This leads as, as I have said, to better 
and more complex systems that are going to be able to adapt the signal control in order to 

have better situations for all the drivers. This is how the congestion problem is going to be 
solved and how everything that is generated from this congestion is going to get better. Again, 
the state space considering V2I communication is going to be the same for the only traffic 
control signal case and for the develop of the joined optimization of traffic signal control and 
speed advisory. 

In this case, the amount of information that we have is considerably bigger, so our agent is going  to 
be in an environment where he is going to have many information about what surrounds him. 

 

  In this case, the information that the agent is going to have is the following: 

- Time passed since phase was last change.  

- Traces of all phases 

- Current phase  

- Current  period 

- Velocities of observed phases  

- Distance to intersection of observed vehicles  

- Edges  of observed vehicles  

- Lanes of observed vehicles  

- Vehicle density for all edges 

 

All this considered we can say that the more information the agent has, the better results we 

are going to obtained in relation to the reward that we have chosen but also the more 

resources are going to be needed. 

                                                 Figure 17: State Space V2I 
 

 
In this case, for example, the agent could know the velocity of the cars approaching the lane, the 

distance and of course the current phase and the time passed since the last phase. 
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With all this information the agent can make decisions in function of many parameters which is going 
to be very helpful. As we will see in the results, this capacity of having much information is going to 
give us better results. 

 

 
6.3.2 Action Space 

According to what we have considered theoretically, once the agent has observed the state  of 
the environment, it must choose one action from the set of all available actions [16]. For the 
experiments that we have done, we need to distinguish again between two different action 

spaces: the one that only considers the traffic light control and the other one that jointly optimizes 
the traffic signal control and gives advice about what speed vehicles should have. 
 
A traffic light needs to choose an appropriate action to well guide vehicles at the intersection  based 
on the current traffic state. And also, would have to advise of the adequate speed when talking 
about the joined system. 

 
Only traffic signaling control 

 
“The agent decides every time step which phase to show and the display duration. If the current 
phase has already been shown longer than a chosen duration (at any decision time step while a 
given phase is displayed), then the newly chosen (different) phase will be displayed  next” [5]. 

 

In this case the green phase duration is limited to a fixed time. All available phase options consist 
of only compatible streams, making the agent’s actions inherently safe. As it is set, after the green 

phase has been shown, the traffic light needs to go through an amber phase before going to red. 
“All available phase options consist of only compatible streams, making the agent’s  actions 
inherently safe” [5]. 

 

This is the first approach of the thesis; we have read many articles in relation to this part but we 
use as starting point one which results proved good behavior not only in single intersection but 
in more complex systems. From our starting point we can continue developing our new system. 

 
Joined optimization of traffic light signaling and speed advisory 

Here, we are going a little bit further. The agent in this case, is going to choose what phase  

to show and the duration of the phase, always accomplish with what is set for the minimum 
phase duration and the maximum phase duration. In addition, now, the agent is also going to 
show to all the vehicles approaching the road what speed to have. The phase and conditions  of 
the traffic lights are going to be the same as in the other case considered. 

Even though we could have pretty good options here all of them should be carefully evaluated 

as long as it does not exist as many papers talking about speed advisory as talking about traffic 
control.  

The simplest way of implementing speed advisory would be let the agent decide a max velocity 
for every approaching lane, then it would collect all the vehicles of that lane and then it would 
set each of their max-speed to that velocity. 

Other options where considered. For example, we could have an agent that could suggest every 
vehicle to accelerate, decelerate or maintain it speed. Of course, for this case we would have to 
have information about the vehicles approaching. For implementing this, our action space needs 
to have a fix number of vehicles and this is not our case. Again, if we had a fixed number of cars 
space, we could implement an agent that could suggest a particular speed for each vehicle 

approaching the lane. 
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As we have said before, the action space is the same no matter if we have V2I or not V2I for 
both defined classes. 

 
6.3.3 Reward 

We have previously defined what the reward means inside a reinforcement learning context. In 
terms of traffic control, we have a wide range of objectives that we want to manage, including  
safety, efficiency, environmental sustainability, comfort, and fairness. Rewards can be based in 

one only parameter or in a multiple-parameters batch. After have been reading many papers,  
we have come to the conclusion that in general terms, velocity of the cars is the more common 
reward for evaluating the efficiency of a network. In no V2I communication cases, the agent has 
no information about the velocity of the vehicles, so it has to be provided by doing previous 
simulations or by an external simulator. 

 

Finally, we are going to explain how all that has been explained before in this section, has been 
code. It is very important that in order to have everything prepare for training, everything needs to 
be written in terms of flow and gym. As it has been also explained, we are coding in python and 
we are using anaconda to set up the env. 

 
As we have different situations to train different codes are needed. This is out of the scope of  the 
thesis, but it is going to be briefly described. For each kind of environment, for example, no  V2I 
only traffic control and V2I traffic control, two different classes in python have been created. 
Nevertheless, both use as a base a pre-made python file for traffic grid environments. We also 
have some parameters like the traffic light phases that are defined outside of all classes because 
they are the same independently of what situation we are in. 

 
  6.4 PPO 

For training the environments and obtaining the results, we have decided to use one of the 
RLlib algorithms. In this section, we are going to explain why the reasons for choosing the 
algorithm, the parameters of the algorithm, and so modifications that can be made in order to 
speed up the stabilization of the system. 

This algorithm is included inside the policy gradient methods that directly search for an op timal 

policy. “Policy gradient is the most used approach of policy based methods, which computes an 

estimator of the agent’s policy gradient by a stochastic gradient ascent algorithm” [27]. 

 

“Proximal Policy Optimization (PPO), which perform comparably or better than state-of-the-art 
approaches while being much simpler to implement and tune. PPO has become the default 
reinforcement learning algorithm at OpenAI because of its ease of use and good performance. 

 
With supervised learning, we can easily implement the cost function, run gradient descent on it, 
and be very confident that we’ll get excellent results with relatively little hyperparameter tuning. 
 

PPO strikes a balance between ease of implementation, sample complexity, and ease of tuning, 
trying to compute an update at each step that minimizes the cost function while ensuring the 
deviation from the previous policy is relatively small.” [40] 
 
 
“PPO’s clipped objective supports multiple SGD passes over the same batch of experiences. 
RLlib’s multi-GPU optimizer pins that data in GPU memory to avoid unnecessary transfers from 
host memory, substantially improving performance over a naive implementation. PPO scales 
out using multiple workers for experience collection, and also to multiple GPUs for SGD”. [20] 
 

https://openai.com/blog/openai-baselines-ppo/#ppo
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Figure 18: PPO architecture [20] 

 
 
We also present here the PPO-specific configurations: 
 
“ 
# Adds the following updates to the (base) `Trainer` config in 
# rllib/agents/trainer.py (`COMMON_CONFIG` dict). 
DEFAULT_CONFIG = with_common_config({ 
    # Should use a critic as a baseline (otherwise don't use value baseline; 
    # required for using GAE). 

    "use_critic": True, 
    # If true, use the Generalized Advantage Estimator (GAE) 
    # with a value function, see https://arxiv.org/pdf/1506.02438.pdf. 
    "use_gae": True, 
    # The GAE (lambda) parameter. 
    "lambda": 1.0, 
    # Initial coefficient for KL divergence. 
    "kl_coeff": 0.2, 
    # Size of batches collected from each worker. 
    "rollout_fragment_length": 200, 
    # Number of timesteps collected for each SGD round. This defines the size 
    # of each SGD epoch. 
    "train_batch_size": 4000, 

    # Total SGD batch size across all devices for SGD. This defines the 
    # minibatch size within each epoch. 
    "sgd_minibatch_size": 128, 
    # Whether to shuffle sequences in the batch when training (recommended). 
    "shuffle_sequences": True, 
    # Number of SGD iterations in each outer loop (i.e., number of epochs to 
    # execute per train batch). 
    "num_sgd_iter": 30, 
    # Stepsize of SGD. 
    "lr": 5e-5, 
    # Learning rate schedule. 
    "lr_schedule": None, 
    # Coefficient of the value function loss. IMPORTANT: you must tune this if 
    # you set vf_share_layers=True inside your model's config. 

    "vf_loss_coeff": 1.0, 
    "model": { 
        # Share layers for value function. If you set this to True, it's 
        # important to tune vf_loss_coeff. 
        "vf_share_layers": False, 
    }, 
    # Coefficient of the entropy regularizer. 
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    "entropy_coeff": 0.0, 
    # Decay schedule for the entropy regularizer. 
    "entropy_coeff_schedule": None, 

    # PPO clip parameter. 
    "clip_param": 0.3, 
    # Clip param for the value function. Note that this is sensitive to the 
    # scale of the rewards. If your expected V is large, increase this. 
    "vf_clip_param": 10.0, 
    # If specified, clip the global norm of gradients by this amount. 
    "grad_clip": None, 
    # Target value for KL divergence. 
    "kl_target": 0.01, 
    # Whether to rollout "complete_episodes" or "truncate_episodes". 
    "batch_mode": "truncate_episodes", 
    # Which observation filter to apply to the observation. 
    "observation_filter": "NoFilter", 

 
    # Deprecated keys: 
    # Share layers for value function. If you set this to True, it's important 
    # to tune vf_loss_coeff. 
    # Use config.model.vf_share_layers instead. 
    "vf_share_layers": DEPRECATED_VALUE, 
})” [20] 
 
 

The important point of this section is to notice that with one algorithm we can simulate all  the 

scenarios that we are considering. 
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7. IMPROVEMENTS 

Once that we have reached this point, I would like to add to the project some improvements that 
could have been considered. In case of the jointly optimization of traffic signal control and speed 
advisory, a multi-agent system could have been developed. This system would have one agent 

as the traffic lights for traffic control and the other agent would be the own cars incorporating 
information from the current traffic state in order to tell the driver which speed would be bet ter for 
each case. However multi-agent presents some complex problems. 

 
“The first challenge is the representation problem. Specifically, the challenge is in defining the 
problem in such a way that an arbitrary number of agents can be represented without changing 
the architecture of the deep Q-Network. To solve this problem, we make a number of simplifying 
assumptions: (i) two-dimensional representation of the environment, (ii) discrete time  and space, 
and (iii) two types of agents. Because we limit ourselves to two agent types, we will refer to the 

two agent types as allies and opponents (assuming competing agents). These  assumptions 
allow us to represent the global system state as an image-like tensor, with each channel of the 
image containing agent and environment specific information” [1]. 
 
“The second challenge is multi-agent training. When multiple agents are interacting in an 
environment, their actions may directly impact the actions of other agents. To that end, agents 

must be able to reason about one another in order to act intelligently. In order to incorporate 
multi-agent training, we train one agent at a time, and keep the policies of all the other agents fixed 
during this period”. [1] 

 
We could have also chosen an algorithm directly design by us for speed up the converging of 
the system. Also, designing an algorithm would have let us use more specific parameters  that 
could adjust better to our work. 

 
 

8. INSTALLATION 

In order to get to the results and being able to start training our environments, all the software 
requirements that have been described along this project have needed to be installed.   In this 
section, we need to make clear that this year has been very complicated, due to a global  pandemic 
and going to the university has not been possible. So, with this considered, I have  worked from 
my own machine using a remote server from the University via VPN connection. 

All these problems considered, a brief description of the installation process is going to be made. 

 

Once we are connected to VPN of the university, we can connect to the server via ssh specifying 
the IP direction of where we want to connect. 
 

After this has been made, we can start installing everything in the remote server. First of all we  need 
to install conda in order to be able after, to set up the flow environment that we need for  our 
simulations. We also need to install python as long as this is going to be the programming path 

we have chosen to code our network, our environment and the training algorithm. It is very 
importat not just intalling pyhton but all the libraries that we are going to need for coding our project 
(Tensorflow, gym...). 
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Next step it is to start with the installation of Flow and SUMO. How to install and create  the 

flow environment via the terminal of Linux is explained in the official Flow page [19]. In order to 

being able to watch the simulations in the SUMO simulator, we need to have installed  sumo-gui, 

the graphical user interface. This cannot be done via remote server, due to the root  privileges but 
there are other ways of installing gui apps. This is important and very visual but   as long as we are 
talking in terms of comparing results, we can work without the graphical interface. 

 

Last but not less, we need to start Ray that is quite simple to install but not than simple to 
understand. Training an environment with Rllib is quite easy but first of all we need to register  the 

environment as a gym one in order to be able to use the algorithm we want with our environment. 
 

The most important thing about Ray that we need to consider is that, when we call the ray.init() 
we are initializing the Ray Client, an API that connects a python script to a Ray cluster. 

 
9. SIMULATIONS 

At this point, we have made a theorical revision of DRL for traffic signal control and we have also 
explained, how we have set up everything for our simulations. We need to remember that we are 
extending an already existing system, so we also have used the code of that project as a starting 
point. [5] 

 
Another interesting point that is to going to be added here is that, for developing all the 
simulations and understand all the results, all the tutorials from Flow and SUMO have been 
followed and read.  

 
Also, the tutorial from Ray and Rllib were needed to be read in order to understand how to install 

everything and how it works. 

 
Once everything that has previously been done is explained, we start to explain properly how 
the simulations work and the results that we have obtained. 

 
All the python folders that we are going to need as well as the file where the proper code for  the 
training is written have been added to a jupyter notebook. We have decided with jupyter because 
of my previous experience with it. 

 
For starting our simulations, we need to open a jupyter file. The extension of this file is. ypynb.    
Of course we need to start the notebook in the flow environment in order to be able to use the  
flow parameters. Our training code is going to be in a folder called lib. In this folder we are going 
to have our network and environment code and the controllers code. 

 
Let’s take a moment to discuss about controllers. This file of python code defines the process of 
movement of human-driven vehicles within a network. We need to use them because we need 
our vehicles to know how to move inside the network. As long as in this study we are not going 
to control the vehicles, but the traffic lights, we use the controllers defined for the vehicles in 
Flow. 

 
Another point that we need to include in this code is that the traffic phase options, they need to 
be imported from where they are written. Also, the class defining the particular case of our 
environment that we want to simulate needs to be imported.  

 
The net params, the Flow params and the sim params need also to be imported from the core 
folder of Flow and we will talk about them later. 
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Once everything that needs to be imported has been brought, we start writing. 

We need to define the aditional env_params here. This includes some attributes such as switch 
time, the min phase duration, the max phase duration…In the following table we include the 
params that have been used and its value.  

 

 

 

 

 

Params Value 

Switch time amber 5.0 (s) 

Min phase time 5.0 (s) 

Switch time red 7.0 (s) 

Reward function Velocity 

Num observed 10 

Discrete True 

Tl_type Controlled 

Phases Traphic_Phase_Options 

 
Table 3: Additional_env_params 

 
 
About this params we can add that, in the environment code different possibilities in terms of reward 
were written so we need to choose and, in this case, we are chosen the average velocity of all 
vehicles. 

 
We also need to define here again some of the attributes that define the structure of the network. 
They are shown in the following table. 

 

 

 

Params Value 

Short length 300 

Inner length 300 

Long length 300 

Row num 1 

Col num 1 

Cars top 0 

Cars bot 0 

Cars left  0 

Cars right 0 
Table 4: Grid Array Params 

 
 

In the table shown above, we can see the length of the lanes that we have, remember that we have 
three lanes in each road and two roads in each arterial approaching the lane. We also define the 
number of vehicles that we want when starting the simulation in the top, in the bottom, in the left and 
in the right. 
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As we have also explained before, we are going to work with inflows, this is optional but as long as 
in the code we are starting from they are being used we will also include them here. This params are 
used to specify the characteristics of the vehicles that are going to enter randomly in the system. We 
define the specific speed of departure, the type of vehicle, that in this case is going to be a normal 
vehicle driven by a person and the lane from where they are going to start, in this case, random. 

 

Params Value 

Vehicle type Human 

Vehicles per hour 800 

Depard Speed 5 

Row Col Ratio 1 

No turns Ratio  1 

Depart Lane Random 

Step lenght None 
Table 5: Inflows params 

 
 

Last list of parameters that we need to particularly define are the additional net params. This are 
attributes of the network that we add to the fix ones in the own network code. 

 

Params Value 

Grid array Grid array 

Inflows Inflows 

Horizontal lanes 3 

Vertical lanes 3 

Speed limit 20 
Table 6: Additonal net params 

 
 
We define here the attributes defined before for the network, and other important params such as the 
number of lanes and the speed limit. 

 
At this point we have already in the code all the network and environment parts of code that we need 
for the simulation, and we need to start coding the ray part. 

 
First of all, as we have said our environment needs to be set up in terms of gym and once, we have 
accomplished that, we need to register our environment. When we install ray, we can find a folder 
called tune where all the registry environments are defined. We can see there the classic ones used 
in DRL (e.g cartpole). We will import the part of the file where the environments are registered in order 
to after select the one that we need. Important to remember, we want to do different simulations, so 
we need to register each code for each simulation separately.  

 
Now that we have everything let’s put it together.  

 
We need to call the def_make() because we need to add the env_params, the sumo_params and the 
sim_params that we have defined to the environment that we have registered. Remember that we 
have called the standard and the base of the env_params, the sumo_params and the sim_params 
before so now we only have to add the extra ones that we have defined before.  
 
Now all the conditions are ready and we can call ray. 
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We need to import ray and the algorithm that we want to use from the rllib agent’s folder. Right after 
we can call the ray.init(). We need to call this in order to connect to a free ray cluster. A Ray cluster 
consists of a head node and a set of worker nodes. The head node needs to be started first, and the 
worker nodes are given the address of the head node to form the cluster: 

 

 
So, we are almost ready with the simulation.  

Now we need to set the configuration of the algorithms. In all the cases, we are going to work with the 
Default Configuration, presaved by rllib. With the modification of the params we could adjust to have 
a quicker system or for it to get stabled sooner. 

 
Once the configuration is set, we define the agent with the Trainer of the algorithm that we are going 
to use, the set configuration and the environment that we have registered with all the params included. 
 

Now we are ready to start training our environment. 

 

10. RESULTS  
  
First of all, and before showing the results, we are going to see which files are going to be 
generated and how we can work with them in order to compare the results obtained in the 
different simulations. 

 
            As it is explained in the flow tutorials, when we run a simulation involving flow, we are going to 

obtain three types of files. Each of this group will allow us to see a piece of information about 
the training process. 

 
“Reward plotting: 

We need to be able to graphically see the reward function in order to evaluate the effectiveness 
of our system.  
 

Policy replay: 
Flow includes tools for visualizing trained policies using SUMO's GUI. This enables more 
granular analysis of policies beyond their accrued reward, which in turn allows users to tweak 
actions, observations and rewards in order to produce some desired behavior. The visualizers 
also generate plots of observations and a plot of the reward function over the course of the 
rollout. 

 

Figure 19: Ray Cluster 
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Data collection and analysis: 
 

Any Flow experiment can output its simulation data to a CSV file, emission.csv, containing the 
contents of SUMO's built-in emission.xml files. This file contains various data such as the speed, 
position, time, fuel consumption and many other metrics for every vehicle in the network and at each 
time step of the simulation. Once you have generated the emission.csv file, you can open it and read 
the data it contains using Python's csv library (or using Excel).This file is going to include a list of 
numerical results that we can plot. 
 
[In case of using Sumo with Rllib agents, which is our case, we are going to obtain the following 
information in each group. These files are going to be directly located if we do not change the 
directory, in a folder call ray_results.] 

 

Reward ploting: 
 

RLlib supports reward visualization over the period of the training using the tensorboard command. 
 

 
Policy replay: 
 

The tool to replay a policy trained using RLlib is located at flow/visualize/visualizer_rllib.py. It takes as 
argument, first the path to the experiment results (by default located within ~/ray_results), and 
secondly the number of the checkpoint you wish to visualize (which correspond to the 
folder checkpoint_<number> inside the experiment results directory). 

 
 
Data collection and analysis: 
 

If you need to generate simulation data after the training, you can run a policy replay as mentioned     
above, and add the --gen-emission parameter.” [19] 
 

With all this information we can make tables and graphics comparing the different situation we want 
to simulate. 

 
In the previous work, where the starting point system was created, they let the spawn rates of the 
Poisson process to be equal to each, so the average arrival rates for all four approaches were equal. 
This means that all vehicles approaching the lane where equally likely to take a left turn, go straight 
or take a right turn at the intersection. 

 
The conclusion obtained in relation to the V2I communication situations and the no V2I 
communication were that the case where the agent has more information, the average velocity of the 
vehicles is increased and also the flow rates are increased. In their case they also try a composite 
reward obtaining that the CO2 emissions were reduced as well as the average wait and trip times and 
the driver stress metric. 
 

 
 

 
 

 
 

 
 

 

https://docs.python.org/3/library/csv.html
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Only traffic signal control: 
 

First, we are going to show how the system becomes stable after training the agent with PPO: 

 
 

Figure 20: V2I vs NO V2I trained with PPO only traffic signal control 

 

 
With this first graphics we can see that, when even only considering signal control, the mean reward 
is considerably bigger in case of having V2I. We can also appreciate that using PPO in this case is 
useful, using the default parameters and a little bit of time our system converges.  

 
After our systems have been trained, we need to evaluate them. For that we make use again of ray, 
we use the line compute.action for, as we have said, to compute the actions from a trained agent. This 
method preprocesses and filters the observation before passing it to the agent policy [20]. A piece of 
code where the corresponding environment is registered and the trained simulation is restored in 
order to obtain the velocities in a particular situation that we defined using, as we have said, the 
trained environments, has been developed. As a result of that piece of code, we have obtained the 
velocities of the vehicles when using the trained data in a particular situation, the same one for both 
cases, and with that we have made some plots and conclusions. 
 

We have obtained the mean velocities of the vehicles in the system in a predefined number of runs. 
Then, we have made a boxplot comparing both situations, and this is what we have obtained:  

 

Figure 21: Boxplot: Only signal control V2I VS NO V2I 
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The velocity is in m/s. 
 

We need to briefly explain why the numbers regarding the velocities are so low. If we go to the code, 
we see that it has been set that the reward is average_speed/max_speed. We have set to 20 m/s our 
velocity at the max speed for every lane. Again, if we go to the code, we can see that our training 
episodes have 1000 steps. If we do the following:  
 

(The return in tensor board (approx. 380 and 420)/1000) *20 
 

We obtain approx. after that formula the numbers that we have in the boxplot. 

 
As we can see, the mean velocity is lower in case of not having Vehicle to Infrastructure 
communication. This is pointing that having V2I communication is going to allow us to have better 
scenarios in real life. If the velocity is higher and of course within the limits, we will have less stressed 
drivers and people spending less time in traffic with will not only reduce the CO2 emissions but that 
will mitigate the traffic congestion and all the effects associated that have been considered along this 
project. 
 

Our first simulations have accomplished the fixed goal showing us that allowing the infrastructure 
knowing some parameters about the vehicles have some advantages in terms of reducing traffic 
problems. This, when we are speaking about only traffic signal control. 

 
Once the only traffic signal control part has been analyzed, we are going to present the results for the 
system including the speed advisory part. 

 

 

 
Figure 22: Results of only traffic signal control Vs joined system 

 

In this system the different lines correspond to the following: 

- V2I only traffic signal control 

- No V2I only traffic signal control 

- V2I joined optimization system 
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First of all, as we can see in the black box, the amount of time needed for the whole system including 
the V2I and the speed advisory is considerably bigger. We have a more complex system so more 
time for it to converge is needed. As we can see, the results are not as good as we expected. What 
we were looking for was a complex system that, when including the speed advisory part, it could give 
us better results with V2I, but what we have obtained is not that. The amount of time needed for each 
simulation in this case is quite large so the no V2I part has not been simulated as long as we are not 
obtaining what we wanted and the important part is to know the results of the whole system. 

 
As the code has been written, the agent in the case of the complete system, had the ability of 
modifying the velocity of the cars. We are optimizing the speed of the vehicles per lane between 15 
and 20 m/s. Regarding this, and remembering that in the previous case the max velocity was 20 m/s, 
what we should expect from the simulations is at least the same behavior than in the previous case. 
 

We can say that the simulations have been done with the default configuration parameters like the 
previous one but the fact of having a more complex system that requires more time and resources, is 
telling us that a better adjustment into the parameters should have been done. We can go through 
the definition of all parameters in order to know how to adjust them and see how the algorithm works 
to find a solution that could fit our system. Even though no more simulations have been done, some 
pages have been read in order to understand the adjustments that we could do. Including the Ray 
page [20] and [42]. 

 

 

11.  CONCLUSIONS  
 
This project has been a very big challenge. We have been able to go through the current state of 
Deep Reinforcement Learning in general and in particular for traffic signal control. We have also been 
able to appreciate how our problems in traffic affect many other aspects of our lives, direct and 
indirectly.  
 
The implementation of V2I technologies with the development of new technologies has shown to be 
also very important. We have seen in the results that when the infrastructure is able to have 
information of the vehicles the results are considerably better. This implementation is not immediate 
or cheap but it is an emerging solution that is going to change many lives.  
 
In relation to the development of the whole system. As far as we have been able to reach, we have 
seen that giving the vehicles the possibility (speed advisory) of increasing or decreasing their 
velocities, could give also quite good results but we do not have reach a simulation where that can 
be proved.  Of course, this complex system needs a great number of resources and time but if a good 
solution could be found this solution to traffic congestion problems could give us great results. 
 
In this case only a single intersection has been simulated and even with this little system the number 
of resources and time, not just for training, but for preparing and analyzing the results has been 
enormous. Programming is not simple and developing systems for big cities is not going to happen 
from one day to another but there is always a beginning. We need to keep always is mind that 
changing the first link of the chain sometimes is not as easy as, but it can really change the world. 
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